
Volume 9 Issue 2 November 1994

Ingenuii y
T H E T E C H N I C A L J O U R N A L

Ingenuity.
ICL’s Technical Journal

Editor
J.M.M. Pinkerton
ICL, Lovelace Road, Bracknell, Berkshire. RG12 8SN, England.

Editorial Board
J.M.M. Pinkerton (Editor) M.R. Miller (BT Laboratories)
P.J. Cropper (Northern Telecom Europe) W. O'Riordan
D.W. Davies FRS J.V. Panter
G.E. Felton E.C.P. Portman
J. Howlett A. Rowley
N. Kawato (Fujitsu) D. Thomelin (ICL France)
M.H. Kay B.C. Warboys
F.F. Land (University of Manchester)

All correspondence and papers to be considered for publication should be
addressed to the Editor.
The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

Published twice a year by Multimedia Publishing Unit, ICL, Bracknell and
Manchester.
1995 subscription rates (including postage & packing):

UK and Europe Rest of World
Annual subscription £72 $144
Single issues £43 $86

©1994 International Computers Limited. Registered office, ICL House, 1 High Street, Putney,
London SW15 1SW. Registered in England 96056

ISSN 1354-9952

Ingenuity
Volume 9 Issue 2

Contents
Editorial Note iii

Papers related to Client-Server
Establishing Co-operation in Federated Systems

M. Beasley, J. Cameron, G. Girling, Y. Hoffner,
R. van der Linden, G. Thomas 195

An ANSA Analysis of Open Dependable Distributed Computing
N. J. Edwards 218

An Open Architecture for Real-Time Processing
Guangxing Li, Dave Otway 241

Updating the Secure Office System
John A. Jones 257

POSIX Security Framework
David Rogers, Jane Ross 272

SQL Gateways for Client-Server Systems
J.L. Venn 290

Ingenuity November 1994 i

Other papers
Asynchronous transfer mode - ATM

Frank Deignan 303

The ICL search accelerator, SCAFS™: functionality and benefits
M.W. Martin 325

Open Teleservice - A Framework for Service in the 90s
Jerry Roddis 341

LEO, A personal memoire
F. Land 355

Other services (advertisements)
SystemWise 362
CustomWise 362
Architext 363
Index of Technical Journal Papers by Issue 364

Guidance for Authors 373

Front cover: Professor Bill O'Riordan (right), ICL's Head of Research and Advanced
Technology, discussing ElipSys with Dr. Dominic A. Clark, Senior Research Fellow of the
Imperial Cancer Research Fund.

ElipSys, ICL's constraint logic programming language for planning, scheduling and modelling
systems was developed in collaboration with the European Computer Industry Research
Centre and has been used by scientists at the ICRF to enhance and extend existing methods
for the prediction of protein structures that may be involved in cancer.

Traditional methods of prediction are often time consuming, expensive and impractical.
ElipSys is 60 times faster than the best existing methods.

ii Ingenuity November 1994

Editorial Note
This issue includes five further papers related to client-server topics in
addition to those printed in the May 94 issue. Other papers discuss, ICL's
novel search accelerator-, the concepts underlying ATM, an advanced
general purpose communication architecture capable of handling all forms
of information including speech, static and moving images and data in
character form - a scheme still under development which some think will
become the preferred carrier for information on the super highway; the
Security Framework of POSIX and ICL's own form of Teleservice.
Opinions about how best to approach the design of client-server systems,
range from the entirely pragmatic to the profoundly abstract and
theoretical. As engineering history shows, a wholly pragmatic approach
may be deficient because no theory was applied to indicate its inherent
limitations. In the early stages of any new art, theory may be incomplete
or, at worst, entirely missing. (Many will recall the dramatic film of the
Tacoma Narrows bridge disaster). With software whose behaviour can
often be many orders of magnitude more complex than that of any purely
physical system, the human mind needs straightforward models to help
imagine how a complete software structure may be described in such a
way that its behaviour may be first imagined and then correctly analysed.
This is the aim of the research described in the first three papers in this
issue from the ANSA project in Cambridge - a project not yet finished.
Nevertheless the approach is convincing and should already be a help in
considering the optimum definition and the allocation of subordinate
tasks between clients and servers, especially when pre-existing
components have to be integrated into larger systems.
Finally, the issue includes a personal memoire by Professor Frank Land
(prompted by the recent book on LEO by Peter Bird) describing some of
the software written for LEO, the original data processing computer first
put to work by J Lyons Ltd. in the early fifties. The approach was in
many ways years ahead of its time.

Ingenuity November 1994 iii

Establishing Co-operation in Federated
Systems

Mike Beasley, Jane Cameron, Gray Girling,, Yigal Hoffner,
Rob van der Linden, Gomer Thomas

ANSA Project, Architecture Projects Management Limited, Cambridge, UK

Abstract
Organisations have to respond quickly and flexibly to change, and
large organisations are evolving into networks of co-operating
small organisations. Mergers and de-mergers are common.
These changes in organisations will have a corresponding impact
on their computer systems. Distributed systems will be larger in
scale than now and will cross more organisational boundaries.
They will evolve as the demands of their users change, and
components will be upgraded while the system is running. The
software development for such systems will be distributed.
This paper addresses these concerns, and considers a number of
areas. First there is the classification of boundaries, and
consideration of suitable mechanisms to deal with them. The next
concern is making the necessary information available to the
interacting objects (trading). Finally the requirements of trading
in terms of data management are discussed.

1. Introduction
1.1 Purpose and audience
With the ever-growing scale and diversity of distributed systems,
organisations will benefit from the ability to extend and interconnect
systems in order to respond quickly to business opportunities and
challenges.
Federation is concerned with facilitating co-operation between
autonomous organisations for the purpose of sharing services and
resources. Barriers to such co-operative computing may be technical,
organisational, administrative or business-process related.

Ingenuity November 1994 195

There is a need to tackle the problems associated with federation in a
comprehensive and consistent fashion as they are strongly inter-related:
• trading of services across boundaries
• interception and adaptation at boundaries
• management of Quality of Service (QoS) aimed at delivering

guarantees (dependability, security and performance) across
boundaries.

These problems are in addition to the current industry focus on platforms
for application integration (CORBA, DCE, OLE2). Solutions to
federation can help solve interworking problems between these platforms.
This paper identifies the problems associated with federation and outlines
the current ANSA work aimed at finding solutions. The ANSA
architecture (both directly and via ISO ODP) is part of the
OPENframework reference architecture for Distributed Application
Services [Brenner, 93].
The issues discussed in this paper will be of interest to the following
people:
• domains and boundaries: system designers and managers
• data management: systems integrators and database users
• interception: systems integrators.

2. The Need for Federation
2.1 The trend toward large scale, federated systems
The need for faster response to ever-changing business situations has led
organisations to move from monolithic organisational structures to
networks of co-operating sub-organisations. Organisations typically
require computing systems which reflect their organisational structure.
The demand for more flexible distributed computing is high.
At the same time, advances in technology are fuelling an ongoing trend
towards increasing computing power, storage capacity, communication
availability and bandwidth, all at decreasing cost. The increasing
technology base for distributed computing enables computing systems
which are:
• more widely used
• larger (both geographically and in terms of computing power)
• more diverse
• more interconnected.
In short, the trend is towards large-scale, inter-organisational distributed
systems. Increasing organisational demands, fuelled by improvements in

196 Ingenuity November 1994

the technology base, result in a number of interoperability and federation
problems to be solved by software.
Computer and telecommunications vendors must meet the growing
demand for distributed computing components and services which can
interoperate in large-scale, federated systems.
2.2 Overview of areas addressed
The work described in this paper is aimed at enabling large scale,
federated, distributed systems to be built.
Four main objectives are defined:
• heterogeneous interaction: supporting the technological, naming/

semantic and object description aspects of federated interoperation
• federated object management: supporting the overall management of

objects and resources in a federated system
• federated development: supporting design and development of

interoperating clients and servers by different organisations
• federated enterprise negotiation: supporting the institutional,

remuneration and administrative aspects of federated interoperation.
Support for these objectives requires analysis of the boundaries which
arise, and techniques for dealing with them (see sections 3 and 4).
The requirement for interactions to cross boundaries leads to a model of
interception (see section 5). This model must support the removal of
barriers when interoperation is to be facilitated, and the imposition of
barriers when interoperation is to be restricted.
To meet the requirements described here, access must be provided to the
diverse kinds of information needed to support the four objectives listed
above. This leads to the development of an extended model of trading
(see section 6) and a proof o f concept prototype trader implementation.
The extended trading model must support an extensive and extensible
collection of data types for information about services and offers, and
must also support highly flexible retrieval of this information.
The design and implementation of the extended trader prototype itself
needs query language access to data in open distributed systems (see
section 7).
2.3 Characteristics of large-scale, federated systems
A large-scale, federated system typically spans organisational boundaries.
Hence different authorities are in charge of different parts of the system.
Multiple authorities responsible for the creation, ownership and control
of different parts of the system are subject to different needs, constraints
and opportunities. Hence there are likely to be many differences between
the parts.

Ingenuity November 1994 197

System components must interoperate to meet the objectives of the
various organisations involved. Generally these organisations have to
negotiate terms and conditions for interoperation.
Systems are no longer static - they are in a constant state of flux to meet
the constantly changing needs of their constantly changing user bases, and
to accommodate new hardware and software.
System components are designed and developed by different
organisations. Designers and developers need ready access to
specifications of all parts of the system, at every level of abstraction, at
the level of detail which the owner permits. This could include contact
details to tell them whom to ask about parts of the system that they are
not given access to.
Different mechanisms are in place in different parts of the system to
enable interoperation, to meet quality of service guarantees, and to
manage the creation, deletion and reconfiguration of objects and
resources. As with any complex technology, it is important to be able to
mask these mechanisms selectively from end users and/or application
developers, and present them with a high-level, application oriented
interface, otherwise the complexity will be a barrier to rapid application
development, will make maintenance more difficult and may restrict the
reuse of applications to environments with a specific configuration.
2.4 Interoperation in large scale, federated systems
To reach successful interoperation between objects in a distributed
system, it is necessary either to:
• find compatible objects (trading [ISO, 94]), or
• detect incompatibility and take appropriate action where possible to

bridge it (interception [ISO, 94]).
where compatibility must take account of all the following aspects,
summarised in figure 1:
• authority, creation, ownership and control of resources of all kinds
• accounting/billing-, measuring resource usage, billing for usage, and

handling payment
• management: policies for resource allocation, monitoring, quality

control, etc.
• infrastructure: mechanisms and protocols required for interoperation

between clients and servers using different technologies

198 Ingenuity November 1994

• application: features specific to particular instances of applications or
services, such as:
o interface specification (e.g. its signature)
o quality of service (QoS) specification (non-functional aspects of

services such as security, performance, dependability, etc.)
The specifications of interface signature and of QoS are part of the
application programmer's view of the system. The complex task of
relating QoS requirements to appropriate engineering mechanisms can
be automated, at least in part.1

• model: semantics and naming of objects and services. This falls under
an information view of the system.

Server

Authority----- Accounting----- Management------ Infrastructure------- Application-------Model
Billing

Institutional Remuneration Admin. Technical Interface Naming and
relation relation relation relation description semantic

relation relation

Authority------ Accounting----- Management------ Infrastructure------- Application-------Model
Billing

Client
Figure 1 Key Aspects of Interoperation

Successful co-operation requires the imposition of barriers as well as their
removal, for example, to ensure security, to provide performance
guarantees, or to manage resource utilisation.

3. Boundaries in Federated Systems
3.1 Introduction
To support and manage interoperation in federated systems, one must
first understand the different kinds of boundaries which arise in such
systems. The next step is to analyse the different kinds of problems they
pose and develop solutions to the problems.

1 The extent to which this is possible is currently under investigation in
ANSA work on Performance and Dependability.

Ingenuity November 1994 199

This section presents a high-level view of the different kinds of boundaries
arising in federated systems. It is a revised and expanded version of the
classification of boundaries which appears in Chapter 6 of [Deschrevel,
93],

Section 4 of this paper discusses, in general terms, the kinds of problems
which arise at boundaries. Section 5 discusses interception, a technique
which can be used to handle many types of problems at boundaries.
3.2 High level classification
As a result of studying the relationship between components of distributed
systems (see section 2.4) a number of areas have emerged in which
differences between systems are likely to occur.
Almost always there will be differences in the information, procedures
and mechanisms used in each one of those areas to achieve their goals.
3.3 Authority, management and administration
An administration is a body of people and facilities that manages
operations, subject to the constraints and policies laid out by an
appropriate authority. In a federated system there are multiple
administrations, responsible to multiple authorities. Each administration
and authority has local autonomy, subject only to agreements reached
with other administrations and authorities. If services are provided and
consumed across domain boundaries, the management in each domain is
responsible for ensuring that all guarantees given by the clients and
servers are kept.
There are several different types of management which concern
distributed systems. Examples include:
• QoS management: providing end-to-end QoS guarantees, both within

individual domains and where service provision crosses boundaries
• access control: deciding who should have access to what services when
• object management: monitoring and control of objects (objects can

include parts of the infrastructure):
o object creation, destruction and relocation
o resource allocation and reclamation
o configuration management

• miscellaneous management functions such as monitoring and
debugging which are needed occasionally.

3.4 Remuneration
Remuneration includes three different processes:
• accounting-, measuring the amount of work carried out by a server and

calculating the charge for the service
• billing: charging the user for services provided
200 Ingenuity November 1994

• paying: transferring some currency from the user to the provider of the
service. This process may include sending a receipt from the provider
accounting agency to the user remitting agency.

Different systems may have different views and implementations of each
of these processes. In particular, conflicts may arise between systems
which have different accounting and billing strategies. Remuneration is
closely related to issues of trust and security. It is expedient to reach
agreement on remuneration issues before consuming and providing
services; for this negotiation to succeed, it is necessary for the relevant
information concerning remuneration to be available at this point.
Remuneration is a topic in which there is currently a great deal of
interest, especially concerning the Internet and the World Wide Web.
3.5 Service interfaces and properties
Functional and non-functional specifications of services have to be
available in a form which allows the trading process to compare them and
to find compatible objects. Service descriptions can be broken down into
the following major parts:
• interface type (signature): description of interfaces in terms of

operations and data types. Type systems involve notions of
conformance and substitutability; types are represented by interface
definition languages (IDLs) and abstract data types.
We understand how to formalise signatures, and how to check that the
operations provided by a server meet the requirements of the client.
Performing these checks has the benefit of preventing interaction
errors.

• quality of service (QoS): how to specify QoS requirements in a
declarative manner which is translatable to a variety of platforms and
mechanisms.

(This excludes the issue of the behaviour of services, which is included
under modelling, below.)
Different systems will hold service descriptions in different formats - for
example, there are different IDLs in current use (DCE, OMG, ...), and
there are also different specification languages for system management
(GDMO, SNMP,...).
3.6 Infrastructure: engineering and technology
Distributed system infrastructures provide generic facilities which are
common to a wide range of distributed systems and are used by the
distributed application programmer.
We can classify the differences between such infrastructures according to
the categories of information necessary for setting up the co-operation
(binding) between objects (this information is contained in a DCE binding
handle, ANSA interface reference, or CORBA object reference):

Ingenuity November 1994 201

• transparency mechanisms: declarative Quality of Service (QoS)
requirements translate into the information, procedures and
mechanisms necessary to provide the service with the required
guarantees. Different systems will use different and incompatible
mechanisms; only ANSA [Li, 94] has any concrete proposals in this
area.

• communications protocols: different protocols are used, with different
guarantees and features (e.g. DEC RPC and ANSAware REX, both of
which are implemented over TCP and UDP).

• location: different ways of addressing may exist, depending on the
kind of network and communications protocols available.

To enable interoperation of clients and servers on opposite sides of an
engineering/technology boundary, it is necessary to bridge the differences
in some way so that bindings can be set up and messages can be
meaningfully exchanged (one particularly important variety of messages is
that which reports that an exception has occurred, vital to enable
troubleshooting). One promising approach is to use the information used
by the trading process to support the automated generation of some sort
of appropriate adapter, or interceptor (see section 5).
3.7 Modelling: semantics and naming
Modelling concerns the way people describe the world around them.
Mechanical systems such as computers can only deal with concrete
representations, e.g., bit patterns. Previous work on naming models [van
der Linden, 93] and the information model [lggulden, 93] illustrate some
of the limitations on the representation of concepts and the subsequent
interpretation of those representations. These limitations apply also to
service specifications, for instance:
• different services may have the same name in different contexts
• the same service may have different names in different contexts.
The major problem with naming and co-operation in large-scale systems
is that different naming schemes make it difficult to compare names to
discover whether the objects, or properties, denoted by those names are
compatible.
Differences in semantics result in identical or similar concepts being
represented in fundamentally different ways.
For example, two time services may provide different resolutions (1
second for one and 1 minute for another) and may vary in whether they
include the date. In one sense they both mean the same thing by time, but
in another sense they are different.
Moreover, production of a representation of something in one context
(e.g., a specification of a service in project A) and the transfer of the
representation to another context (e.g., project B) does not necessarily

202 Ingenuity November 1994

convey the meaning attached to the specification. The two contexts may
have different understandings of the representation used.
The major problem with regard to semantics and co-operation in large-
scale systems is that it may be difficult to discover whether the semantics
of an operation offered by a server are compatible with the semantics
required by a client. This may be because a sufficiently complete
semantic description is not available to the client, or it may be because the
semantic description provided by the server is not understandable by the
client.
One way to make semantic information available is to make it part of the
service specification maintained by traders. A difficult issue is the form in
which such information should be maintained so as to make it
understandable to people and/or computer systems. An even harder
problem is determining whether or not the parties have conceptual
models that are compatible enough for there to be any way to compare
the nature of the offered service with the client's requirements.
It will always be necessary to integrate automated checking and manual
negotiation. Automated checking of interface signatures will accept more
cases than manual negotiation allows, because manual negotiation will
take into account greater semantic knowledge. Automated checking will
be used to check that asserted relationships are sensible. Some current
telecommunications research is concerned with negotiating agents and
their associated knowledge bases [Griffeth, 94],

4. Dealing with Boundaries
4.1 Introduction
Boundaries define the limits of domains of homogeneity. These domains
are defined by many different properties, corresponding to the different
kinds of boundaries. This chapter considers the problems that the
presence or absence of boundaries implies and outlines further work to be
done in addressing these problems.
4.2 Multiple, overlapping domains
Two sets of objects may share some properties and not others. Thus,
depending on the property under consideration, there may or may not
exist a boundary between them. A division of a set of objects into
domains under one property may or may not represent the same division
as is formed under another property.
Thus, the different kinds of domains corresponding to different kinds of
properties may have different kinds of relationships with one another.
Some domains may coincide with others; for example, a security domain
may coincide with a remuneration domain. Some domains may be
subsets of others; for example, a single authority may have delegated
administrative control of its networks to several administrative bodies, so
that each administrative domain is a subset of the authority domain.
Some domains may overlap others in essentially arbitrary ways; for
Ingenuity November 1994 203

example, a security domain and a communications protocol domain may
overlap in such a way that neither is contained in the other.
Because the properties which define domains do not necessarily relate to
geographical location, domains of homogeneity do not necessarily occupy
a geographical “area”. However, certain properties may be characteristic
of a particular computer network, and then the corresponding domains
are likely to cover an “area” defined by the network.
Similarly, properties defining domains do not necessarily relate to
authority. Boundaries may exist in places other than where the scope of
different authorities meet.
4.3 Independent decomposition principle
The analysis of boundaries is simplified if the concerns associated with
one kind of boundary are considered in isolation from other kinds. Thus,
we believe that any of the boundaries mentioned earlier can be analysed
and modelled independently of each other. However, while this
separation is possible when modelling boundaries, thus helping to
understand better the issues involved with each kind of boundary, it may
not always be possible in practice.
In practice the following situations arise:
• when dealing with certain kinds of boundaries it will be necessary to

deal with others. For example, the crossing of any boundary which
requires looking at the contents of a message will conflict with security
concerns where messages are encoded.

• in some cases it may be expedient to treat one type of boundary while
dealing with another. For example, if, when dealing with a protocol
boundary, the messages get decoded from one on-the-wire format to
another, then other boundaries which require looking into the message
content can also be dealt with.

4.4 Co-operation and independence
Two general issues at boundaries are:
• co-operation-, there is a wish to co-operate with other sets of objects

across a boundary, but there is a barrier at the boundary preventing it
• independence: there is a wish not to co-operate with other sets of

objects across a boundary, but there is no barrier at the boundary
preventing it.

Co-operation is concerned with creating one domain of interoperability
out of many, and independence with creating many domains out of one.
These are the two polarised examples of likely problems. In practice the
requirement for absolute co-operation, in which access is universally and
transparently available, is likely to be tempered by some desire to ensure a
quid pro quo arrangement (such as charging for a service) that is likely to
require some level of independence to be asserted.
204 Ingenuity November 1994

4.5 System management across boundaries
Another area of interest in federated systems is system management across
domain boundaries.
One example is maintaining acceptable system performance, which
requires managing the work load in relation to the available computing
and communications resources, perhaps reconfiguring resources as
necessary. In order to do this it is necessary to monitor and analyse work
loads and performance measurements in different parts of the system, and
to enable, disable or reconfigure the use of specific resources. In some
situations this is largely a question of object interoperability, where client
applications performing system management functions need to
interoperate with server objects which have collected the relevant data
and/or control the relevant resources. In other situations it may require
interoperability among infrastructure components which are not
implemented as objects, i.e., which do not communicate via object
interfaces.
Another example is trouble shooting. When something fails, it is
necessary to pinpoint the failure. Is it at a node or a link? Which
component? Is it software or hardware? Here again both object
interoperability and infrastructure interoperability may be involved. The
situation is complicated by the fact that different domains may use
different exception reporting mechanisms, so it may be difficult to
propagate exception codes across boundaries.
4.6 Scope of work on boundaries
The boundary problems that need to be addressed are those occurring
during the design, implementation and operational use of distributed
computer-based services. The primary goal is to control (selectively
enable and disable) interoperation between and within such services, and
to facilitate system management.
Interoperation between objects (potentially from different domains)
typically requires a number of different types of co-operation, including
sharing responsibility for joint operation, sharing authority over it,
sharing the management of the objects and infrastructure involved, and
enabling the interactions that are required to carry it out (including both
the provision of functionality and the transport of remuneration).
Different types of co-operation may also be needed between designers and
implementers that enable, encourage, discourage or prevent
interoperation in later development phases.
Independence is often required when control over a domain needs to be
established, perhaps to enforce security, safety, minimum quality, or
charging controls or to establish common monitoring, auditing or
administration procedures. In some of these cases one must consider the
threat of malicious (intelligent) attempts to defeat the mechanisms which
are inserted to provide independence.
The ANSA work on federation is intended to:
Ingenuity November 1994 205

• identify types of co-operation and address each individually
• categorise suitable mechanisms for independence, consider their

automated production, and establish mechanisms which are not overly
susceptible to malicious attack

• identify the most important aspects of system management and the
problems posed by the different kinds of federation boundaries, and
propose solutions.

5. Interception
Interception is concerned with the information, mechanisms and
processes necessary to carry out the following activities:
• detecting attempts by entities to interact across boundaries
• determining the differences between the entities and whether any

intervention is necessary
• inserting the necessary mechanism(s) for enabling, disabling or

monitoring the crossing of the integration boundaries
• acting on attempts to interact across the boundary.
The mechanisms to be used will in general depend on the kind of
boundary being crossed, as well as the purpose of the interception.
There may be a need to modify objects or insert adaptors of some sort
between them in order to make them compatible with each other, or to
prevent certain undesirable interactions between them from taking place,
or to monitor interactions.
A model of interception is being derived by refining the activities listed
above, and by relating the model to the different kinds of boundaries
which will have to be bridged in distributed systems.
The general model of interception is being tested to derive the
interceptors, encapsulators, translators, adaptors, or whatever, each
suitable for a particular purpose and boundary. The feasibility of
combining interception strategies which deal with different boundaries is
also being examined.
To prove the concepts and the generality of the model it will be necessary
to develop prototypes of particular interception strategies, and test them
in the context of different scenarios.
There is some experience in the area of interception which we will build
upon. For example:
• the object management community (the X/Open Joint Inter-Domain

Management Group) has experience in translating system management
specifications into CORBAIDL (and vice versa) [X/Open 94a, X/Open
94b]

206 Ingenuity November 1994

• our previous experience in other ESPRIT projects showed one way to
generate application level gateways between applications in different
distributed systems environments (ANSAware and DCE)

• stub compilers have been used to generate stubs (which convert
arguments to a string of bytes) from IDL in DCE [OSF 92], CORBA-
based products [OMG 92] and ANSAware [ANSA 93].

The model and techniques of interception are applicable at different
stages of the development process. However, distributed systems are
characterised by the dynamics of the applications and the changes which
will inevitably take place in the configuration of the system. Particular
emphasis must therefore be put on interception performed at run-time,
resulting in interceptors being created, inserted and dismantled
dynamically.

6. The Trading Model
6.1 Introduction
Trading can be viewed as encompassing all exchanges of information
necessary to support interoperation. Thus, trading directly supports the
first three objectives listed in section 2 and indirectly supports the fourth,
by facilitating the interoperation of object management applications.
To see the implications of these objectives for trading and traders, it is
necessary first to look at both the process model and the information
model for interoperation in a federated system.
6.2 Processes required for interoperation
The following processes are required for successful interoperation in a
federated system:
• search in appropriate repositories (e.g. name services, traders, X.500

directories) for information about existing or creatable objects
• select objects for interoperation by comparing the offers made by

service providers with the requests made by prospective users
• resolve any barriers to interoperation. This may involve the use, or

dynamic creation, of adaptors of some sort. It may also involve the
dynamic creation of servers.

• carry out any negotiations and agreements required for co-operation
• bind the co-operating objects, by configuring the engineering

infrastructure
• set up a connection between the objects
• carry out the interaction itself, i.e. the invocation of operations which

implement the services.
These processes need not be co-located in time or space. Part of the
matching process may take place at design time, and part at run time.
Ingenuity November 1994 207

Binding may be dynamic at instantiation time or static at compile time.
Some of the steps may be carried out by people outside the computing
environment. Thus, trading needs to be viewed as a process which
extends throughout the application life cycle, rather than something
which happens only at run time.
6 .3 Information required for interoperation
6 .3 .1 Symmetry of the information model
The basic information model for trading is symmetric, in that the client
has to have information about the server in order to interact with it
successfully, and similarly the server has to have information about the
client in order to interact with it successfully (see Figure 2). Clients and
servers have to trust each other - the trader is just an intermediary.

Figure 2 Symmetric Information Model for Trading

Note that there may be an asymmetry in the implementation and in the
use of agents, e.g. the agent which conveys a certain kind of information
from the server to the client is not necessarily the same as the agent which
conveys the same kind of information from the client to the server. For
example, a client may get information from a trader about allowable
billing arrangements for a service, and then the client may be required to
send billing information about itself directly to the server (e.g. fill out a
direct debit authorisation), rather than going through a trader.
Moreover, information is not necessarily conveyed in the two directions
at the same time. In fact, sometimes it is not even conveyed during the
same phase of application development, deployment and/or operation.
For example, a client may get information about the signature of a service
from a trader during the design phase of the client, so that the client can
be designed to match that signature, and then the client may provide
information about the interface it needs at bind time. (Some information
about the interface the service offers would have to be available again at
this time, of course, to enable binding.)
6.3.2 Scope of the information model
As noted, the successful co-operation of service providers and consumers
in a federated system involves finding suitable objects to interact with,
208 Ingenuity November 1994

and then resolving any barriers which arise due to incompatibility. The
compatibility checks necessary to ensure successful co-operation are
concerned with a wide range of functional and non-functional aspects in
which systems may differ.
For example, the negotiation may include authorisation policies and
procedures, accounting and billing, and how to proceed if quality of
service guarantees are not met. Heterogeneous interaction may require a
great deal of information about the specific mechanisms being used for
transparency and quality of service, as well as about communications
protocols and addresses. Federated development requires detailed
information about the semantics of services, as well as about the
signatures of operations.2 Federated object management may require
extensive information about resource allocation and recovery policies
being followed, etc.
Thus, the information model behind object specification has to be
generalised. Object specification must be considerably more
encompassing and incorporate information on a wide range of properties
where differences between systems are expected to arise.
6.4 Trading as information service
The process of trading should be viewed not just as providing a match
making facility but more as an information service which will be used by
different agents at different stages of the development process. A
developer interested in minimising development effort may want to
browse through available services to identify candidates for re-use. A
prospective customer may want to look at accounting, billing and quality
of service information on a number of similar services to decide which
one to use.
In these situations the trader needs to be able to support what might be
called a shopping model, as well as the usual match making model. In the
match making model a client gives the trader a complete specification of
the service desired, including the interface description, and the trader
returns interface references of one or more matching services to the client,
together with perhaps some additional predefined information on
properties of the services to assist the client in selecting one. This model
is primarily intended to support dynamic binding. In the shopping model
a client gives the trader an incomplete specification of the service desired.
The specification may or may not include the full interface description.
The client also tells the trader what kinds of information to return about
the qualifying services. The client then takes this information and makes

2 An increasingly important problem in large, federated systems, such as
the public telephone network, is adverse feature interactions. A
necessary step toward detecting and avoiding feature interaction
problems is to have available a sufficiently complete specification of the
services involved.

Ingenuity November 1994 209

a decision on what service to use, based on some algorithm known only to
the client. The client may not be interested initially in obtaining an
interface reference. That may be requested later after a service selection is
made. In fact, the client may first have to adapt to the interface of the
selected service (perhaps, for example, using the CORBA Dynamic
Invocation Interface), so there may be some time lag between the initial
query to the trader and the actual invocation of the service.
The shopping model is analogous to a person shopping for something, say
a fridge. The person looks at what is available from various stores,
comparing features, prices, credit and payment terms, warranties, exterior
appearance, energy usage, etc., finally making a decision based on some
combination of these factors which would be impossible to explain in
advance. The purchase is then made (analogous to binding). Certain
adaptations may be made, such as determining precisely where to put the
unit, based on the properties of the unit finally purchased, rather than
specifying these properties in advance.
In the shopping model we have four phases rather than the current three:
1) shopping: trading for specifications (or for types)
2) ordering: trading for an object of the chosen type
3) delivery: binding
4) using: invocation
The shopping model is often required for negotiating a service (e.g.,
electronic video rental service, or on-line database service) from multiple
commercial offerings, for facilitating re-use, and for federated
development.
This will require a modification of the model of trading to include a
variety of queries and on-going interactions aimed at supporting a
dialogue with the trader. This points towards an implementation of the
trading function as an information repository supporting query language
access by clients, as well as the usual lookup functions.
Moreover, the object specification information should be available
throughout the life cycle of an object, to assist in systems management or
reconfiguration, for example.
6.5 Dynamic creation of servers and interceptors
Dynamic service instantiation (i.e. delaying the creation of a server until a
client wishes to make use of the service) is described in [Deschrevel, 93].
A related capability in a federated system is the ability to instantiate
interceptors dynamically. Traders play a role in both of these processes;
they can provide the information necessary to determine the specifics of
the server or interceptor to be instantiated, and they can also invoke an
appropriate operation to initiate the instantiation.
There are several issues to be addressed in this connection:

210 Ingenuity November 1994

• the provision of appropriate mechanisms to enable such dynamic
instantiation
For example, the user can be given explicit control, using the trader to
locate a suitable factory (service creation agent), or the service creation
could take place transparently to the client, as in ANSAware. There
could be an agent function in the client to hide the factory.

• the provision of the necessary service specification information to
support dynamic instantiation.

• the extent of the trader's involvement in the whole process of dynamic
instantiation

6.6 Requirements on Trader
The above analysis leads to the following requirements on traders. A
trader must:
• maintain many more categories of information than at present about

services
• allow much more flexible retrieval of information than at present
• be able to participate in the automated creation or instantiation of

servers and interceptors (by providing information and perhaps
invoking the operation).

The above suggests a single trader, but the information and the
functionality may be partitioned among multiple traders, and
implemented by means of different technologies. [ISO 93] suggests that
traders will be governed by various policies concerning security,
searching, etc., and such policies could be supported by a trader kit of
parts which could be used to build multiple traders with an ability to call
out to agents which will enforce those policies.
These requirements are analysed at more length in section 7.

7. Data Management
As pointed out in section 6, a trading capability, which will be needed
increasingly in the future, is very flexible access to information about
services.
The working draft of the ISO ODP Trading Function specification [ISO
93] provides a “Search” operation which goes some distance towards
meeting this need. For this operation, the client must provide as input
parameters:
• service interface description (an interface type)
• matching criteria (an arbitrary boolean condition on the properties of

the service)

Ingenuity November 1994 211

• list of property names designating the properties for which the client
wants values returned.

The trader returns a list of all the service offers which are compatible with
the given interface type and which satisfy the matching criteria. For each
offer in the list, it includes:
• the interface reference
• values of the requested properties.
There are several serious limitations to this “Search” operation as
currently specified:
• The client may not always know the interface type of the service it is

looking for. It may be looking for a service which performs a
particular task and be prepared to adapt to the required interface type
(perhaps using the CORBA Dynamic Invocation Interface).

• The client may not need the interface reference when the Search
operation is invoked, as it may not intend to use the service right
away. If dynamic service instantiation is involved, it is undesirable to
provide the interface reference long before the service is needed, since
the service must be instantiated before the reference can be provided.

• A “Search” operation may return a very large list of offers. There
should be some specification for retrieving the list piece-wise, rather
than all at once.

• There seems to be an implicit assumption that properties have simple
data types. However, to support the needs of federated systems, some
properties may have very complex data types. The client may want to
use only certain components of certain complex properties in the
matching criteria, and may want to retrieve only certain components
of certain complex properties, not the entire properties.

For example, if the service is an information retrieval service, one of the
“properties” of interest is the information model describing the structure
and semantics of the information which can be retrieved. This is an
enormously complex property. Clients may want to retrieve from a
trader descriptions of certain entity sets in the information model, but not
the entire information model.
In principle, one would like simply to generalise the “Search” operation to
remove these limitations. However, the part about the complex data
types presents significant problems, both with specifying the operation
property and with implementing it.
In practice, one can achieve equivalent functionality much more easily by
storing the property information in a standard database, e.g., a relational
database, and allowing clients to access it via a standard query language,
e.g., SQL. Such remote query language access will allow clients to select

212 Ingenuity November 1994

and combine interrelated information about services in precisely the
combination needed.
Moreover, trading is just one of many distributed applications which need
remote query language access. The power and flexibility of this paradigm
have led to its increasing popularity in client-server computing, as
evidenced by the very large market today for client-server systems using
SQL-based remote database access.
Therefore, an important problem to be solved is how best to support
remote query language access to databases in an open distributed
processing environment. Potential problems arise from the following
characteristics:
• the numbers and types of input arguments and output results of a

query language operation are determined by the query statement itself,
often generated dynamically at run-time, in contrast to other types of
operations with statically defined signatures.

• in order to provide the ability to return results of a query piece-wise,
and in order to provide transactional properties across multiple
operations, it is necessary to have a dialogue interaction paradigm
between client and server, in contrast to other types of operations
where the server need not maintain any information on the state of the
interaction between operations.

These characteristics are accommodated by the basic ANSA/ODP
computational model [Rees, 93,] [ISO, 94], but they are often not well
supported by existing distributed processing environments.
The ANSA federation task group has developed a conceptual model for
how to view databases and query language access to databases in an
ANSA/ODP framework [Thomas, 94]. Current work on an experimental
implementation of an enhanced trader prototype is providing a test bed
for a practical implementation of this model.
The current ANSA work on Data Management, as described above, is
complementary to that done within ICL for RIBA/DAIS, and described in
[Crockford, 92]. The ANSA work is concerned with fitting query
language access into the ANSA computational model, i.e. the model of
client/server interaction; the ICL work is concerned with providing the
client with a conceptual view of the DBMS that is easier to interact with.

8. Conclusions
This paper has analysed the requirements for establishing co-operation in
large-scale systems in terms of a set of boundary types that may need to
be crossed (federation) or established (independence). A number of
consequent areas of investigation were isolated relevant to trading,
interception and federated software development in such a system.

Ingenuity November 1994 213

Interoperation between domains will require mechanisms addressing at
least their administrative and remunerative differences in addition to
differences in their interface descriptions, semantics, naming models and
in the infrastructure supporting them. Similarly, isolation of domains
may require barriers to be created in some of these areas.
Traders need to handle a greater wealth of information about clients and
servers in order to achieve the above and this results in a requirement for
a more advanced model of trading, including greater parity between the
role of a client and a server and the ability to describe a greater range of
objects that come into existence dynamically. In addition, the use of
traditional data management technology to support this information
requires the extension of existing ANSA RPC technology (e.g.“ dynamic
typing) to conform to the existing computational model.
Boundaries need to be bridged by a variety of mechanisms, not all of
which operate solely at run time. Specific instances of interception
mechanisms can be derived from a generic model which is under
development. Federation during the development of systems, for
instance, requires the bridging of differences between tools used in the
process of specification, design and implementation. This differs from,
for example, a protocol gateway.
Establishing co-operation between systems is a fundamental pre-requisite
for the wide-scale deployment of an electronic services market place and
the availability of truly open distributed processing. This paper suggests
that further advances in a broad range of areas are necessary before this
goal can be achieved.

9. Acknowledgements
The authors of this paper would like to acknowledge the contribution of
their colleagues in the ANSA team, particularly Andrew Herbert,
Technical Director of APM Ltd. and Chief Architect of the ANSA project,
who made valuable comments. Our colleagues in the ANSA sponsor
companies also made a valuable contribution with their comments.
Copyright © 1994 Architecture Projects Management Limited. The
copyright is held on behalf of the sponsors for the time being of the ANSA
Work programme.

10. References
ANSA project, “ANSAware Version 4.1 Manual Set”, Architecture
Projects Management, Cambridge, 1993.
BRENNER, J.B., “OPENframework-. Distributed Application Services”,
ISBN 0-13-630518-0, Prentice Hall, 1993.
CROCKFORD, L.E., DRAHOTA, A., RIBA - “A Support Environment
for Distributed Processing”, ICL Tech] (Vol 8, No 2, pp 284-301), Nov
1992.
214 Ingenuity November 1994

DESCHREVEL, J-P., “The ANSA Model for Trading and Federation,
Architecture Report APM.1005.01”, Architecture Projects Management,
Cambridge, 1993.
GRIFFETH, N.D., VELTHUIJSEN, H., “The negotiating agents approach
to runtime feature interaction resolution”, in Feature Interactions in
Telecommunications Systems, Bouwma and Velthuijsen (Eds), ISBN 90
5199 1657, IOS Press, Amsterdam, 1994.
IGGULDEN, D., REES, R.T.O., VAN DER LINDEN, R.J., “Architecture
and Frameworks, Technical Report APM.1017.03”, Architecture Projects
Management, Cambridge, 1993.
ISO, “Open Distributed Processing - ODP Trading Function”, ISO/IEC
JTC1/SC21/WG7, Draft, 1993.
ISO, “Basic Reference Model of Open Distributed Processing - Part 3:
Prescriptive Model, ISO/IEC 10746-3”, ISO/IEC JTC1/SC21/WG7, 1994.
LI, G., An Open Architecture for Real-Time Processing, ICL Tech], Vol 9
3 pp. 49-63, Nov 1994.
OMG, “The Common Object Request Broker: Architecture and
Specification, Document Number 91.12.1”, Object Management Group
and X/Open, 1992.
OSF, “OSF DCE Application Development Guide”, Open Software
Foundation, 11 Cambridge Center, Cambridge, MA 02142, USA, 1992.
REES, R.T.O., “The ANSA Computational Model”, Architecture Report
APM.1001.01, Architecture Projects Management, Cambridge, 1993.
THOMAS, C.G., BEASLEY, M.D.R., HOFFNER, Y., “Data Management
for an Enhanced Trader”, External Paper APM.1162.01, Architecture
Projects Management, Cambridge, 1994.
VAN DER LINDEN, R.J., “The ANSA Naming Model”, Architecture
Report APM.1003.01, Architecture Projects Management, Cambridge,
1993.
X/OPEN, “Translation of GDMO/ASN.l Specification into CORBA
IDL”, X/Open, Apex Plaza, Forbury Road, Reading, Berks, RG1 1AX.
X/OPEN, “Translation of SNMPv2 MIB Specification into CORBA IDL”,
X/Open, Apex Plaza, Forbury Road, Reading, Berks, RG1 1AX.

11. Biographies
Mike Beasley
Mike Beasley received a first-class honours degree in Mathematics at the
University of Cambridge in 1977, and a Diploma in Computer Science a
year later. He then joined ICL, working as a designer/implementor on a
variety of software development projects on VME and UNIX in
Kidsgrove, Manchester and Stevenage before being seconded to the ANSA
Ingenuity November 1994 215

project in Cambridge in 1993. He is also a Member of the British
Computer Society and a Chartered Engineer.
Jane Cameron
E. Jane Cameron is seconded by Bellcore to ANSA. Prior to joining
ANSA she was Director of the Network Systems Specification Research
Group at Bellcore. This group focused on problems of interoperability
among Telephone service, in particular problems of adverse feature
interactions. She has also worked in areas of language processing, formal
specification, and graphical user interfaces. She holds a Ph.D. in
Mathematics from the University of Washington in Seattle, Washington,
USA and is a member of the ACM and IEEE.
Gray Girling
Gray Girling received an honours degree in Computer Science at Imperial
College of Science and Technology in 1978, and a PhD from Cambridge
University in 1983 with a thesis on authentication in computer networks.
Following a period at Acorn Computers he joined Topexpress Ltd. where
he worked for six years in the research and development of a secure
computer network for the UK Government. He joined the ANSA team in
1992 after a year at Perihelion Software Ltd. He has been involved over
much of this period in the production of National, European and
International security standardisation. He is also a Member of the British
Computer Society and a Chartered Engineer.
Yigal Hoffner
Yigal Hoffner received his BSc (Hons) in Computer Science and
Cybernetics from the University of Reading in 1980. He stayed to work
as a research assistant in the Microprocessor Unit at the Computer Centre
from 1980 to 1983. He received his PhD in 1986 while working as a
research fellow in the Computational Sciences Research Group at the
department of Computer Science, University of Reading. The PhD topic
was “The design of a reconfigurable multiprocessor system and its use in
the solution of a class of numerical problems”. He worked in the R&D
department of ISTEL Ltd. before joining the ANSA project in 1986 as a
full time employee; work here has included user interface, trading,
management, monitoring and visualisation of distributed systems.
Rob van der Linden
Rob van der Linden received his degree in Electronics and
Telecommunications in The Netherlands in 1976. He was awarded a
Master's degree in electronics and computing at the University of
Southampton in 1981. He has been active in communications and
computing first at the University of Southampton, then at BSO in The
Netherlands. There he developed various early networked and distributed
computing applications including an office publishing system and a
distributed database. Since 1986 he has been with the ANSA project in

216 Ingenuity November 1994

Cambridge, where he has worked on object modelling, storage, naming
and trading. He now manages the ANSA team.
Gotner Thomas
Gomer Thomas received a BA from Pomona College in 1962, a BA
(Hons.) from the University of Cambridge in 1964, and a PhD from the
University of Illinois in 1968, all in mathematics. He has spent 11 years
on university faculties in mathematics or computer science, and over 14
years in industrial positions. For the past 7 years he has worked at
Bellcore (Bell Communications Research), where he has been focusing on
distributed data management. He is currently a secondee to the ANSA
project from Bellcore. He is a member of the ACM and the IEEE
Computer Society.

Ingenuity November 1994 217

An ANSA Analysis of Open Dependable
Distributed Computing

NJ. Edwards
Hewlett-Packard Laboratories & ANSA, APM Ltd., Cambridge, UK.

Abstract
System dependability is increasing in importance in the market
place. A recent report predicts that the market for fault-tolerant
systems will double in the next three years. Within the context of
large open distributed systems, dependability will be particularly
important: the more components a system has the greater the
probability that one of those components will be faulty. Over the
next two to three years, the ANSA work on dependability aims to
develop the technology for building open dependable distributed
systems on industry standards platforms such as DCE and CORBA.
This paper looks at some of the requirements that will be placed
on this technology.
A failure model has been developed; its use in the design of
dependable systems is being investigated. An engineering model is
being developed which will provide a choice of mechanisms,
enhancing the functionality of the basic platform, so that it can
meet the dependability requirements of applications. A
programming model is being developed to help programmers meet
the requirements of the chosen engineering. A core component of
both the engineering and programming models is an extended
transaction framework.

1. Introduction
System dependability is increasing in importance in the market place. A
recent Gartner report predicts that the market for fault-tolerant systems
will double in the next three years (from mid 1993) [Kaye, 1993]. In an
increasingly fierce market, reliability and availability can have significant
effects in reducing the cost of system ownership [Siewiorek and Swarz,
1992]. Within the context of large distributed systems, dependability will
be particularly important: the more components a system has the greater
the probability that one of those components will be faulty. In addition,
openness further reduces the cost of ownership by allowing easy

218 Ingenuity November 1994

integration and incremental evolution of the information system [Herbert,
1993], [Harris and Fraser, 1993].
This paper argues that the basic technology for open distributed
processing is now understood: there are now several de-jure and de-facto
standards that are emerging. The challenges now are to be able to deliver
appropriate non-functional guarantees (e.g. reliability, availability and
performance), and to be able to integrate existing services and systems
into this world of open dependable distributed computing. Until these
challenges are met, open distributed computing will not be used in
business critical applications. No one set of non-functional guarantees is
appropriate to all applications; any solution must allow the selection of
guarantees to match different application requirements.
The purpose of this paper is:
• to explain why dependability is important in open distributed

processing and to look at some of the characteristics of suitable
technology for dependability (see section 2)

• to examine some of the problems which arise in building dependable
systems and explore what the ANSA principles have to say about some
of these problems (see section 3)

• to explain why an end-to-end view of dependability is important (see
section 4)

• to describe the requirements for the dependability technology being
developed by the ANSA project over the next two to three years (see
sections 5-10).

2. Open Dependable Distributed Systems
This section looks at the need for dependability in open distributed
systems, the advantages to be gained by delivering the right solution
quickly, and some of the constraints on the technology used to deliver
open dependable distributed systems. First, it defines what is meant by
dependability within the context of the ANSA project.
The dependability of a service is described by various non-functional
properties of that service, such as reliability, availability, safety and
security - a comprehensive discussion of these and associated
dependability concepts is given in [Laprie, 1992]. The ANSA project is
concerned mostly with reliability and availability.
• Reliability is a measure of the continuity of service; a measure of

reliability is Mean Time To Failure (MTTF).
• Availability is a measure of how often the system is ready for use; a

measure of availability is (MTTF/(MTTF + MTTR)) where MTTR is
the Mean Time To Repair the system once it has failed.

Ingenuity November 1994 219

A failure occurs when there is a mismatch between what happens and
what is expected. In the absence of a formal contract which makes
expectations explicit it may be impossible to resolve which party is faulty:
the client (system user) or the server (the system). This is discussed in
more detail in section 6.
Often integrity is discussed as an aspect of dependability. The correctness
of a service depends on maintaining the data in some valid, consistent
form: if it cannot satisfy this constraint the service will fail.
2.1 Business-critical applications need dependability
Deploying a business-critical application or information service without
any guarantees about the dependability of that application is analogous to
participating in a business transaction without any formal contractual
arrangements. In the absence of any contract to set expectations, there is
more chance of something unexpected happening - something which may
be viewed by one of the parties involved as a failure. The consequences
of such failure could be severe.
Similarly it could be disastrous for a business to rely on an application
without well-defined expectations - without clearly defined dependability
guarantees. Hence exploiting open distributed computing to deliver
business-critical information services will require the ability to offer both
functional and non-functional (dependability) guarantees which are
appropriate to the information service being provided.
2.2 Current technology does not address dependability
A number of de-facto and de-jure standards are emerging which
incorporate technology for distributed computing: ODP [ISO 10746],
CORBA [OMG 91], Atlas [UI], DCE [OSF 91] (including DME and
ENCINA [Sherman, 1993]) and the various OSI standards (e.g. GDMO
[ISO 10165], OSI RPC [ISO 11578], OSI TP [ISO 10026] etc.). All of
these provide applications (objects) with a means of communication.
Perhaps the highest level of functionality is delivered by CORBA and
related products such as DAIS [ICL 93]. DAIS supports object based
distributed computing: objects can invoke each other regardless of
whether or not they are co-located. In addition, all these standards
identify some basic services which are needed by applications, such as
naming. Hence the technology for delivering basic open distributed
computing is becoming well understood and standardised.
With the exception of ODP (which has been heavily influenced by
previous ANSA work), very little work has been done on providing
appropriate dependability guarantees [Herbert, 1993]. ODP with its
notions of transaction, group and replication transparencies lays some of
the foundations [ISO 10746].
2.3 Gain a competitive advantage: match customer requirements
One of the basic principles of ANSA is that different customers, hence
different applications, will have different dependability requirements.
Even within one application the different components will have different
220 Ingenuity November 1994

availability, reliability and consistency requirements. Understanding the
engineering and cost trade-offs in building dependable distributed systems
will enable the vendors to match the dependability delivered to the
requirements of the customer and the application, giving them a
competitive advantage over those who cannot do so.
£ .4 Gain a competitive advantage: deliver the solution quickly
Competitive advantages are also gained by being able to deliver a solution
more quickly than the competition. One way of doing this is to minimise
the amount of bespoke engineering in a solution. The approach should be
to use tools, configuring basic standard engineering components to deliver
the guarantees which are needed by the application.
2.5 The need to incorporate existing systems
The need to preserve investments in existing information technology
infrastructure means that new information services will have to interwork
with so-called legacy systems and yet still provide some guarantees about
dependability. This means that there will be few opportunities to build
systems from scratch; rather, it will be important to understand how to
configure mechanisms to get appropriate non-functional guarantees from
what already exists. Openness implies the ability to cope with
heterogeneity at all levels: different machines using different operating
systems interworking between different administrations [Beasley et al,
1994],
2.6 Hardware versus software techniques
The ANSA work on dependability is about developing concepts which can
be used for open dependable distributed computing. It aims to put in
place the technology which enables the construction of information
services with various dependability guarantees. Since openness implies
minimising the assumptions about the underlying hardware and operating
system, this work concentrates on software rather than hardware
techniques for dependability, and on techniques which do not require one
particular underlying platform for distribution.

3. The ANSA Principles and Dependability
The ANSA principles are described in [van der Linden, 1993]. This
section looks at those principles particularly relevant to dependability; the
principles are divided into seven categories - each considered in turn.
3.1 Separation
Systems should be designed so that separation amongst their parts can be
achieved; this means that they can be more flexibly configured. However,
this can have the effect of introducing more components, thus reducing
dependability.

Separation means that services may be remote. This introduces the
possibility of partial failure: a failure may occur in a remote service
request even though the requester's local system has not failed.

Ingenuity November 1994 221

The ANSA work on dependability aims to ensure that the required
dependability can be achieved in spite of the effects of separation.
3.2 Diversity
Large distributed systems will include many significantly different
individual sub-systems. Data will be widely distributed with multiple
representations and different consistency requirements. Different
standards and different dependability mechanisms will be adopted in
different parts of the system; designers need to be prepared for this; the
dependability mechanisms need to allow for it.
3.3 Scaling
The dependability mechanisms used in a system must not impose
constraints on scaling, and the extent to which it can be interconnected
and its applications made to interwork. Scaling is about scaling up and
down: mechanisms that are efficient in large systems should be designed
so they are efficient in small systems or else should be replaceable by
similar mechanisms which are efficient in small systems.
It is difficult to check consistency in large systems: changes may take a
very long time to propagate. In the absence of any mechanisms to avoid
it, different parts of the system may see changes at different times and in a
different order.
In large distributed systems it is very difficult to implement a notion of
universal time, or of an observer who, or which, can observe every event.
This means that technologies which assume a global clock or a global
ordering of events are not appropriate: they do not scale well.
Larger systems will contain more components, which increases the
probability that there are one or more faulty components in the system.
3.4 Federation
Federation deals with heterogeneous authority and how to retain local
control in a large distributed system spanning boundaries of authority
[Beasley et al, 1994], In a federated system, objects are responsible for
their own dependability. In addition, objects under one authority will
need to negotiate contracts with other objects subject to different
authorities: there may be no common higher authority which lays down
what the contract should be. The contract should state what each object
is entitled to expect of the other (i.e. what the correct behaviour should
be). Contracts can be used by arbitration or fault diagnosis services to
resolve which party is at fault (see section 6.1).
3.5 Transparency
A property of a system is transparent if application programmers need not
be concerned with it. The aim of the ANSA work on dependability is to
hide the details of the dependability mechanisms (but not the
requirements for dependability) from the application programmer.

222 Ingenuity November 1994

Previous experience suggests that it is possible to make dependability
mechanisms such as replication completely transparent to the
programmer [Oskiewicz and Edwards, 1993]. However, there are
limitations on making dependability fully transparent. These are explored
in section 4.
There is no universal set of requirements for dependability, hence there is
no universal configuration, of mechanisms. This means that transparency
must be selective: programmers can select and configure the mechanisms
which are most appropriate to the job at hand.
Selecting and configuring the appropriate mechanisms is likely to be a
complex and error prone task. So programmers may well be tempted to
implement their own mechanisms, ignoring the ones provided because
they are too difficult to understand and use. To avoid this, programmers
must at least be given guidance on how to select and configure
mechanisms to match the requirements of their programs. Where
possible, tools should be provided to configure and select the mechanisms
(this is automated transparency).
Ideally the dependability requirements should be declared as attributes of
the object; tools would then configure the most appropriate mechanisms.
The difficulty of capturing requirements and the lack of tools which work
directly from them, means that programmers will probably have to
specify the mechanisms themselves. Automated transparency techniques
will configure the specific mechanisms selected. The programmer is
protected from the details of the mechanisms (e.g. see [Warne and Rees,
1993]).
3.6 Concurrency
Concurrency is inevitable in distributed systems. This means that there is
potential for conflicting, inconsistent changes to be made to data.
Mechanisms are needed to prevent this.
3.7 Configuration
Systems evolve over time: new parts are added and old parts are removed.
Detection and correction of faults should be as early as possible, ideally
before a new component is configured into the system. This limits the
potential for a fault in one component to cause damage to the rest of the
system (fault propagation). To achieve this in a dynamic system, the
description (of the correct behaviour) of a component must be on-line to
allow the system management to check the behaviour of the component
before installing it. Such descriptions will form the basis of the contracts
described in section 3.4 and are important in fault diagnosis (see section
6 . 1) .

4. An end-to-end View of Dependability
Dependability is an end-to-end concept. What is dependable and what
constitutes a failure of an application can only be determined by
understanding the application semantics: it is not sufficient to consider
Ingenuity November 1994 223

dependability purely in terms of protocols provided by the underlying
engineering and platforms. For example, a file transfer is completed
successfully when all the file data has been safely and correctly stored in
the file system of the recipient machine, not just when the data has been
delivered by the network to the machine (which may crash before storing
the data) [Saltzer et al., 1981]. Once the transfer is complete, the
receiving machine may have an ongoing responsibility to maintain the
availability of the data. Consequently, dependability needs to be
considered at the system design stage and throughout the development of
the system.
Some techniques have a minimal effect on the structure of the system.
For example, within ANSA, technology for transparent replication has
been developed [Oskiewicz and Edwards, 1993]. Provided the client or
server satisfies certain (well understood) assumptions it is possible to hide
replication from the application programmer, so that the decision to
replicate or not can be made after the code has been written. This
dramatically increases the complexity of the underlying engineering
required to support the application components with consequent loss of
performance (compared with non-replicated code). Hence, the scope and
potential of technology for transparent dependability are limited.
Other techniques for dependability require more participation from the
designer and programmer. Although the solution may be more difficult
to analyse and prove, it may result in applications which need less
complicated engineering to support them and have better performance.
For example, suppose a service needs to be replicated. If the service can
be designed so that it is immutable (does not change its state when
invoked) the underlying support for replication can be made much
simpler, since no mechanism is required to coordinate state changes
between the replicas (a replica's state never changes). To make a service
immutable may require the designer to take special steps, for example, to
ensure that any state concerning the interaction between client and server
is held by the client. In addition, the programmer of the service needs to
avoid code which makes changes to state.
This paper describes technology which is being developed that allows
designers and programmers to consider dependability issues, as well as
technology which tries to make dependability transparent. The concept
of selective transparency is important: hiding irrelevant detail from the
programmer.

5. Dependability in ANSA
There are two basic techniques used to build dependable systems: fault
tolerance and fault avoidance (sometimes called fault intolerance). Fault
avoidance involves using good engineering practice to minimise the
occurrence of faults. Fault tolerance exploits redundancy to negate the
effects of faults.

224 Ingenuity November 1994

It is important to realise that these two techniques are complementary and
not alternative. Good engineering practice reduces the occurrence of
faults; unless the rate at which faults occur is reduced to an acceptable
level, any redundancy (fault tolerance) will be quickly overwhelmed.
The aim of the ANSA work on dependability is to develop technology
which allows application programmers and system designers to use a set
of simple concepts to declare their dependability requirements. These
requirements will be mapped quickly and efficiently onto a rich set of
engineering mechanisms which exploit various redundancy and
consistency techniques to deliver the required dependability. The
component technologies are:
• a failure model which provides the underlying concepts
• a programming model which provides programmers with abstractions

for building dependable applications
• an engineering model which provides a set of engineering mechanisms

and sets of standard configurations of these mechanisms
• an extended transaction framework providing a programming model

and set of engineering mechanisms based on transactions
• a management model which provides the mechanisms and concepts for

fault diagnosis and reconfiguration to maintain dependability.

Figure 1 How the ANSA dependability work fits together

Figure 1 shows the relationship between the programming model, the
engineering model, the management model and the transaction
framework. The engineering model provides a set of services to enhance
the functionality provided by basic platforms for distribution such as DCE
and CORBA. Application programmers build dependable applications
using concepts provided by the programming model and services provided
in the engineering model.
The system designer needs to elucidate the requirements of the
application components for dependability (from the supporting
Ingenuity November 1994 225

engineering) and also the requirements which the engineering components
impose on the behaviour of the application components. Designers need
to be familiar with both the engineering and programming models to
make the trade-offs between what (dependability) can be provided by the
engineering and what can be provided by the application components.
The role of the engineering model is to provide a choice of services. It
helps the system designer to choose the services which satisfy the
application component's requirements (for dependability). The role of the
programming model is to ensure that the application components meet
the requirements of the engineering components. The role of the failure
model is to provide the concepts for stating requirements.
The management model is concerned with such issues as the maintenance
of dependability in the presence of faults (fault diagnosis and
reconfiguration), how to install new applications and how to upgrade
existing ones. The services required for management form part of the
engineering model. In addition, some concepts in the programming
model may deal specifically with management issues.
The use of different kinds of transactions to build dependable systems is
being studied. The services provided by the extended transaction
framework will form part of the engineering model. The framework will
also provide abstractions to help programmers use these services. These
abstractions are part of the programming model.
The remainder of this paper describes the above work in more detail. At
the time of writing, the failure model has been developed, development of
the extended transaction model is ongoing and work on the remaining
areas is just beginning.

6. Failures and the ANSA Failure Model
Understanding the concept of failure is crucial to building dependable
systems. This section looks at failures: how to understand who is
responsible for a failure and the role of failure models. We begin with a
summary of the ANSA failure model [Edwards and Rees, 1994].
The ANSA failure model assumes that a system is composed of
components which can engage in events1 which are observed by other
components in the system. An event is considered to occur with some
value at some time, by the observer; there is no notion of a global
observer, a global ordering of events or a global time. An event which
occurs is called an occurrence. The model defines expectation regions (a
region in a value x time space) which define a time interval and a
restricted set of values within which a component expects to observe an
event. Boundaries can be drawn around an object's expectation region by

1 Here the word event is being used in a specialised technical sense, rather
than the general English sense. An event may or may not occur.

226 Ingenuity November 1994

determining an object's expectations: what it expects from the objects
with which it interacts. Three examples are shown in figure 2.

Figure 2 Expectations

The three examples are:
• Ej: a particular value is expected in some time interval
• Ej: one of a range of values is expected in some time interval
• Eu: one of a range of values is expected in some time interval but the

value is related to the time at which the event occurs
A failure is a mismatch between an occurrence and an expectation. For
example, an occurrence which does not match what is expected: any
occurrence not in regions E j, Ej, or E ^ would be a failure. The absence of
an occurrence when there is an expectation of one is also a failure; this
kind of failure is conventionally called an omission failure [Laprie, 1992],
Currently we are investigating how to use this failure model in the design
of dependable systems. The methodology we are testing is as follows.
Having identified the major application components (clients and servers)
using appropriate modelling and design techniques (e.g. [Rumbaugh et al.,
1991]), we analyse the expectations which each component has of the
components with which it is interacting.
At this stage the design may be refined so that the mutual expectations of
some components are minimised. The less that is expected of a
component, the less its potential to cause damage to the rest of the
system. For example, suppose it is known that a client must be located
on a host which has inherent low availability - perhaps because it is
mobile. It may be appropriate to redesign the interaction between the
client and the services it uses so that any interaction with the client is
stateless. This means that the services are never in a state in which they
are expecting the client to do something (e.g. commit or abort a
transaction).

The next step is to identify the facilities which the engineering and
underlying platform needs to provide to meet the expectations of the

Ingenuity November 1994 227

application components. For example, suppose a client has an
expectation it will be charged for a service only if it successfully uses it
(i.e. both events occur or neither occurs). One option to satisfy this
expectation could be to use atomic actions [Warne and Rees, 1993].
The engineering model helps the system designer or programmer to
choose the appropriate configuration of engineering mechanisms (see
section 8). The programming model helps the programmer to write
application components which have the properties required by these
engineering mechanisms (see section 7).
6.1 Fault diagnosis
Fault diagnosis is the process of identifying the faulty component which is
responsible for a failure. This can be difficult because the fault may have
propagated from the original faulty component by causing other
components to fail. If a fault is wrongly attributed to a particular
component, erroneous reconfigurations are sure to follow [Schnieder,
F.B., 1993]. In particular good components may be decommissioned
while the faulty component is left in the system.
The relevant components in an ANSA system are the bindings between
clients and interfaces. Bindings are the place where contracts take effect
(between client and server), and where reconfiguration is possible. They
are also the place where federation boundaries may exist. Fault diagnosis
tries to isolate the fault to the particular client, interface or part of the
binding from which the fault originated. Sometimes fault diagnosis may
have to stop at a federation boundary: beyond that boundary diagnosis is
the responsibility of another organisation.
The traditional concept of a failure focuses on service: a failure is said to
occur when a service deviates from its specification [Laprie, 1992],
[Siewiorek and Swarz, 1992]. In ANSA the consequences of federation
and separation mean that mutual suspicion is extremely important. One
should not take a client's word for it that a service has failed - it may be
that the client itself has failed. The ANSA failure model [Edwards and
Rees, 1994] captures this: it does not prejudge whether the faulty
component is the one which engages in the event or the one which
observes or expects to observe the event.
This leads to a situation which is potentially ambiguous: either the
observer or the component which engaged in the event may have failed.
To avoid this, the parameters used to determine correctness must be made
explicit.
The notion of what is correct ideally should be captured by a formal
contract between two objects. Interface definitions are an offer to form a
contract between a client and server, the stronger these contracts the
easier it is to avoid ambiguity. Unfortunately, usually correctness is
captured only partially in an interface definition and written text.

228 Ingenuity November 1994

The ANSA work on federation is investigating contracts between clients
and servers [Beasley et al, 1994]. The programming model for
dependability will involve investigating enhanced interface definitions (see
section 7). This will allow stronger statements to be made about expected
behaviour.
6.2 Failure models and hierarchies of failure modes
A failure mode describes the characteristics of a class of failures (e.g.
omission failures, value failures, crash failures, fail-stop [Laprie, 1992]).
There are many hierarchies of failure modes in the literature (e.g.
[Barborak et al, 1993], [Shrivastava et al., 1990], [Cristian, 1990]). Such
hierarchies are sometimes referred to as failure models. In contrast the
ANSA failure model is not a failure hierarchy; it provides a set of
concepts for understanding the semantics of failure.
Failure hierarchies arise from partial orders on failure modes; they are
useful, because they say when one engineering mechanism can safely
replace another. For example, suppose there is a partial order Q on
failure modes, and suppose there are two failure modes x and y such that
x cy. Then any mechanism consistent with c which can detect and
tolerate y will also detect and tolerate x. Suppose x is omission failures
and y is value failures, whether or not a mechanism actually detects and
tolerates both x and y will depend on the implementation of that
mechanism. Hence it is the engineering model (which prescribes the
configuration and implementation of engineering mechanisms) which will
determine, £=, the ordering on failure modes. Different engineering
models will give rise to different orderings; within an engineering model
different arrangements of components may produce different orderings.
The ANSA engineering model for dependability is discussed further in
section 8.
Failure modes are useful in the engineering of dependable systems. For
example, if the failure behaviour of a server is known to be restricted to a
well understood mode (e.g. fail-stop), the engineering mechanisms used
by its clients need to be able to deal only with this behaviour.
The ANSA failure model can be used to describe the failure modes which
are discussed in the literature (see [Edwards and Rees, 1994] for further
details). During the development of the engineering model for
dependability it is intended to use the ANSA failure model to analyse
configurations of engineering mechanisms to determine what failure
modes they can detect and tolerate.

7. The Programming Model
This section discusses a number of requirements that have been identified
for the programming model. The role of the programming model is to
provide the concepts to assist programmers in making sure that
application components meet the expectations (requirements) of their
supporting engineering components. Together with the engineering

Ingenuity November 1994 229

model, it enables system designers to make trade-offs between what is
provided by the engineering components and what is provided by the
application components. As an example, suppose there is a choice of
replication mechanisms including one that consumes fewer resources, but
can only be used if the state of a service is immutable. There are a variety
of possible tools and techniques that can be used to exploit this
opportunity.
1. A tool to analyse the application code automatically and report

whether or not it has the immutability property.
2. Guidelines and rules for the programmer which explain how to write

the code so that it has the appropriate characteristics.
3. A tool that transforms the code so that the most appropriate

mechanism is used. This approach has already been investigated for
an atomic activity infrastructure: code transformation was used to
insert calls to appropriate lock mechanisms whenever mutable state
was accessed [Warne and Rees, 1993],

The scope of this technology will be set in part by the programming
language which is used. Some languages are less amenable to
transformation and automatic analysis than others.
It is usual to perform type checking based on information provided in an
interface definition. The interface definition is a very limited
specification of the expected or allowed behaviour. Part of the intended
work on the programming model will be to extend this technology by
adding information about the expected behaviour of the interface. For
example:
• whether an operation updates or observes a mutable state
• how an operation affects the outside world: does it read information

about the outside world (sensor) or does it make changes to the
outside world (actuator).

If type checking tools can be enhanced to check these attributes, then at
least some expectations can be checked automatically.
Programmers may choose to exploit application level redundancy -
redundancy which is associated with the application semantics. For
example:
• knowledge which restricts the time or value of a result, e.g. time

should not run backwards; this kind of redundancy could be captured
by behavioural descriptions of objects

• alternative algorithms for achieving a particular aim (this is sometimes
called resourcefulness [Abbott, 1990], recovery blocks is one example
which exploits this idea [Randell, 1975])

• the use of stability and self stabilisation [Schneider, M., 1993].

230 Ingenuity November 1994

At present there are no plans to investigate application level redundancy;
redundancy is provided by the engineering model.

8. The Engineering Model
This section discusses some of the requirements which have been
identified for the engineering model. The engineering mechanisms are
positioned between the underlying platform and the application
components as shown in figure 3. Failures can occur in the application
components, the underlying platform or the engineering mechanisms
themselves.

Figure 3 The relationship between the programming and engineering
models

As shown in figure 3 the application components and engineering will
have requirements (expectations of each other). The role of the
engineering model is to help the designer select a configuration of
engineering mechanisms which ensure that the expectations of the
application components are satisfied even when failures occur. The
designer also uses the programming model to make trade-offs between
what is provided by the engineering and what is provided by the
application components. The engineering mechanisms enhance the
functionality of the basic platform so that it meets the requirements for
dependability. The engineering model also needs to ensure that the
expectations of the engineering mechanisms and underlying basic
platform are matched.
The engineering model will consist of a set of basic services useful for
building dependable systems, for example: reliable multicast state transfer
mechanisms, audit services, persistent storage services.

Ingenuity November 1994 231

Each service will have a typed interface (just like any service which is
visible to the application). This will allow type checking to be applied to
engineering objects (as well as application objects). Currently, checking
tends to be limited to application level objects, because the configuration
of supporting engineering objects tends to be rather static and uniform.
Well understood, standard configurations do not require constant
checking and validation. In the future the aim is to allow dynamic
configuration of engineering objects specifically to match client and server
requirements; thus each new configuration will require checking.
The engineering model will prescribe standard configurations of
mechanisms which will have well understood behaviours (and
expectations). These configurations must themselves be dependable. It is
intended to use the concepts in the failure model and the methodology
outlined in section 6 in their development. Examples of such
configurations could be:
• a configuration of mechanisms to ensure fail-stop behaviour
• replication for a non-mutable service
• replication for a mutable service.
Initially the engineering model is likely to consist of a set of mechanisms
and a set of standard configurations for those mechanisms. However,
structuring the mechanisms as services will allow recombination of these
mechanisms in application-specific ways. Application-specific configuring
of the engineering mechanisms is likely to be a complex and error prone
task. Unless proper support is provided to help programmers select the
right configuration of mechanisms they are likely to be tempted to ignore
what is provided and build their own. This suggests that eventually it will
be necessary to provide tool support for configuration.
The opportunities to build completely new systems are becoming fewer
and fewer. In general, new applications and systems will have to
interwork with what already exists. If a new application is to be
dependable, the dependability of the existing services with which it
interworks needs to be evaluated. If they do not provide sufficient
dependability they need to be enhanced in some way, or at the very least
the new application needs to be protected from them. The engineering
model needs to provide mechanisms and configurations of mechanisms to
do this.
Much of the engineering model is concerned with the provision of
redundancy to give fault tolerance. Redundancy can be provided in the
form of extra storage, processing or communications; it can also be
provided in space or time (e.g. doing the same thing twice simultaneously
or sequentially). Examples include:
• Replication [Oskiewicz and Edwards, 1993]
• Checkpointing [Birrell et al., 1987]

232 Ingenuity November 1994

Comprehensive lists of redundancy technology are given in [Siewiorek
and Swarz, 1992] and [Smethurst and Wharton, 1993].
The engineering model will also provide some mechanisms which enforce
requirements; these can be regarded as fault avoidance mechanisms. An
example of such a mechanism is a protocol which enforces ordering
between messages to ensure a group of servers see messages in the same
order. (Note that the above mechanism may itself be part of a replication
protocol which is intended for fault tolerance.)
The engineering model provides a set of mechanisms to supplement and
support application redundancy. The engineering model is not only
concerned with the provision of redundancy, it is also concerned with the
management of redundancy; the latter is considered separately in
section 9.

9. The Management Model
This section discusses some of the requirements which have been
identified for the management model.
The part of the engineering model discussed in section 8 is concerned
mostly with mechanisms which provide redundancy. The management
model includes the part of the engineering model which is concerned with
how to manage this redundancy to tolerate faults, how to maintain
dependability, how to install new applications and how to upgrade
existing ones. For example, consider an active replica group; managing
the group involves providing mechanisms which can detect failures,
reconfiguring the group to remove the faulty member, and adding new
members to maintain the level of dependability when existing ones fail. A
redundant system may go through as many as eight stages when a failure
occurs [Siewiorek and Swarz, 1992].
1. Fault confinement is concerned with limiting propagation of a fault to

other parts of the system. For example, this can be achieved by liberal
use of detection mechanisms to try and detect a fault as soon as
possible.

2. Fault detection is measuring value and time and comparing what is
observed to what is expected.

3. Fault diagnosis is used if fault detection does not identify the faulty
component. Fault diagnosis is discussed in section 6.1. 4

4. Reconfiguration takes place once the faulty component has been
identified. The aim is either to isolate the system from the faulty
component or to replace it with a spare.

Ingenuity November 1994 233

5. Recovery attempts to remove the effect of the fault. Redundant
information can be used to correct the erroneous state (space
redundancy). Alternatively the system can roll (backwards or
forwards) and either retry or try an alternative strategy (time
redundancy).

6. Restart takes place once all the damaged state has been removed. In
extreme cases large parts of the system may need to be restarted from
its initial state.

7. Repair restores the faulty component to an undamaged state.
Redundancy might be used to correct erroneous state.

8. Reintegration involves reconfiguring the system to introduce the
repaired component.

Management will usually be embedded into the redundancy mechanisms
which they manage. However, it is often necessary and convenient to
have separate management and service interfaces for the redundancy
mechanisms e.g. [Oskiewicz and Edwards, 1993], even if the interfaces
are onto the same object.
Just like all the engineering mechanisms, the management mechanisms
themselves need to be dependable - system recovery mechanisms can be
responsible for 35% of system failures [Toy, 1992],

10. Extended Transactions Framework (ETF)
This section summarises the work to date on the extended transaction
framework (ETF) and possible future directions. Further details are
reported in [Warne, 1994],
Transactions exploit both fault avoidance and fault tolerance. For
example, computations enclosed within traditional transactions have well
defined relationships with each other: they are constrained by the
fundamental properties of atomicity, consistency, isolation, and durability
(collectively known as the ACID properties [Bernstein et al., 1987]). This
helps to avoid faults which can be introduced by concurrent interfering
computations.
Transactions use redundancy to undo their effects should they need to
abort (fault tolerance). For example, the Tandem transaction processing
monitor (Pathway) distributes work to available processors. Should any
of this work be lost or compromised by failure it is automatically
restarted after being rolled back to its initial state [Bartlett et al. 1992],
The traditional transaction model, with its strict ACID properties, is
highly effective in some application areas such as conventional databases.
However, it is frequently found lacking in functionality, flexibility, and
performance when used in other applications areas, especially those
involving collaborative or long-lived activities. Such applications
typically require some, but not all, of the ACID properties. This has led

234 Ingenuity November 1994

to the development of many different kinds of transaction models, for
example: Split Transactions [Pu et al., 1988], Coloured Transactions
[Shrivastava and Wheater, 1990] and Transaction Groups [Skarra, 1989].
As observed in [Chrysanthis and Ramamritham, 1990], irrespective of
how successful these extended transaction models are in supporting their
intended application domains, they merely represent points within the
spectrum of interactions possible within competitive and cooperative
environments. Therefore, they each capture only a subset of the
interactions to be found in any complex information system.
ETF is intended to address these concerns; it is intended to support a
wide range of telecommunications and other business applications.
Inevitably, different classes of applications will require different
transaction models. These models will have differing concurrency control
methods; differing recovery procedures; differing resource placement,
migration and replication strategies; and differing guarantees of timeliness
(execution responsiveness). ETF must enable such application diversity to
interoperate effectively.
ETF identifies a number of new primitives for controlling the behaviour
of different transaction models. The inspiration for these primitives stems
from the abstract concepts of the ACTA meta-model [Chrysanthis and
Ramamritham, 1992]. The transaction model is characterised by
controlling four basic attributes of a transaction. ETF provides primitives
to control these attributes: Visibility, Permanence, Correctness and
Recovery (VPCR).
• Visibility: the degree with which members of the extended transaction

are able to observe each other's effects before the transaction as a
whole terminates its execution and commits or aborts.

• Permanence: the rules by which members are allowed to record their
results in the stable state of the system.

• Correctness: the acceptable effects on system state that members are
permitted to produce.

• Recoverability: the capability of an extended transaction as a whole, or
its members in part, in the event of failure, to recover and take the
system to some state that is considered correct.

Hence ETF allows programmers and designers to construct transaction
models which match the requirements of the application object (providing
a service). It is intended to use the concept of transaction-based work
flows (e.g. [Dayal et al., 1990], [Sheth, 1993]) to describe how different
application objects supporting different transactions models fit together.
A workflow will consist of several related transactions which interwork to
achieve a specific goal. Each transaction in a work flow may be different
when characterised in terms of VPCR.

Ingenuity November 1994 235

From figure 1, it can be seen that ETF spans both the programming and
engineering models. It is intended to build engineering mechanisms for
ETF which support the control of the VPCR attributes. Additional
mechanisms will be needed to support the concept of work flows. The
programming model will contain the concepts needed to drive the
engineering mechanisms supporting ETF.

11. Summary and Conclusions
Several de-jure and de-facto standards are emerging which will provide
the technology to make open distributed computing possible. However,
for open distributed computing to be exploited in business-critical
applications, there is a need to show how this technology can be extended
to enable services to be delivered with appropriate and defined
dependability guarantees.
No one set of dependability requirements is appropriate to all
applications. Rather the dependability requirements will be determined
by each application. The concept of selective transparency can be used to
select an appropriate set of engineering mechanisms and configure those
mechanisms to satisfy a particular application's requirements. This
selection needs to be automated.
The ANSA principles reveal a number of issues for dependability in open
distributed systems.
• Objects are responsible for their own dependability; contracts must be

used in a federated environment to state what each object is entitled to
expect of others (see sections 3.4 and 6.1)

• Technologies based on a notion of a global observer or global clocks
are not appropriate: they cannot be realised in large distributed
systems (see sections 3.3 and 6)

• Faults should be detected as early as possible, ideally before a
component is installed into the system (see section 3.7)

Designers of dependable systems should take an end-to-end view (see
section 4): careful design and partitioning of functionality can reduce the
need for complicated and sophisticated engineering mechanisms to
support an application.
The ANSA work on dependability aims to develop the technology for
building open dependable distributed systems. It is anticipated that such
systems will be built using industry standards such as DCE and CORBA
platforms.
A failure model has been developed and its use in the design of
dependable systems is being investigated (see section 6). One of the roles
of the designer is to identify the requirements of the application
components in terms of what each component expects from the
underlying engineering. The notion of expectations in the failure model

236 Ingenuity November 1994

can be used for this. The engineering model then helps to identify a
suitable configuration of mechanisms to meet these expectations (see
section 8). The engineering components enhance the functionality of the
basic platform so that it can meet the application's requirements for
dependability.
The designer also needs to state what constraints the application
components must meet, i.e. what the engineering expects of the
application components. Again the notion of expectations can be used for
this. The programming model helps the programmer to build application
components which satisfy these constraints (see section 7).
Taken together, the programming and engineering models enable system
designers to make trade-offs between what dependability is provided by
the engineering mechanisms and what is provided by the application
components.
As part of the work on programming and engineering models, an
extended transaction framework is being developed (see section 10): we
believe transactions are a fundamental technology in the building of
dependable systems.

12. Acknowledgements
The author would like to acknowledge the contribution of his colleagues
in the ANSA team to this work: Ed Oskiewicz, seconded to the ANSA
team by BT; Owen Rees of APM Ltd.; John Warne, seconded to the
ANSA team by BNR. In addition, comments and discussions with the
following on various aspects of the work reported here were most helpful:
Jane Cameron, seconded to the ANSA team by Bellcore, Brian Coan of
Bellcore, Gray Girling of APM Ltd., Andrew Herbert of APM Ltd., Dave
Otway of APM Ltd., Santosh Shrivastava of The University of Newcastle
and Paul Vickers of Hewlett-Packard. Finally, thanks to the anonymous
ICL reviewers who also helped to improve this paper.
Copyright © 1994 Architecture Projects Management Limited. The
copyright is held on behalf of the sponsors for the time being of the ANSA
Work programme.

13. References
ABBOTT, R.J., “Resourceful Systems for Fault-Tolerance, Reliability and
Safety”, ACM Computing Surveys, 22(1), p35-68, March 1990.
BARBORAK, M., MALEK, M., DAHBURA, A., “The Consensus Problem
in Fault-Tolerant Computing”, ACM Computing Surveys, 25(2), pl71-
220, June 1993.
BARTLETT, J., BARTLETT, W., CARR, R., GARCIA, D., GRAY, J.,
HORST, R., JARDINE, R., JEWETT, D., LENOSKI, D., MCGUIRE, D.,
“Fault Tolerance in Tandem Computer Systems”, p586-648 in [Siewiorek
and Swarz, 1992].
Ingenuity November 1994 237

BEASLEY, M., THOMAS, G., CAMERON, J., HOFFNER, Y., VAN DER
LINDEN, R., “Establishing Co-operation in Federated Systems”, ICL
Tech. /..Vol. 9 Iss. 2 pp. 195-217.
BERNSTEIN, P.A., HADZILACOS, V., GOODMAN, N., “Concurrency
Control and Recovery in Database Systems”, Addison-Wesley Publishing
Company Inc., 1987.
BIRRELL, A.D., JONES, M.B., WOBBER, E.P.„ “A Simple and Efficient
Implementation for Small Databases”, in Proc 11th ACM Symp on OS
Principles, ACM OS Review, 21(5), pl49-154, 1987.
CHRYSANTHIS, P.K., RAMAMRITHAM, K., “ACTA: The Saga
Continues”, Database Transaction Models for Advanced Applications,
Edited by Ahmed K. Elmargarmid, Morgan Kaufmann Publishers, 1992.
CHRYSANTHIS, P. K., RAMAMRITHAM, K., “ACTA: A Framework
for Specifying and Reasoning about Transaction Structure and Behavior”,
Proceeding of the ACM SIGMOD International Conference on the
Management of Data, 1990.
CRISTIAN, F., “Understanding Fault-Tolerant Distributed Systems”, IBM
Research Report, RJ 6980 (66517), Almaden Research Center, California,
USA, 1990.
DAYAL, U., HSU, M., LADIN R., “Organizing Long-Running Activities
and Triggers and Transactions”, ACM SIGMOD Proceedings, 1990.
EDWARDS, N.J., REES, R.T.O., “A Model for Failures in Dependable
Systems”, APM.1143, APM Ltd., Cambridge, U.K., 1994.
HARRIS, R.J., FRASER, R.J.C., “Command and Control Infrastructures:
The need for Open System Solutions”, Keynote Address, IEE International
Workshop on Systems Engineering for Real Time Applications, 13 -14
September 1993.
HERBERT, A.J., “Open Distributed Processing - the Solution to a
Business Need”, APM.1055, APM Ltd., Cambridge U.K., 1993.
ICL, “DAIS: System Overview”, ICL manual R30428/03, December 1993.
ISO, “OSI Distributed Transaction Processing” (OSI TP), ISO/IEC 10026.
ISO, “Guidelines for the Definition of Managed Objects”, ISO/IEC 10165
Part 4.
ISO, “Basic Reference Model of Open Distributed Processing”, ITU-TS
Rees. X.902, X.903, ISO/ IEC Draft International Standards 10746-2 and
10746-3.
ISO, “Open Systems Interconnection - Remote Procedure Call”, ISO/IEC
11578 (draft).
KAYE, J., “Supply and demand”, (Figures quoted and attributed to the
Gartner group), Informatics, September 1993.

238 Ingenuity November 1994

LAPRIE, J.C. (ed.), “Dependability: Basic Concepts and Terminology”,
Springer-Verlag, 1992.
VAN DER LINDEN, R., “An Overview of ANSA”, AR.000.00, APM
Ltd., Cambridge U.K., May 1993.
OMG, “The Common Object Request Broker: Architecture and
Specification”, Document Number 91.8.1, August 1991.
OSF, “Introduction to OSF DCE”, December 1991.
OSKIEWICZ, E.O., EDWARDS, N.J., “A Model for Interface Groups”,
AR.002.01, APM Ltd., Cambridge U.K., February 1993.
PU, C., KAISER, G., HUTCHINSON, N., “Split Transactions for Open-
Ended Activities”, IEEE Proceedings of the 14th Conference on VLDB,
1988.
RANDELL, B., “System Structure for Software Fault Tolerance”, IEEE
Trans, on Software Engineering, SE-1 (2), p220-232, June 1975.
RUMBAUGH, J, BLAHA, M., PREMERLANI, W., EDDY, F.,
LORENSEN, W., “Object-Oriented Modeling and Design”, Prentice-Hall
International, 1991.
SALTZER, J.H., REED, D.P., CLARK, D.D., “End-To-End Arguments in
System Design”, in Proc. 2nd International Conference on Distributed
Systems, Paris, France, p509-512, 8-10th April, 1981.
SCHNIEDER, F.B., “What Good are Models and What Models are
Good?” in Distributed Systems, Second Edition, Mullender, S., (ed),
Addison-Wesley, 1993.
SCHNIEDER, M., “Self-Stabilization”, ACM Computing Surveys, 25(1),
p45-67, March 1993.
SHETH, A., RUSINKIEWICZ, M., “On Transaction Workflows”, Data
Engineering Bulletin, June 1993.
SHRIVASTAVA, S.K. , WHEATER, S.M., “Implementing Fault-Tolerant
Distributed Applications Using Objects and Multi-Coloured Actions”, in
Proc. 10th International Conference on Distributed Systems, Paris,
France, 28th May-June 1st, 1990.
SHRIVASTAVA, S.K., EZHILCHELVAN, P., LITTLE, M.,
“Understanding Component Failures and Replication in Distributed
Systems”, ISA Project Report: UNT/TR1, University of Newcastle May
1990.
SHERMAN, M., “Distributed Transaction Processing in a DCE
Environment with Encina”, Tutorial presented at 13 th International
Conference on Distributed Computing Systems, Pittsburgh, USA, May
1993.

Ingenuity November 1994 239

SIEWIOREK, D.P., SWARZ, R.S., “Reliable Computer Systems - design
and evaluation”, Second Edition, Digital Press, 1992.
SKARRA, A. H., “Concurrency control for cooperating transactions in an
object-oriented database”, SIGPLAN Notices, 24(4), April 1989.
SMETHURST, R.,WHARTON, P., “OPENframework Availability”,
Prentice-Hall 1993.
TOY, W.N., “Fault-Tolerant Design of AT&T Telephone Switching
System Processors”, p533-574 in [Siewiorek and Swarz, 1992].
UI, “UI ATLAS Distributed Computing Architecture: A Technical
Overview”, Unix International.
WARNE, J., “Flexible Transaction Framework for Dependable
Workflows”, APM.1263.02, APM, Ltd., Cambridge, U.K., June 1994.
WARNE, J.P, REES, R.T.O, “ANSA Atomic Activity Model and
Infrastructure”, AR.004.01, APM, Ltd., Cambridge, U.K., January
1993.14.

14. Biography
Nigel Edwards
Nigel Edwards received a BSc (1st class Hons.) in Electrical and
Electronic Engineering and a PhD in Dynamically Reconfigurable
Distributed Systems from The University of Bristol in 1985 and 1989
respectively. He has been with Hewlett Packard Laboratories since
March 1988 working on various aspects of distributed computing.
Edwards has represented Hewlett Packard on the ANSA team since
February 1992.

240 Ingenuity November 1994

An Open Architecture for Real-Time
Processing

Guangxing Li, Dave Otway
APM, Poseidon House, Castle Park, Cambridge, CB3 ORD, UK

Abstract
This paper describes the ANSA work-in-progress on an open
distributed real-time systems architecture. It examines the
problem space and technology bases of open distributed real-time
processing. An integrated system architecture is suggested and the
benefits of the architecture are presented. It then goes on to
outline the important progress of the ANSA phase 3 project to
extend the ANSA architecture for real-time and multimedia
processing. Work is currently under way to build an ANSA real
time platform.

1. Motivation and Benefits
Open Distributed Processing (ODP) is concerned with the use of
commodity technology to build integrating applications that link together
existing applications, databases, control systems and users.
Real-time processing is concerned with the timeliness of computing
activities.
The need for an integrated open system architecture for real-time
processing is driven by two technology trends:
• general purpose distributed computing environments are evolving

towards real-time systems.
For example, the advances in digital communication networks and in
personal computer workstations are beginning to allow the generation,
communication and presentation of real-time voice and video media
simultaneously. Many non-real-time systems have been
disembowelled to extend their use to real-time processing [Leung, 90].
This trend requires distribution and real-time control functionality to
be intrinsic elements of the system. There is a great demand to
provide real-time functionality as normal system services, rather than
as special add on features.

Ingenuity November 1994 241

• real-time applications are evolving towards large distributed systems.
One-million-line real-time software systems in telecomms,
manufacturing, transportation and other application areas are
becoming common today [Gopinath, 93]. Such systems are large by
any standard and inevitably distributed. Therefore, in addition to the
problems associated with real-time operation, such applications are
subject to all of the problems of any large software system, such as
maintainability and distribution. Furthermore, in many real-time
applications, tight real-time constraints may apply to only part of the
whole system. For example, it is estimated that only 10 to 30 percent
of a typical vehicle control software system is directly related to actual
real-time control of the vehicle. There is an increasing need to adopt
an open and architectural approach so that real-time software
engineering can be augmented with other techniques to address
evolution, scale, distribution and other issues.

An integrated system architecture provides the capability to treat all forms
of real-time objects as first class citizens in a system environment. That is,
operations and mechanisms provided for existing non-real-time
components can be applied to, and used by, real-time components. The
provision of a uniform system environment facilitates increased
productivity, especially for applications which offer combinations of
distributed and real-time functionality: e.g. multimedia conference,
distributed control. Increased integration allows existing distributed
system mechanisms (such as trading, security, monitoring, replication,
location, migration and federation) to be applied to real-time
components. An integrated system architecture also allows evolution of
systems from the development of individual real-time systems, to groups
of real-time systems and then to enterprise-wide command and control
real-time systems.

Current reference models for open distributed processing, including ISO
RM-ODP [ISO, 93], OSI Management, OMG Object Management
Architecture (OMA) [OMG, 92] and ANSA [Herbert, 94], make no
mention of performance or real-time issues.
Current standards for open distributed processing, such as the Open
Software Foundation's Distributed Computing Environment (DCE) and
the Object Management Group's Common Object Request Broker
Architecture (CORBA) do not address real-time or performance
management requirements. As relatively new technologies, attention has
focused entirely on functionality; real-time issues are not addressed.
Therefore the scope of the ANSA Phase 3 work on performance and real
time is to define a framework for distributed real-time computing and to
investigate candidate technology for practical standardisation.

242 Ingenuity November 1994

This work will offer several benefits:
• service providers will be able to specify and implement services that

give required performance and real-time guarantees
• except in the most demanding of situations, real-time and performance

management will cease to be special cases, decreasing the costs and
time to deployment for such systems

• open distributed processing technology will be able to support
performance and real-time guarantees, increasing the range of
applications and services it can support, and increasing the market for
the technology.

2. Desirable Features for Real-Time Systems
Instead of defining what is a real-time system (for which there is hardly a
widely accepted definition), we list the desirable features of real-time
systems.
2.1 Predictability
Predictability is the capability of a system to perform a set of operations
in a well-defined, or determined fashion, such that each operation's timing
requirements are satisfied.
A fully predictable system performs operations in the same period of time,
every time, independent of surrounding conditions such as system
loading.

Predictability applies to every level of the components of a real-time
distributed system environment. Such an environment must provide a
certain degree of predictability, even though it is not always possible to be
fully predictable, if it is to support any useful performance guarantees.
2.2 Programmer Control
Many real-time applications are embedded systems (which often have
static loads), therefore it is possible to control the system's behaviour. On
the other hand, real-time applications have immense behaviour diversity,
therefore fixed system behaviour cannot cater for many real-time
application requirements. Consequently, it is required that a programmer
has ultimate control of the behaviour of the system.
The simplest method of programmer control of system behaviour is
probably the choice of priorities for real-time activities. By indicating the
relative priorities of activities, a programmer can affect throughput and/or
responsiveness goals for the system on a much finer granularity than by a
“do the best you can” approach. Programmers may also be allowed to
select the scheduling policy, pre-allocation of system and application
resources to critical services and so on.

Ingenuity November 1994 243

2.3 Timeliness
The correctness of a real-time system depends not only on the functional
behaviour of the system, but also on its temporal behaviour. A real-time
system environment must provide mechanisms which take these time
related issues into account and must help application programs to meet
these timing constraints. A simple example is to allow an application to
associate deadlines with real-time activities, and to have the system
employ a deadline based scheduling policy to ensure deadlines are met or
to cancel obsolete operations when missed deadlines are identified. Other
required functions include the description and enforcement of temporal
relations among related computational activities.
2.4 Mission Orientation
A mission oriented distributed computer system is one whose functions
are dedicated to the fulfilment of a specific goal through the cooperative
execution of one or more application programs distributed across its
nodes. In the real-time sense, mission orientation also means mission
critical - the degree of mission success is strongly correlated with the
extent to which the overall system can achieve the maximum
dependability regarding real-time constraints. In its simplest form,
mission orientation requires that a priority or deadline associated with a
mission has global meaning when it spans the network. More generally,
global importance and urgency characteristics are propagated through the
system for use in resolving contention over system resources according to
application defined policies.
2.5 Performance
Real-time applications often have stringent raw performance
requirements. Consequently, the optimised integration of application
software and its supporting environment is necessary. This is in contrast
with the popular layered design approach for non real-time applications.
Also, real-time applications often require to trade off modularity,
flexibility and functionality in order to maximise performance.

3. Technologies
This section is structured as follows:
• a description of the fundamental contributory technologies
• a review of functions in an open distributed system environment
• a brief description of the current state of the art of distributed real

time system environment research and engineering, and the additional
functions required in such an open, real-time, distributed architecture

3.1 Contributory Technologies
The fundamental contributory technologies are illustrated in figure 1. It
represents the integration of real-time systems, open systems and object
oriented systems.

244 Ingenuity November 1994

Figure 1 Contributory Technologies

Real-time system technology provides the functionality of resource
management for guaranteeing the stringent time-constrained computing
activities.
Open system technology provides the functionality for distribution,
evolution, heterogeneity, federation and scale.
Object oriented technology provides the functionality for software reuse
and maintenance.
3.2 Distributed System Environments
A distributed system environment is a run-time system that provides a set
of abstractions and tools to support writing distributed programs. The
principal benefit of using a distributed system environment is that
applications are automatically supported by a run-time environment
which incorporates a set of distribution transparency mechanisms. These
transparencies shield application designers and users from the
technological complexities underpinning distributed application
programs. Remote Procedure Call (RPC) and client-server interactions
are widely accepted as distributed system environment technical
apparatus.

Ingenuity November 1994 245

It is now recognised [Herbert, 91] that distribution transparency can be
broken down into a number of individual transparency issues:
• location transparency: masking off the physical location of services
• access transparency: masking any differences in representation and

operation invocation mechanism
• concurrency transparency: masking overlapped execution
• replication transparency : masking redundancy
• failure transparency : masking recovery of services after failures
• resource transparency: masking changes in the representation of a

service and the resources used to support it
• migration transparency: masking movement of a service from one

location to another
• federation transparency: masking administrative and technology

boundaries.
3.3 Real-Time Distributed System Environments
Despite the relative maturity of distributed system environment research,
real-time distributed system environment remains a neglected, if not
unaddressed, topic. Consequently, even if base technologies (such as
microkernel, ATM networks etc.) can provide real-time services, a
distributed system environment provides no corresponding abstractions to
use these services. Even worse, a distributed system environment often
masks off the real-time features of base technologies. Therefore, one of
the main aims of this work is to extend the real-time features of base
technologies to the distributed system environment level.

Figure 2 Real-Time ODP Functionality

246 Ingenuity November 1994

One common misconception is that a distributed system environment is
not suitable for real-time applications because RPC (one of the main
technologies in a distributed system environment) is often criticised for
providing poor performance or for not being fast enough. This is a
misconception because the objective of real-time computing is to meet the
timing requirements of an application, rather than just to be fast. The
most important property of a real-time system is predictability.
Moreover, fast is a relative term. As technology progresses, there will be
faster and faster RPC systems. For example, there are already reports of
systems that can provide RPC calls in hundreds of microseconds
[Biagioni, 93] [Johnson, 93]. Fast computing is helpful in meeting
stringent timing constraints, but fast computing alone does not bring real
time properties.
A real-time system must be able to handle time-constrained processing of
requests. A real-time distributed system environment adds another
dimension to the problem of distributed system environment, since the
concern is now not only with the functional correctness, but also with the
timeliness of the results produced. In figure 2, a graphical illustration of
the real-time distributed system environment functionality is given. The
curve in the figure illustrates that the real-time distributed system
environment functionality is the trade-off of the real-time functionality
and distributed system environment functionality. This reflects the fact
that real-time functionality and distributed system environment
functionality are often conflicting goals. For example, most distribution
transparencies (such as RPC protocols) are based on time redundancy
technologies. Such technologies need to be revised for real-time
applications.

4. Target
Real-time systems span a wide variety of field of applications, including
military, industry, commerce, medicine and so on. This indicates a wide
spectrum of possible problems.
The scope of this research for real-time applications is supervisory control
[Northcutt, 87] as opposed to low-level, synchronous sampled data loop
functions like sensor/actuator feedback control, signal processing, priority
interrupt processing and so on.
Supervisory control is a middle-level function (see Figure 3), above the
local control and data acquisition functions and below the human
interface management functions. This type of system does not do much
direct polling of sensors and manipulation of actuators, nor does it
provide extensive man-machine interfaces; rather, it deals with
subsystems which provide these functions. The real-time response
requirements of a supervisory control system are closer to the millisecond
than either the microsecond or second ranges.

Ingenuity November 1994 247

Figure 3 Supervisory Control

5. Designing for Real-Time and Multimedia Processing
The core of ANSA architecture is its Computational Model [Rees, 93] and
Engineering Model [ISO, 93]. This section outlines some important
progress of the ANSA Phase 3 project in extending the two models for
real-time and multimedia processing. The focus here is why the
extensions are needed rather than what are the achieved technical results.
It is difficult to deal with such a wide-ranging subject in a short article.
Readers who would like to read more can find more references by
contacting the authors.
This section first briefly describes the ANSA object model, and then
discusses streams, signals, synchronous computing, explicit binding,
Quality of Service (QoS) framework, and real-time programming model
issues.
5.1 ANSA Objects
The ANSA computational model uses objects as units of distribution for
management and replacement. An object has one or more interfaces that
are the points of provision and use of services. Interfaces are first class
entities in their own right and references to them may be freely passed
around the system.
An interface contains a set of named operations (i.e. procedures or
methods) which defines its type. Interfaces have the usual remote
procedure call style of interaction: operations are invoked with a set of
arguments and a response is returned. Arguments and results to
invocations consist of references to other interfaces. The effect of an
interaction is that the client and server share access to the argument and
result interfaces. This model makes each interface an abstract data type.

248 Ingenuity November 1994

5.2 Streams
The traditional ANSA object interaction model is asymmetric: any client
holding an interface reference can invoke a server object. The server does
not have the control over which clients may access it.
In terms of communication paradigm, the asymmetric interaction model
is a many-to-one model. The server can only reply to a request, and
cannot initiate any communication. This is not sufficient for multimedia
and real-time processing where end-to-end (one-to-one) communication is
essential.
The support of communication endpoints in real-time ANSA objects is
provided by stream interfaces. Streams consist of uni-directional data
flows. Flows consist of application dependent frames. The source of a
data flow must be bound to its sink explicitly before data can pass along
the path. Streams can be bidirectional: a stream endpoint can be both a
source and a sink for different flows. Computational constructs are
provided to receive and send frames at stream endpoints. This models a
symmetric interaction paradigm in which the traditional client and server
distinction does not exist, and the communication happens between peers.
Frames can be transmitted, received, monitored and controlled by
synchronous expressions as discussed later.
5.3 Signals
The traditional ANSA object invocations are typical RPC style, which
enforces the normal call/reply ordering. For real-time and multimedia
applications, the notification of events and signals cannot normally be
structured as call/reply style of messages. A more freely ordered message
passing scheme is necessary.
The support of freely ordered messages is provided by signal interfaces in
real-time ANSA objects. A signal models a call or a response message for
a client, and a request or a reply message for a server (in other words,
signals are the elements necessary to construct RPC style invocations, but
not restricted for the purpose). Each signal has a direction, and has a
source and a sink. Multiple signals can be combined together as a signal
interface.
Like frames, signals can also be transmitted, received, monitored and
controlled by synchronous expressions as discussed in the next section.
5.4 Synchronous Computing
The traditional ANSA object model is asynchronous, which is necessary
for programming large, federated, concurrent, and non-deterministic
distributed systems. In contrast, real-time systems require predictable
access to shared resources and programs, the behaviours of which are
deterministic.

Ingenuity November 1994 249

In real-time ANSA objects, the reactive model of synchronous systems
used by such languages as ESTEREL [Boussinot, 91] is adopted because it
produces deterministic parallel programs whose behaviours are
reproducible and whose execution times are predictable.
In a synchronous system, time is divided into a series of logical instants.
At each instant, a number of expressions are executed in response to the
input signals received since the previous instant. These logical instants
are ordered but have zero duration. A synchronous expression waits for a
certain (combination of) signals and is executed at the same instant that
the signals are received. Typical synchronous expressions include sending
a signal, waiting for a signal, testing the presence of signals, watchdogs,
parallel execution, sequential execution etc.
The synchronous expressions allow the construction of synchronous
islands within an asynchronous world.
5.5 Explicit Binding
Binding is the process by which an activity in one object establishes the
ability to invoke operations at an interface to some other object. A
binding establishes and controls the communication sessions involving
multiple objects so that their interactions are possible.
The traditional ANSA object model is supported by an implicit binding
model which is designed to have good scaling characteristics, to optimise
the usage of resources and to be optimised for RPC style interactions. It
uses maximum multiplexing for efficient resource management and
provides only a single Quality of Service.
Real-time objects (including the service provided by stream and signal
interfaces) require predictable (and different) methods of resource
allocation, resource scheduling and a wide variety of Quality of Services.
Explicit binding operations are introduced to:
• associate QoS with bindings
• cope with different styles of object interactions
• control the time of binding
• manage/control a binding.
5.6 QoS Framework
The traditional ANSA object model covers only the functional
requirements for distributed processing. A QoS framework is introduced
to cover the non-functional requirements such as security, dependability,
and especially performance.

250 Ingenuity November 1994

A QoS statement is a generic mechanism which can express:
• the performance requirements for a client
• the performance a server provides
• the performance constraint of the infrastructure between them.
A QoS statement can also be used to conduct the negotiation of the
required performance and monitor the provided performance.
QoS requirements are categorised: for a particular class of application
area, a particular QoS domain is required. A universal QoS domain for
many applications is unlikely to be practical.
As QoS requirements are categorised and there are many different QoS
domains, it is unrealistic to use the same mechanism for all of the
domains. On the other hand, since the ANSA project is interested in a
common architecture that can apply to many applications, it is logical to
work out a framework so that QoS domains can co-exist and relate to
each other. A QoS framework provides a common conceptual model for
the definition, organisation, co-relation, management and engineering of
different domains of QoS.
The real-time ANSA architecture uses a language-based approach to
define QoS domains, QoS expressions, and QoS domain supported
explicit binding operations. It allows the association of QoS statements
to interface definitions, binding operations, trading operations and object
invocations.
5.7 Real-Time Programming Model
Real-time processing concerns not only how computational activities are
carried out, but also how shared resources are used (i.e. the manner in
which contention for system resources is resolved taking into account
timing constraints of real-time activities). The essence of a real-time
programming model is to provide the basic abstractions so that stringent
timing constraints of real-time activities are respected (ideally
guaranteed). Traditional real-time systems provide concepts such as
priority and deadline to achieve the predictable execution of
computational activities.
The original ANSA object execution model is non-deterministic in the
sense that object execution is completely dependent on the system's
resource management policy and the infrastructure provides no possibility
of interacting with this management; object execution entirely depends on
the system workload.
The real-time ANSA architecture defines a real-time programming model
to provide a predictable object execution model and to extend the
traditional real-time computing concepts to distributed processing. It
extends the traditional ANSA engineering model to include various
priority-based and deadline-based object execution models. The
programming model incorporates tasks and communication channels (the
Ingenuity November 1994 251

two most important resources in real-time distributed computing) as its
basic programming components. It synthesises aspects of resource
requirements, resource allocation and resource scheduling into an object-
based programming paradigm.

6. Real-Time ANSAware
ANSAware is an implementation of the ANSA computational model and
an example of the ANSA engineering model. ANSAware is a suite of
software for building ODP systems, providing a basic platform and
software development support in the form of program generators and
system management applications. ANSAware provides a uniform view of
a multi-vendor world, allowing system builders to link together
distributed components into network-wide applications.
Traditional ANSAware was designed to scale, to cover diversity, to
support federation and to be efficient in resource usage. Real-time and
multimedia processing introduces new requirements such as predictable
resource access, separation of resource allocation, and making use of
existing real-time technologies etc.
A real-time ANSAware is under development, the first version (named
RAW 1.0) is already in operation under the DEC Alpha OSF/1 and the
HP HP/RT real-time environments. RAW 1.0 has achieved the following
results:
• compatible with ANSAware 4.1
• running over a de-facto industry standard: real-time POSIX threads
• full p-thread real-time scheduling and threading capabilities
• selective communication multiplexing by QoS specification and

explicit binding operations
• application controlled resource allocation
• supporting the ANSA real-time programming model
• comparable performance to other distributed real-time system

environments.
RAW 1.0 extends ANSAware 4.1 in the following aspects in terms of
functional requirements:
• extended tasking system

o entry: a new abstraction which represents a scheduling point.
Separate scheduling points can be used for the separation of
concerns of different scheduling requirements

o real-time scheduling: preemptive priority-based scheduling
o multiple scheduling policies: the co-existing of real-time and non-

real-time scheduling support
252 Ingenuity November 1994

o real-time tasks: full real-time p-thread functions.
o stack-based rescheduling system: a thread may use its task (stack)

resource to execute another thread to facilitate dynamic real-time
scheduling

o real-time threads: a thread may be associated with a priority and/or
deadline

o multiple thread scheduling policies based on policy/mechanism
separation.

• extended communication system
o multiple execution protocols: using separate transportation

protocols for real-time and non-real-time communications
o timed execution protocol: this is a new RPC protocol which

understands priority, deadline and deadline types. It can also
handle various deadline-expire exceptions

o connection-oriented execution protocols and message passing
protocols: this allows the preallocation of separate communication
endpoints for different interfaces

o selective multiplex of communication channels.
• extended application programming interface

o abstractions for accessing tasking resources
o QoS objects, two kinds o f QoS objects are introduced: one for the

description of a communication end point, another for the
description of in-band QoS requirement for an invocation

o explicit binding operations: to bind an interface with a
communication channel of a specific QoS

o invocations with QoS: the attachment of in-band QoS based on
invocations.

• extended ANSAware PREPC and IDL language to include QoS
statements.

7. Summary
This article examined the problem space and technology bases of real
time open distributed processing. An integrated system architecture was
suggested and the benefits of the architecture were presented. The
practical need and importance of the architecture was discussed along
with the current technology trends in both distributed processing and
real-time applications. It was also suggested that the architecture might
target (not exclusively) supervisory control as its applications.

Ingenuity November 1994 253

The article also presented some important progress of the ANSA Phase 3
project to extend the ANSA object model for real-time and multimedia
processing to include:
• a symmetric object interaction model (stream interface) to supplement

the traditional asymmetric client/server interaction model, so that
applications may access communication endpoints for multimedia
streams (the provision of peer-to-peer communication)

• a symmetric object invocation model (signal interface) to supplement
the traditional asymmetric RPC style invocation model, so that
multimedia frames and real-time signals can be treated as normal
object invocations

• a synchronous computation model to provide predictable computing
• a QoS driven explicit binding model for performance guarantee and

resource management
• a generic QoS framework for addressing non-functional requirements

and handling the complexity of different QoS domains
• a real-time programming model for extending the traditional real-time

computing concepts to distributed processing
• a real-time ANSAware for supporting the above computational and

engineering extensions.

8. Related Work
Current research at CNET [Hazard, 93], Lancaster University [Coulson,
92] and University of Kent are all converging on a common architecture
for distributed multimedia and real-time processing relevant to our real
time ANSA architecture.

9. Acknowledgements
The authors of this article would like to acknowledge the contribution of
their colleagues in the ANSA core team, particularly Andrew Herbert,
Yigal Hoffner, Owen Rees, Gomer Thomas and John Warne for their
valuable comments.
Copyright © 1994 Architecture Projects Management Limited. The
copyright is held on behalf of the sponsors for the time being of the ANSA
Work programme.

10. References
BIAGIONI, E., COPPER, E. and SANSOM, R. “Designing a Practical
ATM LAN”. IEEE Network. March 1993.
BOUSSINOT, F. and SIMMONE R. “The ESTEREL Language”, Proc. of
the IEEE, Vol. 79, No. 9, September 1991.

254 Ingenuity November 1994

COULSON G. et al. “Extensions to ANSA for Multimedia Computing”,
Computer Networks and ISDN Systems, Vol. 25, pp 305 - 323, 1992.
GOPINATH P. and BIHARI T. “Concepts and Examples of Object-
Oriented Real-Time Systems”, in Readings in Real-Time systems, Y H Lee
and C M Krishna ed., 123-136, IEEE CS Press, June 1993
HAZARD L. et al. “Towards the Integration of Real Time and QoS
Handling in ANSA Architecture”, ANSA Phase 3 Project Report
CNET/RC. ARCADE. 01, June 1993.
HERBERT, A.J. “An ANSA Overview”. IEEE Network, ppl8-23,
January 1994.
HERBERT A. J. “The Challenge of ODP”, Document APM 1016,
Architecture Projects Management Ltd., Cambridge U.K., February 1993,
Also Appeared as an Invited Paper for the Berlin ODP Conference,
October 1991.
JOHNSON, D.B. and ZWAENEPOEL, W. “The Peregrine High-
Performance RPC System”. Software Practice and Experience, 23(2).
1993.
LEUNG W. H. et. al. “A Software Architecture for Workstations
Supporting Multimedia Conferencing in Packet Switching Networks”,
IEEE JSAC, 8(3):380-390, April 1990.
ISO/IEC 10746-3, “ITU-TS Recommendation X.903: Basic Reference
Model o f Open Distributed Processing: Prescriptive Model”, (2nd CD draft)
June 1993.
NORTHCUTT, J.D. “Mechanisms for Reliable Distributed Real-Time
Operating Systems: The Alpha Kernel”. Academic Press. 1987.
OMG. “Object Management Architecture Guide”. OMG TC Document
92.11.1. 1992.
REES, O. “The ANSA Computational Model”. Document APM. 1001,
Architecture Projects Management Ltd., Cambridge U.K., February 1993.

11. Biographies
Guangxing Li
Guangxing Li obtained his Honours degree in Computer Science from the
University of Electronic Science and Technology of China in 1983,
ChengDu, P. R. China. He went on to gain an MSc in Computer
Software from the same university in 1986, and then a PhD in Computer
Science from the University of Cambridge in 1993. The PhD topic was
“Supporting Distributed Real-Time Computing”. He then joined APM as
a member of technical staff and has been working on the development of
the real-time ANSA architecture.

Ingenuity November 1994 255

Dave Otway
Dave Otway is deputy chief architect of the ANSA project. He has
worked on ANSA since its inception in 1985. Before that he headed the
information technology division at GEC's Hirst Research Centre. He has
25 years experience in the computing industry and a BSc in computer
science from Manchester University.

12. Epilogue
The results of the ANSA Phase III programme are available to sponsors
and vetted bodies.
The ANSA project has a World Wide Web server (URL is
http://www.ansa.co.uk). Documents describing the results can be
obtained through an FTP server (ftp.ansa.co.uk). The FTP server is not
publicly accessible. Each sponsor has its own password. The contact
person within ICL is John Brenner@bra0511.
General e-mail enquires to the ANSA project can be made to
apm@ansa.co.uk.

256 Ingenuity November 1994

http://www.ansa.co.uk
ftp://ftp.ansa.co.uk
mailto:apm@ansa.co.uk

Updating the Secure Office System
John A Jones

Business Development, Enterprise Engineering, ICL Enterprises, UK

Abstract
This paper describes the application of a single sign-on facility and
a graphical user interface to a secure office system embodying
multi-class security measures. The system structure is briefly
described, along with the revised user interactions with the
system.

1. Introduction
A description of the Secure Office System has been presented in an earlier
paper in this journal [Moore, 1991]; that paper described the first version
to be provided to a significant number of users. The Secure Office System
is subject to continuous improvement, and is gradually being equipped to
meet the needs of client-server computing. Two particular developments
since the original paper are worthy of note, and are briefly described in
the current paper. They are the provision of a single sign-on facility, for
user access anywhere across the enterprise network, and the introduction
of a graphical user interface. The following description simplifies some
details of the interactions, in the interests of an easier understanding for
the non-specialised reader.
1.1 Background
Before going on to look at the new developments, it is worth summarising
the characteristics of the original Secure Office System. (A more detailed
treatment is available in [Moore, 1991].)
The Secure Office System provides office and other services to several
thousand users, working in organisations where security of information
can be of considerable importance. The services are provided by servers
running a version of the UNIX operating system with security
enhancements, and the majority of the user functions are delivered by
database and OfficePower-style applications. (OfficePower is an
integrated office automation suite marketed by ICL.) All applications use
a character-style user interface, and users access the system through

Ingenuity November 1994 257

character-mode terminals, which also support a limited graphical
capability for the output of charts in graphical form.
Each user of the Secure Office System has a unique identity (username) by
which he is known to the system; he also has a uniquely coded badge. To
log into the system he inserts his badge into the terminal, and enters his
username and password. If all the credentials submitted are acceptable,
and if the user is registered for use of the particular terminal at that time
of day, the login is successful, and the user session now starts. The
session may comprise one or more subsessions, in each of which the user
assumes one of his pre-assigned roles, e.g. Duty Security Officer,
Personnel Officer (Dept. E), or Director (XYZ establishment). All
significant actions taken by the user are subject to audit, recorded against
him as an individual (not against the role), so that the responsibility for
any security incident can be tracked. In certain cases, an immediate
security alert will be transmitted to the security administrator, so that
suitable action can be taken.
The system maintains a regime of Mandatory Access Control, to ensure
that sensitive information cannot become available to unauthorised roles.
Every object in the system, at the time of its creation, is assigned a
particular security classification, or Label; this is expressed in terms of a
hierarchical set of sensitivity levels, combined with other more specific
qualifications, relating, for example, to particular projects. Similarly,
every role is configured with the ability to operate at one or more specific
Labels. The system ensures that a role, operating with a particular Label,
cannot read any information with a more sensitive Label, and cannot
write to any object with a less sensitive Label. Thus, information from an
object with a given Label can only ever be transferred to an object with
the same or a higher Label.
The operation of this rule is made more manageable for the user by
dividing his work into a number of distinct subsessions within his overall
session, each with its own Security Label. The current subsession Label is
displayed in a protected part of the display screen, as also is the Label of
the current target object. This makes it easier for the user to appreciate
which objects are accessible for reading or for writing in any particular
subsession.

The user can also make use of Discretionary Access Control: any of the
user's objects can have an Access Control List assigned to it by the user;
this specifies the particular people who are permitted to have access to the
object. Access to an object is dependent on satisfying both the
Discretionary and the Mandatory Access Controls; they are not
alternatives.
Finally, the system provides a secure Trusted Path facility: a means by
which the user can be sure that he is in communication with the trusted
computing base, and not with an unknown or spoofing application of
uncertain reliability. This is necessary for certain critical operations,
where security might otherwise be compromised: for example, the trusted
258 Ingenuity November 1994

path is always in operation at the point of logging in, and can be invoked
by explicit request at other times, particularly for changing passwords and
for establishing or selecting new subsessions. A well-known ploy of
hackers on less secure systems is to run a program which appears to be
displaying a login prompt on an unattended terminal. When an
unsuspecting user types in his credentials, the program stores them away
in a place known to the hacker, and then terminates, connecting the user
to the standard login program. The trusted path indication on the screen
assures the user that this form of masquerade cannot be achieved: the
dialogue must be genuine, because the secure operating system has
ensured that the indication cannot be counterfeited by another,
unprivileged, program.
1.2 The new developments
In previous phases of the Secure Office System, most users have simply
logged into their local server and accomplished their work within the
scope of that single machine. It has also been possible to select a remote
service and log into it separately, but the process was cumbersome, and
not popular with users. The aim of providing single sign-on has been to
achieve a closer integration, so that the user can simply select the required
services from a menu, wherever they may be located, and be connected
without further ado; in principle the user should not need to know
anything about the distribution of services.
The original Secure Office System provided a dumb terminal interface, in
keeping with the standard office system of the 1980s and early 1990s. As
the industry's focus for application development has moved ever more
onto the desktop, so it has become appropriate to provide a platform to
allow this trend to be exploited by the Secure Office System.
The remainder of this paper shows how these new aspects of the
infrastructure have been provided.

2. Single sign-on
2.1 Overview
A number of different single sign-on products are now available in the
marketplace. Two particular schemes have been exerting the greatest
influence on the standards organisations, and hence on the commercial
exploitations of the technique. These are Kerberos (from MIT; also used
in DCE) and the ECMA Technical Report 46 (TR46) scheme (as
represented by the Sesame project and ICL's Access Manager). A
comparative review of the available products is provided in [Parker,
1994]. The motivation in all cases is to provide the user with the ability
to gain access to a number of different services, which may be physically
dispersed, without needing to go through an authentication process at
each individual service: once the user has been authenticated at the initial
point of access, suitable credentials can be passed to other services on his
behalf. Clearly this simplifies matters for the user, who now needs only
to remember one set of authentication data. A security benefit flows from
Ingenuity November 1994 259

this, because the user is now less likely to need to write down the
necessary passwords, and also less likely to use trivial or unsuitable ones.
Early implementations of single sign-on do little more than to automate
the login and password submission that the user would otherwise have to
undertake himself. This approach has the disadvantage of course, that, as
with the previous system, the dialogue is carried on in clear text over the
interconnecting network, with all the attendant risks of interception,
replay, masquerade, and so on.
More advanced implementations involve explicit cooperation between the
authorities responsible for the various services: they agree on a set of
authentication data that can be passed between them, conveying relevant
security information about the user and the facilities to be made available.
This process implies a need for trust between the authorities, and in the
mechanisms used for the information interchange, and this usually
necessitates the use of cryptography. The theoretical basis for the
interrelationships is covered in [Rogers, 1994] later in this issue.
2.2 Implementation
The single sign-on scheme used in the Secure Office System follows the
basic principles of ECMA Technical Report 46, (TR46) but adds some
refinements, and borrows heavily from the ICL Enterprises developments
for the Access Manager product. The main components of the scheme are
as follows:
• Combined Authentication and Privilege Attribute Service
• Name Service
• Subject Sponsor
• Association Management
• Context management.
The component interrelationships are depicted in Figure 1. Their
functions and purpose are described below.
2.2.1 Combined Authentication and Privilege Attribute Service
The Combined Authentication and Privilege Attribute (CAPA) Service
holds details of the users of the system: their identities, their current
passwords (encrypted), their badge codes, and the locations where they
are permitted to log onto the system. It also holds information relating to
the security clearances of the users: the range of Labels they are permitted
to use for their subsessions and the roles they are permitted to assume. In
addition the CAPA service keeps details of the security clearance for user
access points (terminals and workstations). The static part of this
information (apart from user passwords) is provided by, and can only be
amended by, authorised administration personnel. Dynamic status
information (e.g. history of the current session) is managed by the CAPA
service itself.

260 Ingenuity November 1994

Figure 1. Single sign-on system structure

The CAPA Service is responsible for the issue of Privilege Attribute
Certificates (PACs), which denote the privileges and limitations applicable
to user processes.
The CAPA Service is represented physically by a number of server
machines; the work is split between them according to performance
criteria and to fit in with the needs of the administrative organisation.
2.2.2 Name Service
ICL has introduced a refinement to the basic architecture: the Name
Service. The Name Service is an information repository, providing
mappings from each rolename to a set of service attributes, and from each
service name to an address to be used in accessing it. The role
information is, in fact, organised according to roletypes. The concept of
role was introduced above; in the Name Service it would be superfluous
to include specific information for every individual role, so roles are now
grouped together into roletypes, each group provided with the same set of
services. Thus there could be a roletype Personnel Officer, covering
personnel officers from all departments: they would all use the same types
of application. The final distinction between different roles within a
roletype is achieved by providing a different home directory in the file
system for each individual role.
For each roletype, a set of menus is stored; selection of a menu entry
leads (possibly via further layers of menus) to a specific application entry.
Associated with each application entry there is a set of information, which
defines the way of invoking the particular application instance: the
Ingenuity November 1994 261

address of the service; the name of the program that has to be executed,
and any parameters that have to be passed to it. The Name Service is
notionally a single service covering the whole of the user population, but,
for performance reasons, separate instances, all holding the same
information, are provided at each locality.
2.2.3 Subject Sponsor
The TR46 architecture recognises a component called Subject Sponsor.
This looks after the user's dialogue with the single sign-on system. It
accepts the user's credentials at login time, and connects him to the
required services. The Secure Office System has two different
implementations of this architectural component, one for users of
character terminals, and the other for graphical interface users.
The character terminal version of this function runs on the server to
which the terminal is connected. It is divided into a number of sub
components, in recognition of their different requirements from the point
of view of security evaluation. The most important of these are called
Login, Subsession Controller and User Shell. Login provides the
necessary dialogue for identification and authentication of the user, and
the Subsession Controller controls the creation of subsessions of suitable
Security Labels as well as the switching between them. A separate
instance of the User Shell is created for each subsession that the user has
active; the User Shell presents the user with the application menu
retrieved from the Name Service for the particular role, and subsequently
permits the user to invoke and to switch between the applications
available.
The graphical interface version of the Subject Sponsor function is
separately implemented, and is further described below.
2.2 .4 Association Management
Association Management is the function that links together the client and
server components of an application. A client wishing to connect to a
service makes a call on the local Initiating Association Manager (IAM)
component. This obtains the necessary routing and invocation
information from the Name Service, and then calls the Target Association
Management (TAM) component at the destination service system. The
TAM checks the credentials submitted by the IAM, and goes on to invoke
the required application, again if necessary obtaining further information
from the Name Service. The communication between the Association
Management components makes use of a secure association channel,
designed to ensure that the security attributes cannot be corrupted or
misused.
2.2.5 Context management
The Context Management system is responsible for establishing, at
critical points, (e.g. on subsession creation, or in conjunction with
Association Management activity) that the security context of each
process involved (as represented by the process attributes) is consistent

262 Ingenuity November 1994

with the privilege attributes included in the relevant Privilege Attribute
Certificate issued by the CAPA service.
A trusted application may request modification of the context, either
because it needs a different privilege set for its own execution, or because
it wishes to restrict the powers to be passed to a process that it invokes by
means of Association Management.
2.3 Operation
We can now trace through the operation of a simple user session, using
the character terminal version.
The user switches on the terminal and waits for the badge insertion
prompt. He inserts his badge, which causes the initial sign-on prompt to
be displayed, with the trusted path indication. He now types in his
username and password; the Subject Sponsor submits these credentials,
and the identification of the terminal, to the CAPA Service. The CAPA
service checks that the intended session is permissible, and provides a list
of the permitted roles and clearances, indicating which is the default. The
Subject Sponsor displays this information to the user, who then selects the
parameters for the initial subsession. The CAPA Service generates a
corresponding Privilege Attribute Certificate (PAC) defining the applicable
security context.
A subsession is now created, operating at the requested role and
clearance, according to the PAC provided, and the User Shell is invoked.
It obtains menu information from the Name Service, and presents it to the
user. The user makes menu selections as appropriate, until he arrives at
the point of selecting a particular service. The User Shell now invokes
Association Management to start up the service. Association
Management obtains further information from the Name Service, to
discover the appropriate address and invocation parameters. In a simple
case these will simply specify a process on the current processor. In more
complex cases, Association Management may need to invoke a process on
another processor, as outlined above. In either case an application
component may in turn invoke another application component, again
using Association Management and the Name Service, as a preliminary to
the support of a client-server dialogue. Whenever a new association is
created, the subsession PAC is transmitted over the Secure Association
Service to ensure that Context Management can establish the appropriate
security context for the association.
At any time the user may suspend his current interaction with the system,
to invoke another service. If he intends to operate with the same role and
clearance, he can use the User Shell to open up the other service.
Alternatively he can suspend the current subsession, and use the Subject
Sponsor to open up another subsession with different role and clearance;
this will involve creation of another User Shell, which the user can then
use for the selection of the required service. At any subsequent time the
user can switch between any of the existing services or invoke another as

Ingenuity November 1994 263

needed. Figure 2 shows the relationship between session, subsession and
application.

Session PQR
Maximum confidential

Subsession 1 Subsession 2 Subsession 3
Unclassified Personnel-restricted Confidential

____ Application A _____ Application L Application W

____ Application B Application M Application X

____ Application C _____ Application N Application Y

Figure 2. Session and subsession structure

3. Graphical User Interface
3.1 GUI Overview
The characteristics of a modern graphical user interface (GUI) will be
familiar to most readers. What may not be so obvious is that a GUI
presents difficulties for the implementors of a secure system, for a number
of reasons, some of which are discussed below.
One of the significant attributes of the graphical interface is that it
supports the moving or copying of material from one place to another,
whether in the same or a different object. The secure system, in contrast
to this, devotes a lot of effort to ensuring that improper transfers cannot
be made. No commercial system at present reconciles these two
requirements, and the Secure Office System includes innovative facilities
to remedy the deficiency.
Another aspect concerns the freedom of the user to manipulate objects on
the screen, and the interactions between such manipulations and the
display of security labelling. The implications of obscuring a Label need
to be resolved.
When it comes to the detailed implementation, it is necessary to guard
against the possibility of covert channels: any means by which information
is able to flow, whether intentionally or unintentionally, in contravention
of the security policy. All such channels need to be assessed, and the
appropriate defences put in place.

264 Ingenuity November 1994

3.2 Graphical User Interface - the choices
The provision of a secure Graphical User Interface capability requires
choices to be made at several levels: the style of the user interface itself;
the software system that will provide the GUI, and the supporting
hardware platform. The most important of these is the middle layer, the
software system, because this is where the security policy is enforced.
The GUI systems in most common use are: the Microsoft Windows
system, the Apple Macintosh system and the X Window system. The first
two of these were soon rejected for the Secure Office System, as there was
no reasonable prospect of implementing a secure version: neither the
Windows system itself nor the underlying operating system would be
suitable to undergo the formalities of security evaluation, and in order to
derive a suitable version, a degree of collaboration with Microsoft or
Apple would be required that would not be commercially practicable.
The X Window system, on the other hand, has been used for some time
as the basis for the secure Compartmented Mode Workstation (CMW),
specified for the US defence market, and is usually built on top of a secure
UNIX operating system, such as is already in use in the Secure Office
System. X is then the natural choice.
The X Window system was developed initially by MIT, and the rights are
now owned by the X consortium. A number of commercial
implementations are available. The system uses a presentation style
known as Motif, now defined in the open standards. From the user's
point of view, the functional repertoire is very close to that of Microsoft
Windows, as are most of the conventions, for example, how menus are
structured. There are superficial differences in the shapes of the window
handles and other decorations, but a Microsoft Windows user soon
becomes accustomed to working with the Motif symbols, and, if
necessary, can switch easily between the two styles.
The development team had to decide how the security requirements
would affect the user interface. For the first time the users of the Secure
Office System would be able to view more than one task on their screens
concurrently. To meet the functional requirements, it would be necessary
to arrange that these could be of differing security classifications, if
required. At the same time there would have to be a clear distinction
between the levels. Some consideration was given to dividing the screen
into zones to segregate the different levels, but it was evident that
individual areas would then become too small to be useful, and so the
eventual design allows the user complete freedom in the allocation of the
screen area to particular tasks. The user is reminded of the different
classifications of his windows by a combination of colour-coding and
explicit labelling: each visible window has a coloured border indicating
the hierarchical component of the classification; and in addition to the
usual title bar the window has a security stripe, with a label spelling out
the full security classification of the task.

Ingenuity November 1994 265

The remaining choice concerned the type of platform on which the system
would be deployed. Options included:
• a simple monitor attached remotely to a secure terminal concentrator
• a secure form of X terminal
• various forms of intelligent workstation.
The simple monitor was rejected because it would require the
development of several items of non-standard hardware; these would
inevitably be expensive both to develop and to procure, because of the
relatively small volumes involved. The X terminal was also rejected,
because it would put excessive traffic on the network and excessive
processing load on the servers, and would go against the continuing
industry trend of maximising the work done at the actual desk unit.
The Compartmented Mode Workstation was investigated in depth, but
was eventually found to be unsuitable. It was decided that the particular
security regime provided would not meet the requirements of UK and
European authorities. The most significant single problem was that it
gave the user a confusing presentation of security object labelling: there
were two separate labels for each window: one for the window as a
whole, and one for the most sensitive information so far accessed. More
recently it has emerged that the US authorities are themselves moving
away from this particular approach.
The eventual solution was an adaptation of the CMW, to conform to the
target security policy. This adaptation was developed by a company
specialising in secure workstations. The system makes use of standard
personal computer hardware, with minimal enhancements, which include
a badge reader, and security sealing of the enclosure. A fairly powerful
configuration is needed - at the upper end of the range appropriate to a
Windows PC - to give rapid responses even when complex graphical
operations are being performed, and to support the more complex and
demanding requirements of the secure UNIX system. We can be
confident that applications will become more demanding over time, so
that even with the expected improvements in PC processing power, the
secure workstation will continue to need to make use of the upper models
of the available range.
3.3 Graphical User Interface - the implementation
The main components of the GUI system are shown in figure 3. They are
known as:
• X Display Manager
• X Server
• X Window Manager
• X Selection Manager.

2 6 6 Ingenuity November 1994

Together they form the Trusted X Service. The following sections
describe how the system fits together.
3.3.1 X Display Manager
The X Display Manager is in overall control of the trusted X service. It is
responsible for setting up and starting the other components of the
service. In conjunction with other specialised components, not detailed
here, it controls the user's login operation, and ensures the tidy closedown
of the X service on completion of the session. If a new session is
required, all components are restarted from scratch, so that there is no
possibility of improperly gaining access to any information left over from
the previous session.

Figure 3 Trusted X Service system structure

3.3.2 X Server
At the heart of any X system implementation is the confusingly named X
Server. This is the drawing engine: the component that takes instructions
from applications - the X clients - and looks after the details of displaying
the characters and other shapes on the display screen. Everything drawn
on the screen is put there by the X Server: it receives its instructions
encoded in the X I1 protocol, and outputs the required patterns to the
display hardware. The operations handled by the X Server itself are all
low-level functions; but fortunately the application programmer is
relieved of the tedium of reducing everything to this low level; he can
make use of programming libraries, which support all the important
aspects of the Motif style, and can be bound into the application code. In
the secure implementation the X Server is the principal component for
enforcement of the security policy.

Ingenuity November 1994 267

3.3.3 X Window Manager
The next component to consider is the X Window Manager. This is
responsible for launching applications, and for the subsequent high-level
control of the screen area. This includes the positioning of the screen
area to be used for particular tasks, drawing the window outlines with
their decorations (standard buttons, etc.), keeping track of moves, resizing
operations, and changes in the stacking order (which windows are laid
over which others), and making sure that all the affected windows are
redrawn by their responsible clients as and when necessary. The Window
Manager does not actually draw the window contents itself; it sends
messages to the relevant applications, advising them what has to be done.
The X Window Manager is in fact an X Window Client, just like the
applications, and it communicates with the other clients via the X Server,
using a special inter-client protocol, defined as part of the Inter Client
Communication Conventions Manual (ICCCM).
In the original specification of the X system, there is nothing to prevent
any application using the ICCCM protocol to interfere with another
application's display area in this way; the system relies on applications
being well-behaved. This is clearly not acceptable for a secure system,
and some control has to be exercised. The X Window Manager is in fact
implemented as a trusted program, as is the X Server, and attempts by
untrusted applications to communicate with others are simply ignored.
(Any other reaction might be usable as a form of signalling by Trojan
Horses.)
In addition to the standard Window Manager functions, as outlined
above, the secure X Window Manager is also responsible for the security
labelling of windows and icons, and for maintenance of trusted path
operation and indications. The ordinary client applications are not aware
of this aspect of the Window Manager's work.
3.3 .4 X Selection Manager
One of the most important features of a windowing system is the ability
to cut-and-paste from one window to another. As noted above, this is
potentially in conflict with the security requirements, and suitable
controls need to be provided. Cut-and-paste between windows is
implemented in three stages: the cutting (source) application delivers the
specified data to the X Selection Manager component; the Selection
Manager verifies, by comparing the Labels of the two windows, that the
requested transfer is permissible, and finally the pasting (destination)
application receives the data and updates its display accordingly. Every
transfer has to be explicitly confirmed by the user; this is to prevent a
Trojan Horse program making a transfer without the user's knowledge.
[A more limited cut-and-paste operation can be implemented via the X
clipboard, but again subject to strict MAC rules.]
3.3 .5 Graphical Interface Subject Sponsor Function
The Subject Sponsor functionality for the graphical workstation is
provided by components of the Trusted X Service. The overall
268 Ingenuity November 1994

functionality is the same as that provided in the character interface
implementation, but the component boundaries are slightly different,
because the two implementations are derived from different original
designs. The X Display Manager is the overall session controller, and
ensures that the trusted path is created and that the user is properly
authenticated before being permitted to use the system services. The X
Window Manager undertakes the functions of Subsession Controller and
User Shell. Both of these trusted X components interwork with the server
components (CAPA Service, Name Service, Association Manager, etc.)
through a layer of interface adapting code.
3 .3 .6 Window labelling and Subsessions
In the original character interface system, the concept of subsessions was
used to help the user keep track of the differing security contexts that he
was working with. Changing from one subsession to another was made
into a conscious act, so that the user would not inadvertently work with
the wrong security assumptions. In the trusted X system, the necessary
awareness of context is provided in a different way. Every window is
provided with its individual sensitivity label and trusted path indication,
so that at all times the user is aware of the relevant security context, and
the switching between subsessions no longer needs to be a deliberate act;
the user simply clicks on the window of interest as he requires. Thus,
although the security requirements are satisfied, the overall usability is
improved, and the security aspects of the system are made less obtrusive.
3.4 Application Programs for the graphical interface
The original Secure Office System used OfficePower applications to meet
the user's office automation and other needs. There is now increasing
pressure for access to off-the-shelf applications, keeping up with the latest
trends in the interests of productivity improvement. The graphical
workstation provides a suitable platform for this approach, and in due
course the majority of user applications will be standard commercial ones
- either UNIX/X applications or Microsoft Windows ones running
through a bridging interface - and will run on the workstation directly.
The first examples to be provided are graphical interface client
applications built with RDBMS 4GL tools.
The new graphical applications run entirely at the workstation, in keeping
with normal commercial practice. Moving applications off the server in
this way will reduce the disturbing variations in performance that one
user's work can currently cause in another's. The server is no longer
greatly involved during the majority of the user's running of the
application: there is a short burst of activity as files are opened at the start
of the run, and another when the datafiles are written back at the end.
For a transitional period, though, there will be a continuing need to run
some OfficePower and other applications on the local server. To meet
this requirement, a specialised terminal emulator program, OfficePower
X-Window Secure Emulator, will be supplied. This will run on the
workstation, and communicate with the application running on the
Ingenuity November 1994 269

server. The communication protocol is an extension of the standard
protocol used by OfficePower for character terminals, and is supported by
revised terminal handling library code at the server; the application is not
rewritten, but simply relinked with the new library, and a Motif-style
presentation results. The user can have one or more OfficePower
subsessions open, each appearing in its own Motif-style window on the
display screen and supported by its own copy of the terminal emulator
program, and all the facilities of the character-interfaced OfficePower
suite are available.

4. Conclusion
The developments outlined above form a foundation on which client-
server working can be built up. The next stages will be the provision of
further integration facilities for off-the-shelf applications, particularly for
mailing and printing, and the gradual introduction of a wide range of
commercial applications. Later, there will be advances in the
infrastructure to meet the needs of object oriented applications, and the
achievement of full location transparency across the entire network.
These developments show that with careful design it is practical in a
secure environment to exploit a system (the X Window system) originally
designed with a very different environment in mind. The same principles
will need to be applied in subsequent developments, as the Secure Office
System is extended to permit the use of an increasing range of commercial
applications and facilities.

5. Glossary
Common industry abbreviations used:
DCE Distributed Computing Environment
ECMA European Computer Manufacturers' Association
GUI Graphical User Interface
MIT Massachusetts Institute of Technology
RDBMS Relational Database Management System
4GL 4th Generation Language
Other terms and abbreviations used (with reference to section in which
introduced)
CAPA Combined Authentication and Privilege Attribute

(Service) [see para 2.2]
CMW Compartmented Mode Workstation [see para. 3.2]
DAC Discretionary Access Control [see para. 1.1]
IAM Initiating Association Manager [see para. 2.2.4]

270 Ingenuity November 1994

ICCCM Inter Client Communications Convention Manual [see
para. 3.3.3]

MAC Mandatory Access Control [see para. 1.1]
PAC Privilege Attribute Certificate [see para. 2.3]
TAM Target Association Manager [see para. 2.2.4]
TP Trusted Path [see para. 1.1]
OfficePower An office application suite, marketed by ICL. [see

para. 1.1]

6. Acknowledgements
The developments described above have been undertaken by the technical
staff of Enterprise Engineering, whose help the author wishes to
acknowledge. Particular thanks are due to Dave Rogers and Bill
Marcham, for their advice and assistance in the preparation of this paper.

7. References
MOORE, BRIAN, “Making a Secure Office System”, ICL Tech. J. Vol. 7
No. 4, pp. 801-815, 1991.
PARKER, TOM, CCTA Technical Report: Single Sign-on systems, Feb.
1994
ROGERS, DAVE, ICL Tech.J. Vol. 9 Issue 2, pp. 272-289, 1994.

8. Biography
J.A.Jones
J.A.Jones has worked for ICL and its predecessor companies for more
than 30 years. After taking a degree in Oriental Studies and Classics at
Cambridge University, he worked as a hardware designer in a number of
fields, then went on to specialise in mainframe system design for several
years, as Medium Systems Design Manager. Next he worked for a period
on Personal Systems: initially on the One-per-Desk project, where he took
charge of several of the more innovative subsystems, and later on the
developing ICL Personal Computer range.
He is now one of the Systems Designers in the Business Development unit
of Enterprise Engineering, responsible for coordination and management
of development activities for major customer project bids, and currently
specialises in secure UNIX systems.

Ingenuity November 1994 271

POSIX SECURITY FRAMEWORK
David Rogers • Data logic Ltd and Jane Ross - Independent

Consultant CHOTS Project - ICL Basingstoke, UK

Abstract
Confidence in the security of an IT system or product demands
that the security services and security mechanisms it provides are
both effective, and strong enough to counter perceived threats to
its operation. The effectiveness and strength of a security
mechanism depend on where they are sited within a system
architecture. This paper discusses some of the concepts from the
POSIX security framework, and illustrates how a practical security
architecture can be built from it. The example used also serves to
demonstrate the flexibility of the model in implementing diverse
security policies and distributed computer system configurations.

1. Introduction
Organisations, large and small, rely increasingly on IT systems to meet
their business needs. As greater computing power becomes available in
desktop machines, many enterprises are right sizing their IT systems by
replacing or supplementing standalone departmental systems with
networks of smaller machines and PCs. Corporate networks continue to
expand, bringing increased demands for greater connectivity and greater
inter-operability between (and among) disparate computer systems.
Such open systems make the computing resources of the enterprise
accessible to many more users and, consequently, expose it to greater
threats. Countering such threats requires the computer system to provide
controls to safeguard both processing and the data it holds.
To devise a suitable set of controls, an organisation needs a clear
statement of its security requirements. This set of rules, or security
policy, identifies the assets of a company that must be made secure, who
is responsible for them, and how they should be accessed and managed.
Where assets are held on the IT system, appropriate security features or
mechanisms may need to be introduced to safeguard them effectively. A
secure operating system, virus checkers, trusted network components such
as SecureWare MAXSIX [MAXSIX, 1993], distributed systems products
such as OSF DCE [OSF, 1992] may provide some, but not all, of the
272 Ingenuity November 1994

protection an enterprise IT system requires. Their effectiveness depends
on what security functions they provide, where they are sited within an IT
system architecture and how they interact with other components in the
system, namely, on defining a system security architecture.
The POSIX1 Security framework can assist an organisation to define a
suitable security architecture. Its concepts represent an intellectual
framework in which to reason about the security of the system; this is
essential to make sense of security issues in open, distributed systems,
where security depends on complex interworking of many components.
The POSIX Security Framework defines security services, and how they
interact with and depend on other services in order to ensure the security
of the system overall.
An objective of the framework is to identify security service application
program interfaces (APIs) that could be standardised, together with a
model of how security and the different levels of application security
awareness affects APIs for other services. The security framework
therefore establishes a basis for the definition of security service APIs as
POSIX standards and the modification of existing APIs to address
security. The existence of these standard APIs will, in and of itself,
encourage product developers to use them to build a greater range of IT
security products; the framework will also help system integrators to
build practical, secure IT systems from such products. To the enterprise,
these developments mean that secure systems can be assembled from off-
the-shelf components, at lower cost, and readily and suitably integrated
with other system components to meet the security objectives.
This paper presents an overview of the concepts of the POSIX framework
[POSIX, 1994], which is in the process of being balloted. Using the
example of a distributed database, it demonstrates how the framework
can define suitable security architectures for this simple system. As will
be seen, several architectural approaches are valid; all are accommodated
by the security framework. Such flexibility means that the framework is a
powerful tool in reasoning about and defining the security architecture of
complex distributed systems.

1 POSIX is a standards project sponsored by the IEEE Computer
Society's Portable Applications Standards Committee. Its goal is to
promote portability of applications across open systems environments
by defining application programming interface (API) standards.
POSIX progresses these standards by relying on voluntary effort from
industry; standards are agreed by consensus amongst its members.

Ingenuity November 1994 273

A security domain embraces those business activities and resources,
procedures and IT systems and services, falling under a single security
policy and a single security authority. The POSIX security framework
adopts the terminology defined within the ISO security framework [ISO
10181-1, 1992] to provide consistency within open system standards.
Responsibility for enforcing the security policy of an organisation usually
rests with the board, who are its ultimate security authority. They, in
turn, may delegate the responsibility and authority for enforcing specific
aspects of the enterprise security policy to heads of departments as it
relates to the assets the departments maintain and control. Where some
of those assets, that is information, are held on departmental IT systems,
then aspects of security policy enforcement are further delegated to the IT
systems themselves. The enterprise, the department and the departmental
IT system are all regarded as security domains within the POSIX security
framework. The department and department IT system are subdomains
of the enterprise domain, being contained within that domain and subject
to the overall enterprise security policy.

Figure 1 Example of IT System as Subdomain of Enterprise Domain

For an IT system to enforce aspects of the enterprise security policy, the
information, policy rules and procedures of the enterprise security policy
must be translated or mapped to IT system elements, rules and activities.

2. Security Framework Concepts

274 Ingenuity November 1994

A simplified example is illustrated in Figure 1. Within the enterprise
security domain, the policy states that only the owner of a document is
permitted to view it or to modify its contents. Each individual has an
attribute, his or her name; each document has an attribute, its owner.
Within the IT system domain, processes represent users; files represent
documents. Each system element is given an attribute corresponding to
that of the entity it represents in the enterprise domain. Thus, the process
attributes identify the user; the file attributes identify the owner. The
policy rule is mapped to controlling read and write access by the process
to the file, and permits access if, and only if, the process attributes
correspond to the file attributes.
The POSIX security framework models an IT system domain as a set of
security domains. The so-called platform domains [POSIX, 1992]
[Rogers, 1993] [Rogers & Ross, 1993] provide the infrastructure for the
IT system; they comprise hardware, operating systems and underlying
communications. The platform domains support Service Domains
[POSIX, 1992] [Rogers, 1993] [Rogers & Ross, 1993], which comprise
applications, substantiated by the resources of platform domains, for
example processes and files. The operations of, and interactions between,
service domains (applications) therefore comprise interactions between
platform domain resources and are therefore subject to the security
policies of those platform domains. Thus, service domains are
subdomains of a platform domain.
A platform domain is primarily responsible for the allocation of resources
and the segregation of data and data flow within and between those
resources. A service domain, as an application, utilises the resources of a
platform domain to provide an information processing service. A service
domain may provide a specific security service, such as authentication;
equally, it may consist of a security relevant application such as a print
server, email server or database.

3. Inter-relationships Among Security Domains
IT security domains, represented by platforms and applications, can
interact in many ways. On a standalone computer system, for example,
the service domains interact with one another and with the platform
domain which supports them. Where two or more computer systems are
networked additional interactions can occur, between platform domains
and between a service domain on one platform and a service domain on
another. A fully distributed system, such as one using DCE, provides
security services that facilitate the creation of such interactions. These
three examples are illustrated in Figures 3, 4 and 5.
Interactions between security domains depend upon the existence or
creation of inter-relationships between the domains. In accordance with
the ISO security framework [ISO 10181-1, 1992] the POSIX security
framework recognises two types of inter-relationships among security
domains, which reflect the way in which enterprises, departments and
Ingenuity November 1994 275

individuals interact. Administrative inter-relationships are those which are
established by management action and are persistent in nature. They
define the permitted activities and the policy which must operate between
any two security domains. Operational inter-relationships, on the other
hand, are transient in nature, and exist solely to service a particular set of
transactions within the context of the administrative inter-relationships
previously established. Both administrative and operational relationships
establish trust between the security domains. The POSIX security
framework uses trust in the sense defined by the ISO security framework
where an element x trusts element y for a set of activities within the
context of a security policy, that is, x trusts y to behave in a well-defined
way that does not violate the security policy.
Trust must be established between any two domains which need to
interact with one another. Administrative actions establish the basic
persistent trusts which are to exist between security domains. For a
standalone computer system, this involves configuring the security
attributes of the software and data files on application installation such
that the platform is capable of protecting the boundaries of each service
domain it supports, and of constraining access to the data resources
within that domain. A further example of trust establishment is the task
of adding a user to the user database. Persistent security information
regarding that user, such as a unique identity, a password, a set of
permitted terminals, perhaps an operating clearance, is configured on the
system for use by the service domain which authenticates that user at
login.
Where systems are interconnected, additional configuration is required of
network services. Where security domains do not share a common
meaning, a common representation of security attributes, or a common
set of security rules, as may be the case in inter-connected systems, then
an inter-domain service is required to map meanings, attributes and rules
from one domain to the other.
Operational inter-relationships are established by the exchange of security
information or attributes which have been previously defined by
administrative action. These establish the security context of the
interaction. Login, for example, provides two services:
• a service which authenticates users
• a security attribute service which establishes the security context for a

user's session.
The security attribute service may map the security information associated
with that user and held in the user database, to platform security
attributes. The platform then assigns these platform security attributes to
the processes which are executed on the user's behalf.

276 Ingenuity November 1994

Figure 2 Security Domain

A security domain provides services to principals which are external to the
domain. See Figure 2. A principal may be an end-user, i.e., an individual,
or another service acting on behalf of an end-user or service. In general, a
security domain is required to:
• protect the integrity and confidentiality of its resources and its

activities
• ensure the availability of, and account for the use of, the resources

under its protection.
The POSIX security framework requires a principal to interact only with
a sponsor located within the security domain. The sponsor acts on behalf
of the principal within the security domain both facilitating and
constraining the principal's interactions with the activities and elements of
the domain. The sponsor is responsible for the enforcement of the
domain security policy through invocation of the domain security
services. For example:
• verifying the authorisation of the principal to interact with the

domain as a whole

Ingenuity November 1994 277

4. Security Domain Model

. establishing the security context of the principal's interaction with the
domain, for example a representation of his access rights within the
security domain.

To fulfil these responsibilities, the sponsor uses the authentication,
security attribute and authorisation services of the security domain to
establish for the principal, its rights to perform specific activities with
respect to specific elements of the domain. [ECMA, 1988] [ECMA,
1989].

5. Interpretation of Common System Configurations
The POSIX security framework can be applied to diverse system
architectures. Here, we examine the framework in relation to different
types of systems, namely:
• a standalone computer system
• distributed systems
and consider the administrative implications of each.

6. Standalone System

Figure 3 Standalone System

278 Ingenuity November 1994

A standalone system is a single platform domain which supports a set of
applications, or service domains. See Figure 3. The platform domain and
its applications are controlled by a single administrative authority, which
establishes the trust relationships within the system by configuring
security attributes at the time of software installation. Specific
capabilities may be assigned to an application, for example, update user
database (password file). The attributes of the elements of the platform,
i.e., on its processes, files and communication channels, may be pre-set,
or set using trusted utilities.
The platform domain then enforces security policy with respect to those
elements, and the security attributes assigned to them. All applications
rely on the platform domain to maintain the association of the principal's
security attributes with the chain of processes executed for the principal.
In addition, the platform provides services allowing applications to
interrogate those attributes as required.

7. Interconnected Systems
The principal difference between standalone and distributed systems,
illustrated in Figure 4, is the interconnection of platforms to permit the
users of one platform to use services supported by another platform. An
interconnection policy needs to be established, defining how, and when
the systems can communicate, and the nature of those interactions. Each
system then needs to be configured such that the security information it
contains supports the formation of operational inter-relationships between
the two systems. A communications channel provides the means by
which elements in one system may be accessible to the other.
The introduction of a communications channel into the overall system
introduces additional security threats via the communications media and
may also increase the potential number of access points to the system.
Within a standalone system, applications and Service Domains, generally
rely upon the platform domain to protect the integrity and confidentiality
of the application data, essentially based upon the physical protection of
the platform. The same level of physical protection is not normally
applicable to communication media and cryptographic methods may need
to be deployed to protect the application data. Such services may be
provided by the platforms, as part of the lower layer communication
services (OSI layer 4 and below) or by the Service Domains (applications)
themselves (OSI layer 7).

8. Distributed Systems Security
The interconnection of systems requires the exchange and sharing of
security information between the systems. Variations in the nature of the
exchange and sharing of security information represent variations in the
strength of the security services and of the distribution of security
management responsibility.

Ingenuity November 1994 279

Figure 4 Interconnected Systems

The weakest approach is illustrated in Figure 4 in which each system is
independently responsible for management of access rights to its services
and effectively continues to operate as a standalone system. A user is
required to present an identity and credential to each system with which
the user interacts, just as for the standalone system. Each system remains
responsible for assigning security attributes to authenticated users. The
User I&A may be achieved by the means of scripted access to hide the
requirement from the user. Such an approach requires the establishment
of mutual trust between the systems and their administrators as cleartext
security information is processed and exchanged.
A stronger approach for the exchange of security information, based on
trust of each platform domain, is to provide a trusted IPC service, of
which SecureWare MAXSIX [MAXSIX, 1993] is an example. In this case
the security authorities of each platform trust the other platforms to
authenticate users correctly and then rely upon the identity and security
attributes assigned by the originating platform. The platform domains
associate security attributes with process execution paths and propagate
these security attributes across the network IPC service. Interdomain
services are required to map the representation of security attributes on
one platform with their corresponding representation on another. Default
attributes for a particular mechanism can be defined where one platform
does not support the security mechanism involved.

280 Ingenuity November 1994

Figure 5 Distributed System

A further strong approach, based at a service domain level, is illustrated in
Figure 5 in which trust is shared in a set of common security services to
which authority for management of access rights to each platform’s
services is delegated to the common security services. Kerberos [Steiner et
al, 1988], OSF DCE [OSF, 1992] and SESAME [Kaijser, 1993], [Parker,
1991] are examples of this approach. The sponsors of each platform use
common authentication and security attribute services that may be located
on a single platform. The security information is transferred in the form
of security certificates or tokens, i.e., cryptographically sealed. The seals
can be verified on receipt to establish the authenticity of the information.
These types of service are provided at the service domain level and are
independent of the platforms used to support the services. Thus, if the
platform is required to enforce security policy in respect of the principal,
then the security information will need to be mapped to a local platform
representation, for example, the mapping of a DCE UUID to a UNIX uid.

9. A Practical Security Architecture
The security framework is a powerful tool in helping to define a suitable
security architecture. This is illustrated, here, by considering the security
features required to provide controlled access to a distributed database. A
distributed database is a common example of a distributed application
Ingenuity November 1994 281

which enforces security policy with respect to the information it contains
and processes. The examples presented here are simplified to
demonstrate how the security framework can be used.
A DBMS Security Policy may typically require that:
• the DBMS shall support services to multiple principals and shall

protect one principal's information from another's, i.e., maintain the
integrity and confidentiality of the information

. the DBMS shall account for the use of its services and access to the
information it contains.

In order to support the above security policy, the DBMS is required to
enforce access controls such that the identities of the principals requesting
to use its services are authenticated. Access is then mediated in
accordance with their assigned access rights. The provision of such
services depends upon the configuration and maintenance of security
information related to the identities and access rights of the principals
authorised to use the DBMS. The effectiveness of the security services
depends upon the correctness of such security information. This leads to
the following assertion:
. that the integrity (and confidentiality as required) of the security

information used by the DBMS domain shall be protected.
Two example architectures are considered to support the DBMS, both
distributed in nature. For each, the authentication service is provided by
system components external to the DBMS domain, although this is not
the only option. In the first, the authenticated identity of the principal is
provided by platform domain services. In the second, the authenticated
identity is provided by a distributed security authentication service, such
as Kerberos. The examples demonstrate how the assertion above leads to
corresponding assertions on other system components and system
administration.
The types of assertion illustrated by the examples define the trusted
behaviour of the other components comprising a system necessary for the
DBMS domain to uphold its own security policy. The objective of the
definition of a security architecture is to ensure that these trust
dependencies can indeed be upheld. Administrative inter-relationships
between the system components are established by configuration on
system installation. A security product should include such assertions
within any definition of a Philosophy of Protection statement for the
product: they define the trust environment for which a product has been
developed and within which it should be used and evaluated.
These assertions also define the constraints required on the activities of
system administrators and hence emphasise the significance of system
management in the security of an information system. The constraints on
system administrators are essentially to maintain the administrative inter-

282 Ingenuity November 1994

relationships required by the security architecture and to co-ordinate their
respective activities.

10. Platform Security Service Model
In this architectural model, the DBMS exists as a service domain within
one platform domain; the client exists as another service domain on a
second platform domain inter-connected to the first. See Figure 6. The
platform domains provide a secure association service, based on process
attributes, such that the client and DBMS domains can interact.
The DBMS trusts the platform domain supporting the DBMS to provide it
with the authenticated identity of each principal requesting to use its
services. This is an example of an administrative inter-relationship
established by context. The authenticated identity is derived from the
initial user login on the platform domain supporting the client.

Figure 6 Platform Security Service Example

The trust relationships between the local sponsor, here the login program,
and its supporting platform domain, between the platform domains, and
between the DBMS and its supporting platform domain are established by
the persistent administrative inter-relationships in the model. The
transient operational inter-relationship between the client's principal and
the DBMS is based upon these inter-relationships and established by the
exchange of security information.
A user interacts with the local sponsor (login) to establish a session on his
local platform. The sponsor invokes the local authentication and security
attribute services to authenticate the user and stores the security
information as process attributes, which the platform associates with all
processing on behalf of that user session. The platform also protects the
integrity (and confidentiality as required) of those process attributes,
satisfying the assertion.
Ingenuity November 1994 283

When establishing a communications channel between two processes, the
platform domains are required to provide a secure association service
which makes available to each platform domain, the process attributes of
the process in the other platform domain using the communications
channel. This may require the invocation of an inter-domain service to
map the representation of process attributes in one platform domain to a
representation in the other. In this model the security information is
exchanged by the platform domains.
The DBMS establishes the authenticated identity of the client's principal
by interrogating the platform domain. It may then proceed to verify the
authorisation of the principal to access its services based upon its own
security information.
10.1 Some assertions arising from this model
This model architecture makes a number of assertions on each of the
security domains. On the platform domain administrations, it makes the
assertion that:
• the administrators of the platform domains shall maintain consistency

between the security information maintained on their platforms, i.e.,
principal identifiers shall not be changed or reassigned independently.

It makes a similar assertion that administrators of the DBMS domain and
supporting platform domains
. shall maintain consistency between the security information

maintained within their respective domains, i.e., principal identifiers
shall not be changed or reassigned independently.

Local authentication services are required to:
• authenticate principals correctly.
The following assertions are placed on platform domains, that they:
• protect the integrity (and confidentiality) of security information

representing the authenticated identity of a principal
• protect the integrity of the association of the security information

representing the authenticated identity of a principal with the chain of
execution on behalf of that principal.

284 Ingenuity November 1994

Figure 7 Distributed Security Service Example

In this architectural model the DBMS exists as a service domain within
one platform domain and the client exists as another service domain
within a second platform domain interconnected to the first. A common
authentication service is provided by a further service domain which may
be located within either of the two platform domains, or a third platform
domain. See Figure 7.
The DBMS trusts the authentication service to certify the authenticated
identity of each principal requesting to use its services. This is an
example of an administrative inter-relationship established by security
information e.g., cryptographic keys.
The trust relationships between the local sponsor and the authentication
service, and between the DBMS and the authentication service are
established by the persistent administrative inter-relationships in the
model. The transient operational inter-relationship between the client's
principal and the DBMS is based upon these persistent inter-relationships
and established by the exchange of security information.
A user logs in to establish a session on his local platform. The local
sponsor (login) invokes the distributed security authentication service to
authenticate the user. The security information returned is used to
establish the user session possibly by mapping to a local platform
representation of security information, such as process attributes.
When the user invokes the services of the DBMS, the platform domains
create the communication channel. The client then sends the security

Ingenuity November 1994 285

11. Distributed Security Service Model

certificate, returned by the authentication service, to the DBMS process.
The DBMS verifies the authenticity and integrity of the security certificate
by invoking its own validation service. This will verify that the certificate
originates from the distributed security authentication service and has not
been modified and hence that the principal identity contained therein is
valid. The DBMS may then proceed to verify the authorisation of the
principal to access its services based upon its own security information.
In this model the authentication service may trust the client and the client
platform to protect the security certificate from unauthorised use;
alternatively it may implement cryptographic measures.
11.1 Some assertions arising from this model
This model architecture makes a number of assertions on each of the
security domains. On the DBMS domain and authentication service
domain administrations, it makes the assertion that:
• The administrators of the DBMS and distributed security

authentication service domains shall maintain consistency between the
security information maintained within their respective domains, i.e.,
principal identifiers shall not be changed or reassigned independently.

The Distributed Security Authentication Service is required to:
. authenticate principals correctly.
The following assertions are placed on the local sponsor and DBMS
client:
• The local sponsor and client shall protect the integrity (and

confidentiality) of security information representing the authenticated
identity of a principal

• The local sponsor and client shall protect the integrity of the
association of the security information representing the authenticated
identity of a principal with the chain of execution on behalf of that
principal.

In practice these also lead to assertions on the local platform and platform
administration to protect the security information. For example, the
system administration usually has sufficient capabilities to access all data
held within a platform and therefore an assertion has to be made that
such capability is not abused.

12. The Future
The POSIX Security Framework is being balloted during October 1994
[POSIX, 1994], Dependent upon the outcome of that ballot the POSIX
Security Framework may be expected to be published during the course of
1995. The participation of other standards bodies has been actively
sought in order to bring together other framework developments in the
standards arena [ISO 10181-1, 1992] [ECMA, 1988] [ECMA, 1989] and
among other interested parties such as X/Open and OSF. The resultant
286 Ingenuity November 1994

framework should then reflect the composite thinking of all such groups.
A significant co-operation has been the joint development of the Security
framework with X/Open. The X/Open version [X/Open, 1994] is going
through the X/Open company review procedure during September and
should be published as a Guide towards the end of 1994.
As an internationally recognised security framework emerges, it will
stimulate the development of off-the-shelf security products which can be
readily integrated into system solutions. By identifying the security
services needed and their interfaces and dependencies, the security
framework will highlight those for which products do not currently exist
and how they are to interact with other security services and platform
security features. Product manufacturers will be able to then build
products or enhance existing products to fill these gaps, using the
interfaces identified by the security framework and defined by appropriate
POSIX API standards. [Rogers & Ross, 1993]
Enterprises will eventually benefit from these developments. The
emergence of off-the-shelf security products will ease procurement, and
reduce the costs of building a secure system. The framework, itself, will
assist those defining security architectures for such systems, by giving
them the concepts with which to reason about security features, their
placement, and their interactions with other components in the system.
As the simple distributed database model demonstrates, several security
architectures are possible, each capable of meeting the same security
policy. The POSIX security framework provides a structure for
developing these architectures and comparing their relative merits. The
approach, based on security domains, also identifies the potential
management interactions required to support a particular security
architecture and their importance.

13. Acknowledgements
This paper is a revised version of one by the same authors and the same
title presented at COMPS EC 1993 and published in the conference
proceedings by Elsener. It is printed here by permission.

14. References
Papers:
KAIJSER, P: “Distributed Access Control Issues”, Proceedings of the
Information Security Conference, DataPro, 1993.
PARKER, T A,: “A Secure European System for Applications in a Multi
vendor Environment (The SESAME Project)”, Proceedings of the 14th
American National Security Conference, 1991.
ROGERS, D, ROSS, J: “POSIX Promises Security”, Open Systems
Networking and Computing, Vol. 7, No. 7, July, 1993.

Ingenuity November 1994 287

STEINER, J, NEUMAN, C, SCHILLER, J: “Kerberos: An Authentication
Service for Open Network Systems”, USENIX Winter Conference, 1988.
Technical Reports:
OSF, 1992 “OSF's Distributed Computing Environment” (DCE),
DataPro, 1809, McGraw-Hill, May 1992
MAXSIX, 1993 “MAXSIX: Trusted Networking from Project Max”,
SecureWare, Inc, January, 1993
ECMA, 1988 “Security in Open Systems -- A Security Framework”
(ECMA-TR46), ECMA Technical Report, July 1988
ECMA, 1989 “Security in Open Systems — Data Elements and Service
Definitions” (ECMA-138), ECMA Standard, December 1989
ISO 10181-1, 1992 “Information Technology - Security Frameworks
in Open Systems - Part 1: Security Frameworks”, ISO Committee Draft,
ISO/IEC CD 10181-1, December 1992
POSIX, 1992 “A Distributed Security Framework for POSIX, A White
Paper”, IEEE POSIX Distributed Security Study Group, Nov 1992
POSIX, 1994 “Guide for POSIX Open System Environment — A
Security Framework, Draft 5”, IEEE POSIX 1003.22, August 1994
ROGERS, D. “Guide to the POSIX Open Systems Environment - A
Security Framework Submission for Security Domain Definitions”, March
1993
X/OPEN, 1994 “X/Open Distributed Security Framework”, Company
Review draft, August 1994

15. Biographies
David Rogers
David Rogers graduated from Oxford with an MA in Physics in 1970 and
is a Fellow of the Institute of Chartered Accountants of England and
Wales.
He has spent over five of the last seven and a half years as a security and
system architect on the CHOTS (Corporate Headquarters Office
Technology System) for the UK Ministry of Defence. This is a large-scale
multi-level secure distributed office automation system. The other two
years were spent leading a design study for a high assurance secure UNIX
system for CESG. During the last five years Data Logic has funded his
participation in the IEEE POSIX standards effort as part of the security
working group. He has been leading the work on distributed security
within POSIX for the last two and a half years. He is project leader of
P1003.22, the POSIX Security Framework project, and is a vice-chair of
the security working group itself. He has also been commissioned by

288 Ingenuity November 1994

X/Open to work on the production of the X/Open Distributed Security
Framework.
drogers@datlog.co.uk
Data Logic Ltd
Cl Tower, St George’s Square, High Street, New Malden
Tel: +44 (0)81 715 9696 Fax: +44 (0)81 715-1771
Jane Ross
Dr. Jane Ross is an independent consultant specialising in IT security and
systems technology. Since completing her doctorate in electrical
engineering at Imperial College, she has worked extensively in the
computer industry on the design and development of hardware and
software systems.
For the past six years, she has acted as a consultant, concentrating on
security and integration of systems based on open systems technology.
She developed security policies for her clients, and successfully planned
and implemented several migrations to open systems technology. Her
background in electrical engineering and software development has been
put to good effect in the design of several state-of-the art secure open
systems products systems. Counted among these are two high assurance
secure operating systems designed to meet the POSIX standards for secure
UNIX, and the CHOTS secure distributed office automation system. She
has published a number of papers including two joint papers with Dave
Rogers on the POSIX Security Framework.
Solutions That Work
23 Chester Drive
Harrow
Middlesex
Tel: +44(0)81 427 5894

Ingenuity November 1994 289

mailto:drogers@datlog.co.uk

SQL Gateways for Client-Server Systems
J.L. Venn

Government and Major Companies Division, ICL, Slough, UK

Abstract

This paper addresses the problem of incorporating non-relational
databases, which are often difficult to use because their interface
languages demand specialist knowledge, into modern client-server
systems.

It describes a gateway driven by SQL, which is well-known and
for which international standards exist, as the interface language
to an IDMS database. The gateway forms part of the DAIS
distributed system (formerly known as RIBA) which was the
subject of an earlier article [CROCKFORD &c DRAHOTA, 1992].

The language analysis and data retrieval techniques which are used
are described.

It is believed that the approach is practical and inexpensive and
may well be used for gateways to other non-relational databases.

1. Introduction
As the use of distributed systems using some kind of client-server
architecture increases, the need for a common interface language for
accessing the databases which form an important part of these systems has
arisen. The most likely candidate for such a language has long been seen
to be SQL (Structured Query Language), which originated in IBM in the
1970’s during the early development of relational databases. Its use has
spread steadily in universities and in industry, and vendors of relational
databases such as Ingres which originally had their own interface language
were eventually forced to adopt it. It became first the de facto standard
for relational databases, and later, with the publication of X-Open and
ISO standards, a recognised international standard. It is used not only for
communication between machines and human beings but for interworking
between distributed databases. Today SQL has the great advantage that
most relational database systems (e.g. Ingres, Oracle, Informix) already
incorporate an SQL interface. There are considerable dialectal differences
between these, but there exists a reasonable common subset which allows
290 Ingenuity November 1994

data to be retrieved or updated fairly successfully by SQL without the user
being conscious of what kind of relational database it is being retrieved
from.
With non-relational databases, there is in general no such common
interface. Yet there are a large number of such databases in existence:
hierarchic databases such as IDMS, IMS and Adabas, and a variety of
specialised databases using indexed sequential or hashed access
mechanisms. These have not been swept away, as was promised, by the
relational revolution. Typically they are larger than relational databases,
sometimes containing several gigabytes of data and conversion would be
difficult and expensive. Mostly the databases are in themselves perfectly
satisfactory, and their only disadvantage is that they have a specialised
and somewhat dated interface language. Clearly it is desirable that such
databases should be easily accessible to the new class of distributed
systems which are now being written.
The most obvious language for this purpose is SQL. It would be difficult,
if not impossible, to implement full SQL for a non-relational database
because this includes commands such as CREATE TABLE which changes
the database schema dynamically, CREATE VIEW which creates a virtual
table which has no real existence in the database, and GRANT which is
concerned with security permissions. It is not sensible to try to
implement commands such as these with a database such as IDMS which
does not support the underlying facilities. But if one chooses a less
ambitious objective, such as to implement the data manipulation
commands of SQL (which is all that is necessary to provide a usable
gateway), the task becomes achievable and cost-effective.
This article describes an approach to the design and implementation of
such a gateway. The approach has been used successfully to implement
an SQL gateway as part of the RIBA distributed system (now marketed as
DAIS), described by Tony Drahota and Len Crockford [1992], The main
database accessed is IDMS (or more specifically IDMSX) running on a
VME mainframe. This gateway has been in service at a customer site
since July 1993. A variant has been used to access VME indexed
sequential files.

2. Requirements
Within a client-server system, an SQL gateway is a server which allows a
client application programmer or interactive user, who knows SQL but
may be ignorant of the native command language of the database
concerned, to retrieve data from a database and update it with a
reasonable degree of efficiency.

Ingenuity November 1994 291

To achieve this it should:-

• implement most of the data manipulation commands of SQL,
conforming to generally accepted standards of syntax

• handle any existing data format that is likely to be encountered on the
target database

• give a reasonably good level of performance
• be reliable

• be capable of being implemented cheaply and quickly.
There will probably be additional requirements arising from the nature of
the client-server system of which it is to form part. DAIS is a distributed
system which allows clients to access data without being conscious of
which database it resides in, using a language called CSQL (Conceptual
SQL). DAIS, or more specifically the component known as DAIS/IS (the
DAIS Information Service), acts as an intermediary between the user
(client) and the gateway (server), and by reference to a model converts the
user's CSQL into SQL which is passed to the gateway. A single CSQL
statement may quite possibly give rise to two or more SQL commands
which are directed to different databases. (For a detailed description of
this architecture and the role of modelling in DAIS, see [CROCKFORD &
DRAHOTA, 1992]. The SQL gateway is the Logical Information Server
for IDMS).

The DAIS/IS environment has several important effects on the
requirements of a gateway:-

. The SQL it receives from DAIS/IS is machine-generated. In principle
advantage could be taken of this fact to implement a restricted subset,
but it has always been intended that the gateway should be capable of
working in other environments, and it in fact handles a much fuller
subset than is strictly necessary for DAIS/IS.

• There is a self-imposed DAIS/IS transparency requirement
[CROCKFORD & DRAHOTA, 1992], which demands that the SQL
syntax should be the same as would be used to retrieve the same data
from an equivalent relational database. Deviations from standard
syntax which might have made it easier to handle the special features
of IDMS have deliberately been avoided.

• As a DAIS client may be an interactive application, for example a
WINDOWS-driven query system, the gateway is required to interpret
and execute SQL commands on the fly and any approach which
depends on a compilation phase is precluded.

• On the output side, the detailed presentation and formatting of data is
handled by client applications or by DAIS/IS; the gateway is only
required to return each row of data as a sequence of character strings.

292 Ingenuity November 1994

3. The DAIS Approach
3.1 Data Definition
The first necessity of a gateway intended for interactive use is a definition
of the database structure (loosely referred to as the schema, though in
IDMS terms it consists of the schema, storage schema and subschema) in
a form which can be accessed efficiently at run-time. Relational databases
usually have built-in run-time tables. IDMS, which is usually accessed by
pre-compiled programs, does not, and the gateway therefore has a prepare
phase in which the static definition of the schema is read and a set of run
time tables is produced. For each database, this only has to be done once
(or whenever the schema changes).
These tables are co-ordinated at the logical level with the DAIS/IS model,
but contain additional information which relates only to IDMS.
There are six tables in all which describe the schema:-
• The Data Table, which contains the names of data items and the

numeric codes by which they are referred to in other tables.
• The Data Details Table, the Record Table the Key Table, and the Set

Table contain details of data items, record-types, keys and IDMS sets.
(IDMS sets are groups of related records linked together by embedded
pointers or special set indexes - see section 3.3).

. The Record/Realm Table, which shows which realms or areas of the
database each record-type is contained in.

The prepare phase also generates a COBOL procedure which is used to
access the database at run-time. IDMS, unlike relational databases, is
only concerned with records, not with individual data items (except for
keys), and provides no mechanism for retrieving or updating them. This
function is usually performed in application programs by COBOL, i.e. the
record is read as a whole into a COBOL working-storage area and the
items are picked out by COBOL statements. Since IDMS itself does not
do this, the gateway has to provide a way of doing it.
One way would be to provide run-time code to emulate COBOL. This
code would need to be told the exact displacement, size and type of each
data item within the record, and would need to be capable of handling a
wide variety of data formats. These include integers of any length from 1
to 18 bytes, which may or may not be word-aligned; single and double
length floating-point; and packed decimal with several alternative ways of
representing the sign; all to be done on the fly, without the benefit of
compilation.
The gateway avoids the emulation issue by generating not only COBOL
code to access records, but also COBOL code to read and write every
item in the schema (or speaking in IDMS terms, the subschema). All of
this code is contained in a procedure called the Database Access
Procedure, which is accessed by means of a macro language from the

Ingenuity November 1994 293

main part of the gateway written in 'C'. The Database Access Procedure is
simple in structure and it is produced by passing a standard skeleton
program through the IDMS COBOL preprocessor, which produces code
for access at the record level, and adding code to access items.
Although in the case of IDMS, the run-time tables and the Database
Access Procedure are produced by a prepare-phase program, they can also
be produced manually. This is quite feasible for databases with relatively
small numbers of record-types and data items, and this approach has been
used successfully for gateways for indexed-sequential files.
3.2 Language Analysis
In the run-time phase, the first step to be carried out is to analyse the
user's SQL and transform it into a series of tables which can be used to
control retrieval and update operations.
The method of SQL analysis is best explained by a simple example of a
retrieval, a sequence of commands referring to only one record-type:-
DECLARE CURSOR CUR1 FOR
SELECT FORENAME, SURNAME, DEPT
FROM EMPLOYEE
WHERE (SEX = M AND AGE > 40) OR (SEX = F AND AGE > 35);
OPEN CURSOR CUR1;
FETCH CUR1;
CLOSE CURSOR CUR1;
This example uses the SQL cursor syntax, which is the form currently
used by DAIS for retrieval. The effect would be to retrieve one
EMPLOYEE record (or row in relational terms) for either a male over 40
or a female over 35. In practice, the FETCH would usually be built into a
loop so that all records which satisfy the conditions would be retrieved.
The DECLARE and SELECT clauses would cause three entries to be made
in a simple table called the Select Table. The names would be replaced by
numeric codes, obtained from the Data Name table already described.
Similarly the FROM clause would cause one entry to be made in a FROM
Table.
The WHERE clause is less straightforward. This is not a comma-
separated list like the SELECT and FROM clauses. The basic element of
a WHERE clause is a comparison (such as SEX = M or AGE > 35).
Comparisons can be linked by logical operators (such as AND or OR) and
grouped together by brackets which determine the order of evaluation.
Brackets can be nested (potentially to infinite depth). The monadic
operator NOT and a variety of functions such as BETWEEN, IN, and
LIKE may also occur.
Comparisons are analysed into a simple table. Logical operators and
brackets are represented by a logical tree, the nodes of which are chained
together by pointers. Each comparison evaluates to TRUE or FALSE, and

294 Ingenuity November 1994

the logical tree reduces multiple comparisons to a single TRUE or FALSE
value. Figure 1 shows diagrammatically the logical tree of the WHERE
clause
WHERE ((SEX = M AND AGE > 40) OR (SEX = F AND AGE > 35))
AND NOT DEPT = SALES;

Figure 1 Logical tree representing a WHERE clause

A further table, the Literal Table, is used to store literals used in
comparisons.
Actual SQL statements may be much more complex than this simple
example. Where two or more record-types are referred to, the FROM
clause may contain several elements, and names in the other clauses may
be prefixed by record-type plus to show which type of record they
belong to. Aliases may be used for record-types. The basic structure of a
retrieval statement, however, is always similar to the example given, and
can be transformed into the tables described. Once transformed, the SQL
text itself is never used again.
SQL update commands follow a slightly different pattern but the gateway
handles them in a similar way, transforming them into tables and
thereafter not referring to the SQL text.
3.3 Joins
If an SQL retrieval refers to two or more record-types, the records are
said to be joined and the results returned to the user may contain items
from both of the joined records.
Take the following example of a SELECT command:-
SELECT CUSTOMER_NAME, PRODUCTJMAME, QUANTITY
FROM CUSTOMER, ORDER
WHERE CUSTOMER.ORDER NO = ORDER.ORDER NO;
This assumes that the database contains two record-types, CUSTOMER
and ORDER. CUSTOMER contains items CUSTOMER_NO,
CUSTOMER_NAME, and ORDER_NO; ORDER contains items
ORDER_NO, PRODUCT NAME and QUANTITY. If ORDER_NO in
Ingenuity November 1994 295

ORDER is equal to ORDERNO in CUSTOMER, this indicates that the
order refers to that customer. This is a relational-type structure, and
might exist either on a relational database or on IDMS.
The example SQL would return to the user the items named in the
SELECT clause from all pairs of CUSTOMER/ORDER records which
satisfy the WHERE clause, i.e. for each customer it would return the
customer's name together with the products and quantities he has
ordered. The term row is used to refer to each such set of results.
There are many ways of organising a join to produce this result. On a
very primitive database, with no indexes or keys, it would be necessary to
pair together all possible combinations of customer and order records,
and apply the WHERE clause to decide whether to return a row of results
to the user or to go on to the next combination. This is described as
forming a Cartesian product, and is obviously inefficient because it
involves in principle n * m record accesses, where n is the number of
records of one type and m is the number of records of the other type
(though this may be reduced by look-ahead buffering in the database).
For more than two record-types, unless the database is small, the number
of accesses would be astronomical.
If the customer record has an index of which CUSTOMER.ORDER NO
is the key, the situation improves. All the order records must be read, but
because they contain the key of the corresponding customer record, it is
possible to go straight to that record and avoid reading the records of
customers which have no orders. In principle the number of records
accessed will be 2 * m, where n is the number of orders, though the actual
number would vary according to the numbers of records present and the
characteristics of the database. Accesses to the index itself must also be
taken into account. Hashed access behaves in a similar way to indexed
access; these two access methods are common in relational systems.
IDMS is a database of the type known as hierarchic. It has hashed access,
and usually indexed as well, but in addition has the concept of the
ownership of one record-type by another. A record can own a group (or
set) of records of a different type, to which it is linked by a chain of
pointers embedded in the records. Sometimes a local index takes the
place of pointers, but the principle is the same. Each set-type has a name,
which is part of the schema of the database.
In a typical IDMS system, customers and orders will be linked by a set,
CUSTOMER being the owner and ORDER the member. The most
efficient way of accessing these records would be to access all the
CUSTOMER records in turn, and follow the set pointers to the ORDER
records which belong to it. The number of accesses would in principle be
m * the average number of records in the set (where m is the number of
customer records). This can be very efficient, especially if advantage is
taken of a facility to locate member records in the same page or disc block
as the owner record, in which case on disc access may retrieve the whole

296 Ingenuity November 1994

set. (Oracle relational databases have a similar facility, but this seems not
to have been imitated by other relational vendors).
3.4 Join Optimisation
Enough has been said to show that the efficiency of joins can vary greatly
according to the access method chosen, and that it is vitally important to
exploit features such as keys and sets which may be present.
The main criterion in choosing a join strategy has been to minimise the
number of disc transfers. The optimum balance between processor time
and latency in the disc system varies with the type of disc and processor
being used, but in general, with modern equipment, disc transfers are the
limiting factor. The gateway therefore is oriented towards optimising the
join before starting to transfer data.
Experience gained in using relational databases, some of which have very
efficient optimisers, has been taken into account. Some of these depend
on the availability of statistics on the ranges of field values present in the
database population; this approach was ruled out because it only gives
good results where the population is relatively static. The need to handle
1DMS sets is a significant additional requirement, and it was determined
that a method which made more use of internal storage and less use of
intermediate files and sort-merge processes would be more appropriate to
IDMS.
In the gateway algorithm, the order in which records are accessed and the
access method are determined by the presence or absence of keys and
IDMS sets. The best possible starting point is a record containing a key
which is equated in the WHERE clause to a literal, because it can be
accessed directly. The gateway scans the logical tree which represents the
WHERE clause, picks out any such record-type, and creates a join node
for it in a working-storage table. It then looks for record-types which can
be easily accessed from this record, either because their key is contained
in it or because they are connected to it by an IDMS set. If any such
record is found, a join node is constructed, which is chained to the join
node of the first record by forward and backward pointers. The gateway
then looks for further record-types which can be accessed easily from this
one, and so on, forming as long a chain as possible of join nodes.
If there is no key equated to a literal, another good starting point is a
record which cannot itself be located by key but which contains the key of
another record. If no especially good starting point is found a random
choice is made.
When it is no longer possible to extend a chain, a new starting point is
sought and the process is repeated.
The default access method, for records which cannot be accessed by key
or by set, is by a complete scan of the IDMS realm(s) in which it resides.
Join nodes continue to be built, and chained where possible, until every
record-type referred to in the FROM or WHERE clause has a join node.
Ingenuity November 1994 297

Chains can be forked, for example if a record-type contains two or more
separate data items which are equated in the WHERE clause to keys of
other records, or if it is related by IDMS sets to more than one other
record-type.
Altogether five methods of access are used by the gateway. In order of
preference they are:-
1) Unique key
2) Duplicate key
3) IDMS set (owner to member)
4) IDMS set (member to owner)
5) Realm scan

Figure 2 shows join nodes for the customer/order example. Figure 3
shows a possible table of join nodes for a join of eight record-types.

Figure 2 Join nodes for the customer/order example

Figure 3 Possible join nodes for an 8-way join

Many SQL commands, of course, will refer only to one or two record-
types, but the method is valid for higher numbers.
Analysis of SQL and join optimisation both take place when the OPEN
CURSOR command is executed.
3.5 Join Execution
On receiving a FETCH command, retrieval of data begins. Initially one
record of each type is read, in the order and using the access method
indicated in the join nodes, thus forming a virtual row of data in working
storage. The WHERE clause is then applied, under the control of the
logical tree, and if it evaluates to TRUE the items in the SELECT clause
are returned as results.
When another FETCH command is received, at least one new record
must be retrieved to form a new virtual row of data. The first record-type
for which retrieval is attempted is the one at the end of the last chain of
join nodes. If this attempt is successful, the WHERE clause is applied
again and if the result is TRUE more results are returned. If the
attempted retrieval is not successful (for example because the end of a set
has been reached), the backward pointer in the join node is followed and
an attempt is made to retrieve a record of the previous type. Retrieval
attempts can cascade backwards until the start of a chain is reached.
When this happens, an attempt is made to retrieve the record-type at the
end of the previous chain. If the start of the first chain is reached and no
retrieval is successful, the join is finished and end o f data is reported.
When a retrieval is successful, forward pointers are followed and forward
cascading of retrievals takes place until a record of each type has been
retrieved. The virtual row is then complete, and if the WHERE clause is
satisfied results are returned.
If a fork in a chain is reached in backward cascading, backward cascading
along that chain is halted and an attempt is made to read the record-type
at the end of the previous chain. Only when all the branches that lead to
a fork are exhausted (i.e. retrieval attempts have failed for all record-
types) does backward cascading beyond the fork occur. On forward
cascading, the virtual row is not considered complete until all branches
have been filled.
After each successful retrieval of a record, a partial application of the
WHERE clause takes place (i.e. omitting record-types for which no
retrieval has taken place since the attempt to form a new virtual row
began). This is to ensure that no time is wasted retrieving records whose
parents do not satisfy the WHERE clause.
All possible combinations of records which satisfy the retrieval
mechanisms and the WHERE clause are formed and tested. If there is no
WHERE clause, this will result in a Cartesian product.

Ingenuity November 1994 299

4. Overall Assessment
4.1 SQL Implementation
The aim of implementing the data manipulation commands of SQL has
been to a large extent achieved, but there are still some gaps. For
retrieval, only the cursor forms of the commands have been implemented,
chiefly because they return data in chunks of more manageable size. The
gateway is quite capable of retrieving large amounts of data, and does so
in the implementation of summary functions such as AVG, SUM, etc.
(though only the summarised value is returned to the user). To support
non-cursor retrievals would be a simple enhancement.
In the case of update, only the non-cursor form of the SQL commands is
supported. The inconsistency between retrieval and update is not
apparent to the user because the DAIS CSQL uses the cursor form for
both.
Some special features have been introduced into SQL for the handling of
IDMS sets. In the customer/order example which has already been used,
the natural way of representing this relationship in IDMS would be to link
the CUSTOMER and ORDER records by a set (called say
HAS ORDERED), and not to rely on keys contained in the record. The
SQL would then be:-
SELECT CUSTOMER NAME, PRODUCT NAME, QUANTITY
FROM CUSTOMER, ORDER

WHERE CUSTOMER.HAS ORDERED = ORDER.HASORDERED;
This SQL should fail, because there is no item HAS_ORDERED in either
record, but the gateway recognises that this is an IDMS set and accepts
the command. The DAIS/IS transparency requirement is satisfied because
if the data were transferred to an equivalent relational database, an
additional field HAS_ORDERED could be created as part of the
relocation process.
Another feature introduced specially for IDMS is subscripting. Because
the handling of items in IDMS is done by COBOL, repeated items are
allowed (by the COBOL OCCURS clause), and subscripting is used to
identify which occurrence is required. In gateway SQL, the character
“@” is used to indicate a subscript, so that TOTAL@9 means the ninth
occurrence of TOTAL. Once again the DAIS/IS transparency requirement
is satisfied, because the multiple occurrences could be represented in a
relational database by distinct items with names TOTAL@l, TOTAL@2
etc. “@” is a permitted SQL character.
In both cases the SQL syntax is formally preserved, although the
semantics are distorted to some extent. It should be borne in mind that,
within a DAIS/IS context, the user will be insulated from these features by
CSQL and the DAIS/IS model [CROCKFORD & DRAHOTA, 1992]. It
is hoped in due course to provide a DAIS SQL interface which is quite

300 Ingenuity November 1994

independent of the SQL of the underlying databases, at a level above
CSQL. This will be completely SQL-conformant.
SQL subqueries (use of SELECT within a SELECT) are not supported by
the gateway because this feature is handled at the CSQL level by DAIS
itself. It would not be difficult to add at the SQL level.
On the other hand, many useful SQL features which were not initially
required by DAIS, such as the LIKE operator for fuzzy matching, have
been incorporated.
On the whole, the SQL syntax supported by the gateway is more than
adequate for its role within DAIS, but it is probable that some
enhancement would be needed for use in other environments." Besides
non-cursor retrieval and subqueries, which have already been mentioned,
these include ORDER BY, GROUP BY, and HAVING clauses.
4.2 IDMS Implementation
All data formats commonly found in IDMS and IDMSX databases are
supported. Multi-member sets, compound keys, multi-part keys, binary
fields of up to 18 bytes, and character fields of up to 200 bytes (easily
extendable) can be handled. Packed decimal is not currently supported in
the IDMS gateway but has been used successfully in an ISAM gateway
and will be added for IDMS. The fact that data access is done by a
generated COBOL procedure, which can be edited by users, provides a
powerful user hook facility which can be used to access more complex
data.
Both CALC (hashed) and indexed keys are supported, though there is a
restriction in the case of indexed keys in that keyed access will only be
used if the operator in the WHERE clause is “ = “. If the operator
specifies a range (e.g. “> “ or “< “), the command will be correctly
executed but keyed access will not be used.
4.3 Performance
In general performance has been shown to be good, particularly the
ability to pick out and use keys and IDMS sets.
In the many cases where realm scans are necessary, performance could
often be improved by using CAFS. The current gateway does not use
CAFS, because many existing IDMS databases do not have it, but it is
hoped to offer CAFS retrieval as an option in the not-too-distant future.
4.4 Reliability
The gateway has been successfully deployed on a customer site since July
1993. No faults were reported during the first year of service.

5. Conclusion
Enough experience has been gained to show that the original design
objectives have been achieved and that the design approach has been fully
vindicated.
Ingenuity November 1994 301

It has also been shown that the implementation of a practical SQL
gateway, provided that the objectives are kept within reasonable bounds,
can be achieved within a reasonable timescale and cost.
The basic design described here can be used to build gateways for other
databases which do not have their own SQL interface; many portable 'C'
modules which ICL developed for the IDMS gateway could be used
unchanged to provide a basis for such further products.

6. Reference
CROCKFORD, L E, & DRAHOTA, A. “A Support Environment for
Distributed Processing”, ICL Tech.]. Vol 8 (2), pp 284-302, Nov. 1992.

7. Biography
John Venn
John Venn has been in the computer industry since 1955. During the
1960s and 1970s he worked on various special operating systems for the
KDF9 and System 4 computers, including the LACES monitor real-time
system for HM Customs and Excise which was in use for many years.
During the 1980s he was a consultant in government sales with ICL but
reverted to a technical role in 1991 to work on the DAIS distributed
system. He has been with ICL since 1972.

302 Ingenuity November 1994

Asynchronous transfer mode - ATM
Frank Deignan

OPEN framework Architect, Networking Services, ICL, Bracknell, UK

Abstract
Asynchronous transfer mode (ATM) networking promises to
deliver scalable bandwidth on demand capable of supporting a
wide range of multimedia applications whilst also presenting the
opportunity to rationalise the incompatible networking techniques
in operation today. ATM has attracted a great deal of attention in
the press and other media where its merits and weaknesses have
been explored. There has also been much speculation on how
ATM may change networking as we know it.

This paper briefly reviews networking technology today, looks at
the emergence of ATM from traditional wide area networking
techniques, provides a technical but non-rigorous explanation of
how ATM works outlining some hurdles to be overcome before
ATM delivers its promise, and finally analyses from various
perspectives the probable impact of ATM on enterprises.

1. Introduction
In the last 25 years networking technology has improved by many orders
of magnitude. Telecommunications networking delivering voice services
is now globally pervasive. Satellite communications services span great
distances providing entertainment, news and real-time coverage of events
in remote places. Such networks, apart from presenting many new
business opportunities, have contributed considerably to widening the
geographical scope of enterprises and the way these do business. On a
smaller geographical scale, local area networks have provided undreamed
of bandwidths to enterprises for meeting their in-house business network
requirements. And, of course, the combination of desktop workstations
or personal computers with local area networking has changed the
fundamental information systems paradigm.
Ironically global data networking has lagged behind advances in other
areas of networking. Although it is feasible to set up wide area data
networks covering many continents, the costs are unattractive and end-to-
end performance characteristics and quality of service are sometimes
indeterminate. There is a growing demand to improve services.
Ingenuity November 1994 303

A combination of market pull and technology push is resulting in pressure
for evolution and rationalisation of existing services and for the
introduction of new services. Multimedia networking is a key driver here
with its demands for interaction at will and at a low cost with video,
image, sound, voice and data servers, which may be globally remote.
Requirements for enhanced telecommunications services such as video
telephony, video conferencing and video electronic mail are emerging
while the home entertainment market for on-line videos and games on
demand is growing and appears insatiable.
Most wide area networking technology already installed will not be able
to meet the stringent requirements placed on the networking
infrastructure by these services. Thus it is time to consider a new
approach to global networking, called Asynchronous Transfer Mode. But
in what way is it new and how does it meet the above needs? This paper
attempts to answer these questions.

2. The Current Networking Dilemma
Networking technologies are normally classified in three categories as
shown in figure 1:
• Local Area Networks (LANs)
• Metropolitan Area Networks (MANs)
• Wide Area Networks (WANs) .
Each category is associated with a geographical spread, the distance over
which the technology can feasibly operate, and a range of
communications bandwidths. However, the categories and the
application of the technologies both overlap. LANs tend to be owned and
managed by the enterprises they support and are often referred to as
private networks. MANs and WANs on the other hand may be private,
or may be public in the sense that they are supplied and managed by
national or international networking service providers (public voice/data
network operators).

1 0 -1 6 M b p s 34M bps 9.6K bps-64K bps
◄ ----------------------► ◄ -------------► ◄-------------------►

(^ JJVNs

◄ --►

155M bps-622M bps

Figure 1 Positioning of networking technologies

304 Ingenuity November 1994

2.1 Local area networks
LANs provide networking over distances of up to 3 kilometres delivering
bandwidths, shared between the devices on the LANs, of between 4
Mbits/sec and 16 Mbits/sec. Geographical coverage can be increased by
means of bridges or routers linked to backbone transmission technology
such as Fibre Distributed Data Interface (FDDI) [Taylor, 1992], MANs or
WANs [Flatman et al, 1992]. An important fundamental distinction
between various LAN technologies is the method of accessing the
transmission medium. The contention method permits a LAN attached
device to attempt to transmit whenever it wishes. If no other attached
device is active, transmission proceeds; however if another device is active
the contender must back off and try again. This approach has the
advantage of gaining instant access to the LAN when its utilisation is low
and the disadvantage of being unable to access the transmission medium
quickly when traffic volumes are high. In theory, a LAN device could be
unable to communicate for an indeterminate period of time. An
alternative approach which guarantees each LAN device a chance to use
the transmission medium at predetermined time periods, addresses the
indeterminacy of the contention method but has the disadvantage that a
LAN attached device must wait a fixed period even if traffic volume is
low or non-existent. Some improvements have been made to these two
basic approaches to alleviate their weaknesses; however, careful sizing of
LANs can improve availability and usability. Popular technologies in this
LAN category are CSMA/CD (Ethernet) and Token Ring.
In general, the design objectives of LANs were to provide relatively high
bandwidth communications for transferring information between
information technology platforms or peripherals attached to a LAN.
Voice messaging can also be supported as can limited image applications.
However neither of the popular technologies can support real-time voice
communications because of the lack of isochronous channels. Also
contention access methods preclude support of real-time voice
conversations. Simple image transfer can be facilitated but transfers of
large image files, which are bandwidth constrained anyway, may lock out
other users. Apart from the most trivial applications, multimedia cannot
be feasibly networked over current LAN technologies. New developments
in this area are focused on increasing the LAN bandwidth to 100
Mbits/sec and exploiting an innovative combination of LAN and
switching techniques to ease contention problems and improve
throughput. Clearly this will overcome some of the communication
bottlenecks; however, further work will be necessary to provide a means
for full multimedia support.
2.2 Metropolitan area networks
Proprietary MANs of course have been in use for some time servicing the
cable television marketplace and in some cases providing telephony
facilities. Standardised communications MANs were designed to cover
distances of up to about 100 kilometres offering bandwidths between 2
Mbits/sec and 140 Mbits/sec. These are based on a technique called
Ingenuity November 1994 305

Distributed Queue Dual Bus (DQDB) which accommodates unequivocal
access to the transmission medium with low latency and is capable of
supporting isochronous traffic. MAN products based on DQDB are
QPSX and Switched Multi-megabit Data Service (SMDS) which provide
bandwidths in the range 2 Mbits/sec to 34 Mbits/sec. Although based on
the same underlying principles, these products are not compatible with
each other. QPSX sustains voice, video conferencing and data
communications. SMDS at present supports only data transfer.
MANs have two main roles: as private networking backbones and as high
bandwidth metropolitan-wide, in terms of geographical coverage,
switching facilities with access to service providers’ WANs (which may in
turn link multiple MANs).
2.3 Wide area network
Data WANs potentially have a global span though historically access
speeds have been low, typically varying between 9.6 Kbits/sec and 64
Kbits/sec for packet switched networks. Dedicated leased lines can be
obtained from service providers for private use which can deliver much
higher bandwidths, for example, 2 Mbits/sec. Traditionally service
providers, like private enterprises, have operated different networks to
support different traffic types. With the advent and deployment of
Narrowband Integrated Services Digital Network (N-1SDN) technology
[Fuller, 1991] it became possible to use the same networking technology
to support voice, slow-scan video conferencing and data applications. As
well as updating and rationalising the service providers networks, N-ISDN
provided enterprises with the opportunity to converge their networks.
However, high data rates were still required. Where available, MANs
offered a solution and, with the introduction of Frame Relay, a fast data
packet switching technology, bit rates up to 2 Mbits/sec were achievable.
Notwithstanding the continuing need to meet the demands of its voice
and data customers, service providers are moving increasingly towards
satisfying the home market for on-line entertainment in direct
competition with established cable and satellite suppliers. Existing
networking technology is being exploited in new and different ways to
address this potentially huge market.
Although a rich set of services is available in some areas or countries, the
mix often varies: what is popular and dominant in one area may be
unavailable or expensive in another. Thus achieving a required end-to-
end quality of service on a global network connection is difficult if not
impossible.
2.4 What can be done?
From the above discussion it is clear that no single technology is
appropriate for delivering a full range of multimedia services that are
globally accessible. Although some LANs and MANs are potentially
capable of supporting suitable bandwidths, their current transmission
techniques inhibit the delivery of the wide range of services essential for

306 Ingenuity November 1994

comprehensive multimedia applications. On the other hand most WANs
are today not capable of offering very high bandwidths to the end user
and a global quality of service is not guaranteed.
So what can be done? There are two fundamental requirements. What is
needed first is a globally available WAN based on high bandwidth
transmission technology offering high bit rates, comparable with
LANs/MANs, and which is capable of sustaining the bandwidth demands
of a mixture of traffic types such as high definition video pictures, image,
sound, voice and data. And second, transmission techniques which will
ensure that the different traffic types receive the necessary quality of
service consistently from the underlying transmission medium. Ideally
this mechanism should be defined to be independent of any "particular
transmission technology, though mappings will need to be provided for
specific technologies, to enable the mechanism to operate over the
geographical areas now covered by LANs, MANs and WANs.
Broadband synchronous digital transmission is a response to the first
requirement and ATM meets the second.

3. Broadband Synchronous Digital Transmission
Developments in service provider WAN transmission techniques have
tended to focus on satisfying voice networking requirements [CCTA,
1994] characterised by point-to-point connections (logical or physical)
and relatively low bandwidths. Although many service providers have
installed high bandwidth optical fibre based transmission technologies,
these were not exploited efficiently by the transmission techniques in
place to handle voice networking. This, and the drive for higher
bandwidths, led to work in the International Telecommunications Union -
Telecommunications (ITU-T), a formal standards body, on an improved
set of transmission techniques called Synchronous Digital Hierarchy
(SDH). SDH is based on some seminal developments carried out in the
United States on digital transmission techniques called Synchronous
Optical Network (SONET) [Stevenson et al, 1991]. The SDH definition
which most probably will be adopted in Europe has diverged from the
SONET specification, which will be taken up in the United States and
Japan; however, there remains enough compatibility to support
interworking between the two sets of transmission techniques.
In essence, SDH provides very efficient digital multiplexing and
demultiplexing, and fast cross-connect switching to support a hierarchy of
transmission rates between 155.52 Mbits/sec and 2488.32 Mbits/sec.
SONET also accommodates a rate of 51.84 Mbits/sec though
implementations of both sets of techniques can handle lower rates, for
example 2 Mbits/sec, via multiplexors. And as the technology improves,
greater data rates will be added to the top end of the digital hierarchies.
Typical maximum bit rates required by various services are 64 Kbits/sec
for voice, 384 Kbits/sec per bit-mapped image, 700 Kbits/sec for hi-fi
music, 70-140 Mbits/sec for domestic and studio quality video and 700
Ingenuity November 1994 307

Mbits/sec plus for digital High Definition Television [CCTA, 1994],
Compression techniques will lessen these requirements.
Clearly SDH bandwidths have the capacity to sustain numerous traffic
types and future multimedia applications. However the different traffic
types will each need a different quality of service. For example, video
and voice applications require a continuous bit rate with no delays and
are not sensitive to some data loss. However, traditional data
communications is bursty in nature, is not sensitive to some delay, within
agreed bounds, but in general cannot tolerate data loss,while interactive
multimedia, which will support various traffic types intermittently, will
require bandwidth on demand. ATM was developed by the ITU-T to
address these needs.

4. The Origins Of Asynchronous Transfer Mode
4.1 Time-division multiplexing
WAN service providers have continually aimed to use their transmission
technology effectively. Early telephony required a dedicated
communications link between the communicating parties. Growth in
telephone usage led to the development of such techniques as frequency-
division multiplexing (FDM) which enabled 24 voice channels (or
multiples of) to be multiplexed onto a single communications link. The
migration from analogue to digital transmission techniques presented the
opportunity to apply a more efficient way of multiplexing multiple
communications channels onto a single communications link. It is called
Digital Time-Division Multiplexing (TDM) [Davies et al, 1975].
Although there are variants, TDM is essentially a multiplexing method in
which a group of communications channels, typically 24 or 30, operate
over a common communications link. Each channel on the link is
allocated fixed dedicated time-slots in which it can transfer information.
Figure 2 represents 6 time-slots supporting 6 channels, each time-slot
carrying a portion of each channel’s information (the time-slots are
repeated).
The slots do not have addressing included so timing information is
transmitted along the link to permit separation of the individual
communications channels. The time-slots are present whether or not a
channel is in use (active or unallocated) and in cases where the
information content, in data terms, is non-existent (unused), for example
silences in a voice conversation. So in many cases bandwidth was not
used efficiently. There was no advantage in reallocating the spare
bandwidth to active voice channels since these were sufficiently catered
for by their reserved time-slots. Overall, TDM was ideal for voice traffic
in which an apparent end-to-end dedicated connection was provided with
a pre-determined quality of service.

308 Ingenuity November 1994

Figure 2 Time-division multiplexing

4.2 Packet switching
The characteristics of Information Technology (IT) data communications
differ from those of voice. Specifically IT communication is bursty in
nature requiring a large amount of bandwidth for periods which often
cannot be determined beforehand. This led in the 1960s to the
development of packet switching techniques which effectively
superimposed a new set of communication techniques on existing voice
networks, so concealing but exploiting the underlying transmission
mechanisms.
The principles behind packet switching are well understood and widely
applied. A stream of information which is to be communicated between a
source and a destination is chopped into units called packets. Some
control information is added, for instance to detect transmission errors
and help reassembly of the information stream, and addressing details are
also included which determine the source and destination of the
information. Packets are sent over existing communication links to
packet switches which use the packet addresses to deliver the information
to the destination or to pass the packet to another packet switch on the
way to the destination. The advantages are obvious: many packets from
different sources to different destinations can use the same
communications link. For example, where TDM is in operation, packets
for different destinations can occupy time-slots for the same
communications channel and indeed packets for the same destination may
use different channel time-slots, see figure 3. Thus, assuming the right
balance was struck, the overall bandwidth capacity of the
communications links could be used very efficiently.
Ingenuity November 1994 309

Figure 3 Packet utilisation of TDM time-slots

All IT vendors were attracted to the principles of packet switching and
service providers, responding to the market, offered public packet
switching facilities. In the early days of packet switching there was great
debate about packet sizes. IT vendors wanted a variety of sizes which
would efficiently handle variable quanta of data to support single
character interactions to large file transfers where large packets proved
more appropriate. There was a general preference among IT vendors for
large packet sizes. Packet size was ultimately determined by the quality of
existing transmission technology (for example, long packets were prone to
errors) and the design considerations in producing packet switches (for
example, processing overhead and buffering). A packet size of 255
characters was popular initially but improvements in the technology
extended the packet size range in both directions. Many different,
incompatible packet structures emerged together with distinct networking
approaches. The emergence of the Open Systems Interconnection (OSI)
Reference Model [Houldsworth, 1992] provided a basis for discussing and
standardising packet techniques.
4.3 Connectionless and connection-mode operation
The so called connectionless-mode or datagram operation was based on
packets each of which contain complete source and destination
addressing, see figure 4, to enable each packet to reach its destination
independently of all others and via different routes. Packets could be
dropped en route and arrive out of source transmission order though
there were run-time mechanisms to detect and recover from these
occurrences.

310 Ingenuity November 1994

Figure 4 Internet protocol datagram

The main advantages of datagram operation are that bursty transmission
could be accommodated (or at least attempted), alternative routing
around broken network components was possible and there was no need
to reserve substantial costly networking resources between the source and
destination. Drawbacks included non-deterministic behaviour and the
overhead of always carrying a full set of addresses (consider the case
where the actual payload is 1 or 2 octets long). The popular internet
protocol (IP) is an example of this mode of operation.
The connectionless nature of datagram operation was not acceptable to
some vendors and particularly the service providers who, as a rule,
offered guaranteed connections with a defined quality of service. The
generic term for this approach is connection-mode and its realisation is a
blend of point-to-point channel theory with packet switching principles.
The connection-mode approach establishes a so called virtual circuit
between the source and destination by means of a call set-up packet which
contains full source and destination addressing. Resources are reserved
along the communications path in all the intervening switches to handle
the projected virtual circuit’s traffic. Subsequent data packets contain a
short virtual circuit identifier (see figure 5), thus reducing overhead, and
are always routed to their destination along the same path through the
network. A call close packet breaks the virtual circuit and releases the
resources. Connection-mode provides fixed bandwidth guarantees and
greater levels of security than connectionless-mode. It also makes good
use of real communications links, since packets from various virtual
circuits can be interleaved. Some drawbacks are that it reserves resources
which may not be fully used at all times and, in general, it is not
transparent to packet switch breakdown where dynamic alternative
routing is needed. An example of connection-mode operation is the X.25
access protocol.

Ingenuity November 1994 311

Figure 5 An X.25 data packet

To an extent, the emergence of packet switching was the IT industry
imposing its will on the service providers whose main business was the
provision of voice networking. Recent deployment of N-ISDN by the
service providers, though marketed as a technology with widespread
applications, effectively offered a switched circuit service which exploited
and made more efficient use of underlying TDM techniques [Gould,
1994], Although two 64 Kbits/sec channels were available, each of which
could support separate voice or data channels, or a mixture of both, its
main application was voice networking. Over twenty years ago when
N-ISDN work began, two 64 Kbits/sec seemed more than adequate to its
developers to satisfy envisaged data needs.
4.4 The move to higher bandwidth
It became clear in the 1980s that future IT and other markets would
require access to very high bandwidths indeed. The existing transmission
techniques, such as TDM, with their point-to-point connection
philosophy and multiple sources of clocking were leading to ponderous
complexity and overheads in providing networking services without
potential for change to accommodate diverse bandwidth demands. SDH
[Sakai, 1992] was developed to address these issues. SDH is compatible
with legacy transmission techniques and uses existing transmission media.
All equipment in a SDH network operates from a single network-wide
clock removing the need to carry large amounts of information for
delineating the time-slots. With SDH, multiplexing and demultiplexing
of communications channels is considerably easier and additional
management functions give service providers scope for excellent systems
management to maximise availability and performance. In summary, the
move to SDM by service providers for their internal network operation is
driven by the need to provide the networking infrastructure to meet the
foreseen market requirement for high availability, with unparalleled high
bandwidths. SDH is inherently circuit based and, for example, is ideally
312 Ingenuity November 1994

suitable for delivering high definition video pictures which would require
a bandwidth of about 140 Mbits/sec. But the problem is how to avoid
locking up precious network resources to cater for the needs of devices
that require variable amounts of bandwidths, sometimes changing
instantly, with lulls in between. Obviously packet switching of some form
offers a solution.
4.5 The need for a new approach
From our discussion on packet switching above it is clear that packet
usage of the underlying synchronous transmission infrastructure
essentially imposes an asynchronous mode of operation on it, in the sense
that packets can be generated at any time and use any, and many, of the
different underlying channel time-slots. We have also seen that it is
possible to set up virtual circuits using packet techniques which, although
requiring more network resource than datagrams, offer greater utilisation
than dedicated circuits. The packet switching process took place in
network switches where packets were demultiplexed from
communications links and placed on appropriate multiplexing queues for
onward transmission. Thus delays were introduced. Further, early packet
technique assumed unreliable transmission media and employed extensive
mechanisms to detect packet loss and data corruption, and had built in
recovery techniques. Packet checking and recovery took place in switches
or receiving systems or both. The net result was that packet handling was
complex, normally carried out by software, and time consuming.
The advent of highly reliable transmission media, such as optical fibre,
provided the opportunity to re-evaluate packet switching principles.
Most error correcting overhead was deemed unnecessary and although
some loss and errors could still occur, responsibility for recovery was
passed to the attached network device rather than handled in the network
switches. Other aspects were also rethought, for example, accountability
for data flow control was, in general, passed back to the data source.
This resulted in much simplified packet protocol and switching
techniques, called Fast Packet Switching, which could be implemented in
chip technology.
Telephony research in the United States in the 1960s [Gould, 1994] and
more recent work in CNET, France in the 1980s [Stevenson et al, 1991]
adopted packet switching principles when investigating ways of using
TDM more efficiently. Fixed length packets, called cells, were generated
from channel activity and dropped with addressing information into
TDM time-slots asynchronously. It was not necessary to use a pre
determined time-slot, any one could be used and the channels were
reconstituted using the cell addressing information. The technique was
originally named asynchronous time-division multiplexing. The
technique, together with the Fast Packet Switching principles, was
adopted by the ITU-T for its broadband ISDN (B-ISDN) standardisation
work, to be built on SDH, and renamed Asynchronous Transfer Mode
(ATM).

Ingenuity November 1994 313

5. What is Asynchronous Transfer Mode?
5.1 The ATM building brick and what it must do
ATM may be viewed as an overlay network on SDH which provides the
benefits of both packet switching and apparent point-to-point dedicated
communications channels thus offering the potential to deliver a wide
range of services. Fundamental to ATM is the cell.
Fixed length packets or cells are attractive from a implementation
viewpoint. They enable the development of less complex chip technology
and the deployment of very fast hardware switching. The ITU-T decided
on a cell size of 53 octets for ATM of which 48 are payload (data) and 5
constitute the cell header. Using this simple building brick a variety of
services of different qualities need to be supported by an ATM network.
For example, high definition moving video requires continuous high
bandwidth with minimum latency and real time transmission. On the
other hand IT traffic, text or static image transfers tend to be bursty in
nature requiring chunks of high bandwidth with low latency. Also for
continuous media, the loss of some information may not be important so
error detection and recovery may be different from that employed in
recovering from errors in non-continuous transmissions. In other words,
an ATM network must be capable of supporting Continuous Bit-rate
Services (CBR) and Variable Bit-rate Services (VBR). How does it do
this?
5.2 ATM architecture
The physical layer defines physical interfaces and framing protocols for
accessing and mapping onto the underlying transmission technology, for
example, SONET or SDH communication links operating at 45 Mbits/sec,
155 Mbits/sec and 622 Mbits/sec (see figure 6). Other mappings, as
indeed other transmission technologies, are possible. The physical layer
generates the cell Header Error Control (HEC), and detects and corrects,
if possible, header errors (see below). This layer also inserts or removes
idle cells, identified by a unique header code, which effectively adapt the
rate of the data source to that of the transmission technology. Idle cells
can be discarded at various parts of the switching hierarchy or used for
valid data.

The ATM layer defines the cell structure and how cells flow over virtual
connections in the network. It is independent of the actual services
offered to the users.
The adaptation layer supports the techniques to provide the multiple
quality of services required by the various traffic types. It is service
dependent.

314 Ingenuity November 1994

Figure 6 Outline ATM architecture

The user layer, and there are likely to be many sublayers within this layer,
will deliver voice, video, audio and data services to applications.
5.3 The ATM layer
The ATM layer is independent of upper layer services offered. It makes
use of and refines some of the packet virtual circuit concepts introduced
earlier. See figure 7.

Figure 7 Virtual paths and virtual channels

Sources and destinations communicate via Virtual Channels (VCs)
[Houldsworth et al, 1991]. VCs have a set-up, data transfer and close
down phases. Set-up cells carry full addressing information and such
information as a required quality of service and a requested amount of
bandwidth (determined by the higher layers). Acceptance of the VC set
up reserves bandwidth and switch resources throughout the network thus
guaranteeing the requested quality of service. If resources are unavailable
the VC is rejected. Once the VC is established, data can be transferred
from the source using a VC identifier to label VC traffic uniquely
originating from a source and destined for a specific destination.
Effectively a VC is a continuous or discontinuous stream of cells each
with the same VC identifier carried in the cell header. Cells from
different VCs can be interleaved randomly on communications links at
the point of entry to the network and throughout the network itself. VC

Ingenuity November 1994 315

set-up and close down are likely to be extremely fast thus allowing a
network device rapid access to various services and bandwidths.
A virtual path (VP) is a collection of VCs which for routing purposes
share the same virtual path identifier. This two level structure enables
sets of virtual channels associated with a VP destined for the same switch
or network device to be routed collectively without unpacking the
constituent VCs. Of course in situations where VCs need to be routed in
various directions the VCs are unpacked from the VP, the destinations
determined and the VCs are then associated with new onward VPs. In
general, virtual channel identifiers and virtual path identifiers have no
end-to-end significance and values can change in the network as routing
and switching occurs. However ATM switches have tables, either set up
by management functions or as a result of dynamic channel set-up, which
maintain relationships between all of the active VP and VC identifiers
(hence the name virtual). Figure 8 shows a simple example of this in
operation. In this incoming cells on VC #2, which is part of VP #1, are
unpacked and routed according to the routing table to outgoing VC #1 in
VP #3. Note the sequence numbers in brackets are to add clarity to the
diagram and are not part of the ATM cell structure.

ATM CeU Switch
_______________________________ VP #2

VP#] Routing Table . . — .
i------------- 1------------ 1 VC#4 (2) VC#4 (1)

. -------= = IN OUT l M I
VC#2 (6)| I VC#1 (2)| | VC#2 (5)|| VC#1 (1)| VP I VC VP I VC VP#3

1 1 2 4 VC#1 (6) VC#I (5)
-------------► i | 2 | 3 | I t . II

-------- ►

Figure 8 Simple example of cell switching

The ATM layer generates and extracts cell headers. For transmission, it
takes the 48 octet payload from the higher layer and produces a cell
header with VP and VC identifiers, see figure 9. Note it is not possible to
mix data from different sources in a single cell payload. Generic flow
control will be used to attempt to control congestion in the network
although how this will be achieved is still being investigated. The payload
type field indicates whether the payload is network attached device data
or internal network data (ATM uses VCs for internal management
purposes). The cell loss priority field indicates whether or not resources
have been pre-allocated for the cell throughout the network. Cells
without agreed resources allocated may be discarded if congestion occurs.
It is clearly important that the integrity of cell headers is maintained
throughout the network. The header error control is an 8 bit polynomial
error check code, covering the first 4 octets of the header, which detects
single and multiple bit corruption, and can correct single bit errors. It is
generated and validated in the physical layer. Note the payload is not

316 Ingenuity November 1994

error checked by ATM, this is left to the higher layers where an
appropriate recovery strategy is expected to be implemented.

Figure 9 An ATM data cell

5.4 The adaptation layer
The ATM adaptation layer (AAL) provides the means to support multiple
types of services with different attributes. It provides four classes of
services to the user layer:
• Class A supports constant bit rate to handle, for example, voice, high

definition video, hi-fi audio and graphical animation. Effectively,
connection-mode switched circuits of agreed bandwidth are emulated
by means of VCs.

• Class B delivers a variable bit rate for supporting such applications as
compressed video and video conferencing.

• Class C provides for variable bit rate connection-mode operation to
support, for example, traditional data virtual circuit connections.

• Class D supports a variable bit rate connectionless-mode operation to
provide for datagram services.

These user services are achieved in the AAL by four types of adaptation:
AAL 1 to 4 (AAL 5 is a more efficient variant of AAL 3/4 for high speed
data and internal network use). AAL adaptation types perform
convergence functions, which are mappings of the variable length higher
layer data blocks or packets into and from ATM cells. This segmentation
Ingenuity November 1994 317

and reassembly process, apart from taking time, also has a 1-4 octet
associated overhead which reduces the octet payload by that amount.
AAL 1 is characterised [Boerjan et al, 1992] by its connection-mode
service, its ability to accept and deliver data at a fixed clock rate and to
flag unrecoverable data loss to the upper layer. It is also capable of
transferring details of the source information structure to the destination.
AAL 2 shares characteristics with AAL1, however, it offers two data rate
options: a rate for normal use and a burst rate for occasional use.
AAL 3 and 4 services have been merged into a single specification referred
to as ALL 3/4 which is data oriented and not dependent on timing. Two
modes of operation are defined: message and streaming. Both modes
offer assured or non-assured delivery. Assured delivery guarantees the
data arriving at the destination complete and intact by using flow control,
loss and error detection techniques with recovery. With non-assured
delivery, data can be lost or corrupted. AAL 3/4 services can be used to
support existing packet transfer techniques such as HDLC, Frame Relay,
OSI protocols and the internet protocol (IP).
The user layer may wish to make direct use of the ATM layer without any
adaptation. This is also possible and is sometimes referred to as AAL 0.
5.5 ATM in practice
As described above, fixed length cells enable fast and deterministic
switching, and any bit rate can be achieved by using the required number
of cells per second [ATM Forum, 1992], The number of VCs carrying the
cells can vary depending on user needs and, of course, the bit rate of each
VC can change in time in response to these needs and the service being
supported. It is this flexibility that makes ATM an attractive technology.
A Private Branch Exchange (PBX) or LAN router can interface to an ATM
switching node (see figure 10). The voice stream and data packets are
segmented into cell payloads, which include segmentation control octets,
VP and VC identifiers are included with other header control information,
and cells are passed to the appropriate communications links for
transmission depending on destinations (one such link is shown in the
figure). Multiple voice channels can be supported by means of multiple
VCs. And data packets from multiple sources can share the same virtual
channel or visa versa, higher level packet addressing can determine
routing to the destination. The figure also shows a multimedia device
using ATM directly. In this case the adaptation is minimal or null. The
adaptation layer at the receiving node performs reassembly into voice
channels and packets depending upon the service and passes the
information to the attached devices.

318 Ingenuity November 1994

Figure 10 An overview of ATM working

5.6 So what is the state of ATM standards?
ATM is an exciting technology, however, much standardisation effort is
required before it delivers its promise. ATM standardisation takes place
in a number of bodies, two of which are prominent. The ITU-T is the
international standards body where formal ATM standards work is
progressed. The ATM Forum is a United States based consortium
composed of international members including service providers, vendors
and users. It has a mission to speed up the development and deployment
of ATM products and services, and it works in tandem with the ITU-T.
Specifically the ATM Forum attempts to agree on ATM implementation
issues which are still under discussion or which for various reasons may
not have been clearly ratified by the ITU-T.
Although great energy is going into this work some of the major areas
that still need addressing are:
• Switched virtual channels: We explained the concept of virtual

channels above. VCs may be permanent or switched. A permanent
VC for all intents and purposes is the same as a permanent circuit
between source and destination: an agreed amount of bandwidth is
available all the time. It is expensive and generally not well utilised by
the end user. A switched VC is one which is set-up when required
between the source and destination and closed down when not needed.
ATM networks will potentially have very fast channel set-up and close
down attributes which effectively can provide bandwidth on demand.
Sadly progress on the standardisation of switched VCs is lagging and it
will be some time before implementations of the standards will be
available.

Ingenuity November 1994 319

• Congestion control: An ATM network is fundamentally no different
from traditional networks in that, given certain circumstances, the
network can become congested with traffic with dramatic degradation
in the expected quality of service. Congestion or flow control tries to
ensure that a congested state does not occur. Although clearly a key
requirement for building acceptable ATM networks, progress in the
area was slow in ITU-T. The ATM Forum picked up the work and
agreed congestion control techniques for constant bit rate and variable
bit rate (AAL 1 and 2) for delay sensitive traffic like video and voice.
However, it is having difficulty settling on controls for IT generated
bursty traffic. This could take up to another year to ratify and a likely
outcome is a number of incompatible techniques.

• Management and billing: Much more standards work needs to be done
in this area. Without these, true global open ATM operation will not
be achievable.

• Service definitions: The ATM adaptation layer requires a number of
convergence functions to be defined to map the different services, such
as video, to ATM. Development of standard convergence functions
for some services have been slow emerging and widespread take-up of
those in place is not guaranteed. This is a crucial area; without
agreement, provision of interoperability between ATM supported
services will be unlikely.

The fact that ratified standards do not exist for these areas will not stop
vendors developing ATM technology and it being deployed. Obviously in
many cases early-to-market vendors will have adopted proprietary
solutions to solve the above deficiencies and thus vendor lock-in over the
short to medium term is likely.

6. Analysing ATM Using the OPEN fram ework Qualities
and Perspectives

Given the attention that ATM is attracting and its potential for
deployment in the near future, enterprises need to understand the impact
it may have on their businesses, and the opportunities it offers to improve
effectiveness and respond to their market demands. One way of doing
this is to use the OPEN framework qualities and perspectives as a
structured approach to ensure all aspects of ATM are considered. The
qualities:
• availability
• usability
• performance
• security
• potential for change

320 Ingenuity November 1994

provide the means of looking at the attributes of ATM and putting a value
on it. While the perspectives:
• enterprise management
• users
• application developers
• (enterprise) service providers
can describe the concerns and impact of ATM on various roles in an
enterprise [Brunt et al, 1992] [Hutt, 1994]. In general, applying the
OPENframework qualities and perspectives to analyse an enterprise’s
business, social system and technical system is a very powerful approach
for understanding and managing change. However, the approach can be
used less formally, as it is here, to provide some focused summary
information.
6.1 Availability
One of the attractions of ATM to enterprise management is that all
existing networking services can be provided by a single networking
technology. This could rationalise the current diverse set of skills
employed in supporting various forms of networking. However, there
will be some concern about cost, which is likely to be high, certainly in
the shorter term, and about interoperability due to the state of
standardisation and specific vendor strategies. Also because of the vast
expense in putting optical fibre transmission technology in place and
installing ATM switches, widespread public ATM networking is unlikely
before the next decade.
Users will have access to guaranteed bandwidth on demand supporting a
range of real-time services. ATM potentially allows instant access to a
range of multimedia sources both inside and outside the enterprise which
can be brought together at the users’ workstations.
ATM will, in general, be reliable but what will be the impact of minimal
error recovery in the network? On the whole, attachment devices like
routers will provide error recovery but for multimedia application
platforms, for example, which generate ATM cells, packet loss and errors
will need to be handled. Vendors supplying such platforms will no doubt
address this problem; however, different vendors may have different
strategies of which application developers should be aware. The
emergence of standardised Application Programming Interfaces (APIs) for
ATM will ease development and increase portability options but little
work has been done in this area.
The enterprise service provider will initially have to contend with
proprietary management systems which will vary from supplier to
supplier. Switched virtual channels are likely to be late coming to market
so one of the key benefits of ATM will not be attainable initially. Also
ATM offerings in different countries will almost certainly be diverse.

Ingenuity November 1994 321

6.2 Usability
Enterprise management may find that ATM as an enabling technology
together with appropriate applications, for example, multimedia kiosks,
supports an easier to do business with enterprise strategy.
For most users it is more natural to deal with image, pictures and voice
rather than just text or even graphical user interfaces. Seeing who they
are dealing with, and being seen, will help users in some business
contexts.
The lack of development tools (and APIs) which exploit ATM will
concern application developers. Early ATM exploitation may well be a
craft industry until de facto standards emerge in this area.
Enterprise service providers currently manage the in-house networks.
Therefore integration of ATM management into the enterprise’s
management infrastructure will be of paramount importance. Initially
this may prove challenging. A concern shared with application
developers, will be integration with existing applications and what the
migration strategy will be.
6.3 Performance
The costs/benefits analysis for ATM may prove difficult to compute.
Initially benefits may be troublesome to pin-point and may, indeed, in the
shorter term, be intangible. Obvious benefits can include savings on
converging the enterprise’s various networks.
Users will experience excellent interaction response times from
application running over ATM apparently independent of the traffic and
geography involved.
Application developers will want to exploit the scalable, bandwidth on
demand features presented by ATM. Enterprise management will need to
temper this motivation with a sound business strategy.
There will be a lack of tools to analyse ATM performance in early
deployment. In some quarters there is some concern about the expected
performance of large scale ATM networks in which guarantees of
multiple quality of services is considered to be difficult to sustain. The
lateness of arrival of congestion methods and their incompatibility with
existing LAN mechanisms for data does not create confidence in the
shorter term. And although, as we have seen above, cell switching has
many advantages, for traditional packet switching applications the control
octet overhead can be almost 20%.
6.4 Security
Although there are many questions still to be answered about ATM, it is
clear that it, or at least the principles, will be important. Thus, though a
cautious approach is recommended, moving towards ATM in the medium
to longer term will benefit the enterprise network and support business
prosperity.

322 Ingenuity November 1994

End-to-end user security is aided by virtual channels and closed user
groups which restrict communication to that between designated network
devices.
Current application security techniques will be reusable in an ATM
networking environment.
Control over access to expensive ATM bandwidth options will be
required. Also policing of actual bandwidth usage is necessary to ensure
agreed limits are not broken. Also, for some services, bandwidth will be
negotiated at channel set-up time. If the network, or combinations of all
the networks involved in supporting the virtual channel, has not the
resources to meet the request, access can be denied.
6.5 Potential for change
From a networking point of view, ATM will maximise potential for
change providing the vehicle for accommodating any sort of traffic that
may be required to support a business.
New multimedia applications will be introduced painlessly without
changing wiring, terminals or interface connectors.
For application developers, the aim will be to have a minimum number of
APIs which can access the different services support facilities.
Bandwidth on demand when it arrives will ease the service providers’ task
of forever changing service level agreements with parties in-house and
with external network providers as demands fluctuate and grow.

7. References
ATM FORUM, “ATM: The Future of Networking”. McGraw-Hill Data
Communications ppl24-128 October 1992
BOERJAN, J., CAMPBELL, A., COULSON, G., GARCIA, F.,
HUTCHISON, D., LEOPOLD, H., SINGER, N. “The OSI 95 Transport
Service and the New Environment”. Lancaster University, ESPRIT
Project 5341/Sector OBS. 1992
BRUNT, R., HUTT, A. “OPENframework The Systems Architecture: an
introduction”. Prentice Hall 1992. ISBN 0-13-560186-X.
CCTA, “Towards 2000: High Speed Networking Guide for UK
Government Departments”. HMSO 1994.
COMER, D.E. “Interworking with TCP/IP”. Prentice-Hall International,
Inc 1991. ISBN 0-13-474321-0.
DAVIES, D.W., BARBER, D.L.A. “Communication Networks for
Computers”. John Wiley & Sons 1975. ISBN 0 471 19874 9.
FLATMAN, A.V., LAWE, J., RUSSELL, B. “Infrastructure of Corporate
Networks in the Nineties”. ICL Tech J. Vol. 8 (2) ppl98-209, 1992.

Ingenuity November 1994 323

FULLER, A.R. “Future Applications of ISDN to Information
Technology”. ICL TechJ. Vol. 7 (3) pp501-511, 1991.
GOULD, J. “ATM’s Long, Strange Trip to the Mainstream”. McGraw-
Hill Data Communications ppl20-130 June 1994
HOULDSWORTH, J. “Open Networks - The Key to Global Success”
ICL Tech J. Vol. 8 (2) ppl79-197, 1992.
HOULDSWORTH, J., TAYLOR, M., CAVES, K., FLATMAN, A.V.,
CROOK, K. “Open System LANs and their Global Interconnection”.
Butterworth Heinemann 1991. ISBN 0 7506 1045 X.
HUTT, A. “Transforming your business with information technology” To
be published in 1994.
SAKAI, T., TOKO, Y., TOKIMASA, A. “Synchronous Digital Network
Systems”. FUJITSU Sci. Tech.J. Vol. 28 (2) ppl61-171, 1992
STEVENSON, 1., TIMMS, S. “Broadband Communications: Market
Strategies”. Ovum 1991. ISBN 0 903969 63 7.
TAYLOR, M. “FDDI - The High Speed Network for the Nineties”. ICL
Tech J. Vol. 8 (2) PP225-241, 1992

8. Biography
Frank Deignan
Frank Deignan has more than twenty years experience in the IT industry.
He is currently the OPENframework Networking Services architect in
ICL. Prior to this role he was the ICL messaging strategy manager and
OSI standards manager.
He has a MSc from Manchester University, is a Chartered Engineer
(CEng), a Member of the British Computer Society (MBCS) and an
Associate Fellow of the Institute of Mathematics and its Applications.

324 Ingenuity November 1994

The ICL search accelerator ™, SCAFS ™:
functionality and benefits

M.W. Martin
Server Systems Division, ICL, Bracknell, UK

Abstract

This document describes the system and functional capabilities of
the search a c c e le r a to r technologies, on which ICL's Database
search a c c e le r a to r programme is built.

The performance of applications can be accelerated by shipping
application functions closely associated with input/output data
from the host processor into the peripheral sub-system. This can
relieve the host of a very considerable processing and I/O
overhead and make better use of host caches, in addition to
providing faster responses.

The performance improvements possible and realised in practice
are discussed, both qualitatively and quantitatively. To illustrate
use of the foundation technologies, some examples of Relational
Database acceleration are included.

1. Introduction
The Son of CAFS (SCAFS) programme began as an investigation into the
exploitation opportunities for CAFS-like technology in the open systems
market (CAFS ™ is a search engine sold on ICL mainframe systems since
the early 1980s [ICL, 1985]). Attention quickly focused on accelerating
Relational Database performance in the dimensions of Decision Support,
Management Information, ad hoc queries, and fuzzy text access, by
executing the associated searches within a SCAFS engine in the disk sub
system.
Given past reaction to proprietary technologies in the open system
market, it was immediately recognized that:
• SCAFS would need to be invisible at the application level (i.e. hidden

below SQL)
• the objective must be to establish SCAFS as the de-facto industry

standard solution. Thus products must be designed as a low-cost,
high-volume, world market solution.

Ingenuity November 1994 325

Extensive market and technology research was undertaken. Views were
sought from, and proposals put forward to, experts across the industry,
including; ICL marketeers and technologists, key architects from the
leading relational database vendors (INGRES ™, ORACLE ™,
INFORMIX ®, SYBASE), other computer vendors, market research
agencies (Gartner, Dataquest), and leading US and UK Venture
Capitalists.
Three main conclusions arose from the investigation:
1) That accelerating relational database was the key market to exploit

initially
2) Plans for the availability of the technology across a wide range of

computer platforms was a prerequisite to relational vendors'
collaboration

3) In the open systems marketplace, a radically different CAFS
architecture was needed to truly hide CAFS effects from users. In
particular, SCAFS should search the different data formats used by
each of the relational database vendors in their standard unchanged
forms (unlike ICL's mainframe CAFS).

The last had proved impossible in the past. However, following research
work within ICL, a radically different architecture, SCAFS, was invented
that satisfies the above requirement, but also has scope for much wider
exploitation. Patents have been applied for.

2. Outline Description
2.1 Generic components
A system exploiting SCAFS as an application accelerator is expected to
consist of five main parts (as shown in the numbered brackets in figure 1):
(1) Existing applications built upon industry standard, or de-facto

standard, interfaces (e.g. SQL). Applications, and their databases
remain unchanged. SCAFS is invisible to the end user other than for
performance benefits.

(2) An application support environment (e.g. relational database back-end.
This needs extending to provide a platform independent library
interface for the function being shipped (e.g. databases searching).

(3) Host based Accelerator library software which is called via the new
library interface and which in turn communicates with personality
software running on the SCAFS unit.

(4) Code downloaded to SCAFS to personalize it for a specific application
function being shipped, called a personality. 5

(5) Generic SCAFS system components (hardware and software, that
support the operation of Accelerator software and personality code.

326 Ingenuity November 1994

2.2 Component features
The enhanced RDBMS back-end, with the new (search accelerator) library
interface is expected to be the standard version shipped on all platforms,
regardless of whether the search accelerator is present or not, as is
already the case with INFORMIX OnLine and INGRES and will be with
ORACLE during 1994.

Figure 1 System Overview of RDBMS search accelerator
A call across the new library interface can determine the search
accelerators presence plus whether it supports the function being
shipped. Where support is unavailable, the database back-end executes
the function in exactly the same manner as is conventional practice.
The Accelerator software and its associated personality is packaged and
sold together as they are specific to the particular class of application
being accelerated (e.g. Oracle, Ingres or Informix search accelerator).
Generic SCAFS system components are viewed as being integrated with
the base platform, (hardware and operating system). They include a
device driver(s) and plug-in hardware with associated firmware. The
components are able to support different types of application function
being shipped, and their concurrent operation (see figure 2).
The Generic SCAFS components contain no features particular to any
database but should provide support for all of them (with appropriate
accelerator software and personality).

Ingenuity November 1994 327

Figure 2 Example system with multiple personalities
The SCAFS device driver provides a generic interface to SCAFS for host
based application accelerator software. It is also responsible for
scheduling access to personalities from competing accelerator software
(e.g. concurrent RDBMS queries). Where necessary, it will temporarily
suspend searches that hog system resources (e.g. where the host
application consumes retrieved data much slower than SCAFS delivers).

328 Ingenuity November 1994

The SCAFS on-board firmware provides an operating environment for
personalities and supports communication between the personality and
the host accelerator software (via the SCAFS device driver).
The firmware can provide support for multiple down-loadable
personalities (see figure 2); for example concurrent support for Informix,
Oracle and Ingres search accelerator.
Support for up to three active SCAFS channels is also provided within a
single SCAFS hardware unit. Channels operate concurrently, and are
instances of personality processes. Thus, SCAFS can support concurrent
RDBMS query execution within a single SCAFS unit.
The firmware also supports autonomous reading of data from peripherals
(e.g. disks) at their maximum data rate. Three independent data streams
can be supported simultaneously, with an aggregate data rate up to
6.5-8Mbytes/sec on current systems (mid 1994).
Greater performance gains are possible by adding multiple SCAFS units to
a system; one per string of disk drives (see figures 3 and 4). For example,
a system with 6 SCAFS units can execute simultaneously, 18 different and
independent databases queries, each operating on a different disk drive.

Figure 3 Example Configuration
2.3 RDBMS search accelerator
The area focused on for early exploitation of SCAFS technology is as a
relational database search accelerator. The RDBMS vendor enhances
their back-end to include search accelerator hooks via a platform-
independent new library interface, often referred to as a Smart Disk
interface by the RDBMS vendors.

Ingenuity November 1994 329

SCSI I ^ ^

-------- — = 1 L _ J I I) - t
^ ^ ^ ^ g j s w s ^

.. \ SCS1 I *4_________________ ____________ * .
---cont roBsr * t i t t

c a f a r a *
0 0

Figure 4 PC Server Configuration
In normal operation a relational database passes an SQL query to some
form of query optimiser to determine the best strategy for executing the
query. The optimiser decomposes the query into a sequence of related
processing operations - selects, projects, sorts, joins - some of which are
select operations on single tables. Where a relational database has been
enhanced with a Smart Disk interface, the optimiser can choose to invite
the Smart Disk to execute these single table select operations. When the
Smart Disk is chosen, the select operation is executed autonomously in
the disk sub system by SCAFS.
In making its decision, the optimiser first briefly communicates across the
Smart Disk interface to ensure the Accelerator is available and able to
support the particular select operation on the table. Once the Smart Disk
is chosen, further interaction occurs to allow the host Accelerator
software to construct a search specification for the select operation. The
specification is passed to the RDBMS personality via the SCAFS device
driver. The personality, running on the board, performs the specified
search on the incoming disk data and only returns matching data back to
the host Accelerator software, which in turn passes it to the RDBMS
back-end.
Algorithms used within the host and personality ensure the existing
RDBMS locking and consistency rules are followed. For example, search
accelerator products fully support:
• all of the Informix four levels of consistency/locking
• the Oracle read consistency model
• the Oracle parallel server.
Great care is taken that the algorithms are provably correct, platform
independent, efficient, and have no detrimental effect on TP performance.
Novel solutions have been developed for specific RDBMSs. ICL search

CD

330 Ingenuity November 1994

accelerator software is developed specifically for each relational database
to cope with any differences in relational vendors':
• disk storage formats
• data types
• comparison operations
• back-end architectures
• internal data structures
• users' tuning and diagnostic facilities
• data/transaction integrity requirements.
The end result is that operations performed by the search accelerator
always provide an equivalent user response to that of the standard version
of the RDBMS. Output may differ, as different ordering of records across
the SQL interface may be allowed, though equivalent.
There is no real need for customers to know what the search
accelerator technology really is. To them, adding a database accelerator
should be viewed in the same light as adding extra store, or better
caching; it just makes the database run faster in certain dimensions.

3. Product Characteristics
3.1 Operational constraints
3.1.1 Current products
SCAFS is available in a 3.5" form factor, or as a plug-in VMEbus or
ISA/EISA board. In the plug-in board format only power connections are
made to the bus. In the novel 3.5" form, called SCAFS Mk2, it fits in a
3.5" disk bay and has identical connectors and mounting as a 3.5" SCSI
disk (patents have been applied for).
SCAFS interfaces to the host and input/output devices via the industry
standard SCSI interface. Eight bit SCSI, compatible with SCSI 1 8c 2
hosts and devices, is currently used.
Both synchronous and asynchronous SCSI communication is supported.
Both single-ended SCSI and differential SCSI versions are available.
Using novel techniques, (patents have been applied for), SCAFS hardware
can execute relational database table scans close to the maximum
sustained data rate across the SCSI bus (e.g. up to 8Mbytes/sec).
Disks used with SCAFS must be of the type that ensure error
detection/correction is performed before disk data is passed across SCSI
(usually the case). Also, they must support multi-initiator access (again
usually the case).

Ingenuity November 1994 331

The maximum number of streams open to all SCAFS channels within a
system is only an operating system limitation (e.g. 256 streams).
3.1.2 Future products
Support for additional RDBMS products, plus ports to additional
computer system platforms and operating systems are kept constantly
under review.
The initial generic SCAFS system components are exploitable on a range
of platforms and with a range of applications. In addition, changes to the
generic SCAFS system components, can be expected in order to maintain
compatibility with market requirements and exploitation possibilities;
decisions depend on business cases.
3.2 Portability
Minimising platform porting costs is a key element to achieving wide
exploitation and setting a de-facto standard.
Host code, including device driver and application accelerator software, is
portable at the source code level (i.e. C code). Device driver
implementations for UNIX® V.4 and IBM AIX exist. Interfacing to SCSI
includes support for USL's PDI interface for UNIX V.4 systems. The
driver has been structured to support symmetric driver requirements.
Different platforms require some customisation of the device driver, but
most of the platform specific code is contained in one software module.
Interfacing to different filesystems and volume managers is often platform
specific.
Communication between host accelerator software, and its on-board
personality, is host independent, thereby giving object code portability for
personality code (namely one object code for all systems). Note, that the
personality can cope with both BigEndian and LittleEndian disk data.
Wherever, a VMEbus card, ISA/EISA board, or 3.5" disk can be mounted,
SCAFS hardware can usually be added without change.
3.3 Security
3.3.1 User security
Features within generic SCAFS components prevent one user/query
gaining access to the results or input associated with another query
(maliciously or otherwise).
3.4 Standards
Initial SCAFS products interface to the host and input/output devices via
the ANSI standard SCSI interface. Eight bit SCSI, compatible with SCSI 1
and SCSI 2 devices is used. Both synchronous and asynchronous
communication are supported.
Initial exploitation is with the standard UNIX V.4 operating system
environment. Interfacing to the SCAFS device driver is via UNIX
streams.
332 Ingenuity November 1994

The normal safety and EMC/RFI certificates specified by ICL, for world
wide sales, have been obtained.
3.4.1 X/Open conformance
Relational Database search accelerator does not affect the X/Open
conformance of a system:
• If an RDBMS's SQL were X/Open conformant, it would remain so

after the addition of the RDBMS search a c c e le ra to r .

• Currently, search accelerator and SCAFS interfaces are not available to
application level code, only to relational database management
systems; so there are no application portability issues. If the base
platform is X/Open conformant it remains so after the addition of
search accelerator.

3.5 Hardware configuration and software environment
Current generic SCAFS system components require the following
environment:
• accommodation for ISA/EISA bus boards, VMEbus(6U) boards, or 3.5"

disks, with their standard voltage supplies
• use of up to 10 watts from the host's power supply (no special cooling

requirements are needed)
• SCSI interfacing (e.g. to disks)
The data to be searched may be in a filesystem or a raw disk partition.
3.6 Reliability
SCAFS/RDBMS search accelera tor should never provide incorrect
information back to an RDBMS and therefore possibly to a user. Prior to
customer use, 100% of all hardware errors are expected to be detected at
time of manufacture. The target is supported by extensive manufacturing
tests held in on-board PROM.
In the field, better than 99.5% of all hardware and configuration errors
are expected to be automatically detected at system start-up by a
combination of:
• PROM based establishment tests
• UNIX gro p e

• initiating a diagnostic check by the host SCAFS device driver
• communication with, and downloading code to, all SCAFS boards

known to be configured in the system.
3.7 Resilience and diagnostics
Using simple RDBMS user commands it is possible to switch the search
accelerator on and off on a per user basis. In addition, on/off switching
for all RDBMS users is possible. First level diagnosis to identify whether

Ingenuity November 1994 333

the RDBMS or search accelerator is at fault is then easily possible.
With the Accelerator switched off the RDBMS just reverts to its standard
operation and performs table scans by software.
The search accelerator is compatible with highly available systems. In
the unlikely event of an Accelerator hardware failure, host accelerator
software can detect the fact and cause the RDBMS to revert to
conventional host based searching.
Where disk data is autonomously accessed via SCAFS (e.g. RDBMS data),
the SCAFS device driver performs the same level of file access
authorisation as is provided by the operating system.
To assist error diagnosis, including tele-diagnosis, SCAFS logs all detected
errors, including personality errors. All errors contain sufficient
information to identify the type of error, its location and the version
numbers of associated software (e.g. a personality error should result in a
log of:
• error type
• time
• date
• personality type and version
• host accelerator version
• Executive version
• location of SCAFS board and personality channel used).
To assist diagnosis further, facilities are available for a personality or a
SCAFS executive to initiate selective on-board memory dumps (e.g. to a
UNIX file).
Where a SCAFS system error (e.g. hardware or Executive) prevents
reliable continuation, the SCAFS Executive initiates an internal reset from
PROM, and signals the fact to the host SCAFS device driver.
Considerable thought has gone into terminating any outstanding host
SCSI command, to prevent SCSI lockup and therefore possible UNIX
crashes with filestore errors. The requirement is no different from that of
any other SCSI device.

4. Comparison of CAFS and SCAFS
From an overall system viewpoint CAFS and SCAFS appear to provide
similar system functionality (autonomous database searching), but there
are significant differences in their internal architecture. Some of the
major technical differences of SCAFS are:

334 Ingenuity November 1994

• searches disk data in standard RDBMS stored format
• supports a wider range of RDBMS (i.e. ORACLE and INFORMIX

OnLine in addition to INGRES)
• the concepts of key channels and Search Evaluation Unit (SEU)

disappear
• the restriction to 16 search terms is removed; instead an arbitrary

number of boolean combination of search terms is supported
• supports a wider range of SQL 'LIKE' text searching, including

variable number of don't care characters at start, within, and at end of
matching string (e.g. including contains)

• no limit on retrieved data (i.e. dynamic rather than static buffering of
retrieved data)

• supports Repeat queries with parameters and database procedures (n.b.
INGRES support starts with OpenINGRES 1)

• supports inter-column comparisons (n.b. INGRES support starts with
OpenINGRES 1)

• supports almost all combinations of datatypes and operators within a
Select statement

• with ORACLE and INFORMIX, supports disk data searches with
concurrent updates on the same table, without requiring a table lock
and without compromising data/transaction integrity requirements

• hardware platform independent.

5. Performance
Relational Database search accelerator is an application of the SCAFS
technology. The Accelerator speeds searches for data when an RDBMS
determines that tables need to be searched.
It could, therefore, be expected that the Accelerator would be most
efficient in speeding up queries associated with management information,
decision support, investigation, text access, report generation and ad hoc
access.

ICL has done extensive customer workload trials in order to demonstrate
performance improvement of RDBMS systems when equipped with the
Relational Database search accelerator. In these trials the majority of
applications were a mix of production and decision support workloads.
The majority of systems were already highly tuned and generally no
changes or conversions were applied to the database structure whatsoever.
The results of the customer workload trials were as follows:

Ingenuity November 1994 335

• In mixed mode workloads (mixed production/decision support)
throughput was enhanced by a factor 1.4 to 3.6, whilst response times
were on average a factor 1.4 to 20 quicker through using the
Accelerator.

• In systems with a predominantly decision support workload, results
were even more dramatic: response times were on average a factor 2
to 20 better, while individual transaction response times were
improved up to 100 fold.

• Production systems that were optimised by indexing to reduce the
need for searching tables, also benefited from the Accelerator. With
the Accelerator, users could re-address the balance of adding
secondary indexes or allowing table searches. Reducing the number of
indexes reduces the database volume and runtime overheads associated
with index maintenance, thereby significantly improving transaction
performance. Thus databases can be optimised for a production
workload, leaving the brute force power of the Accelerator to deal
with the decision support type of queries.

• When using the Accelerator, the response time for the vast majority of
RDBMS queries is independent of the type and complexity of the
query unlike standard RDBMSs. For example complex fuzzy text SQL
queries like:

job_description LIKE "%MAN%DIR%"
take no longer than simple queries like:

dept = 105
• Boolean combinations of such terms to arbitrary levels of complexity

are also supported without the normal major deterioration in response
time.

• Each Accelerator unit can search multiple disks concurrently so long as
the maximum data rate of the SCSI is not exceeded.

• The Accelerator does not dominate the SCSI bus while searching but
allows host access to the same or other disks on the same SCSI bus. As
the Accelerator is architecturally closer to the disk than the RDBMS,
it is able to use disks more efficiently for the same task. The
Accelerator reads data in large chunks, thus less time is spent moving
heads and missing disk revolutions. When compared to having the
table scan carried out by the RDBMS, the result is a reduction in the
use of disk resources.

336 Ingenuity November 1994

• Searches are performed faster than is possible with high performance
host processors, and is as fast as data can be read from disc, e.g
4Mbytes/sec. To achieve high performance all modern host processors
must make very effective use of caches (e.g. processor, database, file
system). The large volume of data associated with database searches
wipes out these caches, leading to their ineffective use (both for
searching and other users of the system). With the search accelera tor
this no longer occurs.

6. Marketing SCAFS
The search accelerator products are supported via the set of hardware
and software technologies, called SCAFS. SCAFS incorporates highly
optimised input/output capability, and is programmable for different
functions. These functions are supported by the SCAFS ability to accept
downloaded code at run-time (i.e. the SCAFS personalities already
mentioned).
Relational Database integration is invisible to the application writer and
end-user. Customers are not prevented from moving their relational
applications or data to other open-systems platforms (other than by
poorer performance). In particular, SCAFS searches operate on relational
data in its standard unchanged format, and the search accelerator
capability is hidden below SQL.
A Relational Database can embrace the search accelerator without
sacrificing platform portability. The database version shipped on all
platforms can include the search accelerator hooks as standard, regardless
of whether the Accelerator is available or present. Where the Accelerator
is unavailable, the database operates exactly the same as is current
practice. Thus, the Accelerator has no negative effect on RAS.
All INGRES platform ports from Version 6.4 onwards include the
Accelerator hooks as standard, as does INFORMIX from Version 6.0, and
ORACLE is planned to from Version 7.2. Prior to these releases, the
hooks have been included in versions on ICL, and some other, platforms
from INGRES 6.3, INFORMIX OnLine 5.0, and ORACLE 7.0.16
onwards.

With the introduction of within-query parallelism by the RDBMS
vendors, the Accelerator's inherent parallelism allows it to exploit such
features. Where a table is spread across multiple disks, a single user's
query can then be answered using multiple SCAFS units each operating in
parallel on a different disk string, with each SCAFS unit concurrently
searching multiple disks on the same string. The very high level of
parallelism is comparable to that expected from large multi-processor
based host systems. The Accelerator would thereby maintain its
performance advantage. Since Accelerator units can be considerably
cheaper than modern host processors, substantially better
cost/performance is offered.

Ingenuity November 1994 337

SCAFS system and functional capabilities were designed for the world
wide open-systems server marketplace (e.g. UNIX) and at a cost level
appropriate to volume shipment. Target platforms extend from high
performance UNIX servers to PC based servers.
Through its own and Fujitsu sales channels, ICL has marketed the Ingres
search accelerator since July 1991, Informix search accelerator since
October 1992 and Oracle search accelerator since May 1994. IBM
began selling the ICL search accelerator on their RISC System/6000
range in August 1994.

7. Conclusions
A sub-set of the general functional capability is: SCAFS technology
supports function shipping of Relational Database searches into the disk
sub-system.
The following conclusions may be drawn from the development and
marketing experience with Relational Databases:
• that accelerating relational database has been the key market to exploit

initially
• using novel techniques (patents applied for), a search engine can be

designed that resides in the disk sub-system, and:
o is hardware platform independent, being as easy to install as a 3.5"

SCSI disk drive

o searches market leading relational databases in their standard
unchanged disk storage format

o searches relational data as fast as it can be delivered from disks
(e.g. 4Mbytes/sec)

o achieves table search speeds largely independent of query
complexity

• the full RDBMS data/transaction integrity requirements are supported
while searching data autonomously from the host processor and the
RDBMS buffer cache

• the ICL search accelera tor can be integrated with the leading RDBMS
products, yet be hidden below the SQL interface, thereby requiring no
change in application code

• on most systems, a range of performances is possible by incremental
distribution of SCAFS hardware units around the peripheral sub
system, one per disk drive string

338 Ingenuity November 1994

• application of the search accelerator technology in the form of
Relational Database search accelera tor , has been shown to enhance
the throughput of an RDBMS in a mixed production/decision support
environment up to a factor of 3.6, while speeding up response times by
up to 20 fold. Response times in users' dedicated decision support
systems on average were seen to improve by a factor up to 20, while
individual transaction response times were enhanced up to 100 fold.

Clearly, application function shipping need not be limited to disk data
searching.
Function shipping follows the sound engineering principal of putting
functionality close to the data it is operating on, rather than having to
ship the data to the function. Examples of successful host function
shipping, from other areas, are:
• screen manipulation to graphic accelerator cards
• page layout to Postscript printers.

8. Acknowledgements
This work was only possible through committed team effort across ICL. I
would particularly like to thank the original development and marketing
team for their hard work, and professionalism in turning the gem of an
idea into a market reality (A.P.Graham Brown, Dave Crane, Richard
Downing, Robin Love, David McQuillan, Michael McKinlay, Bruce
Millar, Margaret Smith, Paul Stow and Ken Watts), and senior ICL
management for their encouragement and support over several years (Bill
O'Riordan, Chris Phoenix, David Dace). I would also like to thank
INGRES, INFORMIX and Oracle, for the help and collaboration that was
essential to achieving product success.

9. Reference
The ICL Technical Journal, Vol. 4 No. 4, 1985 comprised 11 papers
related to the history, design and applications of CAFS.

10. Trademarks
SCAFS, ICL search accelerator and CAFS are trademarks of
International Computers Ltd in the UK and other countries.
INFORMIX is a registered trademark of Informix Software Inc.
UNIX is a registered trademark of UNIX System Laboratories Inc in the
USA and other countries.

ORACLE is a trademark of ORACLE Corporation, Redwood City
California.

INGRES is a trademark of Computer Associates Incorporated.

Ingenuity November 1994 339

11. Biography
Mike W.Martin
Mike Martin joined ICL in 1970 with an honours degree in Pure Maths
and Physics from Hull University(UK).
His early work was in computer architecture research, including multi
processors and database engines. He was one of the key designers of the
original CAFS engine in the early 70s. During the 80s he worked as a
systems strategist, and developed the strategy for exploiting CAFS in the
open systems market, and co-invented SCAFS (with A.P.Graham Brown).
He had management responsibility for implementing the SCAFS and
search accelerator strategy, through design, development,
collaborations, and product introduction. More recently he took
responsible for ICL's Database Product Centre and currently acts as a
Senior Systems Consultant in Server Systems, ICL Client-Server.

12. Glossary of Terms
Accelerator short for Relational Database search accelerator; it is

an application of the SCAFS technology
BigEndian A processor that stores a word into memory (and thus

on disk) most significant byte at the lowest byte
address (e.g. SPARC, 68000).

CAFS Content Addressable File Store. A file-filtering
technology available on ICL mainframe systems.

Daemon A UNIX program with special privileges to manage a
resource (e.g. SCAFS)

LittleEndian A processor that stores a word into memory (and thus
on disk) least significant byte at the lowest byte address
(e.g. 386/486).

SCAFS Son of CAFS (designed for the open systems
marketplace, e.g. UNIX)

SCAFS device Code built into an operating system to manage
driver program, including Daemon, access to SCAFS,
SCSI Small Computer System Interface, commonly used as

the prime disk interface in UNIX based systems, PC
servers, and workstations.

R.A.S. Reliability, Availability, Serviceability.
RDBMS Relational Database Management System; e.g.

ORACLE, INFORMIX, INGRES, Sybase, etc.

340 Ingenuity November 1994

Open Teleservice - A Framework for
Service in the 1990s

Jerry Roddis
ICL Corporate Systems Division, Manchester, UK

Abstract

The exploitation of telecommunications and Information
Technology is becoming increasingly significant in the delivery of
service, and this topic is generally referred to as teleservice. This
paper describes Open Teleservice, an architecture developed by
ICL to provide a flexible and adaptable framework for service
delivery. It describes the historical development of Open
Teleservice, an insight into the underlying architecture, what it is
currently being used for and also the potential for exploitation in
the future.

1. Introduction
The IT service industry is becoming an increasingly significant area of
business for IT vendors, as they see profit margins on hardware and
software products continue to decline. Furthermore, the prevalence of
third party service organisations and the emergence of Facilities
Management are ensuring that the service industry itself is a highly
competitive arena. It is, therefore, imperative that IT vendors are highly
efficient, progressive, responsive and adaptable in order to compete and
offer a quality service in an ever changing marketplace. The use of
Information Technology (IT) in the provision of service is a key factor in
realising a highly competitive organisation. Open Teleservice is a prime
example of the use of IT in achieving this objective.
Teleservice is concerned with the exploitation of a telecommunication
link between a service organisation and its customer base to help provide
service. This link may be used to exchange information electronically in
both directions, and also to permit remote systems access. It enables a
service organisation to be highly efficient, both through automation and
the concentration of skills into centres of excellence. It allows specialists
to focus their expertise, minimising time spent on administration and
travel. Furthermore, the customer organisation becomes more efficient
Ingenuity November 1994 341

through having a controlled and consistent boundary between its in-house
operations and procedures, and those of its service organisations.
Teleservice is now the state-of-the-art practice for delivering service
within the IT industry, primarily for use in the traditional remedial
support and maintenance service arena. There are many variations of
teleservice provided by different hardware vendors and service
organisations, with varying degrees of sophistication and functionality.
Open Teleservice is designed to meet not only the traditional service
requirements of the current customer base, but also to be adaptable and
expandable to meet new service demands.

2. Background
ICL pioneered Teleservice in the early 1980s with its Series 39 range of
mainframe systems, running the VME operating system. With complex
and highly reliable systems such as Series 39, a fresh approach to the
support and maintenance was necessary to provide a cost effective and
competitive service. The industry could no longer afford to send large
numbers of highly skilled system engineers to customer sites to resolve
and correct problems. Thus, teleservice was developed with the emphasis
on preventive maintenance and remote, speedy and automatic resolution
of problems.
Teleservice on Series 39 uses intelligent performance monitoring and
problem detection software resident on the customer systems for
determining when service is required. This is linked via
telecommunications to the service desk in the local ICL Support Centre,
equipped with automatic resolution tools and drawing on a pool of expert
diagnosticians. Typically, an incoming problem is first checked against a
knowledge base of known errors. If a match is found, this will identify
the appropriate corrective actions, otherwise the problem is passed on to
a diagnostician to resolve. [Loach, 94] talks about a number of
knowledge base tools used within ICL support centres.
Preventive maintenance of software ensures that VME systems are highly
reliable because likely problems are cleared before they are ever
encountered. Periodic on-site audits compare the applied fixes with the
up-to-date recommended set. Any fixes which have not been applied are
automatically retrieved via teleservice and made available for customer
application.
In addition to support and maintenance, another service has been
integrated, namely the news service. This is an information channel
which gives customers access to a wide range of subject matter, including
support bulletins, technical hints and tips, training, marketing and new
products.
In recent years, UNIX systems have become firmly established in the
commercial market place. To meet the servicing requirements of these
systems, ICL has taken a fresh look at the provision of teleservice, and
342 Ingenuity November 1994

this has resulted in Open Teleservice. The initial implementation was for
the ICL DRS/NX platforms, with the range of platforms now expanding
to meet the demands of the service business.

3. Architecture
The architecture of Open Teleservice, as developed by ICL, provides a
framework for the delivery of service to customers. It allows any number
of discrete services to be provided, the support and maintenance service
being just one.
The Open Teleservice model is based on the concept of Service Consumers
and Service Providers. A service consumer has a requirement for a
particular service and a service provider is responsible for satisfying that
requirement. In this context, a service can be viewed as any process
which involves a consumer-provider dialogue. In may respects, the
architecture can be viewed as an example of client-server, embodying
many of the features described in [Brenner, 94].
In the support and maintenance service, a service consumer could be a
customer with a service contract. The service provider would be the
particular organisation(s) with the contractual responsibility for providing
support and maintenance, for example, ICL or a Value Added Reseller
(VAR). Indeed, the architecture is not restricted to ICL as a service
provider. One of the key aspects of the openness is that the concepts and
products are readily portable to other service communities.
Typically, each service will include an application in the consumer
domain which will contain the appropriate functionality and user
interfaces and will generate requests for service as required. In the
provider domain there will be a complementary application which will
accept the incoming requests and which will provide the necessary
functionality and user interfaces to enable the provider to respond.
The model decouples the applications in both the consumer and provider
domains from the message routing and communication handling. This is
achieved by the Open Teleservice Interface (OTI) which defines the
Application Programming Interface (API) for the service applications and
defines a boundary to the communications handling function.
Figure 1 illustrates the key components and interfaces comprising the
Open Teleservice architecture:
The Teleservice Electronic Data Interchange (TEDI) protocol defines the
service messages which may be exchanged between consumer and
provider domains. It defines a level of red tape information common
across all services, and provides containers for service specific
information. Each service can define which of the messages it wishes to
exploit, and also the purpose for which they are being used.

Ingenuity November 1994 343

Figure 1 Open Teleservice Architectural Model

The following four message types may be generated by a consumer
application:
Request for Service
This message initiates a service conversation and specifies the requirement
of the consumer. By definition, this message is mandatory for all services.
Additional Information
This message allows a consumer to send additional information after the
initial requests for service, either as a result of receiving a request for
additional information from the provider, or as a voluntary action. Use
of this message type is optional.
Request for Status
This message allows a consumer to enquire of the provider as to the
progress of a particular request for service. Use of this message type is
optional.
Service Complete
This message is an indication from the consumer that a particular
conversation is closed. It may be used either as confirmation that a
response from the provider has been accepted or, alternatively, to advise
the provider that a request for service is to be withdrawn. Use of this
message type is optional.

The following four message types may be generated by a provider
application:
Acknowledgement
This message allows a provider to confirm receipt of a request for service.
Use of this message type is optional.
Status Report
This message allows a provider to inform the consumer of the progress of
a particular request, either as a result of receiving a request for status or
as a voluntary action. Use of this message type is optional.
344 Ingenuity November 1994

Request for Additional Information
This message allows a provider to ask the consumer to send further
information concerning a particular request for service. Use of this
message type is optional.
Service Response
This message is complementary to the original request for service and
contains the response. The provider is obliged to send such a message,
unless the consumer has previously withdrawn the request. If, on receipt
of the service response, the consumer is not satisfied, then the request for
service can be resent and the conversation re-opened.
The functionality in Figure 1 between the OTI in the consumer and
provider domains offers a middleware function and is often referred to as
the pipework. This supports a number of generic features designed to ease
the integration of new services, and includes many which are typical of
client-server architecture as described in [Brenner, 94]:
• no limit on the number of participating services
• independence from hardware platform, operating system and

communications technology
• isolation of service applications from the underlying communications

technology and re-use of the common middleware functionality
• flexible message set, allowing service specific definitions
• independence of consumer or provider products for a given service,

e.g. different integrated service desks used by different service
organisations

• no limit on the number of possible service providers for a given service
• service provider and service consumer functions may exist on the same

system
• combining the consumer and provider functions into the same

application allows chaining together to form a networked service.

4. Current Functionality
This section describes the functionality of the Open Teleservice product
set which has been developed by ICL and is now established in the field.
4.1 Open teleservice pipework
There is the middleware component of Open Teleservice, which supports
the interface to the various service applications in the consumer and
provider domains, and which handles the telecommunications and
message routing between applications.
When a consumer application submits a message, it is required to name
the target service provider. The pipework will manage the
communications path to the provider and into the target provider
Ingenuity November 1994 345

application. To feed a reply back to a consumer, the provider simply has
to name the original request source.
The choice of communications technology is based on what is most
appropriate for the circumstances, and may be one of the following
classes:
• via the X/Open Transport Interface (XTI), including OSLAN, TCP/IP

and X25
• asynchronous dial-up via a modem.
If the choice is an asynchronous modem, there are a number of further
options which may apply:
• point-to-point, manual or auto-dial
• dial-up to an X29 PAD (e.g. BT Dialplus), manual or auto-dial.
When using an auto-dial modem, there are a number of options for
managing how and when a link is established;
• periodically, at predetermined intervals
• for requests which are sufficiently urgent to warrant an immediate

connection
• manual initiation only, e.g. by the administrator.
When using a dial-up modem, messages can queue up in both the
consumer and provider domains until a connection is made. On
establishing a connection, all queued messages will then be exchanged.
When using a transport technology, messages need not be queued but can
be relayed immediately, thereby enabling a more responsive service.
4.2 Problem reporting service
The Problem Reporting Service enables problems reported within the
consumer domain to be notified to the provider for resolution and
correction. Figure 2 illustrates the key components of this service.
Each consumer system is equipped with a management system (referred to
as the Problem Service) which is capable of detecting problems
automatically and also allows users to report problems which they spot
themselves. It provides facilities to the customer for viewing and
progressing problems and for engaging in a dialogue with a remote service
provider. Some of the end-user facilities will result in TEDI messages
being submitted, for example, the act of transferring a problem will cause
a request for service to be generated.

346 Ingenuity November 1994

Figure 2 Overview of the Problem Reporting Service

Problems can be managed entirely locally if the resolution and correction
can be performed by the consumer. Alternatively, a problem can be
transferred to the remote service provider, whereupon it is automatically
recorded in the service desk of the provider. This action opens up a
dialogue which will typically conclude with the provider returning the
solution to the problem. The full range of TEDI messages are exploited
to support the following operations:

Consumer
• initial problem transfer
• supply further evidence (solicited or unsolicited)
• ask for a progress report
• re-open a problem if the solution is unacceptable
• confirm acceptance of the solution
• withdraw a problem.
Provider
• acknowledge registration of the problem in the Service Desk
• provide a progress report (solicited or unsolicited)
• ask for further evidence
• send the solution.

Ingenuity November 1994 347

Figure 3 illustrates the key components of the problem service on a
consumer system.

Figure 3 The Problem Service in the consumer domain

The interactive application supports all of the functions necessary to view
and progress a problem. It supports a generic problem reporting function,
which offers a simple means of reporting problems on any type of product
using a structured sequence of forms.
Underlying this application is a relational database. This holds all the
captured details for each problem, and a full audit trail of subsequent
events associated with that problem, including messages sent to and
received from a remote provider. The dialogue with a remote provider is
dealt with by the message handler, which connects to the OTI to submit
requests and read replies.
The Problem Service Interface (PSI) permits external applications to
report problems. Problems detected automatically by the system are
submitted through this interface. The event processor provides a
framework into which a range of product specific monitoring programs
can plug. It supports re-usable functions such as threshold checking. A
further use of the PSI is to allow end-user applications to contain a
problem reporting facility so that problems can be entered directly from
the operational environment of the end user. In all cases, the emphasis is
on providing intelligently collated summarised evidence for transmission
with the problem itself, to enable rapid resolution and to minimise the
need to examine the raw evidence on the consumer system.
In a distributed system environment it may be the case that the customer
wishes to centralise the management of problems and have a single view
348 Ingenuity November 1994

of the problem status across all systems. It may also be the case that the
customer wishes to manage the point of communication with the service
provider from a single point. To meet this requirement, a product called
Incident Manager has been developed. This collects problems from the
separate systems and allows an administrator to view and manage all
problems from a single point. It reduces the administrative overheads and
also presents a more informative picture of the state of the whole
enterprise. Alternatively, it may be that the customer is already operating
a help desk, in which case there is scope for interfacing it to Open
Teleservice.
In architectural terms, Incident Manager or an integrated help desk is
acting as a provider to the distributed systems and as a consumer to the
remote provider.
4.3 News retrieval service
The News Retrieval Service offers an information channel between a
service provider and its customer base. Customers are presented with an
index of news articles from which they can select those of interest, which
are then retrieved via teleservice. There are no limits to what subject
matter is made available, although typically this may include support
information, technical advice and guidance, sales, training, promotional
and user group submissions. The service provider will generally require
some form of editorial control to vet items prior to general availability.
News articles are organised within an index according to subject matter.
A provider can also provide several indexes if necessary, for example, to
provide foreign language translations of the articles. A single provider
can even run several discrete services to give different groups of
consumers access to specific indexes. This may be necessary if there are
privacy or charging considerations.
Within the consumer domain there is an interactive application called the
News Service. This allows the consumer to scan the index of available
articles and to mark those which are required. Once retrieved, an article
can be browsed interactively, printed off and copied to a file. The
consumer is kept up to date with what information is available by
periodically retrieving the index automatically.
The product within the provider domain is called News Manager. This
comprises two components, the repository which holds the information
and the process which services incoming requests. News Manager may
also be used by a customer organisation to provide a local information
service under the editorial control of the customer. The News Service can
receive news from more than one service provider, enabling a customer
system to have a view of the local news as well as from any number of
remote providers.

Ingenuity November 1994 349

Figure 4 illustrates the key components of the News Retrieval Service.

Figure 4 Overview of the News Retrieval Service

Only a subset of the TEDI message set is required by the News Retrieval
Service to support the following functions:

Consumer
• request a particular item of news.
Provider
• deliver a requested item of news
• reject a request if the consumer is not entitled to the news.

Figure 5 illustrates the organisation of the news information within the
News Manager repository:
The information is organised in a structured hierarchy, with the top level
representing the service provider itself. Associated with the provider is an
optional list of valid consumers, which is used to verify that an incoming
request has originated from a recognised system.
A service provider owns one or more news indexes as required. Within
each index there is provision for a blanket disclaimer statement. There is
also a headlines section to contain information which is given prominent
visibility in the customer News Service. Within the index, the individual
articles are grouped into categories, typically based on subject matter. An
index may have any number of categories, and each category may have
any number of articles.

350 Ingenuity November 1994

Figure 5 The News Manager Repository

4.4 Telediagnostics
The Telediagnostics facility allows the service provider to establish a
remote session on a customer system. Typically, this is used to perform
on-line diagnosis of a problem on a system where there is insufficient
evidence defined within the problem submitted via teleservice.
There are varying degrees of security associated with this feature. It is
always the customer system which establishes the connection, preventing
unsolicited access. The customer specifies which username the
diagnostician may log into, thereby constraining access to the system. As
an additional security measure, there is a feature referred to as Session
Mirroring, which allows the customer full visibility of a diagnostician's
actions on a local terminal and vice-versa. This preserves a journal of all
actions for audit purposes and also allows the customer to terminate a
connection at any stage. Session mirroring is especially useful for a
customer to demonstrate what was being done when a problem was
encountered, and also for the customer to observe the activities of a
diagnostician in resolving the problem.
During a Telediagnostic session, evidence can be moved from the
customer system to one in the provider domain, for analysis at the
diagnostician's convenience and also to avoid holding the link open for
excessive periods. Data can be passed the other way onto the client
system if required, for example, to send a work-around or a software fix.

Ingenuity November 1994 351

5. Field Exploitation
Open Teleservice is now well established and in active use by ICL. It is
currently operational on ICL's DRS/NX system range, covering both
SPARC and Intel hardware platforms. It supports the Team and Super
Servers running DRS/NX, and this will be extended to cover SCO and
UNIXware. It also supports GOLDRUSH Megaserver, the massively
parallel SQL server for large relational databases.
The Problem Reporting Service and News Service are delivered by ICL as
part of a suitable support contract.
For DRS/NX platforms, there is automatic monitoring of SCSI devices
which will report problems and also identify problem trends to enable
preventive maintenance. On GOLDRUSH Megaserver there is
considerable automatic monitoring of the complex hardware and software
components.
If the system is running OfficePower then there is automatic monitoring
of the state of OfficePower itself. Problems concerning OfficePower can
also be reported interactively from within an OfficePower session.
Open Teleservice has been introduced in the UK and a number of
overseas territories. This has involved establishing both the software
environment and the necessary operational procedures. There are several
service desk products in use throughout the ICL community, and a
number of these have been interfaced to Open Teleservice. In the UK,
there is a central service desk system known as CRISP. Many of the
European territories use a product known as SMS, and a further desk
system called PRONTO has been interfaced to meet the requirements of
smaller territories.
Each territory chooses the most appropriate communications technology,
depending on the possible alternatives. In the United Kingdom, the
chosen technology has been asynchronous dial-up to an X29 PAD,
provided by the British Telecom Dialplus service. This enables customers
to connect to the most convenient local PAD to benefit from cheap call
rates. Customers who prefer to use a transport protocol may do so if they
wish.

6. Future Direction
6.1 Additional services
The emergence of professional services as a significant growth area will
open up the possibilities for exploiting Open Teleservice. One example
which has already come to fruition is the remote system administration
service which ICL provides for customers who do not wish to undertake
their own administration. This service now uses teleservice to deliver the
state of the supported systems on a daily basis to the administration
experts inside ICL. This removes the overhead of remotely accessing each

352 Ingenuity November 1994

system to see if any administration action is required. It enables more
responsive and proactive action than could otherwise be achieved.
The same approach for delivering information to the central service
provider could be considered for a remote capacity management and
planning service, to analyse the utilisation of customer systems and advise
on upgrades and performance tuning.
It would be possible to offer an electronic product ordering service,
whereby customers made selections from an electronic catalogue of
orderable products. Teleservice could be used to relay the orders to the
appropriate ordering system within ICL.
6.2 Multivendor support
Customer organisations are increasingly purchasing IT products from
several vendors to avoid reliance on any particular one. However, more
and more customers are appointing a single service provider to provide
support for all their IT, hence the need to be able to offer multivendor
support.
Open Teleservice is able to operate in a multivendor environment through
a dual strategy of porting and integration.
Where the service application functionality is required on a new platform,
then porting is the most likely approach. The Open Teleservice portfolio
is readily portable onto other vendors' variants of UNIX, especially those
which are XPG compliant.
In many cases, there are already applications in place for managing
specific domains within an enterprise, such as Sun Net Manager and HP
Open View, which are especially well suited to managing networked
environments. Where these are in place, there is scope for integrating
with Open Teleservice to provide a path for the notification of events to a
remote service provider.
6.3 Exploitation by third parties
Open Teleservice could be used to good effect by service organisations
other than ICL, for example, by VARs and ICL's service partners. The
third party could establish its own Open Teleservice community of its
supported customer base. If the third party ever needed to pass calls to
ICL, or indeed, any other party, then again Open Teleservice could be
used. It could integrate its own Service Desk to manage service requests
or it could employ Incident Manager as an entry level desk facility. The
third party could establish its own news service and also benefit from new
services as they became available.

7. Conclusion
Open Teleservice is now well established as the method for providing
remedial service by the ICL support community world-wide. It is helping
to provide benefits to both ICL and customers alike, through helping to
deliver responsive and proactive service. The occasions where ICL has to
Ingenuity November 1994 353

contact customers for further information concerning a problem are
drastically reduced, and the turnaround of problems is becoming
increasingly faster through the delivery of evidence with the problem
reports and the use of Telediagnostics sessions. The news service
supplements the support service through the publication of support
bulletins, as well as providing a general source of useful information.
The continued enhancement and expansion of the entire Open Teleservice
capability is of paramount importance in maintaining efficient and cost
effective service delivery. This must look beyond the traditional support
and maintenance services to explore new markets and opportunities. The
flexibility and adaptability provided by the architecture make it especially
well equipped to meet the ever changing service requirements of IT
community.
The possibilities of making use of the electronic connection between
consumers and providers for the delivery of service are manifold. Open
Teleservice will help to make these possibilities a reality.

8. Acknowledgements
The success of the Open Teleservice programme has been based on
teamwork and cooperation spanning many divisional boundaries within
ICL. It has combined experience and expertise from within both
Corporate Systems and Client Server Systems Divisions and also from
Customer Services in the UK, Europe and International.
UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the
USA and other countries.
GOLDRUSH is a trademark of International Computers Limited.

9. References
BRENNER, J.B. “Client-Server Architecture”, ICL Tech. / , Vol.9(l) pp
1-17, 1994
LOACH, P.J. “ICL's Problem 8c Resolution Information Service”, ICL
Tech.], Vol.9(l) pp 180-190, 1994

10. Biography
Jerry Roddis
Jerry Roddis graduated from the University of Newcastle Upon Tyne with
a Joint Honours degree in Electrical Engineering and Computing Science.
He joined ICL in 1979, working initially on developing test software for a
variety of hardware and communications products.
He has been involved in developing ICL's Teleservice capability for
mainframe systems, and more recently in developing Open Teleservice.

354 Ingenuity November 1994

Book Review

LEO - THE FIRST BUSINESS COMPUTER
A memoire by Frank Land

LEO was arguably the world's first general purpose business computer,
started in the late 1940s on which work reached fruition in the 1950s and
early 60s.
As one who was directly involved in the LEO story between 1952 and
1967 I am prompted to write the following notes by the appearance of the
book by Peter Bird1
In the 1940s and 1950s J Lyons was one of the most successful businesses
in the country with its products and establishments - Lyons Tea, Lyons
Cakes, Lyons Ice Cream and the Teashops and Corner Houses - being
household names. It had built its success on quality products and services
sold to a mass market, and a constant striving for value-adding
innovation.
Selling to a competitive mass market required tight control over costs and
margins, and a sensitive response to customer preferences and market
movements.
John Kay2 in his study of what makes businesses successful suggests that
architecture is one of the important ingredients. The distinctive
architecture which Lyons had developed over the years was the way
information was passed from operations - manufacturing, selling,

1 LEO - The First Business Computer, by Peter Bird, Hasler Publishing,
Workingham, 1994. ISBN 0-9521651-0-4.
2 Kay, John, 1993, Foundations of Corporate Success, Oxford University
Press, Oxford.
Ingenuity November 1994 355

distribution, as well as the concomitant operations concerned with
invoicing and payments - to the decision making senior management.
Each of the many businesses (Tea, Teashops, Ice Cream, Bakeries,
Kitchens, etc.) had its own groups of clerks and managers. The vast mass
of transaction data stemming from these operations was summarised and
compared with pre-set standards, forecasts and budgets. The resulting
information was analysed by the junior manager in charge of each group,
who would be responsible for explaining any important variances. The
junior manager had a direct line to the senior manager, often a Lyons
Director, responsible for that activity and had to explain the functioning
of that activity. At the same time the senior manager could ask the junior
liaison manager to undertake investigation of the what if type - suppose
we wish to increase the production of swiss rolls by 10% and reduce the
production of cup cakes by 3%: what would be the effect on gross profit?
The arrangement ensured direct access by senior management to
information originating at the operating level and by-passed the more
usual filtering through layers of middle management.
This architecture provided the company, long before the advent of
computers, with both an almost real time management information
system and a decision support system of considerable sophistication. In
addition the architecture and system provided senior management with a
detailed picture of the week's trading on the Monday of the following
week.

The management had seen the need to innovate not only in new products
and services but also in business processes as early as the 1920s when they
had engaged a senior wrangler from Cambridge to oversee the office
functions which already then were seen to be the source of information
for management. They established a systems research office whose
function was to analyse primarily office operations in order to see how
processes could be improved to provide better control and to reduce
costs.
The systems research office working with line managers produced a
stream of business process innovations from the time of its establishment.
Examples include the notion that each sales representative, each having a
customer group of many small retailers, would be responsible not only for
selling to his customer group, but totally responsible for the accounting,
credit and payment functions conventionally carried out at arms length by
a separate accounting office. The introduction of traveller covered credit
was a radical business process innovation which increased efficiency and
the effectiveness of the representative .
Yet in many other ways the company was deeply traditional and
conservative. It operated on a strictly hierarchical basis. At the top were
the owners, the founding family. They ran the company with the help of
a very few employee directors. Each grade of management had its own
dining room, with at the pinnacle the dining room reserved for the family
directors. Separate toilets divided managers from the rest. Trade Unions

356 Ingenuity November 1994

were discouraged, though the family took a paternalistic interest in its
staff.
In his book Peter Bird tells the story ofj, Lyons in his early chapters and
gives many more examples of innovation and enterprise in the way the
business was run.
This was the company I joined in 1952 as a recent graduate in Economics.
My first job was as a clerk in the statistical office - one of the major
offices compiling and checking transaction data for posting to the cost
accounts of the various operating units. I was responsible for keeping the
cost accounts of the Provincial Bakeries for further analysis and
interpretation by the junior manager Alec Kirby. I learned then that the
laid down routine for almost all staff down to the lowest clerk covered
only a portion of the time available. Much time was spent on tracing
errors and various forms of trouble shooting. The more senior clerks and
junior managers seemed to spend most of their time on that kind of
activity. As in much of UK manufacturing industry progress chasing kept
the wheels turning.
At that time Lyons had already embarked on its pioneering adventure
with computers. In retrospect the move into computers is not so
surprising. The systems research office had investigated the possibility of
coping with the mass of transaction data by some kind of mechanisation
or automation for many years. They had started to investigate the
possibility of devising a document reader for transaction data before the
second world war. They had researched the possible application of unit
record systems based on punched cards, but rejected these as too limited,
too constraining and too costly. Lyons had only one punched card
installation and that had a very limited application. Instead they had
installed alternative types of office mechanisation based on accounting
machines and calculators. Computers, it was reasoned, had the capability
of overcoming the limitations of the unit record equipment then available.
I knew nothing of the experiments going on with the LEO computer. But
as the LEO group expanded the company trawled for possible recruits
from its offices. It was suggested that I might like to learn about LEO to
see if I was interested and fitted their requirements for computer
programmers. I was put on a one week LEO appreciation course. The
course taught us the rudiments of binary arithmetic, programming and
how the computer worked. It was tough. Each evening I would go
home, sometimes in despair, and together with my wife worked at the
home work and to master the exercises. By the end of the week I was still
in a fog, but felt that joining the LEO group would be a most exciting
challenge, and certainly an improvement over the by then rather boring
Provincial Bakeries.
In 1953 I was selected to join the LEO group. At that time the first LEO
(LEO I) was being commissioned in its final form. Magnetic tape, though
still standing around had been abandoned for the time being. Punched
card and paper tape were the main input devices, though it was possible
Ingenuity November 1994 357

to intervene directly from the console to change the program or data, or
to single step ones way through a program when debugging. Output was
also on punched cards and paper tape, but also in printed form directly on
to a line printing tabulator. The computer was by present standards very
unreliable, and the combination of programming errors, data errors and
an unreliable machine made the log entry passed point o f previous
stoppage a particular joy for the operators and programmers.
Nevertheless, a substantial amount of work was being carried out.
The first applications, primarily for demonstration purposes, had gone
live three or four years earlier. Now the team was working on the various
Lyons' payrolls (LI), and beginning to plan the teashop ordering job(L2),
and the reserve stores allocation job(L3). In addition the machine was
being utilised as a service bureau with work, principally of a scientific
nature being carried out for a number of external organisations. Some of
these involved programming to the customer specification by a member of
the LEO team but others were programmed by the customer's own staff
and LEO merely provided machine time.
Although the Lyons' applications were some of the earliest business
systems on a computer, a pattern of planning and development had
already been established, and for any application a kind of standard of
'good practice' had been laid down. Many of these standards are as
relevant today as they were in the early 1950s.
Selecting and planning the use of LEO for business processes which might
benefit from the use of computers was in the hands of the senior LEO
management (T.R. Thompson and David Caminer) and the Systems
Research Office, working with senior Lyons managers, often Directors
and line management from the business area affected. To be selected an
application had to provide clear cost savings as against conventional
methods, or had to make the business process more effective as well as
showing savings in costs. The planners would look for opportunities to
improve the business process in a way which would not have been
possible with alternative methods.
There were many examples of such improvements. The teashop ordering
job (L2) provided a number of instances. The teashops were provided
with food by central kitchens at Cadby Hall. The teashop ordering job
made possible a major business process innovation. This provided a
cheap and effective way of providing local teashop managers with some
choice on what to have available for teashop customers. The manager
was provided with a standard menu - a list of food items with quantities -
for each day of the week. She would order the standard menu and alter
some of the standard quantities and delete or add items. The Teashop
senior management could override the teashop order under certain
circumstances. For example if the weather forecast for the next day
suggested that it would be a very hot day, the orders for the shops likely
to be affected would be altered to ensure a menu suitable for hot weather.
The only data required by the computer were the departures from the

358 Ingenuity November 1994

standard menu plus any alterations advised by senior management. This
enabled the computer to provide the kitchens with a full manufacturing
order for each teashop, together with a list of raw material required and a
full costing of the order. The computer would organise the teashop
orders in delivery sequence for delivery by van to the teashops - another
item of increased effectiveness provided by the system. Data entry, the
capture of the orders from the managers was effected by the simple
mechanism of each manager 'phoning in her order at a scheduled time and
the telephone operator punching the variations from the standard menu
directly on to a punched card for entry into the computer.
Another early application again illustrates the focus on using the
computer to achieve extra value. In 1953 rationing of foodstuffs was still
in force, and Lyons as manufacturers of food had to rely on a great
variety of materials including substitutes for the natural raw materials.
For example, a substitute for sugar used in the bakeries was sweetened
fat. The substitute materials were held in so called reserve stores. An
application was planned and developed for maintaining the inventory
records of all the material held in the reserve stores and allocating these to
the manufacturing centres, bakeries, ice cream plants and kitchens, on the
basis of orders received and manufacturing schedules. The computer
received manufacturing schedules as data, and consolidated and allocated
material from reserve stores according to the availability of transport in
order to keep distribution costs to a minimum. As with all LEO jobs the
automatic procedure could always be overridden by management action.
Costs were calculated for each store and charged out to the
manufacturing departments. The reserve stores allocation job ran
successfully only for a short time as it was abandoned once rationing was
ended and material could be ordered from suppliers on something close to
a just-in-time basis.
Whilst the focus of the more senior LEO management was on business
processes and the selection and planning of applications those of us
involved with getting the work onto the computer lived and dreamt of the
technical problems of getting the programs to work. Each job presented
major problems of fitting the tasks required into the small computer store
and at the same time getting the job to run efficiently. The trade-off
between saving instructions by tight programming and saving time in
execution was a constant problem. Saving the execution of one
instruction in a loop was a triumph and reported on and discussed at meal
times and refreshment breaks. Programming so that a transaction could
be fully computer checked within the time it took to read a punched card
was good, missing the cycle by a fraction of a second could double the
execution time of a job with thousands of transactions to be dealt with.
Every day produced new tricks of programming and avid discussions on
how the trick was done.
At the same time the standards of good practice already in force were
maintained and supplemented. Senior management kept a tight discipline
which ensured high quality and safe applications. No program was
Ingenuity November 1994 359

allowed on the computer for debugging without it having being desk
checked by a colleague. This practice helped the learning and the spread
of best practice amongst the team. All applications had built in
reconciliation procedures which were based on good accounting practice
and which not only ensured accurate work from the computer, but helped
to pin-point mistakes when they occurred, and demonstrated to the
business user the integrity of the work done on the computer.
In the year I joined the LEO group the Lyons payroll and the teashop
ordering jobs were rolled out and became jobs routinely carried out on a
daily or weekly basis. Having routine jobs required the computer to be
run by a cadre of professional operators. Hence a new operating section
with initially two computer operators and a number of data preparation
staff was set up.
By now what had been regarded by the outside world as a perverse
experiment was reality. Knowledge about what was happening at Cadby
Hall began to spread largely through the Office Management Association
of which John Simmons, a Lyons employee Director, was President. A
frequent occurrence was to take visitors around the computer and to talk
about the applications. As a result, enquiries about the possible use of the
computer for their own business began to arrive. For the LEO and Lyons
management this suggested the possibility of making LEO an independent
business manufacturing and selling computers and running computers as a
service bureau for other companies.
With the requirement to continue to develop applications for the Lyons
group and to provide for the planning, development and implementation
of applications for an outside market increased the need for programming
staff and a period of recruitment and expansion followed. For the group
already in place it meant that the lessons learned from the successes of the
Lyons' applications and the standards of good practice which had been
absorbed into the way of working, had to be applied rapidly to a range of
new jobs on behalf of outside clients. Of these, the biggest to be carried
out on a regular basis, was the weekly Ford Motor Company payroll for
over 20,000 workers. In terms of developing operational practices,
providing regular secure delivery of outputs to a host of service customers
provided a major challenge, which the LEO team met successfully.
But to some of us the real challenge was understanding and mastering the
business need of a very diverse group of customers covering almost all
sections of British, and in later years East-European business. The fact
that this offspring of a food business could sell systems to a wide range of
blue chip companies and Government departments - listed in appendix 6
and appendix 9 of Bird’s book - is an outcome of the quality of the team
recruited by the LEO management but even more of the good practices
they had inherited from the Lyons pioneers. Many of those involved in
those early days have risen to high ranks in industry and also in academia
reflecting the important role of the LEO venture as an educator, almost as
a business school.

360 Ingenuity November 1994

Peter Bird has provided an excellent chronological account of the LEO
project from its beginnings in the late 1940s to its absorbtion into first
English Electric and subsequently ICL at the end of the 1960s. But some
aspects of the story still need to be told. In particular those which relate
to the development of the coherent and clear systems understanding
which the LEO pioneers instilled in the team and which underlay, as
much as hardware and software engineering, the achievements of the LEO
venture, and which has spread out from its origins in LEO to locations all
over the world.

Frank Land was, until recently, Professor of Information Management at
London Business School and is now Visiting Professor at London School of
Economics.

Ingenuity November 1994 361

SystemWise•

Integration Information on CD-ROM
Licences are available for either single use at £995 or network use at
£1495. Subscriptions are renewable annually and prices are for four
quarterly editions. We can also provide CD drives or MultiMedia kits
if required.

C o n t a c t

ICL SystemWise Help Desk
D2D House, Manchester Road, Ashton-u-Lyne, Lancs OL7 OES, UK

Telephone +44 (0)181 565 7993 or +44 (0)161 371 0208 x2772
Fax +44 (0)161 371 9164

(ICL speedcall 7993)

Ever wanted to put all your information on screen
but didn't know where to start?

Start with

CustomWise
a new service to put your documentation on screen.

Take advantage of this fresh approach to banishing
paper from the office

Contact the SystemWise Help Desk for more information

+44 (0)181 565 7993
(ICL speedcall 7993)

Architext
The OPENframework Systems Architecture Series from ICL

now available on CD-ROM!

The OPENframework Systems Architecture is explained in a series of
books, each one concentrating on one aspect in particular.
Individually each book provides an excellent study of the major
technology trends and offers detailed advice and guidance for decision
making. Together, they provide a comprehensive set of analysis tools
for designing information systems.

Highly illustrated and using everyday language, the series is an ideal
companion for those involved in planning or implementing an
information systems strategy. Books are colour-coded for easy
identification.

Architext delivers the books in hypertext format which brings even
more powerful facilities than just the usual benefits of electronic
documentation. For instance, you have complex search capabilities as
well as being able to extract text and diagrams for proposals etc.
However, hypertext also provides the ability to be able to annotate
with your own comments; bookmark pages; print sections etc., just as
with the printed form.

Take advantage of our special introductory offer ...
a FREE CD drive with your first order!

Contact the SystemWise Help Desk for more information

+44 (0)181 565 7993
(ICL speedcall 7993)

Ingenuity November 1994 363

Index of Technical Journal Papers by
Issue

Vol.1 lss.1 - Novem ber 1978

The origins of the 2900 series
Sizing computer system s and workloads
Wind of C hange
Standards for open-network operation
Distributed computing in business da ta processing
A general model for integrity control

V o l.1 ls s .2 -May 1979

Com puters in support of agriculture in developing countries
Software and algorithms for the Distributed Array Processor
Hardware monitoring on the 2900 range
Network m odels of system performance
Advanced technology in printing: the laser printer
The new frontier three e ssay s on job control

Vol.1 lss.3 - November 1979

M eteosat 1: Europe's first meteorological satellite
An analysis of checkpointing
Statistical and related system s
Structured programming techniques in interrupt-driven routines
The content addressable file store - CAFS
Computing in the humanities
The data dictionary system in analysis and design

Vol.2 188.1 - Mav 1980

Security and privacy of data held in computers
CADES - software engineering in practice
ME29 Initial Program Load: an exercise in defensive programming
Project Little • an experimental ultra-reliable system
Flow of instructions through a pipelined processor
Towards an 'expert* diagnostic system
Using Open System Interconnection standards

Vol.2 lss.2 - November 19B0

The ICL Information Processing Architecture, IPA
VME/B: a model for the realisation of a total system concept
Birds, Bs and CRTs
Solution of elliptic partial differential equations on the ICL Distributed Array Processor
Data routing and transpositions in processor arrays
A Bayesian approach to test modelling

364 Ingenuity November 1994

A dynamic database for econometric modelling
Personnel on CAFS: a case study
Giving the computer a voice
Data integrity and the implications for back-up
Applications of the ICL Distributed Array Processor to econometric computations
A high-level logic design system
M easures of programming complexity

Vol.2 lss.4 - November 1981

Architecture of the ICL System 25
Designing for the X25 telecommunications standard
Viewdata and the ICL Bulletin System
Development philosophy and fundamental processing concepts of the ICL Rapid Application
Development System RADS
A moving-mesh plasm a equilibrium problem on the ICL Distributed Array Processor

Vol.3 lss.1 - Mav 1982

Information Technology Year 1982
Software of the ICL System 25
Security in a large general-purpose operating system: ICL's approach in VME/2900
System s evolution dynamics of VME/B
Software aspects of the Exeter Community Health Services Computer Project
Associative data m anagem ent system
Evaluating manufacturing testing strategies

Vol.3 lss.2 - November 1982

The advance of Information Technology
Computing for the needs of development in the smallholder sector
The PERQ workstation and the distributed computing environment
Som e techniques for handling encipherment keys
The use of COBOL for scientific data processing
Recognition of hand-written characters using the DAP
Hardware design faults: a classification and som e m easurem ents

Vol.3 lss.3 - May 1983

IPA networking architecture
I PA data interchange and networking facilities
The IPA telecommunications function
IPA community m anagem ent
MACROLAN: a high-performance network
Specification in C SP language of the ECMA-72 Class 4 transport protocol
Evolution of switched telecommunication networks
DAP in action

Vol.2 lss.3-M av 1981

Ingenuity November 1994 365

Expert system in heavy industry: an application of ICLX in a British Steel Corporation works
Dragon: the development of an expert sizing system
The logic language PROLOG-M in database technology and intelligent knowledge-based
system s
QPROC: a natural language d a tabase enquiry system implemented in PROLOG
Modelling software support

Vol.4 lss.1 - May 1984

The ICL University R esearch Council
The Atlas 10 computer
Towards better specifications
Solution of the global elem ent equations on the ICL DAP
Quality model of system design and integration
Software cost m odels
Program history records: a system of software data collection and analysis

Vol.4 lss.2 - November 1984

Modelling a multi-processor designed for telecommunication system s control
Tracking of LSI chips and printed circuit boards using the ICL Distributed Array Processor
Sorting on DAP
User functions for the generation and distribution of encipherment keys
Analysis of software failure data(1): adaptation of the Littlewood stochastic reliability growth
model for coarse data
Towards a formal specification of the ICL Data Dictionary

Vol.4 lss.3 - May 1985

Overview of the ICL Series 39 Level 30 system
VME nodal architecture: a model for the realisation of a distributed system concept
Processing node of the ICL Series 39 Level 30 system
Input/output controller and local a rea networks of the ICL Series 39 Level 30 system
The store of the ICL Series 39 Level 30 system
The high-speed peripheral controller for the Series 39 system
Development of 8000-gate CMOS gate arrays for the ICL Level 30 system
Development route for the C8K 8000-gate CMOS array
Design automation tools used in the development of the ICL Series 39 Level 30 system
Design and manufacture of the cabinet for the ICL Series 39 Level 30 system
Manufacturing the level 30 system I Mercury: an advanced production line
Manufacturing the Level 30 system II Merlin: an advanced printed circuit board manufacturing
system
Manufacturing the Level 30 system III The test system
Patent applications arising out of the Level 30 project

Vol.4 lss.4 - November 1985

History of the ICL content-addressable file store, (CAFS)
History of the CAFS relational software
The CAFS system today and tomorrow

Vol.3 lss.4 - November 1983

366 Ingenuity November 1994

Development of the CAFS-ISP controller product for Series 29 and 39 system s
CAFS-ISP: issues for the applications designer
Using secondary indexes for large CAFS databases
Creating an end-user CAFS service
Textm aster - a document retrieval system using CAFS-ISP
CAFS and text: the view from academ ia
Secrets of the sky. the IRAS data a t Q ueen Mary College
CAFS file-correlation unit

Vol.5 lss.1 -M av 1986

ICL company research and development, 1904-1959
Innovation in computational architecture and design
REMIT: a natural language paraphraser for relational query expressions
Natural language database enquiry
The m e too method of software design
Formal specification - a simple example
The effects of inspections on software quality and productivity
Recent developm ents in image d ata compression for digital facsimile
M essage structure a s a determinant of m essage processing system structure
Suggested extension of ICL DAP parallelism

Vol.5 lss.2 - November 1986

The M anagem ent into the 1990s Research Programme
Managing strategic ideas: the role of the computer
A study of interactive computing a t top m anagem ent levels
A m anagem ent support environment
Managing change and gaining corporate commitment
An approach to information technology planning
Preparing and organising for IPSE
Global Language for Distributed Data Integration
The design of distributed secure logical machines
Mathematical logic in the large practical world
The ICL DRS300 m anagem ent graphics system
Performance of OSLAN local a rea network
Experience with programming parallel signal-processing algorithms in Fortran 8X

Vol.5 lss.3 - May 1987

W hat is Fifth Generation? - the scope of the ICL programme
The Alvey DHSS Large Demonstrator Project
PARAMEDICL: a computer-aided medical diagnosis system for parallel architectures
S39XC - a configurer for Series 39 mainframe system s
The application of knowledge-based system s to computer capacity m anagem ent
On knowledge b ase s a t ECRC
Logic languages and relational databases: the design and implementation of Educe
The sem antic aspects of MMI
Language overview
PISA - a Persistent Information Space Architecture
Software development using functional programming languages

Ingenuity November 1994 367

Dactl: a computational model and compiler target language based on graph reduction
Designing system software for parallel declarative system s
Flagship computational m odels and machine architecture
Flagship hardware and implementation
GRIP: a parallel graph-reduction machine

Vol.5 lss.4 - November 1987

Open Distributed Processing
The Advanced Network System s Architecture project
Community m anagem ent for the ICL networked production line
The X/OPEN Group and the Common Applications Environment
Security in distributed information system s: needs, problems and solutions
Cryptographic file storage
Standards and office information
Introducing ODA
The Technical and Office Protocols - TOP
X400 - international information distribution
A general purpose natural language interface: design and application a s a database front end
DAP-Ada: Ada facilities for SIMD architectures
Quick language implementation

Vol.6 lss.1 - Mav 1988

ICL Series 39 support process
The ICL system s support centre organisation
ICL Services Product Centre
Knowledge engineering a s an aid to the system service desks
Logic analysers for system problem solving
Repair - past and future
OSI migration
A Network to Support Application Software Development
Universal Communications Cabling: A Building Utility
Collecting and generalising knowledge descriptions from task analysis data
The architecture of an autom ated Quality M anagement System
ICL Company Research and Development Part 2: Mergers and Mainframes, 1959-1968

Vol.6 lss.2 - November 1988

Manufacturing a t ICL's Ashton plant
Knowledge based system s in computer based manufacturing
Open system s architecture for CIM
MAES - An expert system applied to the planning of material supply in computer
manufacturing
JIT and IT
Computer Aided Process Planning (CAPP): Experience a t Dowty Fuel System s
Use of integrated electronic mail within d a tab ases to control p rocesses
Value engineering - a tool for product cost reduction
ASP: Artwork specifications in Prolog
Elastomer technology for probing high-density printed circuit boards
The effects of back-driving surface mounted digital integrated circuits

368 Ingenuity November 1994

Reliability of surface-mounted component soldered joints produced by vapour phase, infrared
soldering techniques
Materials evaluation
On the human side of technology

Tools, Methods and Theories: a personal view of progress towards System s Engineering
System s Integration
An architectural framework for system s
Twenty Y ears with Support Environments
An Introduction to the IPSE 2.5 Project
The case for CASE
The UK Inland Revenue operational system s
La solution ICL chez Carrefour a Orleans
A Formally-Specified In-Store System for the Retail Sector towards a Geographic Information
System
Ingres Physical Design Adviser: a prototype system for advising on the physical design of an
Ingres relational database
KANT - a Knowledge Analysis Tool
Pure Logic Language
The 'Design to Product' Alvey Demonstrator

Vol.6 lss.4 - November 1989

Time to Market in new product development
Time to Market in manufacturing
The VME High Security Option
Security a spects of the fundamental association model
An introduction to public key system s and digital signatures
Security c la sses and access rights in a distributed system
Building a m arketeer's workbench: an expert system applied to the marketing planning process
The Knowledge Crunching Machine a t ECRC: a joint R&D project of a high speed Prolog
system
Aspects of protection on the Flagship machine: binding, context and environment
ICL Company Research and Development Part 3: The New Range and other developments

Vol.7 lss.1 - May 1990

Architecture of the DRS6000 (UNICORN) Hardware
DRS6000 (UNICORN) software: an overview
Electromechanical Design of DRS6000 (UNICORN)
The User-System Interface - a challenge for application users and application developers?
The em ergence of the separable user interface
SMIS - A Knowledge-Based Interface to Marketing Data
A Conversational Interface to a Constraint-Satisfaction System
SODA: The ICL interface for ODA document access
Human - Human co-operation and the design of co-operative mechanism s
Regulatory Requirements for Security - User A ccess Control
S tandards for secure interfaces to distributed applications
How to Use Colour in Displays - 1. Physiology Physics & Perception

Ingenuity November 1994 369

The SX Node Architecture
SX Design P rocess
Physical Design C oncepts of the SX Mainframe
The Development of Marketing to Design: The Incorporation of Human Factors into
Specification and Design
Advances in the Processing and M anagement of Multimedia Information
An Overview of Multiworks
RICHE-Fteseau d'lnformation et de Communication Hospitaiier Europ£en (Healthcare
Information and Communication Network for Europe)
E.S.F - A European Programme for Evolutionary Introduction of Software Factories
A Spreadsheet with Visible Logic
Intelligent Help - The Results of the EUROHELP Project
How to use Colour in Displays - Coding, Cognition and Comprehension
Eye Movements for A Bidirectional Human Interface
Governm ent IT Infrastructure for the Nineties (GIN): An Introduction to the Programme

Vol.7 lss.3 - May 1991

Introduction to the technical characteristics of ISDN
ISDN in France: Num6ris and its market
The Telecom s S cene in Spain
Future Applications of ISDN to Information Technology
A Geographical Information System for Managing the A ssets of a W ater Company
Using Constraint Logic Programming Techniques in Container Port Planning
Locator - An Application of Knowledge Engineering to ICL's Custom er Service
Designing the HCI for a Graphical Knowledge Tree Editor: A C ase Study in User-Centred
Design
X/OPEN - From Strength to Strength
Architectures of D atabase Machines
Computer Simulation for the Efficient Development of Silicon Technologies
The use of Ward and Mellor Structured Methodology for the Design of a Complex Real Time
System

Vol.7 lss.4 - November 1991

System s Management: A Challenge for the Nineties - Why now?
The Evolution within ICL of an Architecture for System s Management
Manageability of a Distributed System
Distribution M anagem ent - ICL's Open Approach
Experience of Managing Data Flows in Distributed Computing in Retail B usinesses
Generation of Configurations - a Collaborative Venture
Operations Management
OSMC: The Operations Control Manager
The Network Management Domain
An Overview of the Raleigh Object-Oriented D atabase System
Making a Secure Office System
Architectures of Knowledge B ase Machines
The Origins of PERICLES - A common on-line Interface

Vol.7 lss.2 - November 1990

370 Ingenuity November 1994

Defining CASE Requirements
ICL's ICASE Products
The Engineering Database
CASE Data Integration: The Emerging International Standards
Building Maintainable Knowledge Based System s
The Architecture of an Open Dictionary
The Use of a Persistent Language in the Implementation of a Process Support System
ALF: A Third Generation Environment for System s Engineering
MASP/DL: The ALF Language for Process Modelling
The ALF User Interface M anagement System
A New Notation for Dataflow Specifications

Vol.8 lss.2 - November 1992

Open Networks - The Key to Global Success
Infrastructure of Corporate Networks in the Nineties
Broadband Networking
FDDI - The High Speed Network of the Nineties
The Evolution of W ireless Networks
Communications Technology for the Retail Environment
RIBA - A Support Environment for Distributed Processing
Information Technology: Support for Law Enforcement Investigations and Intelligence
Standard for Keyboard Layouts - The Origins and Scope of ISO/TEC 9995
ESS - A Solid State Disc System for ICL System for ICL Series 39 Mainframes

Vol.8 lss.3 - Mav 1993

An Introduction to OPEN fram ew ork
The Evolution of the OPENframeworic System s Architecture
Creating Potential-for-Change
OPEN framework in Action a t DEVETIR
Strategic Information System s planning: A Process to Integrate IT and Business System s
Describing System s in the O P E W ram ew ork Integration Knowledge Base
Multimedia and Standards for Open Information
VME-X: Making VME Open
A New Approach to Cryptographic Facility Design
CHISLE: An Engineer's Tool for Hardware System Design
Distributed Detection of Deadlock

Vol.8 lss.4 - November 1993

Toward the 4th Generation Office: A Study in Office System s Evolution
IPCS - Integrated Product Configuring Service
CGS - The ICL Configurer Graphics Service
Location Transparency in Heterogeneous Networks
Future Office Interconnection Architectures for LAN and Wide Area A ccess
Parallel Lisp and the Text Translation System METAL on the European Declarative System
Detecting Latent Sector Faults in SCSI Disks

Vol.8 lss.1 - May 1992

Ingenuity November 1994 371

Vol.9 lss.1 - Mav 1994

Client-server architecture
How ICL Corporate System s support Client-server: an ArchitecturalOverview
Exploiting Client-server Computing to m eet the needs of Retail Banking Organisations
A practical example of Client-server Integration
From a Frog to a Handsom e Prince: Enhancing existing character based mainframe
applications
Legacy system s in client-server networks: A gateway employing scripted terminal emulation
The M anagem ent of Client-server System s
Dialogue Manager: Integrating disparate services in client-server environments
Distributed Printing in a Heterogeneous World
System s Management: an example of a successful Client-server Architecture
PARIS - ICL's Problem & Resolution Information System

T o o r d e r b a c k is s u e s

C o n t a c t

ICL SystemWise Help Desk
D2D House, Manchester Road, Ashton-u-Lyne, Lancs OL7 OES, UK

Telephone +44 (0)18 1 565 7993 or +44 (0)161 371 0208 x2772
Fax +44 (0)161 371 9164

(ICL speedcall 7993)

372 Ingenuity November 1994

Ingenuity
The ICL Technical Journal

Guidance for Authors

1. Content
Ingenuity, the ICL Technical Journal, has an international circulation. It publishes high
standard papers that have some relevance to ICL's business. It is aimed at the general technical
community and in particular at ICL's users and customers. It is intended for readers who have
an interest in the information technology field in general but who may not be informed on the
aspect covered by a particular paper. To be acceptable, papers on more specialised aspects of
design or application must include some suitable introductory material or reference.

Ingenuity will usually not reprint papers already published but this does not necessarily
exclude papers presented at conferences. It is not necessary for the material to be entirely new
or original. Papers will not reveal matter relating to unannounced products of any of the ICL
Group companies.

Letters to the Editor and book reviews may also be published.

2. Authors
Within the framework defined in paragraph 1, the Editor will be happy to consider a paper by
any author or group of authors, whether or not an employee of a company in the ICL Group.
All papers are judged on their merit, irrespective of origin.

3. Length
There is no fixed upper or lower limit, but a useful working range is 4000-6000 words; it may
be difficult to accommodate a long paper in a particular issue. Authors should always keep
brevity in mind but should not sacrifice necessary fullness of explanation to this.

4. Abstract
All papers should have an Abstract of not more than 200 words, suitable for the various
abstracting journals to use without alteration.

5. Presentation
5.1 Printed (typed) copy
Two copies of the manuscript, typed 1 '/ill line spacing on one side only of A4 paper, with right
and left margins of at least 2.5cms, and the pages numbered in sequence, should be sent to the
Editor. Particular care should be taken to ensure that mathematical symbols and expressions,
and any special characters such as Greek letters, are clear. Any detailed mathematical treatment
should be put in an Appendix so that only essential results need be referred to in the text.

5.2 Disk version
Authors are requested to submit a magnetic disk version of their copy in addition to the
manuscript. All artwork and diagrams to be supplied in their original source format. The
Editor will be glad to provide detailed advice on the format of the text on the disk.

Ingenuity November 1994 373

5 .3 D iagram s
Line diagrams will, if necessary, be redrawn and professionally lettered for publication, so it is
essential that they are clear. Axes of graphs should be labelled with the relevant variables and,
where this is desirable, marked off with their values. All diagrams should have a caption and be
numbered for reference in the text and the text marked to show where each should be placed -
e.g. "Figure 5 here". Authors should check that all diagrams are actually referred to in the text
and that all diagrams referred to are supplied. Since diagrams are always separated from their
text in the production process, these should be presented each on a separate sheet and, most
important, each sheet must carry the author's name and the title of the paper. The diagram
captions and numbers should be listed on a separate sheet which also should give the author's
name and the title of the paper.

5.4 Tables
As with diagrams, these should all be given captions and reference numbers; adequate row and
column headings should be given, also the relevant units for all the quantities tabulated.

5 .5 R e feren ces
Authors are asked to use the Author/Date system, in which the author(s) and the date of the
publication are given in the text, and all the references are listed in alphabetical order of author
at the end.

e.g. in the text: "...further details are given in [Henderson, 1986]"
with the corresponding entry in the reference list:

HENDERSON, P. Functional Programming Formal Specification and Rapid
Prototyping. IEEE Trans, on Software Engineering SE*12, 2, 241-250, 1986.

Where there are more than two authors it is usual to give the text reference as "[X et a l ...]”.

Authors should check that all text references are listed; references to works not quoted in the
text should be listed under a heading such as Bibliography or Further reading.

5 .6 Style
A note is available from the Editor summarising the main points of style - punctuation, spelling,
use of initials and acronyms etc. - preferred for Journal papers.

6. Referees
The Editor may refer papers to independent referees for comment. If the referee recommends
revisions to the draft, the author will be asked to make those revisions. Referees are
anonymous. Minor editorial corrections, as for example to conform to the Ingenuity general
style for spelling or notation, will be made by the Editor.

7. Proofs, Offprints
Printed proofs are sent to authors for correction before publication. Authors receive either a
hard copy master of their paper or a Word for Windows version in either V2 or V6 on
magnetic media.

8. Copyright
Copyright of papers published in Ingenuity rests with ICL unless specifically agreed otherwise
before publication. Publications may be reproduced with the Editor's permission, which will
normally be granted, and with due acknowledgement.

374 Ingenuity November 1994

This publication is copyright under the Berne Convention and the
International Copyright Convention. All rights reserved. Apart from any

, copying under the UK Copyright Act 1956, part 1, section 7, whereby a
single copy of an article may be supplied, under certain conditions, for the
purpose of research or private study, by a library of a class prescribed by
the UK Board of Trade Regulations (Statutory Instruments 1957, No.
868), no part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is, however, not required
to copy abstracts of papers or articles on condition that a full reference to
the source is shown. Multiple copying of the contents of the publication
without permission is always illegal.

©1994 International Computers Limited. Registered office, 1CL House, 1 High Street,
Putney, London SW15 1SW. Registered in England 96056

Ingenuity November 1994

