
ICL TECHNICAL JOURNAL

Volume 8 Issue 3 May 1993

Published by
International Computers Limited
at
Oxford University Press

TECHNICAL JO U R N A L

The ICL Technical Journal is published twice a year by International Com
puters Limited at Oxford University Press.

Editor
J.M.M. Pinkerton
ICL, Lovelace Road, Bracknell, Berks RG12 4SN

Editorial Board

J.M.M. Pinkerton (Editor) M.R. Miller (BT Laboratories)
P.J. Cropper W. O’Riordan
(Northern Telecom Europe) A. Rowley
D.W. Davies FRS D. Overkleeft (Holland)
G.E. Felton E.C.P. Portman
P. Galais (Symbol, France) D. Thomelin (ICL France)
M.D. Godfrey T. Uehara (Fujitsu)
(Stanford University) B.C. Warboys (University
J. Howlett of Manchester)
M.H. Kay H.J. Winterbotham
F.F. Land (BNR Europe Ltd)

All correspondence and papers to be considered for publication should be
addressed to the Editor.
The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.
1993 subscription rates: annual subscription £60 UK and Europe and $120
rest of world; single issues £36 UK and Europe and $72 rest of world. Orders
with remittances should be sent to the Journals Subscriptions Department,
Oxford University Press, Walton Street, Oxford 0X2 6DP.

This publication is copyright under the Berne Convention and the Inter
national Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy
of an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1993 International Computers Limited. Registered office, ICL House,
1 High Street, Putney, London SW15 1SW. Registered in England 96056

Printed by The Charlesworth Group, Huddersfield, UK, 0484 517077
ISSN 0142-1557

5 ^ 1 TECHNICAL JO U R N A L
Volume 8 Issue 3

Contents
Editorial iii
French Translations of Abstracts v
German Translations of Abstracts x

OPENframework

Foreword 349

An Introduction to OPENframework
R.F. Brunt 351

The Evolution of the OPENframework Systems Architecture
M.H. Kay 365

Creating Potential-for-Change
G.D. Pratten and P. Henderson 383

OPENframework in Action at DEVETIR
I. Craig 398

Strategic Information Systems Planning: A Process to Integrate IT
and Business Strategies
R. Thurlby 416

Describing Systems in the OPENframework Integration Knowledge
Base
S. O ’Connor 438

Multimedia and Standards for Open Information
I. R. Campbell-Grant and C.R. Smethurst 453

VME-X: Making VME Open
P. Coates 473

Other Papers

A New Approach to Cryptographic Facility Design
J. Press 492

CHISLE: An Engineer’s Tool for Hardware System Design
A. Jebson, C. Jones and H. Vosper 506

ICL Technical Journal May 1993 I

Distributed Detection of Deadlock
S. Hilditch and T. Thomson 520

Book Reviews 546

The ICL Computer Users Association 553

Guidance to Authors 555

ii ICL Technical Journal May 1993

Editorial Note

ICL’s OPENframework is the main topic of this issue of the Journal. Eight
papers of very differing scope give a picture of an approach that ICL believes
will put users in a better position to meet their particular needs by inter
linking hardware and software components chosen from the most suitable
sources whether proprietary to ICL or not. As stated in the Foreword by
Mr Andrew Boswell, Technical Director of ICL, the approach embodies not
merely a universal architecture - conceived of as independent of any vendor
- but is based on a philosophy of how to go about this process of integration,
starting from an analysis of specific business needs. OPENframework also
offers a substantial and systematically organised body of procedural advice
and factual information.

Obviously such a wide subject cannot be covered in full detail in one issue
of the ICL Technical Journal but ICL has sponsored a complete series of
books, now published by Prentice Hall, about different aspects of
OPENframework. The introductory book in the series is reviewed in this
issue by Annette Haworth. The full list of titles is given in the opening paper
on OPENframework by Brunt, in which he analyses the market trends which
inspired the philosophy and architectural thinking of OPENframework. The
second paper by Kay is an account of how active and long-standing parti
cipation by ICL in international discussions within the industry and with
users of standards for Open Systems, led (by an evolutionary process which
is still going on) to the architectural concepts of OPENframework.

Pratten and Henderson in their paper “Creating Potential for Change”,
show how to engineer systems to allow for change in the future, taking
account of the increasingly complex “value chains” found today in the IT
industry. Two papers follow that exemplify ways in which the
OPENframework approach may be applied in practice; Craig’s paper is
especially interesting in that it shows how common objectives can be estab
lished in a government authority (in this case in Australia) responsible for
a range of activities that initially looked quite distinct. Thurlby describes a
detailed analytical study of the business requirements of electricity distribu
tion companies in the UK, though his conclusions are more general.

As already mentioned, OPENframework expects substantial information will
be required about the characteristics of products that may be chosen as
components of an integrated system. Obviously the structure of this informa-

OPENframework is a trademark of International Computers Ltd.

ICL Technical Journal May 1993 III

tion will need to be carefully designed to make it both easy to refer to and
unambiguous in use. O’Connor proposes a suitable abstract structure for
this purpose. Campbell-Grant and Smethurst review multi-media technolo
gies and indicate how information represented in a multiplicity of media can
be specified in standard ways, with particular reference to OPENframework.
Finally Coates describes VME-X, an extension to the established VME
operating system supported by ICL’s main frames to allow them to run
UNIX-based software and so to work effectively in multi-user environments.

Three further papers discuss a novel approach to the design of cryptographic
systems, an engineer’s software tool to aid the design of hardware systems
and two algorithms for the distributed detection of deadlock in distributed
systems.

This issue concludes with reviews of three books, one being the Introduction
to OPENframework already mentioned and the other two about New
Technology in Police Work and X/OPEN and Open Systems.

The Editor wishes to record his indebtedness and grateful thanks to
Dr Michael Kay who, besides writing one himself, elicited and edited the
other contributions on OPENframework, to Colin Stretch for comments on
those contributions, and to all authors for their papers and great readiness
to respond to many editorial comments.

iv ICL Technical Journal May 1993

Resumes

R. F. Brunt
Manager, OPENframework Systems Architecture, ICL, West Gorton, Manchester,
Royaume-Uni
Introduction a OPEN framework

OPENframework repond aux besoins de simplification, de structure et de methode
des acquereurs de technologie de l’information. Ces besoins decoulent de trois facteurs
interdependants, a savoir l’etat de maturite du secteur informatique, le deplacement
de la fonction d’integration des systemes chez l’acheteur, et l’utilisation de l’informati-
que a l’avantage de l’entreprise. Cet article explique comment ces facteurs sont pris
en compte par les divers aspects d’OPENframework; il presente; ses perspectives,
qualites, elements et specialisations; l’architecture d’entreprise, et les techniques
d’etude des processus de gestion avec la base de connaissances.

Michael H. Kay
ICL Fellow, Reading, Royaume-Uni
L'evolution d ’OPEN framework

Cet article decrit la pensee qui a influence le developpement d’OPEN/ramewor/c,
l’architecture des systemes informatiques d’ICL. II explique 1’evolution
d'OPENframework en quatre grandes phases, couvrant l’interfonctionnement, la
portability, l’integration des systemes et, enfin, l’alignement strategique avec la gestion
d’entreprise. Cet article n’est pas conqu comme une enumeration chronologique
d’evenements. II est plutot destine a expliquer la signification historique
d'OPENframework pour ICL, au moment meme ou la societe, d’un constructeur de
gros systemes proprietaries, devient un integrateur, en utilisant des systemes ouverts
comme moyen de rendre la technologie informatique mieux adaptee aux besoins de
ses entreprises clientes.

Graham D. Pratten
Company Architect, Potential-for-Change, OPENframework Division, ICL
Peter Henderson
Department of Electronics and Computer Science, University of Southampton,
ICL Visiting Fellow
Creation du potentiel de changement

Le potentiel de changement est la capacite d’un produit a evoluer pour repondre
aux demandes de nouveaux marches et exploiter de nouvelles opportunities techni
ques. Cet article etudie comment l’industrie informatique confere cette qualite aux
produits qu’elle developpe et aux systemes utilisateur dans lesquels ils sont integres.

ICL Technical Journal May 1993 v

II concentre son attention sur les chaines de valeurs et les processus qui sont utilises
dans les produits et systemes informatiques en cours de developpement et en evolu
tion, et envisage comment il est possible de les orienter vers le changement. II etudie
brievement comment les produits et systemes proprement dits peuvent adopter des
architectures orientees vers le changement, qui leur permettent d’evoluer de maniere
souple. II termine par un regard sur les moteurs du changement dans les entreprises
utilisatrices qui generent le besoin du potentiel de changement.

Ian Craig
Fujitsu Australia Pty. Ltd., Brisbane, Queensland, Australie
OPENframework en action chez DEVETIR

Les systemes ouverts disposent du potentiel necessaire pour offrir des avantages
tangibles aux entreprises; toutefois, le passage de la theorie a la pratique se revele
une veritable pierre d’achoppement pour bon nombre d’organisations. A la fin de
l’annee 1991, ICL et DEVETIR, un departement important de l’administration du
Queensland en Australie, ont mis sur pied un projet unique de cooperation sur trois
ans pour developper une architecture de systemes ouverts utilisant OPENframework
d’ICL. L’objectif est de lier directement des processus de gestion reetudies a une
architecture hautement repartie, dont la caracteristique essentielle est la capacite a
mettre en oeuvre tres rapidement des changements au niveau de l’organisation, des
processus et de la technologie. Pour atteindre cet objectif, le projet a adopte des
techniques de modelisation de processus, une technologie de support des processus
et des systemes de messagerie bases sur des repertoires. Les problemes humains
restent toutefois les facteurs de reussite les plus importants. Le projet beneficie de
l’appui et de la participation reguliere de l’equipe de direction de I’entreprise. A cela
se combine un investissement toujours plus important dans la formation, tant du
personnel de gestion que du personnel informatique, pour les aider a travailler hors
de leurs domaines de predilection traditionnels.

R. Thurlby
Visiting Fellow, Brunei University, Uxbridge, Royaume-Uni
Planification des systemes informatiques strategiques: Processus d ’integration de
l 'informatique et des strategies d 'entreprise

Les techniques de planification des systemes informatiques ont toujours ete limitees
par leur dependance vis-a-vis d’une strategic d’entreprise donnee. Des travaux recents
de la direction du programme Nineties, decrits dans cet article, ont demontre que
l’informatique est desormais un moteur suffisamment puissant pour que la strategic
d’entreprise et informatique soient devenues interdependantes. De ce fait, de nouvelles
techniques de planification des systemes informatiques supportant la modelisation
de strategies interdependantes ont ete developpees.

Cet article decrit une nouvelle methodologie de planification des systemes informati
ques qui permet l'analyse et la modelisation dynamiques de l’interdependance en
tant que processus temporel. Cette methodologie emploie les techniques de l’aligne-
ment strategique et de la modelisation de processus de valeurs. Ces techniques sont
decrites avec la theorie sur laquelle elles reposent. Cet article examine egalement
comment il convient d’etendre les besoins d’analyse au-dela des limites de l’organisa-
tion en utilisant le concept d’invasion de processus.

vi ICL Technical Journal May 1993

L’article presente une etude de cas, qui decrit l’utilisation de cette methodologie de
planification des systemes informatiques dans certaine compagnies d’electricite regio-
nales au Royaume-Uni. Cette etude se concentre sur l’application de la methodologie
pour le developpement et l’alignement de strategies d’entreprise et de systemes
informatiques qui repondent aux opportunity offertes par la privatisation du secteur
de l’electricite britannique.

L’article conclut en soulignant quelques problemes souleves par l’utilisation des
techniques, et en expliquant comment ils seront resolus grace aux recherches menees
actuellement par l’auteur.

Stuart O’Connor
ICL OPENframework Division, Manchester, Royaume-Uni
Description de systemes informatiques d I'aide de “solutions”formelles

Le developpement de systemes informatiques plus complexes, rendu possible grace
aux progres recents de l’informatique repartie et de l’integration de systemes, s’est
traduit par une approche plus architecturale de la description des systemes d’informa-
tion. Cet article etudie une maniere formelle de decrire les systemes informatiques.
L’element fondamental propose est une “Solution”, qui comprend un ensemble fini
de proprietes; un systeme d’information est constitue d’une combinaison de solutions.
Les applications directes de cette theorie englobent: la conception structurelle d’une
base de donnees pour le stockage d’informations d’integration; le remplacement de
methodologies structures par des outils d’analyse informatiques; et des listes de
controle pour la capture d’informations a partir d’essais de verification.

Ian R. Campbell-Grant
ICL Fellow, ICL, Bracknell, Royaume-Uni
C. R. Smethurst
Company Architect, OPENframework Division, ICL, Kidsgrove, Royaume-Uni
Multimedia et normes pour une information ouverte

Cet article comprend deux grandes parties. La premiere presente les principales
technologies multimedias et decrit quelques-uns des impacts sur la societe de la mise
en oeuvre d’une capacite multimedia reseau globale.

L’un des aspects technologiques essentiels concerne la definition de normes d’accepta-
tion generate pour la representation des informations multimedias. La seconde partie
de l’article etudie ce point de maniere plus detaillee, en le mettant en rapport avec
l’architecture multimedia d’OPEN/ramework et en indiquant les domaines essentiels
dans lesquels des normes sont necessaires et en evolution.

Paul Coates
Computer Systems Division, ICL, Manchester, Royaume-Uni
VME-X: ouverture de VME

Conforme a la norme XPG4 version 1 de X/Open, VME-X fonctionne sur les serveurs
ICL Series 39, qui supportent plusieurs environnements multiutilisateurs similaires
a UNIX, en plus de la charge de travail normale d’une machine de la serie 39. Cet

ICL Technical Journal May 1993 vii

article comprend une presentation fonctionnelle breve de VME-X, suivie d’une
description de sa structure et de sa mise en oeuvre. Etant donne qu’il fonctionne
comme une application au-dessus d’un systeme d’exploitation general, ces dernieres
sont assez differentes d’un portage UNIX normal.

Jim Press
ICL Mid-Range Systems Division, Reading, Berks, Royaume-Uni
Nouvelle approche de la conception de fonctions cryptographiques

Cet article introduit les principaux concepts sur lesquels repose la conception du
service CKMS (Cryptographic and Key Management Service), qui fait partie de la
fonction CSF (Cryptographic Support Facility) utilisable dans d’autres produits ICL.

Le service CKMS est une nouvelle approche de la fourniture de services cryptographi
ques basee sur des techniques orientees objet. II permet aux applications clientes
d’etre independantes des details des algorithmes cryptographiques fondamentaux, ce
qui contribue a leur portability. II garantit egalement l’utilisation des algorithmes de
chiffrage conformement a la politique locale en matiere de securite et a ete congu
pour que leur remplacement soit aise.

A. Jebson, C. Jones, H. Vosper
Corporate Servers Product Group, ICL Corporate Systems Division, West
Gorton, Manchester, Royaume-Uni
CHISLE: Un outil de pointe pour la conception de systemes

Cet article decrit les methodes employees pour formaliser l’approche du developpe-
ment du materiel. II presente une methodologie basee sur la decomposition de la
conception hierarchique et sur la modelisation multiniveau mixte en utilisant un
langage semi-formel “CHISLE” (Combined Hardware and Interface Specification
Language for Engineers). Ce langage definit a la fois les fonctionnalites et les interfaces
et est compile en modeles executables. Cette approche permet de resoudre les princi
paux problemes auxquels sont confrontes les concepteurs de materiel, en l’occurrence,
comment specifier la conception d’une maniere concise, comprehensible et sans
ambigui'te, et comment representer le parallelisme et les relations temporelles inheren-
tes aux elements complexes du materiel. Les resultats et realisations a ce jour sont
egalement decrits, avant que Particle ne se termine par la presentation de quelques
possibility d’ameliorations futures.

Steve Hilditch
ICL Bracknell, Royaume-Uni
Tom Thomson
ICL Manchester, Royaume-Uni
Detection repartie d'un interblocage

La coherence des donnees dans les systemes de gestion de bases de donnees reparties
est bien souvent mise en oeuvre par des transactions qui preservent separement la
coherence. L’execution de transactions concurrentes peut etre assuree en plaeant des
verrous sur les donnees et en utilisant une discipline de verrouillage a deux phases.
Les transactions peuvent etre contraintes a attendre que d’autres suppriment des

viii ICL Technical Journal May 1993

verrous. II peut arriver qu’un cycle complet de transactions en attente provoque un
interblocage. Dans un environnement a memoire repartie, certains interblocages
peuvent etre detectes localement, c’est-a-dire sans utilisation du reseau de communi
cation. Toutefois, le cas le plus difficile a detecter intervient lorsqu’un certain nombre
de transactions sur differents noeuds du reseau s’attendent mutuellement, aucune ne
pouvant alors continuer. 11 s’agit dans ce cas d’un interblocage reparti.

Cet article presente deux algorithmes simples pour la detection d’un tel interblocage
sur un systeme de base de donnees reparties sans partage. Ils sont congus pour etre
evolutifs et minimisent le trafic de messages sur le reseau. Une approche orientee
objet est utilisee et des preuves semi-formelles de la validite des algorithmes sont
fournies.

ICL Technical Journal May 1993 lx

Zusammenfassungen

R. F. Brunt
Manager, OPENframework Systemarchitektur, ICL, West Gorton, Manchester,
GroBbritannien
Einfiihrung in das OPEJVframework

OPENframework setzt sich mit den Bedurfnissen von IT-Anwendern nach
Vereinfachung, Struktur und Methode auseinander. Diese Bedurfnisse entstehen
aufgrund dreier zusammenhangender Faktoren: dem Entwicklungsstand der
Informationstechnologie, einer Verschiebung der Systemintegrationsfunktion auf den
Anwender und dem Einsatz der Informationstechnologie zur Erreichung von
Geschaftsvorteilen. Der Artikel erlautert, wie die verschiedenen Aspekte von
OPENframework diese Faktoren beriicksichtigen; dabei geht er auf Perspektiven,
Eigenschaften, Elemente und Spezialisierungen, auf Unternehmensarchitektur, und
technische Verfahren der Geschaftsabwicklung sowie auf die entsprechende
Wissensbasis ein.

Michael H. Kay
ICL Fellow, Reading GroBbritannien
Die Entstehung von OPEN framework

Dieser Artikel befaBt sich mit den Uberlegungen, welche die Entwicklung von
OPENframework, ICLs Informationssystemarchitektur, beeinfluBt haben. Er stellt
die Entwicklung von O PENframework in vier Stufen dar, zu denen Dialogfahigkeit,
Ubertragbarkeit, Systemintegration und schlieBlich strategische Ausrichtung auf die
Unternehmensfuhrung gehoren. Der Artikel ist nicht als chronologische Darstellung
der Entwicklungsstufen gedacht, sondern soli vielmehr erlautern, welche wichtige
historische Rolle OPEN/ramework bei der Transformation von ICL vom Hersteller
proprietarer GroBrechner zum Systemintegrator gespielt hat. ICL setzt dabei offene
Systeme als Mittel ein, um die Informationstechnologie mehr auf die Bedurfnisse der
Unternehmen seiner Kunden zuzuschneiden.

Graham D. Pratten
Unternehmensarchitekt, Potential-for-Change, OPENframework Division, ICL

Peter Henderson
Fachbereich Elektronik und Informatik der Universitat Southampton, Visiting
Fellow von ICL
Veranderungspotential schaffen

Veranderungspotential besteht bei der Entwicklungsfahigkeit eines Produktes, neue
Marktbediirfnisse zu befriedigen und neue technische Moglichkeiten auszuschopfen.

x ICL Technical Journal May 1993

Dieser Artikel beleuchtet, wie die IT-Industrie dies durch die von ihnen entwickelten
IT-Produkte sowie durch den Einsatz dieser Produkte in Endbenutzersystemen
erreicht.

Er konzentriert sich auf die Werteketten und -prozesse, die bei der Entwicklung und
Evolution von IT-Produkten und -Systemen eine Rolle spielen, und zieht in
Erwagung, wie diese anpassungsfahig gemacht werden konnen. Er geht auch kurz
darauf ein, wie man diesen Produkten und Systemen selbst eine flexiblere Architektur
geben kann, so daB sie veranderungsfahiger werden. AbschlieBend wirft er einen
Blick auf die Veranderungskrafte in Anwenderuntemehmen, die das Bediirfnis nach
Veranderungspotential hervorrufen.

Ian Craig
Fujitsu Australia Pty. Ltd., Brisbane, Queensland, Australien
OPE,Vframework in Aktion bei DEVETIR

Offene Systeme haben das Potential konkrete Geschaftsvorteile zu liefern. Fur viele
Organisationen ist das Umsetzen der Theorie in die Praxis aber problematisch. Ende
1991 schlossen sich ICL und DEVETIR, ein groBes Ministerium in Queensland,
Australien, zu einem dreijahrigen Partnerschaftsprojekt zur Entwicklung einer auf
offenen Systeme basierten Architektur zusammen, das ICLs OPENframework
benutzte. Ziel ist der direkte AnschluB individuell konstruierter Geschaftsprozesse
an eine verteilte Architektur, deren Hauptmerkmal die Fahigkeit ist, organisatorische,
prozessuale und technologische Anderungen sehr schnell durchzufuhren. Um
dieses Ziel zu erreichen, setzt das Projekt ProzeBmodellierungs- und
ProzeBunterstiitzungstechnologien, sowie auf Dateiverzeichnis basierte
Nachrichtensysteme ein. Die bedeutendsten und entscheidendsten Erfolgskriterien
sind jedoch die menschlichen Aspekte. Das Projekt arbeitet mit starker Unterstiitzung
und regelmaBiger Beteiligung des Managementteams des Unternehmens, verbunden
mit standig zunehmenden Investitionen in die Fortbildung von Mitarbeitern aller
Geschaftsbereiche, um diesen zu ermoglichen, sich iiber die Grenzen ihrer herkommli-
chen Arbeitsgebiete zu orientieren.

R. Thurlby
Visiting Fellow, Brunei University, Uxbridge, GroBbritannien
Strategische Informationssystemplanung: Ein Prozefl der Integration von
Informationstechnologie und Unternehmensstrategien

Die Verfahren der Informationssystemplanung (I.S. = Information Systems) sind his-
torisch aufgrund ihrer Abhangigkeit von einer gegebenen Unternehmensstrategie
eingeschrankt gewesen. Jiingste, in diesem Artikel vergestellte Arbeiten des
Programms ’Management in den 90er Jahren’ haben gezeigt, daB IT heute zu einem
ausreichend wichtigen Aspekt geworden ist, um die Untemehmensstrategie zu beein-
flussen. Folglich miissen neue I.S.-Planungssysteme entwickelt werden, die die
Modellbildung sich gegenseitig beeinflussender Strategien unterstiitzen.

Dieser Artikel beschreibt eine neue Methodik der I.S.-Planung, die es ermoglicht,
die BeeinfluBung zu analysieren und dynamisch als temporalen ProzeB zu modellie-
ren. Die Methodik bedient sich der Verfahren der strategischen Ausrichtung und
WerteprozeB-Modellierung, und diese werden zusammen mit der ihnen zugrundelie-

ICL Technical Journal May 1993 xl

genden Theorie beschrieben. Zusatzlich wird untersucht, wie die Analyse durch
ProzeBinvasion iiber die Grenzen der Organisation hinaus erweitert werden kann.

Der Artikel zeigt die Anwendung dieser I.S.-Planungsmethodik anhand der Fallstudie
eines regionalen Elektrizitatsunternehmens in GroBbritannien. Die Fallstudie befaBt
sich mit der Anwendung dieser Methodik auf die Entwicklung und Ausrichtung von
Unternehmens- und I.S.-Strategien in Antwort auf die durch die Privatisierung der
britischen Elektrizitatsindustrie eroffneten Moglichkeiten.

AbschlieBend erortert der Artikel einige der Fragen, die sich durch die Anwendung
der Verfahren ergeben haben, und zeigt, auf welche Weise der Autor diese Fragen in
seiner gegenwartigen Forschung in Angriff nimmt.

Stuart O’Connor
ICL OPEN/ramewor/c Divsion, Manchester, GroBbritannien
Erlauterung von lnformationssystemen mit Hilfe formaler 'Losungs'-Beschreibungen

Die durch neuste Fortschritte in verteiltem Computing und bei integrierten Systemen
vorangetriebene Entwicklung komplexerer Informationssysteme hat zu einem starker
architekturbezogenen Ansatz bei der Beschreibung von Systemen gefiihrt. Dieser
Artikel befaBt sich mit der Frage, wie Informationssysteme formal beschrieben
werden konnen. Die vorgeschlagene fundamental Komponente ist eine sogenannte
'Losung', die eine bestimmte Anzahl von Eigenschaften besitzt; ein
Informationssystem setzt sich dabei aus einer Kombination von Losungen zusam-
men. Zu den direkten Anwendungsbereichen dieser Theorie gehoren u.a. das struk-
turelle Design einer Datenbank fur Integrationsinformationen, das Ersetzen
struktureller Methoden durch Computer-basierende Analyse-Tools und Priiflisten
zum Festhalten der aus Verifizierungsversuchen gewonnenen Informationen.

Ian R. Campbell-Grant
ICL Fellow, ICL, Bracknell, GroBbritannien

C. R. Smethurst
Unternehmensarchitekt, OPENframework Division, ICL, Kidsgrove,
GroBbritannien
Multimedia und Standards fiir Offene Informationen

Dieser Artikel ist in zwei Hauptabschnitte unterteilt: Der erste stellt die Schliissel-
Multimediatechnologien vor und umreiBt einige der Auswirkungen, die sich aus der
Verwirklichung global vernetzter Multimediakapazitaten ergeben.

Eine Schlusseltechnologie befaBt sich mit der Etablierung allgemein anerkannter
Standards bei der Darstellung von Multimediainformation. Im zweiten Teil des
Artikels wird dieser Aspekt naher beleuchtet, indem er zur OPENframework-
Multimedianarchitektur in Bezug gestellt wird. AuBerdem wird auf die
Schliisselbereiche hingewiesen, in denen Standards benotigt werden und entstehen.

xil ICL Technical Journal May 1993

Paul Coates
Computer Systems Division, ICL, Manchester, GroBbritannien
VME-X: Die Offnung von VME

VME-X ist ein auf Servern der ICL Serie 39 laufendes S/W-Produkt, welches mehrere
UNIX-gleiche Umgebungen fur Multibenutzer neben der normalen Arbeitsbelastung
der Serie 39 unterstiitzt. Es entspricht dem X/Open Standard der XPG4 Basis-
version 1. Der Artikel beinhaltet auBerdem eine kurze funktionale Beschreibung von
VME-X, gefolgt von einer Beschreibung seiner Struktur und Implementierung, die
sich - da VME-X als zusatzliche Anwendung zu einem allgemeinen Betriebssystem
lauft von einer normalen UNIX-Partierung unterscheidet.

Jim Press
ICL Mid-Range Systems Division, Reading, Berkshire, GroBbritannien
Neuer Ansatz beim Design kryptographischer Einrichtungen

Dieser Artikel beschreibt die wichtigsten Grundkonzepte fiir das Design von
Kryptographik- und Schliisselwort-Managementservices (CKMS = Cryptographic
and Key Management Service), einem Teil der Kryptographik-
Unterstiitzungseinrichtung (CSF= Cryptographic Support Facility), die mit anderen
ICL-Produkten verwendet werden kann.

CKMS ist ein neuer Ansatz bei der Bereitstellung von Kryptographik-Services, der
auf objectorientierten Verfahren beruht. Er ermoglicht, daB Client-Anwendungen
von den zugrundeliegenden kryptographischen Algorithmen unabhangig sind, und
unterstiitzt somit deren Ubertragbarkeit. AuBerdem sorgt er dafur, daB kryptograp-
hische Algorithmen benutzt werden, die der ortlichen Sicherheitspolitik entsprechen,
und ist mit Blick auf eine leichte Austauschbarkeit konzipiert worden.

A. Jebson, C. Jones, H. Vosper
Corporate Servers Product Group, ICL Corporate Systems Division, West
Gorton, Manchester, GroBbritannien
Chisle: Einen Schritt voraus im Systemdesign

Dieser Artikel stellt die Methoden zur Formalisierung des Ansatzes bei der
Hardware-Entwicklung dar. Er beschreibt eine auf hierarchischer Design-Gliederung
und gemischter Multilevel-Modellbildung basierende Methode, unter Verwendung
einer halbformalen Sprache namens ‘CHISLE’ (Combined Hardware and Interface
Specification Language for Engineers = Kombinierte Hardware und Interface
Spezifikationssprache fur Techniker). Diese Sprache definiert sowohl Funktionalitat
als auch Schnittstellen und ist in ausfiihrbare Modelle ubersetzt. Dieser Ansatz
ermoglicht die Behandlung der wichtigsten Probleme von Hardware-Designern, d.h.
eine knappe, deutliche und verstandliche Beschreibung des Designs sowie die
Darstellung der Abhangigkeiten und der Zeitverhaltnisse, die komplexen
Hardwareteilen eigen sind. Beschrieben werden auBerdem die bis dato erzielten
Leistungen, und der Artikel schlieBt mit einigen Verbesserungsvorschlagen fur die
Zukunft ab.

ICL Technical Journal May 1993 xiii

Steve Hilditch
ICL Bracknell, GroBbritannien

Tom Thomson
ICL Manchester, GroBbritannien
Dezentralisiertes Erkennen von Blockierungen

Datenkonsistenz in dezentralisierten Datenbankverwaltungssystemen wird haufig
durch Transaktionen erreicht, die die Konsistenz separat behandeln. Eine simultane
Transaktionsausfiihrung kann durch Datensperrung und der Methode einer
Zweiphasensperrung abgesichert werden. Transaktionen konnen gezwungen werden,
darauf zu warten bis andere Transaktionen die Sperren wieder aufheben. Eine kom-
plette Warteschleife von Transaktionen kann zur Blockierung fiihren. Bei einem
dezentralisierten Speichersystem konnen manche Blockierungen lokal, d.h. ohne
Einsatz des Kommunikationsnetzes, erkannt werden. Doch der am schwersten zu
erkennende Fall tritt dann ein, wenn eine Reihe von Transaktionen in mehr als
einem Netzknoten aufeinander warten, so daB keine ausgefuhrt werden kann. Man
spricht dann von einer dezentralisierten Blockierung.

Wir stellen zwei einfache Algorithmen fur die Erkennung von dezentralisierten
Blockierungen in einem nicht gemeinsam benutzten dezentralisierten
Datenbanksystem vor. Sie sind als meBbar konzipiert und minimieren den
Datenverkehr des Netzes. Ein objektorientierter Ansatz wird benutzt, und eine semi-
formale Uberprufung der Richtigkeit der Algorithmen ist gewahrleistet.

xiv ICL Technical Journal May 1993

OPEN frame work

FOREWORD

The Open Systems movement deliberately set out to remove the proprietary
barriers which stop a competitive market in component products developing.
As the barriers fall, price naturally becomes a key factor. A classic commodity
market results, in which product substitution is easy and which allows
mixing and matching of the current best of breeds. As margins correspond
ingly fall under competitive pressure, suppliers find it increasingly arduous
to bundle all manner of “no charge” services into their offerings. Indeed, the
concept of single-supplier arrangements — formerly the norm — ceases to
have much logic in a mix and match world. Furthermore, many new suppliers
in the Open Systems market have never offered anything more than the
equipment or software package itself.

Thus a new set of relationships between suppliers and customers is being
formed. The Systems Integration function comes to dominate — it is Systems
Integration which performs the vital role of converting the Open Systems
components into the successful, operational, application solutions. Systems
Integration has changed from being a hidden, bundled activity to being the
key ingredient, where risk is taken and potentially large expenses incurred.

OPENframework from ICL is a simple, certain method for undertaking
Systems Integration in an Open Systems world. It equips its users to under
take these duties in a systematic, low risk way. The key lies in organising
the subject in an understandable way, adding relevant information, providing
checklists of points to be considered, offering methods for checking the
acceptability of potential solutions and, finally, making accessible special
integration technologies. OPENframework in its various forms covers all
these subjects and more. OPENframework translates the undoubted, but
often idealised, advantages of Open Systems into implemented, paying bene
fits for real businesses.

When OPENframework was first launched in 1991, it was presented and
gained acceptance as ICL’s “architecture”. This placed ICL in a similar
position to that of its competitors. What were not revealed at that time were
ICL’s more far-reaching intentions for OPENframework. OPENframework
was destined to become very much more than a prescriptive architecture in
the manner of most other suppliers’ architectures. OPEHframework has now
been widened to provide for the IT Strategist, the IT Planner, the Application
Provider, the Systems Integrator and other roles in real businesses.

ICL Technical Journal May 1993 349

The articles which follow illustrate the blossoming of OPEN\framework. No
reader will conclude from reading this issue of the Journal that “Open
framework is ICL’s marketecture”. It is better to avoid this pre-conception.
The advice to readers is to think of OPENframework rather as an architecture
for creating architectures - something living and evolving; not tied to any
particular product or technology but adaptable; full of useful knowledge,
practical know-how and down-to-earth advice; a powerful agent for the
removal of risk and doubt.

This view of the architecture is appropriate in another dimension. Every
organisation can employ OPENframework to create its own unique business
applications and IT infrastructure its own example of OPENframework
architecture. OPENframework has a valuable role to play in all organisa
tions, ensuring that the benefits of Open Systems are realised without delay.

A.J. Boswell
ICL Technical Director

350 ICL Technical Journal May 1993

An Introduction to OPEWramework

R. F. Brunt
Manager, OPENframework Systems Architecture, ICL, West Gorton, Manchester

Abstract

OPENframework addresses the needs of information technology
buyers for simplification, structure and method. These needs arise
from three inter-related factors; the state of maturity of the informa
tion technology industry, the shift of the systems integration func
tion to the buyer and the use of information technology for business
advantage. The paper explains how these factors are addressed
by the various aspects of OPENframework; the perspectives, qual
ities, elements and specialisations, and the business architecture,
business process engineering techniques and the knowledge
base.

1 The State of the Industry

For much of the last half century, developments in the information techno
logy industry have been stimulated by governments and business.
Governments, particularly as part of their cold war defence policies, have
injected huge amounts of capital. Education in the United States, Europe,
Japan and Oceania has created a large pool of skill. The drive for growth
has caused businesses to seek ever greater efficiency and competitiveness
through investment in information technology. The volume of research and
the development of technology have been predictably alarming yet until the
late 1980s the momentum was channelled by the strategies and capabilities
of a small number of large computer suppliers.

The effect was the growth of a large and highly populated industry supported
by the high selling price associated with pioneering technology. New norms
for productivity in business were set and as long as this continued, the
profitability of the information technology industry was maintained. The
1990s present a rather different face where a number of factors have combined
to change the industry radically. The reduction in defence spending brought
about by the end of the cold war and the global recession of the early 1990s
have drastically reduced growth and have contributed to a halving in profit
ability within the computer industry over the five years from 1987 to 1992.
(McKinsey Report, 1992).

ICL Technical Journal May 1993 351

On the technology front, the arrival of microprocessors and the consequent
creation of a mass market for personal computers have led to a demand for
standardisation. For business systems this demand has been intensified by
the open systems movement. The creation of standards, de jure or de facto,
is now driven by business decisions and in free market conditions this often
results in multiple overlapping standards being established before their value
declines. Under such circumstances, the creation of low cost product com
ponents sold in high volumes is bound to prove attractive, which in turn
accelerates technological change.

The effects are to give free rein to diversity and to reduce the cost of market
entry for a potential supplier. As a result there are many more viable
suppliers than there were ten years ago. Competition is greater while margins
suffer, compounding the underlying pressure on profitability brought about
by the changed economic climate.

The industry is fragmenting into a greater number of smaller companies,
polarised into technology manufacturers and technology providers.
(Moschells, 1992). At the same time, standardisation means that there is no
need for large numbers of different implementations of each technology. For
most significant components, such as microprocessors, disk drives, operating
systems, C compilers, relational databases, or word processors, three quarters
of the world market is served by a dozen or so development teams. This
eliminates unproductive duplication of activity, because companies like ICL
that focus on the supply of complete information systems no longer need to
develop each technology in-house. The result is market-led innovation in
the application of information technology, as resource in the industry shifts
from creation of technology to developing applications software and services
more closely tailored to individual customers’ needs.

In short, three effects can be clearly seen in the state of the information
technology industry in the early 1990s:
• Growth in the information technology industry has declined in line with

profitability, and many of the traditional large suppliers are contracting.
• The gradual shift of resources into software and services is encouraging

the development of innovative applications of information technology, to
match the need of businesses to gain competitive advantage as well as
productivity.

• The fragmentation of the industry into a greater number of smaller com
panies is introducing diversity and complexity for the buyer. This is
especially true for the many organisations who in the past have dealt
almost exclusively with a single major supplier.

2 The Buyers of Information Technology

In the current state of the information technology industry, many buyers
have emerged from the protective umbrella of their chosen supplier. They
have done so because they could no longer find a complete solution to their

352 ICL Technical Journal May 1993

requirements from one vendor. Most buyers also seek multi-vendor solutions
because they believe that a cost advantage will thereby accrue, which is
certainly true for the basic equipment and software.

For most buyers this emergence is not a sudden occurrence; they have been
moving gradually towards multi-vendor purchasing for some years.
Nevertheless all buyers still face problems caused by the diversity and
complexity of the modern information technology industry. The choices
available are daunting, and in most cases the decisions have to be made by
people who have little technical knowledge themselves, but who are deluged
with advice from numerous sources inside and outside the organisation,
little of it truly objective or well-informed. As a result, fashions such as
object-orientation, client/server, and downsizing can take hold for reasons
only loosely related to their technical merit.

Having decided to go for the benefits of multi-vendor supply, the buyer is
next faced with the problem of systems integration. In the old single supplier
(high profit) days, integration was a problem for the supplier; but it no
longer comes for free in the new low margin, multi-supplier market. Initially
systems consultancy companies responded to this need, but as more and
more buyers assert their independence, integration has fast become a major
market in which the traditional information technology suppliers also
participate.

Buyers are unwilling to carry the full burden of systems integration: they
discover that what they have saved on products, they spend on procurement
and integration. There is a noticeable trend to limit this problem by buying
integrated packages. This trend will not completely solve the integration
problem but will raise it to a macroscopic level. In other words, the market
is calling for bigger and bigger building blocks and hence for sharing the
costs of integration between suppliers and buyers.

Business is now run by managers who cannot remember how the job was
ever done without computers. They take current norms for productivity for
granted, as a factor to be maintained but with limited scope for further
improvement. They are now looking for other ways of using information
technology to provide them with competitive advantage. The Management
in the Nineties study (Scott Morton, 1991) identifies this trend and analyses
its impact.

For many companies this problem is understood but the solution remains
elusive: it implies the adoption of newly emerging technologies in areas such
as distributed computing, object-orientation, process engineering, and know
ledge-based systems; but it also affects the devolution of responsibility within
the management of an organisation, and its attitude to innovation and risk.

We can thus draw three conclusions about buyers of information technology:
• Choice and diversity create daunting complications for many buyers.

ICL Technical Journal May 1993 353

• Integration of multi-vendor systems has become the buyers’ problem.
They will seek to purchase progressively larger building blocks to shift
some of the cost of integration back to their suppliers.

• There is a drive to use newly emerging technologies to gain competitive
advantage, as well as maintaining and improving productivity levels.

3 OPEN framework

3.1 What is OPENframework?

The definition in “Systems Architecture: an introduction” (Brunt and Hutt,
1992) says: “OPENframework is an architecture which enterprises can use
to create information systems that precisely meet their business
requirements.”

But it goes on to say that OPENframework does not, like other architectures,
pretend to define a single solution for everyone. Customers for information
technology are all different, and their needs are constantly changing, so there
cannot be a single answer that is right for all of them at all times.
OPENframework therefore provides a skeletal structure which is of com
pletely general applicability, together with a process for specialising the
structure to the needs of individual enterprises, to create specific architectures
tailored to local needs.

This process starts with the definition of business architecture, which is to
say a model of the business conducted by the enterprise, containing informa
tion such as the organisation structure, the strategic plan, asset models, core
competences, competitive analysis, value chain analysis, and models of busi
ness processes. All these factors influence the information systems
architecture.

The goal of the information systems architecture is to ensure that information
systems are built that meet the needs of the enterprise in five key areas:
availability, usability, performance, security, and perhaps above all, potential
for change. These five qualities, together with cost of ownership, indicate
whether or not an information system is delivering value for money.
Deficiencies in an information system can always be attributed to a shortfall
in one or more of these qualities, and thus either to a failure in the engineering
process by which the information system was constructed or to an error in
specifying its requirements. The five qualities in OPENframework are illus
trated in Figure 1.

If it is true that to get the information system right we must take these five
qualities into account, then it is also true that to determine the requirements
for these five qualities we must first study the environment in which the
information system is to be used, that is, the people and the processes that
will make the information system into a thing of value to the enterprise. A

354 ICL Technical Journal May 1993

Fig. 1 OPENframework Qualities

mismatch between the technology and the people it serves is the most
common cause of failure in large information systems.

OPENframework studies the people and processes in terms of four perspect
ives: the enterprise management, the users, the application developers, and
the service providers. These last two roles perhaps deserve some further
explanation, since OPENframework stretches the conventional meanings of
the terms:
• Application developers do not merely write the enterprise-specific applica

tions, they are also concerned with every aspect of system design and
construction. For example, they select components that will be procured
as part of the final system, and they develop the documentation and
training materials for users.

• Service providers, similarly, are concerned with every aspect of operation
of the information system, whether it be capacity planning, installation of
hardware and software, provision of training, management of faults, or
running a help desk.

Application developers, clearly, carry the responsibility for designing a
system that meets quality requirements, and this responsibility is discharged
by using appropriate engineering disciplines at every stage of development.
Service providers, equally, are responsible for measuring and monitoring the
information system to ensure that agreed service levels are being attained,
and taking corrective action when they are not.

The diagram showing the eight OPENframework elements (Figure 2) is
perhaps the most widely-recognised feature of the architecture. As the intro-

ICL Technical Journal May 1993 355

Fig. 2 OPEN framework Structure

duction to this paper shows, however, it is by no means its most import
ant feature.

The reason for having eight elements with clean boundaries between them
is to achieve potential for change. It allows the technology in each element
to develop independently of the others. It also allows human skills to be
partitioned: it becomes possible to employ database experts who know little
about networking, and networking experts who know little about databases.
This principle of modularity has been understood for many years, and is
not unique to OPENframework. As with other modular decompositions, the
precise choices of which function goes in which element are essentially
pragmatic, and in the case of OPENframework are based as much as anything
else on the structure of the industry supplying the components: it was
observed many years ago that the structure of a system always corresponds
to the structure of the organisation that produced it, which in this case is
the information technology industry as a whole.

People seeing this OPENframework structure for the first time sometimes
react by asking what is different about it. The answer is, nothing:
OPENframework addresses the challenge of integrating open systems, and
it could not achieve its aims if the technical model differed significantly from
what the industry as a whole was doing. What is different about
OPENframework is not the structural model, but the way in which it can
be used as a management tool to deliver business benefits through the
medium of the five qualities.

356 ICL Technical Journal May 1993

3.2 The OPENframework process

OPENframework is designed to help organisations build their own architec
tures as a way of addressing the problems identified in the previous sections
of this paper. Because OPENframework starts by addressing the needs of
multi-vendor systems integration, it cannot adopt the traditional architec
tural approach of imposing a uniform set of constraints on all buyers. Instead
it recognises that the detailed policies and standards will vary from one
organisation to another.

OPENframework addresses the challenges discussed in the previous sections:
• Complexity of the technology
• Shift of the systems integration burden from suppliers to buyers
• New business uses for information technology
Because the requirement is to integrate systems from a multiplicity of
vendors, OPENframework has to address these challenges without making
any assumptions about the specific products to be chosen. In particular, an
architecture for integrating multi-vendor systems cannot demand that the
buyer should be locked in to products from ICL or from any other single
supplier. It must be a vendor-neutral architecture.

OPENframework therefore addresses these challenges in a vendor-neutral
way, by means of three techniques:
• Simplification: this is achieved through abstraction, by distinguishing the

attributes of system components that have strategic significance from the
mass of detail that is only of peripheral interest.

• Structured presentation: this is achieved by decomposing the complex
mass of detail into subject areas that are mutually independent and that
can each be analysed in a consistent way.

• Advice and guidance: by offering information, advice, methods and pro
cesses that can be used at every stage of system design, construction,
evolution, and management to maximise the benefits obtained from the
information system.

In the following sections, each of these concepts is examined in terms of its
representation in OPENframework and its contribution to addressing the
challenges identified above.

3.3 Simplification

We have seen that buyers are faced with a daunting variety of product
choice. In making their investment decisions, they therefore have to simplify
the problem. One of the principal objectives of OPENframework is to show
buyers how this simplification can be achieved.

The problem for OPENframework is firstly to identify who needs what to
be simpler, and then to distil a coherent, simple, and technically sound
model from the mass of detail. To do justice to the capabilities of the
technology and to be appealing to sufficient potential buyers, even this

ICL Technical Journal May 1993 357

simple model will be of some sophistication. Presentation of the model is a
problem in its own right, not only because of its inherently abstract nature,
but also because of the need to convince sceptical buyers that
OPENframework is a genuine attempt to help them solve their integration
problems and not merely a pretext for selling branded products.

The analysis of the industry given earlier reveals the factors contributing to
over-complexity: multiplicity of standards, diversity of products, reducing
levels of control within any one organisation, and the accelerating pace of
technological change. One source of simplification is through standards. The
existence of programming language standards, for example, allows a two-
step decision process: first choose a language, then choose a compiler. This
process reduces the number of options that have to be evaluated and
discarded. It also preserves a degree of freedom to change decisions
subsequently.

As the value of standards has increased, so has the scramble to influence
them, to intercept them, and to usurp them by market dominance. The fact
that this race has been run differently in Europe, the US and Japan adds
yet more confusion. The result has been an explosion of standards to the
point where they are sometimes seen as part of the problem rather than as
part of the solution.

There is no universal answer to this problem: the acceptance of standards
will vary with geography and over time. OPENframework recommends a
simple policy for the selection of standards:
• Firstly, adoption of standards that are widely implemented in a variety

of products is fundamental to sound system design.
• Secondly, provided this condition is met, standards that are defined by a

rigorous process open to public scrutiny will generally prove more durable
than those controlled by a single supplier.

Following these principles, in each area of OPENframework a small number
of standards are identified which correspond to the major areas for decisions
in systems architecture. OPENframework also has a liberal approach in the
sense that it is not invalidated by any particular option. If unorthodox
choices are made, its usefulness will degrade gracefully.

Diversity and choice exist beyond the area of standards, and this opens the
way to yet more subjectivity. A liberal architecture like OPENframework
cannot prescribe the solution but it can demonstrate the best way to arrive
at the best solution for a given user. The problem space is large but can be
structured to allow the decision maker to examine one small area at a time
with confidence that decisions taken in this area will not interact unaccept
ably with those affecting other areas.

OPENframework achieves this by breaking the problem into three dimen
sions corresponding to the people involved (the perspectives), a value system

358 ICL Technical Journal May 1993

for the people to set goals (the qualities), and the technology (the elements),
as described in section 3.1 above.

No organisation can afford to make a completely fresh start with its informa
tion systems, so all advances are by their nature evolutionary steps from a
starting point towards a defined goal. Taking responsibility for systems
integration means that organisations no longer have the luxury of imple
menting a planned and orderly progression of products from a major sup
plier. Careful planning and monitoring is required if the evolution of the
system is to proceed in a controlled way, with separate decisions being
mutually consistent, and without tactical changes being continually invalid
ated by larger strategic choices. Positive feedback in this process is provided
by managing the OPENframework qualities.

OPENframework has a definite scope today, but is designed to accommodate
future change. This flexibility is fundamental if it is to take account of
advances in the industry, particularly in technology. Thus, OPENframework
identifies trends in all elements and qualities in order to anticipate likely
advances in technology and its usage. A high rate of change can be catered
for by ensuring that information systems are designed and constructed with
change in mind. This is handled in OPENframework by a specific quality,
Potential for Change, discussed in detail in another paper in this issue
(Pratten and Henderson, 1993).

3.4 Structured presentation

In presenting OPENframework, as with any architecture, there is always a
balance to be achieved between rigour and comprehension. OPENframework
is of little value if it cannot be understood. There have been formal
approaches to systems architecture, for example ANSA (Herbert, 1987) and
the Zackman framework (Sowa and Zackman, 1992) which provide a useful
theoretical foundation, but OPENframework aims to be of more direct value
to the practitioner than these theoretical approaches.

OPENframework incorporates much pragmatism and compromise but this
does not prevent it achieving its objectives. In information technology as in
the construction of buildings, architecture is part art and part science. It
enables the planner to focus on the most important issues first.
OPENframework guides its users to concentrate upon the matters central
to each element or quality from their own perspective rather than expending
energy at the periphery of the problem. Effective presentation of the architec
ture thus has two aspects: how should the whole be partitioned, and then
what is central to each partition.

The first level of partitioning is to split technology from values and from
people. This yields seventeen discrete parts: the eight technology elements,
five qualities and four perspectives described in section 3.1. This partitioning
relies on a tight policy on terminology and a firm consistency of style. Each

ICL Technical Journal May 1993 359

part has limited value in its own right but is complete when related to the
others. Examination of the reference architectures for the elements and the
qualities, as described in the publications listed at the end of this paper, will
reveal consistency of this nature.

Application of OPENframework provides a short cut for an organisation
aiming to define an architecture for its information systems. Rather than
starting with a blank sheet of paper, the process starts by taking a compre
hensive list of possibilities and eliminating those that are not appropriate.
This process is referred to as specialisation, and results in the identification,
and potential reuse, of a subset of OPENframework. Such subsetting may
take place for a number of reasons:
• A specialisation may define collections of technology that are appropriate

to particular types of workload, such as transaction processing, multimedia
document management, electronic data interchange, or business process
enactment.

• A specialisation may define architectural options appropriate to the prod
uct sets available from a particular supplier or suppliers, for example,
IBM mainframes surrounded by industry-standard personal computer
LANs.

• A specialisation may be oriented to the needs of a particular industry, for
example retail banking or hospital patient administration.

In this way OPENframework begins to address the need for integrating
larger and larger building blocks. In the limit, applying OPENframework
becomes a matter of customising a set of specialisations.

3.5 Advice and guidance

Despite its claim to be a way of simplifying problems and imposing structure
on their solutions, OPENframework as a reference source is still complex.
Its value is realised by treating problems in small pieces and it would be
incomplete without advice on how it is to be used, methods and processes
for applying it, and comprehensive information to guide the user in
making choices.

The Management in the Nineties study (Scott Morton, 1991) developed a
Strategic Alignment Process which asserts that an organisation making best
use of information technology will maintain a strong relationship between
its business strategy, its infrastructure, and its information technology strat
egy and systems. These relationships are illustrated in Figure 3. Examples
of the application of this process are given in two papers (Thurlby, 1993;
Craig, 1993) in this issue of the ICL Technical Journal.

OPENframework follows this philosophy by providing the means to achieve
such alignment. The business architecture of OPENframework permits an
organisation to express its business goals and constraints so as to facilitate
the development of an appropriate information system architecture. The
enterprise management perspective and the potential for change quality are

360 ICL Technical Journal May 1993

Fig. 3 The Strategic Alignment Process

common to both the business and the information system architectures. The
application architectures element bridges the two. The relationships between
these three aspects of OPENframework are explored in another paper (Kay,
1993) in this issue.

The process for using OPENframework starts with the business strategy,
moves through definition of business processes, then through development
of information systems architecture, and finally to procurement and con
struction of the desired system. This process avoids the discontinuities that
can arise when methods from different sources are mixed. It is a macroscopic
approach, giving an overall structure to the exercise but without prescribing
the use of specific tools or techniques at lower levels.

The final stages of this process are the practical steps of selecting and
integrating real products and monitoring the behaviour of real systems. To
facilitate these steps, OPENframework provides access to a wide-ranging
information base of practical information aimed at advising users exactly
what products work with what others and giving sound guidance, based
upon practical experience, of how such products can be integrated. This is
known as the OFEbiframework Integration Knowledge Base (IKB), and is
described by (O’Connor, 1993).

Much of this multi-vendor information is obtained by running real work
loads on model configurations. This can be seen as a another step in
increasing the size of the blocks to be integrated.

The process of translating business strategy into working information sys
tems depends on people, and the definition of the process therefore includes
a definition of these groups of people and their roles. These roles are
described in terms of the four OPENframework perspectives: enterprise
management, users, application developers, and service providers.

ICL Technical Journal May 1993 361

Each of these groups of people participates in the process of change that
causes the information system to evolve, and each has responsibilities to
discharge if the system is to evolve in a way that increases its value to the
business. In particular, each group makes decisions that contribute to the
achievement of each of the five OPENframework qualities.

This description simply formalises what happens naturally in many organisa
tions, but nevertheless an understanding of these roles and their relationships
helps to avoid the errors that have caused so many projects to fail to meet
their objectives.

4 Summary

This paper is written some two and a half years into the development of
OPENframework. Much documentation has been published and a significant
base of knowledge has been collected. Most of the ideas in OPENframework
have been used successfully somewhere, and a few organisations have
adopted the OPENframework approach as the principal plank of their
information system planning.

The paper has concentrated upon the macroscopic level, because
OPENframework is addressing the challenge of engineering-in-the-large. The
problems it sets out to solve are large, and to solve them the first essential
is to understand the overall picture. This is not to say that the task of
developing the detail of each element and quality is minor, rather the
opposite: the details are so significant and so complex that the high-level
framework is essential to enable the detail to be controlled and
comprehended.

We have shown that buyers of information technology face problems in
respect of:
• Complexity and diversity
• Migration of the systems integration responsibility
• New business uses for information technology.

OPENframework responds to these needs by recognising:
• Need for simplification
• Need for a systematic approach and clear, structured presentation
• A sound and consistent method of application, using a source of reliable

practical information

OPENframework addresses these through a structure of business architec
ture, perspectives (people roles), qualities (a value system) and elements
(technology) which can be customised by a user organisation to produce its
own architecture. Specialised architectures are produced not from scratch,
but by specialising what exists already.

362 ICL Technical Journal May 1993

All this is part of the process of aligning information systems with business
strategy. This process is facilitated by such techniques as business process
engineering, and by the provision of information about the integration of
products from multiple suppliers that has been proven in practice.

References

BRUNT, R.F. and HUTT, A.T.F. 1992: see book title below.
CRAIG, I. OPENframework in Action at DEVETIR. ICLTech. J. 8(3), pp. 398^15, 1993.
HERBERT, A. The Advanced Network Systems Architecture project. ICL Tech. J. 5(4)

pp. 638-651, 1987.
KAY, M.H. The Evolution of the OPENframework Systems Architecture, ICL Tech. J 8(3),

pp. 365-382, 1993.
McKINSEY. The 1992 Report on the Computer Industry, McKinsey & Co Inc., 1992.
MOSCHELLS, D. The restructuring of the information technology industry. I DC, May 1992.
O’CONNOR, S. Describing Systems in the OPENframework Integration Knowledge Base, ICL

Tech. J. 8(3), pp. 438^52, 1993.
PRATTEN, G.D. and HENDERSON, P. Creating Potential-for-Change, ICL Tech. J. 8(3),

pp. 383-397, 1993.
SCOTT MORTON, M. The Corporation of the 1990s. OUP, ISBN 0-19-506358-9, 1991.
SOWA, J.F. and ZACKMAN, J.A. Extending and formalizing the framework for information

systems architecture. IBM Systems Journal, Vol. 31 No. 3, 1992.
THURLBY, R. Strategic Information Systems Planning: A Process to Integrate IT and Business

Strategies, ICLTech. J. 8(3), pp. 416-437, 1993.

Further reading

The following books describe the O PEN/ramewor/c systems architecture in
further detail. All are published by Prentice Hall in 1993, and may be ordered
either from ICL or through bookshops.

O v e r v ie w

BRUNT, R.F. and HUTT, A.T.F. The Systems Architecture: an introduction.
ISBN 0-13-560186-X.

Q u a li t ie s

SMETHURST, C.R. Availability. ISBN 0-13-630948-8.
HUTT, A.T.F. Usability. ISBN 0-13-630930-5.
SUTCLIFFE, S.E. Performance. ISBN 0-13-630666 7.
FAIRTHORNE, S.B. Security. ISBN 0-13-630658-6.
PRATTEN, G.D. Potential for Change. ISBN 0-13-630617-9.

E le m e n ts

HUTT, A.T.F. User Interface. ISBN 0-13-630591-1.
BRENNER, J.B. Distributed Application Services. ISBN 0-13-630518-0.
KAY, M.H. Information Management. ISBN 0-13-630500-8.
BROWN, G.H. Application Development. ISBN 0-13-630484-2.

ICL Technical Journal May 1993 363

GALE, A.C. Systems Management. ISBN 0-13-630450-8.
DEIGNAN, F. Networking Services. ISBN 0-13-630393-5.
McVITIE, D.G. Platforms. ISBN 0-13-630385-4.

Specialisations

BANKS, R. Transaction Management. ISBN 0-13-630377-3.

Biography

Ron Brunt

Ron Brunt joined ICT in 1964 with a degree in electrical engineering from King’s
College, London. He has had a broadly based career in information technology
development. For several years he was based at ICT, Stevenage, working on the
development of ICT 1900 systems and software. Since 1968, working at Kidsgrove,
he has been involved in systems and software design at a strategic level including
ICL’s VME operating system. In the 1980s he was responsible for strategic product
planning of ICL mainframe systems.

He has spent two periods overseas; in Europe with the European Commission and
in the US West coast software industry.

In 1991 he became the leader of ICL’s systems architecture group with the task of
creating OPENframework. The group has now published fourteen books on this
subject and is providing consultancy to a growing number of major organisations.

364 ICL Technical Journal May 1993

The Evolution of the OPEWramework
Systems Architecture

Michael H. Kay
ICL Fellow, Reading, UK

Abstract

This paper describes the thinking that influenced the development
of the systems architecture of OPEN f r a m e w o rk , ICL’s vision for
open systems integration. It explains the evolution of OPENframe-
w o rk in four broad stages, covering interworking, portability, sys
tems integration, and finally strategic alignment with enterprise
management. The paper is not intended as a chronological record
of events, but is designed rather to explain the historical signific
ance of O P E W r a m e w o r k to ICL as it transforms itself from a
manufacturer of proprietary mainframes to a systems integrator,
using open systems as a means of making information technology
more responsive to the needs of its customers’ enterprises.

1 Introduction

The evolution of ICL’s approach to open systems can be seen as one of
gradually widening scope, through four broad stages:

• During the first stage, 1980 1983, the primary objective was to allow
interworking between ICL machines and, where possible, with non-ICL
machines. This led to the introduction of Information Processing Archi
tecture (IPA), a networking architecture spanning all ICL’s machines
and designed to intercept OSI standards as they became available.

• During the second stage, 1983-1987, the scope expanded to include
portability of software across ICL machines and (again, where possible)
non-ICL machines. This stage included the formation of X/Open and
its publication of a Common Application Environment.

• During the third stage, 1987-1990, previous work was expanded and
consolidated to define an integrated systems architecture, in the sense
of a coherent distributed computing infrastructure with consistent facilit
ies in areas such as systems management, application development, user
interface, messaging, and security. The culmination of this stage was the
announcement of OPENframework in May 1991.

ICL Technical Journal May 1993 365

• During the fourth stage, which is still underway, the emphasis is on
using the information systems architecture within an enterprise, to
achieve more effective alignment of information technology strategy
with business strategy. This stage focuses on the engineering techniques
needed to cope with rapid changes in technology and with increasing
variety of both products and standards; it recognises that all information
systems evolve over many years and incorporate hardware and software
components from many different suppliers.

These activities were cumulative, in the sense that each stage built on the
results of previous work. They were also interdependent and mutually rein
forcing: ultimately, none of the objectives could be achieved without all four
strands being present.

Fig. 1 Four stages of architectural evolution

The progression of these four stages is illustrated in Figure 1.
The following sections analyse the principal objectives, activities, and out
comes of each of these four stages.

2 Stage One - The introduction of IPA

I PA (Information Processing Architecture) has been described in (Kemp and
Reynolds, 1980; Brenner, 1983).

The principal motivation for the introduction of IPA was the need to provide
a coherent set of interworking services between ICL machines. Interworking
with non-ICL equipment was recognised as a requirement, but was less
urgent. Work on open standards for interconnection had already started
(Houldsworth, 1978; Brenner, 1980; Houldsworth, 1992) and the decision
was made early on that IPA should be based on OSI standards as they
became available. In the meantime, however, it was necessary to provide
some level of interworking capability that recognised the need to coexist
with currently installed networks (which at that time usually meant terminals

366 ICL Technical Journal May 1993

connected to a main-frame via front-end terminal concentrators) while also
providing an evolution path to OSI standards later.

With most of the company’s engineering effort in the 1970s engaged on
completing the development of the New Range (2900 series) and its VME
operating system, development of networking services in ICL was behind
the rest of the industry.

According to (Campbell-Kelly 1989):

"ICL only began to develop a coherent networking strategy in 1979, but tor once its
tardiness proved almost an advantage, since it was able to adopt the OSI interna
tional standards for networking. IBM and the other manufacturers, having started
earlier, were locked into their own proprietary standards. ICL’s Information Pro
cessing Architecture (IPA) was finally announced in 1980. The adoption of OSI
standards was to become a major competitive weapon in the 1980s."

An important objective of the IPA work was the need for smooth migration.
Although ICL might have lacked a coherent networking architecture in the
past, that did not mean our customers had no installed networks. The paper
by (Kemp and Reynolds 1980) shows how IPA can be seen as an evolution
from the earlier Full XBM protocols (also known as ICLC-03). The OSI
7-layer reference model was seen as providing the clue to how this migration
might be achieved; in particular layer four, the transport layer, was reco
gnised as a critical interface.

The migration strategy to move customers to OSI has been described in
(Houldsworth 1988). The strategy was to encourage customers to install OSI
bottom-up, starting with an OSI transport service. Initially this would run
the existing interworking applications, so it could be installed with no impact
on existing applications or users; subsequently new OSI applications could
be added over the same transport service.

By and large this strategy was successful, thanks to a policy, maintained
consistently over a long period, of providing OSI as the first choice product
and Full XBM and other protocol suites as alternatives only for users who
really needed them.

The result was that by the late 1980s, ICL’s networking products, and most
of our customers’ networks, were based solidly around formal international
standards.

However, the industry as a whole did not move towards OSI standards as
rapidly as some had hoped. The momentum towards OSI was disturbed in
the late 1980s by the increasing popularity of portable system software such
as UNIX and Novell’s Netware, which provided an alternative way of
achieving interworking between heterogeneous platforms. These products
gave pre-OSI standards such as TCP/IP a new lease of life. Proprietary

ICL Technical Journal May 1993 367

standards such as IBM’s SNA also refused to go away, despite the fact that
many large enterprises were making a strategic commitment to OSI.

This problem was not entirely unforeseen: to quote from (Brenner, 1980):

"/(is clearly apparent that the idealistic outcome of everybody worldwide converging
quickly onto one unified set of OSI standards is highly improbable. ... Predictably,
there will be some competing and incompatible standards from different sources,
and certainly some lasting incompatibilities."

IPA’s approach to this problem was to define a kernel based on OSI
standards, and a number of secondary architectures based on de facto or
proprietary standards, using the OSI reference model to define the points
at which interoperation was possible. This approach stood the test of time,
and is largely retained in OPENframework.

3 Stage Two - Common Application Environment

In 1982 many of ICL’s customers were still using the various 24-bit regimes
(1900, 2903, ME29, TME and CME), but transition to VME had started in
earnest. In addition, the first DRS machines based on microprocessor techno
logy had been introduced, and there was also a substantial base of users on
the System 25 platform launched as a successor to the Singer System Ten.
There was an urgent need to make it as easy as possible to move software
between all these platforms with the minimum of change.

At the same time it was recognised that an increasing number of purchasing
decisions were application-led, and that ICL would lose sales unless its
hardware was capable of running the user’s chosen application package.
This too implied a need for application portability.

There had been many attempts in ICL to define internal standards for
application portability. Cross-range specifications for COBOL, IDMS, and
TP were defined around 1980, as was a common set of programming
interfaces to the two operating systems VME/B and VME/K. But these had
not been very successful: porting applications was still notoriously expensive.

A renewed attempt to address this problem started with a conference held
at Cirencester in 1982, and was known as the Cirencester programme. This
led to a number of working parties attempting to identify portability stand
ards in areas such as database, programming languages, and transaction
processing.

In general it is true to say that where standards have been defined outside
ICL, they have been adopted successfully within the company, but ICL has
found it very difficult to impose internal standards. Divergence from such

368 ICL Technical Journal May 1993

standards can always be justified on the irrefutable grounds that customer
requirements take precedence.

For example, ICL’s Normalised Document Format (NDF) standard was
enhanced in the mid 1980s to allow improved interworking between the
OFFICEPOWER office automation system and the ICLFILE document
store; but NDF implementations on the ME29 and System 25 machines
were never upgraded because there was no prospect of ever recovering the
development cost.

Sometimes changes like this are made for good reasons, and with a well-
designed standard like NDF they can be made in a way that does not
jeopardise interworking. Sometimes they are made for bad reasons, simply
because an individual customer is convinced the enhancement is necessary
when in fact alternative solutions could be found. Either way, this kind of
creeping divergence is less likely to happen with an external standard because
the consequences are more visible to management and users alike.

Cirencester attempted to establish a set of internal standards for software
portability within ICL, and as such it failed. But the project had an invaluable
outcome, which was the management realisation that a common application
environment was needed, and that it could not be proprietary to ICL.

A few strategists in ICL had started to become interested in the potential
of UNIX as a common application environment as early as 1982, and by
1984 they had convinced the company that this was the way forward. It was
recognised that application portability would always be limited if the operat
ing system interfaces were different, and a portable operating system therefore
offered the best solution to the problem. It was important though to establish
some control over the specification of these interfaces - UNIX in those days
was notorious for the informality of its documentation and change control.
This led to the formation of the BISON consortium (Bull, ICL, Siemens,
Olivetti, and Nixdorf), a group of European vendors who all shared similar
views. With subsequent expansion, the BISON group became X/Open.

The formation and subsequent development of X/Open is described in
(Taylor, 1987, 1991, 1992). To quote:

"During the first half of 1984, ICL approached the other major European computer
manufacturers with a view to ensuring that there would not only be a single standard
at the UNIX level, but also that a complete Common Application Environment should
be defined covering the basic operating system, data management, integration of
applications, data communications, distributed systems, higher level languages,
internationalisation, and all the many other aspects involved in providing a compre
hensive interface for portable applications".

X/Open succeeded quickly in defining a common application environment.
The first round of specifications were completed as early as May 1985. By

ICL Technical Journal May 1993 369

the late 1980s ICL had completely redesigned its mid-range product line
around X/Open standards, adopting UNIX System V.4 as the underlying
operating system. In addition, in 1991 ICL became the first supplier to
achieve X/Open conformance for a non-UNIX mainframe system, with the
introduction of VME-X (Coates 1993). This finally provided an acceptable
solution to the problem of application portability first addressed ten years
earlier.

4 Stage Three - Delivering Integrated Systems

As the 1980s progressed it was recognised that the move towards open
systems would significantly alter the shape of the information technology
industry, with standardisation leading not only to portable interworking
applications, but also to widespread availability of commodity components:
everything from microprocessors and operating systems to compilers, data
base management systems, and graphical user interfaces. It thus became
increasingly clear that ICL’s engineering resources were best employed not
on the development of individual hardware and software components, but
on integrating these components together to produce total systems.

However, although the phrase systems integration was much used, the
process was not well understood. Much of the development of OPENfram e
work was concerned with improving this understanding.

For some years ICL had attempted to address the challenge of producing
an integrated product line through a number of technical strategies, each
under the control of a senior architect. Most of these strategies spanned
products in a number of different development divisions. The strategies
included:

• Interconnection
• Interworking
• Message Handling
• Terminal Connection
• Systems Management
• Information Management
• Human Computer Interface
• Security
• Knowledge Engineering

These technical strategies were not product programmes as such. Each was
backed by a modest budget, which was used to stimulate activities such as
standards work and technology transfer. Product programmes were assessed
for conformance with the technical strategies through a phase review process,
but ultimately individual product managers (or their customers) had the
final say.

370 ICL Technical Journal May 1993

There were also strategies maintained within individual development divi
sions that served a similar role; these included Office Automation, Manage
ment Support, Application Development Tools, Transaction Processing, and
many others. These were easier to manage because any conflicts of interest
could be resolved locally. In many cases such a strategy was complemented
by an architecture, a programme plan, and a budget, but in other cases the
strategy formulation and execution did not align neatly.

There were several difficulties with this situation:

• It was not always easy to translate strategy into action, especially when
those responsible for action had many tactical objectives and constraints
to reconcile with the strategic direction.

• It was difficult to understand how all the strategies related to each other:
how could one determine whether there were gaps, overlaps, or inconsist
encies? Even the attempt to group strategies into those providing stand
ard infrastructure and those producing technical differentiators had not
been notably successful.

• Because the strategies were required to take a long-term view, they
tended to focus on predictable trends rather than on discontinuities in
technology or in the market-place. Many of the important new product
introductions (such as ICL’s entry into the personal computer market
place, or the relational database programme) happened without any
input from the technical strategy process.

IBM’s launch of Systems Application Architecture (IBM 1987) did not go
unnoticed, either by ICL or by its customers. We realised that we did not
need a direct equivalent to SAA, since that role was more than adequately
filled by the X/Open CAE, but we did recognise that we needed some kind
of unifying framework to tie together the variety of product lines and
strategies being pursued, and to establish some coherence.

During 1989 there were a number of attempts by different parts of the
company to define a top-down view of the world into which all these separate
strategies, architectures, and programmes could be positioned. A significant
influence was an internal paper written by a marketing team, defining what
ICL needed to do to achieve its aspiration of becoming a leading systems
integrator. This led to a programme code-named Lisbon. Lisbon rightly
recognised that architecture was only one part of the solution, and most of
the effort went into organisational and cultural projects rather than technical
proposals. Thus Lisbon, like Cirencester before it, failed to make any great
technical impact, but succeeded in establishing the management climate that
made OPENframework possible.

Our architectural thinking was still being developed under the IPA umbrella.
IPA had gradually expanded in scope from its original role as a networking
architecture to a comprehensive set of standards and profiles covering every
aspect of information technology. For example, it now included standards

ICL Technical Journal May 1993 371

for user interface styles and for usability engineering. But in 1989 there was
an urgent need for an overview describing how all this fitted together; it was
impossible to find out what IPA was without reading several thousand pages
of specifications.

Work to produce an accessible description of the architecture started in
earnest with the creation of a Systems Integration Division early in 1990,
which brought together many of the architects around the company as a
single team. The architecture was originally referred to as IPA-X, reflecting
its evolution from IPA. But market research revealed that there was little
general understanding of what IPA had become; we even discovered ICL
publications that used the term IPA to refer exclusively to the proprietary
ICL networking protocols that predated OSI. The absence of an accessible
overview of IPA made this hardly surprising.

The name OPENframework came from a quite different source: it was
introduced in 1990 by ICL’s UK sales division as the unifying theme of a
product launch. The name was subjected along with other candidates to
market research, and was selected because it registered high levels of recogni
tion and understanding.

Our architectural work was not done in isolation, of course. It was influenced
by many other activities in which we participated with other companies.
The Advanced Network Systems Architecture (ANSA) collaboration, for
example, (Herbert, 1987) provided some of the theoretical underpinning that
influenced our thinking, and our work on the ISO Open Distributed Pro
cessing (ODP) committees taught us how to make some of the rigorous
concepts in ANSA more readily accessible, no doubt in a way which its
originators found distressingly pragmatic. Other influential activities
included work on the BSI DISC Framework for User Requirements, the
CCTA Framework for Open Systems, the Object Management Group
(OMG) Architecture, and committees in the European Computer Manufac
turers’ Association (ECMA), the European Workshop on Open Systems
(EWOS), and the US National Institute of Standards and Technology
(NIST).

If we didn’t need our own version of SAA, because we already had the
X/Open standards, what did we need? We needed an understanding of the
process of systems integration.

Key to understanding this process is an appreciation of where costs are
incurred and where value is added. Competitive advantage comes from being
able to integrate new components very rapidly, from being able to manage
variety, and from having an inventory of reusable assets that can be har
nessed to produce customised solutions to a wide variety of problems.

This kind of systems engineering depends on the existence of standards, but
standards alone are not enough: there need to be an overall architecture

372 ICL Technical Journal May 1993

showing how the components relate to each other functionally, and an
engineering discipline for ensuring the quality of the final system in terms
of, for example, its performance, reliability, and usability.

In developing the architecture, an important realisation was that the various
strategies and architectures already in existence could be divided into three
categories:

• those concerned with the overall picture as seen by a particular class of
user, for example the application developer or the system manager;

• those concerned with a particular assembly of technical components
into a functional whole, for example message-handling systems;

• those concerned with the achievement of particular system attributes
such as security and usability.

It seemed that one could look at systems from the outside in by considering
first the various people and their perspectives, then the system attributes or
qualities as measures of the extent to which the system met these people’s
requirements, and finally the technical structure of the information system.

This led to the development of OPENframework perspectives, qualities, and
elements. These are illustrated in Figure 2, which shows the eventual four
perspectives surrounding the five OPEN/ramewor/c qualities, which in turn
surround the structure of eight elements.

Fig. 2 Perspectives, qualities, and elements

One aspect of architectural thinking that was very prevalent at the time was
the so-called “three-ring circus”, variously represented as a classification of
applications into corporate, departmental, and personal, or a classification

ICL Technical Journal May 1993 373

of machines into mainframe, mid-range, and workstations, or more crudely
as a division of ICL’s product line into VME, UNIX, and DOS. This was
sometimes illustrated as shown in Figure 3.

Fig. 3 The three-ring circus

We consciously avoided making this trinity a major part of OPEN/ramewor/c,
for a number of reasons:

• Although the spectrum from personal to corporate might be real enough,
we felt that there was no intrinsic reason to believe that there should
only ever be three noteworthy points on this spectrum.

• The hypothesis that the organisational scope of an application is related
to its demand for computer platform resources is untenable: there are
many examples of applications that are narrow in their organisational
impact yet hungry in machine resources, and the opposite is equally true.

• We wanted to encourage people to think top-down, starting with user
requirements and leaving technology choices as late as possible. This
meant that the discontinuities between regimes such as MS-DOS, UNIX,
and VME, real though they were, should be recognised as arbitrary and
architecturally undesirable, rather than being promoted to the status of
fundamental architectural boundaries. In fact, as demonstrated by
(Coates 1993), a major objective of some of the current product pro
grammes is to demolish this architectural boundary.

During this stage it was also recognised that OPEN\framework, as ICL’s
vision for open systems integration, needed to be much more than an
architecture. It needed to include methods, tools, and information to enable
real systems to be built from real products. These wider aspects of
OPENframework, however, are outside the scope of this paper.

374 ICL Technical Journal May 1993

The final stage in the evolution of OPENframework, which is still underway,
is in applying the architectural framework to the challenge faced by enter
prises in planning their information systems strategy. In this stage we move
from a static architecture, one that describes the state of the system at a
given point in time, to a dynamic architecture, one that explains how the
users’ system evolves to meet the changing needs of the business.

This stage is particularly concerned with the development of one of the
OPENframework perspectives (enterprise management); with one of the qual
ities (potential for change); and with one of the structural elements (applica
tion architectures).

Enterprises are faced with a paradox. Their business is changing rapidly;
the technology is changing rapidly; yet their information systems are
extremely inflexible. They want to be able to exploit technical innovation to
achieve competitive advantage, yet in too many cases information technology
seems to inhibit change. An example from the Financial Times, 9th March
1992:

"Sabre attempted a merger last year with Amadeus. The plan foundered because
the computers were incompatible."

An important insight at this stage is that architecture is not about limiting
variety and change, it is about enabling it. The unspoken aspiration of
architecture and standards work, despite the caveat quoted earlier from
(Brenner, 1980), has often been that one day all the world would converge
on a standard network, a standard operating system, a standard program
ming language, a standard relational database, and a standard user interface.
But to think this way is to forget that business is all about change.

The realisation that architecture is there to enable change suggests the
answer to another problem. Since enterprises of any size buy information
technology from a number of suppliers, how can any one supplier define an
architecture for the information system as a whole? This problem is stated
clearly in the introduction to (CEC, 1990), a report by the European Commis
sion defining its own informatics architecture:

"Most architectures have been designed by the computer manufacturers to match
their present and future product ranges. Such architectures are, generally speaking,
mutually incompatible even where standards are used. A vendor-independent archi
tecture can only be developed by the user organisation being the customer of the
IT industry - but no single customer has the power to impose a given architectural
design on industry. Consequently, such an architecture must emerge from the ongo
ing process of supply and demand."

5 Stage Four - Information Systems supporting Enterprise Strategy

ICL Technical Journal May 1993 375

ICL too realised that information systems architecture depends on the
interplay of market forces, and that we were in no position to impose specific
products and standards on our users. The solution is an architecture that
starts at a very high level of abstraction, and that can be incrementally
specialised and instantiated with standards and products selected at every
point in the value chain, from any supplier - ultimately, by the user enterprise
itself. The way in which OPENframework incorporates these ideas is
described in a companion paper (Pratten and Henderson, 1993) in this issue.

We believe we have reached the point where OPENframework, far from
being designed to match ICL’s current or future product range, could in
principle be used to design systems that included no ICL products at all.
Much of the development of the architecture during 1992 has been concerned
with this separation between the abstract, vendor-neutral architecture, and
its concrete realisation in ICL products.

5 .1 T h e E n te r p r is e M a n a g e m e n t P e r s p e c t iv e

ICL’s thinking in this area is heavily influenced by the Management in the
90s (MIT90s) research programme (Scott-Morton, 1991), which investigated
the factors that would make enterprises successful in the 1990s, and in
particular the way in which successful enterprises would exploit information
technology.

Some examples of the application of this research are given in other papers
(Craig, 1993; Thurlby, 1993) in this issue.

An important concept that emerges from this work is the idea of strategic
alignment: that is, the relationship of business strategy to information techno
logy strategy, and the relationship of the enterprise structure to the informa
tion system structure. The principal discovery is that it is no longer adequate
to think of information technology following in the wake of decisions about
business strategy. Instead information technology can be used to re-engineer
the internal structure of the enterprise, to establish new trading relationships,
and ultimately to redefine the scope and nature of the business itself. This
is illustrated in MIT90s by Figure 4, which depicts five levels of business
transformation wrought by information technology. The transition between
level 2 and level 3 marks a watershed: at this point information technology
is no longer being used merely to improve the efficiency of the business, but
to change the nature of the business.

It follows that from the enterprise management perspective, the most import
ant quality of the information system is potential for change. This requires
flexibility to incorporate new technology, and flexibility to meet new business
needs. Open systems are important not because they enable interworking
or because they reduce cost, but because they provide this flexibility. (See
also (Gray, 1991).) It follows that variety and heterogeneity within the system
are not disasters to be avoided at all costs, but symptoms of a healthy ability

376 ICL Technical Journal May 1993

Fig. 4 Role of information technology (after Fig. 5.3 on p. 127 of Scott-Morton 1991 loc. cit.
By kind permission of Oxford University Press, New York).

to absorb change. Therefore, the objective of an information technology
strategy should not be to eliminate variety, but to ensure that variety is
affordable.

5 .2 P o te n t ia l F o r C h a n g e

OPENframework identifies five qualities that must be achieved in an informa
tion system if it is to meet user requirements:

• Availability
• Usability
• Performance
• Security
• Potential for change

All of these require engineering attention at every stage of system design,
construction, and management, and in each case there is a repertoire of
techniques available to the systems engineer to ensure that the system meets
its goals. An example is the engineering process for achieving performance
requirements, described in a forthcoming paper by Baker et al. in this journal.

But in one respect potential for change is different from the other qualities.
The other four qualities are static attributes of the system, that can be
measured or evaluated at a point in time. Potential for change is dynamic,
and is very difficult indeed to measure.

Variety and change go hand-in-hand. An enterprise installs functionally-
similar products from a number of suppliers either as a consequence of
having an organisation that is empowered to make local decisions so that
it can change rapidly; or as a result of business change in the form of mergers

ICL Technical Journal May 1993 377

and acquisitions; or as a deliberate strategy to remind suppliers that it is
able to change its sources of supply. In other words, variety either results
from change or is introduced to enable change.

The main way in which standardisation enables change is that it allows one
component of the system to be modified or replaced without affecting every
other component of the system. For example, the adoption of the X/Open
common application environment has made it possible to introduce RISC
processors without affecting existing applications; the existence of an SQL
standard makes possible innovations such as ICL’s relational database
accelerators.

But standards themselves are subject to change and variety. The number of
standards in use is doubling every three or four years. There are several
reasons for this:

• Different standards impose different trade-offs among the OPENframe
work qualities. For example, the C and PROLOG programming lan
guages have different usability and performance characteristics. So there
is rarely a single standard that will meet all requirements.

• Standardisation initiatives usually start within a particular community,
but then expand in scope to embrace the requirements of other commu
nities. Thus different standards start to overlap. For example, in the
field of character coding standards the ISO 6937 standard emerged from
the data communications community while ISO 8859 emerged from the
data processing community.

• While a given standard enables technical innovation within its scope, it
also inhibits more radical innovations, and these will eventually cause
it to be superseded. For example, the C programming language might
eventually be superseded by languages that are better suited to parallel
processing.

This diversity means that few enterprises of any size can afford the luxury
of imposing a single standard across all their information systems, whether
it be a standard programming language, a standard networking protocol,
or a standard user interface style. If they attempt to do so, they are almost
certainly inhibiting innovation to an undesirable extent. But if users cannot
achieve homogeneity within a single enterprise, a supplier like ICL certainly
has no chance of imposing a single set of standards on all its users.

The existence of a variety of standards, like the existence of a variety of
products implementing each standard, is essentially a healthy phenomenon
in the industry, because without it innovation would be stifled and the scope
for enterprises to gain competitive advantage would be reduced. Each stand
ard has its own strengths and weaknesses, it makes different trade-offs among
the OPENframework qualities. It is therefore entirely proper that different
standards should coexist.

378 ICL Technical Journal May 1993

Because multiple standards will always exist in an information system, it
follows that standardisation cannot be the whole answer to achieving poten
tial for change.

Standardisation can be seen in terms of an abstract type system. A standard
is a type definition; products implementing that standard are instances of
the type. Innovation and variety are examples of polymorphism: different
products implement the same specification in different ways.

Other aspects of abstract type systems and object-oriented systems are also
relevant to potential for change:

• Encapsulation establishes system boundaries that ensure that innovation
behind an interface is always possible. The OPENframework structure
of eight elements is a top-level decomposition of an information system
into encapsulated objects, allowing each to change independently of
the others.

• Subtyping allows subsets and supersets of interfaces to be defined, again
providing scope for incremental system change. This is represented in
the standards world by levelling, for example the three conformance
levels of SQL defined in ISO 9075:1992.

• Late binding allows system changes to be introduced without rebuilding
existing components. Early binding is a major inhibitor for change. For
example, this occurs when a database product is delivered to users with
TCP/IP networking code already built into it: substitution of OSI
networking code can only be achieved by the database supplier and not
by the user, even though the OSI code offers the same programming
interface as the TCP/IP code. The architectural reference models in
OPENframework indicate the points at which late binding is desirable.

• The process of systems integration which OPENframework supports is
essentially a process of object re-use. At every stage in the value chain
there is a combination of top-down and bottom-up activity: analysis of
market requirements (that is, the requirements of the subsequent stage
in the value chain), combined with selection of re-usable objects from
the previous stage in the value chain.

5 .3 A p p lic a t io n A r c h ite c tu re s a n d S p e c ia l is a t io n s

The way in which OPENframework supports variety and change is particu
larly evident in the concepts of application architectures and specialisations.

Application architectures refine OPENframework by adding functionality.
Specialisations refine OPENframework by adding constraints. Together,
these correspond to the two aspects of inheritance in object-oriented systems:

• Extending behaviour by adding operations and attributes
• Limiting possible states by adding constraints on class membership

ICL Technical Journal May 1993 379

In many cases these will go hand-in-hand; for example Retail OPENframe-
work adds retail applications to the generic infrastructure, but also constrains
the choice of platforms, networking services, information management and
user interface technology.

The process of specialisation is illustrated in the OPEEiframework introduc
tion (Brunt and Hutt, 1992) by the diagram in Figure 5. The darkened areas
indicate aspects of the architecture where additional constraints have been
imposed. The projecting areas indicate functionality that has been added to
the basic architecture.

Fig. 5 Specialisation of the architecture

The idea of an application architecture is that at each stage of the value
chain something (an application) is added to the system, but at the same
time constraints are applied to the environment that the application will
run in. For example, it might be constrained to run on specified platforms,
to use particular networking infrastructure, and to use a particular user
interface style. The sum total of these constraints is referred to as an OPEN-
framework specialisation.

Specialisation is a recursive process. The first stage of specialisation identifies
particular classes of application, for example multimedia applications, or
transaction processing applications, and defines constraints appropriate to
these areas. Further specialisations can be defined for specific industries or
other communities.

6 Summary

The paper has identified four stages of architectural thinking that influenced
the development of OPENframework in its present form:

• The need for a coherent networking architecture
• The need for a common application environment
• The need to produce integrated systems from externally-sourced

components

380 ICL Technical Journal May 1993

• The need of enterprises to achieve competitive advantage through innov
ative use of information systems, leading to a requirement to enable
variety and change

The aspects of OPENframework that contribute most to this final stage are
the enterprise management perspective, the potential for change quality, and
the concepts of applications architectures and specialisation.

Throughout this period the concept of an open system has evolved consider
ably, but remains a key theme within the architecture.

This description of a neat historical progression is of course a simplification.
Most of the ingredients of OPENframework are the result of a long tradition
of architectural thinking, and some of them (such as the security model)
developed along lines that do not fit neatly into these phases. There were
other activities not described in this paper that proved ephemeral, such as
the attempt to define a converged architecture for computing and telecom
munications in the early days of the ICL-STC merger. But the overall
conclusion remains valid: OPENframework has emerged from a tradition of
architectural thinking through a number of phases of gradually increasing
scope, all designed to deliver integrated systems supporting business
requirements.

Acknowledgements

The ideas described in this paper have been stimulated, and in some cases
generated, by my colleagues among the OPENframework Company Archi
tects and the ICL Fellows: particularly (but not exclusively) Andrew Hutt,
Barry Pearson, Graham Pratten, Brian Warboys, and Peter Wharton.

Dave Hollingsworth provided useful ideas on the structure and content of
the paper, and John Brenner, Jack Houldsworth, and Colin Taylor contrib
uted points of detail.

Trademarks

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the
USA and other countries.

X/OPEN is a trademark of X/OPEN Company Limited in the UK and
other countries.

References

BAKER, C.E.J., PICTON, R.D., SANDERS, K., and SUTCLIFFE, S.E. OPENframework in
action: Engineering for Performance at the Inland Revenue. (To be published)

ICL Technical Journal May 1993 381

BRENNER, J.B. Using Open System Interconnection Standards. ICL Tech J. 2(1)
pp. 106-118, 1980.

BRENNER, J.B. IPA Networking Architecture. ICLTech J. 3(3) pp. 234-249, 1983.
BRUNT, R.F., and HUTT, A.T.F. (eds). OPENframework. The Systems Architecture: an intro

duction. Prentice Hall, 1992.
CAMPBELL-KELLY, M. ICL, A Business and Technical History. OUP, ISBN

0-19-853918-5, 1989.
COATES, P. VME-X; Making VME open. ICLTech J. 8(3) pp. 473-491, 1993.
COMMISSION OF THE EUROPEAN COMMUNITIES (CEC). Guidelines for an Informatics

Architecture. Fourth Edition, ISBN 92-826-0275-3; Catalogue number CB-58-90-
667-EN-C, 1990.

CRAIG, I. OPENframework in Action at DEVETIR ICLTech J. 8(3), pp. 398-415, 1993.
GRAY, P.A. Open Systems: a Business Strategy for the 1990s. McGraw-Hill, ISBN

0-07-707244-8, 1991.
HERBERT, A, The Advanced Network Systems Architecture project. ICL Tech J. 5(4)

pp. 638-651, 1987.
HOULDSWORTH, J. Standards for open-network operation. ICLTech J. 1(1) pp. 50-65,1978.
HOULDSWORTH, J. OSI Migration. ICLTech J. 6(1) pp. 88-106, 1988.
HOULDSWORTH, J. Open Networks - The Key to Global Success. ICL Tech J. 8(2)

pp. 179-197, 1992.
IBM. Systems Application Architecture: an Overview. First edition, May. G C26-434I-0, 1987.
KEMP, J., and REYNOLDS, R. The ICL Information Processing Architecture IPA. ICLTech

J. 2(2) pp. 119-131, 1980.
PRATTEN, G.D., and HENDERSON, P. Creating Potential for Change. ICL Tech J. 8(3),

pp. 383-397, 1993.
SCOTT-MORTON, M. The Corporation in the 1990s. OUP, ISBN 0-19-506358-9, 1991.
TAYLOR, C.B. The X/Open Group and the Common Application Environment. ICL Tech

J. 5(4), pp. 665-679, 1987.
TAYLOR, C.B. X/Open - from Strength to Strength. ICLTech J. 7(3) pp. 565-583, 1991.
TAYLOR, C.B. X/Open and Open Systems. X/Open Company Limited, ISBN 1-872630-55-3,

1992.
THURLBY, R. Strategic Information Systems Planning. ICLTech J. 8(3), pp. 416-437, 1993.

Biography

Michael H. Kay

Michael Kay read Computer Science at the University of Cambridge, staying there
to complete a Ph.D. in database management.

He joined ICL in 1977 to work on the development of VME IDMSX, subsequently
becoming chief designer on that project. He led the design team for the ICLFILE
document retrieval system, subsequently marketed within the OFFICEPOWER suite
under the name POWERFILE, and acted as chief architect for the cross-divisional
programme implementing the relational database INGRES.

More recently he has been involved with the development of a new dictionary
product, and a prototype object-oriented database designed to underpin it, both
described in recent articles in the ICL Technical Journal.

Dr. Kay was appointed an ICL Fellow in 1989, and is currently a member of the
OPEN[framework architecture team, as Company Architect for Information
Management.

382 ICL Technical Journal May 1993

Creating Potential-for-Change

Graham D. Pratten
Company Architect, Potential-for-Change, O P E N f r a m e w o r k Division, ICL

Peter Henderson
Department of Electronics and Computer Science, University of Southampton

ICL Visiting Fellow

Abstract

Potential-for-change is the ability a product has to evolve to meet
new market demands and to exploit new technical opportunities.
This paper considers how the IT industry is providing this quality
in the IT products it develops and in the end-user systems which
contain these products.

It concentrates its attention on the value-chains and processes
which are used in developing and evolving IT products and sys
tems and considers how these can be made change-oriented. It
briefly considers how the products and systems themselves may
be given change-oriented-architectures which make them amen
able to change. It finishes with a look at the forces-for-change in
user enterprises which are generating the need for potential-
for-change.

1 Introduction

The IT industry currently exhibits a strange contradiction. On the one hand
the market demands on the industry and the technical opportunities avail
able to it are as strong as ever. On the other hand the IT industry seems
unable to move fast enough to cope with existing demands and opportunities
let alone new ones. IT vendors find they cannot improve their products fast
enough. End-user enterprises find it difficult to evolve the IT systems into
which these products are integrated. They complain that it takes longer to
change their IT systems than it did to change the manual predecessors of
these systems.

Thus there is a strong forward impetus on the IT industry coming from
market-pull and technical-push but a strong drag back on the industry
coming from the legacies of its history.

ICL Technical Journal May 1993 383

The IT industry can build into its products and systems the ability to evolve
to meet new market demands and to exploit new technical opportunities. A
number of phrases or words have been used to characterise this quality,
such as future-proofing, changeability, enhanceability, evolveability and flex
ibility. This paper uses the phrase potentiai-for-change which was coined
for this quality in ICL’s OPENframework architecture.

Other industries are changing the way they develop products (Womack
et al., 1990) in order to achieve potential-for-change and other desirable
characteristics like quality, time-to-market, flexible manufacturing, low
inventories and just-in-time. These changes are now beginning to affect the
IT industry. Companies involved in the development of IT products and
systems are becoming linked in complex value-chains (Porter, 1985). Each
stage in a value-chain maintains its own asset-base of products, components
and skills. It receives products from earlier (supplier) stages, incorporates
them into its asset-base, adds value to its asset base by engineering, integrat
ing and reengineering, and passes products on to later (customer) stages.
The supplier and customer relationships between companies in value-chains
are being modified to achieve potential-for-change and other desirable
characteristics.

Sections 2 to 4 of this paper consider how the potential-for-change quality
can be catered for within the value-chains and processes of the IT industry,
what architectures can be given to IT products and systems to make them
amenable to change, and what forces-for-change are coming from the enter
prises which use IT systems. In practice, of course, it is the change in
enterprises that drives the change in IT products and systems and this in
turn drives change in the value-chains and processes used in their develop
ment. The material is presented in the reverse order because, for presentation
purposes, this order is more natural.

2 Change Oriented Processes and Value-chains

2.1 New Style of Development

In the last ten years the IT industry has fundamentally changed its approach
to development. The change can be characterised by the following trends:

technical-push on industry->market-pull on industry

single vendor supply-* multi-vendor supply

collaboration within companies-*collaboration within value-chains

support within companies-> support across value-chains

general purpose companies-> teams specialising in products or markets

small teams -*large teams -^collaborating small teams

serial flow of development -> concurrency in development

384 ICL Technical Journal May 1993

developing products in their entirety -*building them from smaller
products

developing new revolving existing

innovation everywhere -innovation based on standards

importance of components ->importance of integration technology

profit from products -* profit from services

In moving into its new style of development the IT industry has made a
move of significance, similar to that made by the car manufacturing industry
when it moved from an engineering-garage to a manufacturing-line develop
ment process.

Unfortunately, the IT industry has no model of its processes which takes it
beyond the simplistic waterfall and V-diagram models (Boehm, 1981) which
served an earlier age and only has methods and tools emphasising these
models. As a result, it is rich in methods and tools for requirements analysis,
design and programming but lacks methods and tools for supplier analysis,
re-engineering, reverse-engineering, reuse, integration, customisation and
tailoring. It has customer-care courses but no supplier-care courses. The
industry has evolved into a new style of development process but has not
developed a way of modelling, understanding, controlling and supporting
this new style.

The next few sections look at the new style of development hinted at above.
If the industry is to create potential-for-change in its products and systems
it must do it within the context provided by this new style as this style
becomes predominant within the industry.

2.2 L ife C y c le s o f P ro d u c ts

The new style of development process revealed itself clearly in the develop
ment of the IBM compatible PC product. Figure 1 below illustrates the life-
cycle of this product.

Fig. 1 Lifecycle of PC product

ICL Technical Journal May 1993 385

The definition of a standard for PCs began with IBM’s definition of its own
standard based on the existing de-facto PC standards. It defined or adopted
standards for some of the components within the product such as MSDOS,
discs and processor code. It started to organise the straightforward relation
ships with its suppliers which it had had for earlier products. Some compon
ents, such as the processor, settled down to a steady series of evolutionary
steps with a conventional relationship between PC-product developer and
component supplier. However other manufacturers began to produce clones
of the whole product. This allowed some components, such as those for
windowing, to gain a life of their own with their suppliers taking independent
and innovative positions. This in turn took the whole product off in new
revolutionary directions. These new developments eventually settled down
into steady evolutionary progress. However by then the new developments
such as Windows had become more important than the original product.
One is even seeing the relationship between MSDOS and Windows being
shifted by the supplier. Now MSDOS and its applications are products
which can be run under the control of Windows rather than the other
way round.

The PC product has reached the point where no vendor controls its future.
It evolves forward with a complex mixture of competition and collaboration,
innovation and standardisation. The same approach is being applied to the
development of UNIX and other products. It is even being adapted by some
end-users enterprises for the evolution of their IT systems. (This has been
called just-in-time acquisition, end-user systems evolving forward exploiting
whatever the market throws up). To some extent this new style of develop
ment can be orchestrated by open systems consortia like X/Open (Gray,
1991) and OSF but it can never be controlled by a single vendor. The new
style is gradually being recognised and formalised as the way products and
systems will be developed and evolved in the future.

There are some lessons for the potential-for-change quality to be learnt from
the history of the PC-product apart from those already listed in Section 2.1.

Developers must know where their products, systems and components are
in their life-cycles, whether they are innovative and in their infancy, or
mature and ripe for standardisation, or somewhere in between (Foster, 1985).
For instance in the mid-80s the processor code design in the PC product
was mature and standardised whilst windowing was in its infancy and
innovative.

Many products in the past have proved to be unscaleable and so become
redundant because deep within the product there was an assumption about
the size of some resource (probably represented in a one byte field) which
eventually proved to be too conservative. Developers can predict the effects
of continuous changes in their products and systems and prepare for these
changes. For instance it is possible for PC developers to predict and plan

386 ICL Technical Journal May 1993

for the continuous improvement in processor speed and store size ten
years ahead.

Developers can try to predict discontinuous changes in their products and
systems. For instance with some foresight PC developers in the early 1980’s
saw the importance of windows developments. Now they can predict the
importance of developments in multi-media and group working and prepare
for their arrival.

The history of the PC also gives insight into the interplay of standardisation
and innovation. Standardisation of the PC product and its components, like
earlier acts of standardisation (Hawke, 1989), have not cramped innovation.
Innovation is alive and well, the annual number of patents has increased
ten-fold in twenty years. A general rule seems to be that standardisation
restricts innovation where it is applied but more than makes up for this by
stimulating innovation in surrounding areas. Developers can look for parts
of their product which can be standardised and identify the innovative
possibilities this will unleash.

2 .3 V -d ia g r a m M o d e l

The traditional view of development is represented in the various versions
of the V-diagram model in Figure 2 (McDermid, 1991) (Boehm, 1981)
(DTI, 1987).

Fig. 2 V-diagram

It assumes that development begins with a requirement for a product or
system, this is then subdivided into requirements for components of the
product or system, each of these is then designed, implemented and tested
separately, the components are then integrated into a release of the product
or system satisfying the original requirement.

Of course products and systems are not implemented once; they evolve in
a sequence of releases spread over many years. The V-diagram model can
be modified to cope with this; the modification is often referred to as the
spiral model (McDermid, 1991) (Boehm, 1988). Each loop round the spiral
(or pass through the V-diagram) creates one release. The starting point for
each loop is a release produced by an earlier loop plus some requirements

ICL Technical Journal May 1993 387

for changes to that release. Releases are allowed to develop in parallel with
each other. For instance one release may be at the requirements analysis
stage whilst another is at the integration stage.

The V-diagram style of development emphasises the requirements analysis,
specification, design, implementation, testing and integration activities.

Products were designed to make them easier to change within the context
of the V-diagram style. An early move was the concept of modularity to
allow components to be independently designed, implemented, compiled and
tested before being bound together. Another early development was config
uration management to manage the configuration of versions of a system
or product from versions of its components.

An important design concept was separation-of-concerns which said that
features with different change characteristics ought to be kept separate from
each other within a design, ought to be implemented in different components,
and should be bound together late in the development process. Over the
years people have gradually improved their understanding of the phrase
“different change characteristics”. It includes reason for change, frequency
of change, skill level required for change and skill type required for change.

Components within systems and products were also designed to facilitate
change. For instance the number of parameters or order of parameters were
made changeable so that the capabilities of a component could be enhanced
without propagating change into all the components using its earlier capabil
ities. Or for instance each version of a component was designed so that it
could be configured with a number of versions of other components.

2 .4 C o n c u r r e n c y W ith in th e P ro c e s s

From a potential-for-change point of view a major constraint is the time
taken for one loop in the spiral. With a large product or system developed
by a large team it can take several years to pass round one loop. Over the
years attempts have been made to encourage incremental development
within this style, to encourage frequent loops each achieving comparatively
modest changes. This may or may not have been augmented with incremental
delivery of the changes to users.

Another problem from a potential-for-change point of view is the level of
concurrency between releases, the fact that there will be a number of different
releases at different stages in their development, one or more already in use,
one being designed implemented and integrated, and one still in the require
ments analysis stage. A requirement will tend to be defined against the
release already in use but will in fact be satisfied in a much later release,
perhaps months or even years later. Some changes will be capable of passing
round the loop more quickly than others so changes may initially be planned
for integration in one release but may then need to be moved to earlier or
later releases.

388 ICL Technical Journal May 1993

The initiatives on concurrent engineering in the USA (Reddy et al., 1992)
are concentrating on this problem of concurrency from another standpoint.
The aim is to improve time-to-market from manufacturing processes in the
USA in order to make them more competitive. The initiative recognised the
serial nature of existing processes, products passing through a series of steps
(such as those in the V-diagram) on their way from concept to realisation.
It recognised that time-to-market could only be improved if concurrency
was maximised within the process. For instance a car manufacturing plant
can be designed and set up, or the marketing launch of the car can be
planned, whilst the car is being designed and does not have to wait until it
is designed. In order to achieve this they recognised they wanted:

1. Virtual team support. The people involved in the development process
can be given electronic support which enables them to cooperate as a
close knit team even when they are dispersed physically and organis
ationally. This cooperation is required across the development process
between different types of engineer e.g. mechanical, electronic, IT, etc.
engineers and down the development process between designers, marke
teers, manufacturers, etc.

3. Shared models of products. If different people within the development
process are to be able to communicate with each other they need to
have shared understanding, i.e. shared models, of the products they are
developing. These models have to be shareable across and down the
development process.

4. Design for marketing, manufacturing and maintenance. Engineers can
design their products so that they are easy to market, manufacture,
validate and maintain. Marketeers, manufacturers, and maintenance
people can be involved in the design activity at an early stage and share
objectives for the products they are developing

5. Operator in the loop. Early in the development process the existence of
a powerful simulation of the product enables the product to be validated
by its future operators (i.e. users). This allows the users to be represented
in the design activity as well as the developers

6. Quality control. The development process can be designed so that it
detects errors at all stages (not just the end and the beginning) and
modifies its behaviour appropriately

These ideas are as applicable to the V-diagram model of development (and
the models of development shown in later sections) as they are to USA
manufacturing processes.

2 .5 In te g r a t io n C h a in

During the second world war the number of components in a bomber
declined markedly. The appearance and use of the bomber did not change
greatly; the objective was to simplify and accelerate the production of
bombers. A similar thing has happened in the car manufacturing industry
(Kumpe et al., 1988). Car manufacturers are simplifying their development

ICL Technical Journal May 1993 389

problems by reducing the number of components in their cars. They are
forcing manufacturing problems back on to their suppliers. The car manufac
turer sees a smaller number of components and these components are no
more complicated for them than the earlier components. Much of the com
plexity of the car has been shifted into its components and is now the worry
of the suppliers. The car manufacturer and its suppliers and their suppliers
are organised in an integration chain as in Figure 3.

Fig. 3 Integration chain

Each stage in the chain only has to worry about a reasonably small number
of components; what is a simple component to one stage in the chain will
be an assembly of components to an earlier stage. This means that each
stage in the chain can move round its development loop more quickly
because the complexity of its problems has been contained at a reasonable
level. Hence it is better able to respond to demands for change in its products.

The integration chain style of development is now being applied in the IT
industry. It could be represented as a chain of V-diagrams with requirements
and releases passing between the stages in the chain. However to be truly
effective the integration chain has to introduce new types of development
activity not included in the V-diagram model. For instance one stage in the
chain may receive components from an unreliable supplier. It may have to
re-engineer or reverse engineer the components it receives. It may be capable
of taking the same type of component from multiple sources. A better model
of the typical node in the integration chain is required. This is given by the
asset pumping model shown in Figure 4.

It sees each stage in the integration chain as maintaining an asset base of
products and components. It continually receives components from its sup
pliers re-engineers them, reverse engineers them and integrates them to form
new assets in its asset base and new products to pass on to its customers.

Thus in the integration chain style of development supplier-care, supplier
choice, re-engineering and reverse engineering become as important as the

390 ICL Technical Journal May 1993

Fig. 4 Asset pump

traditional development activities introduced in Section 2.3. There is more
concurrency in development. Different companies will be developing systems
and products and their components in parallel with each other. Designs of
systems and products have to be able to adapt to exploit new components
as these become available from their suppliers.

Suppliers will not normally be suppliers to just one company. Companies
cannot expect to control components coming from their suppliers as much
as they did when all components were developed in-house under the V-diag-
ram style of development. In the worst case they will have to cope with
commodity components which are used so widely that the companies using
the components have little influence on the suppliers of the components.

2 .6 C u s to m is a t io n C h a in

The style of development described in the last section came about because
of the demands of the developers. It eased the manufacturing process for
complex systems including cars and IT systems. There is a variant on this
style of development which is coming into existence to satisfy market
demands. This is the customisation style of development shown in Figure 5.

Fig. 5 Customisation chain

ICL Technical Journal May 1993 391

A company creates a generic product, for instance a retail point-of-sale
device. It then customises it in stages to different market sectors such as
DIY or food, different regions such as Australia or France, different customer
enterprises and ultimately different sites within each enterprise.

This style of development adds to the picture given in the previous section.
It places the emphasis on additional development activities, specialisation
and generalisation.

At the end of the customisation chain is the customisation done by end-
users. Hence the emphasis at this point in time on user enhanceable systems,
systems which can be readily tailored to their requirements by end-users
who are IT illiterate (though possibly skilled in other disciplines).

2.7 Value-chains

From the previous sections it can be seen that the new style of development
involves many different types of vendor collaborating and competing in
value-chains (Porter, 1985), (Johnston, 1988). Different stages in the value-
chain will concentrate on different types of development activity, design,
implementation, integration, reverse engineering, re-engineering, specialis
ation, generalisation, etc. Figure 6 shows a typical value-chain. It includes
independent software vendors (ISVs), value added resellers (VARs), facility
managers and systems integrators.

Fig. 6 Value chain

IT products and information systems pass through these complex value-
chains on their way to eventual use in customer enterprises.

Each stage in the value-chain takes products, or components thereof, from
earlier stages in the value-chain, adds value by integrating, generalising,
specialising, re-engineering, reverse engineering, reusing, partitioning, etc.
and passes on products to later stages.

392 ICL Technical Journal May 1993

Development approaches vary across the value-chains. Products may take
years to reach their ultimate market from early stages in the value-chain,
months from later stages. Skills in the early stages will tend to be technical
oriented, skills in later stages business oriented. Tight, difficult and efficient
approaches to integration can be used in the early stages, whilst loose, easy
but possibly inefficient mechanisms are required in the later stages. Time-
to-market pressures mean that as much responsibility as possible for change
must be forced down to the end of the value-chain. Integration done in early
stages must be done with later stages in mind; for instance the early stages
should not bind features tightly together if later stages will need to separate
them. Earlier stages only exist to make change easy in later stages, they
provide the generic change mechanisms which can be used later.

The industry is recognising the different development approaches required
at different stages in the value-chain and is providing suitable support
for them.

Towards the end of the value-chain the problem of change is a problem of
scale. The sheer number of machines and packages which have to be changed
in an enterprise, the problems encountered with multiple versions of products
and interworking between them, the problems of phasing change across
people and machines so that it does not disrupt the work of the enterprise.
These can be supported by change management capabilities such as those
described in the systems management element of OPENframework.

Earlier in the value-chain there are also problems of scale, the large number
of components and versions of components used in developing products and
systems, the configuration of components into larger components and prod
ucts, the reuse of components to maximise their value, the reverse engineering
and re-engineering of components obtained from many suppliers. These are
supported by application development capabilities such as those described
in the application development element of OPENframework.

Development units within the value-chains will in future nurse their suppliers
and collaborators quite as assiduously as they do their customers. The IT
industry is now recognising development as being supply driven as well as
market driven.

3 Change-Oriented-Architectures

In the early days of the IT industry people were cheap compared with IT
resources. Performance of IT systems was the dominant problem. Systems
were structured to achieve IT performance. Now IT resources are cheap
compared with human resources so systems can be structured for other
criteria. So for instance secure architectures have been developed which
emphasise the security quality in systems. The industry is now beginning to
develop architectures which emphasise change as the major consideration,
that is to say change-oriented architectures.

ICL Technical Journal May 1993 393

Pragmatic approaches to change-oriented-architectures are already being
adopted. Flexible frontends are being put on to existing, difficult to change,
systems. This is being done using office systems, knowledge engineering
systems, HCI systems and process support systems. These will continue to
be important over the next few years.

However it is now possible to develop a formal approach to change-oriented-
architectures. The key principle is that of “separation-of-concerns”. Aspects
of the system which have different change characteristics are separated from
each other so that they can be changed independently. These change charac
teristics include the reason for change, frequency of change, skill type
required to make the change and skill level required. So for instance features
which have to be changed frequently by unskilled users are separated within
the architecture from features changed infrequently by IT experts. Features
changed by database experts are kept separate from those changed by HCI
experts. The industry will continue to develop and use these change-oriented-
architectures.

If these change-oriented-architectures are to be effective, products have to
be engineered or re-engineered according to the rules of the change-oriented-
architectures. They have to be made suitable as components within the
architectures, in other words made into change-oriented-components. For
instance products must not be produced with HCI-driven interfaces which
have no equivalent in procedural interfaces. Other products have no way of
calling on the services provided by such products as they cannot manipulate
the HCI controls as a human and cannot invoke the products via a proced
ural interface. It is already known that such products are difficult or even
impossible to integrate with other products. Products can be given interfaces
which are easy to tailor or extend, for instance with a variable number of
parameters or with identified rather than positioned parameters. Products
can be given object-oriented structures. In its encapsulation mechanisms
object-orientation provides good support for separation-of-concerns. It also
allows a good match between the real world supported by an IT product
or system and the model of that world held within the product or system.
Client-server architectures also give good separation-of-concerns in the
design of systems. Thus rules for change-oriented-components can be identi
fied and formalised.

There are mechanisms at many levels which can be used to plug products
together within the change-oriented-architectures. The interconnect mechan
isms at the network level are already well developed. Good interworking
mechanisms at the application level are emerging. More human-oriented
interworking mechanisms will emerge in the next decade. These will provide
IT support for sophisticated interworking within human teams. The industry
will continue developing these higher level interworking mechanisms. The
industry has, over the years, developed layer upon layer of interworking
mechanisms, tending to treat each layer as the last. It is now developing a
more analytical approach to the problem. The state of the art in this area

394 ICL Technical Journal May 1993

is described in the Distributed Applications Services element of
OPENframework.

A subject of increasing importance is user enhanceable systems. How can
change mechanisms be made so easy to use that they can be used by
relatively unsophisticated users? Something like Visual Basic gives a glimpse
of what is possible here.

4 Forces-for-Change

In the 1980s MIT in the USA set up a project called Management in the
1990s to look at the way enterprises would operate in the 1990s and the
way they would use IT. The results of this programme (Scott-Morton 1991)
are now having a major impact on ICL and other companies just as quality
programmes affected them in the early 1980s (Crosby, 1979).

The most important conclusion of the Management in the 1990s programme
was that the cost performance of IT is improving ten times as fast as any
other technology and so must periodically cause major change in any other
product incorporating it and in any enterprise using it.

This is happening in the design of planes, cars and televisions and in banks,
building societies and manufacturing lines. IT is becoming embedded at the
core of these products and enterprises.

IT is also having an impact on the organisational structure of enterprises.
A similar thing happened 100 years ago when telecommunications techno
logy made possible the large hierarchic organisational structures seen today.

IT products and systems are now making possible another major change in
organisational structures. These new organisational structures are already
being characterised by phrases like cluster working, network organisations,
flat organisations, globalisation, concurrent engineering, empowerment and
electronic trading.

Management in the 1990s summed up this trend by saying that the business
of any enterprise and its IT are now tightly coupled. Neither can advance
without the other.

And yet enterprises are finding that they cannot evolve their businesses to
meet new market demands and new technical opportunities because they
cannot evolve their existing IT products and systems fast enough.

So the end objective is to give potential-for-change to the businesses which
use IT. Building potential-for-change into IT products and systems is simply
seen as the most important way of achieving this objective.

ICL Technical Journal May 1993 395

The forces-for-change described above are forces affecting the enterprises
which use IT. However they also affect the enterprises which develop IT.
They are bringing about the changes in development processes referred to
in section 2.

5 Conclusions

This paper has looked at the ways development processes within the IT
industry are changing and the way they are or can be made to facilitate
change in the products and systems developed by the industry. It followed
this with a brief look at the way change can also be facilitated by change-
oriented-architectures and ended with a glance at the forces imposing change
on the industry.

The paper noted the new style of development process emerging now and
involving a mixture of collaboration and competition, innovation and stand
ardisation. Products are now developed via complex value-chains involving
many different types of development unit concentrating on integration,
customisation, re-engineering or whatever. The actions required to facilitate
change vary down the value-chain. Problems of scale in the later stage of
the value-chain can be supported by change management capabilities; in the
earlier stages by asset management. Reuse, re-engineering, reverse engineer
ing are increasingly important aspects of development within the value-chain.

The paper looked at ways of structuring systems so that they are amenable
to change using change-oriented-architectures, change-oriented-components
and integration mechanisms and noted the trend towards user
enhanceable systems.

The paper looked at the forces imposing change on IT products and systems,
the continuing speed of change in technology and the close coupling between
change in IT and change in businesses.

Management in the 1990s treated potential-for-change as the major demand
of businesses in the 1990s. ICL’s OPENframework is responding by building
potential-for-change into the IT products and systems which support these
businesses.

Acknowledgements

This paper has drawn on material developed in conversations with Michael
Kay, Alun Roberts, Bob Snowdon, Peter Wharton and Brian Warboys and
with the OPENframework architects.

References

BOEHM, B.W. Software Engineering Economics. Prentice Hall Inc, Eaglewood Cliffs, NJ 07
632 1981.

396 ICL Technical Journal May 1993

BOEHM, B.W. A Spiral Model for Software Development and Enhancement. IEEE Computer,
volume 21, number 5 May 1988.

CROSBY, P.B. Quality is Free'. The Art of Making Quality Certain. McGraw Hill LC
79-89296 1979.

DTI. The STARTS Guide, 2nd edition, NCC Manchester 1987.
FOSTER, R.N. Innovation: The Attacker's Advantage. Pan Books ISBN 0-33-029-925-5,1985.
GRAY, P. Open Systems. A Strategy for the 1990s. McGraw Hill ISBN 0077072448, 1991.
HAWKE, D.F. Nuts and Bolts of the Past: History o f American Technology 1776-1860. Harper

and Row (NY) ISBN 0-06-091-605-2 , 1989.
JOHNSTONE, R. and LAWRENCE, P.R. Beyond Vertical Integration: the Rise of the Value-

Adding Partnership, Harvard Bus. Rev. July-August 1988.
KUMPE, E. and BOLWIJN, P.T. Manufacturing: The New Case for Vertical Integration.

Harvard Bus. Rev. March-April 1988.
MCDERMID, J. Software Engineering Reference Book. Butterworth-Heineman 1991.
PORTER, M.E. Competitive Advantage: creating and sustaining superior performance. The Free

Press ISBN 0-02-925-090-0 . 1985.
REDDY, Y.V., WOOD, R.T., and CLEETUS, K.J. The DARPA Initiative in Concurrent

Engineering. Concurrent Engineering Research In Review. CERC, Volume I, Winter 1991/2
carriger@cerc.wvu.wvnet.edu, 1992.

SCOTT-MORTON, M.S. (Ed) The Corporation in the 1990s - Information Technology and
Organisational Transformation. Oxford University Press (NY) ISBN 0-19-506-358-9 , 1991.

WOMACK, J.P., JONES, D.T. and ROOS, D. The Machine that Changed the World. Rawson
Associales ISBN 0-89256-350-8, 1990.

Biographies

Peter Henderson

Peter Henderson is a graduate in mathematics from Manchester University with
MSc and PhD in computer science from Newcastle University. He was Lecturer in
Computer Science at Newcastle University, visiting scientist at CalTech, visiting
research fellow at IBM New York, Lecturer in Computing at Oxford University and
Professor of Information Technology at Stirling University and is now Professor of
Computer Science at Southampton University. He wrote a seminal book on Func
tional Programming and a number of important papers on functional programming,
formal specification and software engineering and will shortly publish a book on
Object-Oriented Specification. He led a number of Alvey and Esprit projects and is
currently a member of the DTI/SERC Software Engineering committee. He is a
visiting ICL Fellow working closely with Retail Business, OPEN/rameworfc and
other parts of ICL.

Graham Pratten

Graham Pratten is a graduate in mathematics (with part III) of Cambridge University
with 29 years experience in the computer industry. He was a programmer on Leo
III systems, teamleader for file systems and virtual store systems on the EMAS
project at Edinburgh University, database systems and operating systems designer
in early ICL 2900 development, designer of CADES CAD system, ICL technical
leader in PISA, IOPT and other projects, strategist for STC systems engineering
business and an STL Chief Research Fellow and is now Company Architect for
Potential-for-Change in ICL’s OPENframework team and a member of the Chief
Engineer’s Office in OPENframework division.

ICL Technical Journal May 1993 397

mailto:carriger@cerc.wvu.wvnet.edu

OPEN framework in Action at DEVETIR

Ian Craig
Fujitsu Australia Pty. Ltd, Brisbane, Queensland

Abstract

Open Systems have the potential to deliver tangible business
benefits; however, putting theory into practice is proving a major
stumbling block for many organisations. Late in 1991 ICL and
DEVETIR, a large Government Department in Queensland Aus
tralia, formed a unique three-year partnership project to develop
an Open Systems based architecture using ICL’s OPEN f r a m e w o r k .
The goal is to directly link re-engineered core business processes
to a highly distributed architecture, the primary attribute of which
is its ability to implement very rapidly organisational, process and
technology changes. To achieve this goal the project has adopted
process-modelling techniques, process support technology and
directory-based messaging systems. The human issues however
are the most significant critical success factors. The project has
the strong support and regular involvement of the corporate man
agement team. This has been combined with an ever increasing
investment in the education of both business and IT staff in order
to help them to operate outside their traditional zones.

1 Introduction

The DEVETIR/FUJITSU Partnership Project commenced in December
1991. This article was written in November 1992 when the project had
completed Phase One and was near to completing Phase Two and therefore
reflects the progress made during this period and the lessons learned. The
project is currently planning to deliver a business focused project complying
with the new architecture by the end of 1993.

All IT architectures will inevitably reflect the differing needs of individual
organisations so the purpose of this article is not to describe the architecture
proposed for DEVETIR in detail but rather the manner in which it was
derived, the issues which arose and the current view of the solutions to
these issues.

2 DEVETIR; The Organisation

The reason for DEVETIR being an ideal case study for the development of
an OPENframework architecture is implied by its name. DEVETIR stands

398 ICL Technical Journal May 1993

for the Department of Employment, Vocational Education, Training and
Industrial Relations. The Department is an aggregation of several former
Departments now known as Divisions of DEVETIR. It is a $A900m (£400m)
per annum operation employing approximately 6,500 people involved in
vocational training and support services. DEVETIR is one instance of a
major push by the Queensland Government to achieve economies of scale
by reducing the number of Government Departments. This trend is itself a
reflection of public pressure for more efficient Government and of the
influence of information technology.

The rationale for combining the specific Divisions of DEVETIR into one
Department is that they all have a focus on workplaces. DEVETIR is
responsible for the promotion of safe, healthy, equitable and appropriately
skilled workplaces in Queensland. There are six Divisions, each of which
contributes to the achievement of DEVETIR’s goals in different specialised
ways. Their responsibilities are as follows:

Labour Market Reform: assisting employers and employees to produce a
flexible and harmonious industrial relations environment.

Employment and Training Initiatives: matching unemployed workers to job
opportunities.

TAFE-TEQ: training current and future employees in vocational skills
appropriate to the emerging requirements of employers.

Workplace Health & Safety: prevention o f workplace accidents by assisting
employers to implement self-management systems for health and safety
issues.

Workers’ Compensation Board: compensation and rehabilitation of injured
workers.

Corporate Services: provision of support services to DEVETIR as a corporate
organisation.

3 Project Background

DEVETIR has long recognised that it would be difficult to achieve a cohesive
Departmental approach unless the supporting IT systems are integrated in
some way. A leading IT consultancy firm undertook in 1990 an IT strategic
planning exercise for DEVETIR, which identified a need for a corporate
database to provide a coordinated business focus on employers and an Open
Systems migration plan to facilitate interworking between the disparate
Divisional IT systems. Ultimately DEVETIR also recognised that it would
need access to additional skills to undertake a complex project of the kind
required to achieve these two goals.

ICL Technical Journal May 1993 399

During the last half of 1991 ICL launched OPENframework as its method
ology for developing Open Systems IT architectures. DEVETIR recognised
the potential for OPEN\framework to address its requirements. As a result
late in 1991 a three year partnership agreement was signed which committed
both parties to invest equally in the development of an Open Systems
architecture and a corporate database based on the OPENframework meth
odology. DEVETIR’s objectives are reasonably clear-cut. ICL’s objectives
are to refine the methodology and develop a reference site for further
OPENframework initiatives in Australia.

4 Initial Situation

It is widely recognised that in the 1990s there is little possibility of a return
to an environment in which little changes. In fact there is ample evidence
that the rate of change will accelerate.

Fig. 1 Pressures on DEVETIR

Figure 1 illustrates some of the issues concerning DEVETIR at this point
in time. Neither the project staff nor DEVETIR believe there to be a universal
panacea which will address all these issues. Equally, while the list may be
different in five years time it is unlikely to be any smaller or any less
problematical.

The key point is that management of change is the one pressing and enduring
requirement for modern businesses.

The volatility of the situation is illustrated by the following sequence of
events: TAFE-TEQ, the largest Division, joined DEVETIR as the project
started; the Labour Market Reform, and Employment and Training Initiat-

400 ICL Technical Journal May 1993

ives Divisions were formed from parts of TAFE-TEQ and the Industrial
Relations Division in August 1992; Fujitsu Australia Limited and ICL
(Australia) merged to form a single company in June 1992; the Director
General of DEVETIR changed in August 1992; the Government Minister
responsible for DEVETIR changed in October 1992.

On the technology side DEVETIR recognises that information technology
is increasingly entering areas of business management which are much more
significant than simply processing records on databases. Such records, while
valuable, can often be secondary in importance to knowledge, and are often
in the form of subjective opinions expressed by experienced people, provided
and managed through media such as voice, image, graphics and even simple
text reports. This is of great importance to DEVETIR in moving to proactive
interactions with clients directly at their places of work.

This recognition has a significant impact on architecture design because it
demands an open and distributed approach to accommodate a “horses for
courses” use of current and emerging technologies.

DEVETIR have a complex and widely diversified IT environment. The IT
employed by each Division reflects its “heritage”. Workers’ Compensation
Board (WCBQ) are a fully funded trust fund (i.e., similar to a mutual
insurance company) handling claims running to approximately $250m per
year. WCBQ runs a claims processing application using TPMS/IDMS on
an ICL 3980/2 mainframe currently being upgraded to an SX520.

TAFE-TEQ on the other hand run 32 colleges throughout Queensland and
have adopted a distributed approach to their major application, the College
Administration System (CAP), being based on 33 Prime Unix systems run
ning INGRES. Workplace Health and Safety, Labour Market Reform and
Corporate Services each employ a number of UNIX systems running a
mixture of ORACLE and INGRES. The networks employed range across
the whole spectrum of TCP/IP, OSI X25, point to point asynchronous links
and UTP LANs.

The IT situation at DEVETIR with its inherent incompatibilities is familiar
to many large organisations. There are, however, two important business
issues which also need to be recognised and addressed in conjunction with
the IT issues. The first is that computer systems have an impact on the
business processes of which they are a part. Computer systems, such as those
at DEVETIR, which were not designed to maximise their potential for
change, can enforce inflexible business processes. This creates significant
difficulties if these processes are optimised for one part of an organisation
but are being redesigned in terms of their Departmental optimisation. Sec
ondly, the merger of several separate Divisions into one Department resulted
in business processes, whether manual or computerised, which were duplic
ated, incompatible or overlapping. This situation significantly limits the
opportunities for improving client service and using resources more
effectively.

ICL Technical Journal May 1993 401

The recognition of these two business issues was to have a fundamental
impact on the nature of the Partnership Project since it led to an increasing
emphasis on Business Process Redesign and on a flexible architecture which
could support the consequential high rate of change.

5 The Project; Phase One

The Partnership agreement gave rise to three initial projects, known collect
ively as “Phase One”, which ran from November 1991 through to May 1992.
The projects were the Open Architecture Design Project (OPAD), the Busi
ness Process Modelling Project (BPM) and the Systems Audit Project (SAP).
The BPM and SAP projects acted as information “feeder” projects under
the control of the OPAD project.

The primary objective given to the project teams by the corporate manage
ment group was the creation of an IT environment to facilitate management
of change and provide a corporate information base to assist greater Depart
mental coordination.

The initial expectation of the Partnership Agreement was that Phase One
would produce an Open Systems Reference Architecture specific to
DEVETIR which would reflect the input of the BPM and SAP projects and
provide the inputs necessary to specify future partnership projects aimed at
“implementing the architecture” and developing a corporate database. As
part of the process of defining the project plans for Phase One it became
very clear that there were two issues which made such an expectation
unrealistic. The resolution of these issues was a fundamental part of Phase
One and had a large impact on the nature of Phase Two and beyond.

5.1 What is an Open IT Architecture?

The first issue to be resolved was the establishment of a common understand
ing of the nature of an OPEN IT Architecture. There are a great variety of
definitions which focus on rules, guidelines and standards; however such
definitions lose the essence of what is essentially an abstract concept.

An Architecture is a statement of behaviour and responsibilities when viewed
across well defined interfaces. It tells designers and implementors the
common purpose to which all parties work and the manner in which these
parties must work together.

For instance in the case of a house, the architecture may define the boundar
ies of a room and the placement of the doors and windows so that they are
consistent with the style of the rest of the building. It does not dictate the
colour of the wallpaper in the room; this is the responsibility of its occupant.
Furthermore, once the overall architecture is agreed, the builder of one room
should be able to work independently of the builder of another room
knowing that services delivered to it by other parties (eg electricity, water,
etc) will be provided in a standard manner.

402 ICL Technical Journal May 1993

In the context of Information Technology, an “Open Architecture” would
not result from simply mandating “open” standards for all elements of the
information technology environment because there is no implicit structure
or bounding of the areas of responsibility involved in this approach. Open
standards are certainly advantageous in lowering the ongoing development,
maintenance and support costs of IT systems through ease of communication
and some degree of reusability; but, in themselves, they do not address the
complex issues associated with achieving the business goals of an
organisation.

An OPEN IT architecture is a defined set of business policies with regard
to the use of information technology which in turn define domains of
responsibility, information domains, interfaces between domains, engineering
structures and, finally, current and projected implementation standards for
IT components and methods.

The degree to which domains can be added, modified or removed with
minimal impact on other domains is the key determining factor of the
“openness” of an IT architecture. The degree to which the engineering aspects
of one domain conform to those of another is simply a balance between the
need for economies of scale provided by commonality and the need for
specific functionality within a domain which, in some cases, may be achiev
able only with “non-standard” components.

In the view of the project, “open system” standards are a means of ensuring
everybody is speaking the same language but architecture is a means of
ensuring that everybody is talking in the same context, about the same
subject and with an agreed understanding of their individual and collective
responsibilities.

At an early stage it was clear therefore that OPEN\framework Reference
Architecture for DEVETIR would be a major undertaking and could not
be achieved within the six months allotted. The Phase One OPAD plan
therefore specified an output covering the whole spectrum of architectural
design at a high level rather than of one area in great detail. Phase Two
was allotted the task of filling in the detail.

5.2 What is the Linkage Between Business and Architecture?

The second issue was the methodology to be used by the Business Process
Modelling Project.

It is widely accepted that the use of IT should be closely linked to the needs
of its specific business owner; however in many organisations there is no
strong link. ICL’s OPENframework is based on the results of the “Manage
ment in the Nineties” research program carried out by a consortium of 12
major US and European corporations and the Sloan School of Business

ICL Technical Journal May 1993 403

Management. One of the conclusions reached by this research is illustrated
in Figure 2.

Fig. 2 MIT90s “Paradigm”

The MIT90s model illustrates that a business involves a complex set of
interactions between different viewpoints, the central influences being busi
ness and management processes. No single viewpoint is likely to provide a
sophisticated mechanism to guide the evolution of a business-focused IT
environment.

In the view of the OPAD project, most traditional techniques of IT strategic
analysis make a direct but insubstantial connection between business strategy
and IT operational systems, resulting in a rapid divergence between the
business and IT strategic plans.

The term business process in its simplest form means “a series of actions
which produce a change”. At DEVETIR there is a specific focus on corporate
processes in which the coordinated actions of several Divisions are called
upon to produce the best business outcome for a client. This is important,
as it means that any IT systems will be developed with a cross-Divisional
perspective, rather than on the basis of narrow operational needs of the
Divisions.

The OPAD project believes that data- or information-centred analysis tech
niques are flawed because they tend to ignore the wider issues of large-scale
corporate business processes. They also have an inbuilt assumption as to
the technology - namely screen based on-line transaction processing (OLTP)
- on which the business processes will be implemented. Such technologies
may not be suitable for implementing long-running business processes in a
widely dispersed and diversified organisation.

Initially the BPM project elected to use a DEVETIR in-house standard for
business modelling. However a review of this methodology by the OPAD
team found that, because of its focus on the development of operational

404 ICL Technical Journal May 1993

OLTP systems based on the current organisational structure, it was unsuit
able when the organisational structure was not stable.

Therefore, prior to making any major decisions about the nature of the
architecture, the OPAD project actively sought methodologies which:
focused on business processes; had a means for identifying and focusing on
core high value business processes; could accommodate solutions which
were a mixture of technology and business changes; and derived the key
business information objects from the process analysis. The outcome was to
adopt methods for Business Process Redesign, based on the outcome of
MIT90 and provided by ICL’s IT Partners, and of Structured Analysis and
Design Techniques (SADT) supported by the PC based Design/IDEF tool
for process analysis and documentation.

The process of moving from the initial modelling methodology to the
approach eventually adopted by the project highlighted the fact that IT
people, while keen to recommend radical change to business people, are
often very inflexible with regard to changes in their own environment.

The resolution of these two issues during Phase One is largely reflected in
the current position of the project as described below. The key outcomes,
however, were a commitment to an education program across a broad
spectrum of the organisation, the addition of a prototyping and demonstra
tion project to assist in the education process and to validate the architectural
approach, the appointment of a DEVETIR business person as the manager
of a revamped BPM project and the adoption of a Business Process Redesign
approach to linking business and IT strategies and plans.

6 Current Position

At the time of writing (11/92) the project is operating to a plan covering the
period up to the end of 1993. The major components of that plan reflect the
OPENframework methodology as tailored for DEVETIR by the project
team (see Figure 3).

7 Business Focus

Every business has a “style”, deriving from many attributes of the business,
such as geographical dispersion, public accountability and posture (i.e.
whether aggressive or conservative). An architecture must reflect the style of
the business and therefore architectural design must start by identifying the
focus of the business. Having determined the primary focus of the business,
its associated high value processes must be identified.

The selection of this primary focus and the associated high value processes
does not necessarily dictate the shape of the architecture. However it enables
the need to invest in the architecture to be demonstrated by the business
benefits that will accrue from that investment.

ICL Technical Journal May 1993 405

Fig. 3 OPENframework Methodology
(BPA = Business Process Analysis, BPR: Business Process Redesign)

At DEVETIR, the business focus is simple: workplaces and the people at
those workplaces. On the basis of specific needs of its clients DEVETIR
wishes to focus its human resources on the establishment of safe, appro
priately skilled and harmonious workplaces in Queensland.

The fundamental business focus changes only slowly with time but the
accuracy with which the focus can be articulated, the level of commitment
to it within the organisation and the implications of adopting that focus all
change quickly as a project of this nature proceeds. Without strong manage
ment support an undertaking of this sort can easily result in proposals which
fail to be implemented. Thus the constant involvement of senior management
is absolutely vital.

8 Business Process Analysis/Redesign

Business process redesign, also known as business process re-engineering, is
the methodology used at DEVETIR to reshape businesses processes in order
to improve client service through cross-divisional coordination and to elimin
ate inefficient duplication of effort within the Department.

A business model which is totally independent of the organisational structure
significantly enhances the potential to focus on the Departmental business
processes rather than the specific activities undertaken by the individual
divisions. Figure 4 illustrates the DEVETIR business model, known as the
“neutral model”, developed during Phase One of the project.

406 ICL Technical Journal May 1993

Fi
g.

 4

Th
e

N
eu

tra
l

M
od

el

This model was initially developed to illustrate the need to remove organis
ational units and structures from the original process models as this was
making it impossible to identify core cross-divisional business processes. The
model is “neutral to the organisation”. The top level shows the business
focus, the middle level shows the high value process classes and the bottom
depicts a common information pool which supports the interworking of
these processes.

“Orphans”, the term for the items at the bottom left of Figure 4, are those
things which are not covered by the focus of the model.

This model may appear simplistic; this is in fact its great strength. It illus
trates in a simple manner the business focus, the high value processes, the
role of IT support for those processes (i.e., efficiency on one side and
effectiveness on the other) and, equally importantly, what is not being
addressed.

Currently, 80% of the investment at DEVETIR in IT supports the reactive
administrative processes (i.e., the right hand side) and only 20% of it supports
the proactive activities aimed at reducing the impact of workplace-related
injuries. This partly reflects the fact that computers have always been better
at processing records than they have been at supporting a mobile, know
ledgeable workforce. This is changing.

The analysis and redesign of business processes (shown in Figure 5) is a
process in its own right. The business focus is used to identify the high value
processes which are then captured in their current state as input to the
redesign exercise. “High-value” does not simply mean that a process gener
ates a large revenue stream. A high-value process is one which contributes
significantly to the chosen business focus.

Fig. 5 Business Process Redesign

408 ICL Technical Journal May 1993

For instance a process collecting information which enables the organisation
to target its resources on specific needs of clients is a high-value process
even though it does not generate revenue directly.

In carrying out this process it is important to consider the viewpoint from
which each step is undertaken. The architecture has a corporate viewpoint
so it is important to identify all business processes associated with the target
focus, regardless of where they are carried out in the organisation as a whole.

Current processes are captured in terms of their inputs, outcomes, process
steps and resources in order that they may be compared with the redesigned
processes in terms of business effectiveness and cost effectiveness. In order
to capture current processes within an organisation structured on Divisional
lines it is necessary to take a Divisional perspective.

It is absolutely essential that the redesign of processes is undertaken with a
Corporate perspective. If this were not the case too many assumptions would
be made on behalf of other parties in the process and opportunities would
be lost as a result of these assumptions.

In terms of information modelling, in line with OPENframework recom
mendations, the project has adopted an object-oriented approach to analys
ing information created and manipulated by the target business processes.
The choice of an object-oriented analysis approach does not dictate an
object-oriented implementation although it will obviously assist if, in the
future, DEVETIR moves that way.

Object-oriented analysis, in the project’s view, is an extremely valuable tool
when the target architecture is highly modular and distributed. This is
because it encourages an encapsulation of information and procedures, with
defined interfaces for invoking those procedures. This makes it very much
easier to achieve a high level of transparency, or independence, between
distributed components.

Information objects at DEVETIR are defined in terms of whether they are
corporate or local. Corporate information objects are maintained centrally
and their integrity is guaranteed no matter where they may be located in
the distributed computing environment. The management of local informa
tion and its integrity is not guaranteed to users outside of the local
application.

9 Architectural Design

One of the significant conclusions of the MIT90s research programme is
summarised in Figure 6.

The current IT position at DEVETIR is best described as “localised exploita
tion”. Clearly if DEVETIR Management wish to focus on the incremental

ICL Technical Journal May 1993 409

Fig. 6 The Role of IT (MIT90s)

redesign of processes, then the architectural design needs to be at least one
step ahead. The target of the architectural design is “business network
redesign”.

Many businesses are looking at technologies such as EDI (Electronic Data
Interchange) and EMAIL (Electronic Mail) as a means for developing
loosely-coupled trading relationships with their suppliers and customers. At
DEVETIR the architecture is similarly designed to support a loose internal
federation of business units, within which business information objects
common to Divisions are controlled centrally. A major objective of this
approach is to push the boundary of this federation out into the business
processes of DEVETIR’s major clients.

The development of an architecture requires the support of IT staff as well
as business management. In the view of the project this can best be gained
by early publication of a set of architecture design principles. These principles
must be directly linked to business policies. For instance two business
policies of DEVETIR related to information ownership and divisional auto
nomy, lead to design principles concerning central control of corporate
information objects in conjunction with the development of distributed
applications.

The DEVETIR architecture is based on the following principles.

• use of technology appropriate to the support of end-to-end business
processes in the form of long-running “cases”.

410 ICL Technical Journal May 1993

• definition of interfaces between systems in terms of true business objects
such as workplaces, employers, etc, and the actions which can be carried
out on them.

• modular, open and distributed technical designs in which functional and
information domains are clearly bounded and interwork with the min
imum possible knowledge of the location, structure or construction of
other domains.

• use of electronic directory systems to provide a single repository for
maintenance of corporate information objects.

• an electronic messaging backbone designed to provide wide-scale shar
ing of complex information.

• management information derived from the support of core business
processes and not by extracts from operational systems.

• adoption of a common office automation environment so as to achieve
a single, consistent user interface to all DEVETIR services.

These principles are aimed at describing functional IT blocks (known at
DEVETIR as Functional Modules), in terms of their defined behaviour
through agreed high-level interfaces. By this means the architectural design
is directly linked to the DEVETIR IT policy which states that IT systems
will be designed to support a high potential for change.

The architecture was originally defined in terms of discrete functional mod
ules interfacing to a “business process network”. The latter contained a
directory system (X500) to manage the central control of corporate informa
tion objects, a process support system (ProcessWise) providing overall coor
dination of core business processes and a message handling system (X400)
for coordinating transfers of electronic message between functional modules.

The original architectural definition, published in June 1992, was a significant
step in moving towards a highly distributed applications architecture. How
ever, in more recent analysis and design work, adoption of more formal
object-oriented approaches and feedback from the prototyping project has
resulted in a move towards distributing the intelligence originally defined
for the Business Process Network out into functional modules, some of
which are specialisations aimed at the control of corporate information
objects.

This has resulted in the distributed architectural components now being
more in line with the emerging standard for Open Distributed Processing
(ODP-X900) and is reflected in diagrams (Figures 7 and 8) below. It is also
a result of taking a more formal stance on treating functional modules as
objects in their own right.

A Functional Module supports a well-bounded area of either applications
functionality (client) or information storage (server). At DEVETIR a variety
of types of functional module are already defined; however, regardless of the
functionality supported, all Functional Modules have some common com-

ICL Technical Journal May 1993 411

Fig. 7 Architectural Framework

ponents connecting them to the Distributed Application Services
Infrastructure.

The key point about this approach, as illustrated in Figure 8, is that the
business applications programmer is isolated from any knowledge of the
underlying technologies or of the location and structure of other functional
modules by the distributed application services layer. This layer manages
all the interactions between modules in a manner transparent to the
programmer.

The current description of the architecture as reflected by Figures 7 and 8
may appear to be a considerable softening of the original emphasis on
electronic messaging as the communications backbone. Nonetheless mes
saging is the preferred technique and other techniques, such as TP, can only
be employed if an extremely good business case can be made.

10 Prototyping

As might be expected it is difficult to convince business management that
large amounts of money should be invested in development of architecture.
Despite a great deal of support from the Corporate Management Group
within DEVETIR, this has been a continuing issue; along with the need to
educate IT staff in new technologies, it has led to the introduction of a
Prototyping Project. This provides the “touch and feel” which is vital when
translating abstract concepts into real deliverables.

412 ICL Technical Journal May 1993

Fig. 8 A Functional Module

An OPEN Architecture is a constantly evolving entity. Feedback is con
stantly required to ensure it keeps up with real-world experience and with
changes in the outside environment. Prototyping is a low-risk way to
improve the architecture and systems developed within it prior to exposing
them to the icy wind of the real world.

To date the prototyping project has implemented X400 messaging systems,
X500 distributed directories, ProcessWise Integrator (an ICL process sup
port system), ProcessWise Workbench (an object oriented process analysis
tool), imaging and workflow management systems. Integration has allowed
applications implemented in ProcessWise to exchange X400 messages with
the office automation environment.

11 Implementation

The use of a common technical infrastructure means that business processes
can be implemented incrementally on reusable technology which can be
recovered should the project fail. It also allows the hardware and software
to be installed and tested and the user made familiar with the basic facilities
prior to implementing the target business processes. Small scale incremental
implementation gives a rapid feedback on the business benefits and thereby
allows the organisation to judge its future rate of investment based on
tangible results.

ICL Technical Journal May 1993 413

For all of the above reasons the current phase of the Partnership Project,
Phase Two, has been renegotiated and extends until the end of 1993 to
incorporate a pilot implementation of a regional workplace management
system based on the DEVETIR OPENframework reference architecture.

12 Lessons Learned to Date

The path by which the current position of the project has been reached has
not been an easy one and there are some basic lessons to be derived:

e education is absolutely vital for both business and IT staff. It is also
very expensive on key project resources and this aspect was significantly
underestimated in the original project plans. Actions to address this
problem are now in place; however, there is still a long way to go before
wide-ranging support can be achieved throughout the organisation.
Architecture projects are doomed to failure if they are seen simply as
another output from the corporate ivory tower.

• it takes time for an organisation to adopt a common focus and culture,
longer than it takes to define an architecture. Both need to be carried
out in harmony.

• change brings risk. It is better to manage risk than it is to attempt to
prevent change as a way of preventing risk. A positive approach to the
management of change brings with it the need to manage risk.

• architecture is a business issue. The DEVETIR project has a great deal
of technical skill, despite which the amount of technical debate has
dropped significantly in favour of business understanding. Technology
is unavoidable, but it should be used within a business context.

• finally, though business is paramount, IT is capable of facilitating funda
mental change in a business and in its relationships with external parties.
A great many negative views have recently been expressed in the media
about the infinite capacity for IT to squander financial resources. On
the other hand this must be tempered with the recognition that IT is
extremely pervasive and has already altered many facets of modern
life forever.

13 Summary

The objective of this article was to provide an insight into experiences gained
at the coal face as a result of embarking on an architectural design project
based on ICL’s OPENframework methodology. OPENframework encour
ages adoption of most of the key concepts embodied in the DEVETIR
architecture. It is hoped that the reader can understand why OPEN/rame-
work as an approach to adopting Open Systems achieves far more than
defining a “buy list” of standards aimed at reducing costs. Business policy
must be the driving force directing the continual evolution of an IT architec
ture which can adapt quickly to changes in the business and information
technology environment.

414 ICL Technical Journal May 1993

Biography

Ian Craig is a senior business consultant with Fujitsu Australia Limited. The greater
part of his 20 years in the computer industry has been spent with ICL in New
Zealand, Australia and the UK. His work has covered a wide range from hardware
and software development through customer implementation projects to business
consultancy.

ICL Technical Journal May 1993 415

Strategic Information Systems Planning:
A Process to Integrate IT and

Business Strategies

R. Thurlby
Visiting Fellow, Brunei University

Abstract

Information Systems Planning techniques have historically been
limited by their dependence on a given Business Strategy. Recent
work from the Management in the Nineties Programme, described
in the paper, has shown that IT is now a sufficiently powerful driver
to have become interdependent with Business Strategy; con
sequently new IS Planning techniques have to be developed which
support modelling of interdependent strategies.

This paper describes a new IS Planning methodology which
enables interdependence to be analysed and dynamically mod
elled as a temporal process. The methodology employs the tech
niques of Strategic Alignment and Value Process Modelling, and
these, together with their underlying theory, are described. In
addition there is an examination of how analysis needs to be
expanded beyond the organisation boundary using the concept of
Process Invasion.

A case study is presented in the paper which describes the use
of this IS Planning Methodology at Regional Electricity Companies
in the UK. The case study focuses on how the methodology has
been applied to develop and align Business and IS Strategies
which respond to the opportunities presented by privatisation of
the UK Electricity Industry.

The paper concludes by highlighting some issues raised by use
of the techniques and how the issues will be addressed by
research currently being undertaken by the author.

1 Introduction

The application and use of Information Technology, IT, by organisations
has increased by orders of magnitude over the last 30 years. Introduced

416 ICL Technical Journal May 1993

originally to automate clerically intensive activities, it has now reached a
position where most organisations could not operate without it. The more
progressive organisations are indeed dependant on IT for continued success
in their market place.

However despite this increasingly pervasive use of IT; planning for, and
investment in, IT often remains an arbitrary process, isolated from business
planning and independent of the business strategy. This situation remains
in spite of the evolution of techniques during the last 10 years which enable
an IT Strategy to be integrated with the Business Strategy. Initially these
techniques derived IT Strategies which were reactive to a given Business
Strategy; but recent research shows that IT can be a driver of Business
Strategy, and methodologies are now being developed which recognise this
fact.

This paper examines the development of business processes for Information
Systems Planning, and discusses in detail the new techniques available to
enable development of a Strategic Information Systems Planning Process
which regards IT as a driver of Business Strategies. To demonstrate the use
of this process, a case study of the application of Strategic Information
Systems Planning in Regional Electric Companies is described.

2 The Development of Information Systems Planning

2.1 Early Approaches

As use of Information Technology moved from data processing towards
information systems during the 1970’s, methods were developed to enable
the analysis of the information need of the end-user. Early analysis techniques
tended to be applied to a single application supporting a limited set of
business processes. The methodology known generically as Data Analysis
guides the analyst systematically through a process which seeks to identify
the functions needed to be supported by the system and the data required
by those functions. (Rock-Evans, 1981). Recognition that data was often
common to a number of applications led to enhancements which resulted
in the Strategic Data Model (Gane and Sarson, 1979). This was the first
attempt to understand the structure and interrelationships of the total data
requirements of an organisation.

At this time the objectives of investment in IT began to change. Managers
ceased to be solely concerned with using IT to improve operational efficiency.
IT could now be used to provide information which would start to increase
their business effectiveness. To determine the necessary information, however,
required techniques which, as well as building data and functional models,
also defined what the organisation was trying to achieve and linked these
definitions with the data and functional models. Business Systems Planning
(IBM 1984) was a widely used technique for this type of analysis.

ICL Technical Journal May 1993 417

Recognition and understanding of what was im portant for a business, if it
was to achieve its objectives, had become a m ajor issue for Inform ation
Systems designers. W ithout this knowledge they could not be sure that their
systems were relevant to business needs.

Development of the concept of Critical Success Factors (Rockhart and
Crescenzi, 1984) provided the technique by which Inform ation Systems could
be specified that gave direct support to Business Objectives, and thereby
improved m anagem ent effectiveness. Critical Success Factors (CSF) were
those processes which had to be done absolutely correctly if an organisation’s
objectives were to be achieved. Furtherm ore each CSF could be quantified
by a set of measures which determ ined w hether it was being done correctly.
Definition and analysis of the CSF measures provided the data from which
the Inform ation Systems specifications could be defined.

Together with the earlier planning and analysis techniques, an Inform ation
Systems portfolio could now be defined which was linked to the organisations
business strategy. This portfolio was frequently analyzed into the standard
4 box m atrix developed by the Boston Consulting G roup and modified for
Inform ation System classification (M cFarlan, 1984). The m atrix is shown in
Figure 1 below.

Fig. 1 Information Systems Portfolio

2.2 Linking with Business Strategies

418 ICL Technical Journal May 1993

2.3 Information Systems and Competitive Advantage

The ability to create a link between business strategies and information
systems led to another incremental step in the process of Information Systems
Planning. This was to analyze where competitive advantage could be
obtained from investment in IT. Although CSFs gave some information, it
was not until the concept of Value Chains (Porter, 1985) started to be applied
to IT investment that this step could be considered to have happened. Value
Chains enabled an organisation to establish where most cost was incurred
in building and delivering products and services. The high cost processes
were then targeted for IT support to improve their efficiency and drive
down costs.

2.4 Limitations of IS Planning

IS Planning techniques had now evolved into a sequential process, which,
starting from a given set of Business Objectives, could develop an Informa
tion Systems Strategy. The process is shown in Figure 2 below.

Fig. 2 IS Planning

ICL Technical Journal May 1993 419

There were 2 limitations to this approach. First, it took the set of Business
Objectives as given and developed an Information Systems Strategy which
was reactive to them. Second it was a once-off process and did not easily
permit interaction and reiteration. Consequently many of the IS Strategies
produced tended to be accurate at the time when they were done, but become
increasingly inaccurate and out of step with the business as time progressed.
It took the insights of the Management in the 1990s Programme (MIT90s)
to address this issue.

3 Strategic Information Systems Planning

3 .1 M a n a g e m e n t in th e 1 9 9 0 ’s

The Management in the 1990s (MIT90s) programme was a 5 year research
programme run by the Sloan School of Management at the Massachussetts
Institute of Technology. It was sponsored by 12 leading companies and
Government Departments, ICL and BP being the two UK sponsors. At the
time of the programme’s inception in 1984 there were a number of issues
facing organisations. These were encapsulated into 4 major concerns.

- Would turbulence in business continue to increase?
- What caused the turbulence?
- What role could IT play to help organisations respond to turbulence?
- Was IT itself a cause of turbulence?

The programme set out to address these concerns, and rapidly came to focus
on the link between Business Strategy and Information Technology. How
to manage the link became a major thread of the programme, and it was
soon understood that unless an organisation’s processes, structures, and
people skills, were clearly understood, then Business Strategy and IT could
not be integrated. The programmes found that failure of a number of
Information Systems Plans could be attributed to not changing an organisa
tion’s processes, or structure, to exploit the capabilities of IT, and so gain
competitive advantage and achieve business objectives.

MIT90s had identified a fundamental weakness in existing Information
Systems Planning methods. To address that weakness required two things.
First a method to study the role IT could play in bringing benefit to an
organisation. Secondly devising methods which linked organisations’ pro
cesses and structure with Business Strategy and IT. In the event MIT90’s
produced a number of very significant findings (Scott-Morton 1990) which
answered the questions posed by the programme. Of great significance were
the findings which concerned the future role of IT in the organisation.

These were in summary:

420 ICL Technical Journal May 1993

1. IT does not provide sustainable competitive advantage by itself. It
requires integration with the organisations processes and structure to
achieve lasting advantage.

2. IT capability is now of sufficient influence to become a driver to change
the organisation, its processes, products and even its market.

3. Although IT is now an agent of transformation there are still significant
technical problems associated with unlocking data held in an organisa
tions information systems, and using it to Informate (Zuboff 1988) the
workforce.

The findings of MIT90s provided a paradigm shift for IS Planning. IT
capability was being proposed as a driver which could change Business
Strategy. Of equal importance, an organisation’s processes and structure
were identified as the mechanism through which Business Strategy and IS
Strategy could be properly integrated. Both of these ideas needed to be
incorporated into any IS Planning Process. Further consideration of the
ideas then derived the additional idea that IS Planning was no longer a
sequential process, but an iterative process with a number of possible start
points.

Out of these findings, and the evidence from the MIT90s research which
supported them, two new analysis techniques were developed. These were
Strategic Alignment and Value Processes, and potentially they provided the
mechanism by which IS Planning can utilise the new paradigm presented
by MIT90s.

3.2 Strategic Alignment

3.2.1 Strategic Alignment Theory. The Strategic Alignment Model
(Figure 3) can be regarded as the solution framework for MIT90s. In addition

Fig. 3 Strategic Alignment Model

to its role in Strategic Information Systems Planning Strategic Alignment
has a number of other purposes, for example in helping the diagnosis of
organisational problems.

ICL Technical Journal May 1993 421

Using Strategic Alignment for Strategic Information Systems Planning is
still a comparatively embryonic process, and has yet to be completely defined
as a mechanistic technique. The case study of its application to Regional
Electricity Companies (RECs) in Section 4 has elements of research as well
as application. The results will not only provide a usable Strategic Informa
tion Systems Plan for RECs, but also provide research material to be used
for developing the technique.

Currently Strategic Alignment is a three phase process.

Phase 1 Collect information to complete a definition of the content of the
4 elements of the model.

Phase 2 Analyze the contents of each element to ensure its consistency and
compatibility with the rest of the element.

Phase 3 Analyze the content of each element to harmonise it with the
content of the other 3 elements.

Phase 3 is normally tackled in 2 stages. The first stage is what is known as
“a quick canter round the model” to pull out all the obvious linkages and
relationships. The second stage is a detailed examination of all the linkages
and relationships to create full alignment (Macdonald, 1991). Strategic Align
ment is a complex process and can be very lengthy. It should not be
undertaken lightly. Alignment is unlikely to be achieved after one detailed
iteration. On subsequent iterations the analyst should be aware of the
dangers of “paralysis-by-analysis”. Nevertheless Strategic Alignment is an
extremely powerful technique when used with thought and caution.

3.2.2 Strategic Alignment Practice. As stated in the previous section the
initial step is to collect information which defines the contents of each
element in the Strategic Alignment Model. Structured interviews and exam
ination of published documents (eg annual reports) are a standard and
effective method of proceeding. The information needed will vary from
industry to industry and it is important to collect quantitative as well as
qualitative data. Sets of objects relating to each element are listed in Figure 4.

In addition there are a number of objects which are common across a
number of elements. These include: control mechanisms, triggers, paradigms
and capabilities. It can be seen by examination of these objects that Strategic
Alignment needs all the information required by earlier techniques of IS
Planning. This is to be expected since the subject has not changed; it is the
analysis of the subject which is fundamentally different.

Analyzing the information to produce alignment is the next step in the
process. Although the detail of approaches and start points will vary, the
following principles have been found to be of value:

422 ICL Technical Journal May 1993

Fig. 4 Strategic Alignment Objects

1 The majority of drivers for change are found in the Business Strategy
and IT Strategy elements so these are the logical places to start.

2 Initially it is useful to consider the strategy as a set of sequential object
ives. In practice objectives tend to be pursued concurrently, but to place
them in a logical sequence aids understanding and focus (Hay and
Williamson 1991).

3 For an organisation to exist in a market-place, or enter that market
place, it needs to have in place a set of competencies before it can
consider tackling its objectives. These need to be identified and described.

4 For that organisation to succeed in the market-place it has to achieve
its objectives. To achieve each objective requires a set of capabilities to
be delivered. Capabilities can be skills, value-processes and information
systems.

5 Also impacting on objectives are external factors, such as market forces,
competitive activity, regulation and technology. These have either a
positive or negative impact on the objective, both in terms of the time
needed to achieve that objective, and the benefit produced from it.

The approach described above can be described pictorially and is shown
in Figure 5.

The description above gives an outline of an approach to the alignment
process, the major complexities omitted being the concurrent nature of
objective achievement, the second level interactions of the objects used to
deliver capability, and the many-to-many relationship between objectives
and capabilities.

The advantage of this method of tackling Strategic Alignment is that it
provides a temporal axis which can form the basis of a dynamic simulation.
Furthermore, by treating the process as sequential it can be broken down
into a set of sub-alignments which makes the process manageable and
understandable.

ICL Technical Journal May 1993 423

Business
Strategy

IT
Strategy

Organisation
Infrastructure
and Process

IS
Infrastructure

and Processes

Objectives Technology Value Process Entity (Object)
Competitors Technology Objectives Process Element Information Systems
Markets Technology Trend Organisation Structure Information Process
Legislations Technology Competence Organisation Element Data Model
Regulations Configuration Resources (human) Physical Database
Environmental Issues Architecture Skill Service Deliverable
C S F s Standards Role I S Skill
Industry Process
Financial Data
Competencies

Policy Information Need
Decision

I S Organisational
Element

Fig. 5 Temporal Alignment

3.3 Value Process Model

A second technique to be developed in the MIT90s programme was that of
Value Process Modelling. Although used on objects within the Organisation
Infrastructure and Process element of the Strategic Alignment Model, Value
Process Modelling is a technique in its own right. (Scott-Morton, 1990 {2}).

Value Process Modelling moves forward from the Value Chain concept
(Porter, 1985) and changes the focus from one of cost to one of added value.
Whereas Value Chains sought to identify where cost occurred and accumu
late the cost into a set of discrete categories; Value Processes are concerned
with logic, flow and interaction. They seek to identify the sets of processes,
which when accumulated together, provide an added value to the organis
ation which is greater then the sum of the individual processes. An example
of a Value Process is shown in Figure 9 below.

The second area where Value Process Models improves analysis capability,
is that they are independent of an organisation’s boundary, and permit
definition of processes which integrate with the organisation’s supplier and
customer processes. In times where much competitive advantage is to be
gained from inter-organisation collaboration, the ability to understand where
other organisations’ processes can be integrated with internal processes is

424 ICL Technical Journal May 1993

very important. The concept, known as Process Invasion, is shown in
Figure 6 below.

Fig. 6 Process Invasion

An interesting result to emerge from the study of Process Invasion is that
the costs tend to move upstream to the supplier, and the benefits tend to
move downstream. Just-in-Time inventory management is a good example
of this, because the inventory costs are being unloaded on the supplier by
the customer. Awareness of this has cost less thoughtful suppliers, who get
into a Just-in-Time contract, a lot of money. Suppliers who think the problem
through make sure that they can leverage sufficient other benefits, such as
reduced production costs, through longer production runs, and larger sales
volumes, through longer term contracts, to offset their increased inventory
costs.

To develop a Value Process Model, use of a process identification and
decomposition approach coupled with a Value Chain is appropriate. It is
then subsequent analysis which develops the Value Processes. A top down
approach is recommended and once the key processes have been identified,
defined, and quantified, they can be examined to identify commonality

ICL Technical Journal May 1993 425

linkages and sequences. In many cases a flow chart format is a good way of
analysing the process; but for discussion and presentation purposes its
superimposition on the Value Chain template has been found to be valuable.
Commonality can be found in a number of ways:

- support of one objective
- support of the same critical success factors
- response to a driver
- use of the same data

The fourth point is both valuable and dangerous. There are some sets of
processes which do integrate logically through common use of data. Focus
on data without consideration of the organisational and objective impacts
will potentially lead to serious distortion of the model.

The final thing to consider is what exactly is required from the model. The
danger is that the Value Processes are a reflection of current practice and
status quo. The question has to be asked: “is this going to improve the
effectiveness of the organisation by delivering capability to achieve
objectives?”

For each Value Process, and each individual process in it, it is necessary to
establish its necessity, its correct position in the value process and whether
alternatives exist. This analysis also requires looking outside the organisation
to establish invasion opportunities.

4 Strategic Alignment in Regional Electricity Companies

4.1 Introduction

The Electricity Industry has undergone many changes because of privatis
ation. One result has been to cause a fundamental re-think about the use of
IT. Since many of the other changes involved their organisation structures,
and the related processes, it would have been unwise just to consider IT in
isolation. Through contacts with ICL a number of the Regional Electricity
Companies (RECs) were aware of MIT90s. The studies were undertaken
with the objective of producing a Strategic Alignment Model. An important
part of this objective was to use Strategic Alignment to identify and evaluate
potential changes to the strategies and processes which would improve the
effectiveness of the business. Finally an outline Information Systems Devel
opment Plan was to be produced which was derived from the Strategic
Alignment Model. Figure 7 below shows the route map for the study.

However before the results of the study are discussed, it is necessary to give
a background to the Electricity Industry and especially the impact of
privatisation.

426 ICL Technical Journal May 1993

Fig. 7 Strategic Alignment Route Map

4 .2 T h e Im p a c t o t P r iv a t is a t io n

The privatisation of the Electricity Supply Industry in the UK caused
fundamental changes to the way organisations in the industry carried out
their business operations. Whilst pre-privatisation Area Electricity Boards,
responsible for distribution of electricity from the transmission network to
the customer continued to have this responsibility, when they became
Regional Electricity Companies (RECs). there were a number of fundamental
changes underneath the veneer of a public monopoly becoming a private
monopoly. The principal change on the Supply Side was the introduction
of real competition to generate electricity. For RECs the result was that
they now had to negotiate their own contracts with Generation Companies
and also were able to generate their own electricity. A further requirement
was that in a REC the Supply Business (buying and selling electricity) had
to be kept financially separate from the Distribution Business, (managing
the network).

Distribution was also subjected to change, primarily through being regulated
on price and service, but also by having competition introduced to its non-
regulated operations, which was work to maintain, refurbish and reinforce
the network, including building extensions to the network which provided
supplies to new customers. The Distribution Businesses have the bulk of
RECs employees within their activities and were faced with threats on three
sides. Their revenue was regulated through the RPI-X formula and Use of
System Charges. They had to operate within defined standards of service,
and the non-regulated areas of their business, where they had freedom, were
being opened to competition.

4 .3 R e g u la t io n

Regulation, as can be seen from the previous section, emerged as a major
driver of the business strategy of RECs. It is therefore worth looking at the
exact nature of this driver.

In recognising that RECs were natural monopolies, competition had to be
introduced through generation and supply. However to prevent RECs from
exploiting their position, the Distribution Business had to be regulated,
which was one of the roles of the Office of Electricity Regulation (OFFER).
OFFER introduced the RPI —X formula to regulate the amount by which
RECs could increase their tariffs. RPI is the inflation rate, and X is a REC
specific value, negotiated with the Regulator, based, among other things, on
the cost of running the network and maintaining it. Since this cost falls
within the orbit of Distribution activity companies are concerned to negotiate
a realistic X-factor.

The second regulation area is standards of service. These are measures of
how a customer is treated by its REC. It includes such measures as the
number of minutes off-supply per customer each year, keeping scheduled

428 ICL Technical Journal May 1993

appointments, and the time taken to restore customers after a fault, plus
technical measures about, for example, preventing voltage fluctuation outside
pre-defined limits. Again many of these measures fall directly within the
responsibility of the Distribution activities.

Finally there is the use-of-system charge. An electricity bill consists of two
elements, a charge for the energy, and a charge for using the distribution
network. This is a sum added to each unit of electricity sold and its value
is controlled by the Regulator. Use-of-System is of prime importance since
it is from this that 90% of their revenue accrues. To reflect further the
importance of use-of-system, the RECs make very little profit from the
buying and selling of electricity. Most of their profits come from use-of-
system. Therefore to maximise profit means driving down the cost
of operating the network. This impacts the Distribution Business directly.

4.4 Results of the Study

4.4.1 Introduction. The results produced by the Strategic Alignment Stud
ies are described in the following sections. They cover the following areas:

objectives of the Distribution Business.
- drivers impacting achievement of the objectives.
- competencies and capabilities needed to respond to the drivers
- information Technology and Information Systems needed
- value processes
- alignment

The volume of information collected in the studies is such that a complete
description of all the results is precluded. Consequently a subset of the
results is presented, but in such a way which demonstrates their interrela
tionships and how they align.

4.4.2 Pre-Privatisation Objectives. Prior to being privatised the object
ives of the Engineering Department (the precursor of the Distribution Busi
ness) were as listed below.

- to operate the network in the most safe and secure way possible
- to maintain a continuous supply to all consumers
- to achieve the two previous objectives within an agreed budget.

The objectives were always quantified by a number of measures, which
usually demanded incremental improvements on previous years’
performance.

4.4.3 Post-Privatisation Objectives. There has been a fundamental shift
in the objectives since privatisation. Although the objectives concerning
safety and continuous supply remain (this is to be expected because they

ICL Technical Journal May 1993 429

cover areas which are subject to regulated standards) new, and fundamentally
different ones, have been identified by the study:

- to improve overall levels of customer satisfaction and service at a rate
better than set by the Regulator.

- to reduce the costs of the Distribution Business in real terms year on year.
- to maximise use-of-system charge revenues in order to assist the group

in achieving its profit targets.
- to seek and create incremental revenue streams by fully exploiting skills

and capabilities.
- to seek to influence the Regulator to ensure that any changes in regulation

are favourable.

As can be seen the shift has caused a refocus away from engineering and
cost management to customer service and profit.

4.4.4 Drivers. The research concentrated part of the information collec
tion on what the senior managers saw as the major drivers that affected
day-to-day and long term activities. There was a high degree of commonality
in the results which are listed below:

- the need to respond to competition which is eroding their market.
- the need to drive down costs
- responding to, and managing, the Regulator’s requirements.
- the need to change the culture from an engineering driven culture to a

customer and profit culture.
- the need to exploit IT as an agent of change.

Each of the drivers was then further analyzed to pull out the detailed issues.
These produce a set of competencies and capabilities as discussed in sec
tion 3.3.2. The competencies and capabilities associated with the driver
“Need to Drive Down Costs” were found to be:

- improve productivity of industrial staff.
- deskill procedures and practices.
- multiskill industrial staff.
- pay staff at the market rate for the job.
- reduce system losses by improved network planning and control.
- develop new maintenance regimes based on usage rather than time.
- develop distant and remote control processes.
- plan work to eliminate peaks and troughs of activity
- introduce on-line network analysis capabilities to enable more accurate

reinforcement and replacement planning.
- develop analysis capability to run the network to minimise ageing.
- investment risk appraisal capability.

430 ICL Technical Journal May 1993

Fig. 8 Driver Analysis Matrix

The analysis is shown in Figure 8.

Having identified the competences and capabilities required and classified
them, analysis of their IT implications was the next step. These defined both
the technology capabilities and information systems that would be required.

4.4.5 Information Technology. To develop each competence where it does
not already exist, and more importantly, develop the capabilities implies an
IT and Information dependence. Some are heavily dependent on IT and
information, as can be seen from Figure 8 but others have less dependence.

ICL Technical Journal May 1993 431

Driver: Need to Drive Down Costs

Ef
fic

ien
cy

Pr
oc

es
s

Re
-e

ng
ine

er
ing

Or
ga

nis
at

ion
al

&
Cu

ltu
ra

l

IT
 C

ap
ab

ilit
y

De
pe

nd
en

t

In
fo

rm
at

ion
 D

ep
en

de
nt

Classifications

Competencies
and Capabilities

Improve Staff Productivity X X

De-skill Procedures and Practices X X

Multi-skill staff X X

Competitive Pay Rates X

Reduce System Losses X X X X

New Maintenance Regime X X

Distant/Remote Control X X

Work Planning/Scheduling X X X

Reinforcement Planning/Scheduling X X

Network Ageing Minimisation X X

Investment Risk Appraisal X X

The competencies and capabilities listed can be classified into a number
of groups

Efficiency Improvers.
Process Re-engineering.
Organisational and Cultural.
IT Capability Dependant.
Information Availability Dependant.

Analysis of each associated competence and capability will determine the
following;

- functional and process requirements,
organisational impact and requirements.

- data needed to support the capability.
- specific IT required to deliver the capability.
- interrelationships with other capabilities and competences.

It was now possible to draw out the IT capabilities required and also build
up the Information System’s needs.

This activity was recursive in as much as the potential impact of emerging
IT capability has to be considered, as well as exploitation of existing IT
capability. In this study the IT capabilities needed to support the driver:
“The need to drive down costs,” were identified as being:

- expert system scheduling software, for work planning and network
switching programmes.

- screen technology, capable of being run without mains power so Engin
eers could control parts of the network from vehicles at remote sites.

- wide band telecommunications, to support system control and
management.
intelligent meters and remote terminal units.

- Object Oriented data bases, to enable the dynamic nature of the network
to be modelled so the topology and load data could be kept consistent.

- on-line network analysis software.
- demand forecasting software, based on neural network techniques.

Examination of the above list of capabilities shows a mixture of existing and
emerging IT capabilities. It is also clear that the capabilities will have to be
delivered as information systems if they are to have a positive impact on
the objectives. For example use of neural network techniques in demand
forecasting software should produce more accurate results than use of con
ventional algorithms. However, unless the database of network load histories
is not available then the software cannot be used to support the processes.

4.4.6 Value Processes. From analysis of the capabilities and compet
ences, and the information needed to support them, a number of value
processes were identified. These were sets of individual processes which when
integrated were found to improve effectiveness of the organisation. The
research identified five value processes. Each improved effectiveness by
increasing the level of control that the organisation could exert on its assets
or costs. They were also identified by common use of a dataset by each
process.

432 ICL Technical Journal May 1993

Control of Energy.
Control of Resources.
Control of Money.
Control of Assets.
Control of Customers.

Fig. 9 Energy Control Value Process

Figure 9 shows the value process for Control of Energy as an example.

Each individual process uses data which defines the loads and flows of
electricity in the network. They integrate to create the mechanism which
controls electricity in a Distribution Business. Re-engineering these processes
so they are co-operative and aligned, and provision of a common database
with supporting information processing, will deliver capability which enables
achievement of the objectives of the business (see Section 4.4.3). Further
analysis revealed how the Control of Energy Process could possibly be
extended into the value chains of a RECs suppliers and customers. This
invasion is shown in Figure 10.

IT capability to implement control systems both upstream and downstream
would provide significant benefit to a REC, through creation of an external
energy management capability. The IT and communications technology
exists to develop such a facility, but implementation, and resultant accrual
of competitive advantage is dependant on negotiation of contracts which
provide tangible benefits to all the players.

4.4.7 Completing Alignment. The Strategic Alignment process has now
reached the point where objects in the 4 elements of the Strategic Alignment
have been identified. By use of the concepts of competences and capabilities
an initial degree of alignment has been achieved.

The five identified were:

ICL Technical Journal May 1993 433

Fig. 10 Energy Process Invasion

The relationship between capabilities and IT and Information Systems has
been defined, and the value processes identified. These objects were now
mapped back to, and aligned with, the business objectives listed in Sec
tion 4.4.3. The purpose was two-fold. First to prioritise the objectives, and
second to establish the impact of IT and value processes on these objectives.
Of the five objectives, two emerged as the most important in terms of
responding to the drivers. These were:

- to reduce the cost of the Distribution Business in real terms, and
- to improve overall levels of customer satisfaction and service.

For the first it was found that all five value processes identified had a major
impact on the achievement of the objective whereas for the second only
Control of Resources, Control of Energy, and Control of Customer had
significant impact.

Moving round the model to look at the Information Systems, the need to
have a set of systems relating to each value process was identified. These
were then aligned back to the objectives to check applicability. From the
Control of Energy process, the applications which impacted the objective to
reduce costs of the Distribution Business in real terms were all concerned
with effective distribution of electricity. The five most important applica
tions were:

- load analysis (loading of feeders).
- switching schedule control.
- load forecasting.
- loss minimisation.
- fault and incident management.

434 ICL Technical Journal May 1993

As was suggested by the Value Process Analysis, data is an integrating
element and data modelling of the five applications showed that they had a
common data requirement. The common data was a record of the load of
measurements at each node in the network. So to develop the above five
applications requires a supporting database of load data to be developed.
Relational Database technology would satisfy this need. But to provide the
applications would benefit from emergent IT and three areas were identified:

- neutral networks, for load analysis and load forecasting.
- expert systems, for switching schedule control.
- low energy graphics screens, for fault and incident management.

This last technology would enable control of the network to be passed to
remote sites during the restoration process.

So having identified the IT needed, the penultimate step was to relate it
back to the Objectives to establish what its impact would be. In this example
IT impacted the Objective in two ways. First its availability would reduce
the time taken to achieve the Objective and second, analysis showed it could
improve the level of achievement of the objective. That is, the benefits would
be greater. A final alignment step reconsidered the Value Process and three
further implications were discovered.

- skills in the control room staff- would change in order to exploit the
applications.
- deskilling as regards Switching Schedule Control, due to automation.
- reskilling as regards Load Analysis and Load Forecasting in order

to improve effectiveness of decision making.
- control-room working procedures would require re-engineering to enable

control to be passed to field-based staff.
- industrial relations issues would need to be resolved concerning the

empowerment of field-based staff.

Thus the alignment process identified the process re-engineering and skills
issues which would need to be addressed if full benefit is to be gained from
implementation of the Information Systems. Use of the Strategic IS Planning
Methodology in general and Strategic Alignment in particular, cannot be
considered complete unless this work is done.

5 Conclusion

The research project completed an alignment process for each of the Object
ives and then attempted to integrate the results. This was a complex process,
not least due to the overlap and commonality of instances of the Objectives
being analysed. The case study demonstrated clearly the wealth of results
and richness of the Strategic Alignment Model through the examples discus-

ICL Technical Journal May 1993 435

sed. Strategic Alignment is emerging as a powerful but complex technique
which, as can be seen from the case study, requires persistence and thor
oughness on the part of the Strategic IS Planner.

One obvious problem is that it is not easy to check the validity of the results
because they will not be known until the plan is implemented. By then of
course the drivers may have changed.

To address this issue is the next stage of research. The case study has shown
a Strategic Alignment Process will produce a valid model. This model needs
to be automated by use of process simulation software, which will simulate
the model and assess the result. A further benefit of such an approach is
that an object instance, or metric, can be changed and the model re-run.
This capability would then enable IS Planning to move from being a static
process to a dynamic process. As was identified by MIT90’s, business turbu
lence will continue to increase, therefore Strategic IS Planning must evolve
into a dynamic process for it to be a valuable analysis toolset.

Acknowledgements

The author would like to thank Professor G Musgrave of Brunei University,
and K Hugh Macdonald of ICL, for their support and guidance during his
secondment and in the preparation of this paper.

References

ROCK-EVANS, R. Data Analysis, IPC Business Press 1981.
GANE, C. & SARSON, T. Structured Systems Analysis: Tools and Techniques, Prentice Hall

inc 1979.
IBM CORPORATION. Business Systems Planning: Information Systems Planning Guide,

Application Manual, G E20-0527-4, IBM Corporation, 1984.
ROCKHART, J. and CRESCENZI, A. Engaging Top Management in Information Technology,

Sloan Management Review, Summer 1984.
MCFARLAN, F. Information Technology Changes the Way You Compete, Harvard Business

Review, 98-103, May 1984.
PORTER, M. Competitive Strategy, The Free Press, 1985.
SCOTT-MORTON, M. (Ed) The Corporation o f the 1990 ’s, Oxford University Press. 1990.
SCOTT-MORTON, M. (2) The Corporation of the 1990's, Oxford University Press, 1990,

299-309.
ZUBOFF, S. In the Age of the Smart Machine, Heinemann 1988, 9-11, 159-171.
MACDONALD, K.H. Future Alignment Realities, Proc. o f Unicom Conf. on Creating a

Strategic Business Based on IT Policy, 1991.
HAY, M. & WILLIAMSON, P. Strategic Staircases, Long Range Planning, V24 no. 4 pp. 36-43,

August 1991.

Biography

Bob Thurlby graduated in Chemistry from Durham University and worked in the
management services departments of a number of companies before joining ICL’s

436 ICL Technical Journal May 1993

Product Support organisation in 1976. In this role he was responsible for providing
technical advice and guidance to ICL’s early customers of IDMS and DDS.

In the early 1980’s his work concentrated on the use and application of data analysis
and database design methodologies and he used his experience to contribute to the
development of ICL’s Fourth Generation System Building software.

Since 1986 he has been a Principal Consultant working with ICL customers in the
Electricity Supply Industry. In this role he has led a number of major development
projects for applications to support the engineering, commercial and generation
functions of the Electricity Industry.

In recent years he has specialised in the development and application of Information
System Planning methodologies and is currently on a secondment to Brunei
University as a Visiting Fellow, where he is undertaking research into this subject.

ICL Technical Journal May 1993 437

Describing Systems in the
OPEHframework Integration

Knowledge Base

Stuart O’Connor
ICL OPEN f r a m e w o r k Division, Manchester, UK

Abstract

The development of more complex information systems, enabled
by recent advances in distributed computing and integrated sys
tems, has resulted in a more architectural approach to describing
systems. This paper discusses how information systems may be
described formally. The proposed fundamental component is a
Solution; which has a finite set of properties; an information system
is made up of a combination of solutions. Direct applications of
this theory include: structural design of a database to hold integra
tion information; replacing structured methodologies by computer
based analysis tools; and checklists for information capture.

1 Introduction

ICL’s OPENframework provides a systematic approach for enterprises who
wish to maximise the effectiveness of information systems in their particular
business. It is valuable to enterprises who see the need for responsiveness
and change in a turbulent business environment and is particularly suited
to enterprises who wish to realise the benefits of open systems in terms of
cost effectiveness, potential for change and interaction with business partners.
[Brunt, 1993].

The OPENframework Systems Architecture provides the vocabulary for an
enterprise to create a blueprint or architecture for its own integrated business
and information systems. The architecture is described in overview in [Brunt
and Hutt, 1992], and its purpose is explained in other papers [Brunt, 1993;
Kay, 1993] in this issue. Using OPENframework, an enterprise can first
consider its requirements in the form of a structured model which enables
managers to explore requirements for change in a relatively cheap and risk
free manner, and secondly use OPENframework information to populate
their modelled systems from many available open systems products. In

438 ICL Technical Journal May 1993

offering this vision, it is recognised that different enterprises need to start at
different places in considering change for their business or information
systems and have different degrees of investment in existing equipment and
systems which must be accommodated. There is potential to improve this
process in terms of speed and accuracy by developing computer based tools.
It is an easy step to put integration information on a database; automating
the structured methodology process would necessitate tooling - the formal
basis of which should be synergistic with the information database.

Services based on OPENframework techniques and associated material such
as workbooks, software tools and information are available for use by the
enterprise in realising some or all of the benefits of OPENframework in an
incremental manner.

It is convenient to consider these services in the following categories:

Modelling To help the enterprise create an OPEN framework-
Services: style computer model of all or part of its business and

information system activities as a basis for exploring
changes;
to provide tools and collateral items to help with the
exploration of the models.

Product Choice: Matching the requirements produced by modelling to
the most suitable products to extend and build
operational systems.

Operational Helping to ensure that the enterprise gets the best
Support: value from its operational systems.

The OPENframework Integration Knowledge Base (IKB) is a repository
or library of information which supports systems integration in general
and the types of services described above. In the particular support of
these services, the IKB holds the following types of information:

OPENframework OPENframework Architecture defines terminology,
architectural classifications, interfaces, units of measurement, etc.
definitions: which are used in the building of modelling objects.
Re-usable Objects which support the modelling services. These
modelling objects: objects are normally tailored to the enterprise specific

requirements through one of the modelling services
and then stored in the enterprise’s own repository in
the form of the enterprise’s own, customised
architecture.

Product choice Information which helps the enterprise choose the
advice: best available product to perform a task. This

information ranges from general terms such as
recording trends in the information industry to quite
specific help in matching a set of modelled
requirements to the best choice of available product.

ICL Technical Journal May 1993 439

Operational The IKB itself is too general to support a particular
Support: enterprise’s operational system. However, the

modelling objects supplied from the IKB are
tailorable, using OPEN framework services, into a
form usable to support the operational system and to
form the basis for systems management activities. This
is a natural extension of the enterprise-specific
architecture held in the enterprise repository.

2 Solution Objects Within the IKB

A central concept for systems description in the IKB is that of a solution. A
solution object in the IKB represents part of an information system. It may
be a large or a small part, so solutions may be composed of sets of other
solutions. It may be described in abstract form when its function is known
but its realisation is not, or in concrete form when the function and its
realisation (that is, the choice of specific hardware or software products)
have both been decided.

The term solution was chosen to emphasise that each solution object performs
a function which is the solution to some set of requirements. A solution
object in the IKB can represent any part of an information system. The term
is not used in the marketing sense meaning “an application”. In [Brunt and
Hutt, 1992] the terms component and assembly are used for a similar concept.
One disadvantage of these terms is that they reflect the bias of the observer
- one man’s component is another’s assembly.

The diagram below shows the area of applicability of the Solution object in
describing the ranges of systems; large to small, abstract to concrete.

Fig. 1 Applicability of solution objects

Using the same basic object to describe all these areas is valuable because:

• larger solution objects can be described recursively in terms of smaller
solution objects and,

• complex attributes of modelling objects, (abstract solutions) can be
matched with real world products or product groupings, (concrete
solutions).

The solution object is presented as a named entity whose attributes are
formulated in terms of OPENframework architectural definitions; its defini
tion is built up as described in the following sections.

2 .1 S o lu t io n C o m p o s it io n

A solution is an encapsulation of the whole or a part of an information
system either in concrete or in abstract form or in a mixture of the two
forms. It is generally composed of smaller solutions except for the most
elementary solutions which are indivisible. It therefore follows that, on the
concrete side, the indivisible solutions are products; and, on the abstract
side, there are some indivisible abstract solutions whose only necessary
property is that they can be mapped to concrete products.

Fig. 2 Composition of solution object

2 .2 S o lu t io n E x te r n a l D e f in it io n

At the boundary of the encapsulation, the solution is defined in terms of:

• the services which it offers (as in client server terminology), and
• the services which it requires.

Both the services offered and required are expressed in the same format
which will be described later. This makes it easier to match the requirements
of one solution to the services offered by another.

2 .3 A d d it io n a l In fo r m a t io n

The services offered and required by a Solution object can be described in
terms of interface specifications. However, there are other important charac
teristics of a solution which have an important bearing on the suitability of

ICL Technical Journal May 1993 441

Fig. 3 External interfaces of solution object

components for particular applications. It is important that these qualifica
tions are captured in the IKB.

The IKB distinguishes two kinds of qualification information: verified
information that emanates from either the product authority or has been
assured by specific testing, and unverified reports submitted by users from
their own experience. The former category is known as advice and guidance
(A&G), the latter category as commentary.

A shell of such information is added to the solution object during its life in
the IKB as shown in Figure 4.

Fig. 4 Adding users' experience to solution object

2 .4 A d d in g S o lu t io n R e la t io n s h ip s

Solutions have been shown to be related by the component relationship,
one solution referencing a set of other solutions for this purpose. However

442 ICL Technical Journal May 1993

it is expected that solutions may be linked together for other, as yet unforseen
reasons. In order to accommodate this possibility, the IKB provides a facility
for solutions to be related with other solutions and with other forms of IKB
objects by means of the link. Links are another form of IKB object which
enable a grouping of solutions to be created dyamically; the reason for the
grouping is expressed in the link object itself.

One use of this is when there is some information which applies when two
or more independent solutions interact (e.g. when some information is known
about a particular interaction of two or more solutions which have not been
grouped as the components of another solution). In this case, the link object
groups the solutions together and acts as the storage place for the informa
tion which is relevant to that grouping. Another use is when it is known
that one or more Solutions are a good match for the requirements of another.

Fig. 5 Linking solution objects

2 .5 V e rs io n s a n d V a r ia n ts

It is expected that Solution objects will be updated from time to time in
order to add information or amend existing information. Updating is sup
ported by the concept of versions, a new version of the solution object is
created for each amendment without automatically destroying the previous
version. In general, when a solution is referenced from another object, there
is an implication that it is the latest version which is being referenced.
However, for particular purposes, a reference may be to a particular version
of a solution which has the effect of ensuring that any information referenced
will not be changed with time. Clearly, care must be taken when deleting
old versions that these are not being referenced by current versions of
solutions.

When creating a new solution it will frequently be the case that the new
solution is a variation of an existing solution. A derived solution may be
used to simplify the creation of such Solutions. If a new solution, solution Y,
has the attribute ‘derived from = solution X ’ then this means that all the

ICL Technical Journal May 1993 443

attribute values of solution X apply to solution Y except where they are
explicitly overwritten (non NULL values exist) in solution Y. Solution Y
may refer either to a specific version of solution X or to the latest version.
Referring to a specific version simply avoids storing replicated information.
Referring to the latest version ensures that subsequent changes to solution X
implicitly affect solution Y as well.

2.6 Administrative Information

Finally, there is a set of information associated with the solution concerned
with its existence and status within the IKB rather than with its system
descriptive properties. This information includes a solution identifier which
is unique within the IKB, but the solution may also have pseudonyms, other
names by which it is known in various environments. The object is the
smallest unit of information within the IKB to which access can be controlled
and so it is the atomic unit of integrity; this includes integrity o f ownership,
which is the right to permit others to access the information and the integrity
of origin, which is the responsibility for the degree of accuracy of the
information.

3 Presentation of Solution Objects

3.1 Attribute Naming

The information held in a solution object is presented to the user in the
form of a set of packages each of which is named and typed. Using object
oriented terminology, these packages map onto the concept of attributes of
the Solution object. These packages can be likened to a set of paragraphs
or sections in an SGML conformant structured document [van Herwijnen
1990] and they are named and presented in an hierarchical form.

Each attribute, as well as being named, has an associated datatype which
explains the way the information held under that name is encoded. Typing
is discussed in a later section but, for the present, it is sufficient to say that
there are two broad categories of datatype - those suitable for computer
operations (e.g. integer, enumerated types ...) and those which are really
only suited for human browsing (e.g. diagrams, text). The latter do of course
have to be machine intelligible for the purpose of display and text can be
searched using a comparatively simple character string matching algorithm.

In general, it is desirable to hold information which can be usefully fed to
machines in as precisely typed a form as possible. This usually implies many
attributes being held in fine grain form but unfortunately we start from a
position of relative inexperience in knowing what these useful, fine grain
attributes are in detail. Thus, it is recognised that for different kinds of
solution, and indeed for different versions of the same solution at different
points in time, it will be desirable to express named attributes in increasingly
fine grained form. For example, it may be that in time it is possible to

444 ICL Technical Journal May 1993

Fig. 6 Attitudes of solution objects

improve the precision of some information within the same solution type;
thus a named attribute holding that information as a text item may be
developed to have an additional named attribute of a different datatype, say
integer or table. At the same time, it is desirable that the information held
in all kinds and versions of solutions is coherent and compatible and so it
is desirable to impose some regular pattern on the organisation of attribute
naming across all solutions.

This is achieved by using the technique of type inheritance, used in object
oriented programming. Every solution instance is derived from a template
or type and the attributes of every solution template are organised according
to a common root template which specifies a mandatory set of top-level
attribute names, similar to the chapter names in a book. From this root
template, further solution templates may be derived by adding attribute
names, but these must be added according to the special rules for solution
objects. Each new attribute is added within the scope of an existing attribute
and in fact takes that attribute’s name as a prefix. This causes the attributes
to be organised in an hierarchy similar to that of a document where there
are a fixed number of Chapters but paragraphs and sub-paragraphs may be
added in a structured manner.

There are many reasons for this form of organisation; firstly, each attribute
value in all solutions falls under one of the ‘well known’ top level attribute
names (i.e. subject headings). Secondly, it is possible to form a query of the
type “retrieve all solutions where there is something known about attribute
Name_”. Such a query can be processed by checking all the solutions formed
from the same template and also all the solutions formed using templates
which are descended from that parent. Thirdly, structured name formation
helps when creating a new unique attribute name, and also helps in enabling
blocks of similar named sub-attributes to be used under more than one
owning attribute name - this is shown in the re-use of the service specification

ICL Technical Journal May 1993 445

Solution object.

Attribute Aaa
Attribute Aaa.zz

Attribute Aaa.zz.st
Attribute Aaa.zz.st1

Attribute Bbc
Attribute Bbc.qwe
Attribute Bbc.asd

Attribute Lastone.

Fig. 7 Control of attribute naming

under the services offered and Services required sections in the example ‘root
template’ below.

3 .2 T h e S o lu t io n 'R o o t T e m p la te '

This section summarises the top level set of attributes which characterise
the Solution Root Template, incorporating the facets of Solutions which
have been previously discussed.

1. IKB administrative information
e.g. solution name, synonyms, owner, derived from, date created, access
permissions, etc.

2. services offered
in the form o f a service spec. - see section ...

3. services required.
in the form o f a service spec. - see section ...

4. advice & guidance
help under sub-headings ...
4.1 installation
4.2 customisation
4.3 etc.

5. internal composition
component parts & how this solution is constructed
5.1 solution components

set o f references to other Solution objects
5.2 constructors (see later).

explanation o f how the components are connected together

446 ICL Technical Journal May 1993

6. links to requirements objects
special use o f IKB link objects for this purpose

7. other links.
other references to links to form groups for purposes defined under sub
headings ...

8. commentary.
users’ experience o f this object ... in their own words

3 .3 A t t r ib u te D a ta ty p e s

Each named attribute is assigned a datatype which is a specification of its
encoding. Much has been written on this subject, the OPENframework
information management reference architecture provides a guide. Datatypes
are traditionally recognised in programming languages as forms which can
be manipulated in a particular way. Such simple common types are integer,
float, character, more complex are table, diagram. More recently, in the PC
world, typing occurs on a larger and more complex scale with files taking
various well known suffix names (e.g. .TXT .DOC .XLS) to identify their
internal encoding and to define what operations may be performed on them
(usually performed by particular applications such as Excel, Word for
Windows, etc.).

The IKB has to resolve some conflict between the number of datatypes in
the outside world and the number with which it can afford to deal. The
following model illustrated in Figure 8 shows the approach taken.

Fig. 8 Use of original and internal datatypes

The IKB acts as a repository for information for a number of purposes.
These may be classified into simple browsing or document preparation and
tool-based operations, many of which are concerned with modelling. The
definition of a core set of IKB internal datatypes sets the agenda for the

ICL Technical Journal May 1993 447

browser and tools which must be capable of dealing with these expected
datatypes. The precise definition of this core is determined on one hand by
the need to support an adequate range to meet the needs of the users
(information consumers) and on the other hand by the expense of providing
a variety of software methods within the tools to cope with the variety of
datatypes.

Additionally, on the input or data capture side, it is recognised that the
world produces information encoded in many datatype forms and it is
important that the IKB can make the transformations between these and
the internal datatypes with minimum loss of information. In passing it is
interesting to note that such transformations do not necessarily lose informa
tion and that information can be gained by, for example, recognising that
what is apparently a text input item is in fact a reference to an IKB object.
However, in order to guarantee a service whereby no information is lost,
the original datatype encoding is preserved within the IKB, labelled in such
a way that it can be given back to the particular application type able to
understand it.

3 .4 H y p e r te x t P re s e n ta t io n

The organisation of information into solution objects and the further defini
tion of contained information under structured attribute names makes a
hypertext presentation very attractive as one option for browsing. Attribute
values within the context of a solution can be viewed at various lexical
levels, following the naming structure and highlighting the presence of lower
lexical levels, which can be expanded individually on demand. Also, refer
ences to other objects can be highlighted on screen as starting points for
hypertext links to other objects.

4 Solutions, Service Specifications & OPENframeworfc Architecture

It has been stated that a solution object within the IKB represents an
encapsulation of some part of an information system and that at the bound
ary of the encapsulation, the solution definition is in terms of the Services
which it offers and requires. Both the required and offered Services are
expressed in the same form - the service specification which is itself expressed
in terms of the OPENframework architecture. By expressing the requirements
and the offerings in the same form, we provide the basis for comparability
and matching. Also, we provide the basis for the process of construction
which is used to explain the interior of the Solution object - but more of
that later. The OPENframework architecture gives us the basis for consistent
classification and terminology which ensures that the information held in
the service specification retains a high value by being highly reusable.

The service specification, the totality of the Service offered/required, is decom
posed into more manageable units called functions. Each function is an

448 ICL Technical Journal May 1993

expression of what is done or required to be done. Typically, a solution will
offer or require a small number of functions but technically there is no limit.

Associated with each function is a set of interfaces which defines the means
whereby the function is accessed. This is an expression of how something is
caused to be done.

Also associated with each function is a set of quality statements which express
how well the function is (to be) done. The Quality Statement is made in
terms of a set of workload/value pairs; the workload expresses the stress on
the system and states what is to be measured under these conditions, the
value associated gives the values attached to these measures either as
observed or as required. Note that the Workload may be in some cases
quite general (e.g. “under all conditions” the processor maintains an “average
of x MIPS”) or it may be quite specific (e.g. the “XYZ Transaction
Benchmark” is measured at “y Transactions/sec”). Note that the service
specification, in terms of function, interface and quality statements, work
equally well when expressing the capabilities or requirement of a solution.
This leads to the important conclusion that, when used in its abstract form,
the prime role of the solution object may be a requirements statement for a
concrete system.

The Service Specification may be summarised as follows, using pseudo-BNF
notation.

Service Spec Function {Function...) II

Function Function Name, II each function has name
Function Description, / / freeform description
Interface {Interface ...}, / / Named Interfaces]
Quality Statement.

Quality Statement [Workload, Values] {[Workload, Values],...). // set of Workload/values pairs.

Fig. 9 Formal specification for service definition

In order to formulate these service specifications in a controlled and therefore
comparable and matchable format, it is desirable to control the values which
can be entered for particular fields in the Specification. This is where the
vocabulary provided by OPENframework Systems Architecture comes in.
Function names, interface names, workload names, and the units in which
values are expressed are all examples of fields in the service specification
which may contain only entries whose values and meanings are specified by
OPENframework architecture. This is not merely a bureaucratic rule but
one which enables an engineering approach to be taken to the definition of
systems by a technique analogous to the use of enumerated data types in
standard programming languages.

ICL Technical Journal May 1993 449

Interfaces are closely associated with function and are controlled similarly.
Note that in the solution context, the term interfaces includes hardware
safety standards, programming interfaces, communications protocols and
the specifications of objects which are transferred between entities which
may be independent of the means of transfer (e.g. files or EDI documents).

For certain industry standards, particularly those known as open interfaces,
there are conformance standards and certification processes which can pro
vide users with a degree of confidence about products’ interfaces.
Conformance statements may be available for a product explaining certifica
tion of interfaces offered by that product. Within a solution, an interface
may be corroborated by such a conformance statement, derived from a
product within the Solution. The Interfaces offered by a product or system
tend to be more valuable when corroborated by conformance statements.

For the quality statement, OPENframework qualities reference architectures
are the basis for the definition of the workloads or circumstances in which
a specified set of measurements are to be made. This concept is well developed
in the case of systems performance benchmarks defining workloads and
measurements to be made but there is more work to be done in providing
such definitions in other areas such as availability, usability and so on.

5 Solutions & Constructors

As already explained, the solution object can be composed of other solution
objects and is characterised at its boundary by its service specifications. The
composition of a solution can be described as simply a list of component
Solution objects but this alone will not tell how the components have been
arranged or constructed to form the whole. To provide the full description
of the internal construction of a solution, another set of attributes, collectively
called the constructor, is needed to describe the means by which the compon
ent solutions are connected together.

Within the industry, various forms of constructor are referred to in various
degrees of precision; client/server, network service, operating system pro
gramming interfaces are all forms of constructor - that is, means of describing
a relationship whereby discrete entities (e.g. Solutions with external
Interfaces) are arranged to interwork.

Within the IKB and its associated modelling services, two parallel
approaches are taken towards constructors. On the one hand, simple formal
constructors (e.g. programming interface bindings) and complex informal
descriptions (e.g. client/server diagrams and textual descriptions) are in
common use and must be useable wherever appropriate. Informal descrip
tions are particularly useful in the context of describing the content of a
solution, as this is usually a description of something concrete which has
been constructed and is known to work (this information being held in the
A&G and commentary parts of the solution). On the other hand, a highly

450 ICL Technical Journal May 1993

Fig. 10 Examples of constructors

formal approach to complex systems constructors is desirable when the
external service specifications of a solution are to be used as the basis for
exploring the possibilities of creating larger, novel configurations of solutions
which have probably not been previously constructed. This area is currently
being researched with a view to providing low risk constructability services
and involves the use of further information in the form of rules.

6 Conclusions

This paper has introduced the Integration Knowledge Base (IKB) and the
solution object as a tool for recording information about information sys
tems. It has shown how the solution object uses OPENframework architec
ture to organise and label information within it and how standard object
oriented techniques of encapsulation, specialisation and inheritance are used
to help in the management of complexity.

The Solution object is shown to be capable of specifying information system
requirements in an abstract manner as well as recording information about
instances of systems built from real world products. OPENframework ser
vices are being developed continually to assist the enterprise in the formula
tion of requirements and to provide information about real world systems
which assists the enterprise to satisfy requirements most effectively.

7 References

Solution objects have been developed as a practical tool using relatively
standard, hopefully low risk, techniques which have been popular over the
past ten years, particularly under the data management and object oriented
labels. In this work originality was not of concern and nearly everything
has been borrowed from somewhere, and not necessarily acknowledged, (as
is usually the case in the software industry). However, the following reading
list has been valuable and in some cases also entertaining to the author.

ICL Technical Journal May 1993 451

References

BRUNT, R.F. and HUTT, A.T.F. (eds). OPEMramework. The Systems Architecture: an intro
duction. Prentice Hall, 1992.

BRUNT, R.F. An introduction to OPENtramework, ICL Tech J. Vol. 8 no. 3 pp. 351-364, 1993.
COAD, P. and YOURDON, E. Object Oriented Analysis. Yourdon Press, 1991.
GRAY, P. Open Systems: a business strategy for the I990's. McGraw Hill, 1991.
van HERWIJNEN, E. Practical SGML. Kluwer Academic Publishers, 1990.
KAY, M. H. The evolution o f OPEMramework. ICL Tech. J., Vol. 8 no. 3 pp. 365-382, 1993.
MEY ER, B. Object Oriented Software Construction. Prentice Hall, 1988.
OBJECT MANAGEMENT GROUP The Common Object Request Broker. OMG Inc. 1992.
RINGLAND, G. A. and DUCE, D. A. Approaches to Knowledge Representation. Research

Studies Press Ltd, 1988.

Biography

Stuart O’Connor
Stuart O’Connor has worked for ICL since 1966 in many capacities as software and
systems designer. In the late seventies he was Systems Design Manager for the 2966
system and in the early eighties became one of the patent holders for the System 39
Macrolan fibre optic system for multiprocessors. As a VME architect he has had
responsibility for Ingres, X.400, and VME/X before joining OPENframework Services
Group as an information architect.

452 ICL Technical Journal May 1993

Multimedia and Standards for
Open Information

Ian R. Campbell-Grant
ICL Fellow, ICL, Bracknell, UK

C. R. Smethurst
Company Architect, OPEN framework Division, ICL, Kidsgrove, UK

Abstract

This paper is divided into two main portions; the first introduces
the key multimedia technologies and outlines some of the impacts
on society consequent on achievement of a global networked
multimedia capability.

A key technology is the establishment of generally accepted stand
ards for representation of multimedia information. The second part
of the paper looks at this in more depth, relating it to OPEN-
f r a m e w o r k and indicating the key areas in which standards are
needed and are evolving.

1 Introduction

This is a wide topic and this paper is divided into two main portions. This
first part deals with what is meant by multimedia, introducing the key
technologies and outlining a few of the impacts that achievement of multi-
media technology will have on society.

There is widespread recognition of a user need to handle multimedia informa
tion in an integrated manner from the desktop, and for a worldwide net
worked facility for interchange of such multimedia information. Such a
worldwide multimedia information capability would depend on five major
factors:

- desktop systems (hardware and software), providing user and application
capabilities to access and manipulate digital multimedia information;

- networking connections, providing the physical basis of a communications
system to interconnect one desktop with another at the appropriate band-
widths and cost needed for generally available and responsive multimedia
communications;

ICL Technical Journal May 1993 453

- infrastructure facilities, providing the carriage of multimedia messages,
with reliable routing and transmission;

- information types, providing generally accepted standards for the various
types of multimedia information;

- provision of libraries, providing access to information in digital, multi-
media form.

Whereas the first of these (desktop systems) need not adhere to standards,
provision of the remaining factors depends on the adoption of generally
accepted standards. Global cooperation is necessary to establish such
standards.

In view of the significance of this area and the recognition that it impacts
many aspects of system design, an OPENframework multimedia specialis
ation is specified, this is dealt with in more detail in Sections 3, 4, 6 and 7
of this paper.

When a networked multimedia capability is generally available it can be
expected to have significant implications for society, for example giving a
general availability of “telepresence” capabilities at a much higher level of
facility than the current phone or video connections, bringing the “global
village” closer to reality. It should also have significant positive environ
mental implications (eg a reduction of travel by making work come to the
worker) and also make collaboration much more flexible - as once remote
working practices are widely established distance will become much less of
a barrier to joint working.

To look at one area more closely, education can be substantially assisted by
making “interactive text books” practicable, for example using moving
images (eg to illustrate growth of plants), providing interactive atlases to
highlight geographic information in a manner responsive to students’ needs,
or by incorporating references to “virtual museums” accessible via multi-
media libraries.

With such information networking capabilities, electronic universities will
become practicable - lecturers and teachers time will be used more efficiently
and may be used for remote advice on demand. It will be necessary to
provide full accredition for such courses.

2 Multimedia Technologies

This section outlines the above technologies in more detail.

2 .1 D e s k to p S y s te m s

The desktop workstation will incorporate a modular core of digital multi-
media services facilitating applications in accessing and processing multi-
media information - this will handle many of the complexities of multimedia

454 ICL Technical Journal May 1993

information for the application software. These services will also provide an
end-user with easy-to-use facilities for capture and presentation of multi-
media information.

The services will provide synchronisation and timing facilities and will make
such features as compression/decompression transparent to the applications
and the end-user. The desktop workstation will also act as the “telecomputer”
- handling all the telecomms aspects within its core of services.

2.2 N e tw o r k in g C o n n e c tio n s

This area is developing rapidly but much higher bandwidths and reliability
are required than are currently available. The first protocols for real-time
digital multimedia connections are still under development today.

Services are needed providing high bandwidths, to carry uncompressed
digital TV and to support a scalable user base, growing to many millions
of users.

To respond to this demand, networking probably needs to evolve from
todays “root and branch” networks to the general provision of switched star
networks. Fibre optic cables and protocols appropriate to this carrier are
capable of providing such networks with the much higher bandwidths that
are required.

To be generally accepted, communications will also need to be far cheaper
than is the case today. As an illustration of the order of magnitude, services
will probably need to provide a thousand-fold increase in bandwidth with
only a ten-fold increase in cost.

2 .3 In fr a s t r u c tu r e F a c il i t ie s

To use the networking connections there is a need for services to manage
the network and to provide a seamless networking environment. These
services need to guarantee bandwidth, error quality and a limit to connection
delays. Reliable connection is key to widespread adoption and in case of
problems the services must provide graceful degradation. Addressing, routing
and delivery must be both simple and secure, as private information and
valuable corporate information will be transmitted. Comprehensive directory
services are necessary.

The provision of such network services to support global interoperation will
require a centralised development between the world’s PTT suppliers and
depends on their cooperation on an unparalleled scale. Other suppliers such
as Cable TV network suppliers will also be involved in this cooperation.

ICL Technical Journal May 1993 455

2 .4 In fo r m a t io n S ta n d a r d s

Multimedia information is of various types, such as audio, video, animation,
film clips, graphics, images as well as text. This information needs to be
transmitted between systems and to be stored for substantial periods of time.
There is a need for generally accepted standards for all types of information.

Hardware support will be required for information compression/decompres-
sion; limited forms of compression already exist in connection with the
facsimile services, but in general there exist today no compression algorithms
for high-quality multimedia information.

Examples are the digital standards under development by ISO for photo
graphic and motion pictures, and also High Definition TV standards. A
number of levels are under development within these standards to provide
for different requirements.

These information standards will also need to allow for a standard “look
and feel” for the multimedia information.

2 .5 P ro v is io n o f L ib r a r ie s

To exploit the multimedia networking capabilities, a comprehensive set of
multimedia libraries will need to be established. Such libraries should, for
example, provide access on demand to multimedia information eg video
sequences, (for example, retrieval by a student of an interactive reference
work).

Electronic publishing and authoring tools are a step in this direction, but
for the success of such services widely accepted standards are necessary. For
such libraries to be economic an “information economy” needs to evolve
whereby information can be bought over the network.

3 Standards for Multimedia Information

The paper now deals in rather more detail with information standards for
multimedia.

It is not reasonable to expect that the above technologies will be introduced
in a coordinated manner just to create a global network capable of handling
multimedia information. There must be more immediate drivers, con
sequently it is important that these information standards are needed also
by the IT business today.

Businesses need such standards because there is a major trend towards
storage and interchange of electronic information within and between com
panies. Such information needs to be transmissable between multi-vendor
systems, to be processable between such systems interactively and to be

456 ICL Technical Journal May 1993

retainable over substantial periods of time. Although studies still indicate
that only a relatively low proportion of information is held in electronic
form, this proportion is increasing rapidly in European businesses; during
this decade companies will become heavily dependent on electronic informa
tion handling to remain competitive. (Scott-Morton, 1991.)

To respond to these trends, an OPENframework Multimedia Specialisation
has been developed; it is concerned with how such information is handled
by IT systems and ought to be a major concern for system integration
specialists.

Any multimedia architecture needs to present a route forward which has a
close relationship with key elements of many of the strategies that apply to
particular types of system component. These include strategies for image
systems, filing systems, databases, security, paper handling interfaces
(printers/scanners), user interfaces, system interconnection, distributed com
puting, messaging, and the various interworking services.

Multimedia information is much richer, that is to say more complex, than
previous systems such as Ascii/Telex and Facsimile. Conseqently, the stand
ards for multimedia information are extremely detailed and the interchange
technologies are far more demanding. The precise multimedia information
standards that are adopted will have substantial significance for the internal
architectures of many components of information systems.

4 OPEN framework Views of Multimedia

From the OPENframework perspective, multimedia is concerned with the
set of capabilities that provide access and manipulation of various types of
multimedia information intended for human perception.

The Multimedia Specialisation for OPENframework does not specify services
that are independent of information type such as database systems and
networking systems. However, the specialisation covers some aspects of all
other OPENframework areas. Multimedia is specifically addressed by
OPENframework in order to provide consistency and synergy across systems
adhering to OPENframework in handling multimedia information.

The Multimedia Specialisation Architecture recommends the standard
information types to be supported by OPENframework; it also recommends
the capabilities that will be provided within OPENframework for such
information to be modelled, stored, retrieved, transferred across a network,
and manipulated within an information system.

While use of other information types is not precluded within OPEN/rame-
work, particular support is not recommended by OPENframework for other
information types.

ICL Technical Journal May 1993 457

Adherence to OPEN/ramewor/c implies the use either of standard information
structures and standard content types, or of application specific structures
and standard content types.

The Multimedia Specialisation also covers Unimedium Information, which
is not handled separately because of the need for it to fit with multimedia
information. Thus, unimedium information is regarded as a special case of
multimedia.

5 Open Information Standards

A current issue of particular importance in multimedia is that various groups
of standards have been emerging with overlapping scopes. It is recognised
internationally that work is needed to develop a harmonised set of Open
Information Interchange standards.

Major committees on international standards with overlapping scopes
include those responsible for:

- engineering information (CAD/CAM and product definition data);
- graphics standards, including hierarchical structures and 3-D processable

graphics;
- electronic documents;
- inter-application communication (EDI).

That these activities are in progress in different groups with little common
membership leads to a danger of an eventual duplication of standards. The
current situation is rather akin to the development of a range of communica
tion standards without any single “OSI model” to interrelate them. Although
various models are under development, all are currently far from complete.

This is an expression of the general points on the explosion of standards in
the paper by Brunt in this issue (Brunt, 1993).

An integrated approach to standards for information interchange is currently
not adequately addressed, whether by formal standards or by proprietary
standards. Nevertheless, this is an area where, as we have seen above, users
requirements can be stated simply and are urgent.

We should recognise that a proliferation of Open Information standards
with overlapping scopes will not benefit vendors or users. Consequently
OPENframework is cautious in this area and is using ICL’s established
position in Open Systems to influence work towards convergence or align
ment of the models applicable to all of these areas.

The various formal and semi-formal activities underway in this area include:

458 ICL Technical Journal May 1993

- The Open Document Architecture (ODA) (ISO 8613, 1992) is an ISO
standard that initially standardised an electronic analogue to paper docu
ments, together with a processable format. ODA provides a model which
could be developed to represent all humanly perceptible information;
many detailed proposals have been made to extend it to this full scope.
Some of these are now at an advanced stage of development, for example
a “HyperODA” extension and an audio content architecture. In addition
extensions are proposed to extend ODA to allow handling of documents
by automatic applications.

- For graphics ISO has a family of standards whose scope includes standards
for all forms of information that can be presented visually to a human
being. These include the Computer Graphics Metafile (CGM) standard
(ISO 8632, 1987) and the “PHIGS” standard.

- ISO standards for document interchange and manipulation, also include the
Standard Generalized Markup Language (SGML) (ISO 8879,1986) aimed
at publishing systems, and development of other standards in this area of
application is underway by ISO/IEC JTC1/SC18/WG8 including:

DSSSL (Document Style Semantics and Specification Language). The
emerging DSSSL standard is designed to support all human perceptible
information as well as to provide for the handling of documents by
automatic applications;
SPDL (Standard Page Description Language). This is designed as a
form suitable for describing any fully formatted documents that can be
represented by laser printer technology.

Technical directions for alignment and harmonisation of these standards
between themselves and with ODA have been agreed by ISO but are
being implemented only to a limited extent.

- ISO and CCITT are developing enhanced standards for:
• photographic information within the Joint Photographic Expert

Group (JPEG);
• motion picture information within the Motion Picture Expert Group

(MPEG);
• High Definition TV standards (HDTV).

- Electronic Data Interchange (EDI) standards have been aimed initially at
interworking between applications. The scope is now being broadened by
the development by ISO of an “Open EDI” model which provides a
comprehensive framework for various information standards to be used
in conjunction with EDI standards, and applying to all forms of informa
tion that are human or machine perceptible or processable. This “Open
EDI Model” is under development by ISO, but is not yet fully fleshed out.

- For engineering and product definition data, a comprehensive standard
known as the STandard for the Exchange of Product model data (STEP)
is under development by ISO/TC 184/SC4/WG1 and an intercept of this

ICL Technical Journal May 1993 459

standard exists known by the acronym IGES (NBS, 1988). The
STEP/IGES standards are aimed at standardising all forms of engineering
information, and are to provide for inclusion of documentation, graphics
etc., as well as engineering data, thus encompassing the scope of the ODA,
CGM, SGML, DSSSL, SPDL Standards and maybe also EDI.

- The US Defense Department CALS (Computer-aided Acquisition and
Logistics Support) programme (US DoD, 1990) is selecting standards to
define how the various forms of human- or machine-processable electronic
information shall be interrelated. This framework is currently under study
for application to NATO.

- In addition, various proprietary standards exist or are under development,
including:
• Digital CDA (Compound Document Architecture)
• IBM MODCA (Mixed Object Document Content Architecture), and

IIA (Information Interchange Architecture).
These are being developed to become full multimedia architectures.
Both companies see these standards as having substantial influence on
the internal architectures of many components of their information
systems.

A particular attempt at convergence by standards for multimedia and hyper
media was that, a special group was established in ISO at a very high level,
(reporting to the ISO Technical Committee responsible for all generic stand
ards for information technology) to determine the direction for multimedia
and hyper-media standards. ICL played a significant role in this group and
avoided developing new architectures for multimedia/hyper-media. The
leaders of the ISO technical work on ODA and the ISO work on SGML
jointly developed an agreed proposal that the ISO Subcommittee responsible
for ODA and SGML should have overall responsibility for a single model
applying to all standardisation in the field of hypertext and multimedia.
This work would be handled in ISO by means of extensions to existing
work, in particular ODA with the “HyperODA” extension.

6 OPENframework Multimedia Reference Model

The standards outlined in Clause 5 of this paper have many architectural
approaches in common. In order to understand how these may interrelate
it is useful to have a common model covering the various standards. This
section describes an OPENframework reference model containing the major
system components. Each of the major system components is then described
in more detail.

The demand for multimedia systems and applications is driven by the
business information requirements of an enterprise. Consequently multi-
media systems are constructed and applications are designed to facilitate
and enhance the business processes, with the objective of providing the

460 ICL Technical Journal May 1993

enterprise with competitive advantage. This is an evolutionary process, of
which the regulating factors are cost effectiveness, system usability and the
rate of advance in multimedia technology.

In order to build effective and open multimedia systems there is a need to
define the standard information types that multimedia systems will manip
ulate; there is also a need for a development environment and tools to
facilitate systems construction. Figure 1, below, illustrates the main compon
ents of a multimedia system using a model based on the OPENframework
structure model. The major components are highlighted.

Fig. 1 Components of Multimedia System

- Business information requirements.
These can be varied and wide-ranging. The underlying requirement is to
assist the automation of business processes, primarily by communicating
business information between people efficiently and effectively. In addition,
some automatic processing of this information by applications can be
introduced to facilitate business processes. Thus, multimedia provides for
matching and merging the capabilities of computers and people, allowing
information to be handled more easily, clearly and quickly.
Examples of technologies involved are video conferencing, video mail,
distribution and storage of high quality documents, imaging and filing
correspondence, structured information systems, state-of-the-art business
presentation systems, highly interactive education and training packages,
and information “kiosks”.

ICL Technical Journal May 1993 461

- Information types.
OPENframework standards for information types combine a variety of
types and content formats covering both information structures and rep
resentation together with data structures and representation (encoding).
In order of preference, standards may be International Standards (to
facilitate interoperability), de facto industry standards or standards par
ticular to OPENframework. The trend will be increasingly to adopt inter
national standards in order to facilitate use of such information with any
applications adhering to these standards. Information types are formed
from one or more content types, together with structural information such
as logical, layout, or application specific structures, for example, filing
structure.
OPENframework Standards include:
• Logical structure information which represents the human-perceptible

and/or application-specific meaning given to the content.
• Layout structure information which represents the way that content is

to be presented to the user.
Content types are either general or application-specific. The general con
tent types include: audio, video, raster (image) graphic, geometric (vector)
graphic and computational data, as well as character text.
The subject of information types is discussed further in clause 7.

- Information storage and retrieval.
Concerns principally secure storage of large amounts of information,
sometimes for a long time (often years, sometimes decades). Traditional
storage such as magnetic discs and tapes are being augmented by newer
technologies, for example, optical discs, CD-ROMs and digital audio
tapes.

- Multimedia applications.
Multimedia applications facilitate business processes, covering informa
tion creation and capture, processing, storage, retrieval and presentation.
• Information creation and capture.

Information is created or captured for subsequent use, storage, or
onward transmission. Forms of information input until recently only
possible with high priced specialist components are now readily
affordable. Thus, traditional keyboards and mice for input are being
augmented with components for capturing other content types such as
scanners, cameras, microphones and video recorders.

• Information processing.
This concerns modelling, creating, updating and deleting information
as well as accessing information for application processing. In addition
applications can automate business processes, possibly involving a
number of processing steps associated with different individuals or
processing elements. Many generic information processing components
may be used directly or be customised to a business need, including
editors, browsers, converters, and transmission agents such as print
spoolers.

462 ICL Technical Journal May 1993

• Information presentation.
This concerns extracting information from the information system,
ultimately for human perception. Advances in technology, with the need
for improved quality in the perceived information, have lead to high
quality, affordable information output components such as printers,
display screens and loudspeakers but with high quality visual or audible
presentation. Information output components may generate inter
mediate forms intended for eventual human perception, such as creating
a CD-ROM.

- Multimedia application development and tools.
Tools which handle multimedia information types include: general
authoring, audio editors, video editors, graphics and clip art library,
animator packages, hypermedia authoring, information type conversion
and business presentation.

- Multimedia technology.
The evolution of technology simplifies the adoption of multimedia systems
by making new ways of working more practical. The current key technolo
gies are:
• high-powered silicon engines,
• digital information standards replacing analogue standards,
• standards for compressing information for interchange,
• support systems such as storage systems, scanners, cameras, speakers

(to some extent still to reach affordable prices and performance),
• application development tools to treat image, audio and video as any

other type of information,
• and finally interoperability standards and conformance and certification

capabilities.

7 OPENframewor/t Information Types

A multimedia information type is defined to be “any collection of multimedia
information that can be handled as a unit for the purposes of creation,
capture, storage, retrieval, editing, interchange, presentation, or processing”.
The term infoplex is used by OPENframework to apply to a standard
OPEN\framework information type. The term document is used in its com
monly accepted form (paper and electronic); a document is a restricted form
of infoplex, and is described later in this clause.

Figure 2, below, provides a simplified information model of objects and
processing involved.

The information base contains a set of infoplexes which are subject to
infoplex processing. The infoplexes themselves may be either self-contained
sets of information or interrelated by hypermedia linkages. In either case,
the infoplex itself is essentially a handle onto a subset of the information in

ICL Technical Journal May 1993 463

Fig. 2 Information Processing Model

the information base. This handle provides for the subset of information to
be handled as a unit for one or more purposes.

This section describes the formal models of infoplex and document objects,
and describes models of the processing transformations that can take place
on infoplexes.

Information bases evolve with time as do the applications which use them.
However, for business purposes all information should be accessible by any
authorised users and should not be rendered inaccessible by barriers resulting
from technological limitations or technical evolution. It is important to note
the danger that information bases may become information islands with no
or limited means of information transfer and to take steps to avoid this. Use
of appropriate standards is the most significant contribution to a solution.

7.1 In fo p le x M o d e l

This reference model introduces the concept of multimedia information
modelled by a multimedia “infoplex”. A multimedia infoplex consists of
content information together with structural information. As illustrated in
Figure 3, below, the infoplex is modelled by a process of successive decom
position. This section expands on the reference model to give a more detailed
definition of an infoplex in terms of its constituent parts.

464 ICL Technical Journal May 1993

Fig. 3 ‘Infoplex’ Model

In this model, an infoplex consists of:

• An optional profile which describes the infoplex as a whole
• Zero, one, or more generic parts which specify rules for the structure

and content of a class of infoplexes
• Zero, one, or more specific parts which give the actual structure and

content of a particular infoplex.

The structures of the generic and specific parts are provided by the corres
ponding part structures. The generic structures specify the rules describing
a class of documents, while the specific structures describe a particular
document.

Examples of multimedia information that may be modelled by an infoplex
range from a simple string of text with no structure, through word processor
documents, to “desktop publishing” specifications and hypermedia
structures.

This infoplex model is consistent with the models adopted by the Interna
tional Standards community, principally in their ODA and SGML families
of standards, to support general information architectures/hypermedia
facilities.

The constituents of an infoplex are listed below.

ICL Technical Journal May 1993 465

7 .1 .1 P r o f i le The p ro fi le contains information that describes the charac
teristics of the infoplex as a whole. The profile is concerned mainly with the
attributes such as title, author, owner, keywords, date of creation, retention
date, archiving characteristics, access controls, and revision history. This
information is intended for use in managing the infoplex during storage and
retrieval.

The profile also contains technical information such as the structures that
the infoplex contains (for example, logical, layout, application specific, or a
combination of these), a list of external references made from the infoplex,
the coding standards used for the different types of content, the fonts and
character sets used, the rules to be applied to the infoplex (for example spell
checking, or formulae for spreadsheets). Thus, the profile provides sufficient
information to enable:

- an application to decide whether it can successfully present or process the
infoplex,

- a recipient to understand what is required to handle the infoplex.

7 .1 .2 G e n e r ic P a r t The g e n e ric p a r t is a set of rules which describe a
class of infoplexes and constrain the specific infoplexes of that class. The
generic part may be constructed as a skeleton (or template) applicable to
every specific infoplex of the class, and in this role has its own part structure
including content, which allows for factorisation of information.

The generic part may also specify a set of rules describing permissible
transitions from one infoplex of the class to another, thereby guiding or
constraining editing applications or other application processing. Further,
the generic part may also refer to a metaclass definition which can constrain
manipulation of the generic part itself. Any number of levels of such a class
hierarchy is possible, although in most cases either one level (class) or two
levels (class and metaclass) will meet requirements.

The generic part may be included directly in the infoplex when it is stored
or interchanged or may be included by reference. The generic part is optional
(if omitted there are no template and no rules for the specific part), and also
may include many class structures, for example when used to define a class
of hypermedia infoplex.

The set of all infoplexes that adhere to a particular generic part is termed
an infoplex class.

7 .1 .3 S p e c i f ic P a r t The s p ec ific p a r t defines a particular infoplex. The
specific part defines the overall structure of the infoplex and the relationships
between the various structures of which it is composed (logical, layout, and
application specific) and between these structures and the content. The
specific part is required to adhere to any template or rules specified by the

466 ICL Technical Journal May 1993

generic part, if present (or referenced). The specific part is optional; if absent
the infoplex is in generic form only. The specific part may include many
separate part structures, for example when used to define a hypermedia
infoplex.
Part structure
The part structure defines the structure of the generic and specific parts in
terms of:

- logical structure
- layout structure
- application specific structure
- styles.

7.1.4 Logical Structure The logical structure is formed by successive
decomposition and thereby defines the set of relationships between logical
objects or object classes (components). (Here and elsewhere the term “com
ponent” is used to represent objects or classes of object, when there is no
need to distinguish between these.) These relationships are used to express
the meaning in terms to which humans and/or applications relate naturally.
For example, at the overall level this may identify the infoplex as consisting
of an introduction, a number of chapters and an index. In turn the chapter
may be decomposed into a heading and a number of sections. These objects
may in turn be decomposed. The structure provides for multiple logical
objects to be combined (for example a “graphic” and a “caption” together
might form a “figure”). This kind of grouping can be applied at any level.

When defining a hyperstructure, links may be inserted between the nodes
at any level of the logical structure. The decomposition may be recursive
allowing the logical objects to be nested when defining a generic structure.
However at the lowest level each logical object (for example paragraph,
figure, footnote) must contain a link to a content portion.

7.1.5 Layout Structure The layout structure is only of interest for format
ting or presenting an infoplex. The layout structure defines for each content
portion the spatial and temporal parameters, for example, the page and the
position and dimension of the imaging area, whether the content portion is
to be made visible immediately or later by some trigger, whether the presenta
tion of a content portion is to be synchronised with the presentation of some
other content portion.

7.1.6 Application-specific Structure The application-specific structure
defines application-specific structuring to be applied to the infoplex. For
example this may represent the structure of a worksheet or the structural
information of a spreadsheet application. Other examples are a structure
representing the successive levels of decomposition of mathematical formulae
or musical notations.

ICL Technical Journal May 1993 467

7.7.7 S ty le The style information describes particular techniques to be
applied to processing or presentation. For example, precisions to be applied
in manipulation. Other specific examples of styles are the presentation and
layout styles used within the infoplex. Presentation styles are used to govern
aspects of formatting an image such as indentation, justification, font,
emphasis, line spacing, colour and many others. Layout styles define proper
ties associated with the layout of content portions, such as ‘starts on a new
page’, ‘keep together’ and margin offsets.

Changing the definition of a style can change the appearance of the content
portions when they are presented or laid out according to that style.

7.1.7 R e s o u r c e Link The resource link defines a link to information
external to the infoplex, for example this may refer to shared information
such as a company logo or standard text to be included by reference.

7.1.8 A n n o ta t io n The annotation part mirrors the practice of writing
remarks in the margins of paper documents. Annotations can be of any type
of content, such as written, spoken or graphic. Annotations may be associ
ated with any of the structures or content portions of an infoplex without
modification to other structure or content descriptions. Accordingly, annota
tions have their own structure and content. In an infoplex there may be
none, one, or many annotation parts, these may be used, for example, to
identify annotations by different authors.

7.1.9 Content Portion The content portion defines an individual piece of
content of an infoplex. The content portion may be associated with any of
the infoplex structures or with annotations. A number of different types of
content information and their method of encoding are defined below. Each
content portion has just one type of content information. The different con
tent information types and encodings used are specified in the profile to
avoid the need to read the whole infoplex before processing it.

Content types are either general or application specific. The general content
types include:

- character text,
- raster graphic (image),
- geometric graphic (or vector graphics),
- sound,
- moving image,
- computational data.

These general content types provide support for application specific content
types which include:

468 ICL Technical Journal May 1993

- business graphics,
- spreadsheets,
- tables,
- mathematical formulae,
- chemical formulae,
- music notations.

7.1.10 Character Text Character text is held as a formatted or unformat
ted string, depending upon whether or not the infoplex has been formatted.
Any internationally registered character set is permitted which includes ISO
646, ISO 8859 and ISO 6937.

7.1.11 Raster Graphic (Image) Image (or raster) graphic defines a pic
ture in terms of a rectangular matrix of points, with independent definitions
of the colour and darkness of each point, given as digital values.

The primary encodings defined in this area of application are Group 3
facsimile (CCITT T.4) and Group 4 facsimile (CCITT T.6). A higher level of
facility will be provided by the ISO standard for photographic information
(“JPEG”) which is still under development. The JPEG standard will provide
graphing of sufficiently high resolution and quality for accurate representa
tion of images such as human chest X-rays. A number of de facto standards
are in use with varying degrees of support, which include TIFF (Tagged
Image File Format), and PCX.

7.1.12 Geometric Graphic (or Vector Graphic) Vector (or geometric)
graphic defines a picture in terms of straight line segments, arcs, filled
polygons, filled arc segments, “points” of various shapes, and individual
characters of text. Each such element can have attributes of foreground and
background colour, for example dash pattern, fill pattern and style.

The primary encoding in this area of application is that of the Computer
Graphics Metafile (CGM, ISO 8632).

7.1.13 Sound Audio defines recorded voice or music that can be played
back during infoplex presentation.

A number of standards exist or are emerging; one of these is ADPCM
(Adaptive Differential Pulse Code Modulation).

7.1.14 Moving Image Moving image defines digitised video sequences.

Standards for inclusion of digital moving image are still a few years away.
ISO is developing such a standard in its Motion Picture Expert Group
(“MPEG”).

ICL Technical Journal May 1993 469

7 .1 .1 5 C o m p u t a t i o n a l D a t a D a t a defines application-specific data
included in an infoplex for use during processing by particular, identified
applications.

7.1.16 B u s i n e s s G r a p h i c Business graphic defines the automatic genera
tion of pie charts, histograms, and other graphs from numerical information
held in other content portions in the infoplex (for example within a spread
sheet). International standards for business graphics are not yet established.

7.1.17 S p r e a d s h e e t A spreadsheet defines a rectangular grid of cells, each
of which may hold a numerical or textual value, or a formula. The use of
formulae allows the displayed value in a cell to be calculated automatically
from the values of other cells and from external information (for example
today’s date, or current page number). International standards for spread
sheets are not yet established.

7 .1 .1 8 O t h e r A p p l i c a t i o n S p e c i f i c C o n t e n t T y p e s The items described
above are those in which work towards open information standards are at
an advanced stage. At a less advanced stage, but also important are standards
for tables, mathematical formulae and musical notation.

7 .2 D o c u m e n t M o d e l

The infoplex model can represent information in a richer form than conven
tional paper or electronic word processed documents. For this reason the
multimedia architecture defines a document model as a specialisation of the
infoplex model. The document model, illustrated in Figure 4, below, is
intended to introduce the document in its commonly accepted form and
relate it to the infoplex. This document definition is adequate to represent
electronic documents adhering to either the ODA or SGML family of
standards.

Fig. 4 Document Model

A document may have zero or one generic and specific parts and must have
at least one of the structures (logical, layout or application specific); a
combination of structures is permitted, but not more than one of the same
type of structure. This document model is not suitable for representation of
temporal content types (audio or motion image) nor for representation of
hyperstructures.

References

A very large number of references could be provided, but material not publically available or
not yet published is excluded. The following are considered to be the most important published
documents.

Information technology - Open Document Architecture (ODA) and interchange format. ISO
8613, 1992.

Information processing systems - Computer graphics - metafile for the storage and transfer o f
picture description information. ISO 8632, 1987.

Information processing - Text and office systems - Standard Generalized Markup Language
fSGML). ISO 8879, 1986.

Initial Graphics Exchange Specification (IGES) Version 4.0, NBSIR 88-3813, US Department
of Commerce, National Bureau of Standards, Gaithersberg, Maryland. NBS, 1988.

The Corporation of the 1990’s, Information Technology and Organisational Transformation,
Oxford University Press (NY) ISBN 0-19-506358-9. SCOTT-MORTON, M. (Editor) 1991.

Computer-aided Acquisition and Logistic Support (CALS) - Program Implementation Guide.
MIL-HDBK-59. US DoD, 1990.

Also referred to was: BRUNT, R.F., An Introduction to OPENframework lCLTech. J., Vol. 8
no. 3 pp. 351-364, 1993.

Biographies

Ian R. Campbell-Grant

Ian Campbell-Grant is an ICL Fellow, with responsibility for representing ICL at
the highest technical level and for operating as an external technical authority. He
has been with ICL for 24 years, and since 1981 has been instrumental in the
development of application level standards for interconnection of ICL office products.

His current role is focused on OPENframework, where he is Company Architect for
Multimedia, responsible for ensuring that the ICL portfolio relates appropriately to
multimedia technology, so as to meet business needs most efficiently. He also played
a major part in developing equivalent international open system standards. He led
the ECMA group that produced the first version of the “Open Document Architec
ture” (ODA) standard, and now chairs the ECMA Technical Committee on document
architecture and interchange.

He is General Editor for the ISO/CCITT ODA standard and chairs ISO/CCITT
groups responsible for ODA development and design directions. He is also heavily
involved with the emerging profiles for ODA use in Europe and world-wide. He is
chairman of the Architecture Council of the European PODA Project, and also
chairs the X/OPEN Working Group dealing with Document Interchange. He holds
a bachelors degree in mathematics and two masters degrees, one in computer science

ICL Technical Journal May 1993 471

from the Massachusetts Institute of Technology (MIT) and the other in mathematical
statistics. In addition he holds a degree of electrical engineer from MIT.

C. R. Smethurst
Roy Smethurst graduated in mathematics from Nottingham University and has had
28 years experience in the computer industry. This included writing compilers for
COBOL, Fortran and PL/1 for System 4 and 2900 systems, acting as designer/strat-
egist for the VME SCL (system control language), and its job management, spooling
and file transfer functions.

He has been the ICL representative on FTAM on BSI, ISO, SPAG and EWOS
expert groups and system strategist for Mainframe Systems for corporate office
systems, image systems, and systems management (change control using process
support systems). He is now ICL company architect for Availability in ICL’s
OPENframework team, and is involved in OPENframework specialisations for
multimedia and CALS.

472 ICL Technical Journal May 1993

VME-X: Making VME open

Paul Coates
Computer Systems Division, ICL, Manchester, UK

Abstract

VME-X is a product running on ICL Series 39 servers, which
supports multiple, multi-user UNIX-like environments, alongside
the normal workload of a Series 39 machine. It conforms to X/Open
standard XPG4 base version 1. The paper includes a brief func
tional description of VME-X, followed by a description of its struc
ture and implementation, which, because it runs as an application
on top of a general-purpose operating system, are rather different
from a normal UNIX port.

1 Introduction

1.1 The Move to an Open VME

VME is the operating system designed and developed by ICL for its main
frame computer systems. It is now the operating system for the series 39
range of computers. VME was designed as a general purpose system, with
special emphasis on support of large-scale On-line Transaction Processing
(OLTP) applications. A brief outline of its main architectural features appears
in Section 3.1.

Over the last decade ICL has been remoulding VME from a proprietary
system - one whose programming interfaces and networking protocols were
defined by the vendor and could be changed at the vendor’s sole discretion

into an open system supporting standard, non-proprietary interfaces and
protocols. This program, known as Open VME, is one of a number of
strands of development within ICL, which have come together within the
OPENframework. The main benefits of open systems, for applications
that work to the standards, are: •

• Application portability. The task of porting an application from one
open system to another should simply consist of recompiling the same
source code.

ICL Technical Journal May 1993 473

• Interoperability. Components of a distributed application running on
open systems should still work together if some are moved to different
open systems.

The transition to open networking protocols is largely complete, and this
paper is concerned only with application portability.

The body to which ICL looks for a definition of open interfaces is the
X/Open Co. Ltd., an association of computer vendors, software vendors and
users, devoted to the promotion of open systems. At approximately three-
yearly intervals, X/Open produces X/Open Portability Guides (XPGs), which
recommend standards that computer vendors should support. The most
recent are XPG3 (1988) and XPG4 (1992). Starting from its objectives of
application portability and interworking, X/Open aims to identify all areas
requiring standardisation, and to recommend a coherent set of standards,
covering as many of these areas as possible. It adopts officially ratified
standards where they exist, and de facto standards in other areas. X/Open
also provides an independent certification service for computer systems.
X/Open branding, as it is known, is a guarantee of openness widely recognised
in the industry. The X/Open interfaces resemble those of UNIX systems
much more closely than those of any other established systems, but a system
fundamentally unlike UNIX can still achieve X/Open branding, as this paper
will show. For more information on X/Open see (Taylor, 1991).

1 .2 V M E -X

VME-X, first released in 1991, is a software product that runs on VME and
supports standard programming interfaces as defined by X/Open. Its main
aim was to obtain X/Open base branding, for which it had to support: •

• the C language
• a standard set of system interfaces and headers for C programs
• a shell equivalent to the Bourne shell found on UNIX systems
• a standard set of shell commands and utilities.

Other important objectives of VME-X were:

• Its development was to take at most 2 years.
• It should as far as possible be a practical porting platform, not only for

the relatively small number of applications written strictly to X/Open
standards, but also for other software designed to run on UNIX systems.
To this end, VME-X also supports about 60 system interfaces and about
80 shell commands which, while not mandated by X/Open, are com
monly found on other open systems.

• Applications ported from UNIX should look and feel the same on VME-
X as on their original platform.

474 ICL Technical Journal May 1993

• The skill and effort needed for day-to-day administration of VME-X
should be low, so as not to deter existing VME customers with no open
systems expertise.

There was also a strong requirement for a degree of harmonisation between
VME-X and the rest of VME. VME dates from the early 1970’s, before the
appearance of any official standards for operating system interfaces. It has
its own ‘native’ interfaces, proprietary to ICL and completely different from
those of any other system. The majority of applications available on VME
predate VME-X and depend wholly on the VME native interfaces. The main
aims in this area were:

• It should be easy for a customer to progress gradually from native
applications - those using the VME native interfaces - towards open
applications.

• Native and open applications should be able to run on the same system
at the same time, and there should be scope for interworking between
them.

• Performance of an open application should be comparable with that of
a native application doing the same job.

• VME’s particular strengths, such as disaster tolerance and data security,
should be offered for the system as a whole, no matter whether the
applications being run were open or native.

Portability of Transaction Processing applications is one area which is not
within VME-X’s scope. A separate project within the Open VME program,
running in approximately the same timescales, is dedicated to this topic.

In the rest of this paper, Section 2 describes VME-X from the user’s stand
point. Section 3 describes the implementation; and a rudimentary knowledge
of the structure of UNIX systems is assumed here.

2 Using VME-X

2.1 Using VME-X from a terminal

The user starts by logging into VME. He is asked to give a personal
identification and password and to state the service required. In general, the
system will offer a number of services, each providing a different working
environment. Some may provide a traditional shell or command language
environment suitable for the computer-literate, while others may be tailored
to particular applications or particular categories of user. VME keeps an
access control list for each service, determining who may log into it.

Of the services offered, some will be native services, and others will be VME-
X services. If the user chooses a VME-X service, the next thing seen is the
first message from the user’s initial shell. If this is the X/Open standard shell,
the first message would normally be

ICL Technical Journal May 1993 475

$

inviting the user to type a shell command.

Thereafter, the session looks and feels just like a traditional UNIX session.
All the normal shell facilities, such as pipes and redirections, are supported.
As on most UNIX systems, an initial program can be defined for each user.
Some users could be assigned an alternative shell, such as the C shell or a
specialised application like mailx.

Native VME commands can be invoked, and they can be used in pipelines
just like any other command. The user can also start nested sessions by
invoking another service, which could be a native or a VME-X service, but
in this case the output cannot be redirected or piped.

Where the system offers several VME-X services, each one resembles a multi
user UNIX system in its own right, and behaves as a separate open system.
Generally, each has its own independent X/Open-compliant filestore, distinct
from the native VME filestore. If an organisation has several departments
each wanting to install and administer its own open system, this can be
achieved by allowing each department its own VME-X service; the initial
cost and continuing maintenance costs will be much less than if each had
bought its own UNIX computer, as the hardware and much of the software
administration can be handled automatically by the underlying VME system.

Different services can be protected from each other using VME’s extensive
security facilities (Parker, 1989). However, where a number of services with
compatible security classifications need to share data, a file system can be
made available on all of them simultaneously, provided at most one service
has write access to it.

Native VME files can be accessed, using the syntax

/dev/vme/vme-filename

The file is assumed to be a VME serial character file in the usual VME
format and character encoding. A binary view of the same file could have
been taken by using /dev/rvme instead of /dev/vme. The user’s access rights
to a native VME file are evaluated just as if he had accessed the file from a
native VME service.

Each VME-X service recognises a subset of the people known to the VME
system, and only recognised users are allowed to log into the service. Where
a user is recognised by several services, he can be logged into one service
and access files on another. The syntax is:

/dev/vme/other-service\/usr/\ib/...
or /dev/vme/orlier-sera'ee!my.directory/my_file

476 ICL Technical Journal May 1993

In the latter example, the user is accessing my_directory/my_file in his home
directory on the other service. This method also allows access to FIFOs
(named pipes) on the other service.

VME-X supports de facto terminal standards such as vtlOO and vt220.
However, the most prevalent terminal standard on VME systems is the ICL
7561 standard, which is obligatory for many native applications. An ICL
7561 terminal (or emulator of that terminal standard) stores keystrokes
locally to form a block of text which is only sent to the mainframe when
the user presses a special data forwarding key. The average overhead per
keystroke in the mainframe is very low, and this is the secret of VME’s
ability to support tens of thousands of terminals at a time. However, applica
tions cannot monitor every keystroke as they can on standard terminals;
because the system does not react to a key depression (other than by echoing
it on the screen) until perhaps a hundred keystrokes later, the application
writer cannot offer a really high-quality user interface.

VME-X is supported on ICL 7561 terminals, albeit without the true UNIX
look and feel, and the vast majority of the commands and utilities work
without serious degradation of image. Only one standard command - the
venerable UNIX text editor vi - was completely unusable, and a separate
screen editor is supplied for ICL 7561 terminal users.

2 .2 A p p lic a t io n p r o g r a m m in g a n d p o r t in g

Experience at present is limited to applications written in C. The C compila
tion system resembles the one issued by Unix System Laboratories (USL).
Pre-processing, compilation, assembly and linking can be carried out inde
pendently. The usual symbolic debugger and object code file analysis tools
are provided. In addition to the usual cc command line options, the user
has the following choices:

• Dialect of C. This may be Kernighan/Ritchie C, or ISO C (Kernighan
et al, 1978 and 1988). A transitional option is also available, whereby
either type of source is accepted, and statements legal in both dialects
are interpreted according to the ISO standard.

• Arithmetic type mapping. This may be architectural, where longs are
64 bits and shorts are 32 bits long, or alternative, where longs are 32 bits
and shorts are 16 bits long. Ints are always 32 bits long.

• Arithmetic Overflow and Underflow checks can be enabled or
suppressed.

Because the series 39 hardware supports 64-bit arithmetic but not 16-bit
arithmetic, the architectural mapping results in more efficient code than the
alternative mapping. Some applications can exploit the architectural map
ping to work with higher limits than are possible on most UNIX systems.
There are a few other advantages, such as the clock time resolution which
is in microseconds, as opposed to tenths of a second.

ICL Technical Journal May 1993 477

To be portable, a C application should not assume any particular size for
arithmetic types, but experience suggests that the majority of applications
do make such assumptions and will only work with the alternative mapping.
Even applications which do not rely on the exact number of bits in a short
or a long are often marred by assumptions about relative sizes (for instance,
that two shorts can be packed into an int or that an extern declaration for
a function returning a long can be omitted).

The X/Open System Interfaces and Headers are now supported to the XPG4
standard. Compared with the System V Interface Definition (SVID) issue 3,
on which System V.4 is based, VME-X includes all but 25 of the Basic
Operating System interfaces and all but 14 of the Basic Library interfaces.
Most of these missing interfaces are concerned with symbolic links, and will
be included when these are supported in the near future.

To enable applications to be independent of particular terminal types, a
curses library and terminfo database are supported, just as on UNIX
System V systems. A separate curses library is provided for ICL 7561
terminals (requiring a separate executable), or they can be driven in a more
limited fashion using the ordinary curses library. Some applications cannot
ergonomically be driven from ICL 7561 terminals.

Code running in a VME-X environment cannot call native VME system
interfaces directly. The recommended technique for making a set of related
VME functions accessible is to produce a device driver, so that the VME-X
application can use a special file and make stylised calls on standard inter
faces such as write)) and ioctl().

Applications can access native files using the /dev/vme, /dev/vme8 or
/dev/rvme syntax outlined in the Section 2.1. Character files in VME-X
filestore are conventionally held in ASCII, as on most UNIX systems. In
native VME filestore, serial text files are held in a variant of EBCDIC and
with special record headers instead of the newline character customary in
UNIX. When /dev/vme or /dev/vme8 is used, files are converted automatic
ally between the two formats, and the VME-X application sees the file as
ASCII characters (ISO-8859/1 characters if /dev/vme8 was used), just as if
it were in VME-X filestore.

Native VME commands can be issued, and their input and output directed
to VME-X files.

2.3 Interworking with other systems

Like most UNIX systems, VME-X supports the ‘uucp' suite (uucp is the
UNIX command transferring files between terminals), FTP and TELNET,
allowing users to transfer files between open systems or login from one
system to another. They can be used from UNIX systems to access a VME-

478 ICL Technical Journal May 1993

X service, or vice versa. They can also be used between two VME-X services
on the same system, although other methods are usually more efficient.

A VME-X service can act as a file server on a network of UNIX and DOS
systems. This means that the client system (running UNIX or DOS) can
‘mount’ part of the VME-X service’s filestore, so that it looks to the user of
the client system like an integral part of the local filestore. A series 39, has
powerful I/O hardware, perhaps more than 500 Gb of disc filestore, and
automatic file security services; it can thus provide a secure and easily
accessible home for far more data than most client systems could maintain
themselves.

This facility is based on NFS (Network File System), and the client system
needs the NFS client product (PC-NFS for DOS systems) to take advantage
of it.

VME-X’s future will increasingly be as a platform for the back-ends of
distributed applications. In most such applications today, the programming
interface used by one component to communicate with another is a transport
interface - an interface where each side sees the route to the other as a two
way-simultaneous binary-transparent data channel. VME-X supports the
Internet protocols, TCP/IP and UDP/IP, driven via the XPG3 X/Open
Transport Interface (XTI) or the Sockets interface; the OSI connection-
oriented transport protocol can also be driven via the XPG3 XTI. The XTI
can also be used to communicate with native VME services or other VME-
X services on the same system. This is often more efficient than accessing a
FIFO as described in Section 2.1.

With Internet protocols, a series 39 with VME-X will be a multihomed host,
with each VME-X service having its own Internet address. This ensures that
applications with built-in port numbers can operate independently on each
service.

Standards are now emerging for communications interfaces at a higher level
than the transport level, and it is expected that distributed applications will
increasingly use these instead of transport interfaces. They will be an import
ant focus for future VME-X development. Among the infrastructures being
planned is an X/Windows client facility, which will allow users to drive
VME-X using a modern graphical operating environment.

2.4 Administration

Each VME-X service can have a separate administrator, so different depart
ments within an organisation can each have their own service. The adminis
trator is provided with a menu-driven package for routine tasks, including
the recording of users, the allocation of users to file systems, daemon control,
setting of service parameters, and control of the uucp suite and NFS. The
administrator’s job is simpler than the equivalent job on most UNIX systems,

ICL Technical Journal May 1993 479

as it is only concerned with a software service, not a physical machine. For
this reason the sysadm package found on many UNIX systems is unsuitable
for VME-X.

Some administrative tasks have to be carried out by the VME system
manager. This includes the allocation of disc space for file systems, the
management of Internet addresses and OSI network and transport addresses,
installing VME-X releases, and rationing the amount of processing resource
each service may use. None of the tasks expected of the VME system
manager requires any expertise in open systems.

The automatic file security systems on the VME system can be used to
maintain backups. With these systems, the backup tapes are controlled solely
by the VME system manager, and users never need to know about them,
even when a file is being retrieved. The VME-X service administrator period
ically creates disc archives containing files needing to be secured, and the
VME system automatically secures them. If preferred, an entire file system
can be backed up, and this is particularly useful for the root file system. If
a VME-X root file system is destroyed, the administrator need only log into
a native VME service, then a single VME command will restore it from the
latest copy, which can then be used immediately.

If the system is part of a network containing UNIX machines, VME-X can
arrange to manage backups for them too. Again, neither the VME-X nor
the UNIX system administrators need be concerned with tapes.

2.5 Access from native VME services

If a user or application running under a native VME service is in a context
where a native VME command could be issued, they are also permitted to
issue VME-X commands on VME-X services where the user is recognised.
VME-X commands issued in this way are input to whichever program is
registered as the user’s initial shell. Input and output can easily be directed
into native VME files.

Similarly, a native user or application can specify a VME-X file in any
context where a native VME file could have been specified. The syntax (as
the reader probably guessed from Section 2.1) is

vmex-service\/usr/\ib/...
or (>mex-sm>i'ce!my_directory/myfile

In the latter example, the user is accessing my_directory/my_file in his home
directory. As before, this method also allows access to FIFOs (named pipes).

Normally the file will be assumed to contain ASCII character data and it
will be automatically presented to the native application in ICL EBCDIC
record format. However, if specially requested, a binary view of the file will

480 ICL Technical Journal May 1993

be given. Files containing character data conforming to the IS08859/1 or
IS06937 standards can also be catered for.

3 VME-X implementation

To develop an open system, one must generally implement new language
compilers, a new kernel, and new system administration software. Once a C
compiler and kernel are available, the Unix System V versions of the C
system interfaces, headers, the shell, and the commands and utilities can be
ported from source code obtainable under licence from Unix System
Laboratories Inc. (USL). An open system does not have to rely on USL
code, but almost all do to some extent. The advantages of using USL source
are lower development costs and conformance to any unwritten traditions
that applications ported from UNIX may rely on. USL also provides source
code for compilers and the kernel, but this can only be used if supplemented
by specially written architecture-dependent modules.

VME-X uses mainly the USL versions of the C system interfaces, headers,
shell, commands, and utilities, and the C compiler is partly based on USL
code. Much additional non-kernel code was written specially for VME-X,
for example:

• the service administration package
• code to handle the logging in of users, which is different from the UNIX

login mechanism
• code to handle ICL 7561 terminals
• some replacements for USL library code to improve performance (for

example by using series 39 string-handling instructions).

The VME-X kernel contains no USL code, though certain parts resemble it
in principle.

Where the USL code was used, few significant changes to it were needed.
The architectural arithmetic mappings with 64-bit longs and 32-bit shorts
were used, and caused hardly any problems.

Using USL code inevitably makes the system resemble System V in many
respects not mandated by X/Open. Files used by the system or by standard
utilities are the same as on System V. For example, users are recorded in
/etc/passwd, and uucp control files are in /etc/uucp. Object code is held in
COFF format, the same format as on most System V systems; this allows
VME-X to provide the usual UNIX debugging tools such as nm and sdb,
and they work in exactly the way that UNIX programmers expect. Moreover,
the file hierarchy in the issued system resembles that of System V.4, though
there are differences; for instance there is no /stand, because the equivalent
code is held as a VME executable file, not as part of the VME-X filestore.

ICL Technical Journal May 1993 481

The most interesting challenge was the design of the VME-X kernel. Before
describing this, however, a brief digression is needed to describe the under
lying platform - VME and series 39.

3.1 Series 39 and VME

3.1.1 Architecture. A Virtual Machine or VM consists of:

• a number of processes, each with an associated stack.
• up to about 8000 private address spaces each of potentially variable

size, called local segments

A stack is a particular case of a local segment. The system as a whole has
up to about 8000 further segments each of which may be global (shared
between selected VMs) or public (shared by all VMs).

A store location is identified by its virtual address, consisting of a segment
number and a byte displacement relative to the start of the segment. A
global segment may have a different segment number in each virtual machine.
A public segment has the same segment number in all VMs.

Each segment is divided into 1024-byte pages, and each page is held either
in main store, or on a disc backing store. The units in which the operating
system discards and fetches may range from a whole VM down to a minimum
of two consecutive pages.

A process’s access level is measure of its trustworthiness, and takes the form
of a number between 1 and 15. 1 is the most trusted level. Each segment
has a read access key, the maximum access level at which a process is allowed
to read it. Write access keys are defined similarly. Access levels 1-5 are
reserved for the operating system, access levels 6-9 are for privileged system
software, and access levels 10-15 are for application software. These controls
do not apply to the current process’s stack segment.

A process changes its access level by executing a system call instruction or
as the result of an interrupt event. The system call mechanism may be used
for calls between more privileged and less privileged application code, or
from application code to the operating system. Architecturally there is no
distinction. The system maintains tables of all possible system call instruc
tions; some are public, others local to particular VMs. For each possible
system call instruction, there is defined:

• the virtual address of a code procedure,
• a target access level t,
• a system call access level s.

It is legal for a process running at access level p to execute a system call if
and only if p < s. It transfers control to the code procedure and changes the

482 ICL Technical Journal May 1993

access level to t. On exit from the code procedure, the access level reverts
to p. Some system calls are designated as stack-switching; with these, the
process switches to a separate stack segment on entry, and reverts to the
previous stack on exit. All system calls with t > s are stack-switching, most
others are not.

Interrupt events resemble system calls, except that they never cause stack
switching and the code procedure is not in general entered immediately,
unless p > t. Normally it is entered the next time an instruction is obeyed
which lifts the process’s access level above t. Interrupt events are the usual
way of communicating from more privileged to less privileged software. For
instance, they are used for all notifications from the operating system to
applications, including program faults, timers, terminations of asynchronous
actions, such as I/O transfers and inter-VM message processing.

Flag events are similar to interrupt events, but there is no code procedure;
the receiver has to call the operating system to sense any occurrences.

The CPUs are scheduled to VMs pre-emptively. Each VM has an absolute
priority number, and no VM can use a processor if a higher priority VM
could use it. More than one VM may be executing (perhaps waiting) in the
operating system at a time. Semaphores prevent concurrent execution, where
this is necessary. (For details of series 39 multiprocessing see (Warboys,
1985).)

Processes within a VM are not scheduled by the operating system. Control
is passed to another process when the application executes a process-switch
ing call instruction. At most one process per VM can be executing at a time,
even on multiprocessor systems.

I/O transfers to central devices (mainly discs, magnetic tapes and high-
volume printers) are scheduled according to the VM’s priority. There is no
caching in VME. Data is transferred directly between the hardware and
user-space buffers, which have to be locked in main store unless the entire
VM is on backing store. On an unshared disc file, the I/O initiation thread
through VME runs entirely in the user’s process, on the same stack, and
generally without any semaphore usage. I/O other than to central devices
(for instance, across-'comms links) goes via operating system buffers.

3.1.2 File and resource control. VME maintains a record of each person
who uses the system. Each person may be a member of zero or more
usernames. Thus persons and usernames in VME are analogous to users and
groups respectively in UNIX.

Files are organised into hierarchies, one for each username. The non-terminal
nodes are called groups, the terminal nodes are files and libraries. Each node
has privacy and security attributes, including access control lists, defining
which other usernames may access it (only usernames - the lists do not

ICL Technical Journal May 1993 483

discriminate between the individual persons belonging to the username). The
terminal nodes of the tree have file descriptive data distinct from the file
content, and this includes details of where the file is held. By contrast with
UNIX, a file’s physical location cannot be deduced from its hierarchic name.
A single node may appear in several places in a hierarchy (or several
hierarchies), like UNIX files with multiple links.

A library is a collection of files with a single set of attributes. These files do
not count as nodes in the hierarchy in their own right. An executable code
file always belongs to a library and may (a) be derived from many source
modules, (b) have many entry points, and (c) reference entry points of other
executables by name, which may reference further executables, and so on.
The libraries in which the referenced objects are to be sought can be influ
enced at run-time. A set of base procedures is resident in public segments,
but if a VM calls a procedure outside that base, the executable is loaded
from filestore into one or more segments, normally local ones; any other
executables referenced directly or indirectly from it are normally cascaded
in at the same time. The code remains available for execution in the VM as
often as desired.

Garbage collection is handled by Block Structure. A process, acting on behalf
of the whole VM, can begin a block, and any code loaded is ‘tied’ to the
most recently begun block. The code is discarded from its segments when
the process ends the block, in a fashion reminiscent of the scoping of variables
in a block-structured programming language. Blocks can be nested, but can
only be ended in a first-in-last-out fashion. Block structure applies not just
to loaded code but also to the release of open files and indeed any kind of
operating system resource.

3 .2 S tr u c tu r e o f V M E -X V M s

A VME-X service has a pool of VMs. One is allocated to each terminal
user, one to each batch job, certain daemons (background programs per
forming some function on behalf of the service as a whole) have VMs of
their own, as do many functions driven from other machines using applica-
tion-to-application connections. There is also one extra VM called the system
server, which differs considerably from the others and is described in Sec
tion 3.2.1. From VME’s standpoint, all the other VMs are dedicated to
running an application program called the S3 kernel, which (as far as VME
can see) has a single entry point. It runs mainly at access level 10, partly at
9. In each of these VMs there is a separate instance of the S3 kernel’s data,
which is all local. The S3 kernel has two basic functions: •

• it knows how to load an executable program in COFF format from
VME-X filestore and enter it.

• it provides a set of entry points to which the program’s kernel calls can
be fixed up.

484 ICL Technical Journal May 1993

(Strictly speaking, the system interfaces which the program calls are all
implemented as library routines, but these routines may issue kernel calls.)
The S3 kernel’s interfaces to the programs it loads are a subset of the SVID
Basic Operating system interface.

Once initialised, the S3 kernel forks a new process. Except in the system
server VM, this process executes either the user’s initial program as specified
in the /etc/passwd file (except for certain daemons, where /bin/sh, the
standard X/Open shell, is always executed). This fork, like all forks, is
implemented by creating a new process in the same VM. If a user’s initial
program was /bin/sh and he now issues a pipeline consisting of two com
mands, there will be at least five processes in the VM: two processes used
by the S3 kernel to administer the VM, a process for the shell and a process
for each command in the pipeline, plus any further processes that those
commands may have generated using fork() system calls.

All application programs running on VME-X execute at access level 11.
When they make calls on the kernel, these are translated into non-stack-
switching system calls to the S3 kernel. The process’s access level drops to
10 while executing in the S3 kernel, and perhaps lower still if the S3 kernel
makes inward calls into the VME operating system. On exit from the S3
kernel, the access level reverts to 11. The read and write access keys of the
S3 kernel’s data are 10, so it cannot be corrupted or read by applications.
The S3 kernel makes extensive use of interrupt events to detect I/O condi
tions, timer requests made by user programs, hardware-detected faults in
user programs, and messages from the system server. The target access levels
of all these events is 10, so the S3 kernel’s interrupt procedures can get
entered, no matter what the user-level code is doing. On the other hand,
these events do not interrupt the S3 kernel itself.

From the description so far, it will seem that each VM is trying to act like
a UNIX system in its own right. Of course many kernel functions operate
on resources shared by several VMs. In many cases, the S3 kernel can
achieve this by suitable exploitation of standard VME facilities. This is true,
for instance, of all non-disc I/O, pipe handling, and most signal processing.
Some functions which a UNIX kernel normally has to handle - for instance
store paging and swapping - can be left entirely to VME.

In other cases, VME alone does not provide adequate coordination. In these
cases, the S3 kernel passes the request to the S3 kernel instance in the system
server VM using VME message-passing facilities. Since there is only one
system server VM per service, inter-VM interference cannot occur. Many of
the less critical, more complex kernel calls are processed in the system server,
as are certain disc I/Os.

Excessive use of the system server can lead to bottlenecks and a drain
on the CPU owing to the cost of message traffic. Part of the work of the
VME-X project was to add to the VME operating system interface, so as

ICL Technical Journal May 1993 485

to avoid certain uses of the system server. For instance VME facilities were
added to support inter-process communication(IPC) functions - shared
memory, semaphores and message queues. The new VME interfaces conform
to established VME standards and look nothing like UNIX interfaces.
However, they do provide the essence of what the S3 kernel needs to support
IPC without explicit interaction with other VMs.

Process scheduling takes place at two levels. Each VM is scheduled by VME
according to its priority. Within each VME-X VM, whether user VM or
system server, the S3 kernel schedules the processes. When a process issues
a request to the system server, the S3 kernel will not allow it to run again
until the system server replies. In the meantime it will schedule other pro
cesses in the VM if possible. In theory, a terminal user can have two VMs
on two different processors, working simultaneously on his behalf. The S3
kernel also reschedules processes if the current process exceeds its timeslice
or if it sleeps.

3.2.1 Differences between the system server VM and user VMs. The
system server has an S3 kernel, similar to that of other VMs, but instead of
a shell, it loads a special COFF program called the C kernel. Each message
from another VM in the service is passed to the C kernel for action, and
the S3 kernel issues a reply when the action is complete. The C kernel is
modelled closely on parts of the System V kernel, although none of it is
actually ported from USL.

The C kernel’s interface to the S3 kernel is quite different from the SVID-
like interface of other VMs. Processes are also handled differently; there is
a pool of processes allocated on demand for each incoming message from a
user VM. For instance, if a user VM issues a read() request, this may be
passed to the system server, which allocates a process. Several physical
transfers may be needed, and the process remains allocated until the last of
these is complete. Each process in the system server has its own stack but,
in contrast with user VMs, there is only one copy of the static data, just as
in a System V kernel there is only one instance of most of its data items.

3.2.2 Filestore. The VME-X filestore is modelled closely on System V
filestore. It contains up to 100 file systems per service, each implemented as
a file in VME terms. Internally each file system looks just like a System V
file system, except that the blocks are 2048 bytes long, but there is no code
in the VME operating system that understands this structure. Thus,
VME-X files are not recognised as files by the VME operating system;
actions such as create, delete, open and close are not implemented by
invoking the corresponding native VME functions, but are handled purely
by the C and S3 kernels.

The VME system does recognise the special syntaxes for VME-X file names
as described in Section 2.5, and this is what enables VME-X files to be

486 ICL Technical Journal May 1993

accessed from native environments. On detecting a VME-X file name in a
context where a VME file name would be expected, the VME system routes
the request by sending a message to the system server of the appropriate
service. All subsequent actions on the file are routed in the same way.

Except during initialisation, the S3 kernel avoids exploiting VME block
structure, both in the system server and in other VME-X VMs. VME files
are closed explicitly when no longer needed. VME code modules are never
unloaded, but this is harmless because VME-X application code has no
facility for loading VME code in the VM. Where a VME-X user invokes
native VME commands, these are always executed in a separate VM, which
is not within the VME-X service.

3 .2 .3 D e v ic e D r iv e r s . A System V kernel has standard internal interfaces
known as the DDI/DKI whereby bodies outside USL can insert Device
Drivers, subsystems designed to drive particular types of hardware devices.
The generic kernel expects all drivers to present it with a common interface;
this is the Device Driver Interface (DDI). The drivers themselves may use
the facilities of the rest of the kernel by calling functions in the Driver-Kernel
Interface (DKI).

The S3 kernel in VME-X also supports device drivers. Its device driver
interface resembles the System V DDI, but is slightly different in form.
Device drivers are compiled and constructed as ordinary VME programs,
not as VME-X COFF files, and they have the entire VME application
programming interface available to them. Each is a distinct executable file
separate from the S3 kernel, and linked from it using VME loading mechan
isms when the user logs in.

Adding a new device driver or a new version of a device driver is a painless
process, not requiring a rebuild of any existing software or a closedown of
the service. (Existing logged-in users continue with the old version, but new
users can be made to pick up the new version as soon as it is installed.)
Driver failures will at worst kill the VM, hence in general only one user will
be affected.

3 .2 .4 P r o c e s s c r e a t io n . When implementing an open system on a plat
form not designed for that purpose, one inevitably runs the risk that some
essential function cannot be made to work at all. With VME-X, no such
impasses were hit, but one area - process creation - caused some interesting
problems. The fork() function creates a new process, which is an exact copy
of the calling process. Thus, if one process calls fork(), two processes exit
from it. VME’s local segments are address spaces private to a VM, but not
private to a process. When the data areas are created for the new process,
they therefore have different local segment numbers from those of the old
process; hence any virtual addresses within those data areas would appear
to need adjusting. This is an impossible demand on the S3 kernel, which

ICL Technical Journal May 1993 487

cannot know which items in the application’s data are virtual addresses and
which are not.

The only solution was not to have any virtual addresses in the data areas,
and to represent addresses by displacements relative to the process’s address
space base. All language compilers have to observe this rule when generating
code, and the S3 kernel has to ensure that a certain machine register points
at a fixed position relative to the address space base of the current process.
The upshot is that separate compilers are needed for native VME and VME-
X, and executables for VME and VME-X are different. The incompatibility
lies not just in the red tape (COFF as opposed to native VME’s OMF) but
in the nature of the executable code itself. Two executables, one native and
the other on VME-X, cannot call each other using the series 39 architectural
call instruction. This dichotomy is one we would have preferred to avoid.

A second problem presented by fork() was that it always creates the new
process in the same VM as the old one. This is usually appropriate. However,
where the new process is a daemon, it will probably disconnect from its
parent’s session (tty-group). It is then strange for it to execute in the same
VM as that of the user who happened to start it. The attributes of the VM
- such as its VME username, scheduling priority, and privilege level - may
be inappropriate. For this reason, VME-X contains an extra system interface
that combines the most of the functions of fork() and exec() and creates
the new process in a new VM. There are some restrictions; for instance files
open in the old process are not open in the new process.

3 .3 A n a p p ro a c h tha t was n ot ad o p te d

VME-X relies crucially for its performance on several characteristics of
VME. The versatile VME loader and the in-process system call mechanism
allow code from different executables to interact by a simple hardware call
instruction without the disruption of process-switching, and this is critical
to VME-X.

However, it was at first thought that a much fuller use of the facilities in
VME could have been made. For instance, it was suggested that files and
directories be implemented as VME files and groups respectively, that exec()
be implemented using the VME loader, that VME native object code formats
be used instead of COFF and so on. The advantages of this approach were
thought to be a lower implementation cost and a much more seamless
integration between VME-X and VME. Furthermore it was thought by
some that a design of this kind could lead to a Grand Unified System
Interface, encompassing both the X/Open and the existing VME system
interfaces.

This approach ran into difficulties. When selecting a native VME function
on which to base the implementation of a UNIX kernel function, one often
had the choice between (a) a VME function offering most but not all of the

488 ICL Technical Journal May 1993

capabilities required, but not easily generalised, and (b) a VME function far
more complex and general than required. If the product was to be X/Open-
compliant, the latter had to be selected, but the unwanted generality meant
that for any given processor rating the VME function was slower than the
original function on a typical UNIX system. Often the VME function would
have parameters giving the system information allowing it to select between
a simple efficient mode of working (exploited by 99% of native applications)
and a slower and more general mode; and the latter had to be selected for
VME-X because the X/Open interface had no parameter allowing the system
to deduce whether the simpler efficient mode would have been acceptable.
As most applications on VME-X will have been originally designed for
UNIX, it was decided that this kind of kernel design would not give adequate
performance.

Even if the performance problem had been overcome, a Grand Unified
System Interface would have led to further difficulties. Such an interface
would have been exceedingly hard to understand. Features like VME block
structure, defined to act on resources of all kinds, would not have coexisted
comfortably with X/Open functions. Asynchronous activities, like X/Open
signals and VME interrupt events, would have interfered with synchronous
activities and with each other, probably in a very confusing manner.

Finally, it was believed by many that customers wanting to develop portable
applications would have more confidence in VME-X if it did not have
proprietary extensions intimately bound in with the open environment. It
was felt that, while we certainly wanted powerful interworking facilities,
there should nevertheless be a clear boundary between the native and open
environments. It was important to aim at the right degree of integration
between the two, close enough to permit effective interworking but distant
enough to avoid unwanted interference.

4 Summary

4.1 O p e n -n e s s

VME-X has undoubtedly made VME into a truly open system, complying
with both de facto and formal standards. Expert UNIX users can rarely tell
that VME-X is not UNIX. Porting of C applications from UNIX to VME-
X is now considered no more difficult than porting from one UNIX system
to another.

VME-X was awarded XPG3 base branding by X/Open in May 1991. It was
the first time that this branding had been achieved by a system originating
from the mainframe world. After further development, XPG4 base version 1
branding followed in October 1992. No other system, not even a UNIX
system, achieved this goal before VME-X.

ICL Technical Journal May 1993 489

VME-X reached the market in late 1991 as an optional extra to VME. From
1993, it will become a standard component of all Open VME systems.

4 .2 P e r fo r m a n c e

VME-X performance is broadly similar to that of a UNIX system on a
processor of similar power. Kernel functions implemented without recourse
to the system server VM - including pipes, non-disc I/O, and some disc I/O
- are less mill-hungry than one would expect on UNIX. Against this, there
are one or two areas where over-reliance on the system server VM has led
to excessive mill usage. Work in progress to correct these will come to
fruition in the near future.

4 .3 In te g r a t io n w ith n a t iv e V M E

The degree of integration between VME-X and native VME usually exceeds
its users’ expectations, especially at the command line level. For application-
to-application interworking, connections can be made using the X/Open
Transport Interface, or, if a suitable device driver is developed, a VME-X
application can drive a VME application in the same VM. The facilities will
be improved as higher level interfaces are supported in the future (see
section 2.3).

5 History

Implementing UNIX-like systems on top of other operating systems is not
new. An early project is described in (Lycklama, 1978), and there have been
others, notably on the VM operating system on IBM-compatible
mainframes.

VME-X was not even the first port of a UNIX-like system to VME. In
1984-1986, a port of UNIX System V.2 was carried out. The resulting
product, known as VNS, was never marketed, but it was on the whole a
viable platform for porting applications from the UNIX world. VNS was
all the more remarkable because it was developed at arm’s length from
VME. With one exception, no changes in VME were allowed. This was the
underlying cause of VNS’s drawbacks. The VME-X team was able to exam
ine VNS’s strengths and weaknesses in detail.

The existence of VNS also obviated countless bootstrapping problems -
such as how to create the first ever COFF-producing C compiler or read in
the first ever UNIX tape.

6 Acknowledgements

The VME-X project is a collaboration between ICL and Industry Standard
Software Ltd., with approximately equal contributions from each company.
Several members of staff at Industry Standard Software have expertise in

490 ICL Technical Journal May 1993

both UNIX and VME, having worked on VNS in the 1980’s, and are
therefore uniquely well qualified to contribute to the project.

Thanks are due to Mick Meaden, head of the Industry Standard Software
team, and Nic Holt and Mike Kay of ICL for helpful comments on an early
draft of this paper.

Parts of VNS were written by members of staff at Praxis Systems Pic,
working under contract to ICL. Modified versions of some of their code
survive in VME-X.

UNIX and System V are registered trademarks of Unix System Laborat
ories Inc.

NFS is a registered trademark of Sun Microsystems Inc.

References

LY C K LA M A , H., The M E R T operating system, Bell System Tech. J. Vol. 57(2) 1978.
W ARBOYS, B .C., V M E N odal A rchitecture: a m odel for the realisation o f a d istribu ted system s

concept, ICLTech. J. V ol.4(3) 1985.
PA R K ER , T., The V M E H igh Security O ption , ICLTech. J. Vol. 6(4) 1989.
TAYLOR, C.B., X /O pen - from Strength to S trength, ICLTech. J. Vol. 7(3) 1991.
K E R N IG H A N , B.W. and R IT C H IE , D.M ., The C Programming Language, Prentice H all 1978

and 1988 (1978 edition describes K ernighan/R itchie C, 1988 edition describes IS O C).

Biography

Paul Coates has worked for ICL since 1969, mainly in software development. He
has worked in the VME-X team since its inception in 1989.

ICL Technical Journal May 1993 491

A New Approach to Cryptographic
Facility Design

Jim Press
ICL Mid-Range Systems Division Reading, Berks, UK

Abstract

This paper introduces the principal concepts behind the design of
the Cryptographic and Key Management Service (CKMS), which
forms part of the Cryptographic Support Facility (CSF) available
for use within other ICL products.

The CKMS is a new approach to the provision of cryptographic
services based on Object-Oriented techniques. It allows client
applications to be independent of the details of the underlying
cryptographic algorithms, thus aiding their portability. It also
ensures that cryptographic algorithms are used in conformance
with the local security policy and has been designed to support
easy algorithm replacement.

1 Introduction

C ryptography is an essentia l b u ild ing b lock for p rovid in g security in an
open d istributed system . C ryptograph ic techn iqu es can be used for the
p rotection o f the con fidentia lity and in tegrity o f data in untrusted en v iron
m ents, and are used n o t on ly by ap p lica tions for the p rotection o f user data
but a lso to prevent subversion o f system security con tro l in form ation .

C ryptograph ic services are often provid ed to ap p lica tions by a llow in g direct
access to cryptograph ic a lgorithm s and exp ecting the ap p lica tion writers to
have som e expertise in h ow to use them sensib ly (i.e. in a secure m anner).
This a lso m akes the ap p lica tion s h eavily dep en dent u pon specific a lgorithm s
and therefore n o t very portable.

A better approach is to provide a cryptograph ic facility to h ide som e o f the
com p lex ity and to provid e ap p lica tion s w ith a sim pler interface. U n fortu
n ately such facilities are usually d esign ed around on e or tw o specific a lg o
rithm s, and this is reflected in their interfaces. F or exam ple, IB M ’s
cryptograph ic facility (IB M , 1990) is d esign ed around the U S D a ta

492 ICL Technical Journal May 1993

Encryption Standard (DES), and its clients are required to have some
knowledge about DES modes and parameters. It is not easy to change the
algorithms used by such a cryptographic facility without changing the inter
face and thus affecting the client applications.

Within the Security Quality of ICL’s OPENframework (Fairthorne, 1991),
the ‘Cryptographic Support Facility' (CSF) provides cryptographic and sup
porting services to its clients, which include other security facilities, appli
cations and infrastructure components. The core of the CSF is the
‘Cryptographic and Key Management Service’ (CKMS) which provides cryp
tographic operations and functions for the generation and management of
cryptographic contexts (described later). The ‘Key Distribution Service’ (KDS)
augments the CKMS providing functions for the distribution of keys associ
ated with cryptographic contexts.

The subject of this paper is the main design principles behind the implementa
tion of the CKMS. These allow client applications, such as ICL Access
Manager, to be independent of the details of the underlying cryptographic
algorithms. Such algorithm-independence is very important for applications
which wish to be portable. Portable applications which require cryptographic
services cannot make assumptions about which algorithms are supported
or even permitted (e.g. due to export controls or national security restric
tions). For the most part, such applications just want a service to provide
the operations to protect their data; they are not usually concerned with
how these operations are achieved but only the quality of service provided.

The main aspects of the design addressed by this paper are the provision of
services to client applications in an algorithm-independent manner, and
keeping the CKMS itself independent of specific algorithms.

2 Object-Oriented Design

Object-Oriented Design is an approach to software design which models
systems as collections of cooperating objects, treating individual objects as
instances of a class within a hierarchy of classes.

An object has the following properties:

a) It has state encompassing properties and their current values.
b) It has behaviour defined by the ‘services’ it provides to its clients. Clients

do not directly access the internal state of an object but send ‘requests’
to the object for services to be carried out to access or manipulate the
object’s internal state.

c) It has identity denoted by a name. To make a request, a client identifies
the object which is to perform the service and names the request.

d) An object is an instance of some class. A class contains a common
structure and a common behaviour applicable to all instances of the
class. Classes can be derived from other classes (inheritance).

ICL Technical Journal May 1993 493

An easy to read introduction on the subject can be found in (Coad &
Yourdon, 1991) and further reading can be found in (Booch, 1991).

3 Cryptographic Context Types and Instances

Within an Information Technology system, any activity takes place within
a Context encompassing the process environment provided by the operating
system and the supporting infrastructure. The ‘Security Context’ is part of
the Context containing security-related information. In turn, a Security
Context may itself contain one or more ‘Cryptographic Contexts’, which
contain information relevant to the provision of cryptographic operations.
This includes identifying an algorithm and the parameters needed by the
algorithm (e.g. the key, the Initialisation Vector, the mode of operation, etc.).

Where two or more entities wish to communicate securely, the association
between them will have one or more related Cryptographic Contexts. For
example, there may be a Cryptographic Context related to the provision of
confidentiality of data, and another related to the provision of data integrity.

Within the CKMS, a Cryptographic Context as used by a client is realised
as a ‘Cryptographic Context Instance’, or ‘Context Instance’ for short. A
Context Instance is private to a client, however entities which are communic
ating within a common Cryptographic Context will have compatible, but
not necessarily identical, Context Instances. For example, Figure 1 illustrates
two entities A and B using asymmetric techniques (Press, 1989) to protect
data integrity, A’s Context Instance contains A’s private key whereas B’s
compatible Context Instance contains A’s public key.

Fig. 1 Use of compatible but not identical Context Instances

A Context Instance can be viewed as an associative object between a client
application and the CKMS, encapsulating the details of how the CKMS is
going to provide the quality of service that the client wants.

To enable clients to request the creation of Context Instances in an algo
rithm-transparent manner, Context Instances are created from a ‘Crypto
graphic Context Type’, or ‘Context Type’ for short. A Context Type is a
blueprint for Context Instances specifying how they should be constructed
in order to provide a given quality of service to a client.

A Context Type can be viewed as an associative object between the adminis
trator and the CKMS encapsulating the details of how the administrator
wishes a particular algorithm to be used in order to satisfy a particular
quality of service requested by a client. The Context Types effectively form
a model of the local security policy regarding the use of cryptography in the
customer’s enterprise.

A client can request that a Context Instance be created, without needing
knowledge about the underlying algorithms, by specifying the quality of
service that it requires in terms of the functionality (e.g. data confidentiality
or data integrity) and the level of protection needed (e.g. low, medium, high).
The CKMS selects an appropriate Context Type which is used to construct
a Context Instance, generating keys and other parameters as is necessary,
and returns the reference to the client.

Having created a Context Instance, a client only needs to supply its reference
and the data to be operated upon to a cryptographic operation supported
by the CKMS. This means that the interface of CKMS cryptographic
operations can be kept simple and free of any algorithm-specific information.
The general form of a CKMS cryptographic operation is:

operation name (context ref, input data, output data, result)

This contrasts with other cryptographic facilities, such as IBM’s (IBM, 1990),
where algorithm-specific parameters must be supplied to every cryptographic
operation.

Figure 2 illustrates the client application view of the CKMS. This shows a
client application requesting a quality of service (1), which is serviced by the
CKMS selecting an appropriate Context Type (2) to create a Context
Instance (3), whose reference is returned to the client (4). The client can then
make requests for cryptographic operations providing a reference to the
Context Instance to be used and the data to be operated upon (a). The
CKMS locates the referenced Context Instance (b) which guides it to the
correct Cryptographic Algorithm. The Cryptographic Algorithm is then
invoked (c) and uses the Context Instance (d) to perform the required
operation.

ICL Technical Journal May 1993 495

Fig. 2 Client view of the CKMS

Since Context Instances can only be created from Context Types, Context
Types provide a strong control over how the cryptographic algorithms can
be used. This is particularly important in situations where permission is
granted to use strong algorithms subject to certain restrictions, such as
limiting their use to integrity only or restricting the size of keys.

Context Instances can be exported for distribution purposes, copied (with
restrictions on use) and created as persistent objects (stored securely in some
form of long-term storage) or transient objects (short-term).

The CKMS also supports client applications which may be more fussy about
the cryptographic mechanisms which are used, by allowing them to specify
the desired algorithm, mode or key size, in addition to the required quality
of service. Just because a client specifies a particular mechanism does not
mean that it will be allowed to use it. The CKMS uses the mechanism
specification as additional search criteria when selecting a suitable Context
Type. This ensures that a client cannot circumvent the security policy, for
example by specifying a strong algorithm to be used for confidentiality when
the security policy says that it should only be used for data integrity.

4 Context Type Creation

Context Types and Instances provide a mechanism by which the CKMS
can hide the details of the underlying algorithms from its clients. However,
the security administrator, who sets up the Context Types to model the

496 ICL Technical Journal May 1993

security policy of the domain, should not be required to have cryptographic
expertise. In this section we look at how the CKMS can allow the adminis
trator to be algorithm-unaware also.

In accordance with the Object-Oriented philosophy, a Cryptographic
Algorithm will know how it can be configured in order to achieve a given
quality of service. For example, an algorithm may be able to provide several
levels of strength by providing different modes of operation, or by allowing
differing key sizes. A Cryptographic Algorithm will therefore be able to
create a Context Type to encapsulate the information required to meet a
requested quality of service. It will also be able to respond to queries
regarding which qualities of service it is capable of supporting.

This approach means that the responsibility for the security of the resultant
services are placed upon the algorithm designers/implementors.

An administrative application, run by the security administrator, is able to
request the creation of a Context Type by simply specifying the quality of
service that Context Instances created from it will satisfy. The CKMS locates
an algorithm which can be used to meet the desired quality of service, and
it is asked to create an appropriate Context Type.

Provision is also made for a more algorithm-aware administrator to specify
an algorithm and a required mode or key size. The CKMS locates the
specified algorithm, if it exists, and asks it whether it can meet the desired
quality of service using the specified mode or key size. If the quality of
service can be met, the algorithm is asked to create an appropriate Con
text Type.

Figure 3 illustrates an administrative application requesting that a Context
Type be created for a quality of service and optionally for a specific algorithm
& mode or key size (1). The CKMS selects a Cryptographic Algorithm (2)
which can satisfy the requirement (3). The Cryptographic Algorithm then
creates an appropriate Context Type (4), whose reference is returned to the
administrative application (5).

Several Context Types can be created to satisfy a particular quality of
service, this may be particularly the case where Context Types have to be
created for inter-domain operations. Usually the administrator would select
one as the default which is to be used when an algorithm-unaware client
requests a Context Instance to be created for that quality of service.

5 The Family of Algorithms

This section looks at the concepts that allow the CKMS itself to be designed
such that it minimises the dependencies upon specific algorithms. This
exploits the Object-Oriented concepts of inheritance and polymorphism,
explained in detail in (Booch, 1991).

ICL Technical Journal May 1993 497

Fig. 3 Context Type creation

Inheritance is the concept that a class can be derived from a more general
class, inheriting its attributes and services, whilst extending or modifying its
implementation. For example, a general super-class ‘Random Number
Generator’ could be specialised into a ‘Finite Field Linear Shift Register’
sub-class (a special type of random number generator based around a linear
shift register describing a polynomial in a finite field).

Polymorphism is an ability which allows an instance of a sub-class to have
different implementations of services of its super-class and yet still be treated
as though it were a type of its super-class (i.e. specialisations can be treated
using the generalisations from which they were derived). For example, a
‘Finite Field Linear Shift Register’ object can be treated as though it were
a ‘Random Number Generator’. This means that the CKMS does not need
separate code to use each type of Random Number Generator, but can
simply have a single piece of code which can use Random Number Gener
ators in general.

Algorithms used within the CKMS are objects instantiated from a class
derived from a more general super-class known to the CKMS. A class
hierarchy is defined to encompass cryptographic algorithms, key generators
and random number generators. When an Algorithm object is created, it
will register its availability with the Supported Algorithm List, unless it is
intended for another object’s private use. The Supported Algorithm List
maintains a list of Algorithm objects which are available for use within
the CKMS.

498 ICL Technical Journal May 1993

Advantages over more traditional techniques include:

• Implementors of new algorithms can reuse code, through inheritance,
of existing classes from the hierarchy. Only the new parts of an algorithm
need to be evaluated for assurance if the super-classes have been previ
ously evaluated;

• Objects within the CKMS only need knowledge of a few general super
classes in order to use an Algorithm object. An algorithm can be added
to the CKMS by a single line of code to create an Algorithm object,
without affecting the rest of the CKMS;

• The CKMS need have no knowledge of whether an Algorithm object
implements a pure software algorithm or whether it is software inter
facing to a hardware crypto device;

• Clients of an algorithm need no knowledge of whether a cryptographic
algorithm is symmetric or asymmetric. This is hidden by encapsulation
within an Algorithm object and within the Keys associated with Context
Instances;

There are many different ways in which a taxonomy of algorithm classes
could be designed. For example, cryptographic algorithms can be symmetric
or asymmetric, stream or block ciphers, some may support integrity opera
tions only, others may support one-way encipherment only. A comprehensive
class hierarchy, where for example cryptographic algorithms are classified
into those which support confidentiality, integrity and one-way encipherment
respectively, was originally tried but was found to have many levels, was
difficult for non-specialists to understand and led to a large use of multiple
inheritance (classes inheriting from more than one super-class) and an
increase of classes that were known about by the CKMS.

In designing class hierarchies, (Coad & Yourdon, 1991) advise that if most
types of something have a particular attribute or service in common, then
this characteristic is put into a generalisation class and specialisations which
do not share this characteristic are treated as exceptions. For example, most
cryptographic algorithms can be used for confidentiality (data encipherment
and decipherment) and data integrity, so these services are placed into the
general Cryptographic Algorithm class. Those cryptographic algorithms
which do not share one or more of these services have to provide appropriate
exception handling for the unsupported services. Classification along these
lines led to the hierarchy shown in Figure 4. This was found to be easy to
understand, easier to use and allows more generalised code to be written.

In Figure 4, the classes above the horizontal line are the general classes
known to the CKMS, the classes below this line are exemplary.

The class ‘Algorithm’ contains attributes and services common to all algo
rithms. This is itself a sub-class of ‘Managed Object’ which is discussed later.
The next level of classes derived from ‘Algorithm’ denote the three main
types of algorithms which are dealt with within the CKMS:

ICL Technical Journal May 1993 499

Fig. 4 Algorithm Class Hierarchy

• Cryptographic Algorithm
This encapsulates the attributes and services common to cryptographic
algorithms in general. This class defines the interfaces of several services
whose implementation is deferred to a derived class: encipher data,
decipher data, seal data and check seals;

• Key Generator
This encapsulates the attributes and services common to algorithms
which generate a key from a seed for use within a Context Instance.
This class defines the interface of a deferred service to generate a key;

• Random Number Generator
This encapsulates the attributes and services common to random
number generators and defines interfaces of deferred services to generate
a random number and to reset the generator;

Code within the CKMS is not concerned with specialisations beyond this
level. Algorithm objects are instantiated from classes which are derived from
the classes mentioned above. Implementors are free to add intermediary
classes which may be useful, and may use multiple inheritance.

For example, in Figure 4, the class ‘Software Block Cipher’ provides an
implementation for the Encipher, Decipher, Seal and Check Seal services
(deferred from the class Cryptographic Algorithm). The class defines the
interface of two new services to encipher and decipher a fixed length block

500 ICL Technical Journal May 1993

of data, where the implementation is deferred to a further derived class. The
class ‘Software Block Cipher’ effectively provides a general implementation
of ISO standards to encipher and decipher data (ISO, 1991), and to generate
and verify integrity seals (ISO, 1989). In order to use these implementations,
a further sub-class (e.g. Tpacrypt50’) must be defined to provide the imple
mentations for the deferred services to encipher and decipher a block. This
illustrates the property of code reuse, as any new cipher can be defined as
a sub-class of ‘Software Block Cipher’ and this will inherit the ISO con
formant services.

Another example in Figure 4 is the class ‘Dedicated Hash Function’, a sub
class of ‘Cryptographic Algorithm’, providing implementations to one-way
encipher data and generate and verify integrity seals by invoking the encipher
service of a One-Way Hash Function, such as ‘Ipacrypt5\ which is derived
from this class. An implementation would be provided for the decipher
service which if invoked would raise an error since one-way enciphered data
cannot by definition be deciphered!.

6 Bit Strings

Algorithms view the data they process as a string of bits. In software
environments, data is encoded into a character representation optimised for
the underlying hardware of the host machine (e.g. 8,9 or 16 bits). This would
normally mean that an implementation of an algorithm has to be aware of
how bits are encoded in the character representation, and thus different
implementations would be required for different machine environments.

Data which is to be transferred to a different machine environment will
normally conform to some agreed transfer format (e.g. 8 bit ASCII, ASN.l
Basic Encoding Rules). For example, data being transferred from a 9-bit
character machine to a 8-bit character machine could be encoded as 8-bit
ASCII, the most significant bit not being used on the 9-bit machine. If this
data is to be cryptographically processed prior to transfer, the algorithm
implementation would normally need to be aware of this so it doesn’t
encrypt the unused bits.

To address this problem, the CKMS uses objects of a class ‘Bit String’ to
encapsulate data which is processed by algorithms. Services are provided by
which algorithms can treat the data as a bit string (or an octet string) whilst
hiding the actual character encoding.

Algorithms used within the CKMS are implemented to use the services of
the Bit String class in order to process data. This enables the algorithms
themselves to be portable to different machine environments.

ICL Technical Journal May 1993 501

7 Object Managers

Within most Object-Oriented systems there is usually the need for a number
of “object managers”, each responsible for managing the storage, location
and retrieval of a particular class of object or a group of object classes.

The CKMS uses a general scheme where a specialised object manager
inherits attributes and services from a general ‘Object Manager’ class, and
each managed class inherits from a general ‘Managed Object’ class.

An Object Manager will contain zero or more (usually one) ‘Persistent Store’
objects encapsulating the details of how persistent objects are saved and
retrieved in long-term storage. Specialised Persistent Store objects may exist
to encapsulate different forms of persistent storage (e.g. storage on-board a
crypto device). Two of the responsibilities of a managed object (inherited
from the Managed Object class) are to be able to provide an Object Manager
with a storable representation of the managed object, and to be able to
restore the managed object from previously stored information provided to
it by the Object Manager.

An Object Manager will also contain an Index used to locate persistent
objects (either in persistent store or in memory) and transient objects.

Within the CKMS there are the following specialised object managers:

• Supported Algorithm List
This maintains a list of Algorithm objects. Algorithm objects are transi
ent, being dynamically created when the CKMS is created;

• Context Instance Manager
This manages the storage, location and retrieval of persistent and transi
ent Context Instances. The organisation and implementation is encapsul
ated by the object (e.g. whether secure hardware is used to hold
unencrypted keys). The Context Instance Manager is responsible for
ensuring that objects held in files are suitably protected (i.e. associated
keys are encrypted) and for loading objects into memory when required.

• Context Type Manager
This manages the storage, location and retrieval of Context Types (which
are persistent objects) and responsible for loading objects into memory
when required.

Figure 5 shows the Object Manager class, the classes it contains and the
specialised object manager classes used in the CKMS.

8 Future Enhancements

The Context Types and Instances concept arose before the use of Object-
Oriented techniques to solve the algorithm replacability problem. Further
work is in progress to properly integrate these concepts in a more Object-

502 ICL Technical Journal May 1993

Fig. 5 Object Manager Class Structure

Oriented manner. One possibility is for Context Instances to include con
figured algorithm sub-objects and which will provide the appropriate services
according to the intended functionality of the Context Instance. Thus a
confidentiality Context Instance would only offer services to encipher and
decipher data.

9 Summary

An algorithm-independent interface can be offered to the clients of a crypto
graphic facility through the means of Cryptographic Context Instances which
encapsulate the information required to provide the required quality of
service.

The creation of Context Instances and hence the use of cryptographic
algorithms can be controlled through means of Cryptographic Context
Types. Context Types can be set up to model the security policy of the
domain with regards to the use of cryptographic algorithms.

An algorithm-independent interface can also be offered to administrative
applications for the creation of Context Types by Cryptographic Algorithm
objects encapsulating the knowledge of how they can be used to provide
different levels of service.

The dependency of the cryptographic facility upon the algorithms themselves
can be minimised through the use of an Algorithm class hierarchy from
which algorithms must be derived, and the use of polymorphism to allow
specific algorithm objects to be treated through a more general super-class.

ICL Technical Journal May 1993 503

Bit String objects can be used to encapsulate platform-specifics regarding
the representation of data and to provide services to algorithms to treat the
data as though it were a bit string. This allows algorithms to be portable to
different environments.

Finally, a general object manager scheme was outlined which is capable of
extension into specialised object managers for different types of managed
objects and which can be extended to cater for different types of long
term storage.

The concepts outlined in this paper have evolved over a period of 3 years
and have been proven in successive implementation releases. The concepts
have given rise to 5 patent application registrations in the UK alone.

Acknowledgements

The author would like to thank Brian Dowler, Tom Parker, Charles Lambert
and Roy Jones (now retired) of ICL’s security technical steering group for
their constructive comments and criticisms of the concepts as they evolved;
the CSF development team - Mike Beasley, Keith Jenkinson and Rory
Caldow for their part in planning to put the concepts into practice; and
Derek Guyatt of the ICL patents department.

References

IBM. Common Cryptographic Architecture: Cryptographic Application Programming Interface
Reference. IBM, 1990.

COAD, P. and YOURDON, E. Object-Oriented Analysis. Prentice Hall, 2nd edition 1991.
BOOCH, G. Object-Oriented Design with applications. Benjamin/Cummings, 1991.
FAIRTHORNE, S.B. OPEN framework Security Quality. OFD 41, ICL OPENframework

Division, 1991.
PRESS, J. An Introduction to Public Key Systems and Digital Signatures. ICL Tech. J.

Vol. 6(4), 1989.
ISO 9797. Data integrity mechanism using a cryptographic check function employing a block

cipher algorithm. ISO, 1989.
ISO 10116. Modes o f Operation for an n-bit Block Cipher Algorithm. ISO, 1991.

Biography

Jim Press

Jim Press joined ICL in 1980 after graduating from Southampton University with
a BSc. (Hons.) in Electronic Engineering. After working for 4 years on customized
product development, he began working on aspects of secure networking and the
use of cryptography in the commercial sector.

504 ICL Technical Journal May 1993

He now works for ICL Mid-Range Systems Division at Reading in the Open
Distributed Processing unit. He is responsible for designing the Cryptographic Sup
port Facility (CSF) and is involved in SESAME, the European collaboration between
ICL, BULL and SIEMENS-NIXDORF in the area of secure distributed systems.
Jim is also a Member of the Institution of Electrical Engineers (IEE) and a Chartered
Engineer.

ICL Technical Journal May 1993 505

CHISLE: An engineer’s tool for hardware
system design

A. Jebson, C. Jones and H. Vosper
Corporate Servers Product Group, ICL Corporate Systems, West Gorton, Manchester

Abstract

This paper describes the methods used in formalising the
approach to hardware development. It describes a methodology
based on hierarchic design decomposition and mixed multi-level
modelling using a semi-formal language “ CHISLE" (Combined
Hardware and Interface Specification Language for Engineers).
This language defines both functionality and interfaces and is
compiled into executable models. The approach permits the main
problems facing hardware designers to be tackled ie. how to
specify the design in a concise, unambiguous and understandable
manner and how to represent the parallelism and time relation
ships inherent in complex pieces of hardware. The results and
achievements to date are also described and the paper finishes
by giving some possibilities for future enhancements.

1.0 Introduction

The methodology currently used for the design of large Mainframe hardware
places great emphasis on the specification and verification of the high level
design.

It has evolved over the last 20 years from the “build-and-test” methodology
employed on the early 2900 mainframes, through the register transfer level
(RTL) modelling methodologies used for the Series 39 level 80 and SX ranges
to the methodology used for todays mainframes.

The methodology employed on the earliest 2900 mainframes used little or
no modelling to check that the implementation of the machine was correct.
These machines were designed, built, and then tested. However, given the
relatively small number of gates used in such machines (less than 50000)
only a small number of faults remained to be found when the first prototypes
were switched on.

506 ICL Technical Journal May 1993

Later Series 39 mainframes with much higher gate counts (up to 1 million
gates), employed a methodology where test programs were run on a register
transfer level model (MSIM [Hodgson, S., 1984]) of the machine and patterns
extracted from this model were compared with the actual gate level imple
mentation. This methodology led to a very large reduction (relatively
speaking) in the numbers of faults in the first prototypes, and is described
in (Abraham, G.P. et al, 1990) and (Eaton, J.R. et al, 1990).

Following completion of the design of the latest SX mainframe, an analysis
of this design was undertaken. This analysis identified a number of design
errors, and the stage at which each error was introduced. This showed that
the approach of extensive testing of the RTL specification and then extracting
and running patterns from this on the gate level implementation resulted in
a very small number of implementation faults. However, there were a number
of sign ificant weaknesses in the earlier stages of the design process:

— the design w ent in a single stage, from high-level specifications to R T L
level m odels.

— am bigu ities in the (English language) specifications meant that a signi
ficant num ber o f errors were introduced early in the design process.

— interfaces between major components of the system were poorly speci
fied, lead in g to interface mismatches.

— the perform ance of the RTL model of the system severely limited the
am ou n t o f testing that could be performed.

— much of the testing was based on the design realisation rather than the
specification.

Given the increase in complexity of the next generation of mainframes over
that o f the SX mainframe, these weaknesses would result in an unacceptably
high num ber of faults in the first prototypes. Therefore, a number of improve
ments in the methodology were suggested:

— formally define interfaces.
— represent the design in a concise and unambiguous manner in relatively

small understandable chunks.
— model the design in a top-down hierarchic manner.
— ensure that the low-level design of a component of the system is

independent from the design of its neighbours, such that design changes
in a component have minimal impact.

These lead to the development of a semi-formal specification language -
CHISLE (Combined Hardware and Interface Specification Language for
Engineers) which allows executable specifications of both interfaces and
functional components to be written in a common language.

ICL Technical Journal May 1993 507

2.0 Concepts

2 .1 M e th o d o lo g y

The methodology which has evolved has three key elements:

— hierarchic design decomposition
— “firewall rules” for interfaces
— mixed, multi-level modelling.

These elements are described in the sections below.

2.1.1 Design decomposition When specifying some “thing”, this thing is
described in terms of a design hierarchy, where each level in the hierarchy
is a more concrete “implementation” of its parent, as shown in Figure 1.
The top level of this hierarchy is the Product, which is decomposed into
three further levels: Group, Set and Element.

Fig. 1 Design Decomposition Triangle

The Group Level represents the top level functionality of the machine, and
is a collection of “asynchronous” units connected by “asynchronous” inter
faces. Note, “asynchronous” does not imply the absence of a “clock”. It
means that the unit must not be functionally sensitive to the latency of an
interface, that is, it must not care how long it takes for an interface request
to be serviced. Nor must the unit be sensitive to the latency of any internal
“services”.

508 ICL Technical Journal May 1993

E ach grou p is d eco m p o sed in to Sets w ith , rough ly , a 1 to 5 exp an sion . A
Set is con sid ered to be a sy n ch ron ou s unit, w ith asyn ch ron ou s interfaces.
T hat is, it m ust n o t be fu n ction a lly sensitive to the la ten cy o f its interfaces,
but k n ow s h o w lo n g an y in ternal op era tion s w ill take.

E ach Set is d ecom p osed in to E lem ents. A n E lem ent is con sid ered to be a
syn ch ron ou s unit, w ith sy n ch ron ou s interfaces. T h at is, it is a register transfer
level descrip tion . A gain there is rou gh ly a 1 to 5 ex p an sion from Set to
E lem ent level.

2.1.2 Firewall rules T h ese ru les w ere d esign ed to a llow a m anageab le
partition in g o f the design . T h ey a ttem p t to ach ieve the key attributes o f
understandab ility , verifiability , an d efficiency. T h e rules are:

i) asynchronous behaviour - th e design o f a u n it m u st n o t be fun ction ally
sensitive to the la ten cy o f its interfaces or its n eigh b ou rin g units.

ii) isolation - th e on ly in form ation that an y u n it o f d esign has ab ou t
an oth er u n it’s b eh av iou r m ust b e p assed across a form ally defined
interface. N o unit sh o u ld n eed to have k n ow led ge o f w hy a function has
been requested or o f w hat is h ap p en in g in an y other unit.

U se o f these rules y ields a design w here b eh av iou r o f a un it is in depend en t
from that o f its neighbours. T hat is, there is a large degree o f d esign
in dependence, a llow in g the design and testin g o f a un it to p roceed in (relative)
iso la tion .

2.1.3 Mixed, multi-level modelling (mMm) T h is m od ellin g strategy
a llow s the d esign to be m od elled at various levels in the d esign hierarchy.
F or exam ple, the E lem ent level o f the processor cou ld be m od elled w ith Set
L evel or G rou p L evel o f the m em ory and IO processor, etc.

U sin g this strategy, a unit or its d eco m p o sitio n m ay be tested w ith ou t
ch an g ing any other co m p o n en ts o f the m odel. T his tests that the im plem en ta
tion o f a level m eets its specification . T hat is, the d eco m p o sitio n is fu n ction
ally eq u iva len t to its parent.

2.2 Language Concepts

T he C H IS L E lan guage is based on the d iscip line o f fun ction a l program m ing,
w hich has a strong, and w ell und erstood , log ica l foun dation . (D IL L E R
A N T O N I, 1990). T he use o f such a lan gu age for sp ecification p urposes has
m any advantages. F or exam ple, it leads to con cise , u nam bigu ou s and exact
sp ecification s that are easy to reason about. A dd itionally , unlike m any other
sp ecification lan guages, the sp ecification s are readable since they are cou ch ed
in fam iliar program m ing term s, rather than in the m ath em atica l n o ta tion s
used by o th er (m ore form al) sp ecification languages.

ICL Technical Journal May 1993 509

One of the key ideas in specification languages is that specification and
implementation are kept separate. The specification should state what the
component is supposed to do and not how it is to go about achieving its
task. Separating specification and implementation results in the separation
of the often conflicting tasks of correctly solving the problem in hand and
that of building an efficient component.

The methodology underlying the use of CHISLE stresses the primacy of
declarative thinking over procedural or imperative thinking. One of the things
that people find most difficult to do when they start writing formal specifica
tions is to stop thinking procedurally. The goal is to describe what a
component of a system is going to do, and should not be concerned about
efficiency or even implementability. Thus operations are specified by giving
their pre-conditions and post-conditions, and not by giving a procedure for
how these operations are to be carried out. The technique of ignoring the
computational or procedural difficulties associated with a problem and only
concentrating on its functional specification is known as procedural or opera
tional abstraction.

A feature that distinguishes CHISLE from most other specification languages
is that it is executable. In the general case, specifications written in other
languages cannot be executed. As a consequence of this, CHISLE incorpor
ates many features normally found only within imperative programming
languages. However, this has been done within a declarative framework,
retaining the principles of functional programming.

Procedural abstraction is one of the two main ways in which abstraction is
used in CHISLE to manage the complexity of the problem of correctly
specifying a large, complex system. The other main abstraction technique is
representational abstraction. This involves using high-level structures - like
arbitrary sets, functions, queues, and so on in the specification of systems
without worrying about how these are eventually going to be implemented.
This has the beneficial consequence that in solving a specific problem
designers are allowed to think using the structures most suited to the problem
in hand, rather than being forced at a premature stage to think in terms of
the data and control structures available at later stages of design.

Once a system has been specified, it must be verified. There are two main
approaches to verifying that an implementation meets its specification,
namely the proof-theoretic and the model-theoretic approaches. Model-
theory does this by executing a model of the implementation and showing
that its behaviour fulfils the specification in all circumstances, whereas proof-
theory does this by constructing a rigorous mathematical proof that they
are identical.

The model-theoretic approach is fundamentally limited by the amount of
simulation that can be done and, for a large model, it is not feasible to
perform an exhaustive check. Also, many faults can be introduced during

510 ICL Technical Journal May 1993

the coding of the model. However, it does have the advantage that the
approach is well known and widely used and the techniques are mature.

The proof-theoretic approach has the inherent problem that, though it
proves that an implementation is identical to its specification in all circum
stances, it states nothing about the validity of the specification itself. The
other major problem with this approach is that the construction of the
mathematical proofs cannot, in the general case, be done automatically, and
is, currently, not feasible for any but the simplest specifications.

One of the fundamental concepts in the methodology is that of design by
decomposition. By this, we mean that when specifying a large, complex
system the problem should be decomposed in a top down manner from a
high-level abstract specification to a low-level concrete specification.

This means that the specification of some component “A” will be decomposed
into a number of lower-level specifications “A l”, “A2”, and so on, intercon
nected by a number of interfaces, as illustrated in Figure 1.

Consider now, that this component “A” has interfaces II and 12 to compon
ents “B” and “C” respectively.

In order that the design of components B and C may proceed independently
from that of component A, the specifications of A, II, and 12 must be
sufficiently abstract that any changes to the implementation of A (sub-units
Al, A2, etc) do not affect the design of components B and C, as seen
in Figure 2.

This concept of design independence becomes important when the high level
specifications of components B and C are being used with a lower level
specification of component A.

Here, an implementation of A is being tested against the specifications for
components B and C, and therefore, it is important that the models generated
for components B and C have the “loosest” possible behaviour that still
fulfils the requirements of the specification of these components. Thus, the
implementation of A will be tested against the behaviour of every possible
implementation of B and C, rather than the behaviour of a particu
lar implementation.

To achieve this “loose” behaviour, an interface and how a component
“drives” the interface must be specified in such a manner that a high level
specification of a component is insensitive to low level implementation
changes in both the interface and the components that it communicates
with. The specification must express the essential features of the component
rather than details particular to an implementation of the component.

ICL Technical Journal May 1993 511

Fig. 2 Mixed Multi-level Structure

Also, interfaces should be specified only once, and this definition must be
used for all levels of specification. This does not mean an interface specifica
tion cannot change, but that there should be a single specification which all
components use.

It is also important that a single language is used for the specification of
both interfaces and the functionality of a component, at any abstraction
level from the most abstract through to concrete register transfer level
specifications.

3.0 Language

The CHISLE language has been designed as a “common” language for the
description of both interfaces and the functionality of units. Although the
syntax of the language is similar for these two different types of specification,
the semantics differ and it is worth considering the two “dialects” separately.

512 ICL Technical Journal May 1993

mMm allows the Implementation of A to be simulated with
the behaviours of B and C

System Simulation with Units and Implementations

The sections that follow will use the specification of a simple “memory” as
an example.

3.1 Functionality

It should be stressed that, as stated in the Concepts section above, the
language has been based on declarative rather than procedural thinking.
That is, a specification is a description of what a component or function has
to do and not how it is done. The functional specifications of units are based
on a client/server architecture, where each unit is considered to be a “server”
providing services to its neighbouring units. The specification of this server
describes the permissible set of services supplied by the unit. In the case of
a simple memory which can handle up to 16 concurrent memory requests
this might be written:

server memory
begin

unique ((4) bit BuffNum): HandleRequest;
end;

A service is a thread of actions that specify how a request from a client is
to be processed. In our memory example, the service “HandleRequest” might
be written:

service HandleRequest((4)bit BuffNum)
concurrent on (BuffNum)
begin

mem_func Function;
add_mode Address:
tag_mode Tag;
(16)word Data;

Get_Request(BuffNum, Function, Address, Tag);
< 0 > if Function in {WriteReal, WriteVirtual}

then
Get_Write_Data(Tag, Data);

< —> Commit_Write(BuffNum, Function, Address, Data);
else

Read_Store(BuffNum, Function, Address, Data);
< --> Send_Read_Data(BuffNum, Tag, Data);

fi;
end;

An action is a base function or set of functions required by the service. For
example, the action “Read_Store” might be written:

ICL Technical Journal May 1993 513

(4)bit BuffNum,
memjunc Func,
add_mode Addr,
ref(16)word Data

)

concurrent on (BuffNum)
pre-condition SchedControl(schedule, BuffNum, Func, Addr)
post-condition SchedControl(remove, BuffNum, _, _)
begin

Data := MainStore(Addr);
end;

The examples above, highlight the use of some key features of the language,
described below.

3 .2 F e a tu re s

The key features that increase the expressive power of CHISLE include:
concurrency, time relationships, pre- and post-conditions, and powerful
data typing.

i) Concurrency. That is, the ability to express threads which may have
more than one concurrent instance. In the example above, the service
HandleRequest, and the action Read_Store are both concurrent, and
there may be up to 16 active instances of each. Associated with each
instance is a unique identifier, in this case the parameter “BuffNum”.

ii) Time Relationships. These relationships specify the time taken within a
thread. In the above example, two of the many time relationships allowed
in CHISLE were shown: the time relation “a < 0 > b” states that b
must start immediately a has finished; “a < - - > b” states that b must
start some time (conceptually up to an infinite time later) after a has
completed.

iii) Pre- and Post-Conditions. These are rules that govern when something
may start or finish. These can be just a simple boolean expression (e.g
x = 5), or may be very complex. Where they are complex, CHISLE
allows their specification separately as “conditions”.

iv) Data Typing. As specifications in CHISLE may be at one of several
levels from the highly abstract Group level through to the concrete
(RTL) Element level, the data types allowed range from abstract con
structs such as queues, sets, polymorphic data types, etc to words and
arrays of bits.

3 .3 S u p p o r t o f T e s t S c r ip ts

The functionality of a unit can be tested across its interfaces by specifying
tests in the same language. A functional unit may have interfaces with units
A, B, and C. Therefore, for a test script to fully test this unit it must be able
to drive all these interfaces. A test script can be compiled along with the
units functional specification, generating a model known as a “Test Harness”.

action ReacLStore (

514 ICL Technical Journal May 1993

Specifications of interfaces in CHISLE are expressed in terms of seven layers.
Proceeding from top to bottom, these layers are:

• Interface layer. An interface is considered to be the sum of the total
information exchanged by a collection of units.

• Protocol layer. Information is exchanged by a collection of two or more
units in a “conversation”. The protocol layer of the interface describes
the legal “conversations” on that interface.

• Transaction layer. This specifies the information that will be transferred
between the units on an interface for one “conversation”. For example
a memory read request followed by the data response.

• Item layer. An item is information transferred between units in a single
direction and consists of an ordered, untimed sequence of packets. For
example a 64-byte data response, which consists of eight packets of
8 bytes, and the time taken between packets is unknown.

• Packet layer. A packet is information transferred between units in a
single direction and consists of an ordered and timed sequence of slices.
For example an 8-byte data packet might be specified as taking
8 clock cycles.

• Slice layer. A slice is information transferred between two units in a
single direction in a single clock cycle.

• Wires layer. The wires layer specifies what physical connections exist
between units.

When an interface is driven by a functional unit, the level at which that unit
is permitted to drive the interface is governed by the specification level of
the unit. Group level specifications are only allowed to drive an interface at
Item level; Set level specifications at Packet level; and Element level speci
fications at Slice level.

When specifying an interface in CHISLE the language features are as for
functionality; additionally interface specifications have the following
properties: •

• the specification of an interface is expressed in terms of what information
is exchanged between units and of the rules for this exchange, rather
than in terms of how a unit is either to drive the interface or to receive
data from it.

• from the specification of an interface it is possible to derive the method
by which each functional unit must drive the interface (at any level of
decomposition). That is, both the method by which data must be sent
by a transmitting unit, and how it must be accepted by a receiving unit.

• from the specification of an interface it is possible to derive checks on
the legality of a transfer. For example, if an item is sent by a Group
Level specification then this will be checked for legality against all

3.4 Interfaces

ICL Technical Journal May 1993 515

possible transactions and the protocol of the interface, as seen in
Figure 3.

• the specification of an interface can include rules governing the legality
of a transfer. For example, rules stating that only four read requests
may be outstanding at a given instant can easily be expressed.

Fig. 3 Interface Model Hierarchy

4.0 Results and Achievements

4 .1 U s e o f th e L a n g u a g e

The use of the CHISLE language alone has given major benefits to the
current mainframe development project. At the top level of the design (the
Group level) there are five major components and nine interfaces between
these units. All these have been specified in CHISLE (in roughly 10000
statements). A number of design errors and interface problems have already
been found just through writing the specification in a formal manner.

516 ICL Technical Journal May 1993

4 .2 T r a in in g

One of the major achievements to date was the training of the design
engineers (and their managers) in the design methods, as well as in the tools
and the CHISLE language itself. The acceptance by everyone of the high
level design concepts, design decomposition and formal specifications had
major benefits in terms of common understanding of the design, and its
subsequent specification. Some 45 designers have now been trained in the
use of CHISLE and support documentation (reference manual, user guide,
etc) has also been provided.

4 .3 T o o ls

4.3.1 The CHISLE compiler The prototype compiler (roughly 40 000 lines
of ‘C’) has been written and validated. As well as the expected syntactical
and type checking the compiler provides a semantic analysis phase which
checks for certain types of ambiguity and design rule violations.
The specification for each of the five components of the Group level have
been compiled into executable behavioral models. Each of these models has
been unit tested by the responsible design teams. The unit tested models
have been collected together to form a system model which has been tested
using a number of Series 39 defined tests. To date the model has run for
more than 6 million clock cycles.

4.3.2 Test harness generation The unit testing of each component of
the system model required the generation of a large number of test scripts.
These were written in CHISLE, and compiled to produce test harnesses for
each component.
These test scripts were written by a separate Design Verification team to
give independent functional verification of each design component.

4.3.3 Network generation To support the design decomposition process,
a decomposition structure can be specified in CHISLE which is then com
piled into a simulatable network instancing the relevant components, and
specifying their interconnection.

4.3.4 Design control The compiler has been incorporated into a design
support environment which provides mechanisms for version control and
configuration management facilities, covering CHISLE source, compiled
code, model build, test scripts, and support documentation.

4.3.5 Simulation performance The models generated from CHISLE spe
cifications are run using the MSIM simulator. Currently, the system model
achieves roughly 180 clock cycles per second on a single node Series 39/level
80 machine. This compares very favourably with the performance of 5 clock
cycles per second for the equivalent RTL model of the SX processor (on the
same machine).

ICL Technical Journal May 1993 517

4.3.6 Future developments As the CHISLE language and mMm meth
odology have evolved, the possible enhancements seem endless. We therefore
have to be extremely careful in the choice of extensions to the tool-set. Our
current plans include:

— an optimisation pass for the compiler which will generate more effici
ent models.

— a new “back-end” for the compiler which will generate ‘C’ rather than
S3, permitting simulation on multiple hardware platforms (the only S3
compiler available is specific to Series 39).

— extensions to the compiler to include full test cover measurement (ie.
which paths in the model have been exercised) into the generated
simulation models. This will allow easier identification of untested
paths.

— the syntax and sematics of the language need “cleaning up”. The current
syntax and sematics evolved in a relatively ad hoc manner and contain
several inconsistencies.

In addition we are considering the problems associated with:

— the generation of software products from high level specifications.
— logic synthesis from register transfer level specifications, including the

overlay of testability features.
— tools to aid the decomposition process by analysis of high level speci

fications and suggesting possible partitions of these specifications.

5.0 Conclusions

In this paper we have described an approach to the development of a
powerful methodology and tool set which enables large complex systems to
be formally specified. The approach is based on hierarchic design decomposi
tion with specifications of Functional Units and their Interfaces.

Executable models can be generated automatically from these specifications
which allows testing of the design and the specifications.

We are successfully using the approach in Corporate Servers Product Group
for the development of ICL’s future mainframes, with major improvements
in both productivity and design quality.

Acknowledgements

The authors would like to thank the various members of Corporate Servers
Product Group and Design Automation departments at ICL, West Gorton
for their help and impatience in developing and using the techniques and
tools described in this paper.

518 ICL Technical Journal May 1993

ABRAHAM, G.P., FREETH, D.C., and VOSPER, H., SX Design Processes, ICL Tech. J. Vol. 7
No. 2 pp. 212-232, 1990.

EATON, J.R., ALLT, G., and HUGHES, K., The SX Node Architecture, ICL Tech. J. Vol. 7
No. 2 pp. 197-211, 1990.

HODGSON, S., A Multi-Level, Mixed State Simulator for Hierarchical Design Verification,
I EE European Design Automation Conference 1984.

DILLER, A., An Introduction to Formal Methods, John Wiley & Sons ISBN 047192489X 1990.

Biographies

Chris Jones
Chris Jones joined ICL in 1984 as a sponsored student. He graduated from Man
chester University in 1988 with an honours degree in Computer Engineering.

He started work on the development of the internode system for the Series 39 SX
System. He also worked on the Processor of the Series 39 DX System.

He is now working on the memory system design for future mainframe development.

Tony Jebson
Tony Jebson joined ICL in 1978 as a sponsored student. He graduated from Bristol
University in 1982 with an honours degree in Electrical and Electronic Engineering.

He started work on the development of the Series 39 Level 30 Low Speed Computer.
Since then he has worked as a team leader on the Flagship project (an ALVEY
programme), and on the Series 39 SX System.

He is now responsible for I/O and Inter-Node System design for future mainframe
development.

Harry Vosper
Harry Vosper joined ICL in 1962 as a student apprentice. He graduated from Queen’s
University Belfast with an honours degree in Electrical Engineering and Electronics.
He transferred to Development in 1970 working originally in Microsystems on thick
film and integrated circuit design.

He became Hardware Quality Manager for the Estriel project in 1983 and sub
sequently Future Products (Mainframe Systems) in the Essex Project.

He is currently the manager of Development Route & Tools Team in Corporate
Servers Product Group which provides the development processes, database environ
ment and tools necessary to support mainframe development.

References

ICL Technical Journal May 1993 519

Distributed Detection of Deadlock

S te v e Hilditch
ICL Bracknell UK

Tom Thom son
ICL Manchester UK*

Abstract

Data consistency in distributed database management systems is
often implemented by transactions which separately preserve con
sistency. Concurrent transaction execution can be ensured by
locks on data and the discipline of two-phase locking. Transactions
can be forced to wait for others to release locks. It is possible that
a complete cycle of waiting transactions can form deadlock. In a
distributed memory environment, some deadlock can be detected
locally, i.e. without using the communications network. But the
most difficult case to detect is when a number of transactions on
more than one network node all wait for each other so that none
can proceed. This is called distributed deadlock.

We present two simple algorithms for the detection of distributed
deadlock on a shared-nothing distributed database system. They
are designed to be scalable and minimise network message traffic.
An object-oriented approach is used.

1 Introduction

Much use has been made in recent times of databases which are distributed
over a number of processors connected by a communications network.
Whether the communication links are just across the room or are intercontin
ental, the main difficulty arises because of the communication delays. The
consistency of the distributed database and the liveness of the distributed
database management system must be ensured by careful communication,
allowing for possible delays in information.

1.1 T w o -P h a s e L o c k in g a n d D e a d lo c k

Given the decision that data is only represented once in the distributed
database, transactions and Two-Phase Locking can be used to ensure data

'The authors were part of the European Declarative system, ESPRIT project EP2025.

520 ICL Technical Journal May 1993

consistency. Two-Phase Locking is an agreement by all transactions to
execute in two phases: during the first locks can only be taken, during the
second locks can only be released. Locking of shared resources can enforce
a fair treatment of the transactions but at the cost of deadlock.

Deadlock is caused by a complete cycle of transaction dependencies. One
transaction is said to be dependent on or waits for another transaction if the
former must wait until the latter has finished with some shared resource.
Transaction dependencies and deadlock can be modelled by a directed
graph. A transaction waiting for another transaction is modelled by a graph
edge from a graph node representing the former transaction to a graph node
representing the latter transaction. Any cycle in the so-called global depend
ency graph indicates the presence of deadlock which must be resolved.
Aborting a transaction corresponds to removing a node from the dependency
graph, together with all the graph edges to and from it. This, of course, will
remove the cycle which corresponds to resolving the deadlock.

Some deadlock can be detected locally, i.e. without using the communications
network. But the most difficult deadlock to detect is when a number of
transactions on more than one network node all wait for each other so that
none can proceed. The difficulties of detecting distributed deadlock are all
caused by network communication delays:

• maintaining up-to-date information on transaction dependencies
• allowing for the late arrival of messages
• implementing the detection process to avoid clogging the network
• implementing the detection process to resolve deadlock as quickly as

possible.

1 .2 D e a d lo c k R e s o lu t io n a n d V ic tim s

When deadlock has been detected, resolution demands that at least one
transaction must be told to cancel a lock request or release a lock. That
transaction is called the victim of the deadlock resolution process. In most
cases the victim is forced to release all its locks, abort and wait to be
restarted as if it had never existed. If a transaction were allowed to release
one lock and then obtain it again later, then the transaction would have
violated the two-phase locking strategy. This would allow data to become
inconsistent. This paper assumes for simplicity that victims are forced to
abort and roll-back to their starting points.

It is possible to prove that no transaction is ‘starved’ of resources if we have
a fair method of choice of victim once deadlock is found. In order to be
able to choose fairly a victim, we assume that each transaction has a unique
identifier which consists of its source processor or site identifier as the least
significant bits, and the local timestamp as its most significant bits. We only
assume that local timestamps have to be kept approximately the same. This
can be achieved using an algorithm such as that of Lamport [10], Since a

ICL Technical Journal May 1993 521

transaction identifier (tid) uniquely determines a transaction, and all tids
can be totally ordered, when faced with the choice for victim we can always
choose the transaction with the highest tid. The transaction with the lowest
tid is the one which ‘has been on the system for the longest time’ or the
‘oldest’ transaction.

We also make sure that a transaction’s tid is kept if the transaction is
restarted or ‘reincarnated’ after being chosen as a victim and aborted.

To show that no transaction is perpetually starved of resources we have
only to notice the following two points:

1 The oldest transaction will never be chosen as a victim.
2 Every transaction will eventually become the oldest transaction unless it

finishes first.

1 .3 D is t r ib u te d A lg o r i th m s fo r D e te c t in g D is t r ib u te d D e a d lo c k

Many have attempted in recent times to give algorithms which detect
deadlock between transactions which run in a distributed environment [7,
9, 11, 3, 2, 15, 6, 1, 5, 4, 14], Of these detection algorithms, some are not
fully distributed themselves.

In this paper we present two variants of a distributed algorithm to detect
distributed deadlock. It, like many other deadlock detection algorithms, uses
the concept of a global waits-for directed graph to model the transaction
dependencies.

Avoiding Bottlenecks: In contrast to the algorithm of Ho and Ramamoor-
thy [9], our algorithms do not assume any logical hierarchical node structure
between the distributed constituent parts of the deadlock detection process.
There is no difference between the nodes of the network, there are no
management hierarchies or special nodes. Therefore, communication
bottlenecks are avoided in our algorithms.

Avoiding Global Synchronisation: In contrast to the algorithms of Belik [1],
Obermarck [11], Bracha and Toueg [2] and Gafni [6], our algorithms do
not involve any global synchronisation of message passing. In such a case,
if communication with one site or node in the system is slow, the whole
algorithm is slowed. Therefore, our algorithms offer the advantages of con
currency and scalability.

Independent Decision Making: In contrast with the algorithm of Obermarck
[11] whose deadlock detection is done at intervals, to detect all deadlock
up to that time, our algorithms attempt to detect deadlock by immediate
probes. Belik [1], Sinha and Natarajan [15], Roesler and Burkhard [14]
and Choudhary, Kohler, Stankovic and Towsley [4] also adopt the same
approach. This results in a more immediate detection of deadlock. Our

522 ICL Technical Journal May 1993

algorithms detect deadlock without any artificial delay, and provide early
resolution to reduce lock existence times, the number of lock conflicts and
hence response times.

Scalable Distribution: The distributed algorithms we present only involve
network nodes which are directly involved in a particular lock conflict.
Therefore, our algorithms can be run on massively parallel machines with
optimal performance.

Communication Economy: In contrast with the algorithms of Chandy, Haas
and Misra [3] and Bracha and Toueg [2] whose transactions send out
deadlock detection probes when they fear deadlock, our algorithms only
send detection probes when a new cycle may have been completed. Probes
are not needed at other times. There is no need to send a repeat ‘reminder’
message in the absence of system failure. This means that under heavy load,
our deadlock detection process will not involve escalation of communication
traffic. Also, each deadlock message sent has fixed maximum length.

Tidiness: Our algorithms offer the removal of old deadlock detection
information. This tidiness saves storage and processing time.

Conceptual Simplicity: We provide algorithms which are simple to describe
and verify, involving few operations (two at most three) and few data
structures (one or two lists). We therefore provide C + + -like code for each
algorithm. A Temporal Logic type proof of their correctness is available
from the authors.

1.4 Our Network Requirements and Model

In this section we state the problem which we solve and the assumptions
on the reliability of the network we make. We refer to Raynal [13] for a
helpful classification of distributed algorithms and their assumptions.

The general problem is that of resource allocation scheduling. Each resource
is stored in the memory of exactly one processor; there are no duplications.

We will assume that the processors are fully-connected. Our algorithms
assume this, and the number of network messages could well be more on
other configurations of processors, unless the resource requirements of most
transactions are readily accessible, i.e. reachable directly through the net
work. According to the definitions of Raynal [13], our algorithms have
“strong symmetry”, in that the same algorithm runs at each processor.

The main network assumption is that of the reliability of the network when
delivering messages. We assume that every message sent from one processor
to another will eventually arrive at its destination. Given this assumption
of reliability, we are able to make estimates on the number of network
messages which our algorithm requires. It is, of course, possible to ensure

ICL Technical Journal May 1993 523

this reliability by implementing a communications protocol on the top of a
more unreliable network, but we shall not discuss this here. We do not need
to assume that there is a fixed bound on the amount of time that a message
takes to arrive across the network.

We also assume that no duplicate messages are created by the network and
that messages arrive in the order in which they are sent. Our algorithms can
be modified to cope with messages out of sequence as we shall show below.
Out-of-sequence messages may occur, for example if a message corrupted in
transmission had to be re-transmitted. Note that it is difficult to ensure the
order of arrival of messages sent through different third parties: it is easy
for a message to ‘overtake’ another given a different (indirect) communication
channel. However, we assume that every message can be sent directly without
the use of a third party.

1.5 The Lock Manager’s R6le

The detection of deadlock is dependent on the collection of the correct
transaction “waits-for” information: each time a transaction is forced to wait
for another transaction to release a lock before it can obtain the lock, a new
edge is added to a directed graph whose vertices are transactions. Our
algorithms, like most in the literature, keep track of the state of this “waits-
for graph”. The presence of a directed cycle in the waits-for graph indicates
deadlock involving all the transactions within the cycle. The role of the
system lock manager in our model is to inform the deadlock detection
process (in the form of one deadlock detection manager per transaction) of
the existence of new waits-for edges and the removal of old waits-for edges.

A simple algorithm for informing the deadlock detection process can be
given as follows:

• If a transaction S requests a lock on some database resource which is
incompatible with an existing lock held by another transaction T then
the deadlock detection process should be notified by the following
message:

change graph(T,ADD).

This message is sent to the deadlock manager associated with the
transaction S. •

• Each time a transaction T releases a lock, a queued lock request may
be granted. This lock request’s transaction S will no longer be dependent
on T. Therefore, a

change graph(T,SUBTR ACT)

message should be sent to the deadlock manager for the transaction S.

524 ICL Technical Journal May 1993

Furthermore, each of the transactions R which sent outstanding queued
lock requests are now dependent on S and for each such R the following
messages should be sent to the deadlock detection manager for R:

change_graph(T, SUBTRACT)
changegraph(S,ADD).

We should note that each ADD edge message which is not sent could result
in undetected deadlock. Each SUBTRACT message which is not sent might
result in detection of non-existent deadlock, resulting in unnecessary transac
tion abortion, and certainly would cause obsolete transaction dependency
information to be retained in the deadlock manager, wasting storage space
and slowing the detection process.

We believe that it is possible significantly to reduce the number of messages
sent to the deadlock detection process by more careful analysis of the
contents of lock requests queues. This has been described in detail in [8]
but is not considered here.

2 Deadlock Detection

We shall first describe our basic distributed algorithm for deadlock detection.
Later we describe a more complicated probe-remembering algorithm.

We present the algorithms in C + + object-oriented style. In order to be
able to describe distributed algorithms we shall assume the following two
extra enhancements to the semantics of C + + :

1 Each instantiation of a class is a separate process which can be scheduled
by the process scheduler.

2 Communication is by asynchronous messages (rather than by RPC -
Remote Procedure Call). Each instantiation of a class has its own mess
ages received queue to which it responds one by one. The messages it
understands are precisely calls to its members with appropriate
parameters.

For simplicity of presentation, we assume:

• Each transaction is created with its own instantiation of the deadlock
deadlock manager class. When a transaction terminates its associated
deadlock manager is removed also.

• Each change of transaction conflict is sent separately from the lock
manager to a transaction’s deadlock manager. Such a change is sent as
follows:

change graph(transaction,change),

where the transaction parameter is the transaction which first requested

ICL Technical Journal May 1993 525

the lock and the deadlock manager called is associated with the later
transaction whose request caused the lock conflict.

• The numerical value of the identifier of each deadlock manager object
is assumed to be an accurate representation of the transaction’s relative
age on the system. Therefore, each deadlock-resolution victim can easily
be selected by the fact of its relatively large deadlock manager identifier.
As each probe is sent between the deadlock managers, currentjvictim
always records the identifier of the deadlock manager of the youngest
transaction involved in the corresponding deadlock chain.

2.1 The Basic Detection Algorithm

The basic deadlock detection algorithm consists of a collection of instances
of deadlock detection managers, one for each transaction in the database
management system. Each deadlock manager sends either probe messages
to other deadlock managers or abort messages to the database management
system’s transaction scheduler. Each message receives no reply, and the
communication is asynchronous.

We give below the class definition of the deadlock manager abstract data
type. Each instance of the deadlock manager class will therefore have its
own state consisting of a list of transactions for which it is waiting -
conflictingjrans. Access to the state is restricted to the two member opera
tions: change_graph and probe. The former member is only called by the lock
manager, the latter is only called by other deadlock manager instances.

The only output from the deadlock detection algorithm occurs when a victim
is chosen and a deadlock manager instance sends the message: abort(victim)
for some transaction victim.

The algorithm assumes that the relevant deadlock manager is told of any
changes to the waits-for graph involving its associated transaction: either
by a

change_graph(transaction,ADD)

message or a

change_graph(transaction, SUBTRACT)

message. In particular, even if the deadlock detection algorithm chooses a
transaction for abortion, (a victim), references to the aborted transaction in
other deadlock managers must be removed by explicit

change_graph(victim,SUBTRACT)

calls from the lock manager.

526 ICL Technical Journal May 1993

The transactionjist conflictingJrans is allowed to have duplicate transactions
if the deadlock manager’s transaction has conflicted with another transaction
over lock requests to more than one resource. Duplicates are essential for
the correctness of this algorithm. Therefore, the standard list manipulation
function list_remove(conflict,conflictingJrans) is assumed to remove only one
reference to the element conflict in the transaction list conflictingjrans.

typedef enum {
SUBTRACT,
ADD

} change;

class deadlock_manager {
transaction_list conflicting_trans;

public:
void change graph(transaction conflict,change add);
void probe(transaction initiator,transaction current_victim);

};

2.1.1 changegraph

The first operation or class member to be described is change_graph. It is
called by the lock manager when there has been a change in the waits-for
graph; either an edge has been added or one has been removed. Each edge
of the waits-for graph is directed; there is a waiting transaction and a waited-
for transaction. The change_graph message is sent to the deadlock manager
of the waiting transaction with parameter the waited-for transaction and a
boolean flag indicating whether the edge is to be added or removed.
change_graph either adds or subtracts the waited-for transaction to its list
of conflicting transactions. If the edge is new, a probe message is sent to the
waited-for transaction’s deadlock manager.

Example For example, if a transaction a requests a lock that conflicts with
a lock held by transaction b then the message a.change graph(b,ADD) is
sent. This causes the transaction b to be added to the conflictingjrans list
of the deadlock manager for a. Then the message b.probe(a,a) is sent to the
deadlock manager for the transaction b. See figure 1, messages marked*.

void deadlock_manager::change_graph(transaction conflict,change add)
{

II Note: change_graph is called by the lock manager when either a
II conflict has been resolved (add = SUBTRACT) or when a
II new conflict has been noted (add = ADD). If add = ADD
II then a new probe is initiated and sent.

Fig. 1 Deadlock detection: basic algorithm

if (add = ADD) {
conflicting trans = Iistcons(conflict,conflictingtrans);
conflict.probe(this,this);

}
else conflicting_trans = lisLremove(conflict,conflicting_trans);

};
2.1.2 probe

The second operation is probe. It is called by another deadlock manager
when deadlock is suspected. The parameters consist of the initiator of the
probe and the current choice of victim for deadlock resolution should
deadlock be detected. Intuitively, probe messages are initiated each time a
new edge is added to the waits-for graph. Probes are sent breadth-first down
the waits-for graph from waiting transactions to waited-for transactions
until either deadlock is detected or a non-waiting transaction is encountered.
A transaction that is not waiting has a deadlock manager with an empty
conflicting Jr ans list.

probe never alters the conflictingjrans list, but sends probe messages to the
deadlock manager of every transaction in its list of conflicting transactions.

1 probe decides whether or not the transaction it represents is more worthy
of abortion than the current victim transaction passed as a parameter.
Therefore, it may make its own transaction the current victim.

2 probe checks to see if a deadlock cycle is present by seeing if the probe’s
initiator is in its list of conflicting transactions. If so, it transmits
abort(current victim).

3 If deadlock is not detected then probe sends on the probe to all the
deadlock managers of transactions in its conflicting transactions list.

528 ICL Technical Journal May 1993

4 Note that if c o n f l ic t in g jr a n s is empty then probe sends out no messages;
its associated transaction cannot be involved in any deadlock.

void deadlock_manager::probe(transaction initiator,
transaction current.victim) {

II Note: probe is called by another deadlock manager. It updates the
II current victim, then detects deadlock or sends on the
II modified probe to all the deadlock managers in
II conflicting, trans.

transaction conflict;
transactionJist message.list;

if (this > current.victim)

II Note: here we assume that the deadlock manager identifiers are
II arranged in ascending order according to the start-times of
II their associated transactions: youngest high, current.victim is
I I the youngest transaction encountered so far by the probe.

current.victim = this;
if (list_element(initiator,conflicting_trans))

abort(current-victim)
else {

message.list = conflictingtrans;
while (message.list! = NULL) {

conflict = head(messagelist);
message list = tail(message list);
conflict.probe(initiator, current.victim);

};
};

};

The authors have a Temporal Logic style proof of detection of deadlock
which was not able to be included due to lack of space. It can be obtained
from the authors.

Example If three edges are added to the waits-for graph indicating that
transaction a waits-for transaction b,b waits-for transaction c and c waits-
for a, then deadlock is detected as follows:

1 Sooner or later three change.graph messages will be sent to the deadlock
managers of each of the three deadlocked transactions. This will result
in b being added to the list of conflicting transactions of a’s deadlock
manager, c being added to b’s c o n f l ic t in g jr a n s and a being added to c’s

ICL Technical Journal May 1993 529

c o n f l ic t in g jr a n s . Also, three probes will be initiated: b.probe(a,a),
c.probe(b,b) and a.probe(c,c). See diagram 1, messages marked * and **.

2 Sooner or later the initial probe messages will be received and executed.
At this point let us assume that a is the best choice of abortion victim
of the three. The c o n f l ic t in g jr a n s lists will be examined and at least one
will be non-empty. For each non-empty c o n f l ic t in g jr a n s list the probe
will be sent on. Let us assume that b.probe(a,a) is processed after
b.change graph(c,ADD), then c will be in b’s c o n f l ic t in g jr a n s list when
b.probe(a,a) arrives. Therefore, the message c.probe(a,a) will eventually
be sent. See messages marked f in figure 1.

3 When c.probe(a,a) arrives at the deadlock manager for c it should find
a in its list of conflicting transactions. Then deadlock will be detected
and the message abort(a) will be sent. The authors have shown that at
least one of the three probes initiated will detect the deadlock cycle.
Whichever probe detects deadlock, note that the same victim a will
be chosen.

4 Deadlock might be detected three times, and three abort messages might
be sent, but the same victim will be aborted each time.

2.1,3 An Observation

From this example we can see that the transaction scheduler must be able
to cope with a number of abort requests for the same transaction. Only one
abort message will be sent if each probe completes traversing the waits-for
graph before the next change graph(,ADD) message arrives. We expect that
this will be the normal scenario. The probe-remembering deadlock detection
algorithm which we describe later ensures that only one abort message is
ever sent for each deadlock cycle.

A number of refinements of the basic algorithm can be seen:

Grouping of change_graph messages: A list of conflict changes could be
sent together from the lock manager to the deadlock manager of the same
transaction if upon requesting a lock it conflicts with more than one other
transaction. This might occur when locks are allowed to be shared. It would
not affect the correctness or tidiness of the program.

Reference Counts in the c o n f l ic t in g jr a n s list: Instead of recording duplic
ates in the c o n f l ic t in g jr a n s list, a reference count could be kept for each
conflicting transaction. This would stop duplicate probes being sent. The
use of negative reference counts would also allow the algorithm to cope
with messages arriving out-of-order: a change_graph(,SUBTRACT) message
arriving before its corresponding change_graph(,ADD) message. Reference
counts of the transactions in the list of conflicting transactions could also
be used to reduce the number of probes sent: a probe would only be sent if
the reference count increased from 0 to 1.

530 ICL Technical Journal May 1993

2.2 A Probe-Remembering Algorithm

The probe-remembering algorithm, like the basic deadlock detection algo
rithm, consists of a collection of instances of deadlock detection managers,
one for each transaction in the database management system. Each deadlock
manager sends either probe messages or antip robe messages to other deadlock
managers or a b o rt messages to the database management system’s transac
tion scheduler. Once again each message receives no reply, the communica
tion is asynchronous.

In a manner similar to the algorithm of Roesler and Burkhard [14], each
deadlock manager can remember all the probes which it has received in a
new transaction list of probe initiators. Each probe would only be removed
by a corresponding antip robe when the conflict has been resolved. Duplicate
probes could be allowed to be stored in a deadlock manager’s probe list
and each antiprobe message would only remove one probe from the list.

We give below the class definition of the deadlock manager abstract data
type. Each instance of the deadlock manager class will therefore have its
own state consisting of two lists of transactions:

1 the transactions for which it is waiting - conflictingjrans
2 the initiating transactions of the probes it has received - probes.

Access to the state is restricted to the three member operations: change_graph,
probe and antiprobe.

The only output from the deadlock detection algorithm occurs when a victim
is chosen and a deadlock manager instance sends the message: abort(v ictim)
for some transaction victim.

Some things should be noted:

• Care has to be taken that exactly the same number of antiprobes is sent
as probes in order to maintain the tidiness of the deadlock detection
algorithm.

• Because all the probes are remembered, unresolved deadlock will result
in the same probes being sent no matter what order the internal detection
messages are sent in or what order they arrive in (this is contrary to
our basic algorithm where the number of probes sent depends on their
order of arrival).

• One advantage of remembering probes is that the number of probes
and antiprobes sent can be reduced by a factor of two using an idea of
Obermarck [11]: a probe(s) is only sent to deadlock manager U if the
initiator S is younger than U. Unfortunately, since each probe has to
be removed by a corresponding antiprobe, it is not clear whether mess
ages are saved overall. However, it appears that, on average, fewer
probes and antiprobes would be sent in our probe-remembering

ICL Technical Journal May 1993 531

algorithm than probes sent in the probe-forgetting algorithm. See
section 2.3 below.

• Another advantage of the probe-remembering algorithm is that exactly
one abort message will be sent for each deadlock cycle. In the probe-
forgetting algorithm more than one abort message could be sent for
each deadlock cycle detected.

• Since probes are only sent to a deadlock manager if the probe’s initiator
is younger than it, this also means that the probe’s message can be
simplified: only the probe initiator need be included in the parameter
since the probe initiator will be the same as the current_victim. This also
means that a probe can be represented by its initiator transaction. In
fact, each deadlock manager remembers the probes it has received as a
list of initiating transactions.

typedef enum {
SUBTRACT,
ADD

} change;

class deadlock manager {
transaction list conflicting_trans;
transaction list probes;

public:
void change_graph(transaction conflict,change add);
void probeftransaction initiator);
void antiprobe(transaction initiator);

};

2.2.1 change graph

The first member is change graph. It is called by the lock manager when
there has been a change in the waits-for graph; either an edge has been
added or one has been removed. As in our basic algorithm, the change graph
message is sent to the deadlock manager of the waiting transaction with as
parameter the waited-for transaction and a boolean flag indicating whether
the edge is to be added or subtracted.

change graph either adds or subtracts the waited-for transaction to its list
of conflicting transactions. However, it reads but does not write to its list
of probes received.

If the edge is new:

1 The new waited-for transaction is added to the list conflictingJrans.
2 Deadlock is checked by seeing if the new waited-for transaction has

initiated a probe in the past which has reached this deadlock manager.
If deadlock is found an abort message is sent. The victim is the new

532 ICL Technical Journal May 1993

waited-for transaction, since it is by construction the youngest trans
action in the deadlock cycle.

3 If no deadlock is found a new probe may be initiated and sent to the
waited-for transaction’s deadlock manager. The probe is only sent if the
deadlock manager’s associated transaction is younger than the trans
action it is now waiting for. This is the trick of Obermarck [11].

4 If no deadlock is found then each probe which the deadlock manager
has received might be sent on to the new waited-for transaction. Each
probe is sent on if its initiator is younger than the new waited-for
transaction.

If the edge is to be removed:

1 The transaction which is no longer waited for is removed from the list
conflictingJrans.

2 If the deadlock manager’s transaction is younger than the new waited-
for transaction then an antiprobe message is sent to the waited-for
transaction’s deadlock manager.

Example The call a.change_graph(b,ADD) causes the transaction b to be
added to the conflictingjrans list of the deadlock manager for a.

If a is younger than b, then the message b.probe(a) is sent.

If the probes list only contains the transaction c ^ b o r a , and c is older than
b then the message b.probe(c) is sent. If however, b = c then the only message
sent will be abort(b).

void deadlock jnanager::change_graph(transaction conflict,change add) {

II Note: change graph is called by the lock manager when either a
II conflict has been resolved (add = SUBTRACT) or when a
II new conflict has been noted (add = ADD).

transaction list old probes;
transaction initiator;

if (add = ADD) {

II Note: we add the new transaction to the conflicting_trans list.
// Deadlock is detected or alternatively a new probe might
II be sent and any relevant existing probes may be sent on.

conflicting_trans = list „cons(conflict,conflictingjrans);
if (list_element(conflict,probes)) abort(confiict)
else {

if (this > conflict) conflict.probe(this);

ICL Technical Journal May 1993 533

old probes = probes;
while (old probes ! = NULL) {

initiator = head(oldprobes);
old probes = tail(oldprobes);
if (initiator > conflict) conflict.probe(initiator);
}

}
}
else {

II Note: we remove the transaction from the conflicting_trans list.
II An antiprobe is constructed and sent.

conflicting_trans = list remove(conflict,conflicting_trans);
if (this > conflict) conflict.antiprobe(this);

};
};

2.2.2 probe

The second member is probe. It is called by another deadlock manager when
deadlock is suspected. The only parameter consists of the initiator of the
probe. As with the basic algorithm, probe messages are initiated when a
new edge is added to the waits-for graph. Probes are sent breadth-first down
the waits-for graph from waiting transactions to waited-for transactions. A
probe is only sent down an edge of the waits-for graph if the probe’s initiator
is a younger transaction than the transaction at the other end of the edge.
All probes that arrive are remembered by adding their initiator to the
probes list.

probe reads from but never alters the conflictingJrans list. However, it does
add a transaction to the probes list.

1 The probe’s initiator is added to the probes list.
2 probe checks to see if a deadlock cycle is present by seeing if the probe’s

initiator is in its list of conflicting transactions. If so, it sends a message
abort(initiator).

3 If deadlock is not detected then probe sends on the probe to all the
deadlock managers of transactions in its conflicting transactions list,
providing the probe’s initiator is younger than the conflicting transaction.

void deadlock_manager::probe(transaction initiator) {

/ / Note: probe is called by another deadlock manager. It detects
II deadlock or relays the probe to all the deadlock managers in
II conflicting trans which have transactions older than the
II probe initiator.

534 ICL Technical Journal May 1993

transaction conflict;
transaction.list messageJist;

probes = list_cons(initiator, probes);
if (list_element(initiator,conflicting_trans)) abort(initiator);
else {

message list = conflicting,trans;
while (message list! = NULL) {

conflict = head(message_list);
message Jist = tail(messagelist);
if (initiator > conflict) conflict.probe(initiator);

};
};

};

2.2.3 antiprobe

The third member is antiprobe. It is called by another deadlock manager
when a conflict has been resolved and a probe must be removed. The only
parameter consists of the initiator of the antiprobe. Antiprobes are sent
breadth-first down the waits-for graph from waiting transactions to waited-
for transactions. An antiprobe is only sent down an edge of the waits-for
graph if the antiprobe’s initiator is a younger transaction than the trans
action at the other end of the edge. Each antiprobe that arrives causes its
initiator to be removed from the probes list.

antiprobe reads from but never alters the conflictingjrans list. However, it
does remove a transaction from the probes list.

1 The antiprobe’s initiator is removed from the probes list.
2 antiprobe sends on the antiprobe to all the deadlock managers of transac

tions in its conflicting transactions list, providing the antiprobe’s initiator
is younger than the conflicting transaction.

void deadlock manager::antiprobe(transaction initiator) {

II Note: antiprobe is called by another deadlock manager. It relays
II the antiprobe to all the deadlock managers in
II conflicting trans which have transactions older than the
II antiprobe initiator.

transaction conflict;
transaction list message list;

probes = list remove(initiator,probes);
message list = conflicting,trans;
while (messagejist! = NULL) {

ICL Technical Journal May 1993 535

conflict = head(message_list);
message list = tail(messagejist);
if (initiator > conflict) conflict.antiprobe(initiator);

};
};

Example If three edges are added to the waits-for graph indicating that
transaction a waits-for transaction b, b waits-for transaction c and c waits-
for a, and if a > b > c then deadlock is detected as follows:

1 Sooner or later three change graph messages will be sent to the deadlock
managers of each of the three deadlocked transactions. This will result
in b being added to the list of conflicting transactions of a’s deadlock
manager, c being added to b’s conflictingjrans and a being added to c’s
conflictingJrans. Also, two probes will be initiated: b.probe(a) and
c.probe(b). See figure 2, messages marked *. The former probe will
eventually detect deadlock, the latter will not be sent on by its receiving
deadlock manager. Therefore, let us consider just the b.probe(a) probe.

Fig. 2 Deadlock detection: probe remembering algorithm

2 Sooner or later the initial probe message b.probe(a) will be received and
executed. Transaction a will be added to the probes list in the deadlock
manager for transaction b. This probe will be executed either before of
after the message b.change graphic,ADD):

• If b.probe(a) is executed before b.change_graph(c,ADD), then when the
latter operation is called the probe initiated by a will be sent on to c:
c.probe(a) since a will be in b’s deadlock manager’s probes list.

• If b.probe(a) is executed after b.change_graph(c,ADD), then when the
former operation is called the probe initiated by a will be sent on to c:
c.probe(a) since c will be in the deadlock manager’s conflictingjrans list.

See diagram 2, message marked **.

3 Eventually, the probe c.probe(a) is executed at the deadlock manager for
the transaction c. This probe will be executed either before of after the
message c.change_graph(a,ADD):

536 ICL Technical Journal May 1993

• If c.probe(a) is executed before c.change_graph(a,ADD), then when the
latter operation is called deadlock will be detected because the trans
action a will already be in c’s deadlock manager’s probes list.

• If c.probe(a) is executed after c.change_graph(a,ADD), then when the
former operation is called deadlock will be detected because the transac
tion a will already be in the deadlock manager’s conflictingjrans list.

4 Therefore, eventually, an abort message abort(a) will be sent. See
figure 2, message marked f.

A fuller Temporal Logic style proof of deadlock detection is available from
the authors.

Further refinements can be made to the probe-remembering algorithm:

Grouping of change graph Messages: Similarly to the basic algorithm, a
list of conflict changes could be sent together from the lock manager to
the deadlock manager of the same transaction if upon requesting a lock
it conflicts with more than one other transaction. This would not affect
the correctness or tidiness of the program.

Reference Counting Conflicting Transactions: Like the basic algorithm, ref
erence counting of the transactions in the list of conflicting transactions
could: save storage space, cope with messages arriving out-of-order, and
reduce the number probes and antiprobes sent. A probe would only be
sent to a conflicting transaction when its reference count increased from
0 to 1. Conversely, an antiprobe would only be sent to a conflicting
transaction when its reference count decreased from 1 to 0. The use of
negative reference counts would also allow the algorithm to cope with
messages arriving out-of-order: a changegraph(,SUBTRACT) message
arriving before its corresponding change_graph(,ADD) message.

Reference Counting Probes: Duplicate arriving probes could be remem
bered by incrementing a reference count to the probe and antiprobes
could simply decrement the appropriate reference count. When the refer
ence count was zero the probe could be forgotten. Also, a further anti
probe would only be sent on when the reference count reached zero. If
messages might arrive out-of-order between two deadlock managers, then
the algorithm may stumble because a probe message might arrive after its
corresponding antiprobe message. The solution is to allow the probe
reference counts to take all possible negative as well as positive values (a
zero value is not needed!).

Note that this might require a deadlock manager to survive the end of its
transaction in order to be able to pair up its probe and antiprobe messages.
Each time the probe count becomes positive the probe would be sent on
to the relevant waiting transactions. Each time the reference count decre-

ICL Technical Journal May 1993 537

ments to zero an antiprobe would be sent on to the relevant waiting
transactions.

2.3 The Efficiency of the Algorithms

The efficiency of distributed algorithms depends on the communication
network as much as the constituent processors. Some communication net
works naturally provide a broadcast facility but others are implemented by
point-to-point communication. The massively parallel architectures tend to
have networks which more closely resemble the second variety. We shall
therefore assume that broadcast messages ought to be avoided for effici
ency’s sake.

The time taken to execute deadlock detection code on any one processor is
negligible compared with the typical latency time of a network message.
Also, the amount of memory used by a deadlock detection algorithm is
usually minimal. Therefore, the efficiency of deadlock detection algorithms
on distributed-store multiprocessors can be measured according to two
key criteria:

• the percentage of network bandwidth used by the deadlock detection
process under a range of loads: this can be measured as the average
message size times the total number of messages sent

• the time taken to resolve any particular deadlock: this can be measured
by the maximum number of network messages in any one thread of
execution involved in detecting a particular deadlock cycle.

Therefore, we shall concentrate on these two efficiency criteria.

The number of network messages sent by our deadlock detection algorithms
and the time to detect deadlock will depend on the number of conflicting
transactions of which each transaction is aware. What is certain is that for
each new transaction dependency noted by the lock manager two messages
will have to be sent to the same deadlock detection manager:

change graph(,ADD)

and

change graph(,SUBTRACT).

In order to be able to do calculations we make the following simplifying
assumptions:

1 After each change_graph message is sent, all deadlock probes and anti
probes are sent, arrive and are executed before the next change graph
message is sent. In general, without this assumption, it is impossible to
deal with all the different cases of message arrival orderings. The assump-

S38 ICL Technical Journal May 1993

tion means that the deadlock detection process is only given one stimulus
at a time. In the probe-remembering algorithm, the average total number
of probes (and therefore antiprobes) sent will be the same with or without
this assumption. In the basic algorithm, the number of probes sent could
be higher without this assumption, e.g. the same deadlock cycle could
be detected by many probes.

2 The average number of transactions for which a transaction is waiting
at any time (called E) is small i.e. E < 1. This is equivalent to saying that
the transaction conflict rate is low. Without this assumption it is difficult
to put a bound on the number of probes generated by the basic deadlock
detection algorithm.

3 The average number of transactions for which a transaction is waiting
from a given time until the end of the transaction (called F) is small i.e.
F < 1. Note that F > E since the transaction might wait for new trans
actions in the future.

The Total Number of Messages Sent: The number of probes sent will
depend on the detection algorithm and the number of conflicting transac
tions in each deadlock detection manager:

The Basic Algorithm: Considering the abstract waits-for directed graph of
transactions, a probe is sent down each edge reachable from the probe
initiating transaction vertex at the time of the probe’s arrival at each
vertex. Since probes are forgotten, any new edges added to the waits-for
graph after the probe has finished traversing the graph will not be traversed
by that probe. One probe is always sent by the basic detection algorithm.
However, when that probe arrives, the number of further copies of that
probe sent is equal to the number of graph edges reachable from that
vertex. Therefore, the total number of probes sent is 1 + P where P is the
average number of edges reachable from a vertex. Let pt equal
the probability that a transaction is waiting for i other transactions, then
Pi equals the probability that there are i out edges from a vertex. Notice
that X ia o P i= l’ P = Xi>o! ' Pi' (^ + 1) which can be rearranged as

£
P= ----- - where E = £ iaoi • Pi is the expected number of out edges at a

vertex. The second assumption ensures that E < 1. We conclude that the
total number of probes sent for each transaction dependency is

1 -(- P = ̂ and the total number of messages sent is 2 + -— —.

The Probe Remembering Algorithm: Considering the abstract waits-for
graph again, a probe is sent down each edge reachable from the initiating
vertex at any time in the future providing the edge is from a higher
transaction identifier to a lower transaction identifier. Probes are remem
bered until expressly forgotten by the arrival of an antiprobe. Let q(equal
the probability that a transaction is or will wait for i other transactions,
then ¢, equals the probability that there are i out edges from a vertex.

ICL Technical Journal May 1993 539

Notice that £ ;>0qt = 1 and F = > 0 i • ¢,-. We can assume that a probe
is sent down a graph edge approximately half the time, so our calculations

are as follows: the number of probes Q equals £,->0i ' y •«?+ 1) which

F
can be rearranged as Q = -— -. The total number of antiprobes sent is

2 — F
the same. Therefore, the total number of messages sent for each transaction

2 . p p
dependency is 1 + — —; = 2 + -— — .

2 — F 1 — F/2

Comparison: It can be seen from this analysis that it is difficult to choose
between the efficiency of the two algorithms: the basic algorithm sends
fewer messages in that it forgets probes immediately, the other sends fewer
messages in that it only sends them from a higher transaction identifier
to a lower transaction identifier. However, given the assumption that each
transaction always asks for all its locks when it starts, this will mean that

1 E
E = F. It is easy to show that 2 + ----- - > 2 + ------- — for all E. Therefore,

1 - E 1 - £ /2
we conclude that for transactions which immediately ask for all their
locks, the probe remembering algorithm generates fewer messages than
the basic algorithm.

The Response Time To Detect Deadlock: It can be seen that the probe
remembering algorithm detects deadlock more quickly: in any cycle the last
probe sent by the basic algorithm must be sent along each edge of the cycle,
but only along half the edges of the cycle in the probe-remembering case.
This faster response time might prove invaluable. Therefore, the number of
sequential messages sent to detect deadlock in the probe-remembering algo
rithm is on average half the number of sequential messages sent to detect
deadlock in the basic algorithm.

Conclusions: When considering the number of sequential messages required
in order to detect deadlock, the probe-remembering algorithm out-performs
the basic detection algorithm. With regard to the total number of messages
sent, the algorithm which is the more efficient depends on the average timing
of transaction lock requests.

3 Comparisons with other Algorithms

3.1 O b e rm a rc k

Obermarck’s algorithm [11] is roughly as follows. The checker starts by
local managers gathering local knowledge. For a synchronised period mess
ages are sent concerning the suspected global cycles and then the local
managers add the knowledge they received during the message period to
their local knowledge, looking for local cycles and suspected global cycles.

540 ICL Technical Journal May 1993

Another agreed synchronised period of message passing between the local
managers follows. So the algorithm alternates local checks and synchronised
message passing periods until no more messages are sent.

When no more messages are sent all deadlock has been detected. The local
managers then forget all they know, waiting for the next call of the algorithm.
All detected local deadlock cycles are broken by aborting and retrying a
victim before the next message phase starts.

Our algorithms have similarities with the algorithm of Obermarck [11],
There are, however, significant differences:

• Obermarck assumes that each transaction is requesting at most one
access at any time, we allow a transaction to request more than one
resource access at once.

• Obermarck’s algorithm detects all deadlock in the system up to a given
time by synchronising a sequence of local deadlock checks and message
passing between the checks. After the deadlock process each local man
ager forgets all that it learned during the process. Our algorithms detect
deadlock as it arises and each local deadlock manager contains informa
tion as up-to-date as possible: the deadlock managers working
asynchronously.

• We provide in our basic algorithm an efficient removal of information
about committed/aborted transactions from the deadlock detection pro
cess, since probe information is either forgotten immediately or explicitly
removed.

3 .2 C h a n d y , H a a s a n d M is r a

A distributed deadlock detection protocol for shared resources was described
in [3]. They also described a detection protocol for detecting deadlock in
communicating processes. The protocol of [3] assumes deadlock detection
managers for each network node. However, these managers remember for
each local transaction all the transactions which are known to depend on
it, even indirectly.

The principle differences of this from our algorithm are:

• The algorithm of [3] assumes that a local deadlock detector sends out
a deadlock checking probe whenever it suspects deadlock. This may
result in many probes being sent by a suspicious transaction, and more
so when the system is under heavy loading. Our algorithms initiate only
one probe message each time a deadlock cycle could be completed.
Furthermore, our probe-remembering algorithm issues the same number
of probes no matter what order the messages arrive.

• In [3], each manager keeps information about all the transactions that
it is told about. We make sure that the deadlock detection managers

ICL Technical Journal May 1993 541

forget about transactions which are not in a direct waits-for relationship
with its transaction. So, our algorithm restricts the storage overheads.

• The previous difference means that when a transaction is either commit
ted, aborted or restarted it is easier with our algorithm to inform the
relevant detection managers, i.e. fewer network messages need to be sent.

It should be noticed that both our algorithms and theirs detect all deadlock
and false deadlock is only possibly detected when at least one transaction
in the detected deadlock cycle has been aborted since the start of the
detecting process.

3 .3 E lm a g a r m id , S o u n d a r a r a ja n a n d L iu

Elmagarmid, Soundararajan and Liu [5] present an algorithm which groups
the control of “interacting” transactions dynamically as transactions compete
for resources. One controller will control a number of transactions on
different processing elements or sites, which have interacted with each other
until they interact no longer. The idea is to amalgamate control when
resource requests conflict and fork two controllers when two subsets of
transactions form a partition and no longer interact. The algorithm is flexible
but entails control of a transaction being switched across the network to
sites of interacting transactions, all the control information being sent as a
message and enough information left behind to tell other inquiries where
the control was sent.

Apart from the extra complications and storage overheads, concurrency can
be impaired. If a transaction consists of a large number of concurrent
resource requests then each request can be sent in parallel with instructions
to reply to the source processor. If, however, the transaction’s control
migrates across the network, each reply will have to chase the control
mechanism, following like a paper chase. This will significantly increase the
number of network messages per transaction. Only if the resource requests
are sequential will the replies be given up-to-date return addresses.

In our algorithms, communication only occurs between the deadlock man
agers of interacting transactions. This can be seen to be similar to their
grouping of interacting transaction management.

We summarise the difference between their algorithm and our algorithms:

In [5], the destination of replies to resource requests can be out-of-date
because the transaction’s controller has moved a number of times. Each out-
of-date reply destination causes extra network messages, the cost being
proportional to number of times the transaction’s controller has moved
since the request was sent. In our algorithm the transaction’s controller
location is fixed, avoiding disastrous ‘paper chases’.

542 ICL Technical Journal May 1993

In [14] a distributed deadlock detection algorithm is presented which is
similar in a number of aspects to our probe-remembering algorithm:

• Deadlock detection is initiated each time locks conflict.
• The algorithm runs the same code on each of the sites.
• The algorithm is essentially object-oriented.

However, there are significant differences:

Lock Managers Involvement as well as Transaction Managers: The involve
ment of two types of deadlock detection manager in the transmission of
probes means that twice as many deadlock detection agents participate.
Therefore, their algorithm will generate twice as many messages as our
probe-remembering algorithm.

A Probe-Forgetting Alternative: Our basic detection algorithm offers a
simpler probe forgetting algorithm which is easier to implement and which
is still more efficient than theirs.

4 Conclusions

Firstly, the algorithms proposed to deal with distributed deadlock in the
literature can themselves have different degrees of concurrency.

The algorithms of Ho and Ramamoorthy [9] involve the choice of one or
more central control centres where global deadlock detection is collected
and acted upon. The centre(s) send out information to all sites and wait for
all the responses. These algorithms send few but lengthy messages across
the network, but they are not truly distributed.

The interesting algorithm of Belik [1] assumes that each time a resource
request is queued, and there is no deadlock, all sites or processors have to
agree to allow one of them to update its dependency graph and all then
wait for the results of this update. This surely is not truly distributed. Belik
argues that his algorithm does not deteriorate under heavy load, but the
normal communication overheads seem too high.

The algorithms of Obermarck [11], Bracha and Toueg [2] and Gafni [6]
involve the coordination of message passing within the deadlock detection
process. The fact that any coordination is required indicates that these
algorithms are not truly distributed. For instance, communication time
delays may vary between the sites. In this case the speed of the algorithm
depends on the longest communication time delay, even if deadlock might
just be caused between two sites which are very close, e.g. two processors
within the same cabinet.

3.4 Roesler and Burkhard

ICL Technical Journal May 1993 543

On the other hand, both our algorithms and that of Sinha and
Natarajan [15], modified and corrected by Choudhary et al. [4] require no
central control or global synchronisation.

Secondly, there are a number of approaches as to when a deadlock detection
process should be started.

One approach says “when a process or transaction is worried that it has
been waiting a long time, it should send a probe out to see if there is
deadlock”. The problem with this approach [3, 2] is that when the system
is working hard it will receive more such worried probes and have less time
to deal with them.

A second approach says “let us detect all deadlock at regular time periods,
or when some global sensors suspect a lot of deadlock”. This approach,
which is the approach of Obermarck [11], tends to lead to attempts to
synchronise deadlock-finding iterations at each of the processors in parallel.
The synchronisation of time periods is to allow message passing phases
between the deadlock detection iterations. The algorithm provides that all
deadlock is detected by the time of the end of the last iteration. Performing
deadlock detection at fixed intervals to detect all deadlock means that dead
lock is not resolved as soon as possible thus escalating the amount of
deadlock on the system.

Our approach says “whenever we know of a new dependency between two
processes or transactions, we do as much of the deadlock check as is
necessary”. This ensures that there is no extra work when the system is
under high load and waiting processes might get paranoid about being
deadlocked. Also it ensures that deadlock is not left blocking the system
until some regular or imprecise decision is made to test for all deadlock at
once. The algorithms of Belik [1], Sinha and Natarajan [15] and Choudhary
et al. [4] also adopt the same approach.

We further believe that our algorithms exhibit a simplicity which allows
semi-formal proofs of their correctness.

References

1 BELIK, F , “A Distributed Deadlock Avoidance Technique”, Lecture Notes in Computer
Science, Vol. 312, J. van Leeuwen (ed.) Springer Verlag, pp. 144-154, 1987.

2 BRACHA B. and TOUEG S., “A Distributed Algorithm for Generalised Deadlock Detec
tion”, Proceedings Third Annual ACM Symposium on Principles of Distributed Computing,
Vancouver, August 27-28, pp. 285-301, 1984.

3 CHANDY, K.M., HAAS, L.M. and MISRA, J., “Distributed Deadlock Detection”, ACM
Transactions on Computer Systems, Vol. 1, no. 2, pp. 144-156, 1983.

4 CHOUDHARY, A.N., KOHLER, W.H., STANKOVIC, J.A. and TOWSLEY, D., “A
Modified Priority Based Probe Algorithm for Distributed Deadlock Detection and Reso
lution”, IEEE Transactions on Software Engineering, Vol. 15, no. 1, pp. 10-17, 1989.

544 ICL Technical Journal May 1993

5 ELMAGARMID, A.K., SOUNDARARAJAN, N. and LIU, M.T., “A Distributed Dead
lock Detection and Resolution Algorithm and its Correctness Proof”, IEEE Transactions
on Software Engineering, Vol. 14, no. 10, pp. 1443-1452, 1988.

6 GAFNI. E., “Perspectives on Distributed Network Protocols: A Case for Building Blocks”,
IEEE MILCOM, 1986.

7 GLIGOR, V.D. and SHATTUCK, S.H., “On Deadlock in Distributed Systems”, IEEE
Transactions on Software Engineering, Vol. 6, no. 5, pp. 435-440, 1980.

8 HILDITCH, A.S. and THOMSON, C.M., “Distributed Algorithms for Detecting Distrib
uted Deadlock”, University of Manchester Computer Science Department Technical
Report UMCS-91-3-2, 1991.

9 HO, G.S. and RAMAMOORTHY, C.V., “Protocols for Deadlock Detection in Distributed
Database Systems”, IEEE Transactions on Software Engineering, Vol. 8, no. 6,
pp. 554-557, 1982.

10 LAMPORT, L., “Time, Clocks and the Ordering of Events in a Distributed System”,
Communications o f the ACM, Vol. 21, no. 7, pp. 558-565, 1978.

11 OBERMARCK, R., “Distributed Deadlock Detection Algorithm”, ACM Transactions on
Database Systems, Vol. 7, no. 2, pp. 187-208, 1982.

12 PNUELI, A., ‘The Temporal Semantics of Concurrent Systems”, Theoretical Computer
Science, Vol. 13, pp. 45-60, 1981.

13 RAYNAL, M., Distributed Algorithms and Protocols, Wiley, 1988.
14 ROESLER, M. and BURKHARD, W.A., “Deadlock Resolution and Semantic Lock

Models in Object-Oriented Distributed Systems”, Proc. SIGMOD Int. Conf. on Management
o f Data, Chicago, pp. 361-370, 1988.

15 SINHA, M.K. and NATARAJAN, N., ‘A Priority Based Distributed Deadlock Detection
Algorithm’, IEEE Transactions on Software Engineering, Vol. 11, no. 1, pp. 67-80, 1985.

Biographies

Steve Hilditch

Steve Hilditch had a PhD in pure mathematics (Algebraic Topology) and a BA in
Theology before turning to Computer Science in 1987.

From 1987 until 1991 he worked in Manchester University on joint projects with
ICL: Flagship and EDS, both distributed-store multiprocessors. During this time he
completed his MSc in Computer Science. After a year learning French, he joined
ICL Mid Range Systems Division (MRSD) in August 1992. He is a member of a
Design Authority team within MRSD.

Tom Thomson

Tom Thomson is a Chartered Mathematician and a Chartered Engineer. A graduate
of Oxford and Bristol Universities, he worked at the Rutherford Laboratory, at
English Electric, at the University of East Anglia, and at CTL before joining ICL in
1971. After 4 years in ICL Dalkeith working on communications processors he
joined ICL Kidsgrove and spent 10 years working on mainframe systems. For the
last 7 years he has been the senior system designer in ICL’s Fifth Generation and
Parallel Systems group in Manchester, working on research collaborations under
the Alvey and Esprit programmes and on the exploitation of this research in ICL
products.

ICL Technical Journal May 1993 545

Book reviews

OPE/Vframework: The Systems Architecture - An Introduction, Ron Brunt
and Andrew Hutt (Eds), Prentice Hall, 1992. ISBN 013 560186X pp. 60 £22.95

This book gives an overview of the OPENframework architecture from ICL.
Its chapters precis the components of OPEN/ramewor/c: Perspectives (of
users, applications developers ...), Qualities (availability, usability), Elements
(user interface, information management, networking services ...),
Specializations and Advice and Guidance (on business and technology
trends ...). These are all to be expanded in further books in the series.

On first reading I found the rather general statements of the first two
chapters difficult to get to grips with - a simple example or two or a clearer
definition of what was meant by the word ‘architecture’ would have helped.
However, having found the first sentence of Chapter 7, “The overall objective
of OPENframework is to provide know-how and guidance on best practice
to those concerned with ensuring that information systems serve the business
needs of an enterprise”, I had more confidence in the practical possibilities
for OPENframework and found a backtrack through the previous chapters
worthwhile.

The book has a simple, coherent structure and the diagrams should play an
important role in illustrating the concepts.

Occasionally, I found the diagrammatic notations misleading. An early
example on the Perspectives seems to imply that Application Developers
talk to Enterprise Management but not to users. “Aha!” I thought. “No
wonder systems are often user unfriendly.” However the text immediately
below the diagram belies this by stating that ‘application developers need
to work with users.’

As a footnote, and in view of the key role of the diagrams, I would have
preferred them to be larger and more carefully drafted.

The chapter on Qualities could be used as a sophisticated checklist, to be
considered from the inception of a project. For example, the authors emphas
ise the need to set quality targets at an early stage, and the importance of
service level agreements, with an aim to develop systems which are neither
over- nor under-engineered. The further reading promised should expand
on the standards and products which can be used, but readers will find

546 ICL Technical Journal May 1993

helpful even the precised version here. The reference models in particular
give some structure to the potentially messy business of discussing qualities
such as usability. The inclusion of potential for change as a Quality is
particularly interesting.

The claims for OPENframework are big. Coming from an environment in
which we have decided that concentration on “UNIX” and PC/MAC plat
forms is just about all we can cope with if we are to have an integrated but
distributed system, I have great respect for the authors of this book who
are prepared to tackle more heterogeneous environments, for example those
involving different models of filestore. I have some doubts that products
following protocols they recommend (for example OSI’s FTAM) can at this
moment deliver all that is required but maybe I will be proved wrong when
reading the books on the Elements. There is in any case a healthy sprinkling
of pragmatism (for example SNA and TCP/IP in the Networking Element),
which bodes well for some practical solutions.

OPENframework would seem to be truly vendor-neutral. It is not about
ICL products and I came across only one “ICLism” (a reference to FTF) in
the book.

The potential for OPEN/ramewor/c to make a radical improvement in the
design and use of information systems is exciting. For example, on security
the promise of distributed security services, such as authentication, fills me
with anticipation. I look forward to seeing the further books in the series
and finding out if in fact there are enough building blocks (including genuine
products that work) in the marketplace to make the potential a reality.

I would recommend the book to those with some strategic responsibility in
information systems who feel the need to sit back and try to unravel where
their organisation’s information system is, where it may be going and what
needs to be done to set it up so as to be flexible to change. The further
books in the series would of course need to be read before practical steps
could be taken.

Annette Haworth
Annette Haworth is Director of Computer Services at the University of Reading.
She has a particular interest in networking and is a member of the University
Funding Council Advisory Committee on Networking and recent Chairman of the
Inter-Universities Networking Committee.

ICL Technical Journal May 1993 547

XIOpen and Open Systems by Colin Taylor. The X/Open Company Limited:
117 pp ISBN 1-872630-55-3 £20: from bookshops and directly from
X/Open Company (Publications), P.O. Box 109, Penn, High Wycombe,
Bucks HP 10 8NP, UK.

The importance of Open Systems to both users and suppliers is increasingly
realised. The X/Open Company is a keystone in the Open Systems move
ment: X/Open offers an integrated set of open standards drawn from other
bodies, and knowledge of its role and activities is therefore of fundamental
importance to anyone who wants an understanding of the modern IT
industry.

This very readable book describes the objectives, origin, present structure,
current coverage and future tasks of the X/Open Company. The book is
highly authoritative, as might be expected both from its being an official
publication of X/Open and from its author, who has been ICL’s Technical
Manager for X/Open from its inception. It covers a wide subject both clearly
and succinctly: so providing a lot of information in an easily assimilated form.

It starts with an introductory chapter on Open Systems, explaining what
they are and the business reasons behind them. This chapter of itself could
be a reason to acquire the book. The origins, benefits and some of the issues
on Open Systems are clearly laid out and the role of X/Open is established
in this context. The cover here is good, thought I would have liked to see
more emphasis in this section on the aspect of public change control.

The author then takes us through the history of X/Open from its formation
to the present day. In the course of this the various current structures and
products are brought out, in the context of how they came about. This
approach works well, even for someone who only wants to know the organis
ation and its work as it is today, as the history provides a good way of
explaining why things are the way they are, and how the various business
and technical interests have been taken care of. In fact only chapters 2, 3
and 6 are really history, chapter 4 explains XPG3 - the set of interfaces and
conformance level which is still the basis of what nearly all users will have
installed. Chapter 5 then sets out the fundamental structure of the X/Open
Company.

From chapter 7 (p. 31) onwards we see the increasing emphasis on the user
input - and the increasing user support by procurement policies, and the
way that X/Open has widened its original remit to cover the general field
of Open Systems and the issues of branding/conformance.

Chapter 12 addresses the issue of conformance and branding of products
supporting the interfaces and in chapter 13 the challenges of conformance
testing and branding of applications using the interfaces are set out. In the
latter the issues of conformance of products supporting the interfaces are

548 ICL Technical Journal May 1993

rightly painted by contrast as “solved” - but the reader should not think
this means “no problems” even for the former. Most of the relevant issues
are indeed covered in chapter 12, but a little more could have been said
here or later in the book about interoperability and the relation with SPAG’s
Process to Support Interoperability (PSI) - SPAG is the European based
Standards Promotion and Application Group. (Note that the second book
in the X/Open series is entitled “X/Open and Interoperability”.)

Chapters 16 onward bring us up to date with the current specification level,
XPG4, and what is coming after this, and with the latest developments in
X/Open Company structure, which offer those with less resources than the
major shareholders more opportunities to participate in areas of particular
interest. Some of the steps forecast in this section have now taken place -
X/Open is a dynamic organisation and a second edition of this book will
no doubt be needed within a year or two! The last chapter (20) summarises
X/Open’s achievements and points the way forward.

There is a foreword by Andrew Roberts, at the time of publication Chairman
of X/Open and Managing Director of ICL’s Mid Range Systems Division.

Colin’s colleagues will know him as an enthusiastic advocate of X/Open for
many years. Not only has he been ICL’s Technical Manager since the word
go but his advocacy goes back before its conception! He pioneered the
strategy of adopting UNIX as a standard operating system for commercial
mid range systems in ICL (before this was company policy) and ICL under
Robb Wilmot subsequently instigated the X/Open collaboration. X/Open’s
results have since become extremely important to ICL not only for its mid
range systems but more recently for its corporate systems business too (ICL
VME was the first mainframe operating system to achieve X/Open XPG
branded status). Earlier, Colin had a long history of work in producing
operating systems providing compatibility across a variety of different hard
ware. With this book he has made another major contribution on Open
Systems to the IT community.

His book could be advocated as a set book for Computer Science courses,
and as course material for core training in major companies. It is written in
a factual way, and avoids getting involved in areas of political controversy.
Someone looking for a bloodthirsty account of the “UNIX Wars” will not
find it here (indeed the author explicitly says in chapter 11 “much has been
written on this industry split ... and it is not proposed to discuss it again
here but only to address the implications for, and their effect on, X/Open”).
The book thus avoids getting dragged into taking sides in such arguments,
but the reader will be able to see where such issues lurk beneath the surface.

The book is number one in X/Open’s new series “X/Open in Action”. If the
monographs on specific subjects which follow it are as clear and as readable,
then we have much to look forward to.

ICL Technical Journal May 1993 549

Brian G Millis
The writer worked for ICL for many years. He managed the evolution of ICL’s
Information Processing Architecture over several years of adoption of Open Systems
standards. He is now working as a consultant to ICL, and also on Open Systems
to other clients.

New Technology and Practical Police Work'. The social context of technical
innovation by Stephen Ackroyd, Richard Harper, John A Hughes, Dan
Shapiro and Keith Soothill. Open University Press Buckingham and
Philadelphia (pp. 178) ISBN 0-335-09459-7 (hb) (£37.50) ISBN
0-335-09458-9 (pb) (£15.99)

This book is written in academic style and is intended for graduate students
in management or IT related subjects. It examines “some of the ways in
which the police have made use of IT” and investigates “why some informa
tion systems ‘succeed’ in contributing to performance and gaining the accept
ance of users, while others ‘fail’ to do so.” This book also has potential value
to IT specialists within the police service and their suppliers.

The authors are, or were at the time of the study, members of Lancaster
University, and their research force was the Lancashire Constabulary, with
whom the University has a long established relationship. The research force
is a major police customer for ICL in the UK. The research was funded by
the Joint Committee of the Science and Engineering Research Council and
the Economic and Social Research Council as part of their initiative on The
Successful Management of Technological Change.

The study pays considerable attention to the management revolution within
the police, and the change from custodial management (an apt name referring
to the protectionist style of past ways of doing things) to managerialism, the
new style with dependencies on the prompt availability of information to
support decision making. The preface makes reference to general public
impressions about the use of technology by police but “So far, at least as
information systems are concerned, the reality that we describe is patchy,
with some effective systems but other cumbersome, limited and even limiting
ones. Yet we must point out at once that Lancashire is in fact one of the
leaders among British police forces in the adoption and effective use of
information technology ...” The early chapters review recent police history
from the mid 1960s up to the present day (1991). To students of this subject
chapters 2 and 3 provides a concise view, all the more valuable for coming
close to the present day.

Subsequent chapters look at specific applications which have been developed,
the context in which development and implementation took place and an
assessment of the relative ‘success’ of the projects. The case study approach
loses some impact as the studies relate to projects which occurred in different

550 ICL Technical Journal May 1993

technological eras as well as in different stages of the research force’s imple
mentation experience. The first development system was an example of using
‘data processing’ techniques to provide management information, but the
application was too ‘technical’ for end-users to exploit fully. The second
case, built on the experience of the former, exploited ‘information processing’
and used tools which allowed prototyping. The later project addressed the
weakness identified by the authors who challenged the original ‘specification
approach’ and found it made users vulnerable to, and dependent upon the
designers and builders of systems.

A chapter examines the impact of technological innovation and, drawing on
previous research, concludes “The impact of IT (on the police service) has
been so poor that in the UK there may be an over-reaction in which the
technology will be seen as totally useless ...” If this is truly the case, it is
surprising that a service which has grasped other technologies, telecommuni
cations, forensic support, Vascar and specialist equipment for surveillance
to list just a few, has failed so badly in its use of information technology.
There are clear examples of success across the service. The Police National
Computer has made central records widely and securely available ‘on
demand’. The Holmes system introduced to the service in 1986-7 is described
in some detail and various critical comments made, specifically about the
‘linking’ of incidents, the effort required in data capture and the ‘primitive’
nature of the application. Thankfully the authors acknowledge that
‘... honour is more suitably served if everyone simply agrees that Holmes is
better than the manual system... while recognizing it is not being used to
its full potential”. It is not unusual to find technology being used below its
potential, although there will be pockets of excellence where greater exploita
tion of the system is achieved.

The structure of the police service is likely to inhibit innovation across all
forces. Best practise is disseminated, but relatively slowly. While individual
forces retain the freedom to choose how they implement IT, the adoption
of best practise supported by IT will be dependent upon capital programmes
and the availability of resource. The speed of technological innovation is
currently moving faster than the police services ability to exploit them. The
consequence is a proportion of forces are always struggling to catch up.

The authors recognise that their offering addresses a part only of the subject
but hope that it provides a contribution towards understanding in this area.
This it surely does. New Technology and Practical Police Work addresses
complex organisational issues and the use of IT; it contains some rich seams,
though the extraction of the lessions will prove a challenge.

S.B. Southerden
The reviewer has worked for ICL as an industrial consultant since 1987 and currently
manages the development of the Intelligence Analyst Workbench (see paper in ICL
Tech. J., Vol. 8 no. 2 1992). Before joining ICL he served 16 years as a police officer
with Kent County Constabulary with a secondment to the University of Kent where
he took a degree in public administration and management.

ICL Technical Journal May 1993 551

THE ICL COMPUTER
USERS ASSOCIATION

There are now over 2000 organisations which are members of ICL user
groups and are affiliated to the ICL Computer Users Association. These
range from large government departments, local authorities, public utilities,
large corporate companies through to smaller private companies and
individuals.
The Association has over 40 user groups meeting regularly, some on a
regional basis, others because they have similar professional interests,
while other users meet because they share a common application or
operating system and wish to gain maximum benefit from their investment.

The benefits of membership of a user group can be listed as follows:
• Exchange of views and experiences which help companies to exploit

their investment in IT systems to the limit of their potential.
• Regular communication with the supplier to influence the future devel

opments of products and services.
• Economical training and up-to-date information on the latest releases

of software and documentation.
• Discounts on many of the volume products.
• A regular news magazine.
• Personal development of active members and new informal contacts

through social events.
The CUA holds a major conference and exhibition each year where the
latest products can be seen. In addition, much technical information is
exchanged and interesting presentations for a whole range of users are
given. This is arranged via “ streams” ranging from IT management, through
to application development, service delivery, end users and special
interests.
Members join the CUA and any number of individual user groups in which
they have an interest. In this way they can maximise the value of the
investment to their organisation.
John Gardner, Chairman of ICL (UK) pic, and his staff are fully supportive
of the CUA, and the user groups that form it value the relationship that
exists between the CUA and ICL (UK) and strongly recommend that all
users seriously consider becoming members.
F o r m o r e in fo r m a t io n a b o u t th e IC L C o m p u te r U s e r s A s s o c ia t io n c o n ta c t:

CUA Communications Manager, PO Box 18, Stevenage, Hertfordshire
SG1 2PU. Tel: (0438) 747313; Fax: (0438) 314858.

F o r IC L s ta f f c o n ta c t: CUA Liaison Department, ICL UK,
Waterside Park, Cain Road, Bracknell, Berkshire RG12 1FA.
Tel: (0344) 711000; Fax: (0344) 711746.

ICL Technical Journal May 1993 553

ICL TECHNICAL JOURNAL

G uidance for Authors

1. CONTENT
The ICL Technical Journal has a large international circulation. It publishes papers of high standard having
some relevance to ICL’s business, aimed at the general technical community and in particular at ICL’s users
and customers. It is intended for readers who have an interest in the information technology field in general
but who may not be informed on the aspect covered by a particular paper. To be acceptable, papers on
more specialised aspects of design or applications must include some suitable introductory material or
reference.
The Journal will usually not reprint papers already published, but this does not necessarily exclude papers
presented at conferences. It is not necessary for the material to be entirely new or original. Papers will not
reveal matter relating to unannounced products of any of the ICL Group companies.
Letters to the Editor and reviews may also be published.
2. AUTHORS
Within the framework defined by §1 the Editor will be happy to consider a paper by any author or group
of authors, whether or not an employee of a company in the ICL Group. All papers are judged on their
merit, irrespective of origin.
3. LENGTH
There is no fixed upper or lower limit, but a useful working range is 4000-6000 words; it may be difficult
to accommodate a long paper in a particular issue. Authors should always keep brevity in mind but should
not sacrifice necessary fullness of explanation to this
4. ABSTRACTS
All papers should have an Abstract of not more than 200 words, suitable for the various abstracting journals
to use without alteration. The Editor will arrange for each Abstract to be translated into French and German,
for publication together with the English original.
5. PRESENTATION
5.1 Printed (typed) copy
Two copies of the manuscript, typed lj/2 spaced on one side only of A4 paper, with right and left margins
of at least 2.5 cms, and the pages numbered in sequence, should be sent to the Editor. Particular care should
be taken to ensure that mathematical symbols and expressions, and any special characters such as Greek
letters, are clear. Any detailed mathematical treatment should be put in an Appendix so that only essential
results need be referred to in the text.
5.2 Diagrams
Line diagrams will if necessary be redrawn and professionally lettered for publication, so it is essential that
they are clear. Axes of graphs should be labelled with the relevant variables and, where this is desirable,
marked off with their values. All diagrams should have a caption and be numbered for reference in the text,
and the text marked to show where each should be placed - e.g. “Figure 5 here”. Authors should check that
all diagrams are actually referred to in the text and that all diagrams referred to are supplied. Since diagrams
are always separated from their text in the production process these should be presented each on a separate
sheet and, most important, each sheet must carry the author’s name and the title of the paper. The diagram
captions and numbers should be listed on a separate sheet which also should give the author’s name and
the title of the paper.
5.3 Tables
As with diagrams, these should all be given captions and reference numbers; adequate row and column
headings should be given, also the relevant units for all the quantities tabulated. Short tables can be given
in the text but long tables are better submitted on separate sheets and these, as for diagrams, must carry the
author’s name and the title of the paper.
5.4 Photographs
Black-and-white photographs can be reproduced provided they are of good enough quality; they should be
included only very sparingly. Colour reproduction involves an extra and expensive process and will be agreed
to only exceptionally.

ICL Technical Journal May 1993 555

5.5 References
Authors are asked to use the Author/Date system, in which the author(s) and the date of the publication
are given in the text, and all the references are listed in alphabetical order of author at the end.
e.g. in the text: further details are given in [Henderson, 1986]”
with the corresponding entry in the reference list:

HENDERSON, P. Functional Programming, Formal Specification and Rapid Prototyping. IEEE Trans,
on Software Engineering SE-12, 2, 241-250, 1986.

Where there are more than two authors it is usual to give the text reference as “[X et al
Authors should check that all text references are listed, and only text references; references to works not
quoted in the text should be listed under a heading such as “Bibliography” or “Further reading”.
5.6 Style
A note is available from the Editor summarising the main points of style - punctuation, spelling, use of
initials and acronyms etc. - preferred for Journal papers.
6. REFEREES
The Editor may refer papers to independent referees for comment. If the referee recommends revisions to
the draft the author will be asked to make those revisions. Referees are anonymous. Minor editorial
corrections, as for example to conform to the Journal's general style for spelling or notation, will be made
by the Editor.
7. PROOFS, OFFPRINTS
Printed proofs are sent to authors for correction before publication. Authors receive 25 offprints of their
papers, free of charge, and further copies can be purchased; an order form for copies is sent with the proofs.
8. COPYRIGHT
Copyright in papers published in the ICL Technical Journal rests with ICL unless specifically agreed otherwise
before publication. Publications may be reproduced with the Editor's permission, which will normally be
granted, and with due acknowledgement.

556 ICL Technical Journal May 1993

