
ICL TECHNICAL JOURNAL

Volume 7 Issue 4 Novem ber 1991

Published by
International Computers Limited
at
Oxford University Press

sol TECHNICAL JOURNAL
The ICL Technical Journal is published twice a year by International Com
puters Limited at Oxford University Press.

Editor
J.M.M. Pinkerton
ICL, Lovelace Road, Bracknell, Berks RG12 4SN

Editorial Board

J.M.M. Pinkerton (Editor) M.R. Miller
P.J. Cropper (BT Laboratories)
(Northern Telecom Europe) E.C.P. Portman
D.W. Davies FRS K. Sorensen (RC International,
G.E. Felton Denmark)
P. Galais D. Thomelin (ICL France)
M.D. Godfrey B.C. Warboys (University
(Stanford University) of Manchester)
J. Howlett H.J. Winterbotham
F.F. Land (BNR Europe Ltd)
A. Rowley

All correspondence and papers to be considered for publication should be
addressed to the Editor.
The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.
1991 subscription rates: annual subscription £50 UK and Europe and $110
rest of world; single issues £30 UK and Europe and $66 rest of world. Orders
with remittances should be sent to the Journals Subscriptions Department,
Oxford University Press, Pinkhill House, Southfield Road, Eynsham, Oxford
0X8 1JJ.

This publication is copyright under the Berne Convention and the Inter
national Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy
of an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1991 International Computers Limited. Registered office, ICL House,
1 High Street, Putney, London SW15 1SW. Registered in England 96056

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

5 ^ 1 TECHNICAL JOURNAL
W W Volume 7 Issue 4

C o n t e n t s
French Translations of Abstracts iii

German Translations of Abstracts viii

Editorial xiii

System M anagement 659

Foreword 661

System Management: A challenge for the Nineties
— Why now?
G. Brown 663

The Evolution within ICL of an Architecture for Systems
Management
A.C . Gale 673

Manageability of a Distributed System
G.I. Jenkins 686

Distribution Management — ICL’s Open Approach
P. Bartham and T, Howling 702

Experience of Managing Data Flows in Distributed Computing in
Retail Businesses
I . R. Pickworth 718

Generation of Configurations — a Collaborative Venture
J, White 732

Operations Management
D. Hacker 741

OSMC: The Operations Control Manager
M . Small, J.D. M etcalf, K J . Johnstone and J. W. Doores 751

ICL Technical Journal November 1991 i

The Network Management Domain
A . M a y n a r d - S m i t h 763

An Overview of the Raleigh Object-Oriented Database System
M . H . K a y a n d P .J . R i v e t t 780

Other Papers 799

Making a Secure Office System
B . J . M o o r e 801

Architectures of Knowledge Base Machines
K -F . W o n g 816

The Origins of PERICLES — A common on-line Interface
J . W .S . C a r m ic h a e l 842

Book reviews 850

Indexes to Vol 7 Issues 1 4 854

Guidance to Authors 867

ii ICL Technical Journal November 1991

Resumes

Phil Barthram et Tim Howling
ICL Mid Range Systems Division, Basingstoke, Royaume-Uni
Gestion de distribution — Vapproache OUVERTE de ICL

L’ensemble des produits de gestion de distribution ICL concerne la gestion de la
distribution de tous les types d’objets de “gestion de systeme” : logiciel, documents,
donnees de configuration, etc., dans une communaute d’ordinateurs interconnectes.
La transmission peut se faire soit par reseau, soit par support interchangeable.

Au coeur de cet ensemble de produits, on trouve une application conforme aux
normes existantes on encours d’adoption et capable d’assumer la gestion de la
distribution d’objets relatif a la “gestion de systeme” , sur un reseau multilivreur
compose de plate-formes Unix™ et non-Unix. Les produits sont bases sur une
architecture qui favorise un changement d’ehelle repondant ainsi aux besoins des
reseaux de toutes tallies.

Cet article presente les exigences du marche, l’approche adoptee en termes d’analyse
des besoins et d’architecture, et la fonctionnalite du produit, et decrit la maniere
dont la solution a ete elaboree et les produits sur lesquels elle a ete mise en oeuvre.

George Brown
ICL Mid-Range Systems Division, Basingstoke, Royaume-Uni.
Gestion des systemes: un defi pour les annees 90 pourquoi maintenant?

Le faible cout des systemes informatiques et l’accroissement permanent de leur
puissance sont aujourd’hui tels que Ton risque, a terme, de ne plus etre a meme d’en
faire bon usage. Les communications en large bande et les reseaux permettent
d’augmenter leur puissance pratiquement a l’infini. Paradoxalement, il reste cepen-
dant difficile d’exploiter cette puissance a 100%, principalement en raison de notre
incapacity a l’organiser et a la gerer. Toutefois, une technologie de gestion des
systemes commence a s’attaquer a ces problemes et a offrir des outils de valeur
pratique. Apres une breve description des problemes, cet article resume par le biais
d’illustrations les composantes essentielles des produits ICL OSMC (Open Systems
Management Centre — centre de gestion des systemes ouverts).

J.W.S. Carmichael
ICL — Defence Technology Centre, Winnersh, Berks
Origines de PERICLES — une interface en ligne universelle

A l’instar des autres grandes societes, ICL depend totalement des ordinateurs pour
la marche de ses affaires. Au fil des annees, la societe a developpe un certain nombre

ICL Technical Journal November 1991 iii

de systemes, principalement adaptes a scs propres besoins, mais integrant certain
degres de generalite. Parmi ceux-ci, l’un des plus puissants, dote de ce que Ton
nommerait aujourd’hui une interface homme-machine particulierement conviviale,
etait PERICLES, Developpe pour la serie ICL 1900, il a vu le jour en 1975. Cet
article resume l’historique de ce systeme et ses principales caracteristiques.

Tony Gale
Architecture, Conformance and Verification Division, ICL, Basingstoke,
Royaume-Uni
Evolution chez ICL d'une architecture de gestion des systemes

L’evolution de la gestion des systemes pour les systemes informatiques distribues
presente de nombreuses similitudes avec celle des systemes d'exploitation des ordi-
nateurs. Cet article presente la perspective ICL en la matiere, en mettant l’accent
sur la necessite d’atteindre des objectifs commerciaux specifiques, tout en contribuant
a notre comprehension du sujet. II decrit l’architecture generate et applique les
principes fondamentaux de gestion a la conception, a la livraison et au controlc
operationnel d’un systeme informatique complet.

Le systeme a gerer est compose du materiel, du logiciel et des personnes qui utiliscnt
les services fournis. les reseaux, les ordinateurs, les systemes d'exploitation et les
applications sont tous concernes et la gestion des systemes doit faire en sorte qu’ils
contribuent tous a la reussite de l’entreprise dans son ensemble.

Dave Hacker
ICL Systems Management Product Center, Basingstoke, Royaume-Uni
Gestion des operations

Au debut de l’annee 1991, ICL a lance une serie de logiciels appelee OSMC (Open
Systems Management Centre — centre de gestion des systemes ouverts). Cet article
decrit la partie gestion des operations du logiciel constituant OSMC et explique ce
que les clients de ICL doivent faire pour atteindre un meilleur niveau de ‘‘facilite de
gestion” en utilisant la version actuelle de OSMC.

Le programme OSMC reconnaissait que la ”facilite de gestion” devait faire partie
integrante du processus de developpement de toutes les applications futures. C’est
la raison pour laquelle ICL travaille a l’etablissement d’un certain nombre de normes
pertinentes pour les systemes ouverts. Dans l’entrefaite, certaines fonctions de gestion
des operations, qui n’exigent aucune modification des applications concernees, pour-
ront etre mises en service. Une telle facilite de mise en oeuvre ameliore conside-
rablement la souplesse et la rapidite de realisation de la gestion des systemes sur un
reseau conforme aux normes des systemes ouverts.

Lorsque les systemes ne sont pas ouverts — c’est-a-dire lorsqu’ils se conforment a
des protocoles proprietaires — et que l’infrastructure OSMC existe, il est toujours
possible de garantir la facilite de gestion grace a la gestion des operations, bien que
cela necessite 1’ecriture d’un peu de code d’application personnalise. Cet article
montre comment le gestionnaire des operations OSMC permet a un prestatairc de
services d’etre averti des problemes avant qu’ils n’influencent le niveau du service
fourni au client. Il peut ainsi agir de maniere preventive plutot que reactive. Ce
comportement est essentiel lorsque l’on souhaite ameliorer tant le niveau reel que
per?u du service offert par l’informatique.

iv ICL Technical Journal November 1991

Gareth I. Jenkins
Systems Management Product Centre, ICL Mid range Systems Division, Basing
stoke, Royaume-Uni
Facilite de gestion d’un systeme distribue

A l’instar des autres formes de gestion, la gestion des systemes necessite une participa
tion tant des elements a gerer que du systeme de gestion. Cet article etudie la relation
entre les applications de gestion et ce qu’elles gerent (ou les ressources gerees) du
point de vue des ressources gerees, et propose un cadre dans lequel elles peuvent
toutes prendre place. Outre l’impact sur le processus general de conception, l’article
aborde egalement la relation vis-a-vis du travail externe sur la normalisation et des
accords des personnes chargees de la mise en application quant a l’interfonctionne-
ment des ressources gerees.

Michael H. Kay
ICL Fellow, Reading, Royaume-Uni
Peter J. Rivett
ICL, CASE Product Center, Basingstoke, Royaume-Uni
Presentation du systeme de base de donnees oriente objet Raleigh

Raleigh est un systeme de base de donnees oriente objet, comprenant un modele de
donnees fonctionnel, ainsi que son propre langage complet du point de vue calcul,
OODL. Initialement, il est developpe pour l’usage interne dans les programmes ICL
de developpement duplications et de gestion de systeme.

Cet article donne un apergu du systeme Raleigh, en mettant l’accent sur son modele
de donnees et son langage, mais en decrivant egalement l’architecture de mise en
oeuvre.

Tony Maynard-Smith
Network Systems, ICL Secure Systems, Stevenage, Royaume-Uni
Domaine de la gestion des reseaux

Bien que la gestion des reseaux et la gestion des systemes presentent de nombreuses
similitudes et un grand nombre de points de recouvrement, une bonne comprehension
de leurs differences est essentielle si Ton souhaite apprecier correctement les orienta
tions prises dans les deux domaines. Cet article decrit I’historique du developpement
de systemes de gestion de reseaux, la position actuelle en matiere de normes et les
differents types d’integration appropries aux diverses circonstances. II presente egale
ment l’approche ICL en matiere de fourniture de systemes de gestion de reseaux.

Brian Moore
ICL Secure Systems, Bracknell, Royaume-Uni
Creation d ’un systeme bureautique sur

Cet article decrit l’utilisation du systeme Secure UNIXR de ICL, comme base de
developpement d’une application majeure — un systeme bureautique sur. II presente
la politique de securite mise en oeuvre par Secure UNIX et donne un aperqu des
extensions qui doivent y etre apportees pour realiser le systeme bureautique sur.

ICL Technical Journal November 1991 v

Enfin, il decrit certains aspects du sysleme developpe, plus particulieremenl la capa-
cite des utilisateurs dans un environnement de bureau a faire face aux contraintes
qui leur sont imposees par la politique de securite.

Ian Pickworth
ICL Retail Systems, Bracknell, Royaume-Uni
Experience de gestion des flux de donnees en informatique distribute dans le commerce
de detail

Une grande experience acquise avec quelques-unes des principals societes de distri
bution du monde a amene ICL a creer une gamme de produits specialises dans la
gestion du flux des donnees au sein d'une organisation de distribution. Ces produits
sont bases sur les produits ICL de gestion des systemes, mais specialement adaptes
au marche de la distribution. Cet article commence par presenter de maniere generalc
le traitement des donnees du commerce de detail. Ensuile, il decrit 1’evolution des
produits au cours de la derniere decennie, avant de terminer par les orientations
futures susceptibles d’etre prises par les produits.

M. Small, J.D. Mitcalf, K.J. Johnstone, J.W. Doores
ICL Strategic Systems, Cardinal house, Manchester, Royaume-Uni
Gestionnaire de controle des operations OSMC

Les societes qui utilisent un systeme informatique important possedent bien souvent
plusieurs main frames et systemes de bureau. Ceux-ci peuvent etre localises en
diflerents emplacements, chacun d'eux supporte par une equipe informatique. Partie
integrante du systeme OSMC, le gestionnaire de controle des operations (OCM —
Operations Control Manager) permet aux responsables de controler ces systemes a
partir d’un point central.

Le systeme OCM utilise un poste de travail graphique pour aflicher une vue
d’ensemble du reseau. Il indique l’etat d’objets definis, permettant ainsi a l’operateur
central d’effectuer des recherches et de tapper des commandes aux systemes geres.
Lorsque cola s’avere necessaire, certaines parties du reseau peuvent etre agrandies
et affichees plus en detail.

Le systeme OCM a ete developpe conformement a la methodologie ICL qui integre
marketing et conception. Ainsi, des facteurs humains sont inclus dans les specifica
tions et la conception du produit, ce qui se traduit par des produits nettement plus
conviviaux pour leurs utilisateurs.

Jim White
ICL Systems Management Product Centre, Basingstoke. Royaume-Uni
Generation de configurations — un travail d'equipe

La configuration des nombreux systemes difierents integres dans les systemes inter-
connectes et distribues, ainsi que de toutes les applications qu’ils utilisent, peut
s’averer une tache presentant des risques d’erreur importants et necessitant un niveau
de connaissance considerable. Les problemes qui en decoulent peuvent nuire au

vl ICL Technical Journal November 1991

developpement de l’usage du systeme informatique d’une entreprise et/ou reduire sa
capacite devolution.

Les aspects “generation” de [’architecture ICL de gestion des systemes (Systems
Management Architecture) s’attachent tout particulierement a ces problemes. Cet
article decrit la faqon dont ICL a developpe des prototypes de son approche en
collaboration avec un de ses clients importants. II presente cette approche et justifie
les choix effectues.

Kam-Fai Wong
European Computer-Industry Research Centre (ECRC) GmbH, Arabellastrasse 17,
8000 Munich 81, Allemagne
Architectures des machines d base de connaissances

Les systemes de bases de donnees classiques fondes sur un modele relationnel sont
largement utilises dans de nombreux domaines d’application. Neanmoins, les bases
de donnees relationnelles ne sont pas adaptees aux applications evoluees (par exem-
ple, la conception assistee par ordinateur, CAO). Cela s’explique essentiellement par
la puissance de modelisation limitee et l’absence de capacite d’inference du modele
relationnel. Pour resoudre ces problemes, des modeles de bases de donnees evolues —
generalement appeles bases de connaissances — sont developpes. Etant donne la
complexity des modeles a base de connaissances, les systemes qui les utilisent ne
peuvent pas fonctionner de maniere efficace sur des ordinateurs ordinaires, cela
s’accentuant a mesure de l’augmentation de la taille des bases de donnees traitees.
Des machines specialement congues pour traiter ces bases de connaissances de faqon
efficace ont ainsi ete proposees. Cet article decrit l’architecture de cinq machines a
base de connaissances: KBM (Knowledge Base Machine, Japon), DDC (Delta
Driven Computer, France), CLARE (CLAuse Retrieval Engine, Royaume-Uni),
PRISMA (Pays-Bas) et EDS (European Declarative System, Europe).

ICL Technical Journal November 1991 vll

Zusammenfassungen

Phil Barthram und Tim Howling
ICL Mid Range Systems Division, Basingstoke, GroBbritannien
Distributions — Verwaltung — IC L’s Offener Ansatz

ICL’s Distribution Management Software verwaltet die Verteilung der verschiedenen
Systemverwaltungs-Objekte innerhalb einer Gruppe von vernetzten Computern, d.h.
Software, Dokumente, Konfigurationsdaten usw. Die Ubertragung erfolgt entweder
liber das Netz oder uber austauschbare Datentrager.

Der wichtigste Bestandteil dieses Produkts ist eine Verwaltungsanwendung, die den
existierenden und den zukiinftigen Normen gerecht wird und welche die Verteilung
von Systemverwaltungsobjekten fiber ein Netzwerk von Unix- und Nicht-Unix-
Plattformen verschiedenster Hersteller verwalten kann. Das Produktpaket baut auf
einer Architektur mit flexibler Skalierung auf, so daB sie die den Anforderungen
sowohl sehr kleiner als auch sehr groBer Netze angepaBt werden kann.

Dieser Artikel beschreibt die Marktanforderungen, den gewahlten Ansatz zur Ana
lyse dieser Anforderungen und die Architektur und Funktionalitat des Produkts,
sowie Art und Weise, wie eine entsprechende Losung ermittelt wurde, und die
daraufaufbauenden Produkte.

George Brown
ICL Mid-Range Systems Division, Basingstoke, GroBbritannien
Systemverwaltung: Eine Herausfarderung fur die Neunziger Jahre-

Computer werden heute immer preiswerter und ihre Leistungsfahigkeit nimmt so
schnell zu, daB wir Gefahr laufen, diese Fahigkeit nicht mehr genfigend ausnfitzen
zu konnen. Breitband-Kommunikation und leistungsstarke Netze steigern diese Leis-
tung potentiell fast ins Grenzenlose. Dennoch scheint es merkwtirdigerweise immer
noch schwierig zu sein, diese Leistungsfahigkeit voll auszuschopfen, was vor allem
daran liegt, daB wir nicht in der Lage sind, diese richtig zu organisieren und zu
verwalten. Die Technologie zur Verwaltung von Systemen ermoglicht es jedoch
inzwischen sich mit diesen Problemen zu befassen und praxisgerechte Werkzeuge zu
liefern. Dieser Bericht gibt eine kurze Beschreibung der Probleme, gefolgt von einer
beispielhaften Zusammenfassung der wichtigsten Komponente des ICL Open Sys
tems Management Centre.

viii ICL Technical Journal November 1991

J.W.S. Carmichael
ICL Defence Technology Centre, Winnersh, Berks, GroBbritannien
Die Entstehungsgeschichte von Pericles — Eine gemeinsame Online-Schnittstelle

Wie bei alien groBen Firmen ist auch bei ICL der laufende Geschaftsbetrieb vollig
von Computersystemen abhangig. Die Firma hat im Laufe der Jahre eine Reihe von
Systemanwendungen entwickelt, die zwar in erster Linie auf die eigenen Anfor-
derungen zugeschnitten waren, die jedoch in verschiedenen stufen auch allgemein
eingesetzt werden konnen. Eines der leistungsfahigsten Anwendungen, mit einer —
wie man es heute nennen wurde — besonders benutzerfreundlichen Mensch-
Maschine-Schnittstelle war PERICLES, die fur die ICL 1900-Serie entwickelt und
das erste Mai 1975 eingesetzt wurde. Der Artikel gibt eine Zusammenfassung der
Entwicklungsgeschichte dieses Systems und seiner wichtigsten Eigenschaften.

Tony Gale
Architecture, Conformance and Verification Division, ICL, Basingstoke,
GroBbritannien
Die ICL-Interne Evolution einer Architektur fur die Systemverwaltung
Die Evolution der Systemverwaltung fur verteilte Informationssysteme weist starke
Parallelen zu der Evolution von Betriebssystemen fur Computer auf. Dieser Artikel
beschreibt ICL’s Perspektive zu diesem Thema, wobei auf die Notwendigkeit ganz
spezifische Geschaftsziele zu losen eingegangen wird, als auch auf unser allgemeines
Verstandnis zu diesem Thema. Der Bericht gibt eine Beschreibung der allgemeinen
Architektur und erlautert, welche Verwaltungsprinzipien auf die Planung, Lieferung
und Kontrolle eines kompletten Informationssystems angewandt werden.

Ein zu verwaltendes System besteht insgesamt aus Hardware, Software und den
Personen, die die gelieferten Dienstleistungen benutzen. Netze, Computer, Be-
triebssysteme und Anwendungen spielen dabei ebenfalls ein wichtige Rolle und die
Systemverwaltung muB gewahrleisten, daB all diese Komponenten zu dem Erfolg
des gesamten Unternehmens beitragen.

Dave Hacker
ICL Systems Management Product Centre, Basingstoke, GroBbritannien
Operations Management

Anfang 1991 hat ICL ein Paket von Software-Produkten unter dem Namen “Open
Systems Management Centre” (OSMC) auf den Markt gebracht. Dieser Artikel
beschreibt die einzelnen Komponente dieser OSMC-Software und erlautert, was
ICL-Kunden tun miissen, um mit Hilfe der aktuellen OSMC-Freigabe eine besser
kontrollierbare systemverwaltung erreichen zu konnen.

Das OSMC-Programm basiert auf der Erkenntnis, daB Kontrollierbarkeit ein
Bestandteil des Entwicklungsprozesses aller zukiinftigen Anwendungen sein muB.
Deshalb arbeitet ICL an der Etablierung einer Reihe von relevanten Normen fiir
offene Systeme. Inzwischen konnten verschiedene Funktionen fur die Betriebsverwal-
tung freigegeben werden, die keine Anderungen der beteiligten Anwendungen erfor-
dern. Ein derartig unproblematischer Einsatz verbessert die Flexibilitat und die

ICL Technical Journal November 1991 lx

Schnelligkeit der Implementierung der Systemverwaltung eines Netzes, das mit den
Normen offener Systeme iibereinstimmt, in erheblichem MaBe.

Selbst wenn die End-Systeme nicht offen sind, d.h. wenn sie proprietaren Protokollen
unterliegen, und wenn die OSMC-Infrastruktur existiert, kann eine Kontrollierbar-
keit der Betriebsverwaltung erreicht werden. In diesem Fall miissen jedoch entspre-
chende kurze Anwendungs programme geschrieben werden.

Es wird beschrieben wie der OSMC Operations Manager einem Serviceunternehmen
die Moglichkeit bietet, Probleme zu erkennen, bevor sie sich auf die Dienstleistungen
auswirken, die dem Endanwender zu liefern sind. Dadurch kann man bereits im
Voraus handeln, anstatt erst hinterher zu reagieren. Diese Fahigkeit ist ausschlagge-
bend fur die Verbesserung der tatsachlichen und erwarteten Leistung, die ein Com
puter Dienstleistungsunterneluncn anbieten kann.

Gareth 1. Jenkins
Systems Management Product Centre, ICL Mid Range Systems Division, Basing
stoke, GroBbritannien
Kontrollierbarkeit eines Verteilten Systems

Wie bei jeder anderen Art der Verwaltung umfaBt auch die Systemverwaltung neben
den Ressourcen, die verwaltet werden, auch das Verwaltungssystem selbst. Dieser
Artikel befaBt sich mit der Beziehung zwischen der Verwaltungsanwendung und den
Ressourcen, die verwaltet werden (oder den verwalteten Betriebsmitteln), und zwar
vom Standpunkt der verwalteten Betriebsmittel aus. Ferner empfiehlt er eine
Rahmenstruktur, in welcher die verwalteten Betriebsmittel eingefugt werden konnen
und befaBt sich mit der Frage, welche Auswirkungen dies auf den gesamten Design-
ProzeB hat. Die Beziehung zu externer Arbei zur Standardisierung und den
Vereinbarungen zwischen verschiedenen Ambietern hinsichtlich der Interoperabilitat
der verwalteten Betriebsmittel wird ebenfalls erortert.

Michael H. Kay
ICL Fellow, Reading, GroBbritannien
Peter J. Rivett
ICL, CASE Product Centre, Basingstoke, GroBbritannien
Ein Uberblick liber das Objektorientierten Datenbanksystem Raleigh

Raleigh ist ein objektorientiertes Datenbanksystem, das ein funktionales Datenmo-
dell und seine eigene Verarbeitungsprache OODL umfaBt. Es wird zunachst fur den
internen Gebrauch innerhalb von ICL’s Produktprogramme fur das System Manage
ment und der Anwendungsentwicklung eingesetct.

Dieser Artikel bietet einen Uberblick iiber Raleigh, mit Schwerpunkt auf dessen
Datenmodell und der Datenbanksprache, gibt aber auch eine kurze Beschreibung
seiner Implementierungsarchitektur.

x ICL Technical Journal November 1991

Tony Maynard-Smith
Network Systems, ICL Secure Systems, Stevenage, GroBbritannien
Die Netzwerkverwaltungs-Domane

Die Netzwerkverwaltung und die Systemverwaltung ahneln und uberschneiden sich
in vielerlei Hinsicht; um jedoch wirklich zu verstehen, in welche Richtungen sich
diese zwei Bereiche entwickeln, muB man die Unterschiede zwischen den beiden
Systemen verstehen. Der Artikel beschreibt den Hintergrund fur die Entwicklung
der Netzwerkverwaltung, die aktuelle Position hinsichtlich der Normen, sowie die
verschiedenen Formen der Integrationsmdglichkeiten. AuBerdem wird beschrieben,
welches konzept ICL beziiglich der Lieferung von Netzwerkverwaltungs-Produkten
gewahlt hat.

Brian Moore
ICL Secure Systems, Bracknell, GroBbritannien
Die Schajfung eines Sicheren Burosystems

Dieser Artikel beschreibt die Verwendung von ICLs Secure UNIXR als Basis fur die
Entwicklung einer wichtigen Anwendung — die eines sicheren Burosystems (Secure
Office System). Er beschreibt die von Secure UNIX auferlegte Sicherheitspolitik und
umreiBt die notwendigen Erweiterungen fur das sichere Burosystem. Zum SchluB
werden noch einige Aspekte des daraus resultierenden Systems beschrieben, vor
allem die Moglichkeit der Benutzer, in einer Buroumgebung mit den durch die
Sicherheitspolitik auferlegten Einschrankungen zurecht zu kommen.

Ian Pickworth
ICL Retail Systems, Bracknell, GroBbritannien
Erfahrung mit der Verwaltung von Datenfliissen bei Verteilter Verarbeitung in Einzel-
handelsbetrieben

Umfassende Erfahrungen mit einigen der weltweit groBten Einzelhandler haben zu
der Entwicklung einer ICL-Produktlinie gefiihrt, die Datenfliisse innerhalb eines
Einzelhandelsbetriebes verwaltet. Die Produkte basieren auf ICL’s System Manage-
ment-Produkte, sind aber speziell auf den Einzelhandelsmarkt ausgerichtet. Der
Artikel gibt zuniichst einen kurzen Hintergrund zur Datenverarbeitung im Einzelhan-
del, gefolgt von einer Beschreibung der Entwicklung dieser Produkte im letzten
Jahrzehnt. AbschlieBend wird ein Einblick in die mogliche Weiterentwicklung der
Produkte gegeben.

M. Small, J.D. Mitcalf, K.J. Johnstone, J.W. Doores
ICL Strategic Systems, Cardinal House, Manchester, GroBbritannien
OSMC Operations Control Manager

Eine Firma, die mit einem groBen IT-System arbeitet, verfiigt haufig uber mehrere
GroBrechner und Burosysteme. Diese befinden sich moglicherweise an verschiedenen
Standorten und werden wahrscheinlich jeweils von einem eigenen IT-Team unter-
stutzt. Der Operations Control Manager (OCM), Teil des OSMC-Systems bietet die
Moglichkeit, diese verschiedenen Systeme von einer Zentralstelle aus zu steuern.

ICL Technical Journal November 1991 xi

Der OCM benutzt einen graphischen Arbeitsplatzes um eine Ubersicht liber das
gesamte Netzwerk auzuzeigen. Er zeigt den Status cinzelner Objekte an, so dab der
zentrale Bediener in der Lage ist, Detaills zu fiberprfifen und Befehlt an die verwal-
teten Systeme zu geben. Wenn notig, kann die Bildschirmanzeige erweitert und
spezifische Teile des Netzes genauer eingesehen werden.

Der OCM wurde mit Hilfe von ICLs ‘Marketing to design’-Methode entwickelt.
Diese Methode schlieBt die menschlichen Faktoren in die Produktspezifikation und
deren Entwickelung mit ein, was zu Produkten fiihrt, die von den Benutzen leichter
akzeptiert werden.

Jim White
ICL Systems Management Product Centre, Basingstoke, GroBbritannien
Generierung von Konfigurationen — ein Gemeinschaftsprojekt

Das Konfigurieren der vielen verschiedenen Systeme in einer vernetzten und vertcilten
Systemumgebung kann eine Fehlergefahrdet und der darauf laufenden Anwen-
dungen Aufgabe sein, die bedeutende Fachkenntnissc voraussetzt. Die damit ver-
bundenen Probleme konnen reduzieren den Einsatz von zusatzlichen Anwendungen
verhindern und/oder die Fahigkeit notwendige anderungen schnell und problemlos
durchffihren zu konnen.

Die Generierungs moglichkeiten der Systems Management Architektur von ICL sind
speziell auf diese Probleme ausgerichtet. Dieser Artikel beschreibt, wie die Firma
ICL Prototypen in Zusammenarbeit mit einem ihrer groBten Kunden entwickelt hat.
Er gibt einen Uberblick uber diese Methode, sowie einige Grfinde ffir die im Ein-
zelnen getroffenen Entscheidungen.

Kam-Fai Wong
European Computer-Industry Research Centre (ECRC) GmbH ArabellastraBe 17,
8000 Mfinchen 81, Deutschland
Architekturen von Wissensbasierten Maschinen

Normale relationale Datenbanksysteme werden auf breiter Ebene in vielen Anwen-
dungsbereichen eingesetzt. Ffir spezielle Anwendungen (wie etwa rechnerunter-
stfitztes Konstruieren, CAD) sind relationale Datenbanken jedoch ungeeignet. Dies
liegt vor allem an der begrenzten Modellbildungs- und der mangelnden Inferenzfahig-
keit innerhalb des relationalen Modells. Um dieses Problem zu fiberwinden, werden
erweiterte Datenbankmodelle — gewohnlich als Wissensbasen bezeichnet — einge-
ffihrt. Da die Wissensbasis-Modelle auBerst komplex sind, konnen sie auf konven-
tionellen Computern nichteffizient laufen. Mit dem wachsenden Umfang von Daten,
die solche Systeme zu bewaltigen haben, wird dieses Problem zunehmend groBer.
Es wurden daher spezial-Hardware systeme ffir die effiziente Handhabung von
Wissensbasen vorgeschlagen. Dieser Artikel beschreibt die Architektur von ffinf
Wissensbasis-Maschinen. Dazu gehoren die Knowledge Base Machine (KBM,
Japan), der Delta Driven Computer (DDC, Frankreich), die CLAuse Retrieval
Engine (CLARE, GroBbritannien), die PRISMA-Maschine (Holland) und das
European Declarative System EDS (Europa).

xii ICL Technical Journal November 1991

Editorial

Aspects of Management

This issue carries ten articles by ICL authors on Systems Management, a
subject rapidly becoming very important to users running more than a single
isolated computer. It also includes a review of an important book, “The
Corporation of the Nineties”, derived from a major sponsored research
programme at the Sloan School of Management at MIT which was actively
supported by ICL. Together these contributions have promoted reflection
on the idea of management and on the agencies human or inanimate that
perform it.

Between business management and system management there are in fact
common strands. Both must begin by agreeing the purpose or purposes to
be achieved, continue by deciding on practical policies for serving those
purposes, then assigning responsibilities to various agents to execute tasks
that together should attain the desired purpose, giving each agent powers
and means matched to its specific responsibility, defining and delimiting that
responsibility so as to avoid confusion or overlap but without leaving any
essential task unassigned and, finally, setting up mechanisms for reporting
back to a central body charged with seeing that the agreed purposes are in
fact being achieved.

In practice m a n a g e m e n t is a composite process performed by a variety of
agencies, some human and some automatic. (The way the word “manager”
is used can leave it rather uncertain whether a person is or is not involved).
In the business case the highest level functions are invariably left to people,
a board of directors, aided and guided of course by computers. With system
management too p e o p l e must be involved because people designed the
hardware and software in the first place and because someone had to set
up the system to behave in a way appropriate to that user selected from the
wide range of ways envisaged by the designers. Designers will have aimed
to reduce the need for frequent or low-level human intervention as far as
they can, but there must always be opportunities for people to seize control
if automatic behaviour is seen to be dangerous.

It has often been said that if the word system is not to become meaningless,
it is essential to draw a line around those entities thought of as within it so
distinguishing them from the external environment. The criterion for decid
ing where to draw the line is whether a given component entity is or is not

ICL Technical Journal November 1991 xiii

subject to closely programmed direction or regulation. In a completely
automatic system this is not too difficult. When human beings are included
distinguishing between system and environment can be awkward. Can they
be assumed to behave in a prescribed or at least a predictable way so that
they can safely be regarded as components of the system or is it wiser to
assume that they may (sometimes) act in a way that must appear to the
system to be meaningless or random? In that case they should be kept
outside it.

There also seems to be two significantly different c l a s s e s of system manage
ment. The first concerns what can be planned in advance by a human
manager when there is no immediate operational pressure. It could be
deciding the topology of the interconnections between the computers and
terminals comprising a network or fixing the relative priorities for the
different routine interactions between central and local nodes. To use antique
civil service jargon, this might be called the a d m i n i s t r a t i v e mode of man
agement.

The other class is when the network is, or appears to be, misbehaving
because of some unknown failure of a component or some unforeseen
human act or external occurence like a lightning strike. Clearly this kind of
management is more difficult. If the system has collapsed totally then system
management cannot be effective; but much more often its functioning is
merely impaired. Then, for the sorts of reasons given in Pickworth’s paper,
it is extremely urgent to bring it back quickly to full efficiency. To recognise
rapidly what is wrong, the forms of presentation described in the papers by
Hacker and by Small et al may allow a human operator to recognise what
is at fault and where. Reconfiguring the network itself or reallocating tasks
to other nodes may allow operations to proceed, either unimpaired or at
reduced efficiency, while repairs are made. If the failure is non-trivial human
intervention is likely to be essential and details of that intervention must be
carefully logged. This type of management could, using the same civil service
terminology, be called e x e c u t i v e mode.

This brief analysis indicates that the essence of computer system manage
ment, as it is of IT in business management, is putting p e o p l e in a better
position to control events in the system. It must do this by giving them a
synoptic view of on-going processes and by enabling them to predict, per
ceive and monitor both normal and abnormal behaviour of the system as a
whole or of any selected component part of it - never forgetting possible
misbehaviour by other people.

Therefore, training people to understand and so to use the concepts of
system management embodied in its hardware and especially in software
designs will be vital to ICL’s success in launching OSMC in the marketplace.

xiv 1CL Technical Journal November 1991

SYSTEM MANAGEMENT

Foreword

System Management: The Open System Management Centre

For those of us who are closely associated with the development of Informa
tion Technology, it is all too easy to overlook the revolution which has
taken place over the last ten years. Not surprisingly, this has given rise to
new problems and challenges. This edition of the Technical Journal focuses
on our improving responses to some of these newer factors in IT.

If we go back just ten years, the typical installation was mainframe centred.
There were terminals, sometimes in profusion, but there was no doubt about
where the data, the applications and the control resided — on the mainframe.
To make things even simpler, the average organisation had only one or two
mainframes. Although network control, performance optimisation and sys
tem management seemed hard enough, they were tractable problems which
a few simple tools could tame, if not quite domesticate.

Today’s picture is painted in very different colours. The majority of the
organisation’s power is spread across the employees’ desks; the mainframe
is a complex of processors, sometimes split across sites; there is a new tier
of midrange systems performing tasks which would hardly have been reco
gnised ten years ago. Adding to this is the presence of products from many
vendors and standard software which has often been selected, purchased
and installed without the intervention of the traditional data processing
experts.

It is a sad but inescapable fact that we human beings have not advanced in
our mental powers to the same degree over this period. This leaves us very
much more in need of powerful tools to control a more complex and intricate
set-up.

ICL early recognised the need in this area and has, since 1982, resourced a
Systems Management programme which covered research, prototypes and
early, focussed product developments. Around three years ago, ICL took
up the challenge by planning an integrated set of products known as the
O p e n S y s t e m s M a n a g e m e n t C e n tr e , (OSMC). This provides direct control
of the basic hardware and software in the network. It embraces maintenance
of the myriad applications spread around the network; the containment and
correction of errors; and help and guidance to the humans at the terminals.
Overlaid on all this are facilities to optimise performance. OSMC makes

ICL Technical Journal November 1991 661

this all possible using a small number of experts located at one, or a few,
locations so that central control is maintained and costs contained.

1991 is a key year in this programme for ICL, because this year the first
deliverables for OSMC are made available. ICL is showing that it is at the
forefront of the development of the advanced, Open facilities which users
must have in order to take the fullest business advantage of their widespread
IT investments. But there are other important aspects which should be noted
as well. OSMC products are being developed for a wide range of platforms,
some of which are from other vendors. This has encouraged ICL to collabor
ate with a new range of software houses and systems integrators, an experi
ence which is going to be of advantage to all concerned for many years to
come.

OSMC is an important step along the way of keeping IT firmly under
control while delivering the business advantages which justify the investment.
ICL is proud to have been a partner with so many customers and collabor
ators in achieving this and looks forward to maintaining this innovative
position. The articles which follow provide an excellent description of what
has already been achieved and reveal the thinking which will take us all
further on this important journey.

A.J. Boswell
Director
Architecture, Conformance and Verification Division
ICL Product Operations.

662 ICL Technical Journal November 1991

Systems Management: a challenge for
the Nineties - why now?

George Brown
ICL Mid-Range Systems Division, Basingstoke, UK

Abstract

Computing power is now so cheap and growing so fast that it is
threatening to outstrip our ability to make good use of it. Wide
bandwidth communications and networks potentially increase this
power almost without limit, but it still remains curiously difficult to
exploit this power to the full, chiefly because of our inability to
organise and manage it. However, a technology for managing sys
tems is beginning to address these problems and to provide tools of
practical value. After briefly describing the problems, the paper
summarises the main component parts of the ICL Open Systems
Management Centre by way of illustration.

1 Introduction

Management is most effective when invisible. When we visit a hotel or go
to an event where everything runs smoothly and things appear when they
should, we know that it is well managed. It is not the appearance of the
Manager but the effect of management that we notice. Conversely, we look
to “Management” to fix things if there is a problem, so that we are more
likely to see the Manager when things are going wrong than when they are
going right.

The management of distributed computer systems is no different. Since the
subject of systems management is now so much under discussion, we need
to ask what is going wrong. There are a number of simplistic answers to
this question. “I don’t know what is going on out there in the network”. “I
can’t seem to recruit the number of UNIX experts I need to keep this system
running”. “The Help Desk is swamped every time we try to change any
thing”. But these are only symptoms. We need to dig deeper to find the
underlying causes and their origins.

In this paper, the term “Systems Management” or sometimes just “Manage
ment” is used to cover all the processes and tools that must be applied to

ICL Technical Journal November 1991 663

the management of a set of IT resources in order to deliver an agreed service
in a cost-effective manner. A number of other terms are now being used in
the description of Systems Management technology which are defined in
Gale (1991), which describes the architecture.

That all forms of technology are advancing at an ever increasing pace is a
familiar idea and in information technology and computing this is very
evident. The reason may have more to do with technology than with market
demand. Developments in different technologies have combined to multiply
the overall speed of development. But now our ability to exploit the unexpec
ted bonus is becoming limited by the lack of tools to control and co-ordinate
the linking together of large numbers of traditionally autonomous com
puters.

The main task of systems management is therefore to unlock the potential
of Information Technology by making it more easily available to users and
to ease the problems caused by size and complexity. This requires facilities
for both planning and for crisis management or problem solving. However,
systems management solutions are now starting to be developed and will be
a major point of focus in Information Technology during the present decade.

We can draw a useful parallel with the fifties and sixties when there was a
need to control the growing power of the computer itself, which resulted in
the development of operating systems. There are naturally many differences
of detail between the design of operating systems and that required for
systems management. But the basic problems are very similar - sharing
resources amongst many users, security and protecting users from the com
plexity of the technology.

2 Relevant trends in base technology

Many advances in the physical sciences have been directed towards the
development of computer technology. The main objective of these has been
that computers should become both faster and cheaper, and store and
process ever more data. The rate of progress has been exceedingly fast and
operating systems technology has had to respond by continuous develop
ment of new techniques and methodologies. But the trend today is towards
the distribution of computing power rather than the continuous development
of bigger and faster computers, except perhaps for some very specialised
applications.

There is one area where the demand for more power is still growing and
that is at the desk top. Powerful workstations and high resolution screens
are revolutionising the interface between man and computer. The spread of
personal computers has opened our eyes to what may be possible. This type
of computing creates a heavy demand for power to provide the graphics
and satisfy the need for very rapid response. It has been claimed that the
faster the computer responds, the faster the man will work. It is therefore

664 ICL Technical Journal November 1991

inevitable that intelligent workstations, with highly sophisticated, local man/
machine interface software, will become the normal method of input and
output to corporate and other remote systems. Naturally, users who become
accustomed to this type of rapid interaction with their workstations are not
likely to tolerate a much lower standard when linked to remote systems.

The availability of greater computing power is affecting the ways in which
we now build applications. While using the power of the computer to sort
out the logic, relational databases, fourth generation programming tools
and the employment of a more declarative style to express requirements, all
ease the task and increase the speed of application development, the disad
vantage of this trend is a rapid increase in overall complexity. This complex
ity certainly includes installation and configuration procedures. In many
systems these need a high degree of skill and expertise, which cannot realistic
ally be supplied locally. One answer to this problem is to develop systems
management tools which combine elements of both centralisation and
devolution of control. The objective is, firstly, to do as much as possible
automatically at the remote end by making use of the intelligence which is
there, while the second requirement is to provide control facilities at a
central location to allow a human expert to operate the remote systems on
an exception basis.

Developments in communications technology are making more bandwidth
and greater speed available at ever lower cost. It is therefore becoming cost-
effective to distribute computing power to places of work. Such local or
departmental systems are frequently provided with links to remote corporate
systems or corporate data. This type of setup is now becoming common in
industry, commerce and government.

But however user-friendly and easy to use departmental systems become,
there are always some tasks which need a “guru”, particularly when some
thing goes wrong. There are just not enough skilled staff to go round, so it
is essential to provide tools to do the necessary work from a distance. The
trend towards soft engineering instead of hard, wherever possible, has meant
that faults can be diagnosed and often corrected from a distance, thus
opening one area of application for systems management.

Universal access to departmental systems which are connected to remote
corporate systems is being implemented everywhere through highly sophist
icated, intelligent workstations. But the costs of provision and maintenance
of service are beginning to become a limiting factor, which is obliging users
in many places to give higher priority to systems management.

3 Trends in Working practices

Early uses for computers in business administration were to support,
improve or speed up existing activities in those organisations. Gradually
this gave way to finding new ways of doing things; this trend continues, as

ICL Technical Journal November 1991 665

organisations depend increasingly on Information Technology. There are
many examples now of businesses which could not function without their
computing facilities. But, more significantly, there are also examples of
organisations which owe their position of leadership to the way that they
have exploited IT.

The effect of the greatly increased importance of computing to business is
that loss of availability can now lead directly to loss of business. It used to
be possible to fall back on the old manual system. But for many modern
systems, there is no manual back-up. Retailers now employ bar codes rather
than individually marking goods with the price. This offers great flexibility,
in that prices can be changed during the day without touching the actual
goods. But it does mean that if the system goes down, the store may have
to stop trading altogether rather than risk angering customers by causing
huge delays. The significance of Systems Management to the retail industry
is more fully described in (Pickworth, 1991).

Availability is a central feature of systems management. Operations Manage
ment is above all aimed at optimising availability. Some organisations now
use computers to interact directly with their customers. The most obvious
examples of this are the financial institutions with the familiar automatic
teller. But the current reductions in staffing levels taking place in the banks
are going a stage further. New technology is making large numbers of jobs
unnecessary, but this means that any thought of falling back on a manual
system is out of the question. Availability is both fundamental and expected.

4 Technology - an Agent of Change

IT is now enabling insurance companies, for instance, to offer with increasing
frequency new types of policy, in order to enter new market sectors and to
keep up with the competition. There is consequently a greater variety of
different types of life assurance policy available, compared with ten or fifteen
years ago. There are many similar examples, where IT has provided the
ability to respond quickly, so that it has been used to provide a competitive
advantage. The result has been that competitors have had to follow suit in
order to survive and the pace of business generally has quickened.

The implications of this for computing technology are far-reaching. Com
puter systems have always needed to respond quickly to changing business
requirements, but with the spread of distributed systems and the growing
numbers of end users, change is becoming continuous. Staff movements,
software changes, equipment upgrades and the introduction of new systems
must all be planned, approved and controlled. Change management is
therefore growing rapidly in importance and is a significant application for
Systems Management. It starts with planning but also includes the basic
mechanisms for initiating, carrying out, tracking and monitoring changes.

666 ICL Technical Journal November 1991

“Open Systems” means different things to different people. But with the
rapid growth in the numbers of distributed systems, which will certainly
take place during the nineties, the pressure to be able to build systems and
networks supplied by multiple vendors will continue to grow. Most computer
users today use equipment from a multiplicity of vendors. This can be for
a variety of reasons and circumstances, but is often the result of a deliberate
policy of using more than one source of supply for expensive and critical
assets. Sometimes multi-sourcing means acquiring mainframe computers,
office equipment or departmental systems from different suppliers. But the
distinctions between these types of equipment are becoming difficult to
sustain, where they are all needed to be networked together to form part of
a corporate-wide system.

The requirement is therefore to be able to assemble distributed systems with
components conforming to Open standards with complete freedom to choose
the most appropriate suppliers. This is where Systems Management and
Open Systems Interconnection are both involved. The ability to communi
cate freely between components is a universal requirement. But without a
management system providing overall control and administration, there will
be severe limitations.

Systems no longer have the convenient boundaries which they used to have.
Corporate systems no longer end at the factory gate. There are already
many communications links with the outside world, for instance with sup
pliers and customers, with public directories and information systems, with
workers based at home and with other organisations by electronic mail.

Corporate computing resources are likely to consist of a series of overlapping
and interconnected distributed systems. Management of these will be by
means of a series of well defined domains of control (Gale, 1991) and
(Maynard-Smith, 1991), where each domain will provide a defined set of
services using a combination of resources. Some will be under direct control
but many will be supplied as services purchased from other domains. This
is similar to the DP Manager providing an application service running on
his own computer centre but delivering it over a telecommunications service
which he has purchased from another supplier.

The concept of d o m a in s o f c o n t r o l is fundamental in bringing order to the
system. Along with it is the concept of s e r v ic e l e v e l a g r e e m e n ts . The import
ant boundaries therefore are those between domains of control. Their exist
ence will result in the provision of defined services possibly at contracted
rates. Physical boundaries may become meaningless and invisible. Users will
only be interested in the service that they get and will not care where it
comes from. There is a clear analogy here with the telephone system. If you
make a call from London to New York, you do not care how it is routed,

5 Open System s

ICL Technical Journal November 1991 667

you only care about a swift connection, a clear line and the charge. It makes
no difference whether it goes by satellite or under the sea.

Corporate systems will become less easy to make secure by physical means.
This is an aspect of systems management on which we may not see rapid
progress in the short term, for two reasons. The first is that security must
logically follow systems management by being implemented on top of the
fundamental processes of operations management, generation, distribution
and change management. It must follow when the infrastructure is all firmly
in place. The second reason is that market pressure for security is not yet
strong.

6 Open Systems Management Centre (OSMC)

In 1991 in response to these needs 1CL launched a suite of products called
the Open Systems Management Centre (OSMC). This suite of applications
gives users the capability to manage their distributed IT equipment. Consid
erable flexibility is available to centralise management where it is needed or
to devolve it as appropriate. By this means, management tools can be made
available wherever the skills to use them may be located.

6,1 OSMC Problem Manager

OSMC Problem Manager is provided to help identify and expedite problems
as they occur. Problems can be of many kinds from major equipment or
software failure to a call for help from a user in difficulties. The objective
is to optimise system availability by detecting problems early, diagnosing
the cause and applying corrective action as soon as possible.

OSMC Problem Manager provides the ability to record and resolve a user
call for help or service request. Call logging and progression facilities allow
calls to be:

• updated with details of their progress
• referred to specialist support
• linked to similar problems
• closed and reopened.

Alerts generated anywhere in the network can be automatically logged and
progressed as normal calls. A knowledge database of information is main
tained holding:

• known fault procedures
• location information
• equipment at each location
• problem urgency levels
• problem resolution authorities.

668 ICL Technical Journal November 1991

Calls can be passed to identified problem resolution authorities and a priority
system monitors the progress of resolution of more serious problems. There
is also a procedures database with standard and recommended actions
against specific problems. These facilities combine to increase the level of
knowledge which may be used to resolve a call and speed up the resolution
of problems.

6.2 OSMC Change Manager

Changes made to any of the components of a distributed IT system, whether
to correct a fault or to provide a new service, may affect other components.
Careful management and control of all such changes is therefore vitally
important.

OSMC Change Manager provides the capability from one central location
to log, plan and progress all planned changes to equipment, software, user
locations or communications links within a distributed IT system. Facilities
consist of a database of all change requests and a process for managing the
agreed procedure for change authorisation. These are based on the process
described in the Central Computer and Telecommunication Agency (CCTA)
IT Infrastructure Library on Change Management. Flexibility also exists to
tailor the system to support the customer’s existing procedures and organis
ational structure.

For each change request the following information is held:

• identity and location of System to be changed
• change request identifier
• location which raised the request
• item to be changed, e.g. library, file or hardware item
• a statement of the impact of the change
• the time the request was raised
• the originator’s name.

6.3 OSMC Operations Manager

OSMC Operations Manager provides the facilities required for remote
management of networked systems. The facilities include the presentation
of status information received from individual managed systems and the
ability to exercise operational control over those systems.

A key feature of OSMC Operations Manager is the ability to display
information from and to manage a number of different types of system from
a single point. Control is exercised through a high-resolution graphics
workstation which can display status information of the managed systems
both logically and geographically. The detail of the display can be expanded
to view the network of managed systems in greater detail and the display

ICL Technical Journal November 1991 669

may be accessed at any level within this hierarchy. It also includes a know
ledge base of the objects being managed.

The graphical display is based on the “Open Look” user interface standards
and provides:

• standard icons to represent managed objects
• colour definition of managed systems
• display layout editable by the user
• display expansion facilities
• automatic propagation of status change
• menus of actions available for each managed object
• terminal emulation access to DRS/NX systems
• automatic operation of VME systems
• real time status, prompt and alert monitoring
• real time performance and threshold monitoring
• archiving and housekeeping remote systems.

A number of OSMC Operations Manager centres can be distributed across
an organisation and networked together to create a regional management
capability. For more detail see (Hacker, 1991).

6.4 OSMC Capacity Manager

OSMC Capacity Manager assists in planning that adequate capacity is
available within the distributed IT system and that existing capacity is used
effectively. The ultimate aim is to measure capacity in units of work which
have a direct relevance to the users of the service. In the meantime usage
and performance statistics are gathered from managed systems across the
network into a single database for analysis. This analysis, together with
information from OSMC Change Manager, provides an effective tool for
planning future requirements.

The functionality provided includes:

• local extraction and collation of usage statistics
• automatic collection into a central database
• central facilities for analysis, reporting and capacity planning.

Collection and transfer of statistics can be scheduled flexibly and analysis
tools can be freely selected.

6.5 OSMC Distribution Manager

The distribution of software and data around a network is growing in both
importance and difficulty. In large distributed networks it is sometimes
essential that all users employ the same versions of software at the same
time. OSMC Distribution Manager provides facilities for both the collection

670 ICL Technical Journal November 1991

and retrieval of files from end-systems. It can also employ intermediate
servers to act as gateways for onward distribution. A database on the central
management system holds information on distribution schedules and the
location of files in the network.

OSMC Distribution Manager provides the operator with menu screens to
assist in:

• selection of software and data for distribution
• defining how, when and where it will be distributed
• controlling the actual distribution function
• remote installation and activation of distributed software
• displaying information from the database.

The Distribution database holds information on:

• the end systems within the network
• distribution routes
• delivery schedules
• machine groups to which deliveries may be made concurrently
• delivery status
• locations of software and data files.

Facilities are also provided for automatic regression to revert to the previous
version of the software in the event of any failure of distribution.

ICL’s approach to Distribution is fully discussed elsewhere in this issue
(Barthram and Howling, 1991).

7 Conclusions

We have seen that there are several trends in IT which are causing a
significant shift in its use and in the expectations it generates. Some of these
trends are not new, but today they are combining, so that the exponential
growth in computing power may not be fully exploitable, were we not able
to build better tools for its management and control. However, systems
management technology is emerging and is already beginning to provide
solutions to some of the problems.

But the analogy with operating systems should not be forgotten. It has
taken nearly forty years for competing suppliers to offer equipment running
the same operating system. The task facing us now is to manage a wide
variety systems and services irrespective of supplier or underlying equipment.
That is the challenge for the Nineties.

ICL Technical Journal November 1991 671

References

BARTHRAM, P. and HOWLING, T.D.: Distribution Management - ICL's OPEN Approach.
ICL Tech. J. Vol. 7 No. 4, pp. 702-717, 1991.

GALE, A.C.: The evolution within ICL of an architecture for Systems Management.
HACKER, D.: Operations Management ICL Tech. J. Vol. 7 No. 4, pp. 741-750, 1991.
MAYNARD-SM1TH, A.: The Network Management Domain. ICL Tech. J. 1991 Vol. 7 No. 4,

pp. 764-779, 1991.
PICKWORTH, I.R.: Practical Experience in the Management of Retail business data flows in

Distributed Computing Environments. ICL Tech. J. Vol. 7 No. 4, pp. 718-731, 1991.

Biography

G. E. G. Brown

Having gained a degree in Classics from Reading University in 1962, George Brown
joined English Electric at Kidsgrove. After some years working on basic software,
including a year with RCA in New Jersey, he joined CAP. This provided a varied
experience of working on real user problems in many environments. He then found
his way back into ICL via STC and is now Programme Manager of ICL’s Systems
Management activities.

672 ICL Technical Journal November 1991

The Evolution within ICL of an
Architecture for Systems Management

Tony Gale
Architecture, Conformance and Verification Division ICL. Basingstoke, UK

Abstract

The evolution of Systems Management for Distributed Information
Systems has strong parallels with the evolution of Operating Systems
for computers. This paper provides an ICL perspective on this subject
drawing on the need to meet specific business objectives while
contributing to our understanding of the subject as a whole. The
overall architecture is described and the underlying principles of
management are applied to the planning, delivery and operational
control of a complete Information System.

A System that is to be managed comprises hardware, software and
the people who use the services supplied. Networks, Computers,
Operating Systems and Applications are all involved and Systems
Management must ensure that they all contribute to the success of
the enterprise as a whole.

1 Introduction

An Information System comprises hardware, software a n d the people that
use the services supplied; Computers, Networks, Operating Systems and
Applications are all integrated into a whole. Management is the processes
and tools that must be applied to the Information System in order to deliver
an agreed service in a cost-effective manner.

The processing power, communications bandwidth and storage capacity
available are still multiplying every few years. The limitations upon our
ability to apply technology to the problems we wish to solve are human,
not technological. As well as using the services supplied, people are involved
in the development of systems and the provision of service on a day by day
basis. This paper describes some of the activities of the Service Provider and
describes how tools can be built that help him/her to do the job.

A brief historical perspective is provided to show how the architecture has
evolved to meet the needs of specific types of enterprise.

ICL Technical Journal November 1991 673

The architecture is described at its highest level and the underlying principles
are identified. Examples are provided of some of the solutions to manage
ment problems that have been solved by tools and processes based on this
architecture.

2 Historical Perspective

As 1CL moved into the world of Open Distributed Computing it became
apparent that management of the computer resource had to be supplemented
by other types of management. In particular the network that links com
puters together had to be managed to ensure that sufficiently reliable links
were available across a wide geography. The most likely point of failure was
the network and Network Management was there to repair service as quickly
as possible. Although ICL did not market any significant amount of network
products initially, some important concepts were well established in the field
of Network Management and these became the basis for our approach to
Systems Management:

Remote Operation - as distributed computing evolved it would be necessary
to use the technology to bridge the gap between the skilled person and the
component which needed attention.
Duplication - The time taken to fix a problem is usually too long and
duplication of components in key areas is used to maintain service.
Monitoring with many components unattended and geographically spread,
the need for formal monitoring increases significantly.

2.1 Retail Management

One of the types of network ICL began to install in the early 1980’s was
the Retail network and, in particular, ICL followed a strategy of moving
computing resource into the store linked by the network to a central main
frame. The reliable movement of information such as prices and stock
requirements is vital for retailers and they require particular management
features of their networks such as:

Autom ated Scheduling - the retailer requires to contact all stores every night
and does not want to be dependant upon human resources being significantly
involved in that activity.
Resilience and Recovery - the files moved are generally quite small and
intermittent failures in the network infrastructure can be recovered by retry.
The numbers of stores (several hundred in some cases) mean that a form of
recovery will be necessary somewhere quite regularly.
Integrated Communication and Processing - much of the data is pre-
processed, transferred, aggregated, analysed and then derived information
is transferred elsewhere. This whole activity must be managed as a system-
wide activity without human intervention (unless required by catastrophic
failure).

674 ICL Technical Journal November 1991

Prevention - by encouraging the analyst who designs the task to ask the
“what if?” questions and providing an appropriate environment to encode
the answers many operational problems can be solved without the need for
operations staff always to be present.
Unattended Operation - the equipment exists in an environment where one
cannot assume any degree of computer literacy or training. People are
available to do straightforward tasks under direction, however.
Centralised Control - everything does not have to be done centrally but
policy and coordination of its implementation must be focused centrally.

2.2 Management of Mail Networks

The development of mail networks in the 1980’s has made everyone aware
of the dependence they have upon a working system. When the standard
infrastructure for communicating within and between enterprises is elec
tronic it is imperative that adequate tools exist to help the service providers
do their job. A particular feature of systems management that is emphasised
by the mail network is the need to generate consistent parameters for many
nodes whenever changes are needed to the configuration.

The generation of configuration parameters involves collecting a complete
definition of the networked application into a database. Configuration rules
implemented as analysis algorithms are applied to the database looking for
potential problems in the definition, deriving routes on the way, and
extracting the relevant parameters for each node in the network. Parameters
are then delivered and installed over the network itself. The configuration
of mail networks using this approach highlights some additional principles
that underlie the development of tools for systems management:

Scale the size of a processor and filestore to support Systems Management
reflects much more the number of nodes being managed and the complexity
of relationships between them than the size of the nodes themselves. This
is because large nodes are already very well managed by the operating
systems within them and it is only their relationships with other nodes,
large and small, which contribute to the scale of a Systems Management
solution.
Deskilling and Productivity - It is much easier to make a skilled person
productive with Systems Management tools than it is to de-skill the task
(en-skill the person!). Some problems of complexity do not go away very
easily but it is possible to ensure that a skilled person is made much more
productive by the development oflnformation Technology tools for Systems
Management.
Culture Change - the move from an operational fix-it type environment to
a more administrative preventive environment is a difficult change to make.
Asking skilled people to use preventive technology is a threat to their power
base which has been built on being the ‘only one who could’ in a fix-it

Systems that meet these requirements must use concepts such as:

ICL Technical Journal November 1991 675

environm ent. This will happen in time as new opportunities become obvious
but it can affect the buying patterns for Systems M anagem ent tools.

The experience gained in the developm ent o f generation m anagem ent tools
for Electronic M ail systems has been used to develop a specific G enerator
o f param eters for the Inland Revenue. In their move to use the G overnm ent
D ata N etw ork, Inland Revenue needed to move large num bers o f users
from one network infrastructure to another w ithout loss o f service. The
tool developed in collaboration with the custom er is described in
(W hite, 1991).

3 ICL’s Systems Management Architecture

The overall Systems M anagem ent Architecture that has evolved to meet the
requirem ents and principles described earlier in this paper can be expressed
quite simply.

Fig. 1 Systems Management Architecture

Management Applications are tools which support all aspects o f the Service
Provider’s Process (described in section 3.1). Each application has its own
quite distinctive architecture. (O ther papers in this journal describe some of
these specific architectures)
M anagement Infrastructure prom otes reuse o f com m on com ponents within
applications and objects as well as providing the various com m unications
services between applications and objects. These include M anagem ent
M essaging (via a variety o f protocols) to m aintain real time contact,
Bulk D ata T ransfer (via File Transfer and M ail protocols) to support
m ajor update and Virtual Terminal to allow for detailed interaction and
diagnosis.

676 ICL Technical Journal November 1991

M a n a g e d O b je c t s are well-defined, management-specific views of all the
resources within a distributed Information System. By use of common
libraries and appropriate application programming interfaces it is possible
to make managed objects easier to develop, easier to extend to meet the
needs of new management applications, and more common in their overall
approach to management thereby reducing unnecessary diversity.

It is an important feature of the architecture that it can accommodate
different management policies using a common set of tools; these will vary
from high levels of management control and monitoring, centralised in one
place, to distributed authority systems with feedback into the centre as and
when necessary.

The policies adopted by an enterprise determine whether the processing
involved takes place at the managing end or the managed end.

3.1 Management Applications

Systems Management Applications are a set of tools used by Service Pro
viders in an enterprise to ensure that all users get the service they expect.
To arrive at a specification for what tools are required it has been necessary
to analyse the process of Service Provision and the goals that have to be
achieved. As with similar technologies Systems Management is an agent for
change within the organisation and so it has not been adequate simply to
analyse what service providers are doing today but to forecast how they
might operate if the right technology were available. This analysis has
generated the Service Provider’s Process for Systems Management which is
at the heart of our chosen architecture. It is targeted at helping service
providers meet the requirements of their users. It enables service providers
to measure their achievements, take long term corrective action when solving
problems that arise and to go on meeting the changing requirements
day after day, year after year. The population of the process with tools
involves the development and procurement of applications that make
the service provider both productive and effective. These tools are the
most visible output of the strategy but they cannot be built without the
other two parts.

In summary the process is a continuing cycle of activity there are no loose
ends, each part feeds naturally on to the next. Which cycles are most active
at any point in time reflects the part of the lifecycle that a system is in. The
parts of the process are:

O p e r a t io n s - Controlling and monitoring the managed objects in the
information system.
P r o b le m - Diagnosing, fixing and preventing further occurrence of problems.
C a p a c i t y - Aggregating and reviewing information that reflects the perform
ance and availability of the information system.

ICL Technical Journal November 1991 677

Fig. 2 Service Provider's Process

D is t r ib u t io n , I n s ta l la t io n , A c t i v a t io n - Providing facilities to deliver the com
ponents of the information systems and bring them into operation.
C h a n g e - Managing the process of authorisation and review whereby all
changes are made in a controlled manner.
I n v e n to r y - Maintaining up to date records of all logical and physical
components that comprise the information system.
G e n e r a t io n - Providing the means to define, generate and subsequently
change the configuration for the information system.
B ill in g - ensuring that users are charged appropriately for the services they
receive.
S e r v ic e L e v e l A g r e e m e n ts - Maintaining and monitoring a clear statement
of what service various (classes of) users require of the information system.
N e w R e q u ir e m e n ts - Responding to requests for new levels of service to be
provided by the information system.

To populate this process with tools that meet all conceivable requirements
is a major ongoing 1CL strategy. It does not make sense to try and build
the whole process at once and so priorities have been set according to our
perception of our customers’ most pressing needs.

Some customers have entered into a collaboration with us giving us access
to their understanding of their most urgent requirements. One such collab
oration is that between ICL and the Inland Revenue where we have been

678 ICL Technical Journal November 1991

developing Generation Management technology with the Distribution Man
agement required to support it as an agent for change within a very large
network. This collaboration has lead us into the development of advanced
datastores based on Object Oriented concepts and new graphical interfaces
targeted to make the configuration designer a more productive and effective
person.

Other parts of the process are being populated with tools developed against
a generic statement of requirement, expressed by many customers and our
internal service providers managing the ICL corporate network worldwide.
To meet these requirements we have both internal development teams and
good relationships with other suppliers who are developing components that
help populate the process as a whole.

Many of these elements have been integrated into a single offering - the
Open Systems Management Centre (OSMC) launched in 1991.

3,2 Management Infrastructure

The two major parts of the Management Infrastructure are Management
Messaging and Bulk Data Transfer. In both these areas the requirement has
been to add features to the basic communications facilities of the network
that make the distributed system more manageable and more suited to the
hosting of management applications.

3 .2 .1 M a n a g e m e n t M e s s a g i n g The Management Messaging infrastruc
ture which is released as a product under the name “Community Alert
Management” provides facilities for:

D i s t r i b u te d F i l t e r in g it is recognised that notification of all events is not
needed in all circumstances from all nodes. However, it is important to
encourage all components to generate events of note without making value
judgements. Local distributed filtering supports this requirement by ensuring
that only “important” information is routed to a manager (the manager, in
turn, decides what is important).
C o n t e x t D e p e n d a n t R o u t in g - it is recognised that not all messages need to
go to one place and so routing facilities are provided to ensure that messages
can be routed flexibly to one or more nodes around the network.
C o n n e c t io n le s s w o r k in g - although the facilities run over an underlying
connection-oriented network, the facilities provide an application datagram
interface to the components which use them. Events can be routed to
whomever wants them, commands can be received from various managers,
information can be routed to a specific destination.
A d a p t a b i l i t y - additional functions can be added to the infrastructure to
maintain logs of messages, present information on screens, generate auto
matic replies to events and any other facility that is required generally.

ICL Technical Journal November 1991 679

Fig. 3 Management Messaging

3 .2 .2 B u lk D a ta T r a n s f e r The Bulk Data Transfer infrastructure which
is released as a product under the name “Community File Transfer” provides
facilities for:

S c h e d u le d e f in it io n - a set of tasks including both the transfer and processing
of data as well as message generation and receipt can be defined to happen
with a desirable level of parallelism and a mandatory level of sequentiality.
These tasks can operate on any number of nodes in the network with the
schedule itself being distributed if required. The set is called a BATCH while
individual sequences of tasks are called ACTION LISTS which comprise
REQUESTS for the type of action to be performed. Special tasks can be
specified to run at the beginning and/or end of each BATCH, ACTION
LIST or REQUEST. These features are illustrated in Figure 4.

680 ICL Technical Journal November 1991

S c h e d u le C o n t r o l - the state of the whole BATCH is monitored at all times
and facilities are provided to suspend/abandon parts of the schedule if
required by external events.
S c h e d u le R e c o v e r y - failures in any specific task can be recovered by auto
mated retry with due consideration being given to timeliness (target time
for completion).
M u lt ip le p r o t o c o l s - the forms of file transfer used by the product are many
and varied and are not preordained by the structure of the product. Thus
it has been possible to migrate from ICL’s original File Transfer Facility to
the OSI FTAM standard and the other facilities such as NFS and RFS
supported by UNIX.

Fig. 4 Community File Transfer Model

Both Management Messaging and Bulk Data Transfer underlie all the
management applications and provide the important link between the tools
and the managed resources. The existence of a ubiquitous messaging facility
makes it possible to design applications that expect to report incidents to a
manager even if they are expected to run on an unattended machine. An
example of this has been the Retail application GMS which runs in the
store; this ensures that service providers at the centre of the network are
always informed as to what is going on removing an earlier need for person
to person telephone contact. Positive messages reflecting progress through
a task are sent as well as alarms when something has gone wrong. The Bulk
Data Transfer facilities are used whenever there is a need regularly to
move data in many files between many nodes; the scheduling capabilities
ensure that all tasks are completed without the need for human checks
to be made.

ICL Technical Journal November 1991 681

Managed Object is the term given to a view of a resource that has to be
managed. Specific interfaces have to be built into the resource whether it is
network, computer, operating system or application to enable it to be
managed - the Managed Object is a specification of those interfaces.

An early example of the paramount need for ALL developers of systems
components to build manageability into their designs is the MCU1. The
MCU1 is an X.25-to-OSLAN gateway offering facilities for nodes on a
LAN (generally large ones but not exclusively) to communicate over an
X.25 WAN. The capacity of this node is such that many customers choose
to run several of them on their networks in one or more locations. Because
they are intermediate nodes in the network no one is very interested in them
(until they go wrong!). As well as providing the many specific protocol
services that are required by such a gateway the designers included many
manageability features using standard Systems Management Infrastructure,
such as:

• Software download from one location.
• Remote Configuration from one location.
• Alerting to one location.
• Remote Control from one location.
• Supply of statistics to one location.
• Flexibility to talk to one of many locations (for resilience).

Fig. 5 Managed MCUI's in a network

3.3 Managed Objects

682 ICL Technical Journal November 1991

It is fair to say that these features made the MCU1 much easier to live with
in a distributed multi-nodal environment and supported our customers plans
to run a more distributed network with mainframe servers in many geo
graphic locations.

Without a commitment to Manageability, Systems Management does not
get off the ground - to gain that commitment, a l l systems designers and
application designers must envisage their components operating in a distrib
uted system with only a limited skilled resource able to give them the
attention they deserve.

MCU1 was an early example of how we learnt the value of manageability
as was GMS2. One comment from a Retail customer using this product is
that it tells him when things are going right, reflecting the need for Systems
Management to give Enterprise Managers confidence that the complex
systems they have built are operating as planned.

A Managed Object is a formal model of the various Management Interfaces
supported by a managed resource; there may be one or more managed
object models for a single resource based on the needs of various managers.

4 External Influences

As well as the need to meet the needs of our customers we have been
influenced by external factors as well. In the mid 1980’s IBM launched
Netview and Netview PC indicating to the world that a more complete
solution to Network Management was required. The major focus of this
initiative was to link the management of network components into the
existing set of applications developed to manage the SNA world; similar
initiatives have emerged from Digital with Enterprise Management Architec
ture and AT&T with Unified Network Management Architecture.

Alongside these announcements OSI standards for Management have been
under development. The speed of development was very slow in the early
1980’s but more recently a focused work programme has resulted in various
standards being ratified. A movement to implement these standards is now
underway with the various OSI workshops working together to develop
profiles. The UK GOSIP procurement handbook is being updated to provide
advice on procuring Systems Management in an open form and NIST (the
National Institute of Standards Technology) has a similar activity underway
in the USA.

In line with its position as an Open Systems supplier, ICL has contributed
through the British Standards Institute, European Workshop for Open
Systems, European Computer Manufacturers Association, X/Open and
others to the definition of open standards for systems management.

ICL Technical Journal November 1991 683

All three parts of our chosen Systems Management Architecture are increas
ingly affected by standards.

• Management Infrastructure uses FTAM, X.400 messaging and CMIP
(Common Management Information Protocol) as well as the various
other protocols required by existing and new customers.

• Manageability is based on the Guidelines for Definition of Managed
Objects although at this time only a limited number of managed object
models are available.

• Management Tools populating the overall process use the Management
Functions standardised by ISO wherever possible but this is a very
sparse set at present and is the area where most attention is now
required.

5 Conclusion

This paper has shown, through historical analysis, how ICL has arrived at
the Systems Management Architecture that it uses to drive through its
strategy in this area. The effective and efficient use of various Information
Technologies is dependant upon the provision of cost effective tooling for
Systems Management; without that enterprises will not be able to accom
modate or justify their planned uses of Information Technology at the
current level of evolution let alone what the 1990’s has to bring. The
evolution of Systems Management will continue in all 3 areas with:

• Improved tools meeting the increasing needs of the Service Providers.
• Improved Infrastructure making the communications links between

components and managers less obvious.
• Improved manageability with all designers putting manageability and

functionality side by side in priority.

The goal of Systems Management must be for Service Providers to feel
happy with placing all the components of an Information System wherever
the enterprise requires them and for Enterprise Managers not to regard
Service Providers as a cost which limits their vision of what can be achieved
for their enterprise.

References

FULLER, A.R., Community Management for the ICL Networked Product Line. ICL Tech.
J. Vol. 5 No. 4, pp. 652-664, 1989.

National Institute of Standards and Technology (NIST). Government Network Management
Profile.

ISO/IEC 10040 Information Processing Systems - Open Systems Interconnection - Systems
Management Overview.

WHITE, J.B. Generation of Configurations — a Collaborative Venture, ICL Tech. J. Vol. 7
No. 4, pp. 732-740, 1991.

684 ICL Technical Journal November 1991

Acknowledgement

UNIX is a registered trademark of AT&T in the USA and other countries.

Biography

Tony Gale

Tony Gale graduated from Trinity College, Cambridge and has spent 20 years with
IC1 in a wide range of roles - marketing, support, development and research. Since
1982 he has been responsible for the Architecture, Technical Strategy and Design of
Systems Management within ICL.

He is the vice chairman of the Expert Group on Network Management in European
Workshop for Open System (EWOS) and represents EWOS at the Network Manage
ment Special Interest Group within the OSI Implementors Workshop, USA.

ICL Technical Journal November 1991 685

Manageability of a Distributed System

Gareth I Jenkins
Systems Management Product Centre Mid Range Systems Division ICL

Abstract

As with any other form of management, Systems Management
requires the commitment of the things that are being managed as
well as the management system. This paper looks at the relationship
between the management applications and the things being man
aged (or managed resources) from the viewpoint of the managed
resources, and proposes a framework into which any managed
resources can be slotted. The impact of this on the overall design
process is also considered. The relationship to external work on
standardisation and implementors agreements on interoperability of
managed resources is also considered.

1 General

f 1 Scope

This paper sets in context the background to the manageability of distributed
systems. A d i s t r i b u t e d s y s t e m is any collection of computer systems, usually
of different architectures from a variety of manufacturers, which are required
to work together to provide services to their users in order to achieve the
business objectives of the organisation to which those users belong. M a n a g e
a b i l i t y is what is required to enable the components of the distributed system
to be managed remotely. All components will need to be manageable.

The main purpose of this paper is to set in context the background to
manageability in relation to ICL’s Systems Management Architecture and
external standards, and in particular to describe what component developers
will need to consider about manageability in their overall design process.

1.2 Introduction

The first question to answer is “why manageability?” . That is, why is it
useful to make a distributed system manageable? This subject is discussed
more fully in [ACG], but the key reasons are as follows:-

686 ICL Technical Journal November 1991

• increasing dependence on IT for business advantage
• move towards distributed computing
• scarcity of skills

The increasing dependence on IT for business advantage implies that any
loss of service is no longer just a headache for the IT department, but is a
potential loss of profitability for the entire enterprise. For example, in the
retail environment, if the automated checkout systems were to fail, it would
be difficult to sell any goods, which would bring the whole business to a
standstill.

The current trend is more towards a network of distributed IT systems
rather than relying entirely on a central mainframe. These distributed sys
tems also tend to be distributed geographically, into the various local offices
or stores. This brings the power closer to the users. However, there is still
a need for the distributed systems to interwork so that various work groups
within the organisation can communicate (eg via electronic mail).

With the lowering of costs of hardware and software, the major cost now
for an IT system is that of the skilled people required to operate the system.
In addition there is a shortage of such skilled staff and so the more that can
be automated then the more productive use can be made of this scarce
resource. A simple way of aiding this productivity is to have a central pool
of skilled staff who are responsible for the administration and operation of
the whole distributed system, leaving the individual systems to run unatten
ded with minimal local skills.

To achieve this way of working it is necessary to provide functionality in
each component of the distributed system such that it can be operated and
administered remotely. The provision of this functionality is what makes
the components manageable.

The other key question is “why standardise?”. Since the majority of distrib
uted systems are made up of components from different suppliers, it is
important that the central pool of skilled staff are able to access and manage
all the components of the distributed system. This is much simplified if the
same management applications can be utilised regardless of the origin of
the component to be managed. This argument is similar to the one that has
been generally accepted in support of OSI* for interworking between differ
ent vendors computers.

ICL’s Systems Management Architecture (SMA) which is described in
[SM A] consists of three basic building blocks as illustrated in Figure 1.

‘Open Systems Interconnection.

ICL Technical Journal November 1991 687

Fig. 1 ICL's Systems Management Architecture

The m a n a g e m e n t a p p l ic a t io n s are briefly outlined in [ACG] and some of
them are described in more detail in related papers in this journal. The
in f r a s tr u c tu r e is also described in [ACG]. The main subject of this paper
concerns the third aspect of the architecture, namely that of m a n a g e d o b je c t s ,
or to be more precise, how parts of a distributed system can become
manageable.

2 OSI Model For Systems Management

ICL’s Systems Management Architecture is aligned with the OSI standards
for systems management, and so this section describes the OSI management
architecture, and in particular the OSI management information model.

Over the last few years ISOf and CCITTJ have been working together to
define open standards for management of OSI components. The basic OSI
management model has been developed to describe the way in which a
managing process interworks with the things that are to be managed. This
section provides an overview of that management model, followed by a
more detailed look at the way in which the components of the distributed
system that are to be managed need to present themselves to the management
system.

2,1 Overview

The basic OSI systems management model (described in [SMO]) is illustrated
in Figure 2. It has the concept of a m a n a g in g p r o c e s s which manages a
number of m a n a g e d o b je c t s through a g e n t p r o c e s s e s . This managing process

tThe International Standards Organisation.
tThe International Telegraph and Telephone Consultative Committee.

688 ICL Technical Journal November 1991

Fig. 2 Basic OSI Management Model

consists of one or more m a n a g e m e n t a p p l ic a t io n s , combined with various
manual processes. Each of the managed objects presents a management view
of some of the m a n a g e d r e s o u r c e s in the distributed system. As far as the
OSI standards are concerned, this model applies to the management of OSI
resources, such as transport connections, message handling systems, X.25
virtual circuits etc., however the OSI standards also recognise that the basic
principles of the architecture can be extended to the management of other
resources such as filestore, applications processes, modems etc.

The main area for OSI standards has been in the definition of standards for
the communications between a managing process and an agent process. This
is the C o m m o n M a n a g e m e n t I n f o r m a t io n S e r v i c e (CMIS), which is supported
by the C o m m o n M a n a g e m e n t I n f o r m a t io n P r o t o c o l (CM IP).

The CMIS services are defined in [CMIS] but may be summarised as follows:-

M-GET requests attribute values
M-SET alters attribute values
M-CREATE creates a new managed object
M-DELETE deletes an existing managed object
M-ACTION performs an class specific action on a managed

object
M-EVENT-REPORT notifies a manager of the occurrence of an event
M-CANCEL-GET cancels a previous GET

Each of these CMIS services is defined in terms of the managed objects
upon which it operates (or in the case of M-EVENT-REPORT, from which
it is emitted), therefore in order to be able to utilise the CMIS services it is
necessary to have a common definition of the managed objects which are
being used to model the managed resources.

ICL Technical Journal November 1991 689

The remainder of this section concentrates on the m a n a g e m e n t in fo r m a t io n
m o d e l which defines the managed object view presented by the managed
resource to the management system. The standard which defines this model
[MIM] is part of the S t r u c tu r e o f M a n a g e m e n t I n f o r m a tio n ; the other main
part of which, the G u id e l in e s f o r th e D e f in i t io n o f M a n a g e d O b j e c t s [GDMO]
defines the syntax for managed object definitions.

2,2 Managed Object Characteristics

Each implementor of a managed resource will have their own way to
implement it, and it is not the purpose of standards to prescribe how this
should be done. However in order to be able to manage similar resources
in a common way, it is necessary to be able to view the different implementa
tions of managed resources in a common way. This common view is provided
by defining a common managed object model of that type of managed
resource.

The way in which a managed object is managed is formally defined in the
m a n a g e d o b je c t d e f in it io n . The managed object definition defines the c h a r a c
t e r i s t i c s of a managed object which consists of a list of the managed object’s:-

• attributes
• operations
• notifications
• behaviour.

The a t t r ib u te s define the way that the managed resource is operating. The
o p e r a t io n s define the way in which the managed resource may be operated
on by a managing process. These operations map onto the various CMIS
services described above (except M-EVENT-REPORT). The n o t i f ic a t io n s
define how events are to be emitted by the managed object in order to
inform a managing process of their occurrence. Notifications may be carried
by the CMIS M-EVENT-REPORT service. The b e h a v io u r defines the way
in which the managed resource will behave as a result of normal (or abnor
mal) operation or as a result of a management operation.

Having identified a managed object class, an attribute, an action or a
notification, then it is necessary to register its o b je c t id e n t i f ie r so that the
management applications and the managed objects can share the definition,
and identify the objects in communications protocols. Also by registering
definitions, existing definitions may be used as a basis for refinement when
defining new managed object classes or for deriving other objects.

Not all aspects of a managed resource are of interest to management. For
example unless there is (or is likely to be) a management application that
requires information about a particular aspect of a managed resource, then
it may be excluded. These aspects may be considered to be purely internal
implementations, which are not of interest to the management system.

690 ICL Technical Journal November 1991

Therefore, a managed object provides a view of some aspects of one or
more managed resources, and does not necessarily totally reflect the man
aged resource.

Similarly it may be useful to represent a managed resource in different ways
to the management system, and this can be done by providing different
managed objects that represent these views. The management system need
not be aware that these managed objects are indeed modelling the same
managed resource; however, the agent processes need to reconcile operations
on the different views and resolve conflicts.

2.3 Object Oriented Concepts in Systems Management

The fact that the term used for the view presented to the management system
is that of a managed object suggests that techniques and concepts from
object-oriented design have been utilised in the definition of managed
objects. This is indeed so, and so it is useful at this point to describe some
of the Object-Oriented concepts that are used in the definition of managed
objects. These are:-

• class
• instance
• inheritance
• containment.

For any managed object definition, it is probable that there will be many
different managed objects that can use that same definition, for example
there will normally be many message transfer agents in an electronic mail
system. These managed objects are all called in s ta n c e s of the same managed
object c la s s . It can be seen, therefore, that managed object definitions define
a class of managed object. Each managed object class is defined in terms of
its characteristics.

I n h e r i ta n c e is concerned with defining new classes as a r e f in e m e n t of some
existing class. A refinement of a class allows the definition of the class to
be extended for example by the addition of some more attributes or by
enhancing the definition of an operation. The main benefit of inheritance is
the ability to reuse existing specifications when defining new managed
objects.

C o n ta in m e n t is a relationship between managed object instances (the “is-
contained-in” relationship). For example a j o b q u e u e is contained in a j o b
s c h e d u le r , which in turn is contained in a m a n a g e d s y s t e m . An important
aspect of containment is that a contained object cannot exist unless its
containing object also exists. This implies that it is not possible to delete an
object without first deleting all the objects contained within it.

ICL Technical Journal November 1991 691

Containment is important because it is used in the naming of managed
objects. Managed objects all need to be identified in some way so that the
agent process can identify which managed object an operation is directed
at, and so that the managing process can tell from which managed object a
notification has been emitted. Rather than ensuring that each managed
object has a simple unique name in the distributed system, a hierarchic name
is formed (analogous to that used to identify files within a UNIX™ directory
structure). This is done by using the containment relationship, and ensuring
that each managed object has an attribute which uniquely identifies it within
its containing object.

The rules as to which attribute of a managed object is to be used for naming
it when it is contained within another object of a specific class are held in
a n a m e b in d in g . A unique name for any managed object can thus be con
structed by concatenating each of these relative names to get a full name
starting at the root of the overall naming tree.

It is important to understand that inheritance is a hierarchy of c la s s e s , while
containment is a hierarchy of in s ta n c e s .

3 Managed Object Architecture

This section expands upon the managed object part of the Systems Manage
ment Architecture introduced in Section 1.2 and clarifies the functions of
the various components of the managed object architecture and the role of
the three interfaces that are defined. The architecture is summarised in
Figure 3.

3.1 Infrastructure

This is the standard management infrastructure described in [ACG]. It
consists of three parts, a messaging infrastructure, a bulk data transfer
infrastructure and a virtual terminal access infrastructure. Its provision is a
fundamental part of any manageable or managing platform.

3.2 Agent

This functionality corresponds to that of the OSI agent process described
in Section 2.1. It is responsible for:- •

• handling the communications interface with the managing process on
behalf of a number of managed objects

• access control
• scoping and filtering of operations
• discrimination of notifications
• logging.

692 ICL Technical Journal November 1991

Managed

Resource

Managed^Resource^Jnterface^

Sponsor Sponsor Sponsor

Managed_^bjectBJnterfaceiiii>i<î ^ _ —

Agent

Management_Jnfrastmcture_Jkjterfaceii—

Infrastructure

Fig. 3 Managed object architecture

3.3 Sponsor

This is a set of library functions that assist in the implementation of managed
resources. The intention is that by utilising these routines, managed resources
can have a very simple view of management. This also enables common
functionality to be reused. All the sponsor libraries are available to any type
of managed resource.

Sponsorship falls into two categories:-

• Simplifying the management interface
• Adding value to the basic managed object model

3.3.1 Simplifying the management interface: this enables a simple inter
face to be provided. For example for raising an alarm, the sponsor code
would be responsible for formatting a proper notification to pass on to the
agent. Similarly, when an action sponsor receives an action, it can convert
it into an appropriate function call on the managed resource.

3.3.2 Adding value to the basic MO model: this enables added value to
be made to the functionality provided by the managed resource. For
example, if a managed resource regularly updates the value of a meter held
by the sponsor, then the sponsor could provide thresholding§ or tidemarks
on that meter.

SThresholding and tidemarks are defined in [DMI].

ICL Technical Journal November 1991 693

3.4 Managed Resources

Managed resources can be viewed in a number of different ways. This is
discussed further in Section 4.

3.5 Managed Resource Interface

This is the key interface as far as a managed resource developer is concerned.
It is the interface that is provided by the various sponsor libraries, and
enables them to be incorporated into the overall managed resource in order
to provide a managed object view to management applications. This inter
face is likely to be proprietary to ICL, though it should also be common
functionally (though not necessarily syntactically) across all ICL platforms.

3.6 Managed Object Interface

This interface represents the managed object boundary. It is likely to become
a standard interface, and work is going on within X/Open** to define such
an interface. It will be the main portability interface across all open
platforms.

3.7 Management Infrastructure Interface

This is the interface used to access the infrastructure. It is used both by the
management applications and the agent. This is an applications program
ming interface (API) implementing CMIS. However to maintain compatibil
ity with our existing infrastructure (such as CAS|f), it will also need to
continue to support that.

3.8 Simple Platforms

Most of the above discussion has assumed a fairly sophisticated platform.
For simple platforms (such as an MS-DOS PC), a simpler approach is
required. It is important that the managed resource can be implemented in
the same way, and so the managed resource interface will need to be
maintained. However much of the functionality of the sponsor and agent
could be provided on a separate server on behalf of the simple platform.
Communication between the server and the managed resource interface
needs to be defined, and conceptually exists within the sponsor functionality.

Another aspect of a simple platform or a simple managed object is that
much more work will need to be done by the management application. For
example, instead of having the sophisticated sponsor raising event reports
only for serious problems, there will be a deluge of event reports for all

**X/Open is an independent company which defines a set of standard interfaces for applica
tion development, thus easing the portability of applications,
ttthe Community Alerting Subsystem.

694 ICL Technical Journal November 1991

sorts of trivia. This will in turn put a load on the communications channels
and infrastructure. However it does mean that the agent and sponsor code
can be much simpler. This is a trade off that needs to be made in the
implementation of a platform. This is the way of working that has been
adopted by other management architectures such as SNMPJJ.

4 Managed Resource Framework

In order to try and get some sort of consistency across the definition of
managed object classes a Framework is useful into which new classes can
be fitted. This framework is described in more detail in [GENMO], Once a
number of classes have been defined, then the library of registered classes
can provide this framework, but to start off with it is useful to model what
an abstract distributed system that is to be managed looks like.

Managed resources can be viewed in a number of different ways as shown
in Figure 4, and so these different views can be used to construct the abstract

Application Domain

Managed Resource Manager

Logical Managed Resource

Physical Managed Resource

Fig. 4 Views of managed resourses

framework. Firstly they can be viewed at a very physical level, ie in terms of
the bits of hardware that they use. Secondly they can be viewed at a generic
logical level, ie as capsules. This view provides a similar model for all applica
tions as seen from the underlying platform. Thirdly they can be viewed in
terms of the functionality they provide, ie in terms of a business application.
A special case of this is that of a domain manager, which manages a specific
management domain, but in turn presents a management view of that domain
to another domain. These are described in more detail below.

The benefit of having these varying views of a managed resource is that some
of the views provide a basic level of management of the resource, without

ttThe Simple Network Management Protocol, part of the TCP/IP suit of protocols for simple
management of the Internet.

ICL Technical Journal November 1991 695

requiring the implementors of the components to be aware of management.
An example of this can be shown by the fact that part of the physical view
of a resource is the system processes (or VMs) that are used when that
application is running. By ensuring that the platform upon which the applica
tion is running monitors these processes, some indication as to whether the
application is running or not can be found by a management application
without the managed application being aware of it.

4.1 Physical Managed Resource

Physical managed resources correspond to the view provided by the platform.
It has such managed objects as Hardware, Processes, Filestore, Software
containers, Comms connections etc. It is at this level that Teleservice is
primarily aimed.

4.2 Capsule Managed Resources

Capsule managed resources correspond to the view provided through a cap
sule. It has such managed objects as Work Managers, Data Managers, Process
Requirements. All applications can be viewed in a fairly generic way as a
capsule, and any management applications will not need to understand the
specific structure of the managed resource. Currently there is no capsule
infrastructure to present this view, but as the concept of capsules is developed,
this view of the managed resource will be presented to management applica
tions without action by the application developer.

4.3 Application Managed Resources

Application managed resources correspond to the application specific view of
the managed resource. The structure of this is very much business application
specific, and so management applications will need to be tailored to the
specific business applications that are being managed.

4.4 Domain Managers

The concept of a domain manager is not new. It represents the fact that there
are a number of management applications that concentrate on the manage
ment of some particular aspect of the total distributed system, such as the
management of a specific business application (eg electronic mail), or some
particular area of technology (eg a LAN manager). The reasons for domaining
are many, and the way that a community may be split into domains is
discussed in [SMA], A domain manager will look after the management
aspects of a domain, and will allow a management application in a different
domain to manage some aspects of its managed resources, by making them
visible as managed objects.

The domain manager may manage its domain of managed resources as a
normal management application following SMA, thus making the whole

696 ICL Technical Journal November 1991

architecture recursive. For example a Message Handling management applica
tion that manages the resources used within a message handling system. On
the other hand the domain manager may use a completely different mechanism
for management. An example here would be an SNMP gateway management
system.

5 Manageability in the Design Process

5.1 The Definition Process

Any design process goes through a number of phases and it is necessary that
aspects of manageability are considered during each of these phases. The key
phases can be described as:-

e feasibility and outline design
• functional specification (high level design)
• detailed design and implementation

Within ICL these stages are formally reviewed by a p h a s e r e v ie w p r o c e s s .

Phase 0 of the phase review process is about feasibility and outline design.
Therefore managed object classes need to be identified at this stage, and also
statements as to whether these classes already exist, or need to be defined,
must be made. If new managed object classes need to be defined then state
ments are also required as to whether there are any existing classes from
which they can be refined.

Phase 1 defines the functional specification of the development. At this stage
the managed object classes must be fully defined and registered, and any
dependencies on management applications must be declared.

Phase 3 is about implementation, and so this is the time at which any
conformance testing will be done to ensure that the new product conforms
to its managed object definition, and can be managed by the appropriate
management applications.

Let us look at the total process for defining the manageability of a new (or
existing) “thing”. The main stages are as follows:

1 identify the scope of what is to be managed.
2 break it up into component managed objects.
3 relate these to existing managed object classes.
4 consider the relevant management functions.
5 consider naming.
6 fill in the managed object templates.
7 submit the templates for validation, harmonisation & registration.
8 implement.

ICL Technical Journal November 1991 697

Stages 1 & 2 are carried out during Phase 0, Stages 3 to 7 are part of Phase
1, while stage 8 is Phase 3. These are described in more detail in the sections
below. Throughout the description use will be made of an example to illustrate
the principles involved, the example being the management of filestore.

5.2 Identify the scope

The first thing that is required is to understand the precise scope of what the
management problem is. This is as much an exercise of deciding what is not
to be managed as that of deciding what is to be managed.

In our filestore example, we could try to manage the entire filestore of an
organisation, or a department within an organisation. Alternatively we could
be concerned with the management of the filestore of a particular platform.
For our example we will consider the management of all the filestore belonging
to a single MS-DOS PC.

5.3 Identify Component Managed Objects

The next step is to break the problem down into an understanding of the
component managed objects that may exist within the problem space. This
is probably the most difficult step of all. Looking at the generic framework
for manageability [GENMO] should help here since that defines some general
breakdowns of managed objects.

In the filestore example, we see that filestore is part of the physical view. In
terms of our MS-DOS filestore, we can consider each logical drive (or parti
tion) as corresponding to filestore. This managed object will be sufficient for
this example, but others that could have been considered are directories within
the drives, or magnetic media used for backups.

5.4 Relate to Existing Managed Object Classes

The next step is to relate the managed objects identified above to existing
managed object classes defined both within ICL and externally. This is to
ensure that the resulting managed objects can reuse as many characteristics
as possible from existing managed objects, thus ensuring that they can be
managed by existing management applications.

Within ICL there are the generic managed objects defined in [GENMO] and
the register of managed object class definitions. External registers of managed
object class definitions are described in Section 6.

In the case of filestore, in addition to the generic managed object class of
filestore, there are also the specific managed object classes of UNIX filestore
and VME filestore.

698 ICL Technical Journal November 1991

5.5 Consider Relevant Management Functions

The next stage is to consider in what way it is required to manage these
managed objects. This may well be a phased approach, since it is probably
desirable to manage all aspects of the problem, but resource constraints
require that only a subset of the aspects can be addressed initially. This
is very much a business driven rather than a technical decision, though
availability of appropriate management applications may also be an
influence.

There are many aspects of Filestore that could be managed. Examples
are:

• the ability to monitor its usage in terms of how full it is
• the ability to monitor its usage in terms of statistics as to frequency of

access and access times
• the monitoring of error rates
• the location of backups (or archives)
• the commands required to carry out backups and restores
• the deletion of “deadwood” (files that have been backed up and not

accessed for a long while)

5.6 Consider Naming

All managed objects need to be named, and this naming needs to be done
relative to some other managed objects so that they may be uniquely identified
by any management applications. This requires the identification of naming
attributes on each managed object and the name bindings to be used relative
to their superior objects in the naming tree. The key thing here is to identify
the scope across which a name needs to be unique, since that will identify the
superior object.

In the filestore example the naming can be taken directly from the generic
filestore managed object that has already been identified. This shows that
filestore is named by the managed system upon which it resides. In the case
of a MS-DOS Filestore (ie a drive), its name is constrained to be a single
character, and so this needs to be documented as the permitted values of the
file-system-id attribute.

5.7 Fill in the Managed Object Templates

The next stage is to define formally the managed object template for each
managed object. In this all the attributes for the managed object are identified,
together with the actions and notifications. It should be possible to inherit
the majority of the characteristics from other like-managed objects which
have been identified as part of step 3.

ICL Technical Journal November 1991 699

These formal definitions are too detailed for inclusion in this paper, but are
available from the author on request.

5.8 Validation, Harmonisation and Registration

Having formally defined the required managed objects and all the required
characteristics, then it is necessary to submit the definitions to the harmonis
ation & registration authority. The purpose of this is to ensure that different
groups within ICL don’t invent separate managed objects for what is basically
the same thing, and to ensure that the maximum reuse of characteristics is
achieved through inheritance. This may involve identifying some character
istics of the new managed objects that would more appropriately be defined
on some higher level managed object (within the inheritance tree). This will
have no effect on the manageability of that particular managed object, but
may allow other similar managed objects to include those characteristics.

In the Filestore example it is likely that the various characteristics identified
are likely to be appropriate for other filestores. Therefore the harmonisation
process may modify or generalise these definitions and add them to the generic
filestore managed object definition. There may then be a need to have some
MS-DOS specific variants of these, and also other filestore managed objects
(such as on VME and UNIX) will need to consider the implementation of
these characteristics.

5.9 Implement

Good luck!

6 Relationship to External Standards

Currently a number of different standards bodies are busy defining a variety
of managed objects. At this time there is no formal coordination of their
work other than the fact that many of the participants are common to the
various bodies. The principle definers of standards are:

e OSI Network Management Forum
• POSIX 1003-7
• NMSIG
• ISO/CCITT - Generic Management Standards

- Network Layer Standards
- Transport Layer Standards

As this area is rapidly evolving at this time it is not sensible to try and
catalogue those managed object definitions that currently exist. However such
a list has been produced and is available from the author if required.

700 ICL Technical Journal November 1991

7 Conclusions

As can be seen the subject of manageability of distributed systems is large.
However it is possible to define a fairly simple process which the developers
of components of a distributed system can follow to ensure that the compon
ents may be managed in a well defined and well understood manner.

At this time we are in the early stages of using and refining this process model,
but in the future we expect to see a growing number of manageable applica
tions being developed. What we have learnt in the development of the Open
Systems Management Centre (OSMC) shows that this is the correct way
forward, and also it is the way that will lead to interoperable distributed
systems.

Acknowledgement

UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the
USA and other countries.

8 Document Cross-reference

[ACG] Gale, A.C.: The evolution within ICL of an Architecture for
Systems Management. ICL Tech. J. Vol. 7 No. 4, 673-684, 1991

[CMIS] ISO 9595 Common Management Information Service
[DMI] ISO 10065-2 Definition of Management Information
[GDMO] ISO 10165-4 Guidelines for the Definition of Managed Objects
[GENMO] ICL Generic Managed Objects
[MIM] ISO 10165-1 Management Information Model
[SMA] ICL Systems Management Architecture
[SMF] ISO 10164 Systems Management Functions
[SMO] ISO 10040 Systems Management Overview

Biography

Gareth I Jenkins

Gareth Jenkins graduated from Downing College, Cambridge with a degree in math
ematics in 1973. He then joined ICL in where he has worked in a number of different
roles. Initially he was involved in sales support, primarily for central government,
before secondment to ICL New Zealand in 1977 in order to set up a Systems
Maintenance Centre in Wellington. In 1979 he moved to product development involved
with IDMSX and TPMS, becoming the manager of the design unit. In 1985, when
development of these products was moved to Manchester, he transferred to Systems
Management, where he continues to work as a systems designer.

ICL Technical Journal November 1991 701

Distribution Management - ICL’s OPEN
approach

Phil Barthram and Tim Howling
Mid Range Systems Division, ICL, Basingstoke, UK

Abstract

ICL’s Distribution Management product set is responsible for man
aging the distribution of all types of ‘system management’ objects;
software, documents, configuration data etc. around a community
of networked computers. Transmission may be either by network or
exchangeable media.

Central to this product set is a Management Application, conformant
to existing and emerging standards and capable of managing the
distribution of ‘system management' objects across a multi-vendor
network of UNIX™ and non-UNIX platforms. The product set is based
upon an architecture that promotes scalability thus meeting the
needs of small to very large networks.

This article describes the market requirement, the approach taken
in terms of requirements analysis and architecture, the functionality
of the product produced and, finally, the way the solution was
engineered and the products on which it was built.

1 Introduction

The rapid increase in the number of distributed systems running common
software can cause heavy cost increases for customers in maintaining these
systems. ICL’s D is t r ib u t io n M a n a g e r product set is ICL’s response to keeping
control of such costs.

A distribution management product is designed to manage (in the sense of
both administration and control) the distribution of all types of ‘s y s t e m
m a n a g e m e n t’ objects; software, documents, configuration data etc. around
a community of networked computers. The transmission may take place via
the network or on some exchangeable medium (eg magnetic tape). The types
of uses at which a distribution system is aimed are very diverse, ranging
from distributing new software versions and patches to pricing information
for retail outlets.

702 ICL Technical Journal November 1991

ICL has produced a product that is aimed at meeting the above need. It is
now an integral part of a suite of ICL systems management products.

Central to this product set is a d i s t r ib u t io n m a n a g e m e n t a p p l ic a t io n , that
conforms to existing and emerging standards in the area and is capable of
managing the distribution of software, configuration information or other
business data across a multi-vendor network of machines running both Unix
and non-Unix operating systems.

The product is based upon an architecture that promotes both technical
and financial scalability, meeting in other words the needs of small to very
large networks.

This article describes the market requirement for D is t r ib u t io n M a n a g e r , the
approach taken in terms of requirements analysis and architecture, the
functionality of the product produced and, finally, the way the solution was
engineered and the products on which it was built.

2 The market requirement

2.1 The management of software distribution

Ten years ago the typical network consisted of dumb terminals surrounding
mainframes. While these types of network still exist, contemporary networks
more often contain many remote intelligent workstations and servers, each
with their own software. Consequently the distributed nature and large
number of machines in these networks present a significant management
problem.

A possible solution is one where teams of specialists travel the country in a
fleet of vans carrying out complex upgrades of new versions of software on
each workstation. Whether this option would be cheaper than an alternative
where local skills were available to carry out software management after the
postal delivery of media is academic. In either case the cost of the operation
would be huge and several practical problems would arise. One such example
is represented by upgrading and bringing into operational use simultaneously
on all end-systems a new version of some software. This would not apply
to items such as word-processors or spreadsheets where the use is essentially
local. However communications software or distributed applications often
rely on all components being at the same version. This could not be achieved
reliably where local staff were individually made responsible for the change.

There can be other problems (for example scheduling) associated with
managing software on networks of intelligent terminals. Thus these other
problems together with the costs involved are major factors for any installa
tion to consider when planning a network. In other words the ability to
manage software remotely, that is distribute it and then subsequently install
and activate it, becomes mission-critical for both ICL and its customers.

ICL Technical Journal November 1991 703

As well as providing customers with a solution to the sheer logistics and
size problems associated with the management of software across large
intelligent networks, automated software distribution also provides other
benefits:

• reduced cost associated with the overall approach
• increased system integrity when compared with manual, ad-hoc methods
• scarce skilled resource freed to do other work
• rapid response to problems, error correction made possible
• cost savings associated with central purchase of software
• reduced chance of software viruses from unofficial software
• inventory of software maintained automatically.

IflCL (or any other manufacturer) were to distribute its software automatic
ally to customers in this way, it would realise the following benefits:

• knowledge of who has what version of software
• reduction in manufacturing cost
• reduction in distribution costs
• reduction in administration cost
• improved control of all distribution activities (delivery, installation etc)
• improved ‘ease of buying’ and thus software revenues and cash flow.

2.2 ICL's response to this opportunity - The key attributes of the solution

Traditionally distribution management products have been “platform spe
cific” with both m anagem ent centre and end systems all being of a common
type resulting in a platform-specific solution. Our product has a single,
generic open application ‘Distribution Manager’ that manages distribution
to an entire network o f multi-vendor, UNIX and non-UNIX platforms.

2.2.1 The components supporting this generic application are:-
• Distribution Database This database contains a comprehensive invent

ory o f the network and the machines to which software has been
distributed, as well as identifying whether or not the software is installed
and if so when.

• Transfer Engine This component contains a combination of computing
power (filestore, processing and communications capability) with the
addition o f the infrastructure needed to run a distribution schedule:
Com m unity File Transfer. This component provides scalability, being
replicated across as many machines as is required to support the
network.

• R e m o t e D i s t r ib u t io n A p p l ic a t io n Resident on each end system, this
provides a degree of control and feedback to the ‘Management Applica
tion’ improving that which can be achieved by basic infrastructure alone
and reporting the success or failure of changes in software state, for
example during a software upgrade.

704 ICL Technical Journal November 1991

2.2.2 The flexib ility inherent in this architecture provides a number of
unique benefits:-

e S in g le “lo o k a n d f e e l ” The development of a single application for all
types of platform has a number of advantages. Not only does it minimise
support and development costs which are ultimately born by users; it
also offers the ability to distribute to a number of platform types in a
multi-vendor network, concurrently, from an application that offers
users a single and consistent look and feel.

• S c a l a b i l i t y As the size of a network increases so must the size of the
management system supporting that network if it is to maintain the
same performance. By increasing the number of nodes in a network
that serve as transfer engines the size of the distribution management
system can keep pace with the increase in network size. The overall
bandwidth of distribution that can take place increases.

The separate datastore component can also be replicated or placed on a
hardware platform that provides performance and filestore capacity consist
ent with the scale of the users’ network. These techniques ensure that a
single product offers a solution that is technically and financially scalable,
in other words a solution that can grow with its users.

e M u lt i - v e n d o r a t lo w c o s t The Remote Distribution Application itself
splits into two parts. A generic and therefore portable Remote Distribu
tion Agent and an operating system specific Product Set Agent. The
flexibility to interwork with different end-system processes in this design
coupled with the fact that the platform specific code is concentrated in
one small area offers a solution that can be ported to different platforms
at low cost.

• R e u s e The Managing Application has its own application program
ming interface for programmers wishing to integrate Distribution Man
ager with other products. This allows future versions of Distribution
Manager to be integrated into and re-used by other more customer
specific applications.

3 Distribution Architecture

If any complex set of software products is to be successful it must be built
upon an architecture that promotes openness, scalability and reuse of
existing proven in f r a s tr u c tu r e . The Distribution Management architecture is
a component part of the Systems Management Architecture and shares
some of its infrastructure components such as CAM and CFT with other
management components in the architecture.

As can be seen from Figure 1, the Distribution Management Architecture
is split into two parts, a system-dependent part and a system-independent
(or generic) part. The system dependent part comprises the Generator, which

ICL Technical Journal November 1991 705

Fig. 1 Distribution Management Architecture

encapsulates the Management User’s software and data in system independ
ent envelopes, called ‘filesets’ through the ’Distribution Services’ interface
and the Agent which opens the envelopes and uses the software and data.
The system-independent level is composed of the Remote Distribution
Agent, Transfer Engine, Distribution Administrative Datastore and the
Distribution Definition and Control components. These use the Manage
ment Infrastructure to move, replicate and invoke operations on the system
independent envelopes in response to schedules provided by the Manage
ment User.

3.1 Generators and Agents

Generators take software and data files from the user, generate additional
c o n tr o l f i l e s and use the ‘Distribution Services’ interface to define these
software, data and control files to the ‘Distribution Definition’ component.
The control files contain information about non-file aspects of a product as
well as sequencing information for operations. A set of files defined together
in this way is called a ‘fileset’. A fileset can also support operations which
are also defined to ‘Distribution Definition’ through the ‘Distribution Ser
vices’ interface.

Generators and Agents operate in pairs, the format of the control files and
how operations are carried out being specific to a generator/agent pair.

706 ICL Technical Journal November 1991

A fileset may contain two types of file, ordinary files and logical files. If a
fileset contains only ordinary files then the contents of the files found in one
copy of the fileset will be the same as in another copy. This would typically
be the one used when software products are delivered to a group of machines.

Logical files allow different files to be delivered to different machines.
Typically, a logical file is a configuration file which must be different on
each end system but where its logical purpose, say to configure its network,
is the same. The distribution system manages and hides the underlying
complexity inherent in having object-specific instances of what is logically
a single file.

3,2 Distribution Definition and Control

‘Distribution Definition’ receives descriptions of filesets and operations from
generators and places them in the ‘Administrative Datastore’. ‘Distribution
Control’ allows the user to specify a schedule which defines relocation and
movement of filesets and operations to be performed on the filesets. This
schedule, like many forms of job control, allows operations to be sequenced
and for one operation to be dependent upon the success of a previous one.
Schedules are automatically checked by the management system thus pre
venting avoidable human error. As a schedule may cause millions or even
hundreds of millions of operations on thousands of end-systems it is import
ant that avoidable errors be eliminated. These schedules are also held in the
‘Administrative Datastore’. Schedules are run and monitored by ‘Distribu
tion Control’ and the effects of relocation, movement and operations are
recorded in the ‘Administrative Datastore’. ‘Distribution Definition and
Control’ has an Application Programming Interface (API) allowing itself to
become a component in the larger Systems Management Architecture, for
example, acting as the distribution mechanism under a ‘Configuration
Manager’.

‘Distribution Definition and Control’ replicates and distributes filesets
throughout a managed network. It then controls the installation and activa
tion of these filesets in order that changes are made to the software and
application services running in that network.

‘Distribution Definition and Control’ administers and controls the state of
these filesets.

‘Distribution Definition and Control’ supports four kinds of user:-
• F i le s e t C o n tr o l l e r Responsible for defining filesets in terms of real

objects such as files and executable tasks.
• N e t w o r k C o n f ig u r a t io n Responsible for defining logical end-systems,

routes between them and groups of them for example a group called
All_in_London defining all the machines in the London area.

ICL Technical Journal November 1991 707

• D is t r ib u t io n A d m in is t r a to r Responsible for defining which filesets are
required at which end-systems or end-systems groups and when. This
results in the production of a schedule.

• D is t r ib u t io n C o n t r o l l e r Responsible for taking the schedule which has
a start time and an advisory completion time, initiating the running of
the schedule and then monitoring the schedule of movement, replication
and software installation operations so giving the user confidence in the
operations taking place.

3.3 Transfer Engines

The ‘Transfer Engine' effects the replication and movement of and invokes
operations on filesets by controlling the Management Infrastructure. A
Transfer Engine’ may be any machine in the network with the right com
bination of computing power (filestore, processing power and communica
tions capability) to act as the distribution centre for a large number of other
machines. In addition it requires the infrastructure to run a distribution
schedule, that is CFT and CAM (see para. 3.6 below).

The combination of the ‘Transfer Engine’ and ‘Distribution Control’ allow
distribution to take place. Earlier architectures did not separate these two
concepts and traditionally placed both these components on a single
machine. By increasing the number of nodes in a network that serve as
transfer engines the overall bandwidth of distribution that can take place
increases. By this technique the architecture offers a solution that is scalable.

3.4 Remote Distribution Agents

Transfer Engines can replicate and move filesets by controlling the Manage
ment Infrastructure. To invoke remote operations there is two-way commun
ication between the Transfer Engine and the Remote Distribution Agent
through the Management Infrastructure.

3.5 Administrative Datastore

The Administrative Datastore is active and receives communication from
the Transfer Engines via the Management Infrastructure. As well as provid
ing a passive store to the Distribution Definition and Control Information.

3.6 Distribution's Management Infrastructure

This consists of the services of the ‘Managed Bulk Data Transfer Service’
(Community File Transfer - CFT) and the ‘Management Messaging Service’
(Community Alert Management - CAM).

708 ICL Technical Journal November 1991

A number of separate organisations/projects both internal and external to
the company were identified in 1989 as having need for a ‘Distribution
Management System’. The list is not exhaustive but at least includes:

• major ICL corporate programmes
• large external customers
• vertical business units
• internal service providers
• internal integration units

Given product requirements as they were understood and a team of the size
that was planned for the production of the Distribution Management prod
uct the development life cycle time of a ‘High functionality’ product was
likely to be 18+ months. A more traditional approach to developing a
product would follow the route of defining these requirements and, following
a single sequential development, culminating in a product 18 + months later.

Within this timeframe three external forces cause functional requirements
to change. These are:

• technological change; allowing new development methods and tech
niques to be employed, so allowing requirements previously thought to
be infeasible to be met.

• existing customers evolving their views of the functionality needed.
• new customers bringing new views of the functionality needed.

However by this time a committed product plan would be underway with
planned end dates. It would be difficult to change direction. A possible
outcome in 18 + months would be a product built to time and to a specifica
tion, that nobody would want to use. To cope with this situation and be
more responsive to a changing set of requirements a development approach
based on prototyping was adopted. In general terms a prototype may be
created in order to answer any one or more of the following questions:

• marketing - What is the customer reaction to an idea for a new product?
• function - How can the required functionality be implemented? (The

answer to this question allows implementors to evaluate one or more
methods of achieving the functional requirements).

• technical - Will all the required technologies interwork?
• planning - What resources are required to achieve tasks with possibly

unfamiliar technologies? The answer to this question improves estimates
of resources and timescales.

The quality process for answering each type of question is different. Product
development in the distribution theme was based on this method of incre
mental prototyping. The technique employed was to plan only the next step

4 Flexible incremental development

ICL Technical Journal November 1991 709

in detail, but to have analyzed systematically the functional options for the
next three or four steps. This approach allows cross-company investment
decisions to prioritise the functionality added at each increment and a
development route to be agreed that avoids:

• replanning and discarding detail planning done ‘n’ months ago that is
now out of date, and

• execution of a plan, the end-result of which is an out-of-date product.

The prototyping technique has the advantages of:

• a dynamic development route responsive to change.
• early deliverables that engender confidence, gain user “buy-in” and

answer marketing, technical and functionality questions as well as pro
viding users with interim solutions.

Fig. 2 The Incremental Development Process

Figure 2 summarises our approach to incremental evolution and capture of
requirements. The ‘Distribution Design Register’ is fundamental to this
approach.

4,1 The Distribution Design Register

The purpose of the Distribution Design Register (DDR) is to capture in a
single document all the known functionality aspects of a distribution man
agement system. It provides a basis for discussion between the development
unit and other interested parties such as system integrators and requirements
analysts. It presents the known functionality, not as an amorphous list but

710 ICL Technical Journal November 1991

decomposes system characteristics into functional areas which are then
further broken down into sets of options or levels of sophistication. This
systematic approach provides a basis for the planning of an incremental
series of developments. Readers of the DDR are encouraged to send addi
tional requirements or proposed solutions to requirements to the author.
There are currently over 200 entries.

The DDR decomposes the overall functionality of a distribution system into
a set of functional areas:-

• Fileset Model. • Policy Options
• Machine Model. • Backup and Restore (Archiving).
• Routing Model. • RDA Functionality.
• MMI. • Platform Porting Options.
• User Concurrency. • Software Copyright
• State Model. • Operational Statistics
• Scheduling. • Documentation
• Delivery Mechanisms • Performance
• Security • Conformance

Each register entry has a unique identifier. This identifier will remain fixed
across different issues of the document and should be used as the primary
index. Following the entry identifier is a short title for the entry. At the end
of the entry there is a series of more complex source references. Several
organizations may request the same function so there may be more than
one source reference.

These references identify the organisation (typically by its acronym) that
requested the function (the cross-reference provides lists by organisation),
what was the source of the request, e.g. a workshop, a meeting or document,
the date by which the function was requested to be available, the current
target date (or version) by or in which the function will be provided (target
means best guess) or the date (or version) the function is planned to be
included and the functional area of this function.

The Cross-reference provides the ability to lookup requested functions by:-

• the organization requesting the function.
• the target or planned release the function is to be in.
• functional area.

Additional to the Design Register are a set of optional specific requirements
documents. In some cases where individual organisations are dependent on
an increment delivered by a certain date, a specific document is created to
define this organisation’s requirements. These will cross-relate to the require
ments in the design register.

ICL Technical Journal November 1991 711

It is the strategy of the distribution theme to produce a product that evolves
through successive incremental levels of functionality. The design register
and these documents are used to prioritise the functionality for these incre
mental releases.

This approach is iterative in that customer satisfaction is achieved by the
continual evolution of the next increment and then exposure to customers
to gain feedback. Individual collaborations have served as a catalyst to this
process.

5. The chosen design

The chosen design of ICL’s “Distribution Manager” product follows the
architecture described above and makes use of components from other
architectural areas as well as re-using the Management Infrastructure. It
can be split into three areas each with distinct platform characteristics; the
Management Centre (MC), the Transfer Engine (TE) and the End System
(ES).

5.1 Design objectives

The chosen design had a number of overall aims listed below, with
comments:- 1 2 3 4 5

1 To m a x im is e in v e s tm e n t in development. Adherence to the ICL Quality
Process minimised re-work.

2 To r e u s e e x i s t in g c o m p o n e n ts such as Ingres, CFT and CAM. ‘Distribu
tion Manager’ creates standard CFT batches and actions CFT (via a
CFT driver running on the transfer engine) to run them.

3 To ensure the Management centre is X / O P E N c o n fo r m a n t . This will cut
the cost of porting to new/or other equipment. Initially the management
centre is UNIX based:
- UNIX is becoming an industry standard
- UNIX supports X/Open
- UNIX runs on hardware covering a range of sizes and costs, providing

flexibility in choice of machine.
4 To ensure that the other design components are e a s i l y p o r ta b le . This

reduces the cost of providing a multi-vendor solution and that of provid
ing across the ICL range of platforms. As a consequence the customer
can make use of his existing hardware.

5 To m in im is e o n g o in g s u p p o r t c o s t s , the Management Centre will be
generic, that is it will not make assumptions about object construction
and relationships which are specific to the regime.

712 ICL Technical Journal November 1991

Fig. 3 Design of Distribution Manager

5.2 The design of Distribution Manager is illustrated in Figure 3.

5 .2 .1 M a n a g e m e n t C e n t r e The Management Centre implements the
architectural areas of Generator, Distribution Definition and Control and
Distribution Administrative Datastore.

The simplest form of generator capability is provided directly by the Man
agement Application (MA) component which allows a user to define the
names of files making up a fileset. Product Set Generator (PSG) is a more
complex generator which the user can use to define a UNIX software
product along with control files and operations to allow the product to be
‘installed’. In the case of UNIX products installation involves copying the
files into PSA controlled filestore and activation which involves putting
them into an end-system users filestore. Both of these generators use a
common Man Machine Interface (MMI) which uses the Ingres/Forms
product.

The MA component shares the Ingres/Forms MMI with the generators.
Through the MMI the user can define and run schedules, print reports as
well as make enquiries on the database and monitor the progress of running
schedules.

ICL Technical Journal November 1991 713

The database used is Ingres and, along with the Database Daemon compon
ent, provides the architectural ‘Distribution Administrative Datastore’ cap
ability. The Ingres database is updated directly by both MA and PSG and
indirectly by the Transfer Engine through the Database daemon which is a
persistent process, normally suspended, that receives messages from the
Transfer Engine through the Management Infrastructure. Using the facilities
of Ingres Net and Ingres Star in the future the database can become both
distributed and therefore scalable and, if desired may be located remotely
from the Distribution Definition and Control Application.

5 .2 .2 T r a n s f e r E n g i n e ‘Transfer Engine’ capability is provided by the
Distribution Driver component which has its own persistent database based
on flat file technology. The Distribution Driver interfaces the Management
Infrastructure components of Community File Transfer (CFT) and Com
munity Alert Management (CAM) through their respective service inter
faces. The Distribution Driver is written in ‘C’ and has been ported from
VME to UNIX. Both of these support CFT and CAM and indeed Distribu
tion Manager can manage a community of transfer engines from multiple
vendors running UNIX and non-UNIX operating systems. Using more than
one Transfer Engine allows Distribution Manager to be scaled to meet the
customers requirement. Portability allows re-use of existing customer hard
ware investment.

Community File Transfer can control many different kinds of bulk file
transfer mechanisms including FTAM, FTF, NFS and RFS. Thus replica
tion and movement of filesets can be achieved to any end system supporting
one of these mechanisms.

Community Alert Manager provides the control flow from the management
Application to the Distribution Driver and the feedback from Distribution
Driver to the Database Driver. MA’s ESQF access to the database completes
the control loop. CAM is also used to invoke operations on the Remote
Distribution Agent daemon (RDA) and to receive responses from the RDA
back to the Distribution Driver. If the Transfer Engine were to act just as
a conduit for the messages from the RDA daemon it would be redundant.
The Transfer Engine is more than this, in that it acts as a multiplexer-
demultiplexer taking a single request from the Management Centre and
fanning it out to many RDA daemons, much as X400 fans out a single mail
item to all the addresses. It also carries out the reverse process collating
together the many replies from the RDA daemons and sending only a few
messages to the Database daemon. These two effects greatly reduce the
bandwidth required between Management Centre and Transfer Engine and
distribute the job of collation - a cpu-intensive task.

5 .2 .3 E n d - S y s t e m An e n d - s y s t e m is any machine in the network man
aged by the Management Centre. An end-system contains two components,
namely the Remote Distribution Agent architectural component which maps
directly to the RDA daemon and the Agent architectural process which

714 ICL Technical Journal November 1991

maps to the Product Set Agent (PSA). Both the architecture and design
prevent these components from existing on an end-system in which case
only delivery of files is possible. For some customers, managed delivery of
business files without the added benefit of software installation has sufficient
benefit to justify the use of a managed distribution system.

The RDA daemon receives CAM messages requesting the invocation of
operations from the Transfer Engine and invokes the PSA to carry out the
operation. The result of the PSA operation is placed in a message and sent
back to the Transfer Engine. The RDA daemon can also be invoked from
a FMLI (Forms and Menu Language Interpreter) MMI on the end-system.
Changes carried out through this MMI also update the Distribution Man
ager database. It is also possible to request the RDA daemon to carry out
an operation at a pre-determined time in the future.

The interface between the RDA and the PSA is via “command line call”;
that is to say it is as if the user had typed in the command at a terminal.
This arrangement allows for the simple addition of more Agents in the
future.

It is recognised that sometimes it is not sensible or reasonable to transfer
many megabytes of files over a network. There is therefore a facility whereby
a fileset may be copied to exchangeable media and delivered manually to
the end-system.

5.3 Summary of Product Functionality

In summary, OSMC DM, (the Distribution Manager component of the ICL
Open Systems Management Centre suite of products) includes functions to
provide for the following features: •

• Files are grouped into sets called filesets. Groups of files are treated as
a single management unit.

• End-systems can be grouped together in groups called Machine Groups.
Groups of end-systems are treated as a single management unit.

• A fileset may contain either ordinary or logical files. This allows, for
example, products and their configuration files to be managed.

• Schedule entries that allow a fileset to be replicated, moved or that
invoke an operation (eg. software installation) on all machines in a
machine group, providing a powerful set of operations on high level
management units.

• A schedule is made up of many schedule entries, each done in sequence.
This allows the success of one operation to trigger the next.

• A Unix product can be put in a fileset and it can be moved, replicated
and have end-system operations such as installation and activation
performed on it. A Unix product may be managed on many end-systems
from one management system reducing manpower requirements.

ICL Technical Journal November 1991 715

• All products, filesets, machines, machine groups and schedules are
recorded in an Ingres database. A database of the hardware and software
of an organisation is produced, automatically maintained and may be
used to provide management information within that organisation.

• All fileset movements, replications and operations are recorded in an
Ingres database. Thus an organisation can find out what software it is
using and where. This information can be summarised in printed man
agement reports and used for forward planning.

• All fileset movements, replications and operations can be monitored in
real time, giving the user confidence of the operations taking place.

• Reports can be tailored to report on specific products or on specific
groups of machines and used to print out information from the database.
The customer can tailor reports to provide senior management with up-
to-date information on installed hardware and software.

• More than one Transfer Engine may be used and the database may be
distributed and is re-locatable. To meet the requirements of organisa
tions of many different sizes, the product is scalable in more than one
way, namely in respect of the size of filestore, the network bandwidth
and database.

6 Conclusions

The team that developed Distribution Manager has an established and
systematic method by which its product solutions may be incrementally
developed. In the coming years technologies will change causing:-

• what is not possible now to become feasible.
• new requirements to arise.
• distributed systems to grow in size and complexity.

Distribution Management is one of the areas in which ICL has chosen to
invest. It will continue to develop its distribution products incrementally to
meet the needs of the 90’s.

ICL is confident that the Distribution Management products it produces
will be exploited in many different ways, that their functionality will be
extended and that they will act as a catalyst to product integrators working
on solutions to a wider set of problems.

Acknowledgements

INGRES and INGRES/FORMS are trademarks of Relational Technology
Inc. UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
in the USA and other countries.

716 ICL Technical Journal November 1991

References

WHITE, J.T., Generation of configuration a collaborative venture, ICL Tech. J. Vol. 7 No. 4,
pp. 7132-740, 1991.

GALE, A.C., The Evolution within ICL of an architecture for Systems Management, ICL
Tech. J. Vol. 7 No. 4, pp. 675-684, 1991.

PICKWORTH, I., Practical experience in the management of Retail business data flows in a
distributed computing environment, ICL Tech. J. Vol. 7 No. 4, pp. 718-731, 1991.

Biographies

Phil Barthram

Phil Barthram is the Development manager at ICL’s Systems Management Product
Centre in Basingstoke. He graduated in Mechanical Engineering at the University
of Southampton in 1975. Prior to his involvement with the IT industry he worked
as a Research and Development engineer and as a mathematics teacher. He sub
sequently joined MoD at Bureau West as a software engineer eventually managing
the development of their security enhancements to the VME operating system.
Before joining ICL in 1989 he worked for a software house where he managed the
development of a range of VME systems management products whose primary focus
was in the areas of performance analysis, capacity planning and job scheduling. At
ICL, prior to taking this current position, he was responsible for developing and
progressing the strategy for the Distribution theme of Systems Management Product
Centre.

Tim Howling

Tim Howling joined ICL in 1982 after taking a Joint Honours degree in Applied
Physics and Chemistry from Durham University. He worked on various projects
using ME29, DRS 20, System 25, VME and Pera rising to team leader of a
collaboration project with Rediffusion Robots to produce a “Flexible Manufacturing
Cell”. In 1985 he moved to Concurrent Computer Corporation where he developed
X.25 and OSI transport software and a new generation of network configuration
tools. He then took responsibility for a team porting file transfer and remote
login software to MSDOS PCs, SUN and APOLLO workstations, VAX VMS,
MASSCOMP parallel Unix computers and Concurrent’s own parallel realtime
operating system. He returned to ICL in 1989, joining the Design team of SMPC,
where he led the design of the ICL product - OSMC Distribution Manager. He is
now the Principal Designer responsible for all SMPC Development.

ICL Technical Journal November 1991 717

Experience of Managing Data Flows in
Distributed Computing in Retail

Businesses

I. Pickworth
ICL Retail Systems, Bracknell, UK

Abstract

Considerable experience with some of the largest retailers worldwide
has led to a specialised ICL product line to manage the flow of data
within a retail organisation. The products are based on ICL Systems
Management products, but specifically aligned to the retail market.
This paper first gives a brief background on retail data processing,
and then shows how the products have evolved over the past decade.
It ends with a view of the future direction the products might take.

1 Introduction

Starting in the early 1980’s, retailers throughout the world invested substan
tial capital in electronic point-of-sale (EPoS) equipment in their stores.
Initially, the driving force was the reduction in operating cost that could be
brought about by automating, and thus de-skilling, activity at the point of
sale. The reduction in operating costs continued to be a very strong driving
force in retail organisations throughout the 1980’s.

However, as most retailers began to benefit from EPoS equipment, the
commercial advantage of installing such equipment began to be eroded.
This caused a search for further advantages from the EPoS equipment by
using the data generated in the point of sale device to run the retail operation
more efficiently.

Retailers were quick to see that an EPoS terminal can gather very accurate
data about one of their most valuable assets, ie their customers. This
realisation led to ever increasing and more focused use of data gathered
about transactions made on EPoS devices.

In 1984 ICL formed the Retail Business Centre (RBC), specifically to develop
business in the retail vertical market. Recognising from the outset the value

718 ICL Technical Journal November 1991

of data collected at point of sale, the RBC launched a development pro
gramme to allow retailers to make use of it. Since then, the development
programme has evolved and widened to meet the needs not only of large
supermarket chains, but also those of businesses across all retail segments.

This paper gives background to the data processing environments in which
most retailers operate, and describes the evolution of a product line (known
as Retail Systems Management) that has grown out of practical experience
of working with ICL Retail Systems customers.

2 The Retail Model

A quick walk around any town centre will show that retailing is a very rich
and multi-faceted business segment. However, behind the apparent variety
of goods on display to the public, retailers by and large follow a very similar
formula for running their business. This formula has been well tested, and
is constantly changed by retailers operating in an extremely competitive
environment.

The basis of any retail operation is the “merchandising cycle”. The basic
idea is that retailers follow an endless loop of interconnected processes
whereby goods are bought, stored, transported and sold as efficiently as
possible. The cycle embraces the whole retail business, from original market
ing decisions to the precise placement of merchandise on the shelves of a
given shop.

Figure 1 shows the most common steps in a merchandising cycle. Although
the process is continuous, most of its actions are directly affected by decisions
made at head office, so a description of the process should start from there:

In the head office marketing departments, decisions are made about what
product mixes to offer, in which stores and at which prices. These decisions
require detailed analysis of a large quantity of data, particularly the past
performance of the retailer’s stores.

Head Office decisions are quickly converted into specific buying actions, in
the form of instructions to suppliers, distribution centres and stores. These
instructions result in the movement of goods from supplier to stores, either
via the retailer’s own distribution system, or in the form of direct delivery
to store.

Because the store is the place at which the retailer and the customers meet,
it is the retailer from the customers point of view. Thus, along with informa
tion about goods and prices, the store also needs information to plan its
staffing levels, adjust its layout, accept a multitude of payment methods etc.
Since most retailers look for growth, it is seldom cost-effective to have highly
trained staff in every store to manage all aspects of the business. As a result

ICL Technical Journal November 1991 719

Fig. 1 The Merchandising cycle

stores tend to be managed by “remote control” through very rigorous
definition of policy and operating procedures.

The activity in the stores pushes the merchandising cycle, by providing the
data to drive the business. Close track is kept of cash takings and stock
levels in each store, and a constant process of fine tuning is undertaken to
attempt to maximise profitability, eg by analysing sales volume per square
foot of floorspace, or by tracking the contribution of product lines etc.

The movement of data in support of the merchandising cycle has to be both
timely and accurate. Timeliness relates to the correct time at which a data
item has the most value eg. the retailer must know how much cash is in the
stores at the deadline for depositing money on the overnight financial
markets. Accuracy is also time-related eg. data on a store’s takings is not
accurate until a store accounting period has been balanced and reconciled.

Two points about the merchandising cycle should be stressed:

• Management of the cycle will directly determine the profitability of the
retailer.

• The merchandising cycle operates almost in real time, which is very
different from other businesses. Events in a store can affect orders on
suppliers in as short a time as a few hours, and seldom in more than a
few days.

720 ICL Technical Journal November 1991

Data Processing can support the management of the merchandising cycle
in very many ways which vary a great deal with the management style of
the retailer. That in turn is closely related to the segment in which the
retailer operates, though there are no hard and fast rules.

Where stores are very large, not very numerous, and stock a large variety
of goods, in-store management tends to have a higher degree of control
over day to day operation. Good examples are the French hypermarkets
(Pisigot, 1989) where store managers effectively operate as managers of a
local business, and have a great deal of say in product mix, pricing and
presentation. This leads to a requirement for much in-store data processing,
which will need to cope with all the facets of an independent business.

At the other extreme, where stores are small but very numerous, the retailer
will want to keep tight central control on the image of the chain as a whole,
and will seek to minimise the cost of the operation per store. Good examples
here are fashion chains in the UK, USA and Canada. In-store data pro
cessing is typically limited to capture of EPoS data.

In between these two extremes, one can find almost any split of data
processing between store and head office. Since, to reduce staff training and
administration cost, and to present a consistent image, all stores in a given
retail chain will be more or less exact replicas of one another, it follows that
every data processing decision involves cost that is multiplied by the number
of stores. This puts extreme pressure on the price most retailers would be
willing to pay for any in-store equipment (or services) unless there is a
proven link to higher sales, or reduced cost per sale. Most retailers prefer
to spend money on the display of goods to entice people into the store.

Therefore, the following are vital characteristics of any products seeking to
manage data flows in a retail business: •

• Retailers are expert at dealing with suppliers, and understand that
several suppliers are always better than one. All retailers therefore seek
a multi-vendor capability in their data processing departments, to allow
them to influence the price of various parts of the system.

• Although this appears to match exactly the Open Systems strategy
adopted by ICL, retailers apply openness in a much broader sense than
OSI or X/OPEN. In particular, with networks they will be seeking
openness at the lowest possible cost. Very often, this will mean using
asynchronous protocols over dial-up telephone connections.

• Following a strict policy of reducing in-store processing costs leads to
the need for increased processing power at head office. This area of the
market is dominated by small to medium-sized mainframes from IBM.
This implies that IBM interworking and SNA network conformance
are very common requirements amongst retailers.

3 The Data Processing Environment

ICL Technical Journal November 1991 721

ICL Retail Systems has found a common trend amongst retailers in the way
the flow of business data around their organisations is managed. There are
typically four types of data flow, and retailers attach a very different value
to each of the types:

4.1 Bulk Data transfer

Typically at end of trading day by moving sales data and price updates to
and from a store over a telephone call. This is usually seen as a necessity
when EPoS equipment is in use, but is not perceived as a very high value
activity.

4.2 File management

This is an extension of bulk data transfer, but gives the retailer more freedom
to be flexible during a trading day (eg by altering prices in response to
competition). It will usually lead the retailer to establish some form of on
line connections to the stores, and is perceived as having several benefits in
improving the responsiveness of the operation.

4.3 Operations management of distributed data processing equipment

This can be shown to reduce the need for trained staff in the stores, and is
thus seen as having some benefit in reducing operational costs. However, a
significant number of retailers could view this as a vendor charging them to
solve a problem the vendor has introduced, and therefore very careful
thought has to be applied to positioning products in this arena.

4.4 Message management

This is the processing of information as the events occur, and is universally
perceived as having high value. Applications such as payment authorisation
have been in the lead, with the management of the logistical supply chain
(movement towards “just in time” methods) now taking more prominence.

These four types of data flow are not mutually exclusive, and they may all
be found within a single retail organisation.

It must be remembered, however, that management of data flows and
systems management is a means towards the end of a more efficient merch
andising cycle. The four areas above must be linked with applications that
show benefit to the business.

4 Typical Data Flow Management

722 ICL Technical Journal November 1991

The development of products that managed the movement of files between
EPoS equipment and Head Office started in the early 1980’s by following
pragmatically the requirements of the Retail Business Centre’s customers.
These customers fell mainly into two categories:

• Specialist retailers (mainly apparel and home improvement).
• Large food retailers.

Specialist retailers had a need for basic dial-up data transfer, and products
were developed on both the DRS20 (Retail 67) and the System 25 (Retail 47),
that interworked with the ICL EPoS products on offer (9516, 9518, DRS20
EPoS controllers and System 25 EPoS controllers). These products were
completely self-contained, in that they made no use of other ICL manage
ment products, largely because they preceded the developments in the com
munity management programme outlined below.

Food retailers by and large tend to use IBM mainframes at head office, and
in the 1980’s a large proportion were actively installing System Network
Architecture (SNA) products to manage their networks. Those that had
decided on SNA networks demanded conformance to the IBM products
from all their computer suppliers. Working with some large food retailers
ICL therefore developed two software products that ran on IBM main
frames:

• F ile T r a n s f e r F a c i l i ty (FTF) which is an implementation of the Network
Independent File Transfer Protocol (NIFTP).

• C o m m u n i ty F ile T r a n s fe r (CFT) which is a file transfer and task schedul
ing product designed to coordinate many different data transfers to and
from many locations.

At the time the alternative to developing these products was to develop IBM
compatible file transfer protocols in the EPoS systems. ICL decided against
this course because:

• The IBM standards are not open, since all details of the interworking
protocols are not made generally available. This would imply a signific
ant risk for any implementation that attempted to copy them.

• There were several file transfer methods in common use amongst IBM
users, making difficult a choice of one to copy.

• Most significantly the ICL EPoS system would be limited to the func
tionality on offer from the IBM host product, thus eliminating the
opportunity to better IBM and other EPoS suppliers in this highly
important area.

The development of FTF and CFT on IBM coincided with the start of the
community management programme in ICL. FTF was widely available on

5 Evolution of Retail Systems Management product

ICL Technical Journal November 1991 723

ICL hardware and the design of CFT was made to be portable, so that it
could be reimplemented on other host hardware. The Retail Business Centre
also enhanced the user interfaces to CFT by developing R e t a i l F i le M a n a g e r
(RFM), which allowed users to specify activities to be applied to logical
branch groups (ie. numbers of stores related in some way), in a way that
naturally met the retail requirement for file management.

Both Retail Systems and the community management programme continued
to develop products during the late 1980’s until by the end of the decade a
large assortment of product was on offer from ICL. The sheer number of
products made the benefits provided by each product difficult to describe
and sell, even though the products themselves performed very well.

To remedy this situation the community management programme reor
ganised its products and activities around a series of management themes
(Gale, 1991), such as statistics, status, configuration etc. This served to align
the programme (now known as the O p e n S y s t e m s M a n a g e m e n t C e n tr e
(OSMC)), with the emerging standards for systems management. Although
this was clearly a positive step, it did not go far enough to solve the problem
of selling systems management specifically to retailers.

Retail Systems therefore closely examined its experience in this area and
created a product marketing framework to meet the following requirements:

• Product benefits must be described in terms that retailers can easily
relate to.

• Numerous and confusing components must be replaced with a clear
structure.

• The product range must be summarisable on a single presentation slide
(to give an easy-to-remember message).

• The product range must clearly support retail systems major business,
ie. selling EPoS equipment.

• Retailers must be offered options at several cost levels, with a clear
vision of potential growth from their entry level.

The approach taken was to group product options around the four types
of data flows described in section 4. What emerged was a product portfolio
consisting of 4 levels, with each level building on the previous level by adding
features and functions. The four RSM levels are:

5.1 RSM Level 1: Dial-up data transfer

A grouping of products that provide the functions needed to manage a dial
up data transfer cycle to a large number of stores. Main functions provided
are: •

• two-way data transfer, provided over either asynchronous or bisyn
chronous protocols, and a variety of modem types.

724 ICL Technical Journal November 1991

• the ability to preset a schedule of dial-up activity to allow unattended
overnight operation.

• the ability to recover failed transfers easily, either in a follow-on session
or in the following day’s cycle. Also, the specification of the number of
retries for any given connection attempt.

• the ability to group stores logically for different types of data transfer,
with each store being allowed to belong to any number of groups.

• the ability to create and edit a list of file transfers, which can sub
sequently be applied to a logical group of stores (like a macro).

• reports and logs to show exactly what has happened, and to show
exceptions.

5.2 RSM Level 2: File management

This level supports the more sophisticated requirements of retailers that
have moved beyond the simple cycle of overnight data retrieval. The main
functions required at this level include all those needed at Level 1, plus:
• an extended diary manager, with very flexible scheduling capabilities.
• the ability to start ad-hoc groups of transfers in response to business

need, with on-line creation and editing facilities to support ad-hoc
activity.

• management of local and remote job execution, thus allowing distributed
application functions to be coordinated with the movement of data.

• on-line recovery, giving options for the system to take immediate action
on failure.

• an Applications Programming Interface, to allow retail applications to
exploit RSM products.

• support for mixed networks, by allowing the definition of work to be
separated from the file transfer protocols. This allows mixtures of net
work types and protocols, and makes it easier to change network
characteristics in line with business needs (eg. in a transitions from a
dial-up to a permanent network).

5.3 RSM Level 3: Operations management

This level is very closely aligned to the management themes of the OSMC
(status, statistics etc). It is the least retail specific of the four levels, because
it addresses common problems faced by users of distributed computers.
Main functions needed include all those at level 2, plus:
• support for Remote operation, to allow central staff to operate store

equipment.
a software distribution and remote installation of software.
• management of “alerts”, by routing to the correct point in the cus

tomer’s organisation.
• problem management (ie. the logging, tracking and resolution of prob

lems), both for alerts received automatically, and for problems reported
verbally.

ICL Technical Journal November 1991 725

• statistics gathering for analysis of performance.
• monitoring of systems status to allow pro-active action in the event of

failure.

5.4 RSM Level 4: Message management

This level deals with the management of messages that originate from retail
transactions, such as credit authorisation, stock in transit enquiries,
employee sales transactions (both for employee discount and sales commis
sion applications) and many more. The management required is of one or
more of following types:

• routing based on message content (eg. by credit card type, transaction
amount etc).

• routing based on time of day (to minimise cost of using public networks).
• routing based on urgency (eg. debit authorisation takes priority over

sales history data).
• buffering, to get the best out of network charges (eg. by buffering sales

transactions to fully use the packet size available).
There are also several functions that are retail specific and are provided for
in RSM Level 4 products.

• Local authorisation of credit based on a combination of the following
checks:
- authorise all credit under a given amount (known as the floor limit).
- authorise up to the nth use of a credit card, referring all subsequent

uses to the card issuer for authorisation (known as a velocity check).
Typically used together with floor limit checks.

- check each card against a known list of invalid cards provided by
the card issuers (known as negative card checking against a hot card
file).

- refer all authorisation requests to the card issuer (known as positive
credit checking).

• In all cases a response is routed back to the EPoS terminal within a
specific time. Systems have to provide tools to allow response times to
meet very strict performance criteria.

• Logging of the sales audit trail, providing for recovery after loss of
continuity for whatever reason. A vital requirement of this function is
that no sales audit data may ever be lost.

• Distribution of non urgent data files on a record by record basis during
off peak times, or after all important store activity is complete. This
will allow, for example, a new programme update to be transmitted at
off-peak times over a period of several days.

The four-level approach allows the benefits of the generic capabilities of the
various products to be realised, and aligned with business benefit. It clearly
demonstrates the openness of the approach, in that the same functions can
be provided on a whole range of central and in-store systems. Since each

726 ICL Technical Journal November 1991

level adds function to the previous level, the requirement for showing
potential growth is met, as well as the need to offer several options at
different costs to the user. The increase in function can easily be related to
an increase in price.

Initially, the existing products (already numbering more than 50 on head
office systems alone!) were packaged only in a marketing context. However,
in 1990 another significant event occurred, the launch of DRS6000. For the
first time, Retail Systems could offer an acceptable alternative to IBM
mainframe processing, which allowed a change of development priorities.
The first RSM option on UNIX V.4, RSM Level 2, was generally released
in December 1990. During 1991, RSM UNIX options will be completed,
with levels 1 to 4 available on the UNIX V.4 platform.

Further development of the approach has lead to the introduction of the
concept of an RSM in - s to r e g a t e w a y . The RSM in-store gateway is a tested
grouping of all those functions needed to support a given level of RSM
functionality in the store. This was found to be required since the integration
and testing of the correct in-store communications and systems management
components was being left to the customer (or the ICL customer support
team), and thus adding significantly to the cost of sale. Thus:

• A level 1 gateway supports asynchronous, and bisynchronous file trans
fer protocols.

• A level 2 gateway supports the common “permanent” network protocols
(ie. SNA and OSI), and a file transfer protocol such as FTF.

• A level 3 gateway supports the systems management functions of Alert
generation, Software distribution and remote installation, and remote
operation.

• A level 4 gateway will support various access protocols to on-line net
works, and buffering mechanisms to allow message based data flows
between distributed applications.

As far as is possible, the RSM product is developed on generally available
ICL products, eg CFT, Community Alert Manager etc. However, the
emphasis on low cost networking has resulted in additional developments,
such as a Retail Connection Manager (RCM) for RSM Level 1. This facility
has added the vitally important asynchronous and bisynchronous dial-up
capabilities to the standard CFT product.

6 Experience of Retail Systems Management in use

The benefits that a Retailer can get from using RSM are very strongly
determined by the segment in which that Retailer operates. The RSM
product line recognises this by grouping the options into levels as described
above. Each level is particularly relevant in a certain retail segment, as
follows:

ICL Technical Journal November 1991 727

6.1 RSM Level 1: Dial-up data transfer

This is directly applicable to specialist retailers such as eg. jewellers, who
have many small stores, and stock a specialised range of goods. Sales
volumes are usually relatively low, and stores do not carry extensive ranges
of stock. In-store equipment would typically be one EPoS terminal.

In the USA, where telephone communication has traditionally been both
cheap and easily available, this method of managing data transfer is also
very common in the small to medium sized supermarkets, with store control
lers managing typically up to 30 EPoS terminals.

6.2 RSM Level 2: File Management

The amount of data generated in a medium sized supermarket or depart
mental store usually requires the ability to manage file transfers on-line. The
in-store equipment would typically still be limited to the system running the
EPoS equipment, although this would now be a server of some form,
controlling a number of EPoS terminals.

6.3 RSM Level 3: Operations Management

Any large stores (Hypermarkets, large supermarkets and large departmental
stores) are now likely to install increasing amounts of IT equipment, and
to run systems ranging from stock control to customer service applications
on them. Retailers need automatic alerting, software distribution and version
control, remote operation and problem tracking systems to keep down the
operational costs of such systems.

6.4 RSM Level 4: Message Management

The application of RSM style message management techniques in retail has
tended to follow a very pragmatic approach, being strongly influenced by
the data communications culture in each country. Thus, where public net
works have not been widely available, or have not been cost effective (taking
the cost per store into account), message processing is limited to credit
authorisation routing from store to card issuer. In some countries (most
notably in Canada) very cost effective connections to public networks have
been provided. These have encouraged the implementation of systems using
many of the RSM level four functions described in section 5.4. Retailers
that have taken this lead have received significant pay back in the reduction
of operating costs, resulting from both reduced charges for credit transac
tions and more efficiency in the management of store restocking, by holding
fewer goods in each store without running out of stock.

728 ICL Technical Journal November 1991

7 Examples of RSM products in use

Retail Systems Management products are currently used by more than 100
retail customers worldwide. The following selection of customers shows
RSM products in operation:

• The UK toy specialist, E a r l y L e a r n in g C e n t r e , have been users of Retail
47 on System 25 for several years. They have ICL 9518 point of sale
terminals in every store, which have been programmed in COBOL to
meet their specification. When the stores close, an overnight collection/
distribution cycle collects the day’s item movements and data on the
store takings, and distributes the price/item changes for the next day’s
trading. Communication is achieved over dial-up bisynchronous 2780
bulk transfer protocols.

• A S D A , well known UK food retailers, use RSM Level 3 on an IBM
mainframe to control the population of DRS20 in-store systems running
the General Merchandising System (GMS) developed by Retail Systems.
GMS controls all the EPoS terminals in a supermarket, and provides a
comprehensive set of retail options which ASDA exploit. As well as
transferring data to and from stores (store orders, price changes etc),
the DRS20 and GMS software is distributed and remotely installed
without the need for intervention by staff at the stores, and “alerts” are
routed to the help desk facilities supported by the central IBM
mainframe.

• D y l e x , the largest fashion retailer in Canada, use RSM level 4 facilities
on a number of System 25’s to manage the on line credit authorisation
and sales data capture from about 1400 stores across Canada, each
containing between 1 and 4 ICL 9518 point of sale terminals. The
Canadian Datapac network supplies a very cheap form of on-line con
nection (known as 3201, which is an asynchronous connection to an
X.25 network at 1200 bits per second); this makes running such a facility
very cost effective for Dylex.

8 Strategic Directions

The RSM programme faces three main challenges:

e providing close links with the all important retail applications that must
process the data being generated within retail organisations.

e exploiting new network technologies in such a way as to protect the
retailers investment in skills and applications, but quickly enough to
provide competitive advantage.

• exploiting international standards (such as those for systems manage
ment and electronic data transfer) as these become established in the
retail market.

An example of a retail application that will need to closely exploit RSM
facilities is a Strategic Marketing Information System of the type described

ICL Technical Journal November 1991 729

by Dobbyn and Cheesman (1990). Such a system brings together data from
many diverse sources and uses knowledge based techniques to synthesize
market conditions. More mundane, but no less important, are applications
that control the supply chain, ie the movement of goods from suppliers,
through a retailer’s warehouses to the stores.

The most prominent new network technology on the horizon is ISDN
(Orange, 1991). This has the potential to revolutionize retailers approach to
on-line message management, if it can be integrated into the data processing
environment without needing wholesale changes in applications and proced
ures. RSM provides a good framework for achieving this in the way that it
seperates the network details from the definition of data movement.

International standards that relate to Electronic Data Interchange (EDI)
are now taking shape and will allow more generic products to be developed
for the larger market that will emerge once the standards are accepted.
Standards for Electronic Funds Transfer (EFT) are very different from
country to country, making the development of generic facilities very diffi
cult. However, this is an important topic in retail and RSM products will
have to follow the key trends to keep up with the market.

9 Conclusions

Over the last decade retail businesses have won enormous benefits from the
automation of the check out procedure at point of sale.

Processing the information collected here and passing it rapidly back to
head office or to the source of supply has given retailers an ability to adjust
prices and stocks to meet changes in demand with unprecedented rapidity.

To be competitive or even to stay in business at all, retailers, now commonly
exercising control from mainframes at head office, must have an utterly
dependable network of communications channels to both depots and outside
suppliers, as well as links to national banks to verify the credit status of
customers.

All this has created a demand for integrated schemes that will manage the
entire system including both communications links and the installed ter
minals and computers - regardless of supplier.

ICL’s portfolio of Retail Systems Management products enables retailers to
manage their flows of data so as to strike the optimum balance, for a given
concern, between speed of transmission and response on the one hand and
cost on the other.

By conforming to industry standards, ICL RSM products can manage
networks linking hardware and software from a combination of sources.

730 ICL Technical Journal November 1991

Acknowledgements

- IBM and SNA are registered trademarks of the IBM Corporation Inc.
- UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in

the USA and other countries.
- X/OPEN is a trademark of the X/OPEN Company Limited.

References

DOBBYN, C. and CHEESMAN, J. SMIS-A Knowledge-Based Interface to Marketing Data,
ICL Tech. J. Vol. 7 No. 1, pp. 66-81, 1990.

GALE, A.C. The Evolution within ICL of an architecture for System Management, ICL Tech.
J. Vol. 7 No. 4, pp. 673-684, 1991.

ORANGE, M. Introduction to the Technical Characteristics of ISDN, ICL Tech. J. Vol. 7
No. 3, p. 451, 1991.

PISIGOT, Y. La Solution ICL chez Carrefour a Orleans, ICL Tech. J. Vol. 6 No. 3,
pp. 451-467, 1989.

Biography

Ian Pickworth

Ian Pickworth graduated from the University of the Witwatersrand in Johannesburg
in 1976, with a BSc in Computer Science. He joined ICL Dataskil in 1977, and
worked on Transaction Processing systems development, becoming a consultant in
TP systems design. In 1987 he joined ICL Retail Business Centre as a retail systems
consultant. He currently manages the Retail Systems Management Business Unit
within Retail Product Operations in Bracknell, UK.

ICL Technical Journal November 1991 731

Generation of Configurations - A
Collaborative Venture

Jim White
ICL Systems Management Product Centre, Basingstoke, UK

Abstract

Configuring networked, distributed systems and the applications that
run on them can be an error-prone task requiring significant levels
of skill. The problems associated with this can deter the growth of
Information System usage in an enterprise and/or reduce their capa
city to change.

The Generation aspects of ICL’s Systems Management Architecture
are specifically aimed at these problems. This paper describes how
ICL developed prototypes of its approach in collaboration with one
of its large customers. An overview of the approach is given with
some of the justifications for the particular choices made.

1 Introduction

The extent of the Systems Management problem posed by distributed sys
tems has been appreciated by ICL and the other suppliers for many years.
There have been many estimates of the amount of work, the complexity
and the diversity of skills required to realise management of a distributed
set of system resources. One of the most meaningful ways of quantifying
the task is to compare the programme to the development of a sophisticated
operating system like VME. The estimates, even with such a metric, vary
significantly, but all are daunting.

It was the appreciation of the size of the programme of work that prompted
Systems Management Product Centre to investigate collaborative ventures.
Potentially, collaborations reduce cost, supplement and complement our
skills and allow the ICL portfolio of products to be enhanced more rapidly.
Obviously, in the internationally competitive climate in which ICL operates,
rate of market penetration is a critical factor in establishing a presence in
this potentially lucrative new area.

732 ICL Technical Journal November 1991

The SM collaboration over configuration generation clearly illustrates the
benefits of such ventures. Collaboration with Inland Revenue has been
going on since 1988, and has produced a valuable prototype, code named
V250, which is regularly used to configure certain components in the Inland
Revenue network; the experience gained has advanced ICL’s developments
in the whole area of configuration generation.

2 Background

The generation of configuration parameters for the components of a network
has been a central aspect of ICL’s Systems Management since the beginning
of the Programme in 1983. By 1986 that aspect of the work had progressed
from the configuration of a DRS20 based electronic mail service to an
ESPRIT funded research project. Many valuable lessons learnt from the
mail work have been incorporated in the architecture and in all subsequent
work. The work done under the ESPRIT project attracted the interest of
the Inland Revenue whose operational experience had begun to reveal the
considerable costs associated with generating configuration parameters for
large networks.

Corporate networks are large, dynamic and complex entities intimately
associated with the commercial effectiveness and efficiency of their users’
businesses. Technological change and business growth mean that generation
is dynamic calling for frequent reconfiguration, while the size and complexity
of corporate networks increase the skill required to perform reconfig
urations.

Because the network is so important to business efficiency, any loss in
operational effectiveness resulting from erroneous configuration can be
expensive. Yet, existing configuration processes predominantly require the
manual generation of obscure parameters; this is highly prone to errors.

Thus network configuration is expensive because:-

• corporate networks are dynamic and require frequent re-configuration,
• configuration requires particular expertise involving skills in great

demand which are therefore expensive,
• existing configuration systems are essentially manual and so prone to

error, and
• because errors can result in the loss of operational effectiveness they

can be very expensive (for example the loss of the IR network for 8
hours results in lost time equivalent to a cost of £8 million for salaries
alone).

The recognition of these costs led IR to believe that network configuration -
not technology or business need - would ultimately constrain the size of
network that could be operated economically.

ICL Technical Journal November 1991 733

So there were two collaborators - IR and ICL. Successful collaboration
demands not only that both parties need to participate fully, but also that
both are willing and capable of doing so. In the case of Inland Revenue,
the need was to remove a constraint on “business” growth. ICL’s interest
in a successful outcome was to develop a unique product - one that solved
a problem encountered not only by many other customers but whose solu
tion can also increase market share by attracting new customers.

Inland Revenue’s contribution was their expert understanding of the prob
lem; this in turn enabled requirements to be clarified and solutions validated.
ICL’s contribution has been the architectural solution. Both organisations
contributed substantial development resources and specialist skills.

3 Architecture

Within the quality process model of systems management (Gale, 1991),
generation appears in the in tr o d u c t io n a n d d e p lo y m e n t s e c t io n between c h a n g e
and d is tr ib u t io n . The rationale behind this placement is that network com
ponents are re-configured as a result of some change - new requirements to
be satisfied or problem removal, for example. The resulting files of config
uration parameters are delivered to, and installed by, distribution on the
end-systems affected. (Barthram and Howling, 1991).

Fig. 1 Community Generation Architecture

The architecture of generation itself, is illustrated in Figure 1. The generation
architecture contains 7 processes; each is considered in turn.

734 ICL Technical Journal November 1991

3.1 Data Capture

Data is captured by the configuration designer who translates the service
requirements of the network users into the design of the network. A signific
ant influence on the design of data capture is the sheer quantity of data to
be collected.

Consider an organisation of 20 remote office buildings interconnected by an
X25 service. Each office has 10 floors each containing a LAN. Each LAN
contains 3 UNIX-based servers and 20 PC workstations providing access
to any one of 6 corporate mainframes. This fairly typical organisation
contains 6 corporate mainframes, 600 UNIX servers and 4000 PC’s. If, for
the purpose of illustration, we assume each component requires 20 items of
configuration information, we see a total requirement for this network of
over 92,000 items of information, a daunting challenge for data capture.

Use of high resolution graphics allows the designer to lay out the design of
a network in the way that he/she visualises it; this capability is enhanced by
using graphical techniques to display the various levels of hierarchical
decomposition in the network.

A significant reduction in the amount of data that has to be entered can be
achieved by recognising that many features of a network are replicas of
some other part; by providing data replication facilities pieces of design can
be copied easily thereby reducing detailed input.

Automatic deduction of information from that already provided can also
reduce the amount entered during data capture (see para 3.3 on Analysis)

The ability provided for users to indicate sub-systems that have similar
configurations so that the majority of data can be inherited automatically
and then edited to give local variants, reduces the amount to be captured.

3.2 Data Storage

Once captured, the data needs storing for subsequent processing and
retrieval. Due to the wide diversity of components in a network coupled
with the similarity of the functions a management system must apply to
those components, it is advantageous to adopt an o b je c t - o r i e n te d a p p r o a c h
and an o b je c t - o r i e n te d d a ta b a s e (OODB). The OODB is the subject of an
internal ICL collaboration (called Raleigh) between ICL’s Data Dictionary
group and Systems Management Product Centre to produce a Corporate
OODB. Raleigh is described elsewhere in this journal (Kay and Rivett, 1991)
and is another example of the benefits of collaboration.

ICL Technical Journal November 1991 735

3.3 Analysis and Validation

Validation significantly improves the value of the information stored in the
database, remember the error-prone manual system and the cost of disabling
parts of the network. So if the integrity of the data can be established and
error-free parameters created, a valuable facility will have been produced
for network users.

By analysing the stored definition of the network it is possible to detect
inconsistencies in that definition and to fill in many of the detailed linkages
which make the network work in practice.

Essentially, analysis and validation are achieved by the application of rule-
based logic to the relations portrayed in the database.

3.4 Extraction

Once a configuration has been validated configuration design is complete.
It is then the task of the configuration administrator to implement the
approved configuration. This delicate task requires that updated parameter
files be delivered to each end-system affected and that each of those systems
adopts the new configuration simultaneously. This is achieved through the
control of the distribution system. Thus the remaining phases of configura
tion generation are controlled by the configuration administrator using the
distribution facilities of system management.

As the name implies, e x t r a c t io n is the process of deriving configuration data
for each end-system from the database. The database contains a global or
‘birds eye view’ of the network - it sees every component in relation to every
other component. In order to configure each end-system individually, it is
necessary to extract the singular or ‘worms eye’ view of the network as
perceived from that end-system. (This view contains only that information
required by that specific system to perform its role in the overall system
design)

Unfortunately, there is no established standard for configuration para
meters. Over the years each component designer has selected parameter
formats for the convenience of the specific component in operation. Yet
from the earliest endeavours in generation ICL learnt the importance of
isolating the extraction process from the variation between parameter files.
Extraction is a complex process in itself and, would become unwieldy if it
were not isolated from the numerous, diverse and varying formats of para
meter files.

To achieve the necessary isolation ICL introduced the concept of a file of
g e n e r ic c o n f ig u r a t io n p a r a m e te r s . This file is based on the principle of provid
ing an end-system and all its associated components with all information
necessary for it to be configured. It provides the missing standard for a

736 ICL Technical Journal November 1991

parameter file. The file is called a Configuration Conformance Document,
or CCD for short. ICL is encouraging the appropriate standards organisa
tions to introduce such a concept for the benefit of the entire networking
community.

Extraction then, is the process of deriving from the validated database a
CCD for each end-system affected by a reconfiguration.

3.5 Translation

If there were an established standard for a CCD, then end systems would
be designed to be configured directly from CCDs. However to become
meaningful to an end system, CCDs need to be converted to the file format
of that system. This conversion from a CCD to a parameter file is known
as t r a n s la tio n .

To become configurable from CCDs, each end system requires a t r a n s la to r .
This is the cost of not having an established standard for configuration
parameter files and of achieving isolation at the extraction phase. At least
this approach limits any change in the requirement for the configuration of
an end-system to its own translator and prevents destabilisation of the
extraction process.

In general, a change to the network, arising from either the need to resolve
an operational problem or meet a new requirement, will affect the configura
tion of a number of end-systems. Therefore, there could be many CCDs
and translation into parameter files could represent a significant computa
tional load. In the interests of processor efficiency it may be prudent to
decentralise the translation to a number of processors rather than restrict
the availability of a central processor during translation. The Distribution
System offers the option of centralised or distributed translation. There is
an intermediate phase between extraction and translation, during which
CCDs are distributed to the remote processors for translation.

The progress of all the configuration phases from extraction onwards is
monitored by the Distribution System. When the system is satisfied that a
translation has been completed successfully, parameter files can be delivered
to the appropriate end-system and installed.

3.6 Activation

Only when all the parameter files have been successfully installed on their
end-systems can a c t i v a t io n be considered. Activation is the process by which
an end-system and its components “adopt” a new parameter file. To ensure
continued communication it is essential that all end-systems adopt the new
parameter files at the same moment.

ICL Technical Journal November 1991 737

If the newly configured system is found not to provide the desired result,
then the Configuration Administrator has the option of r e g r e s s in g to the
previous parameter files. Regression is basically the reverse of activation
and, of course, it is just as important that it occurs simultaneously on all
end-systems.

3.7 Tidying

Once the Configuration Administrator is satisfied that the new configuration
is working correctly and that there is no longer a need to retain the previous
version of the parameter files, then they can be deleted by issuing a t id y
instruction to the Distribution System.

4 The Achievements of Collaboration

The configuration generation collaboration has had two phases:

• the development of a working, bespoke prototype known as V250 and
• the development of a generic solution

An experimental version of the generation software known as V250 was
first tried out in 1990 at Inland Revenue. The first four stages of the process
were “bespoke” in V250 inasmuch as (for speed and convenience) they were
based on existing IR data files. V250 was designed to configure DRS300,
MCUls(Network Gateways), VME-hosted TP services and the VME cata
logue. Choice of these network components reflected the interests of the two
collaborators:

• they constituted a significant portion of the IR network
• being quite different components a terminal, a gateway, a service or a

mainframe - they represented a rigorous test for the configuration
architecture.

Work started on V250 in June 1988 and eventually involved over 60 staff
from Inland Revenue, the ICL (UK) IR Account Team, the sub-contractor
Northern Computing Services, and from the former Mainframes, Office
System and Network Systems Divisions of the ICL Product Operations
Group working on 5 sites.

The product was delivered on schedule in January 1989 to an independent
validation, conducted by Inland Revenue and ICL staff, and was put into
service in October of that year.

The objectives of the collaboration were achieved in that:

• the viability of the architecture was proven,
• network components of different types were configured, and
• the time and the cost of configuration were reduced significantly.

738 ICL Technical Journal November 1991

V250 currently configures 17 mainframes and over 400 terminals repres
enting over 1000 objects requiring a database capacity of 300 M Bytes; it
will soon be extended to cover 1100 terminals. Revenue regard the system
sufficiently highly to have extended its scope to configure their IRON
terminals from Bull.

The second phase of the collaboration, known as Community Generation
Manager (CGM), is a generic product removing dependence on bespoke
Inland Revenue datastores.

The CGM project is supported by three converging streams of development:-

• an Object Oriented database (OODB)
• a suitable graphical HCI and
• a refinement of the configuration application.

Each development stream is producing a series of increasingly complex
prototypes that are being integrated into the application stream.

This prototyping approach was adopted to ensure that the viability of each
level of complexity is established before proceeding to the next. Essentially
the approach is a form of risk management for the development of complex
products using unproven technology. The approach has proved successful
to date with the first set of prototypes available for demonstration; work is
well advanced on the second set of prototypes.

5 Conclusions

There is a serious need for tools to make network configuration generation
easier and less error prone; without these the manageable size of network
is serverely limited and there is a risk of significant financial losses from
human error.

Inland Revenue and ICL have collaborated:

• to give clear expression of this need which would have been far harder
for either to do independently.

• to bring into operational use an approach, which has been working
satisfactory for 18 months, to meeting the need to develop the experience
and knowledge which will now be made more widely available in future
releases of ICL products (known as Open Systems Management Centre).

Acknowledgements

Many people have been involved in this work but special mention must go
to Mark Bestwick (ICL), Clive Fenton (Inland Revenue) and Mike Headd
(Northern Computing Services).

ICL Technical Journal November 1991 739

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the
USA and other countries.

References

GALE, A.C.: The Evolution within 1CL of an Architecture for Systems Management. ICL
Tech. J. Vol. 7 No. 4, pp. 673-685, 1991.

BARTH RAM, P.K. and HOWLING T.D.: Distribution Management ICL’s Open Approach.
ICL Tech. J. Vol. 7 No. 4, pp. 702-717, 1991,

KAY, M.H. and RIVETT, P.J.: An Overview of an Raleigh Object - Oriented Database
System. ICL Tech. J. Vol. 7 No. 4, pp. 780-798, 1991.

WILES, P.R.: Government IT infrastructure for the Nineties (GIN) - an Introduction to the
programme. ICL Tech. J. Vol. 7 No. 2, pp. 412-431, 1990.

Biography

Jim White

Jim White took a PhD degree in physics at Birmingham University in 1975 with a
thesis on the slowing-down time of neutrons in iron. He joined ICL in 1984 and
from then to 1988 was project manager for CFT (Community File Transfer) and
for CAM (Community Alert Manager). From 1988 to 1990 he was collaboration
manager for the Inland Revenue project and from 1990 to 1991 was the development
manager for SMPC. He is currently responsible for SM major projects and the SM
Partnership Programme.

740 ICL Technical Journal November 1991

Operations Management

David Hacker
ICL Systems Management Product Centre, Basingstoke, UK

Abstract

Earlier in 1991 ICL launched a set of software products called the
Open Systems Management Centre (OSMC). This paper describes
the Operations Management component of the OSMC and explains
what ICL customers need to do in order to achieve an improved
level of manageability using the current release of OSMC.

The OSMC programme recognises that m a n a g e a b il i ty needs to be
an integral part of the development process of all applications in the
future. Therefore ICL is working on the establishment of a number
of relevant standards for Open Systems. In the interim, a number of
facilities for operations management are provided that do not require
changes to the applications involved. Such ease of implementation
greatly enhances both the flexibility and speed of implementation of
systems management across a network conforming to standards for
Open Systems.

Where the end systems are not open, i.e. they conform to proprietary
protocols, and where the OSMC infrastructure exists, manageability
can still be provided through Operations Management, though this
requires a small amount of bespoke application code to be written.

The paper shows how OSMC Operations Manager allows a service
provider to be forewarned of problems before they impact the level
of service provided to the user. Thus the service provider can be
proactive rather than reactive. This behaviour is fundamental to
improving both the actual and the perceived level of service comput
ing offers to business.

1 Introduction

Operations Management is the stage at which all the detailed planning and
development of a business system becomes a reality. It is the stage at which
that system goes live. Nevertheless facilities for management of operations
have been the least developed. Applications development has been, and
continues to be, the focus of interest and activity with CASE tools. In too

ICL Technical Journal November 1991 741

many cases when the application arrives at the Data Centre, far too little
thought has been given to the way it runs and how it is to be managed in
routine operation.

The shift to distributed systems and the associated client-server architecture
compounds the problem. Only too often the Data Centre Management are
firefighting; the first they know of a problem is when the user (phones up
and) complains, yet again, of an unacceptable level of service.

Applications developed for a distributed environment are often just repeti
tions of some centralised application, there may have been no recognition
of the fact that different issues have to be addressed in a distributed environ
ment. Perhaps the most significant of these is a distributed office application
which runs “standalone”, but linked to the network with no skilled IT staff
in attendance.

With the launch of its Open Systems Management Centre (OSMC) product,
ICL offers a range of software that starts to address the operational issues
of a (distributed) Data Centre. The particular purpose of the Operations
Manager in the OSMC product set is to allow staff at a Data Centre to
monitor and control existing applications remotely. Thus operational prob
lems can be tackled more effectively at the centre in the light of a much
more comprehensive picture of the situation than could be available locally.
As a consequence action can often be taken before service becomes dis
rupted.

In this paper the fundamental principles of the OSMC Operations Manager
are described, together with an indication of what each application owner
must contribute to achieve a managed community of applications through
out an enterprise. It is the responsibility of each application owner to define
how his application can be managed.

2 Operations Management within OSMC

The OSMC architectural framework (Gale, 1991) distinguishes three areas
of Management: •

• operational control
• introduction and deployment
• planning and reporting.

Operational Control is further sub-divided into:

• operations management
• problem management
• performance management aspects of capacity management
• activation management aspects of distribution management.

742 ICL Technical Journal November 1991

Operations Management, which lies at the centre of the OSMC, is concerned
with the real-time flow and control of the work through the Data Centre
and with the administration of the Data Centres’ resources themselves.

Areas typically considered to be part of Operations Management include:

• job scheduling
• console message management
• tape library management
• file store management
• system archive and backup
• print production and distribution
• environmental control
• support and call-out.

Traditionally, most operating systems have provided only rudimentary facil
ities in these areas, thus leaving the way open for third parties to offer
packages to the Data Centre’s Service Provider.

The design of OSMC recognises the need to provide an integrated range of
applications for use by the Service Provider in day-to-day operation at the
Data Centre. Because computing is increasingly adopting client-server archi
tectures, tools for operational management must themselves be distributed
and operate over a common infrastructure picking up Open as well as de
facto and proprietary standards.

Furthermore, most products available in today’s market are passive mon
itors of status, that is to say, they only report status information. To realise
the full benefit, the Service Provider needs to take action, via remote login
etc., to make the necessary correction. It is even better if a common user
interface can be provided for the disparate end-systems and applications
now encountered in many networks.

3 Issues for the Service Provider

From an Operational Management perspective, a Service Provider is faced
with a number of issues both technical and social:

1 Ignorance, on the part of operating staff", of what is happening, when
and where across the distributed IT environment.

2 The need to be constantly fighting fires or reacting to pressures or threats,
from users.

3 Pressures for longer hours of business, involving lengthier processing
times and shorter windows for background tasks such as system adminis
tration and housekeeping.

4 Growing constraints on costs and on-going shortages of skilled IT staff.
5 Social and financial pressures to reduce shift working, especially at night

and at weekends.

ICL Technical Journal November 1991 743

6 Insufficient attention given to operational aspects of managing applica
tions, more especially distributed applications.

7 A lack of tools to help run a distributed environment.

As a result many Service Providers feel themselves to be running fast merely
to stand still. Their users on the other hand may see the service provided
as expensive, unresponsive and late.

4 OSMC Operations Manager

OSMC Operations Manager caters for remote management of networked
systems. Its facilities enable a Service Provider to take a comprehensive view
of all the components that together deliver the services for which he is
responsible. He can decide which areas most need corrective action, taking
the business view rather than a technological view of what should most
urgently be fixed.

Central to OSMC Operations Manager is an ability to display information
from and manage a number of different types of system from a single
location. Systems are displayed graphically as colour coded glyphs (Small
et al, 1991). Each glyph can represent a number of managed objects (servers
or applications) which in turn can be broken down to finer levels of granular
ity. This removes the need for first-level operations staff to be familiar with
the individual command sequences of the different operating environments.

OSMC Operations Manager is available on both Series 39 and DRS 6000
central management systems. A number of OSMC Operations Manager
centres can be distributed across an organisation, hosted on any combina
tions of Series 39 and DRS 6000 central management systems. These centres
can, if required, be networked together to form a regional management
capability.

A schematic of OSMC Operations Manager is shown in Figure 1.

The software components of OSMC Operations Manager addressed in the
rest of this paper are:

1 Operations Control Manager
2 Status Monitoring
3 Operations agents for VME and for UNIX

4,1 Operations Control Manager

The Operations Control Manager (OCM) is a graphics based system using
a high resolution SUN 4 SPARC workstation (Small, 1991). The OCM
provides facilities to display graphically, either logically or geographically,
significant status information about the managed IT objects (systems and

744 ICL Technical Journal November 1991

Fig. 1

services). The information displayed can be exploded to show greater detail
of the network of managed objects and may be accessed from any level in
this hierarchy. The OCM includes a knowledge base of the objects being
managed.

The high resolution graphical display of the OCM is based on the ‘Open
Look™’ User interface standards and provides:

• standard glyphs to represent managed objects
• colour to indicate status of managed systems
• display layout editable by the user
• display expansion facilities
• automatic propagation of status change
• menus of actions available for each managed object
• access to DRS/NX and VME systems by terminal emulation.

Through the OCM, Operations Manager provides facilities for remote man
agement of the IT infrastructure:

• monitoring of status, prompts and alerts in real time
• operational control
• monitoring of performance and file threshold in real time
• archiving and housekeeping remote systems
• automatic operation of VME systems.

To reduce the need for the central OCM operator to have specific operating
system knowledge, the command structure of managed objects is represented
as a set of generic commands to initiate those functions common to all
environments, such as loading services and showing print queues. These

ICL Technical Journal November 1991 745

commands are initiated from and the results displayed by, the OCM (see
Figure 2).

Fig. 2 Diagram (to improve clarity) from actual photo. Icons show connected systems and
represent status of groups of machines at each location. Location BRA05 has been expanded
showing two DRS6000’s there; one DRS6000 has been further expanded (IMC12 window) to
show status of processes running on it. The operator can now select further information or
issue commands from the menu.

4.2 Status Monitoring

Status Monitoring provides facilities to monitor the current status of objects
and to record the history of their change of state via a s p o n s o r at the
managed object. A management system may have several Status Monitors.
These may be linked in a hierarchy or operated independently. Each may
address an individual view of objects being monitored even on the same
host platform. For instance one view might be of the databases distributed
across the network while another view could be of the Office Power applica
tions running in a particular geographical region.

Operations Manager provides the required flexibility, since every customer
installation will be different when organisational, resourcing, political and
other factors are taken into account.

OSMC Status Monitor follows the ISO/CCITT standards for Operations
Management and status conditions. Status is defined in accordance with

746 ICL Technical Journal November 1991

OSI standards (ISO 10164: Part 2). Status information on managed objects
can be provided in three ways:

4 .2 .1 P o l l a n d R e s p o n s e The managing status monitor polls its managed
objects to enquire on their current status plus the status of objects that it
in turn knows about. The managed element responds if it is able to do so.

4 .2 .2 H e a r t b e a t The managed object provides alerts at regular intervals
as defined in the status database, thus notifying the managing status monitor
that it is still working.

4 .2 .3 S t a t u s C h a n g e N o t i f i c a t io n The managed object notifies its status
manager whenever its status changes, or when one of the objects it is
monitoring does so.

The Status Monitor uses this status information to determine the operational
status as defined by ISO (active, busy, unknown, disabled or enabled) and
the ISO administrative status (unknown, locked, unlocked or shutting
down).

Combinations of operational and administrative status are used to determine
the overall management status of the object being monitored. This is then
fed into and displayed by the Operational Control Manager.

4.3 Operations Agents

Operations Agent is the name given to software that runs on a remote
managed system, and provides the status information requested for display
upon the OCM.

An Operations Agent is a very powerful tool and one that is easy to
implement. All software, whether system or application, needs to exploit
the Operations Agent to realise the first phase in Systems Manageability.

Using the Operations Agents (either VME or UNIX) the interaction of the
application with its environment can be monitored w i th o u t n e c e s s a r i l y m a k
in g a n y c h a n g e to th e a p p l ic a t io n s . These interactions can relate to specific
events or to thresholds being exceeded.

Use of Operations Agents is very simple to implement. It is called the
Remote Management System (RMS) and there are versions on both VME
(where it is also known as VSS) and UNIX (Ref. 3).

Configuration of RMS for both VME and UNIX requires a number of
clearly defined parameters to be submitted, including:

1 name of the o b je c t to be monitored (ie its file name, process name etc)

ICL Technical Journal November 1991 747

2 the th r e s h o ld above which a status change will occur (ie percentage of
file store utilisation or percentage of cpu utilisation)

3 the in te r v a l for reporting status information.

Any number of objects can be monitored on an individual remote system.
For example each of five business applications, their major files, communica
tions and swap space could be monitored individually.

All product authorities and application developers need to establish how
best to implement RMS on their environments. The information needs to
be published as part of their supporting documentation.

4.4 Current Implementation

The list of objects currently monitored by the VME and UNIX RMS is
given in Table 1 with a brief summary of what is available at the current
release of OSMC (OSV230).

Table 1 Objects that may be managed by RMS under VME or UNIX.

UNIX objects VME objects
via RMS via RMS/VSS

Host Status of UNIX Status of VME
server server

Process Status of any named Specific VME processes
UNIX processes are CAM, TPMS 510 and

520, IDMSX, VCMS and ASO

Processor use Percentage threshold Percentage threshold
monitoring of UNIX monitoring of VME
swapspace secondary store

File space Percentage threshold Percentage threshold
monitoring of named monitoring of named VME
UNIX files filestore objects

Printers Status of named Status of VME
UNIX Printqueues spooler

Communications Status of UUCP and Status of file
status and percentage transfer
threshold on OSLAN
and X.25

Peripherals Using basic status Status of named
sponsor and user VME peripheral hardware
written application units

748 ICL Technical Journal November 1991

5 Conclusions

The OSMC Operations Manager is expected to provide a simple but power
ful tool to enable the status of remote servers and their services to be
monitored and displayed centrally.

The current release of OSMC also provides tools for monitoring an existing
application without affecting that application. This enables the service pro
viders to begin very quickly to gain the benefits of using OSMC.

Operational Control Manager not only allows corrective action to be taken
(quickly) but allows that action to be done in a preventive fashion ie before
too much damage has resulted and the levels of service impacted.

The use of icons to initiate remote logon and subsequent command sequences
using a simple human interface, irrespective of the environment of the
remote object, simplifies and speeds up the responsiveness of those working
at the management centre.

What is essential is that the staff of a Service Provider are seen to be “in
control of the situation” at all times, or, in other words, that they have the
facilities and are both trained and organised in advance to respond appropri
ately to any changes in operating conditions or to any crisis, and are not
merely obliged to cope unprepared as best they can.

The task of providing implementation rules for the operations agents for
ICL applications is believed to be simple and straight forward.

Acknowledgements

UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the
USA and other countries. SPARC is a trademark of Sun Microsystems Inc.

References

1 GALE, A.C., An Evolution within ICL of an Architecture for Systems Management, ICL
Tech. J. Vol. 7 No. 4, pp. 673-685, 1991.

2 Information Processing Systems. Open Systems Interconnection. Systems Management
Overview. ISO/IEC DIS 10040.
Information Processing Systems. Open Systems Interconnection. Systems Management -
Part n. ISO/IEC DIS 10164 n (n = 1-7).
Information Processing Systems. Open Systems Interconnection. Systems Management -
Part n. ISO/IEC CD 10164 n (n = 8 -l l) .

3 VME RMS Manual. C1SG/CCC/CDS/449.1 (Issue 1).
UNIX RMS Manual. 11092/001.

4 SMALL, M. et al., OSMC Operations Control Manager, ICL Tech. J. Vol. 7 No. 4,
pp. 751-762, 1991.

ICL Technical Journal November 1991 749

Biography

David Hacker

David Hacker is the Marketing and Services Support Manager for the Open Systems
Management Centre. He has been with ICL for four years, working on Systems
Management in both Development and Marketing capacities. Before joining ICL
he worked for a number of years as a consultant, advising clients on running their
data centres and taking personal responsibility for data centre operation as a consult
ant and as a line manager previously. In his current role, He has responsibility for
the marketing of OSMC, the consultancy support required in installation and com
missioning on customer sites and any subsequent 3rd and 4th line support issues
that may arise.

750 ICL Technical Journal November 1991

OSMC Operations Control Manager

M. Small, J. D. Mitcalf, K. J. Johnstone, J. W. Doores
ICL Strategic Systems, Cardinal House, Manchester, UK

Abstract

A company which operates a large IT system often has a number of
mainframes and office systems. These may be in different locations
and each location may be supported by a team of IT personnel. The
Operations Control Manager (OCM), which is part of the OSMC
system allows the management to control these systems from a
central location.

The OCM uses a graphics based workstation to display a view of
the entire network. It displays the status of specified objects, so
allowing the central operator, to investigate and issue commands to
the managed systems. When necessary it is possible to expand and
view parts of the network in greater detail.

The OCM was developed using ICL's Marketing-to-design methodo
logy. This methodology incorporates human factors into product
specification and design resulting in products which are more
acceptable to their users.

1 Introduction

A company which operates a large IT system often has a number of main
frames and office systems. These may be in different locations, and each
location may be supported by a team of IT personnel. The Operations
Control Manager (OCM), which is part of the OSMC system, allows the
Management to control these systems from a central location.

The OCM uses a graphics based workstation to display a view of the entire
network. It displays the status of specified objects, so allowing the central
operator, to investigate and issue commands to the managed systems. When
necessary it is possible to expand and view parts of the network in greater
detail.

The OCM allows the management of a large number of objects. These may
be complete mainframe systems, or items related to these systems, such as
services or terminals. When the OSMC system is installed, a database known

ICL Technical Journal November 1991 751

as the OCM knowledge base is set up which mirrors the configuration of
the IT system. This may subsequently be amended to reflect any changes in
organisation. The managed objects may be remote systems running under
VME or UNIX.

Using the OCM is intuitive. Menus and commands are defined to make the
system easy to use, and there are prompts and pre-defined forms which
make selections and data input easy to understand.

The OCM system is designed to fail safe. If any faults occur on the OCM
or the central system they will not have any effect on any of the managed
objects. If a fault does occur, any incoming status changes from the managed
objects are stored until the system is back on-line.

Clearly the facilities provided by the OCM are very powerful and must be
secure against unauthorised use. To log in to the OCM you must supply a
user name and a password. Once you have gained entry to the system, you
can explicitly lock the OCM terminal without disconnecting it from the
OSMC system. When the system is locked, the screen goes blank and the
system can only be unlocked by supplying the password of the original user.

2 The OCM within the OSMC

The OCM is based on a SUN workstation with a high resolution colour
graphics screen. The workstation runs on the SunOS 4 UNIX operating
system. Figure 1 shows the position of the OCM within the OSMC system.

I — ______ _____
-------------1 I------- — - f l CAS L ------------------------d CAS

-------- I---------- ‘- x - 1 h ~ i|— * CAS 4 -------------------- 1 11 ,l

J nemote Ooerations Control 4 ------------ »MS r J Manager Manager ■ '
1 _ J S ta tu s _____ ________________________ _______________ SUN4 (... \

Sponsors
I----------------1 OSMC Display Keyboard

and Mouse
VME and UNIX

managed systems

Fig. 1 The OCM within OSMC

The principal source of information for the OCM is the Community Status
Monitor (CSM), which runs within OSMC Operations Manager. The CSM
receives requests for status, which it either responds to directly (from
information which it has already collected), or passes the request on to a
managed subsystem. Information is either aggregated or passed on to CSMs
at a higher level, therefore the CSM must be configured so that missed
heartbeats or changes of state detected in systems being managed from the
OCM are notified to the OCM.

752 ICL Technical Journal November 1991

For the transmission of commands from the OCM to the managed objects,
remote management software (RMS) and status sponsors must be installed
and running on the remote system. This combination of OCM and RMS
allows the control of a managed object from the OCM using the menus
of actions held in the OCM. When an action is selected at the OCM
this is transmitted to the RMS via a CMIS/P interface. The RMS then
executes the command on the managed object and returns any response to
the OCM.

3 OCM Design

To ensure that the OCM was designed to match the requirements for
centralised operational control, a detailed study was undertaken. This study
followed the TCL Marketing to Design Methodology described elsewhere
(Hutt, 1990). This considered in detail the user roles, their tasks, the pro
cesses followed and the objects involved.

3.1 Organisation

While IT departments may have a common purpose they do not have a typical
organisational structure. This is further complicated by the trend toward cent
ralisation and the presence of equipment from a number of vendors.

An organisation may have started to move towards centralised operation
with some sites centralised while still retaining some distributed sites. Man
aging this transition is in itself a significant challenge.

An organisation may have equipment on some sites from different manufac
turers. Where there are a number of vendors, it is often the case that the
IT organisation is split at a high level according to vendor. This poses
further problems when trying to centralise operations.

Thus it is important that the OCM is flexible enough to match a range of
organisational structures. This is achieved by considering the roles that will
make use of the OCM rather than the job titles.

3 .2 R o le s

At the highest level the roles involved in providing computer services may
be divided into 2 categories:

P la n n in g r o le s : concerned with ensuring that the computer services provided
continue to be satisfactory and efficient in the future. For example capacity
planning, service level agreement and change control.

O p e r a t io n a l r o le s : concerned with the real time activities of providing a
satisfactory computer service today. The OCM is intended to support these
roles which are:

ICL Technical Journal November 1991 753

• Operating Systems Operator
• Event Monitor
• Job Scheduler

The role of the Operating System Operator is undertaken by staff in opera
tions performing tasks to progress the workload of jobs.

The role of the Event Monitor is normally undertaken by operations staff
responsible for the day-to-day running of the machines, i.e. the shift super
visor or senior operator.

The role of Job Scheduler is undertaken by operations staff responsible for
ensuring that the jobs in a workload run as scheduled with the correct
priority given to the appropriate jobs.

3.3 Tasks

Providing computer services involves two basic tasks:-
• following a predetermined schedule to run jobs, do housekeeping,

archiving, etc.
• monitoring services - when events occur, prioritise them and respond

to items in this event agenda.

3.4 Objects

The principal classes of o b je c t s are the following:-
• o p e r a b le o b je c t s : hardware, services, queues, jobs and processes.
• r e s o u r c e s : filestore, memory, processor time.
• e v e n ts : alarms, messages, operating system prompts etc.

While similar in concept, the details of these objects vary considerably
between operating systems and hardware types.

3.5 Processes

The processes involved in the central operations task are represented in
Figure 2. The boxes are user roles and the arrows indicate the passing of
control of an action.

3.6 Attributes Required

From the study described above, a number of conclusions were reached
about the necessary attributes of the OCM.

a) overall graphical presentation

In centralised operation the operations staff need to have a representation
of the whole IT infrastructure to work with. They need this to identify

754 ICL Technical Journal November 1991

Fig. 2 Process Model for Central Operations

problems quickly, as they occur, within a large and complex environment.
Therefore a multi-level display is required. This should provide both an
overall summary from which it is easy to see whether or not there are
problems together with detailed expansion to allow specific problem areas
to be investigated.

b) unified control interface

Different hardware and operating systems provide different ways of per
forming similar tasks. In a multi-vendor environment with central control
this will pose a skills problem. To reduce the range of skills necessary a
unified control interface is required at the OCM, isolating the operational
staff from the intricacies of the systems being managed.

4 OCM Interface

4.1 Management Interface

The OCM is used to display and manage the whole, or sections, of a
company’s IT network. Figure 3 shows an example of the type of network
which may be managed by the OCM.

ICL Technical Journal November 1991 755

Fig. 3 Overall Network Display

The representation of the network is created, and may be amended, using
editing facilities which are available with the OCM. The configuration of
the network and the properties which identify each object which is managed,
are held on the m a n a g e d o b je c t k n o w le d g e b a s e .

The user interface of the OCM is entirely isolated from the operational
inconsistencies of the objects it manages. This is of benefit to the user, who
need not learn the intricacies of the systems under his supervision.

The OCM interface is based on the OPENLOOK™ user interface. For
further information on its facilities, see (SUN, 1990).

4,2 Managed Objects

The individual systems or system components which are managed, are
known as m a n a g e d o b je c t s . They may be: •

• managed computer systems, such as VME or UNIX systems
• services, such as TP
• important network components, such as schedulers or printers

756 ICL Technical Journal November 1991

The managed objects are represented on the OCM screen by glyphs*, each
of which is coloured to represent the current condition, or status, of its
corresponding managed object.

The OCM uses different glyphs to represent different systems.

Glyphs may represent:

• managed systems, such as VME or UNIX
• components of managed systems
• networks, such as OSLAN or X25
• groups of managed objects. These are complete systems which are

grouped together for geographic or other reasons

Fig. 4 Examples of Glyphs

Examples of glyphs are shown in Figure 4.

When the system is running, the glyphs are coloured in to represent the status
of each managed object, and they change colour to reflect a change of status.
For example, a glyph may be green to represent that the object is on-line and
running. A change to red may indicate a problem which needs investigating.
A black glyph indicates that the managed object is not supplying performance
data. For more information on the use of colour see Van Larr (1990).

On the diagram glyphs may be linked to show connections in the network.
They can also be expanded. For example, a g r o u p g l y p h may be expanded,
when necessary, to show all the separate managed objects within the group.
An expansion can also be used to show all the underlying objects of a system
(such as printer queues or file store).

The glyphs and the colours used to indicate a change of status are set up
at installation. The colours used are standard over all the managed objects.
The default colours may be tailored on installation.

'"glyph" is the OPENLOOK term for a picture used as the title for an object. The term
"icon”, which is more commonly known, is reserved for the closed representation of the
base window to an active application.

ICL Technical Journal November 1991 757

4.3 Managed object containment tree

The OCM uses the concept of a c o n ta in m e n t t r e e to define a hierarchy of
managed objects.

An object, which is defined on the OCM, may itself contain other managed
objects, each of which may transmit status information to, and receive
commands from, the OCM.

For example, a UNIX managed object may be defined which may itself
contain managed objects. These will be the components of the system, such
as printers or filestore, or services running on the system, such as TCP/IP.
If they are defined to do so, these contained, or underlying objects may each
transmit status information to the OCM and receive actions in return.

Therefore, any underlying object may be managed in its own right, although
it is contained within another managed object, hence the term containment
tree.

The managed objects contained within another may be viewed by opening
an expansion window, as in Figure 5:

Fig. 5 Managed Object Expansion

If there is a change of status of an object within a containment tree, the
associated colour change is propagated upwards. Therefore, if the top level
glyph on the display changes colour, an expansion window can be used to
identify the object which has caused the change.

4.4 Action Menus

A menu of actions is associated with each glyph. The particular
actions depend upon the type of managed object. These come from

758 ICL Technical Journal November 1991

the class definition hierarchy associated with the managed object in the
knowledge base.

Thus, if a glyph indicates a change of status of an end-system, it is possible
to determine from the OCM which sub-component has changed status, and
issue a command from the menu associated with the sub-component. As an
example, if the sub-component is a printer, one can decide to disable the
device. Figure 6 shows the actual menu for printers on UNIX.

Fig. 6 Action Menu Example

4,5 Terminal Emulation

One can carry out most operations by menu selection. However, one may
also use the OCM as a remote terminal to enter commands or make enquiries
of a managed system. Figure 7 shows a terminal emulation window to VME.

Fig. 7 VME Terminal Emulation

ICL Technical Journal November 1991 759

5 Summary and Conclusions

This paper has described the OCM, a graphics based system presenting a
unified management interface to VME and UNIX systems. The OCM was
designed using the ICL Marketing-to-Design methodology which identified
the key useability requirements. The OCM has been implemented on a
SUN4 workstation using OPENLOOK™ graphical standards. The OCM
works in conjunction with the other standard OSMC products using stand
ard open interfaces.

The experience at the time of writing is that the ICL marketing-to-design
methodology proved to be effective, that the OCM matches the requirements
of users for the systems operations task. Also it enabled a system to be
designed, that is flexible enough for a variety of organisational structures
and which can be extended to cover the management of hardware and
operating systems provided by other suppliers.

Acknowledgements

UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the
USA and other countries.

OPENLOOK is a trademark of SUN Microsystems Inc.

References

HUTT. A.T.F. et al., The Development of Marketing to Design. The Incorporation of Human
Factors into Product Specification and Design. ICL Tech. J. Vol. 7 No. 2, pp. 25.3-269, 1990.

SDN MICROSYSTEMS INC., OPENLOOK Graphical User Interface Application Style
Guidelines, ISBN 0-201-52364-7

VAN LARR, D. et al. How to use colour in Display II. Coding, Cognition and Comprehension.
ICL Tech. J. Vol. 7 No. 2, pp. 362-383, 1990.

Biographies

Mike Small

Mike Small is responsible in Strategic Systems for the design of knowledge-
based systems management applications and, currently, for the Open Systems
Management Centre Operations Manager. This is a real-time expert system for
monitoring and controlling a set of services running on multi-vendor equipment
to be controlled over an OSI network, and incorporating manageability definitions
of services based on standards emerging from the OSI Network Management
Forum.

760 ICL Technical Journal November 1991

He started in ICL at West Gorton nearly 25 years ago, with design of mainframe
computers. He was next responsible for software tools for developing 2900 test
software and, later, for test software for design, manufacture and maintenance of
the ICL ME29 series.

Since creation of the Knowledge Engineering Group he has been concerned with
commercial exploitation of software technologies and tools derived from research
into AI. He was responsible for system design of VCMS (VME Capacity Manage
ment System), a knowledge-based system for planning and monitoring performance
and capacity of VME systems, which won the IPC “million in one” award in 1987.
He also received the ICL GOLD quality award for this work. He was responsible
for OM AC Expert, an expert system forming part of OM AC 2000, a system allowing
customers to model decision-making by their material control staff in the form of
rules. These rules are then used by OMAC MRP to confirm selectively raising of
orders and for supression of MRP actions.

He has published many papers in the ICL Technical Journal and the proceedings of
international conferences.

David Mit calf

David Mitcalf took a degree in management science in UMIST in 1979 and joined
ICL in the same year. He worked on the STAGE II project for the DHSS developing
front end processor software. In 1983 he joined the newly formed Knowledge
Engineering Business Centre working on ADVISER, an ICL expert system shell.
He has been in Strategic Systems for some 8 years as a technical team leader. In
that capacity he has worked on OCM, for the past 18 months, as technical design
authority. During that time he was responsible for supervising the implementation
of OCM.

Kevin Johnstone

Kevin Johnstone graduated from Queen’s University Belfast in 1973 with a degree
in Mathematics and Computer Science and joined ICL where he worked as a
programmer in Engineering Diagnostic Systems and later Management Information
Systems. He joined the Knowledge Engineering Business Centre in 1982 and was
a mmeber of Alvey DHSS Demonstrator project for 5 years.

Jim Doores

Jim Doores joined English Electric Computers in 1967 working as a h/w engineer
on the System 4/70’s and later with ICL on 1906A systems. In 1973 he moved to a
Systems Integration Unit validating early versions of VME on 2970/80’s. After
working on VME S/W support and Test S/W specification for Series 39, he joined
the Knowledge Engineering Group in 1983, where he designed PROLOG environ
ments for VME and UNIX users.

In 1986 he designed a Knowledge Based System for the Statistics Office of the
European Community in Luxembourg. This used a rule set encapsulating expert
knowledge of a statistician to provide Import/Export trade forecasts for the EC in
Brussels.

ICL Technical Journal November 1991 761

He then spent two years on the EUROHELP project, designing tools using LISP to
facilitate the production of Intelligent Help Application Models. Since then he has
worked on the OCM project responsible for type design of the Managed Object
System and Message Handling Functions implemented in PROLOG using the
DECISIONPOWER toolkit.

762 ICL Technical Journal November 1991

The Network Management Domain

Tony Maynard-Smith
Network Systems, ICL Secure Systems, Stevenage, UK

Abstract

Network Management and Systems Management have many similar
ities and overlaps, but an understanding of the differences between
them is important for a proper appreciation of the directions being
taken in the two areas. The background to the development of
network management is described, with the current position on
standards and the various styles of integration appropriate to differ
ent circumstances. ICL's approach to delivering network manage
ment is described.

1 Introduction

This paper describes the current position of the market, and the technology
appropriate to the management of networks, and shows how the subject of
Network Management relates to that of Systems Management. The differ
ences in product development between the two subject areas is traced to the
different requirements placed by the market conditions in which they origin
ated. Despite these differences however, there is a very considerable overlap
between them which is leading to increased requirements for integration,
both horizontally and vertically.

This paper first describes the background to the development of Network
Management, its scope in relation to Systems Management, and the various
styles of integration which are applicable within the network and between
the network and system levels. The current situation regarding standards in
the field of Network Management is described, and then the manner in
which actual products are being realised at the different levels.

L 1 Scope of Network Management

Part of the confusion surrounding this subject is that there are no universally
accepted meanings for the terms “Systems Management” and “Network
Management”. In some cases “Network Control” is also used with a differ
ent emphasis from “Network Management” . The relationship between these
terms, as used here, is shown in diagrammatic form in Figure 1. This

ICL Technical Journal November 1991 763

indicates that Systems Management has a very broad scope, in a “hori
zontal” dimension, encompassing common functions across a large number
of Domains. Network Management is one such Domain, with a relatively
narrow scope in the “horizontal” dimension, but with a full “vertical” range
of functionality. In other words it is considered to include all the functions
necessary to manage a network effectively and efficiently. Network Control
is a term used by some authorities to cover the operational aspects of
network management, and specifically to exclude many of those administrat
ive functions addressed by Systems Management. Alongside the Domain of
Network Management are analogous Domains responsible for the manage
ment of say UNIX end systems, X.400 Message Handling Systems, Business
Applications and so on.

Fig. 1 Scope of Systems and Network Management

If a broad view is taken, the process of management is the same whether
considered at the systems or network level. This process is shown in Figure 2,
reproduced from [ICL SMA], This shows the Quality Process of managing
the total lifecycle of an IT system, broken down into ten major functional
areas. These functions are generally applicable to any of the Domains which
could be shown in Figure 1, though of course the implementation details
differ in each case. It is the concern of Systems Management to provide the
commonality and integration required across these Domains, and the con
cern of Domain Management, such as that for networks, to address the full
range of functions in the detail needed within its particular scope.

L2 Background to Network and Systems Management

If the practical development of Systems Management and Network Manage
ment products is examined, it can be seen that they have come from rather
different backgrounds, which has led to rather different outcomes in terms
of current product and capability.

764 ICL Technical Journal November 1991

Fig. 2 The Systems Management Quality Process

Systems Management has in general been developed by major players in the
data processing industry who have recognised the broad scope of the subject
and put in place comprehensive architectures to cover the range of func
tionality required. Examples of this are IBM’s Netview, DEC’S Enterprise
Management Architecture (EMA), and ICL’s Systems Management Archi
tecture (SMA). There are relatively few such architectures in the industry,
and several of them are converging on the OSI standards for Systems
Management (ie. [CMIP], [CMIS] and the many other supporting standards
associated with this protocol).

Network Management by contrast has been developed in a much more
tactical manner by the manufacturers of networking products. This has been
in response to the imperative to provide remote control over the systems
they deliver, which are by nature geographically distributed. Given that
there are a large number of such manufacturers, and a wide variety of types
of networking equipment to manage, there is now a very considerable variety
of product available in the area of network management. This variety
extends to the communications protocols used (which are often proprietary),
to the level of functionality provided, and to the platforms and development
tools used to build them. All of these factors make for difficulties in integrat
ing the results.

While by no means a rigid distinction, it is generally true that the two
disciplines have also concentrated on differing functionality. Network Man

ICL Technical Journal November 1991 765

agement has concentrated on Operational Control, providing the ability to
operate a network from a central control centre, while Systems Management
has put more emphasis on the administrative functions which are common
across a number of Domains and which are increasingly needed as the scope
of the management problem grows.

The issues facing Systems Management can therefore be seen to be breadth
of coverage, conformance to standards, and populating the functionality
space with generic but useful applications. The issues for Network Manage
ment are integration, reduction of variety, selection of appropriate stand
ards, and access to a range of administrative applications.

2 The Integration of Network Management

The key issue in Network Management today is seen to be integration.
There are a number of drivers in this direction, including:

• the need to manage a diverse and distributed multi-vendor network
from a single control centre, because of the need to make best use of
staff and skills.

• the need to simplify the tasks of network management staff, for cost
effectiveness and to improve Quality of Service. This means reducing or
hiding the variety presented to the users of management systems.

• the need to handle the variability in networking products, in the techno
logy involved, in the topology of network designs, and in the users’ own
organisational structures and geographies.

• the need to add administrative applications which directly address the
issues of efficiency and cost control, such as asset management, invent
ory, change management, and Service Level Agreements.

While integration is a key element in the solution to these issues, it must be
noted that since all of these are also changing with increasing rapidity,
flexibility of any solution is also a key requirement.

2,1 The Hierarchical Model

The simplest approach to integration, and the one most widely adopted so
far, is a hierarchical model with a “Manager of Managers” at the top, a set
of individual Element Managers in the middle, and the actual devices being
managed at the bottom. This class of model is shown in Figure 3. Typically
the top level manager in such a hierarchy provides a consolidated view of
the state of the network, a log of events or alarms, and some level of control
capability. The latter is frequently achieved by providing a window which
emulates the console on the Element Manager. This model is behind the
design of architectures such as IBM’s Netview, AT&T’s Unified Network
Management Architecture, the Allink product from Nynex, and a number
of others.

766 ICL Technical Journal November 1991

Fig. 3 The Hierarchical Management Model

This style of integration is quite satisfactory for some purposes, and in
particular does help to provide a consolidated view of the state of the
network which is not available from the multiplicity of individual Element
Manager screens. However, looking at the full set of requirements outlined
above this model is not altogether adequate, particularly with regard to
flexibility.

Firstly it is implicit in the hierarchical model that information flows up the
pyramid to some higher intelligence at the top, and decisions or control flow
back down, to be executed by the relatively unintelligent systems at the
bottom. As the number and variety of the lower level Element Managers
increases, and the number of management functions to be performed also
increases, the complexity of the data processing required at the centre
increases geometrically. This rapidly becomes impossible to maintain, and
some more comprehensive model of the system being managed, and a more
appropriate structuring of the management information is needed to cope.
This can be addressed partly by placing more intelligence in the network
itself, and partly by adopting the alternative management models described
below.

Secondly the hierarchical model assumes that there is a centralised system
which has responsibility for managing all the lower level systems under its
control. This is quite appropriate for collecting a number of sub-networks
together into a network control centre, but less so when one is considering
networks alongside mainframes, distributed UNIX systems, networked PCs,

ICL Technical Journal November 1991 767

database and application services, and so on. A management system exists
to support the people doing the job, and the structure of the system must
lit the structure of the human organisation involved. Human organisations
are no longer usually simple hierarchies.

2.2 The Service Domain Model

It will therefore be necessary to provide a richer model of system structure
and management data flows than is available in a simple hierarchy of
control. An important model which can be used to capture this structural
complexity is that of Service Domains, adopted by the ICL Systems Manage
ment Architecture. A Service Domain is some collection of resources which
supplies a defined service to an identifiable set of users. Service Users in this
sense may be human end-users or other Service Domains, themselves supply
ing a higher level Service.

A network, or part of a complex network, can very often be considered as
a Service Domain providing services such as interconnection, access to
applications, transport of data, etc., upwards to other Service Domains. An
example of such a collection of Service Domains is shown in Figure 4 which
is adapted from a case study on how IT Services should be organised within
ICL.

In the Service Domain model there is a management function present in
each Domain, whose purpose is to ensure that the Domain continues to
deliver the service it is responsible for, in accordance with a Service Level
Agreement. This view of Service Users and Providers has a number of
consequences for the structure of management systems:

• Each Domain must provide, or have access to, the full range of manage
ment functions to support the system lifecycle as shown in Figure 2.

• Each Domain will report to its Users, and receive requests from its
Users, in terms of the Service supplied, not in terms of the resources
within the Domain. Thus management interaction between Domains
will relate to, say, a connection of a certain bandwidth between two end
systems, not to the switches and communications lines used to achieve
this. The management function within a Domain is responsible for
maintaining this abstracted view.

• Since a networking Domain will typically have many Users, it will be
necessary to report to, and receive instructions from, many places. There
is no single intelligence at the top of the pyramid which understands
everything.

It would be possible to maintain such a system in a totally distributed
manner, with each Service Domain being complete and self-contained, inter
facing to its neighbours only at the boundaries. Indeed if one looks at
networks of legally independent entities this is the way they operate. Taking
the international telephone network as an example, each country manages

768 ICL Technical Journal November 1991

Fig. 4 The Service Domain Model

its internal affairs, and negotiates with its neighbours at the boundary in
accordance with rules laid down by the international standards bodies.
There is no single authority actively managing the system as a whole.

Networks run by corporate enterprises vary a great deal, but do not often
show this degree of distributed management. There is usually some, and
often a considerable, level of centralised control. However central manage
ment can well be a matter of setting policies and standards, with operational

ICL Technical Journal November 1991 769

control being devolved to divisions or departments. As interworking between
legally separate organisations increases, with the spread of EDI for example,
the need for fully distributed management will increase since there will be
no central point which can exercise the control.

2.3 The Architecture of a Domain Manager

To briefly review the material presented elsewhere in this issue, and in
particular in Jenkins (1991), a Domain Manager has a dual existence within

Fig. 5 The Dual Nature of a Domain Manager

the OSI Systems Management architecture. As shown in Figure 5 a Domain
Manager is on the one hand a Manager (takes the Manager Role), talking
to a set of Managed Objects and manipulating them according to the
Operations and Notifications they provide. On the other hand it is a man
aged system (takes the Agent Role) providing a view of its own set of
Managed Objects to one or more further Management Applications. The
mapping between the two sets of Managed Objects can be simple or complex,
and reflects the functionality of the Domain Manager itself.

It is quite possible for a single Domain Manager to provide simultaneous
views on two or three different sets of Managed Objects, appropriate to
different Management Applications, all mapped onto the one Domain of
real managed elements. One view may map every real resource into a
standard Managed Object model which supports fault reporting to a com
mon Problem Management application, another may give an abstracted
view suitable for Status Display or Configuration Generation, and another
may give the quite different view appropriate to software distribution.

770 ICL Technical Journal November 1991

It was stated above that integration is a key issue in Network Management,
but that simple models based on hierarchical control are inadequate to meet
the full requirement. There are in fact a number of styles of integration,
which are each appropriate in different circumstances, and which are needed
in combination in any real, complex system. These styles are dictated by the
different information structures found in the various functional areas, and
in particular by the degree to which common Managed Object Models can
be mapped onto the real underlying resources.

3.1 Full “Flat” Integration

There are a number of application areas which do not depend on the detailed
nature of the managed element, but operate on an abstract Managed Object
Model which can be mapped onto any (or a large proportion of) real
managed resources. In these cases it is appropriate to collect information
on all objects, at a common level of detail, and handle it in a homogeneous
manner using a common application.

The best examples of such an application are probably the Help Desk and
Problem Management, where the same application can be used to deal with
faults reported on the photocopier or the coffee machine just as easily as
those on the IT system. Other applications in this class are financial asset
management, probably billing, and possibly inventory control.

3.2 Integration by Abstraction

This class includes those application areas where the Service Domain model
needs to be applied to give an abstracted or Service oriented view of a set
of underlying resources. A good example of this is the case of Configuration
Generation, where the overall configuration details of a large and complex
system are held centrally and distributed out to the various Domains in a
controlled fashion. A central application maintains a model of how all the
Domains interact, and what Services they deliver, but cannot practically
track every low level managed element with all of its parameters. Controlling
these low level details is the responsibility of a Domain Manager, which sets
them up so as to meet the requirements for Services defined centrally.

Other application areas which have some commonality with Configuration
Generation are automated Fault Location by correlating reports of wide
spread symptoms, and Impact Analysis of faults or proposed changes. Both
of these require an abstracted view of Services delivered in order to control
the level of complexity they have to deal with. A case which combines
features of this category and the previous one is the display of the state of
a network, using a schematic graphical display. In this case the display itself
needs to be hierarchically arranged with a high level abstracted view at the

3 Styles of Integration

ICL Technical Journal November 1991 771

top, but with the ability to drill down to the detail required in any particular
area.

3.3 Use of Common Tools

In a number of cases the information from different Domains is similar in
form, but there is no great value to be added by collecting or aggregating
it together. In these cases there are cost benefits in using common tools to
process the information, but applied independently to each Domain. Com
mon tools will also ensure that the information is available in a common
form if and when a more sophisticated application does wish to take an
overall view. The Managed Object Models reflecting this situation will be
similar in form or syntax, but will have no semantic relationship to each
other.

Some examples which fall in this area are tools for statistics analysis and
display, managing audit logs, software distribution, Service Level Agreement
monitoring, change management and so on. Note that most of these tools
can be applied at the Domain level, or at the System level if similar data
exist with a system-wide scope.

3.4 No Integration Required

At the bottom of the scale there are a number of cases where no integration
is required between Domains at all, because the Managed Object Models
are so different that it is impractical. Examples are those functions performed
at the level of individual components, such as detailed fault diagnosis. The
work on management standards is however moving in the direction of
providing common models, and hence integrated management applications,
even for these functions.

4 Standards in Network Management

As indicated above the development of Network Management has not
historically produced a clear consensus on the issue of standards. The
reasons for this include the lack of large players able to impose de facto
standards, the diversity of suppliers and technologies involved, and the fact
that many networking products are small boxes where tuning for efficiency
has so far been more important than conformance to standards. This pattern
is now changing however, with a strong probability that the Simple Network
Management Protocol standard (defined in [SNMP]) will establish itself as
the preferred management protocol in the networking area, at least for a
time.

SNMP was developed by the TCP/IP Internet community in response to
their need to manage heterogeneous, multi-vendor networks of LANs,
routers and attached hosts. The protocol definition was developed in 1988
by a working group of the Internet Engineering Task Force (IETF) under

772 ICL Technical Journal November 1991

the direction of the Internet Activities Board (IAB), and is published in a
series of documents termed Request For Comment (RFC) which are in
effect now standards definitions. The SNMP definitions comprise three main
sections:

• The Simple Network Management Protocol. This defines a set of primit
ive operations which may be performed by a manager or a managed
system. The main capabilities provided are for a manager to read the
value of an attribute (GetRequest), to alter the value of an attribute
(SetRequest), or for a managed system to transmit an unsolicited event
message (Trap). A GetNext operation is provided to allow sequential
access to the contents of tables.

• The Structure of Management Information. This defines the common
structures and language used to define all the information which may
be accessed by the SNMP protocol. The language used for definition is
the ISO Abstract Syntax Notation (ASN. 1), but confusingly SNMP
uses the term “objects” to refer to what the OSI standards would call
“attributes” . There is no concept in SNMP of Managed Objects as used
in the OSI standards.

• The Management Information Base, now at its second revision MIB-
II. This defines the set of attributes (or “objects”) recognised by the
standard, arranged into a tree which is used to define their names. This
tree includes branches such as Internet Protocol (IP), Transmission
Control Protocol (TCP), Transmission (eg. Ethernet, FDDI, etc.), the
System (eg. the name, location, etc. of the managed system), and several
others. It also provides for implementors to add their own proprietary
extensions where necessary.

SNMP was defined by the TCP/IP community, and is most commonly
implemented on products supporting these protocol standards. However
SNMP only requires a datagram service and could in principle be run over
a variety of lower layer services, including OSI Transport (Connectionless
or any Connection Oriented Class), and Link-layer or MAC-layer protocols.
The simplicity of SNMP and the ability to run over low level protocols
make it an attractive choice for networking products, which often do not
contain the full 7-layer protocol stack required by OSI CMIP.

Set against this economy of implementation is the fact that SNMP does not
contain the functional richness of the OSI standards. At the protocol level
CMIP provides further operations such as Action, Create and Delete. More
importantly OSI adds the concept of Managed Objects with fully fledged
inheritance and containment mechanisms. This makes for a much more
comprehensive representation of the structure of a managed system, and
permits powerful scoping and filtering mechanisms to be defined by which
multiple objects can be handled in a single operation.

It is an open question whether in the long run the functional richness of the
OSI standards, and the fact that they are underwritten by ISO, will cause

ICL Technical Journal November 1991 773

the demise of SNMP, or whether the relative simplicity and economy of
SNMP will ensure a continued niche for its survival. In the author’s opinion
SNMP will continue to evolve and adapt itself, and will continue to be used
in the networking area, because it fills a need. At the higher levels represented
by Systems Management functionality, the platforms used can readily sup
port CMIP, and the richness and openness of the OSI standards will make
them the preferred solution.

What is now clear is that SNMP has established a presence in the networking
market, and will continue to be a significant de facto standard in this area
for some time to come. In fact it is the only standard which appears capable
of bringing some commonality to the world of network management in the
near future.

5 The Role of Network Management and Systems Management

The ideas presented so far, of Domains and Domain Management functions,
the different styles of integration between them, and the growth of SNMP
as an industry standard, can be combined into an overall picture containing
distinct Network Management and Systems Management products. This is
first described in terms of a number of idealised product roles, followed by
some comments on how actual products fit onto the idealised picture.
Figure 6 shows the former, and Figure 7 the latter view.

5 .1 The E le m e n t M a n a g e r

The Element Manager is a unit which manages one Domain of managed
elements, of a single or closely related type. It provides the physical focal
point needed to maintain management connections to the devices, and
provides the specific management functionality, data storage, and FICI
support needed for those elements. The Element Manager will also provide
the interfaces out to other management systems, and will provide a level of
abstract Managed Object views, but does not itself provide any of the
integrated management functions.

There are as many products fulfilling this role as there are types of network
element, and historically they have all tended to be different, produced to
match the particular networking products they are managing. Often they
have been designed as stand-alone systems without well defined interfaces
to external management applications. For the reasons described earlier these
systems tend to concentrate on Operational Control functions and to be
weaker on administrative applications.

For all the reasons described in this paper products in this area are
broadening their scope and increasing their functionality, with the aim of
providing greater integration. Interfaces to higher level management applica
tions are becoming more common. Systems which are designed as generic

774 ICL Technical Journal November 1991

Fig. 6 Network Management and Systems Management Rdles

SNMP Managers, capable of being configured to manage any SNMP con
formant device, are starting to appear.

5.2 The Network Level Integration System

Because of the degree of diversity in the network product market, and hence
in the Element Managers available, there is a role for a system which
provides integrated management of the network, but without going any
further into the wider Systems Management field. This type of system is

ICL Technical Journal November 1991 775

Fig. 7 Some Product Mappings

aimed primarily at the same functions as the Element Managers, ie. the area
of Operational Control, but on a network wide basis. There is also increasing
interest in extending its coverage into the areas such as Inventory, Asset
Management, Change Management and other functions which are about
managing the total cost base of the network and administering changes to
it over the lifecycle.

Products in this area are coming from two different directions. Firstly there
are products which exist simply to provide this level of integration, running

776 ICL Technical Journal November 1991

on top of existing Element Managers. These are usually from independent
suppliers, operating with a mixture of d e f a c t o standard and proprietary
interfaces as found appropriate. Secondly there is a general trend for Element
Managers to broaden their scope and encompass several Domains, typically
those supplied by a single manufacturer, using proprietary protocols. How
ever the advent of SNMP is changing this picture and is enabling both of
these types of system to manage a wider variety of elements directly, and is
increasingly blurring the distinction between them.

The Network Level Integration products provide a further point at which
an abstract view can be derived for the benefit of Systems Management
applications. Where a Network Level Integrator is present it will usually
provide the route into Systems Management, but there will be cases where
no separate product is provided at this level and Systems Management
applications interface directly to the Element Manager.

5.3 Systems Management Integration

Historically there has been an organisational split between the management
of data processing systems and the management of the network, though
there is a trend towards removing this distinction. As a result the manage
ment products in the two areas have also tended to be distinct, even when
their functionality is similar. It is however clear that there are benefits in
integrating the two, provided the appropriate models are adopted as
described above.

! •

Following this line, Systems Management represents both a higher level
integration of the management view and a fanning out or distribution of
management responsibilities. The higher level integration applies across the
multiple managed Domains, and the distribution because the different man
agement applications support different Users with significantly different
interests. Each of the management functions is likely to be implemented as
a separate application or group of applications, possibly distributed geo
graphically, though they will also interact with each other. Each application
will be interested in a different part of the view provided by the Domain
Managers (including the Network Management products), either by looking
at different levels of abstraction, or by looking at different attributes or
objects in the model presented.

The role of Systems Management is to provide those functions which are
common across all management, and not specific to networks or other
Domains. It thus includes the applications where “flat” integration is
required such as Problem and Asset Management, those working on abstrac
ted views such as Configuration Generation and Status Display, and the
common tools needed for such things as statistics analysis.

It is clear that there is a considerable overlap between some of these
applications at the Systems Management level and the same functions at

ICL Technical Journal November 1991 777

the Network Integration level. While products at these two level tend to be
distinct today, there will clearly be benefit in exploiting this similarity in
common tools and integrated applications.

6 Conclusion

ICL’s approach to Network Management is dictated by the state of the
market, and our customers’ requirements, and in particular by the highly
diverse nature of networking and network management products. The net
working requirements of each of our customers are different because each
has a different history, a different installed base of equipment, and different
business requirements. There are also many possible solutions which could
be constructed from available technology and products. In these circum
stances ICL’s approach is solution-led, aiming to put the best and most cost
effective solution in place to satisfy each requirement.

To do this ICL has organised itself to be able to provide a wide range of
networking technology, sourced from wherever is appropriate, in order to
provide quality solutions. Element Managers are generally sourced from the
same vendors as the networking products, since they are by definition specific
to the characteristics of that technology. Integration of management func
tions is achieved by a number of routes, working in concert.

• Taking advantage of vendors’ offerings, and increasingly of the SNMP
industry standard, to provide Element Managers capable of managing
a number of Domains.

• Providing separate Network Level Integrators to provide coordinated
management of all the network domains, particularly in the area of
Operational Control. ICL intends to offer a graduated range of capabil
ity in this role, to meet the wide range of system sizes and functionality
required.

• Providing links into ICL Systems Management applications from the
lower level systems as appropriate. These provide the abstracted view
of the network resources needed by the Systems Management applica
tions which are working at the wider scope of the total IT system.

• Exploiting common applications wherever possible to provide adminis
trative functions, where similar functions are required at both the Sys
tems Management and Network Integration levels.

• Providing links into other vendors’ management systems where this is
required for particular solutions.

References

OSI - Common Management Information Service Definition (CMIS). ISO/IEC 9595: 1991.
OSI - Common Management Information Protocol Specification (CMIP). ISO/IEC 9596-1:

1991.

778 ICL Technical Journal November 1991

The Simple Network Management Protocol (SNMP) (authors CASE, J., FEDOR, M.,
SCHOFFSTALL, M. and DAVIN, J.) published electronically by Internet Activities Board,
reference RFC 1157.

ICL Systems Management Architecture (SMA). ICL PSD 3442. 1990.
JENKINS, G.I. Manageability of a Distributed System, ICL Tech. J. Vol. 7 No. 4 pp. 686-701,

1991.

Biography

Tony Maynard-Smith

Tony Maynard-Smith obtained a B.A. in Physics from Cambridge University in
1966 and joined ICL to work on the development of data communications systems,
being involved in developments associated with the System 4, 1900, and later the
VME ranges of mainframes. From 1970 to 1985 he worked in the Company’s
Letchworth Development Centre which produced a wide variety of systems cus
tomised to individual clients’ requirements, particularly in the fields of communica
tions and networking. He currently works for Network Systems Technology, within
ICL Secure Systems, with responsibilities for network management and involvement
in the Company’s systems management programme.

ICL Technical Journal November 1991 779

An Overview of the Raleigh
Object-Oriented Database System

Michael H. Kay
ICL Fellow, Reading UK

Peter J. Rivett
CASE Product Centre, ICL Basingstoke, UK

Abstract

Raleigh is an object-oriented database system, incorporating a
functional data model and its own computationally complete lan
guage, OODL. It is being developed initially for internal use within
ICL’s System Management and Application Development product
programmes.

This paper provides an overview of Raleigh*, focusing on its data
model and language, but also outlining the implementation archi
tecture.

1 Introduction

It has been recognised for some years that conventional database systems
are not well suited to storing the kind of complex objects that occur in
design applications such as software engineering and network management.
Object-oriented databases have been proposed as the solution.

The Raleigh project was set up to develop a database system for use by
such applications. The first two applications are a new Open Dictionary (or
repository) system (Kay, 1991) being developed as a successor to the well-
established DDS product (Bourne, 1979), and a configuration generation
system forming part of ICL’s Open Systems Management suite of products
(Gale, 1991).

Object-Oriented database technology is still young: there are no standards
yet, and there have been some emotional debates about the directions the
technology should take (Atkinson, 1989; Stonebraker, 1989). In designing

" R a le ig h is an internal development name, and comes from the resemblance of the original
system diagram to a bicycle.

780 ICL Technical Journal November 1991

Raleigh our aim was not to take sides in this debate, nor to add to the body
of research in this area, but merely to meet the requirements of the applica
tions we were trying to develop. The result is an engineering synthesis of
ideas from a variety of research sources.

This paper provides an introduction to Raleigh with emphasis on the data
model and its associated language, OODL.

2 Requirements

The requirements on Raleigh were derived from the known demands of the
first two application areas, but wherever possible these were generalised to
ensure maximum reusability of the resulting product.

The requirements included the following:

• ability to support complex objects (such as screen layouts and network
diagrams): these might include documents and graphics as well as the
more conventional numbers and strings

• complete extensibility, that is, flexibility to define new types of object,
preferably by refining existing types

• the ability to perform data transformations “behind the scenes”: this
need was particularly acute in the dictionary application, where we
needed the capability to integrate tools from different suppliers that did
not share a common data model

• support for retrieval using high-level (declarative) queries, not just nav
igation using pre-defined access paths

• support for a usage profile typified by designers working on different
parts of the database, at their own workstations, independently but as
part of a team with disciplined processes and quality controls. This
leads to requirements for distribution, for flexible object naming, version
control, and integrity control, for long transactions, process support,
and access control.

Note that Raleigh is intended for use as a back-end server with the user
interface being provided by the application clients.

3 The Object Model

3.1 Choice of Model

The object model we chose for Raleigh is a functional model, derived from
Daplex (Shipman, 1981), with similarities to IRIS (Fishman, 1989) and
EFDM (Kulkarni and Atkinson, 1986). In common with (Poulovassilis and
King, 1990) we have extended the functional model to include computa-
tionally-complete methods.

ICL Technical Journal November 1991 781

• As with the relational model, the functional model has a solid basis in
mathematics, which means that declarative queries become possible.
Unlike the relational model, this includes recursive queries such as the
notorious “parts-explosion”, which arise very frequently in our chosen
application areas. We felt that a return to navigational data manipula
tion languages would be a retrograde step.

• Unlike some developers, we had no strong requirement or predisposition
to be compatible either with existing relational databases or with an
existing programming language such as C+ + or Smalltalk. Rather than
adding programming features to SQL, or database features to C+ + ,
we have attempted a harmonious synthesis of database and program
ming ideas. The functional model provided the right framework for this
integration.

A good object model, we feel, should describe both the permissible states
of the system and its permitted behaviour. Traditionally database models
have been strong in describing state, and weak on behaviour; while the
programming tradition has focussed on behaviour and has been weak in
modelling state. The functional model, augmented with computationally-
complete methods, models both with remarkable symmetry and economy
of concepts.

One of the attractions of a functional model is that it is what the Object
Management Group [OMG, 1990] call a g e n e r a l i z e d (as opposed to a clas
sical) object model. In a classical object model, such as is found in Smalltalk
or C+ + , every operation is “sent to” a particular object for execution. This
leads to a source of arbitrariness: when a customer orders a product, is this
an operation on the customer, the product, or the order? Such arbitrariness
has always been anathema to database people, because once made, the
decision is difficult to change. In a generalized object model, such as is found
in Daplex and CLOS (Moon, 1989) it is recognised that operations can be
applied symmetrically to several objects.

3.2 Overview of the Object Model

The core of the Raleigh object model can be summarised by the following
definitions and axioms:

Objects
• Every distinct thing of interest is an Object.
• Each Object has distinct identity.

Entities and Literals
• There are two kinds of Object, called Literals and Entities.

We made this choice for a number of reasons.

782 ICL Technical Journal November 1991

• The identity of a literal is its value. Examples of literals are the number
93.7 and the string “London”. Literals are neither created nor deleted,
they simply exist.

• The identity of an Entity is established by its creation-event. That is,
an Entity acquires a unique, non-reusable identifier when it is created,
and retains this identifier until it is destroyed.

• Literals may refer to Entities. For example, if X and Y are Entities, the
Set { X , Y } is a Literal. This literal exists at all times X and Y both exist.
The literal itself is not explicitly created and is not explicitly destroyed.

Classes
• Every object is an instance of exactly one Class. A Class is a description

of behaviour shared by a collection of Objects.
• A Class is itself an Entity.
• In general a Class has one or more superclasses (the exception is the

Class Object). Classes inherit the behaviour of their superclasses. Inherit
ance ambiguities are resolved by reporting an error if the situation
arises.

Functions
• The behaviour and the state of Objects are expressed using F u n c tio n s .

Functions are used to represent the concepts colloquially called attrib
utes, relationships, and operations.

• A Function is itself an Entity.
• A Function takes one or more arguments and returns a single result.

The arguments and the result are all Objects.
• Functions may be implemented intensionally or extensionally, that is,

either by providing an algorithmic method or by tabulating the results
in storage.

• A Function may return an Aggregate as its result, in which case it may
be described as a multi-valued Function. (An Aggregate is a Literal; the
elements of the Aggregate may either be Literals or Entities).

• A Function may return the Literal N u l l (see section 5.4) as its result, in
which case it may be described as a partial Function.

• A Function may be defined to be updatable. In the case of a Function
implemented intensionally, an update method must then be supplied.

• Functions are inherited with respect to each of their arguments. For
example, the Function F (X , Y) is inherited so that it is applicable to
any subclass of X and any subclass of Y .

• Multiple implementations of a Function may be defined for different
classes of arguments. The choice of an actual implementation is made
using an algorithm that takes into account the Classes of all the supplied
arguments (see section 5.1 for details).

e Functions with a single entity-valued parameter may have a correspond
ing inverse function declared. This takes as parameter the result class
of the original function and returns the associated entity or entities.
(For example the function N a m e (C u s to m e r) returning a S t r in g may

ICL Technical Journal November 1991 783

have an inverse function C u s t o m e r N a m e d f S t r i n g) returning a
C u s to m e r) ,

Blocks
• When a Function is implemented intensionally, the algorithms for evalu

ating or updating the function are expressed as Blocks. A Block is a
piece of executable code that takes parameters and returns a result. In
practice, Blocks are established by compiling strings written in the
OODL language.

• A Block is a Literal.
• Blocks are used not only to implement Functions, but in a variety of

other contexts. For example, some Functions are defined that take a
Block as an argument or that return a Block as their result.

• A Block that takes a single object as its parameter and that returns a
Boolean result is known as a Predicate.

3 .3 The C la s s H ie ra rc h y

The core class hierarchy is shown in Figure 1: the lines represent the relation
ship between superclasses and subclasses.

Raleigh supports multiple inheritance, but this is little used in the core object
model. The only case where it is used is for the class String, which inherits
both from List and from Magnitude.

The diagram excludes those Classes which play only an incidental role in
the core model, for example enumeration classes that are used solely to
constrain the result of a Function in the core model.

Fig. 1 The Raleigh Class Hierarchy

784 ICL Technical Journal November 1991

The core Raleigh model described above includes no facilities for object
naming, session management, version control, access control, distribution
of data and processing, or transaction management. These features are
provided by the extended model, which is beyond the scope of this paper.
The extended model is based on the concept of an Activity, which is a unit
of user work - similar to an extended (long, nested, multi-user) transaction.
This is derived in turn from the process modelling ideas developed by the
IPSE 2.5 project (Warboys, 1989).

4 The OODL language

4.1 Overview

This section gives a brief description of OODL. OODL acts as a database
language, encompassing both data description and data manipulation facilit
ies; it is also a computationally complete language in which arbitrary pro
cessing can be expressed. OODL is used to write the methods that implement
intensional functions, and it also serves as the means of communication
between an application and the database server, analogous to SQL in a
relational system.

The database aspects of the language and the processing aspects are insepar
able from each other. The same types and operators are used throughout.

The syntax of OODL is fairly sparse; most of the power of the language
derives from the rich vocabulary of functions that may be called. However,
some syntactic sugaring has been introduced to make commonly-written
functions appear more familiar to programmers trained in languages such
as C and SQL.

OODL is compiled. Names (e.g. of Functions and Classes) are translated
to object identifiers at compile time. However binding to an appropriate
Implementation of a Function is always done at run-time.

The unit of compilation and of execution is a Block. A Block consists of
declarations of parameters, declarations of variables, and executable state
ments: for example the following block counts the number of spaces in a
supplied string

{ param str; var i; i : = 0;
for each ch in str where c h = ’ ' do

i : = i + 1;
endfor;
return i

}

3.4 The Extended Model

ICL Technical Journal November 1991 785

Variables and parameters in OODL act as handles for Objects; they are not
themselves Objects in the sense of the Raleigh Object Model. Because new
classes can be introduced dynamically, it seemed inappropriate for variables
to be strongly typed at compile-time; all type-checking is therefore deferred
until run-time. Variables are initialised to the value Null.

Although Raleigh uses a functional data model, we chose not to make
OODL a pure functional programming language. The only reason for this
was the unfamiliarity of our target users with this style of programming.

4.2 Statements

The following kinds of executable statement are defined:

Class definitions, e.g.

create class customer subclass of UserEntity;

Function definitions, e.g.

create function customer_name (customer) returning
String with (Updatable);
create function creditworthy (customer) returning
Bool;

Implementation definitions, e.g.

implement customer_name (customer) as storage;

implement creditworthy (customer) as
(param c; return (credit_rating(c)='AAA")[;

Constant declarations, e.g.

create name pi as 3.14159;
create name cust_name as customer_name;

Function calls:

destroy(x);
customer_name(New(customer)) : = “Smith Enteprises";

Variable assignments:

a : = ClassOf(b);

Function assignments:

customer_name(c): = "Smith”;

786 ICL Technical Journal November 1991

Conditional statements

if creditworthy(c)
then return “OK”
else return “NO"

endif;
switch credit_rating(c)

case "AAA", “AAB”: return “OK";
case “XXX": return "NO”;
default: returnnull;

endswitch;

Conditional iteration:

repeat while i < 64
i : = i + 1; total : = total+ f(i)

endrepeat

Iteration over an aggregate:

for each c in PopX(customer)
where creditworthy(c)
do discount(c) : = Percent $ 10

endfor;

(PopX is a function that returns all the instances of a given class and its
subclasses: see section 5.6; “$” is an operator representing the Cast function,
which in this case converts the Integer 10 to an object of class P e r c e n t) .

for each char in input_string where ch ar= “,” do
comma_count: = comma_count+1
endfor;

A return statement:

return x*x;

4.3 Expressions

In many contexts within statements, expressions can be used. This applies
not only to the obvious contexts such as the right-hand-side of an assign
ment, but also to less obvious contexts: for example in a Function call the
Function name may be replaced by an expression returning a Function; in
an Implementation definition the Block may be replaced by an expression
returning a Block.

Expressions can take the following forms:

A function call:

a := f(b);

ICL Technical Journal November 1991 797

A function call expressed in infix notation (infix operators may be defined
for any dyadic Functions):

a := b + (c*d);
x := Percent $ 10; /* “$" invokes the Cast function 7

The name of a variable or parameter:

a : = b;

The name of an object:

a := pi;
b : = null;

(The compiler first searches for a variable with a matching name, as in any
block-structured language; if no suitable variable is found, it searches the
database for an object with the relevant name).

A literal:

a := 3.14159;
b : = "Jamaica";
c := [10, [“a”,“b"], X];

A call on a block:

a := fparam x; return (x*x)};
b := a(2);

A select expression. A select expression returns an Aggregate, and may be
used in any context where an Aggregate is required:

a : = select name(c) from c in PopX(customer)
where creditworthy(c)
order by asc zipcode(c)
endselect;

b : = Count(select c in PopX(customer)
where creditworthy(c)
endselect);

4.4 Summary

The above discussion is intended to give a flavour of the language and omits
a few features that cannot be concisely explained, for example invocation
of superclass implementations and exception handling.

The key to the power of the language is the uniform way it handles processing
of persistent data (Objects) and transient data (variables), with a uniform
type system and set of functions available in both cases. In particular,
Aggregates can be manipulated either by bulk operations or by element-at-

788 ICL Technical Journal November 1991

a-time iteration, and this applies equally to Aggregates stored in the database
(for example the population of a Class) as it does to local Aggregates such
as Strings.

5 Observations on the model

5.1 Im p lem en ta tions a n d B inding

The same function may be implemented in different ways when applied to
different objects. The class of an object determines which functions are
applicable to it, and is also used to select the correct implementations for
any function applied to the object.

The classic example of this is the function Print that can be invoked on any
object, but with a different implementation for each class.

The process of determining the correct implementation to use for a specific
function call (with parameters of specific classes) is called b in d in g . For
maximum flexibility Raleigh delays this until the function is actually invoked
(called late binding). Late binding allows new classes to be introduced at
any stage, with no need to recompile existing functions. For example, the
function to calculate the tax payable by an employee will access the salary
of the employee; it does not need to know that there are different subclasses
of employee whose salaries are calculated in different ways. Late binding
means that it is possible to introduce a new subclass of employee at any
time, without any impact on the function that calculates tax.

If a function has a single parameter then the binding process first looks for
an implementation appropriate to the class of the object supplied. If unsuc
cessful it looks for one for its superclass, and then so on up the class
hierarchy. If none is found then the call fails.

For functions with more than one parameter the process is similar, but also
uses the classes of the other parameters. In the case where there is more
than one possible implementation then the earlier parameter has precedence.

For example, Integer is defined as a subclass of (real) Number. This makes
it possible to define the following implementations for the Divide function:

implement Divide(lnteger, Number) as Blockl
implement Divide(Number, Integer) as Block2

The call D i v i d e (4 ,2) will be evaluated using B l o c k l .

Functions are not always implemented by executable code. They can also
be implemented by stored data.

ICL Technical Journal November 1991 789

The data can be considered as a stored table with one column for each
parameter and one for the result. For example the A n d function, which
implements 3-valued Boolean logic, could be implemented as a stored table
of the form:

Parameter 1 Parameter 2 Result
true true true
true false false
true null null
false true false
false false false
false null false
null true null
null false false
null null null

Alternatively the A n d function could be implemented using the Block:

[param x,y;
if x= fa lse then return false endif;
if y= fa lse then return false endif;
if x=null then return null endif;
if y=null then return null endif;
return true;

j.

Thus the details of the implementation are hidden from the caller, who need
not even be aware whether the result is explicitly stored or calculated on
the fly when the function is called. The details of the implementation, and
in general the internals of an object, are said to be e n c a p s u la t e d by the
interface to the functions on it.

5,2 Data Modelling

Raleigh’s functional data model provides great semantic richness in model
ling data and relationships.

Functions are used to represent the conventional notions of “attribute” and
“relationship” in a uniform way: attributes are modelled as a function on
an entity that returns a literal, while relationships are modelled as a function
on an entity that returns another entity.

Modelling is enhanced by the fact that functions can be multivalue: that is
to say that the function called with a specific parameter may return a set,
or aggregate of values. An example of this is the function C h i ld applied to
a P e r s o n that returns that Person’s children.

Facilities are provided in OODL for processing aggregates and also for
adding or removing individual values from a multivalued result. Multivalue

790 ICL Technical Journal November 1991

functions make for natural modelling of one-to-many and many-to-many
relationships, and multivalued attributes.

Raleigh also provides the concept of inverse functions. The inverse of a
function such as N a m e (P e r s o n) which returns a S t r in g is the function which
when applied to a S t r in g returns the P e r s o n objects (if any) who have that
N a m e . They are thus the equivalent of a traditional file inversion. Raleigh
automatically provides a suitable implementation, based on any storage or
code used for the primary function.

5.3 Extensibility

Class and function definitions are themselves objects stored in the database
which can themselves be manipulated. This makes the schema very extensible
and avoids the need for a separate Data Definition Language.

The power of the system is further increased by the ability to generate and
manipulate code (in the form of OODL blocks) in the same way as any
other data.

5.4 Null values

The special class N u llC la s s has only a single instance, the object n u ll. Null
is defined so that functions can return it when no other result is applicable.
A function in Raleigh always returns a result; but where no other result is
applicable, this result may be the object n u ll.

If n u ll is supplied as an argument to a function the default action is for that
function itself to return n u ll. So, for example, adding n u ll to an integer gives
a result of n u ll. There are some exceptions, however. Three-valued logic is
used as in SQL, so for example n u ll o r t r u e returns t r u e although n u ll a n d
t r u e returns n u ll. Unlike SQL, n u ll is defined to be identical to itself.

Systematic handling of null values is especially important in design applica
tions, where data often becomes available incrementally as design proceeds.
The uniform treatment of null values in both procedural code and database
access is one of the benefits of using OODL rather than a conventional
programming language with an embedded data sublanguage.

5.5 Blocks as objects

Blocks of executable OODL code are Objects with the same status as other
values, and may be supplied to or returned from functions.

This provides great flexibility and power, similar to the higher-order function
capabilities of functional languages such as LISP.

ICL Technical Journal November 1991 791

This allows generic Aggregate-processing functions to be defined that apply
a supplied block to each element of an Aggregate object, for example:

A: = PopX(customer);
B: = {param c; return customer_name(c)!;
C: = Map(A, B);

This applies B to each element of A in turn, returning a new aggregate C,
in this case the collection of customer names. Another example is:

Restrict) orders(cust 1), {param ord; return (order_value(ord) > 500)()

This returns an aggregate containing all those elements in the aggregate for
which the block returns the result t r u e , in this case the orders for the
customer valued at more than 500.

This corresponds closely to the relational r e s t r i c t operator.

In practice, these higher-order functions will not usually be written directly,
since the SQL-like s e l e c t expression has been provided in OODL to provide
a more familiar syntax.

Another use of Blocks as objects is for initialisation, for example:

Initialisation(customer) +: =
{param newcust;
credit_worthy(newcust) : = false;
balance(newcust) := 0}

This adds the supplied initialisation code to the list of such blocks to be
automatically invoked when a new instance of customer is created.

5.6 Content Retrieval

One of the great advantages of the relational model is the ability to find
data on the basis of any predicate, whether or not a predefined access path
exists. Some object-oriented systems, in their desire to implement the
“information hiding” aspects of encapsulation, have lost this ability, and
can locate objects only by navigation. In Raleigh we allow objects to be
retrieved on the basis of any predicate, but the predicate refers only to the
(visible) functions on the object, not to its (hidden) internal content.

Frequently the user will want to search through all instances of a given class
to find those that match specified criteria. To assist this, we make the
extension (or “population”) of a class accessible, using the function

PopX(Class) returning Object with (Multivalued)

792 ICL Technical Journal November 1991

which returns all the objects that are instances of this class and its subclasses.
This function means that every object in the database is potentially access
ible, and enables a search for objects that satisfy given conditions, by
applying the Restrict function.

For example, the query to find the names of all suppliers located in London
would be expressed in purely functional terms as:

x : = Map(
Restrict(PopX(Supplier),

Iparam s; return Location(s)- “London"|),
{param s; return Name(s)}

)

which could also be written using the more friendly SQL-like syntax:

x : = select Name(s) from s in PopX(Supplier)
where Location(s) = ''London”
endselect;

The same effect could also be achieved by declaring an inverse function.

Where possible Raleigh will use indexes to optimise such queries, although
logically they perform a serial scan through the class instances.

5.7 Integrity Constraints

Constraints can be specified on the objects that belong to a class. The
constraints are predicates (blocks) defined as a multivalued attribute of the
class. This is expressed as a function:

Checks(Class) returning Block with (Multivalued)

Each Block (predicate) P takes an object of class C as its parameter, and
returns t r u e if it is acceptable. (There is a formal difficulty here, in that P
must be written to tolerate objects that are not valid objects of class C; but
this does not turn out to be a problem in practice).

6 External Communication

6.1 Options available

OODL is a complete language, so in theory it could be used to write an
entire application. In practice, however, the bulk of an application is likely
to be written in conventional languages such as C or C+ + , and OODL is
likely to be used only in the role of a data definition and manipulation
language, including use to define constraints and transformations intimately
associated with the semantics of the data.

ICL Technical Journal November 1991 793

Raleigh therefore provides the ability to make transparent use of external
code and data, as well as a Service Interface that allows OODL to be
embedded within applications written in other languages.

The application developer has a choice as to where various elements of the
application should reside:

• in a conventional program acting as the Raleigh client;
• as functions in the Raleigh server implemented in OODL;
• as functions in the Raleigh server implemented in a conventional

language.

Conventional-language programs may be used to access data stored extern
ally to Raleigh, for example in a relational or text database. In addition
Raleigh can access external files directly, by mapping them to an Object of
Class F ile ,

Note that the Raleigh client may be on the same machine as the server, or
on a remote machine. Additionally, it will in future be possible for a Raleigh
server to invoke functions stored on a remote machine.

6.2 The Raleigh Service interface

The service interface is provided as a library of functions that can be linked
(dynamically) with any application that uses “C” linking conventions. There
are three main groups of functions:

• to open and close a connection to a Raleigh server. An application
process may have a number of connections open simultaneously;

• to submit requests to the Raleigh server. These are expressed as strings
of OODL. Requests may be synchronous or asynchronous, and results
may be returned as they become available or all together at the end;

• local functions to allow data to be converted between Raleigh format
and the format of the application programming language.

6.3 External implementations of Raleigh functions

In addition to implementing a Raleigh function by (OODL) code or storage,
it may be implemented by an e x te r n a l . This may be a UNIX shell command
or the name of a function that can be dynamically loaded from a specified
library. In the latter case, the Service Interface conversion functions allow
the function to interpret its parameters and set up results.

7 Raleigh Architecture

Figure 2 shows the main components of the Raleigh system.

794 ICL Technical Journal November 1991

Fig. 2 Raleigh System Architecture

7.1 Service Interface

The Service Interface supports a connection between the application and
the Raleigh Server. By having a Client part and a Server part it hides the
communications necessary for remote server access, providing the applica
tion with location transparency.

The Service Interface also provides process decoupling between client and
server: there is conceptually a single input queue on the server with a
configurable number of server processes that take the next request from the
queue when they are ‘free’. This minimises resources tied up at the server,
reduces contention, and allows performance to be tailored by changing the
number of server processes.

7.2 OODL E ngine

This is responsible for interpreting a block of OODL. This may have been
passed across the Service Interface (in which case the OODL is first com
piled) or may be the result of calling a function implemented as a block (in

ICL Technical Journal November 1991 795

which case the OODL will already have been compiled). OODL is in fact
semi-compiled, down to calls on a small set of Raleigh primitives. Names
are resolved to object identifiers at compile-time, but binding of function
calls to implementations is delayed until run-time.

7.3 Function Call Broker

This is responsible for implementing a function call, supplied with the
function identifier and the parameters. It must therefore perform the (late)
binding needed to determine the correct implementation of the function
based on the classes of the supplied parameters, and then invoke the imple
mentation and return the result. This may involve using the OODL engine
(for implementations in OODL), calling a Raleigh primitive (for storage) or
invoking an external function.

The Function Call Broker isolates the mechanism used for binding, and, in
future, will be used to make requests on remote Raleigh servers to provide
location transparency for function calls. The concept is modelled on the
OMG Object Request Broker (OMG, 1990).

7.4 Fundamental Object Model Support

This provides primitive routines for manipulating the fundamental objects
(such as classes and functions) that drive the rest of Raleigh. It provides a
clean and simple interface to the underlying storage used by Raleigh,
allowing optimisation and caching to be used without affecting the rest of
the system.

7.5 MegaLog

MegaLog (Bocca, 1990) is a Knowledge Base Management System
developed by the European Computer Industry Research Centre (ECRC)
established jointly by ICL and other companies. The system provides
Raleigh with both a persistent high-level implementation language based on
Prolog, and an underlying datastore with the attributes required of a com
mercial database (for example, transaction management). For its persistent
storage it uses the multi-dimensional grid file system BANG (Freeston,
1987).

The idea of basing an implementation of the functional data model on a
persistent Prolog platform has also been explored by (Paton and Gray,
1990). They demonstrate how this approach can be used to support the use
of rewrite rules for query optimisation.

MegaLog has proved a robust and highly productive implementation tool
for Raleigh. In the longer term, we hope that the use of knowledge-base
technology in the heart of the system will facilitate the development of a

796 ICL Technical Journal November 1991

new generation of intelligent tools to assist in application development and
system management.

8 Conclusion

Raleigh has a number of distinctive features that make it very suitable for
the ‘design’ applications it has been aimed at, in particular those requiring
the management of complex data and behaviour, a high degree of extensibil
ity, and the ability to work in a multi-user, distributed and open envir
onment.

At the time of writing Raleigh is about to make its first official (internal)
release to the Open Dictionary and Open System Management projects. It
will undoubtedly evolve as a result of feedback, and also from incorporating
work in the following main areas:

• the extended model (see section 3.4)
• exception handling
• distributed data and processing
• import/export

9 Acknowledgements

The authors wish to thank the following: the other members of the Raleigh
design team (David Allan, Bruce Badger, Danny Lee, Keith Simons, Tim
Walters); the Raleigh Project Manager (Dick Chatterton); and members of
the MegaLog team at ECRC (Jorge Bocca, Michael Dahmen, Mike
Freeston).

UNIX is registered trademark of UNIX Systems Laboratories Inc. in the
USA and other countries.

References

ATKINSON, M. et al. The Object-Oriented Database System Manifesto. Published as Altair
Rapport Technique 30-89 (August 1989).

BOCCA, J. MegaLog — A Platform for developing Knowledge Base Management Systems.
ECRC KB Report § 75. (1990).

BOURNE, T.J. The E)ata Dictionary System in Analysis and Design. ICL Tech J. Vol. 1 No. 3,
pp. 292-298 (1979).

FISHMAN, D.H. et al. Overview of the IRIS DBMS. In Kim and Lochovsky (ed), Object-
Oriented Concepts, Databases, and Applications. Addison-Wesley. ISBN 0—201—14410—7.

FREESTON, M. The BANG file: a new kind of grid file. Proc ACM SIGMOD Conf., San
Francisco, 1987.

GALE, A.C. ICL Tech J. The Evolution within ICL of an Architecture for Systems Manage
ment ICL Tech. J. Vol. 7 No. 4, pp. 673-684, 1991.

KAY, M.H. Open Repository Technology. Proc 3rd European CASE Conference. (April 1991).
ISBN 0-86353-261-6.

KULKARNI, K.G. and ATKINSON, M.P. EFDM: Extended Functional Data Model. Comp
J, 29(1), pp38-46. (1986).

ICL Technical Journal November 1991 797

MOON, D.A. The COMMON LISP Object-Oriented Programming Standard. In Kim and
Lochovsky (ed), Object-Oriented Concepts, Databases, and Applications. Addison-Wesley.
ISBN 0 201-14410-7.

PATON, N.W, and GRAY, P.M.D. Optimising and executing DAPLEX Queries using Prolog.
Comp J. 3_3(6) pp547 555. (1990).

POULOVASSILIS, A. and KING. P.J.H. Extending the Functional Data Model to Computa
tional Completeness. In Advances in Database Technology - EDBT 90. ed. F. Bancilhon,
C. Thanos, and D. Tsichritzis. March 1990.

SHIPMAN, D. The functional data model and the language DAPLEX. ACM TODS 6(1),
ppl40-l73.

OBJECT MANAGEMENT GROUP (OMG). OMA Guide - ed. Richard Soley. 1990.
STONEBRAKER, M. et al. Third-Generation Database System Manifesto. 1989. Proc. 1FIP

TC2 Conf. on Object Oriented Databases, Windermere. (1990).
WARBOYS, B.C. The IPSE 2.5 project - a Process-Model based Architecture in “Software

Engineering Environments - Research and Practice". Ellis Horwood, Chichester, 1989 ISBN
1)-7458-0665-1.

Biographies

Dr. Michael //. Kay

In 1976 he gained a Ph.D from the University of Cambridge for research into
database systems. He joined ICL the following year, and has specialised in database
technology ever since. He led first the development unit and then the design team
for the Codasyl system IDMSX; from 1983 until 1986 he was chief designer of the
document retrieval system 1CLFILE. He acted as Chief Architect on the INGRES
programme integrating the relational database system into ICL’s product range, and
since 1989 he has been responsible for ICL’s technical strategy for data dictionary
products. The work on Raleigh has been one aspect of this.

Mike was appointed an ICL Fellow in 1989. He is a member of the team developing
ICL’s OPENframework architecture, with specific responsibility for Information
Management. He is also a Visiting Fellow at the Institute of Software Engineering
in Belfast.

Peter Rivett

Peter Rivett joined ICL in 1979 as a sponsored student, supporting VME during his
industrial year. After graduating from Manchester University with a BSc (Hons) in
Computing and Information Systems he joined ICL’s Relational Systems Centre
and played a major part in the specification and design of Querymaslcr 250.

He then moved onto the design and implementation of what became ICL Access,
and ended up leading the team that produced the first version of the User Sponsor
front end, running under Microsoft Windows.

At the start of 1990 he joined the COSMOS data dictionary project. He was seconded
to the Raleigh project as its Chief Designer when it was established in collaboration
with the Configuration Generation development.

798 ICL Technical Journal November 1991

OTHER PAPERS

Making a Secure Office System

Brian Moore
ICL Secure Systems, Bracknell, UK

Abstract

This paper describes the use of ICL’s Secure UNIX® as the basis
for the development of a major application - a Secure Office System.
It describes the security policy enforced by Secure UNIX and outlines
the extensions to the security policy needed for the Secure Office
System. Finally some aspects of the resulting system are described,
particularly the capability of the users in an office environment to
cope with the restrictions imposed on them by the security policy.

1 Introduction

1.1 Security Policies

A system security policy is the part of the functional specification of a
system that describes the security mechanisms to be enforced by the system
and how they are to be used to achieve the required measure of security
within the organisation. In addition, it describes the degree of confidence
that is required to assure the managers of the organisation that the security
mechanisms are being correctly enforced and not being subverted.

Security policies of existing secure systems have been based on models
published by the US Department of Defense [1], the UK Government
Communications Electronics Security Group (CESG) [2], [3] and, of late,
the joint security authorities of France, Germany, Holland and the UK who
have published the Information Technology Security Evaluation Criteria
(ITSEC) [4] which is set to supersede all other standards in Europe. All of
these standards have in mind the evaluation of systems and products by
independent certifiers, so as to prove their security functionality, correctness
and effectiveness. In the UK, a practical scheme for the evaluation of
products aimed at both the commercial and government sectors has been
established by the DTI in conjunction with CESG [5],

RUNIX is a registered trademark of Unix System Laboratories Inc. in the USA and other
countries

ICL Technical Journal November 1991 801

A useful summary and commentary on security policies, particularly the
Department of Defense B-levels, can be found in [6], which describes the
VME High Security Option.

1.2 Secure UNIX

ICL has developed a Secure UNIX Operating System conforming lo the
United States Department of Defense TCSEC B1 assurance level and having
security functions up to approximately the B3 level. In terms of ITSEC the
Secure UNIX would be offered for evaluation as an F5. E3 product and is
being evaluated against similar criteria specified by CESG.

Within ICL this UNIX variant is known as B1 + , but for this paper it will
be referred to as Secure UNIX, and the part that provides the security
features will be called the UNIX Trusted Computing Base or TCB.

ICL’s Secure UNIX product has been developed for use in many organisa
tions including military, government and the financial business. It is partly
for this reason that the security functionality above B1 has been added; the
other reasons are the specific requirements of the Ministry of Defence.
Secure UNIX is conformant to the X/Open Portability Guide. The security
features have been designed so far as possible to conform to the eventual
POS1X standard. It incorporates communications protocols conforming to
Open Systems Interconnection standards.

1.3 Customisation

Although Secure UNIX can be configured for immediate use and will
provide an environment for applications programs equivalent to an insecure
X/Open conformant UNIX, it is not expected that it will be used in this
way. The security policy of any practical system is likely to deviate to a
greater or lesser extent from that offered by the TCB as it stands. An
essential feature of the TCB therefore is that it allows for customisation. It
does this by providing for the replacement of some components such as the
trusted shell, and by providing for the construction of trusted programs that
can exercise privileges that enable them to circumvent some TCB mech
anisms.

L4 A Secure Office System

The first major application to be based on Secure UNIX is a Secure Office
System. This product has been developed by ICL as part of its Secure
Electronic Office programme. It is based on Officepower, which is ICL’s
openly available office system. The first customer to receive it is the UK
Ministry of Defence, where it has been installed for the CHOTS Project.
CHOTS is the Corporate Headquarters Office Technology System which
will ultimately serve around 20,000 users on a nationwide network.

802 ICL Technical Journal November 1991

The development of the Secure Office System has involved extending the
UNIX TCB to meet the requirements for office functions; the security policy
for the Secure Office System is a natural extension of the Secure UNIX
security policy, taking into account the additional functionality and the need
to be able to sell the system as an off-the-shelf product.

2 Trusted Computing Base

Secure UNIX embodies a Trusted Computing Base that carries out the
functions of user authentication, control of access to objects such as files
and peripherals, and the recording of security relevant events in an audit
log. For the Secure Office System, various software configuration choices
made available by the UNIX TCB have been made so as to meet the
requirements of Secure Office security policy. The TCB has also been
extended by incorporating trusted processes that take advantage of the
privilege facilities in the UNIX TCB.

In addition to the usual dialogues between the user and the operating system,
secure systems must provide for dialogues between the user and the TCB.
These are frequently most sensitive; examples are the identification of the
user, and permitting a user to change security information related to a file.
For such purposes it is essential that the user cannot be fooled into con
ducting a dialogue with an untrustworthy part of the system, that is to say,
any component other than the TCB itself. For this purpose, the UNIX TCB
supports a t r u s t e d c o m m u n ic a t io n s p a t h between itself and users that is
unmistakably signalled to the user by a flag displayed on the VDU screen
in an area that is engineered so as to be only accessible to the TCB.

For the Secure Office System, the terminal connection is engineered so that
the terminal is on Trusted Path when it is switched on. A restriction has
been applied in that trusted applications are entered only from the Trusted
Path. Untrusted applications cannot call trusted applications, they can only
exit back to the TCB. This means that users can safely return to the Trusted
Path at any time by requesting an application to exit.

3 Authentication

The UNIX TCB provides a procedure for user identification and authentica
tion that includes password management and encryption. It also provides,
however, for the replacement of this procedure by a customer-specific pro
cedure that may, for example, use special hardware.

For the Secure Office System ICL has developed a terminal incorporating
several security features including an integral badge reader. The UNIX TCB
user identification and authentication procedure has been replaced by a
procedure that authenticates a user’s claimed identity by requiring him to
input his security badge and his password. Passwords are generated by the

ICL Technical Journal November 1991 803

Secure Office System and are encrypted using algorithms chosen by the
customer.

4 Mandatory Access Control

4.1 Labels

All subjects (users) and objects (files) controlled by the UNIX TCB carry a
sensitivity label consisting of a hierarchical classification (an ordered set of
128 levels) and up to 32 categories and up to 64 caveats. Categories are
typically codewords or project names, and, in NATO usage, caveats are
used to distinguish nationalities. An example of a sensitivity label is: CON-
FIDENTIAL:RAGAMUFFIN:UK. In addition to sensitivity labels objects
may have up to 32 informational labels for information such as Medical-
in-Confidence.

In the Secure Office System the label of an object currently accessed is
always displayed in the protected TCB area on the user’s terminal. For
military use the labels map on to familiar classifications (Unclassified,
Restricted, Confidential or Secret), nationality caveats and codewords. The
printed form of the label in the system as constructed for military use adopts
Ministry of Defence standards.

At any instant a user also has an associated sensitivity label similar to those
carried by objects and chosen by the user from the range permitted to him.
This range is set within the user’s profile by the System Security Officer.
The label associated with the user at a particular moment is known as the
user’s clearance and this is also displayed in the TCB area on the terminal
so that the user always knows his clearance.

4.2 Mandatory Access Rules

Mandatory Access Control permits a user to read an object only if his
clearance is higher than or equal to the object’s sensitivity label. This rule
is known as NO READ UP. In detail, it means that the user’s hierarchical
classification must be greater than or equal to the object’s hierarchical
classification and that his caveats must be a subset of the object’s caveats
(the user must have at least one of the object’s caveats) and that the objects’
categories must be a subset of the user’s categories (the user must have at
least all of the object’s categories). Informational labels are not taken into
account. This rule is illustrated in Figure 1.

Mandatory Access Control puts on each object created by the user a label
that is the same as the user’s clearance. This is a restricted enforcement of
the rule known as NO WRITE DOWN which requires that the label of the
object must be higher than or equal to the clearance of the user. This rule
prevents a user from copying information from, say, a Secret file into an

804 ICL Technical Journal November 1991

Fig. 1 Illustrating the NO READ UP rule.

Unclassified file. The TCB d o e s provide a downgrading mechanism, but its
use is audited and is not the prerogative of users in general.

The purpose of MAC is to ensure that wherever information is stored or
printed, or by whatever route it flows through or out of the system, its
sensitivity label unfailingly indicates the sensitivity of the information in it
according to where the information has come from. Once an object has been
labelled Confidential, all copies of it or objects containing extracts from it
will automatically be labelled Confidential. For the Secure Office System,
the UNIX TCB MAC facilities are used directly to implement the require
ments of the system security policy.

Of all of the features of the ITSEC F3 Security Policy, it is Mandatory
Access Control, and particularly the NO WRITE DOWN rule, that is likely
to cause inconvenience for users. Commercial versions of the Secure Office
System will alleviate the MAC rules or omit MAC altogether.

ICL Technical Journal November 1991 805

5.1 Users and Roles

Discretionary Access Control (DAC) is concerned with the explicit access
rights of individual users to individual objects. For this purpose, it becomes
necessary to make a distinction between the person and the job that he is
carrying out. It is common in most organisations for a given job to be
carried out by several people, some of who may do different jobs within the
organisation from time to time. Access rights needed to do a job must
therefore be associated with the job rather than the individual users enabled
to do it. For example, several people may have the job of System Adminis
trator and when one of them is acting in that role the system needs to
identify the r o le for the purpose of access control (while still identifying the
a c tu a l p e r s o n for the purpose of accounting). The UNIX TCB therefore
manages the relationship of the users to the roles they may assume, and
then the access of these roles to objects. In general one user may select from
several roles permitted him by the TCB, and one role may be assumed by
many users.

5.2 Access Control Lists

In addition to sensitivity labels, objects carry A c c e s s C o n t r o l L i s t s that define
the roles and the A c c e s s C o n t r o l G r o u p s that are permitted to access them.
Access Control Groups are simply lists of roles created by the security
administrator. At any instant a user is working within a role and an Access
Control Group, both of which are chosen by him from one of several
permitted to him by the TCB.

Discretionary Access Control operates in addition to Mandatory Access
Control. It permits a role to read or write an object only if that role’s entry
or group entry in the object’s Access Control List indicates that he may
read or write it. All operations concerned with Discretionary Access Control,
such as the amendment of Access Control Lists, are on the Trusted Path.
Applications Programs are not permitted to alter access control information.

5.3 DAC in the Secure Office System

The security policy defined for the Secure Office System requires that a
user’s access to the system functions is limited at any time by the role that
he is performing. Thus a clerk may not have the same capabilities as a
manager and a system administrator will only have available to him the
functions needed to carry out that role. The system therefore associates with
each role the total set of functions permitted to it and a user in that role
can only select from those functions.

5 Discretionary Access Control

806 ICL Technical Journal November 1991

The security policy also requires that the original authors of objects can
stipulate additional access controls to be applied to those objects that they
issue to other users. These include control of the copying and printing of
objects. This requirement cannot be met directly by the UNIX TCB because
it must permit untrusted applications to read and write to objects and these
permissions transcend finer controls such as permission to copy. To meet
this requirement therefore use is made of another powerful facility provided
for extending the TCB, the attachment of C e r t i f i c a t io n I n d ic a to r s to pro
grams and to objects. This facility permits the construction of security
domains in which only the in d i c a t e d p r o g r a m s can operate on the in d i c a t e d
o b je c t s . Such a domain has been defined for objects to which only restricted
access is allowed. Objects may be transferred into this domain and are then
identified by a Certification Indicator and are operated on only by programs
carrying this Indicator. These programs then perform the restricted opera
tions in accordance with extended access permissions stored by the TCB.

It should be noted that although it can be configured for different customers
to include various options and combinations of applications, the Secure
Office System in its operational form is finite; it is not possible for users to
add to the functionality of the operational system, which, accordingly,
contains no facilities for constructing executable code. The relationship of
this finite set of functions to roles and to objects is determined when the
system is configured.

There is thus a many-many relationship between users, roles, functions and
objects as illustrated in Figure 2.

Fig. 2 Relations of users, roles, functions and objects

6 Session Management

A s e s s io n is the total interaction between a user and the system between
logging on and logging off. In office systems it is usually structured as a set
of s u b s e s s io n s each of which supports a dialogue with a particular application
for a particular purpose - typing a particular document, updating a particu
lar spreadsheet. In the Secure Office System, the management of subsessions
embodies some key security functions.

Officepower already contains session management facilities that permit a
user to suspend the current subsession and to start another, utilising the
underlying UNIX facilities for process management. For the Secure Office
System these facilities have been redesigned so that users can create subses
sions with different roles and clearances. The Session Management shell
replaces the UNIX shell and it is executed on the Trusted Path.

After a user has successfully logged on he has established a session associated
with his audit-id. He also establishes a subsession which, by default is
associated with his normal role, Access Control Group, and default clear
ance, usually the lowest at which he can work. The user can now, however,
create as many subsessions as he wishes, each having roles, Access Control
Groups and clearances selected by the user and constrained by his User
Profile which is defined and maintained by the System Security Officer.

Moving from one subsession to another with different security parameters
needs to be simple and reasonably rapid. This feature of secure systems is
a major factor in their acceptability to users. In the Secure Office System,
if, for example, a user is writing to a Confidential document and needs to
refer to a Restricted database he needs only five key depressions to suspend
out of his Confidential subsession and enter the Restricted subsession, and
a similar five key depressions to return after making the reference.

7 Accountability and Auditing

The UNIX TCB uniquely identifies each user of the system; the individual
user is identified and authenticated at the beginning of each session and the
user’s identity, known as his a u d i t - id , is associated with that session. The
TCB maintains an audit log in which it records events related to user
activities such as logging on, access to files and changing sensitivity labels,
and related to administrative events such as changes to user profiles. For
each audited event, the user’s audit-id is recorded together with other
information such as the date and time, names of objects to which access
has been attempted, and the type of event.

The audit administrator is able to set filters to restrict the audited events
according to, for example, individual users, particular files or terminals, the
classification of objects concerned or the time of day.

808 ICL Technical Journal November 1991

The UNIX TCB provides facilties for other trusted programs to add records
to the audit log. Using this facility in the Secure Office System many new
auditable events have been defined, related to the actions of trusted applica
tions such as the print spooler and the electronic mail system.

The Secure Office System security policy requires that auditable events shall
have an associated a la r m l e v e l and when this is reached an a la r m m e s s a g e
shall be sent immediately to the System Security Officer. This requirement
is met by a trusted monitor which reads the audit log as it is written and
when the alarm threshold is reached sends messages to nominated roles
through the electronic mail.

8 Managing Security

8.1 Trusted Facilities Management

A crucial component of a secure system is the set of facilities that are used
to manage the security control data itself: user names, audit-ids, clearances,
labels and all of the mappings shown in Figure 2. This set is known as
Trusted Facilities Management.

8.2 UNIX TCB Facilities

The UNIX TCB provides the necessary facilities for managing the security
data related to users and other system objects such as terminals and com
munications channels. It allows for the division of these facilities between
several roles; for example, the roles of Operator, System Administrator and
System Security Officer can be separated and it is possible to ensure that
even if any of the administrative roles were to breach the security policy
they cannot prevent the recording of this in the audit log.

The Trusted Facilities Management procedures in the UNIX TCB are
intended to be used by a trusted program written for each system which
provides an interface for administrators consistent with the man-machine
interface on that system.

8.3 Trusted Facilities Management in the Secure Office System

The primary purpose of the Trusted Facilities Management software in the
Secure Office System is to provide a convenient interface for administrators
in the style of the Officepower user interface. This software is, of course, all
trusted and is executed on the Trusted Path.

The Trusted Facilities Manageent functions are the most sensitive in the
system and are protected by the basic DAC mechanisms and especially the
division between roles. To afford further protection, provision has been
made to make any of these functions subject to two-person control. This
means that two users, X and Y, are required to carry out the function at

ICL Technical Journal November 1991 809

the same time. X, the user in the active role, initiates the function in the
usual manner but the transaction will not take place unless Y is also logged-
in in the corresponding passive role. The transaction is displayed on Y’s
terminal and finally takes place only after Y has indicated approval. An
example of such a function in the Secure Office System is changing the
threshold level at which an audited event would cause an alarm to be raised,
which requires action by both the System Security Officer and the Audit
Administrator. Another example is the downgrading (reducing the classi
fication) of objects, in which case one role is the owner of the object and
the other is the System Security Officer, and again these roles have to be
adopted by different users.

9 Developing the Secure Office System

9.1 Software Architecture

The previous paragraphs have dealt with customising the Secure UNIX
security policy as necessary to make a practical office system. In addition
to this, ICL Product Operations has carried out any modifications needed
to make the standard Officepower applications work to the TCB interface.
The extent of such modifications varies considerably depending on whether
the application has to be trusted or not. The system contains both trusted
and untrusted applications in a structure illustrated in Figure 3.

Fig. 3 The s o f tw a r e structure of a secure office system

9.2 Untrusted Applications

It would be possible to construct a secure system consisting solely of
untrusted applications which can be loaded and run as in any other UNIX
system. Indeed, it is the implicit objective of Secure UNIX that most of the

810 ICL Technical Journal November 1991

software within a system will consist of untrusted applications programs
executed under the full control of the TCB. The principal untrusted
Officepower applications include word processing, spreadsheet, personal
database and time management. These have only been modified where
necessary so that they work in the Secure UNIX environment. The system
also includes the INGRES relational database which is integrated in the
same way and so, for the time being, only handles data of a single classi
fication.

9.3 Trusted Applications

There are, however, important applications that perform work simultan
eously on behalf of many users and which need to handle objects at any
classification. Examples from the Secure Office System are the print spooler
and the X.400 electronic mail system. In addition Officepower applications
use a library for the control of function menus, soft keys and other features
of the user interface. This library is now used by trusted applications as
well, so some parts of the code need to be examined and tested as part of
the security evaluation of the TCB.

9.4 Privileges

Secure UNIX offers a range of Privilege facilities designed to enable system
designers to include trusted applications within systems without having to
incorporate the entire application within the TCB. Each privilege is related
to a function of the TCB; if a privilege is set for a process, that process can
use the TCB function which may mean, for example, that access control
may be overridden. Sets of privileges can be assigned to roles and to
programs which can then select which privileges available to them will be
active at any instant. The objective of the designer is to use the least privilege
required for the program to carry out its function.

The multi-user, multi-level components of Officepowier have therefore been
modified so that they only rely on specific privileges and only activate these
privileges while they are needed. In this way it has been possible to render
a substantial amount of program evaluatable to the B1 (ITSEC E3) assur
ance level.

10 The User View

10.1 Changing from a Non-secure to a Secure System

The Secure Office System was first introduced to a population of (CHOTS)
users who were already using Officepower very effectively and who had a
very strong allegiance to their system. This had an advantage - the users
were willing to endure some teething troubles - and a disadvantage - the
users were so dependent on their system that any impediments introduced

ICL Technical Journal November 1991 811

in the secure system could be unendurable. An example of the sort of pitfall
that awaits the implementor of a secure system is afforded by problems that
were encountered with the printing of security labels.

The Secure Office System security policy requires that all printed objects
must have the sensitivity label printed at the top and bottom of every page.
These labels are put on by the Trusted Print Spooler and occupy six lines
on each page. The usable page length is therefore reduced by this amount
and all documents that existed prior to the introduction of the secure system
have to be repaginated. This was accepted, but unfortunately many users
relied on pre-printed stationery so that, although they repaginated their
documents, they found that the security label was printed over the letterhead.

The importance of this illustration lies in the realisation that the system
design was correct and the problem could not be eliminated by changing it;
the conflict was directly between the security policy and the existing working
practice. In the end the problem was reduced to a managable size through
the introduction of another facility that enables all logos and letterheads to
be printed together with the text, incidentally solving many of the other
problems associated with the use of pre-printed stationery.

When the Secure Office System was introduced we encountered several
problems resulting from clashes between the security policy and the conveni
ence of users. None of these proved to be insurmountable and the users
were able to live with their secure system and are now comfortable with it.
Nevertheless, there are lessons to be drawn from these problems and some
of the interesting examples are outlined briefly below.

10.2 Using UNIX Directories

Users of Officepower generally make great use of the directory hierarchy to
organise their files. In Secure UNIX directories are ordinary objects con
trolled by the TCB. They are owned by roles and are subject to MAC and
DAC controls like other files. When a Secure Office application opens a file,
it needs read access to all of the file’s superior directories; when it creates a
new file it will need write permission to access the superior directory. What
then, should be the relationship of the file’s label to that of the directory’s
label?

The MAC write equal rule leaves no latitude when an object is created, since
the process must write to both the object and its directory they must both
have the same label as the process. This apparently implies that all of the
objects within a directory shall have the same label. The practical unaccept
ability of this restriction was confirmed by the first users of the system. The
solution has been to introduce a trusted function that permits objects to be
moved between directories regardless of their relative labels. This is illus
trated in Figure 4. The effect is that although users have to create additional
directories of the correct classification for the purpose of creating or copying

812 ICL Technical Journal November 1991

Fig. 4 Classification of directories □ and objects Oshowing movement of secret object ©
into a restricted directory 0

objects with that classification (and, incidentally, for extracting mail attach
ments with that classification), they can, with a little effort, organise their
files into directories just as they would in an insecure system.

10.3 Navigation

Users are dealing with objects of different classifications in rapid succession
throughout the working day. For example, mail of various classifications
arrives randomly and in order to read each item the user needs to be at the
corresponding clearance. The constraints of Mandatory Access Control
present a major obstacle to smooth working practices and can easily lead
to user frustration and resistance to the system. The important design
features that mitigate the effects of Mandatory Access Control and enable
users to overcome this obstacle are referred to as navigation and visibility.

Navigation means the ability to work at the correct clearance for the job in
hand and hence to change the clearance and the other parameters of a
session in a rapid and precise manner. It implies the ability to establish
subsessions at several clearances and to be able to move rapidly between
them. The Session Management facilities that provide for this have been
described above. When the system was first put into live use it immediately
became apparent that the effort put in to this aspect of the design was well
spent. Users have indicated some improvements, such as macros that would

ICL Technical Journal November 1991 813

enable them to set up and enter subsessions with commonly used parameters,
but on the whole users have been able to adjust to the facilities provided.

10.4 Visibility

A severe problem in the use of multi-level secure systems is that a user has
a different view of his total data depending on the clearance of the subsesison
he is in. He only obtains a complete view when he is at his highest possible
clearance. Many security policies stipulate that a user should not be permit
ted to become aware of the existence of objects that he is not, at that instant,
able to access. The reason for this is that this awareness is a potential covert
channel. In a finite system, however, where new programs cannot be intro
duced, the threat from this type of covert channel is very low. If the rule is
rigorously enforced the user may be given misinformation about data to
which, in general, he has right of access. The principle adopted for the
Secure Office System is to allow users to be aware of the existence of all
objects to which they could have access if working their highest possible
clearance. Given the design of the Secure Office System this amounts to
letting users see the full contents of any multi-level directories to which they
have access. This feature of the system has proved very valuable in enabling
users to organise their files and to minimise the inconvenience caused by
Mandatory Access Control.

11 Conclusion

To make a practical secure system such as the Secure Office System demands
design and development work comparable to that of making Secure UNIX
itself. To serve as a basis for the development of secure systems Secure
UNIX is perhaps more flexible and configurable than most insecure operat
ing systems and it demands that certain trusted components should be
modified and augmented by the secure system builder.

In all but the simplest secure systems there will be multi-user, multi-level
components. These may be based on existing non-secure products but their
design and development for inclusion in the secure system is never trivial.
Comprehensive facilities in Secure UNIX for the support of multi-level
applications is essential.

In designing a secure system there is an ever-present conflict between security
and usability. Security features seldom contribute to making the system
easier to use and can, if poorly designed, make the system so unfriendly
that users will reject it or will deliberately flout the security policy (by
treating all of their objects as unclassified for example).

Even when designed with a view to the best compromise between usability
and security, the effects of security features are hard to predict and may
even vary considerably between different groups of users on the same system.

814 ICL Technical Journal November 1991

It is therefore essential to monitor very closely the early experience on the
live system and to be prepared to take corrective action. A secure system
has little value if its users are not able to do their work efficiently. In the
case of the Secure Office System, it was found that if it was possible to
adapt working practices to suit the security policy users were ready to do
so, but in some cases it was necessary for the system designers to make the
compromise.

Acknowledgement

UNIX is a trademark of Unix System Laboratories Inc. in the USA and
other countries.

References

1 Trusted Computer System Evaluation Criteria, DOD 5200.28-870, US Department of
Defense, Washington DC, December 1985.

2 CESG Computer Security Memorandum No.2 Handbook of Computer Security Evalu
ation, Issue 2.0, CESG, GCHQ, Cheltenham, November 1989.

3 CESG Computer Security Memorandum No.5 System Security Policies, Issue 1.2, CESG,
GCHQ, Cheltenham, September 1989.

4 Information Technology security Evaluation Criteria (ITSEC), Version 1, Der Bundesminis-
ter des Innern, Bonn, 2 May 1990.

5 UK IT Security Evaluation and Certification Scheme (UKSP 01), Department of Trade
and Industry, London, 1 March 1991.

6 Parker, Tom, The VME High Security Option, ICL Tech. J. Vol. 6 No. 4, p. 657, 1989.

Biography

Brian Moore

After taking a first class BSc degree in Mathematics and Physics at the University
of London, Brian Moore joined IC1 in 1960 and worked as a programmer, a designer
of operating systems and processor architect. He designed the Orion operating
system and then specified the kernel of the George 3 operating system and its file
system, designed the 2900 Processor architecture and finally designed the VME
kernel.

Between 1973 and 1983 he worked for Logica and also as a freelance Computer
Management Consultant. In this period he was responsible for design studies for
major networks and for strategic studies and procurement.

Rejoining ICL in 1984, he was design authority for the OPCON message handling
system from then to 1987, when he became design manager for the CHOTS project.
This involved, first, agreeing the security policy with MOD, in 1988 defining the
system and security architecture for the phase 2 prototypes, next monitoring the
design and development to ensure conformance to the specified requirements and,
most recently, defining the system and security architecture for ICL’s proposal for
the phase 3 CHOTS system.

ICL Technical Journal November 1991 815

Architectures of Knowledge Base
Machines

Kam-Fai Wong
European Computer-Industry Research Centre (ECRC) GmbH Arabellastrasse 17 8000

Munich 81 Germany

Abstract

Ordinary database systems based on the relational model are widely
used in many application areas. However, relational databases are
unsuitable for advanced applications (e.g. Computer Aided Design
CAD). This is mainly due to the limited modelling power and the lack
of inferential ability in the relational model. To overcome these prob
lems, advanced database models - commonly referred to as know
ledge bases - are introduced. Due to the complexity of the knowledge
base models, knowledge base systems cannot run efficiently on
conventional computers. This predicament gets worse as the size of
the data sets handled by such systems increases. Special purpose
hardware machines have been proposed for handling knowledge
bases efficiently. In this document, the architectures of five knowledge
base machines are described; they are the Knowledge Base Machine
(KBM, Japan), the Delta Driven Computer (DDC, France), the CLAuse
Retrieval Engine (CLARE, UK), the PRISMA machine (Holland) and
the European Declarative System, EDS, (Europe).

1 Introduction

In an earlier report [19] a comprehensive review of existing database
machines is given; the machines described therein are mainly designed for
conventional relational database applications. The relational database model
is most popular compared with the other database models - network and
hierarchy. It is widely used for many commercial and industrial applications.
The major reason for the widespread acceptance of relational databases is
simplicity the clean and uniform approach of the relational model, the
ease of implementation of the model and the simplicity of relational query
languages. Nevertheless, relational database systems are not without disad
vantages. Their rigid and simple semantics renders them inefficient for
running complex database applications (e.g. CAD, image database, etc.).
To overcome this problem, advanced database systems - such as deductive
databases and object-oriented databases, generally known as knowledge

816 ICL Technical Journal November 1991

base systems are introduced. Knowledge-base systems support complex
data structures (e.g. objects in object-oriented systems) and inference rules
(e.g. rules in deductive database systems). Complex data structures exhibit
more representational power. Physical objects can be modelled by such data
structures more naturally (e.g. representing a gate in a CAD system as an
object). This makes object manipulation simpler. Furthermore, a rich set of
primitives for processing these complex data structures is provided in know
ledge base systems. The need for storing semantic data and deduction ability
in database systems is growing rapidly. The usefulness of knowledge base
systems is becoming evident. Following this trend, knowledge-base systems
will be used commonly in the future.

Currently, two practical problems are undermining the usefulness of know
ledge-base systems. First, the processing power required for knowledge-base
systems grows with the complexity of the systems; in fact more so than with
the conventional database systems. Knowledge-base systems must treat all
data structures uniformly. For example, there should be no noticeable
difference in performance between the retrieval of tuples and rules in a
deductive knowledge-base system. Conventional computers are unable to
cope with this demand efficiently. Second, the problem of processing power
requirement is worsened by the increasing volumes of knowledge and data
that need to be managed by knowledge-base systems. This problem is not
new to the database community; however, because of the introduction of
complex data structures and variables, processing a large knowledged-base
is more time-consuming and complicated than processing a conventional
database of the same size. At present, due to their inability to handle large
sets of knowledge/data, existing knowledge-base systems are limited to small
applications only.

To overcome the above problems dedicated knowledge-base machines have
been proposed. In this document, the architectures of several such machines
(or advanced database machines) are reported. According to how they
integrate with the host computer systems, these knowledge-base machines
are classified as follows: •

• F il te r s - Devices which are attached between secondary and main mem
ory and function at o p e r a t io n l e v e l they accept and execute knowledge
base operations, e.g. retrieve, issued by the host. Generally, filters are
‘slave’ devices; they are programmed by the host before an operation is
initiated. They perform the required operations on the data as they
stream from the secondary storage devices to the main memory. In
order to achieve real time (or ‘on-the-fly’) performance, only simple
operations are usually supported.

• B a c k e n d M a c h in e s - Dedicated machines which function at query level -
they accept and execute a work unit (or operation graph) generated by
the host upon receiving a user query. These machines achieve in tr a
q u e r y p a r a l l e l i s m by executing a knowledge-base query in parallel.

ICL Technical Journal November 1991 817

• D e d i c a t e d S e r v e r Standalone computers with full KBMS capability,
functioning at t r a n s a c t io n l e v e l they accept and execute database
transactions (a series of queries). These machines are most complex and
achieve both in tr a - and in te r - q u e r y p a r a l le l i s m .

S e c t io n s u m m a r y : In the following sections, the architectures of five know
ledge-base machines are described: the Knowledge Base Machine (KBM,
Japan), the Delta Driven Computer (DDC, France), the CLAuse Retrieval
Engine (CLARE, UK), PRISMA (Holland) and the European Declarative
System (EDS, Europe). These are the main knowledge-base machine
research projects whose work has been widely reported. Descriptions of
these knowledge-base machines concentrate on the execution sequence, the
computation model, the hardware organisation and the current status of
the systems and do not address design and implementation details.

2 The Knowledge-Base Machine (KBM)

A Knowledge-Base Machine (KBM) is the ultimate target of the Japanese
Fifth Generation Computer System (FGCS) project [26]. As an intermediate
working prototype, the relational database machine DELTA is developed
(see [19]). A new information model, the relational knowledge base model,
is introduced by the KBM research team. The Relational Knowledge Base
(RKB) model is based on the extension of the conventional relational model.
This new model represents definite Horn clauses, both rules and facts, in a
relational format. Unlike attributes in relational databases, attributes in
RKB can be variables or simple data structures*. For this reason, mapping
of other forms of knowledge (e.g. production rule, semantic network and
frame) to the RKB model is simplified. The KBM is the hardware platform
specially designed to support the RKB model.

In RKB, a definite Horn clause comprising a head and a body is stored in
a relation with two attributes; one stores the head of the clause and the
other stores the body. Both attributes are stored as lists and share the same
variable as their last elements. The relation is called a permanent relation
and is persistent. For example, the permanent relation (PR) of the rule:

ancestor(X,Y):-parent(X,Z), ancestor(Z,Y).

is as follows:

PR HEAD BODY

[ancestor(X,Y) | T] [parent(X,Z), ancestor(Z,Y) | T]

‘Simple data structures are unnested structures (i.e. lists or functions) - e.g. f(x,y) but not
f(g(a),b).

818 ICL Technical Journal November 1991

A goal clause (a query) is stored in another relation with two attributes.
One stores the expected form of the goal and the other stores the original
goal clause in the form of a list, with nil attached to the last element. The
relation with a goal clause is called a temporary relation (TR). For example,
the TR for the goal clause ancestor(kay,X), is represented as:

TRO ANSWER RESOLVENT

X [ancestor(kay,X) | nil]

Retrieval-By-Unification (RBU) The built-in inference mechanism of the
RKB model is based on a technique known as Retrieval-By-Unification
(RBU) [12]. RBU is achieved by continuous unification-restriction and
unification-join (U-join) operations. Initially, when a query is posed, TRO
is formed according to the query. The RESOLVENT attribute is matched
against the HEAD attributes of the permanent relation (PR). The BODY
attributes of the PR tuples whose HEADs match (unify) the query are
extracted and stored in another temporary relation, namely TR1, as new
RESOLVENTS. For example, matching the TRO and the PR of the above
example gives:

TR1 ANSWER RESOLVENT

X [parent(kay,Z), ancestor(Z,X) | nil]

This action has the effect of restricting the resolution set. At this stage,
query variables may be bound. The RESOLVENTs of each of the set of
TRls are then matched against the HEAD of the PR. In general, a new
version of TR is generated after each RBU operation cycle on the PR. The
RBU operation continues repetitively until there are no more RESOL
VENTS (i.e. the RESOLVENT attribute of TRn is nil).

RBU is a complex and time-consuming operation. The primary goal of the
KBM hardware is to execute RBU efficiently. The system architecture of
the KBM is shown in Figure 1. The KBM is basically a multiprocessor
machine with a large shared memory. It consists of a set of customised
Unification Engines (UE), a Disc System comprising of a set of discs (DS),
a Control Processor (CP), some Main Memory (MM), IO processors (IOP),
and a Multi-Port Page Memory (MPPM).

The permanent relations are stored in the DSs and are streamed to the
MPPM. The UEs get the data from the MPPM, process them (perform
RBU) in a pipeline fashion, and stream the result back to MPPM. The
resultant data are returned to the DS, retained for further processing or
returned to the users.

ICL Technical Journal November 1991 819

Fig. 1 The system architecture of the ICOT Knowledge Base Machine (KBM)

The Control Processor (CP) controls both the data flow and the parallel
execution within the KBM. Respectively, the CP sends control commands
and receives responses to and from the other functional units via the control
bus. Communication with the MPPM and with the external client machines
is provided by the IOP. The UE is the only novel component of the KBM.
The architecture of the UE is described in detail in [12, 14]; and its perform
ance is evaluated in [13].

The MPPM provides a wide data bandwidth between the UEs and the DSs.
Internally, it consists of a set of IO ports, a set of memory banks under the
control of an internal controller. Data are transferred to/from the memory
in logical pages. A logical page can be horizontally partitioned across all
memory banks. This will enable a page to be read from all the memory
banks simultaneously. The connection between a port and a bank of memory
is one-to-one and is synchronised with the system clock. In so doing,
memory conflicts are reduced.

C u r r e n t S ta tu s : As a milestone of the intermediate stage of the FGCS project
which terminates at the end of 1988, an experimental KBM hardware was
constructed, known as Mu-X [10]. In order to implement the machine
quickly, the Mu-X hardware was constructed using off-the-shelf compon
ents. It only emulates the UE functionality using conventional microproces
sors - MC68020 at 12'5MHz. Mu-X mainly consists of 8 processing elements
(DS, UE, IOP and CP), a conventional shared memory (MM, 2M byte) and
a 12M byte MPPM. Each processing element consists of a general purpose
microprocessor (MC68020), a 47M byte disc, some local memory and an

820 ICL Technical Journal November 1991

interface unit to the MPPM. Wisconsin benchmark tests were performed on
the Mu-X (see [15]). The performance results are claimed to be satisfactory.
It is targeted that by the end of the final stage of the FGCS project (end of
1991), a fully functional KBM will be developed [10].

3 Delta Driven Computer (DDC)

The Delta Driven Computer (DDC) is a multiprocessor knowledge- and
data- base computer designed by Bull in France [2, 3]. It is a backend
machine which connects to a host. The DDC is aimed to provide an efficient
hardware platform for both relational and deductive database applications.

The DDC architecture is divided into two levels: language and hardware.
At the language level, DDC supports a high level database query language -
SQL. An SQL Database query is compiled to an intermediate language
known as VIM (Virtual Interface Machine). The semantics of VIM are
based on production rules. A VIM program is further compiled into DDCL
which is considered as the assembly language for the DDCf - At the hardware
level, the DDC is a parallel computer with a distributed memory architec
ture. It comprises a set of interconnected identical processing nodes, each
consisting of a general purpose microprocessor (MC68020), a communica
tion interface unit, some local memory and a custom VLSI microprogramm-
able symbolic coprocessor (uSyC) [9], The uSyC is specially designed for
symbolic processing operations which cannot be executed efficiently on
the general purpose microprocessor. The architecture of the DDC is shown
in Figure 2.

Parallelism is pursued in the DDC in order to achieve high performance. It
is exploited at both the architecture and computation levels. The Delta-
Driven Execution Model (DDEM) is specially designed for parallel program
execution. DDC manipulates database relations which are distributed among
the processing nodes. This allows relations to be processed by all nodes in
parallel. The DDC architecture is similar to other conventional ‘shared-
nothing’ database machines - such as GAMMA. The novelty of the DDC
machine is the Delta-Driven execution model which can handle both rela
tional database and knowledge-base operations.

3.1 The Delta-Driven Computational Model

The DDC executes VIM programs in sequence. Each VIM program corre
sponds to a database query. The execution of a VIM program is done in
parallel, following a new computational model called Delta-Driven (hence
the name of the machine). A VIM program is compiled into the native
DDCL code to be executed in the DDC. The Delta-Driven computational
model is based on the philosophy of saturation - an execution strategy

tEach DDC processing node runs a DDCL emulator.

ICL Technical Journal November 1991 821

Fig. 2 The architecture of Bull DDC

commonly used in forward chaining production rule systems. A VIM pro
gram consists of a sequence of production rules. Each rule takes the form
of:

HYPOTHESIS=>CONCLUSION

where HYPOTHESIS and CONCLUSION are predicates of the form
p (X X i , . . . , X n) and X { is an attribute of the predicate which may be a
constant or a variable. HYPOTHESIS consists of one or two predicate(s)
and there must be at least one CONCLUSION predicate. Computation of
a VIM rule starts from the verification (proof) of the HYPOTHESIS
predicate(s). This involves matching the predicate(s) with the exisiting data
base predicates. If the HYPOTHESIS predicate(s) is proven true i.e. the
HYPOTHESIS matches with clauses in the database, its associated CON
CLUSION predicates are produced. Production of a CONCLUSION
implies adding a new fact (or tuple) into the database. The execution of the
VIM rule is complete when the rule is saturated - i.e. no more CONCLU
SIONS can be produced or no more facts can be added to the database.
The result of a VIM program is a set of new facts deduced from the facts
in the existing database.

The Delta-Driven Execution Model (DDEM) applies a c t io n s to relations.
A relation is a set of facts under the same predicate. During the execution
of a VIM rule, appropriate relations are transformed to streams of data.
The DDEM adopts a dataflow computation strategy which triggers actions
as soon as a data stream becomes available. An action involves the consump
tion of streams of facts and the production of new ones. New streams of
facts, after the elimination of duplicates, may then invoke further actions.

A fact produced or consumed by a rule during saturation is referred to as
Delta an increment to the existing database. There are two types of Delta:
a White-Delta (WA) and a Black-Delta (BA). White delta are produced from
black delta under the elimination action. The relationship between white
and black delta is depicted as follows:

WAfact «- BAfact-factc (elimination action)

where factc is the current relation. White-Delta are produced by removing
the previous content of the facts relation from the newly produced data
stream i.e. the Black-Delta. Effectively, the elimination action is to remove
duplicates. During a saturation operation, White-Delta are used to initiate
the rules which invoke them. Saturation completes when no more White-
Delta are produced. As an example, consider the following database con
sisting of a “parent” relation:

parent(kay,roy). parent(ray,may). parent(tom,kim).

The parent(A.B) predicate says that B is the parent of A. Also, there is a

ICL Technical Journal November 1991 823

VIM program which encompasses a set of rules for defining an ancestor,
viz:

parent(X,Y) => ancestor(X,Y).
parent(X,Z),ancestor(Z,Y) => ancestor(X,Y).

The VIM program says: if Y is the parent of X, Y is also X’s ancestor (the
first rule); alternatively; if Y is the ancestor of the parent of X (i.e. Z), Y is
also the ancestor of X. The VIM program is compiled to DDCL code which
takes the following form:

Rule-1 WAparent(X,Y) => BAancestor0(X,Y)
Rule-2 WAparent(X,Z),ancestor(Z,Y) ^BAancestor^X.Y)
Rule-3 parent(X,Z), WAancestor(Z,Y) =>BAancestor2(X,Y)

The saturation computation of the above DDCL is as follows: Initially, an
empty ancestor relation is produced - ancestorc (the subfix ‘c’ implies
current). This ancestor,, relation will eventually contain the final result. It is
constantly updated during saturation. Also, during the initialisation phase,
a White-Delta parent stream is produced by taking a copy of the parent
database relation, viz;

WAparent(X,Y) <- parent(kay,roy),parent(ray,may),parent)tom,kim).

The DDC computation then continuously executes the following algorithm
until no more Delta are produced.

L oop '.
1 Apply WA of parent and ancestor to RULE-1, RULE-2 and RULE-3
2 BAancestor +- BAancestor UNION BAancestor!, UNION BAancestor2
3 WAancestor +- BAancestor - ancestor,.
4 ancestor,. = ancestor,. UNION WAancestor
5 IF (WAancestor is not empty) GOTO Loop

During the first cycle, there is only one Delta stream, namely the White-
Delta parent (WAparent). The White-Delta parent is streamed to the DDCL
rules (1). Processes executing these rules consume the Delta stream simultan
eously producing parallel Black-Delta streams of ancestor. These streams
are merged (UNION) producing a single unified Black-Delta ancestor stream
(2). To reduce the amount of work in later processing, duplicated facts in
the unified Black-Delta stream are eliminated creating a White-Delta
ancestor stream (3). The current ancestor database is updated by combining
(UNION) the White-Delta ancestor stream with the facts already existing
in the database (4). At the same time as step (4), the size of the White-Delta
ancestor stream is tested (5). If it is non-empty the execution sequence is
repeated from (1); otherwise, the computation is saturated implying the
solution set, stored in ancestor,., is complete and the execution terminates.
Notice that when the loop is repeated, both the White-Delta streams of

824 ICL Technical Journal November 1991

ancestor and parent are fed to the DDCL rules. Details and examples of
the Delta-Driven execution model can be found in [2].

C u r r e n t S t a t u s : The Delta-Driven execution model was developed and is
used extensively by Bull. The first DDC prototype is a hardware emulation
developed on the Bull SPS7 multiprocessor machine. Four processors are
used in the prototype. A multiprocessor configuration of UNIX is used and
the interprocessor communication is developed using the UNIX communica
tion tools. Each processing node of the DDC is simulated by a UNIX
process located on a physical processor. Experience of Bull on the DDC
project is applied to an existing project - the EDS system (see later).

4 CLAuse Retrieval Engine (CLARE)

CLARE - CLAuse Retrieval Engine - is a database filter for Prolog database
applications implemented at Heriot-Watt University, Edinburgh, Scotland
[21]. Although the semantics of Prolog is ideal for database applications,
the language has not been widely applied to such applications because of
its inefficiency in handling large sets of data (> 100K clauses). The objective
of CLARE is to provide an efficient clause retrieval facility thus making the
performance of Prolog suitable for large applications. The CLARE machine
is based on a two-stage clause filtering philosophy, see Figure 3.

Fig. 3 The overall system architecture of CLARE

The first stage filter [23] is the hardware implementation of a partial index
matching scheme - namely, Superimposed Code Word plus Masked Bits
(SCW + MB) and the second filter is based on partial-test unification [22].
On the software side, a PDBM-Prolog (PDBM = Prolog Data Base Machine)
system is designed in the CLARE project. One of the main goals of the
design of the PDBM-Prolog system is to keep the syntax and the semantics
of the system as close to conventional Prolog as possible. This is equivalent

ICL Technical Journal November 1991 825

to extending conventional Prolog with database handling ability. This
approach differs from other logic-based deductive database systems. Com
pared with the database relations of the DDC (discussed before), the
domains of relational attributes are not so restrictive. In PDBM-Prolog an
argument in a predicate is a full Prolog term which may be a complex
structure, a constant or a variable. The PDBM-Prolog system is an integ
rated Prolog database system: Prolog and database are viewed as a uniform
system. Another approach in implementing a Prolog database system is by
coupling an existing database system to a Prolog system. Generally, an
integrated Prolog system provides a uniform language interface and runs
more efficiently. A survey of different implementation approaches for logic
database is given in [7].

A large Prolog database, containing over 10k clauses in the PDBM-Prolog
systems is stored as 2 files. (If a database is very large, more than 1 million
clauses, an additional level of indexing will be introduced.) An index file
consists of a dual entry index table. The left hand side of the table contain
index codewords of the database clauses and the right hand side contains
the corresponding clause reference. The codewords are formed by the Super
imposed Code Word plus Masked Bits (SCW-t-MB) indexing strategy,
sew + MB is most suitable for encoding Prolog clauses because of its ability
in handling variables and complex structures with a reasonable codeword
size. The clause reference is the clause address on the disc. Details of a
clause are stored in the code file. A clause in the code file consists of 2
segments. The header segment contains some type information of the argu
ments in the head; and the code segment which contains the executable code
of the clause in a pseudo-compiled format. Besides being directly executable,
this special code format makes de-compilation easier.

When a query is posed the PDBM-Prolog system will select the best (fastest)
strategy in resolving the query from:

1 primary indexing if the key attribute is specified in the query;
2 pure software search if the predicate involved is small;
3 first-stage filtering if the expected solution set is small;
4 second-stage filtering only if the potential solution set has already been

cached; and
5 two-stage filtering if the predicate involved and the expected solution set

are large.

4.1 Two-stage Filtering

The two-stage filtering strategy is the default. During two-stage filtering, the
encoded query is loaded into the CLARE, both the first and second stages.
A disc transfer is then initiated which streams the index file to the CLARE
memory space. As individual codeword passes the CLARE first stage, it is
matched against the query codeword. If the result of a match is positive
then the corresponding clause reference is kept in the CLARE buffer;

826 ICL Technical Journal November 1991

otherwise, the reference will be ignored and matching will continue with the
next codeword. Matching completes when the search of the required portion
of the index file is exhausted. The clause satisfiers of the first stage are only
potential unifiers; some of them may fail at the final full-unification. This
is because SCW + MB indexing is only a partial matching technique.

To reduce further the potential resolution set, the clause code of the first
stage satisfiers is subjected to further filtering. The second stage filter com
pares the types of the database arguments (information stored in the header
segment of a clause block in the code file) with those of the queries. The
argument types are matched according to the partial test matching algo
rithm. If a database clause satisfies the test it is retained, otherwise the next
clause will be tested. The resulting clauses after the second stage filter are
passed to the PDBM-Prolog inference engine for full unification. By per
forming the two-stage filtering the resolution set of a query is drastically
reduced. This has the effects of (a) leaving more room (heap space) for the
host processor for other computation and (b) reducing the bus traffic
between the secondary store and the host, which is advantageous in a
multiprocessor environment.

C u r r e n t S t a t u s : A prototype of the CLARE machine consisting of only the
first stage filter (CLARE-FS1) has been developed [24], The first stage filter
is based on 188 off-the-shelf MSI/SSI ICs. The construction of the second
stage has been abandoned due to the technical problems in low-level disc
management. The interface of the CLARE-FS1 hardware is designed to the
industrial standard VMEbus specification. The prototype is connected to a
SUN3/160 workstation equipped with 4Mbyte of main memory and a
142Mbyte disc system. The CLARE-FS1 is designed as a slave device which
maps into the SUN’s physical memory space. The search rates of the first
stage and the second stage filters are 4-5M and 4-2M words (16-byte) per
second, respectively. These rates are much faster than the disc transfer rates
of any existing SUN disc system and therefore CLARE-FS1 can provide
on-the-fly clause retrieval. On the software side, the PDBM-Prolog system
designed to run with CLARE was initially targeted for single user applica
tions. Multi-user capability (including transaction processing, concurrency
control and recovery management) is being augmented to the system. At
present, prototypes of the PDBM-Prolog system are running on SUN3/160
and ICL3930. For the future, research is underway in enhancing the
CLARE-FS1 hardware with set [25] and incomplete information [17] hand
ling capability.

5 PRISMA

The PRISMA database machine (software and hardware) was designed and
is being developed jointly by several Dutch universities together with Philips
Research Laboratories (Eindhoven) [1, 11, 18], It is a large scale distributed
main memory database management system implemented in an object-
oriented language and runs on top of a multi-computer system.

ICL Technical Journal November 1991 827

At the interface level the PRISMA supports 3 languages: the relational
query language SQL, a custom object-oriented programming language
POOL-X and a custom logic programming language PRISMAlog. SQL is
incorporated in order to allow the PRISMA database management system
to deal with existing relational applications. POOL-X is the system imple
mentation language. It is a parallel object-oriented language and enables
any tool developers to bypass SQL thus leading to a tool with better
performance. The features of POOL-X include exception handling mechan
ism, class and inheritance, a flexible type checking scheme, floating point
arithmetic and message passing facility. Cooperation of POOL-X objects is
achieved via message passing.

The ultimate goal of PRISMA is a single machine for both data and
knowledge processing. Knowledge is specified in the form of logic using
PRISMAlog. This is based on definite, function-free Horn clauses - i.e. an
attribute in a clause can only be a constant or a variable - and adopts the
Prolog syntax. The semantics of PRISMAlog is defined in terms of exten
sions of the relational algebra. Facts correspond to tuples and rules corre
spond to database views. Compared to Prolog, PRISMAlog is set-oriented,
which makes it suitable for parallel evaluation.

The virtual architecture of the PRISMA database machine (see Figure 4)
consists of several decentralised database subsystems, known as One-Frag
ment Managers (OFM), running under the supervision of a Global Data
Handler (GDH). The GDH is responsible for data dictionary management,
transactions management, concurrency control, recovery and query compila-
tion/optimisation. Parallelism is achieved by distributing both database
management and query processing. Databases are partitioned and tuples
may be stored as segments in different OFM. In so doing, evaluation of
fragments can be processed in parallel. Internally, a OFM is basically a
small database management system in its own right (see figure). It consists
of its own local query optimiser, transaction table, access modules and local
data dictionary. Ideally, each GDH and OFM should run on a separate
processor.

The hardware architecture of the PRISMA machine consists of a number
of processing elements connected via a high bandwidth message passing
network. Each processing element consists of a processor, some local mem
ory and a communication processor.

C u r r e n t S ta tu s : The software and hardware of the PRISMA database
machine are being developed independently. On the software side, a first
prototype of the PRISMA database management system is running on a
POOL-X interpreter on a sequential machine. A prototype of the target
multiprocessor PRISMA machine is still under development. It consists of
64 processing elements. Each element consists of 16 Mbytes of local memory
and 4 10 Mbits per second communication links. The topology of the
interconnection network is a mesh-like or a variant of the chordal ring.

828 ICL Technical Journal November 1991

Fig. 4 Architecture of the PRISMA Database Machine

Although the PRISMA is a main memory machine, some of the processing
elements will be attached with secondary disc storage. The discs will be used
for stable storage and automatic recovery upon system failures.

6 EDS Machine

The European Declarative System (EDS) is a 4 year ESPRIT II project
(European Strategic Programme for Research and Development in Informa
tion Technology) started in 1989 [4, 5, 20]. The main participants the project
are ICL (UK), Bull (France), Siemens (Germany) and ECRC (Europe)
together with various European universities. The project is to develop (and
apply) parallel techniques within the fields of advanced database manage

ICL Technical Journal November 1991 829

ment systems and application systems for present and future business profes
sionals. This involves the design and implementation of a parallel database/
knowledge software environment and a parallel hardware platform for
supporting it. Database is the main stream application; in addition to that,
the EDS machine will support parallel functional, logic and object oriented
programming languages. The conceptual view of the EDS database system

j | Other subsystems are not discussed in this document

Fig. 5 The Conceptual View of the EDS Database System Architecture

architecture is shown in Figure 5. The architecture can be divided into four
levels; they are interface, software, kernel and hardware levels.

U s e r L e v e l . At the user interface level, database users send queries written
in Extended Structured Query Language (ESQL) to the EDS database
system [8], The EDS database system adopts the relational database model
as the foundation. This is because the relational model is well established
and is believed to be the prime technology for database applications in the
1990s. As its name suggests, ESQL is an extension to the industry standard
database query language SQL. Besides the relational semantics of SQL,

830 ICL Technical Journal November 1991

ESQL can also handle user-defined complex data structures (e.g. Abstract
Data Type: ADT), deductive rules and recursive queries. These extensions
build the EDS system with the capability to support non-relational database
applications. Similar to conventional SQL, the ESQL consists of a data
definition language (DDL) to manage and process data definitions and a
data manipulation language (DML) to update and retrieve stored data.

Provision of Abstract Data Types (ADTs) makes EDS suitable for advanced
database application. An ADT is a user-defined data type. Apart from
specifying the format of a relation, an ADT consists of a set of user defined
functions, referred to as methods, which is specifically designed for and
solely applicable to the data which it represents. Moreover, complex object
structures can be constructed incrementally from existing ADTs. This flexib
ility in data structuring allows users to model real life objects easily. ADT
also supports the notion of object class. An ADT structure can be defined
as a sub-class of another object; in so doing, the former will inherit the
properties of the latter. The following example shows the information model
ling power of the ADT facility:

Example of ADT
C o n v e n tio n : In this example, bold faced words in capital letters are system
primitives; i ta l i c words are ADTs; and words in roman font and in small
letters are user defined names.
A base relation ‘triangles’ is defined which consists of a set of triangles with
different colours. Each triangle is uniquely identified by a trianglekey.

CREATE TABLE triangles
(trianglekey INT, colour STRING, shape T R I A N G L E
KEY IS trianglekey; T R I A N G L E is a user defined ADT which is a sub-

type of another ADT, namely P O L Y G O N :

CREATE TYPE T R I A N G L E
SUBTYPE OF P O L Y G O N
WITH (height FLOAT);

CREATE TYPE P O L EG6WOBJECT
TUPLE OF (polygonkey INT, vertices SET OF P O I N T S '

CREATE TYPE P O I N T
(x FLOAT, y FLOAT);

Notice that apart from the properties (or structure) inherited from P O L Y
G O N , T R I A N G L E also has its proprietary attribute, namely height. TUPLE
and SET are basic generic ADTs provided by the system. These generic
ADTs come with m e th o d s e.g. methods for a TUPLE may be select, filter,
. . . , etc.

Software Level: Next is the software level which comprises a Request Man
ager (RM) and a Data Manager (DM). This level is responsible to the

ICL Technical Journal November 1991 831

execution of the ESQL. An ESQL query is distributed to one or more
Request Managers (RM)J. The RM performs several operations on the
query: The ESQL query is compiled. This is to ensure that the query is both
syntactically and semantically correct; if it is not, an error message will be
returned to the requesting user. Otherwise, if the compilation is successful,
the query is optimised, parallelised and bound with some run-time library
modules. At the end of all the internal operations within RM, an ESQL
query is translated into an intermediate language format, namely LERA
(Language for Extended Relational Algebra). The LERA compiler contains
information on the accessing methods available to a relation and selects the
one most suitable for a query operation. Supporting access methods include:

1 ALL —SELECT - performs an exhaustive retrieval of a relation.
2 EXACT - SELECT - retrieval of a relation according to a specific attrib

ute pattern.
3 INDEX —SELECT - retrieval of a relation using a secondary index on

a relation.
4 N EST - JOIN - perform a join of relations R and S. R is first distributed

to each of the processing nodes§ where S is stored. Then the join is
performed according to the classic nested-loop algorithm. (Relation R
is assumed smaller than S. This reduces the network traffic).

5 HASH - JOIN - performs a join of relations R and S. Tuples of R and
S are retrieved from their home processing node. The tuples are then
distributed to a set of processing nodes according to hashed values of
the join attributes. On these nodes, the tuples are joined using a nested
loop algorithm.

6 ASSOC —JOIN - performs join of relations R and S. Relation S must
be originally stored in a distributed fashion based on the hash values of
the join attributes. During the join operation, relation R is distributed
to the corresponding processing nodes holding S (i.e. homes of S) accord
ing to the hashed values of the join attributes. Then each processing
node completes the join operation by scanning R and accessing S based
on their hashed indexes of the join attributes.

A LERA program is structured as an execution tree with nodes as LERA
operations and stems as streams of relation fragments. Typical LERA
operations include FILTER, MERGE, DISTRIBUTE, ... etc. Figure6
shows the graphical representation of a LERA program for distributed join
between relations A and B. In this program, relations A and B exist as
fragments - A0 - An and B0 - Bn - in processing nodes PN0 - PNn. Each
processing element is responsible for the join operation of the corresponding
A and B fragments - i.e. Aj join with B; in PNj. Later, the resulting fragments

tA t the hardware level, each RM may exist on a unique processing node in the EDS parallel
machine. Such a node is known as a Request Manager Machine (RMM).
§Note that throughout the description of the EDS machines, the term node’ represents
different entities in different contexts. It may represent a LERA operation, a BREM computa
tion or a hardware processing element.

832 ICL Technical Journal November 1991

Fig. 6 A distributed join (A join B) algorithm represented in a LERA graph

Cj are redistributed (distribute followed by merge) for further operations.
A relation fragment may be filtered prior to any operation - e.g. Bj->Bj.
Note that a LERA program, such as figure 6, is only an abstract execution
sequence.

LERA programs are executed by the Data Manager (DM). According to
the information specified in the LERA code, the DM distributes the database
operations to the corresponding processing elements in the EDS machine.
The fundamental execution strategy of the DM is to bring processing to
data. This requires the DM to know the physical storage locations of all
relations fragments.

Query execution on the DM is based on the Basic Relational Execution
Model (BREM). BREM is responsible for work units of works may be
tasks, teams and threads - scheduling, mapping of works to physical pro
cessing elements and provides store management facilities. The computa
tional model supported by BREM is based on graph-reduction. A BREM
graph comprising nodes connected by arcs represents the state of a computa-

ICL Technical Journal November 1991 833

tion. A node may be an operation node, a structure node or a variable node.
A node (the parent) may reference another node (the child) via a reference
arc. The nature of the reference between two nodes may be one of:

• O b je c t r e f e r e n c e - the parent node refers to the value of the child node;
the latter may be a variable or a structure node.

• F u n c t io n a l r e f e r e n c e - the parent node invokes the function of the child
(operation) node.

An operation node may be in one of d o r m a n t , s u s p e n d e d and a c t i v e states.
At the beginning of the computational process, a d o r m a n t operation node
is ‘woken’ by a system call-initiated by a user query, for example. This node
turns a c t i v e and becomes the root of a computation graph. According to its
outgoing arcs, the root node may further activate other d o r m a n t and s u s
p e n d e d BREM nodes/graphs. Computation is completed when the BREM
nodes/graphs invoked by the root node inform the root that their operations
are finished. Multiple BREM computation graphs may be active simultan
eously and may be executed in different processing elements in parallel.
Effectively, the BREM can be regarded as an executive system (or high-level
operating system) implemented on top of the the EDS kernel.

Kernel Level The third level is the operating system kernel. The EDS kernel
is known as the EDS Machine Executive (EMEX). EM EX is responsible
for overall resource management of the EDS system. It supports (1) a light
weight process model which implements the concepts of threads, teams and
tasks; (2) message passing: inter/intra process communications coupled with
efficient buffer management; and (3) a memory model which employs a
virtual address scheme that can spread across an arbitrary number of PEs.
These facilities are essential for large scale parallelism. The EDS language
subsystems (parallel LISP, Elip-Sys, ESQL and C/C + +) can invoke EMEX
facilities by using the Process Control Language (PCL). PCL has similar
design objectives to other distributed operating systems (e.g. Mach and
Chorus); this implies that porting existing applications written for such
systems to the EDS machine will be possible. Conceptually, PCL may be
regarded as a software bus which allows the different language subsystems
to coexist in the EDS machines.

Hardware Level The hardware level involves the EDS machine architecture
[16]. Figure 7 shows the hardware architecture of the EDS machine. The
EDS machine is a “shared-nothing” distributed memory multiprocessor
machine. It consists of an inter-connection network capable of integrating
up to 256 processing elements. All processing elements are identical and
consist of the following units:

• A Processing Unit (PU) which runs the kernel and the application code.
• A System Support Unit (SSU) which is responsible for the low level

functions of message passing and store copying. It may also support
additional kernel functionality such as scheduling and work distribution

834 ICL Technical Journal November 1991

Fig. 7 Hardware architecture of the EDS machine

and any functions which it may be programmed to do to off-load the
PU.

• A Network Interface Unit (NIU) which is used to initiate and control
inter-processor element communication.

• A Store Unit (STORE) comprising local memory up to 2G bytes. Error
detection and recovery facilities are provided by the STORE.

A database transaction is executed in parallel. The job is distributed to the
PUs of multiple PEs. During the course of execution, a PU may communic
ate or extract information from another processing node. To do that the
PU compiles the communication packet and places it in a message output
queue in the STORE unit - the queue is shared by the SSU. The SSU reads
the output queue and sets up the network packet by adding book-keeping

ICL Technical Journal November 1991 835

Table 1 Summary of the knowledge base machine projects.

Summary of the Knowledge Base Machine Projects

Machines Principal Sponsorship Class of DB/KB Languages DB/KB Execution Current Status
Research
Institutions

Machine Models Models

DDC BULL ESPRIT-1 Backend SQL RDB DDEM (Delta- - A 4 processor prototype based on the
(France) (European) Machine ProdS Driven BULL SPS7 multiprocessor computer

DDB Execution
Model)

- Design and implementation of DDEM

CLARE Heriot-Watt ALVEY (UK) Filter PDBM-Prolog DDB - Resolution - 2-stagc filtering hardware running on
University and Unification SUN3/160
(Scotland) - 2-stage - PDBM-Prolog on SUN3 and ICL3930

filtering mainframe

PRISMA Philips SPIN (Dutch) Server SQL RDB Object-oriented - PRISMA database manger is
Research POOL-X OODB execution implemented
Laboratories PRISMAlog DDB mechanism - PRISMA hardware is still under
University of
Amsterdam
University of
Leiden
University of
Twente
University of
Utrecht
(Holland)

construction

Table 1 (c o n tin u e d)

KBM ICOT FGCS (Japan) Server RKB language DDB RKBM based - Mu-X, a 8-processor hardware
(Japan) RDB on prototype

RDB RBU and RBR
techniques

- Final system by end of 1992

EDS ICL (UK) ESPRIT-II Server ESQL RDB BREM based - System Design is complete
BULL (European) DDB on graph - 4-PE test bed available in mid 91
(France) OODB reduction - 64 PE prototype by end of 1992
(Germany)
ECRC
(Europe)

techniques

List of Abbreviations

BREM Basic Relational Execution Model DDB Deductive Data Base
DDEM Delta-Driven Execution Model ESPIRIT European Strategic Programme for Research and

Development in Information Technology
FGCS Fifth Generation Computer System OODB Object-Oriented Data Base
PDBM Prolog Database Machine ProdS Production System
RBR Ret rieval- By- Restriction RBU Retrieval-by-Unification
RDB Relational Database RKB Relational Knowledge Base
RKBM Relational Knowledge Base Model SPIN Stimulerings Projection INformaticaondersock
(E)SQL (Extended) Structured Query Language VIM Virtual Interface Machine

information to the original packet. The packet is then sent to the network
via the NIU. There are two types of communication packet: store-copying
and message-passing. At the receiving node, the NIU accepts the packet
from the network and passes it to the SSU. Depending on the type of the
incoming packet, the SSU may instruct the NIU to perform a DMA copying
the content of the message to the STORE unit (store-copying) without
intervention of the PU; or it may acquire a buffer from the PU’s buffer
pool, copy the content of the packet to the buffer and then place the buffer
pointer to the end of the PU’s input queue (message-passing). The message
at the input queue will be serviced at a later time. Once a packet is sent an
acknowledgement packet will be transmitted to the sender.

C u r r e n t S ta tu s : The EDS project is entering its third year. The first year
marked the definition phase of the project and the design of the system was
completed in the second year. The definition of the EDS system has been
finalised [4]. The evaluations of the definition are positive (by the commission
of the European research committee). A test rig consisting of 4 processing
elements is due to be completed by mid 1991. The final prototype system
with 64 processing elements interconnected by a delta switching network is
expected to be developed by the end of 1992. The final prototype hardware
will have the following features: the delta interconnection network will be
20Mbytes per second per channel; each processing element will have a
SPARC-RISC PU; units on a processing element will be tightly integrated
with each other by M-bus (Module-bus, an upcoming standard for SPARC
processors).

7 Conclusion

Architectures of five knowledge-base machines have been reviewed. These
machines are still under development or design and are not ready for real
applications. Table 1 presents a summary of these machines. The progress
of knowledge base machine research is moderate as compared to similar
activities on database machines (e.g. GAMMA). This is because the know
ledge base system is still a relatively new area. The theory and the imple
mentation techniques behind knowledge base models are not fully
established. Therefore, in knowledge base machine research, besides the
need for designing the machine architectures, research on the theory and
implementation techniques for the underlying knowledge base models are
also required. Both research activities are complex and the progress of one
will influence that of the others.

Although the relational model is unsuitable for advanced applications such
as CAD, it will not be completely replaced by knowledge base systems in
the future. The key to the success of relational databases is their simplicity.
A wide range of database applications is well defined and fits neatly into
the simple tabular notion of the relational model. Commercial credit/debit
type applications are classical examples of relational systems. The size of
databases and the number of new databases are growing rapidly each year.

838 ICL Technical Journal November 1991

By the time when a practical knowledge base system is introduced to the
market, relational systems will become even more widespread and databases
which exist for years will be very large in size. These factors will make the
task of system conversion, from a database system to a knowledge base
system, unmanageable - if not impossible. For this reason, the design of
knowledge base machines must not neglect the significance of relational
systems. All the knowledge base machines described in this paper, apart
from CLARE, support relational databases. In particular, EDS provides a
simple and uniform language interface, namely ESQL, for both database
and knowledge base applications. In the knowledge base field it is evident
that the deductive and the object-oriented paradigms are most widely used.

CLARE is slightly different from the other four knowledge base machines
being designed to run single-user applications. The CLARE hardware func
tions as a coprocessor unit inside a workstation. Under the CLARE design
principle, implementation of a multiuser environment is a system level design
issue. Multiple workstations can be networked to form a distributed mul
tiuser environment and CLARE is the database filter on each site. In
contrast, the other machines are designed specifically for multiuser applica
tions. The hardware involved in them is more complex than CLARE. High
performance in these machines is achieved by exploiting parallelism at all
levels - executing multiple transactions, queries, instructions and operations
in parallel. The ICOT KBM is a shared memory machine; memory sharing
is provided by the wide bandwidth Multi-Port Page Memory (MPPM). The
hardware architectures of the DDC, PRISMA and EDS are similar to each
other. They are “shared-nothing” multiprocessor machines with distributed
memory. There are many practical problems in designing multiprocessor
systems, let alone designing multiprocessor knowledge base machines. Two
fundamental design issues seriously affect the overall performance of a
multiprocessor system, viz:

1 D a t a d i s t r ib u t io n . Storage of a database is shared between many pro
cessing elements. The sharing must be organised in such a way that the
efficiency of future access to the database is optimised.

2 W o r k d is t r ib u t io n . Program execution is performed by multiple pro
cessing elements in parallel. The work load among the participating
processing elements must be balanced in order to achieve maximum
throughput.

At present, intensive research on both issues is being actively conducted.

Acknowledgements

The work leading to this paper was partially funded by the Commission of
the European Communities as part of ESPRIT II project EP2025, the
European Declarative System (EDS). Thanks are due to Mr. Hans Benker
for his useful comments on the initial draft; Dr. Mike Reeve for his support

ICL Technical Journal November 1991 839

of this review work at ECRC and Dr. John Pinkerton for his suggestions
and his patience in proof-reading the manuscripts many times.

References

1 APERS, P.M.G., KERSTEN, M L. and OERLEMANS, H.C.M.: "PRISMA Database
Machine: A Distributed, Main-Memory Approach” , Advances in Databse Technology -
EDBT’88, Schmidt, J.W., Ceri, S. and Missikoff, M. (eds.), Lecture Notes in Computer
Science (303), pp 590-593, Springer-Verlag, 1988.

2 BERGSTEN, B. COUPRIE, M„ GONZALEZ-RUBIO, KERHERVE, B. and ZIANE,
M.: “A Parallel Database Accelerator”, PARLE’89 Parallel Architectures and Languages
Europe, vol. 1, Odijk, E., Rem, M. and Syre, J.C. (ed.) pp 397-412. Lecture Notes in
Computer Science (365), Springer-Verlag, 1989.

3 BERGSTEN. B„ COUPRIE, M., GONZALEZ-RUBIO, KERHERVE, B. and ZIANE,
M.: “Language Levels and Computational Model for a Parallel Database Accelerator”,
Database Machines Sixth Internation Workshop - IWDM’89, Boral, H. and Faudemay,
P. (ed.), pp 58-72, Lecture Notes in Computer Science (368), Springer-Verlag, 1989.

4 HAWORTH, G„ LEUNIG, S., HAMMER, C. and REEVE, M.: “The European Declar
ative System, Database and Languages", IEEE Micro, vol. 10, no. 6, pp 20-23 and 83-88,
Dec. '90.

5 DETTMER, R.: “Flagship and EDS” , IEE Review, IEE(UK), p 68, Feb '90.
6 GALLAIRE, H. and MINKER, J. (eds.): Logic and Databases, Plenum, New York.

USA, 1978.
7 GALLAIRE, H.: “Logical Data Bases Vs Deductive Data Bases", Proc. Logic Program

ming Workshop, pp 608-622. Universidade Nova de Lisbon, Portugal. 1983.
8 GARDARIN, G. and VALDURIEZ, P.: “ESQL: An Extended SQL with Object and

Deductive Capabilities” , Proc. International Conference on Database and Expert System
Applications, Tjoa, A.M. and Wagner, R. (eds.), pp 299-307, Springer-Verlag, Berlin. Aug
'90.

9 GONZALEZ-RUBIO, R„ BRAIDIER, A. and ROHMER, J.: “DDC: Delta Driven
Computer and eSyC: Microprogrammable Symbolic Coprocessor”, Proc. EUROMICRO
’88, Zurich, Sept '88.

10 KUROZUMI, T.: “Present Status and Plans for Research and Development”, Proc.
International Conference on Fifth Generation Computer System, ICOT (ed.), pp 15-15,
vol. 1, Tokyo, Japan, 28 Nov-2 Dec ’88.

11 KERSTEN, M L., APERS, P.M.G., HOUTSMA, M.A.W., VAN KUYK, E.J.A. and
VAN DE WEG, R.L.W.: “A Distributed Main-Memory Database Machine: Research
Issues and a Preliminary Architecture”, Database Machines and Knowledge Base
Machines, Kitsuregawa, M. and Tanaka, H. (eds.), pp 11515-369, Kluwer Academic Pub
lishers, 1988.

12 MORITA, Y„ YOKOTA, H„ NISHIDA, K. and ITOH, H.: “Retrieval-By-Unification
Operation on Relational Knowledge Base Model” , Proc. 12th International Conference
on Very Large Databases, Aug ’86.

13 MORITA, Y„ OGURO, M., SAKAI, H., SHIBAYAMA, S., ITOH, H. and MORITA,
Y.: “Performance Evaluation of a Unification Engine for a Knowledge Base Machine”,
ICOT Technical Report TR-240, ICOT, Japan, Mar ’87.

14 SAKAI, H„ SHIBAYAMA, S„ MONOI, H„ MORITA, Y. and ITOH, H.: “A Simulation
Study of A Knowledge Base Machine Architecture”, Database Machines and Knowledge
Base Machines, Kitsuregawa, M. and Tanaka, H. (eds.), pp 585-598, Kluwer Academic
Publishers, 1988.

15 SHIBAYAMA, S., SAKAI,H., TAKEWAKI, T„ MONOI, H„ MORITA, H. and ITOH,
H.: “Overview of Knowledge Base Mechanism”, Proc. International Conference on Fifth
Generation Computer System, ICOT (ed.) pp 197-207, vol. I, Tokyo, Japan, 28 Nov-2
Dec ’88.

16 WARD, M„ TOWNSEND, P. and WATZIAWIK. G.: “ EDS Hardware Architecture ”,
Parle 90 Conference, Burkhard, H. (ed.). Lecture Notes in Computer Science (457),
pp 816-827, Springer-Verlag, 1990.

840 ICL Technical Journal November 1991

17 WILLIAM, M.H. and WONG, K.F.: “Extending the Superimposed Codeword Indexing
Scheme to Handle Incomplete Information”, March ’91, (under preparation).

18 WILSCHUT, A.N., GREFEN, P.W.P.J., APERS, P.M.G. and KERSTEN, M.L.: “Imple
menting PRISMA/DB in an OOPL” , Database Machines Sixth Internation Workshop -
IWDM’89, Boral, H. and Faudemay, P. (ed.), pp 97-111, Lecture Notes in Computer
Science (368), Springer-Verlag, 1989.

19 WONG, K.F.: “Architectures of Database Machines”, ICL Tech. J. Vol. 7 No. 3, May
91.

20 WONG, K.F. and et. al.: “The European Declarative System (EDS) as a Platform for
Parallel Logic Programming”, Proc. 2nd IEEE Symposium on Distributed and Parallel
Processing, pp 339-342, Dallas, Texas, USA, 9-11 Dec ’90.

21 WONG, K.F. and WILLIAMS, M.H.: “Design Considerations for a Prolog Database
Engine” , Proc. 3rd International Conference on Data and Knowledge Bases, pp 111-119,
Jerusalem, Israel, 28-3° June ’88.

22 WONG, K.F. and WILLIAMS, M.H.: “A Type Driven Hardware Engine for Prolog
Clause Retrieval over a Large Knowledge Base” , Proc. 16th International Symposium on
Computer Architecture, pp 211-222, Jerusalem, Israel, 28 May-1 June '89.

23 WONG, K.F. and WILLIAMS, M.H.: “CLARE - A Prolog Database Machine”, Proc.
1990 ACM Symposium on Personal and Small Computers, Arlington, Virginia, USA,
28-30 March ’90.

24 WONG, K.F. and WILLIAMS, M.H.: “Index Matching Hardware for Selective Clause
Retrieval in Large Prolog Knowledge Bases”, Oct. '90, (submitted to IEEE Micro).

25 WONG, K.F. and WILLIAMS, M.H.: “A Superimposed Codeword Indexing Scheme for
Handline Sets in Prolog Databases” , Proc. 2nd International Symposium on Database
Systems for Advanced Applications, Tokyo, Japan, 2-4 April ’91.

26 YOKOTA, H. and ITOH, H.: “A Model and an Architecture for a Relational Knowledge
Base”, Proc. 14th International Symposium on Computer Architecture, pp 2-9, Tokyo,
Japan, 2-5 June ’86.

Biography

Kam-Fai Wong

Kam-Fai Wong received his B.Sc. and Ph.D. from the Department of Electrical
Engineering of Edinburgh University in 1983 and 1987, respectively. For his Ph.D.
thesis, he designed and developed a hardware garbage collector system for real-time
AI applications. He joined the Computer Science Department of Heriot-Watt Univer
sity in 1986 and worked as a research associate on the Prolog Database Machine
Project. In 1988, he joined the System Software Engineering Department at Unisys.
Livingston. Scotland. There he worked briefly for a year as a software engineer
designing a real-time kernel. Since the end of 1989, he has been working for the
European Computer-Industry Research Center (ECRC) at Munich. He is a
researcher in the Computer Architecture group at ECRC and is currently leading a
small team investigating performance issues of parallel database systems.

ICL Technical Journal November 1991 841

The Origins of Pericles - A Common
On-Line Interface

J.W.S. Carmichael
ICL Secure Systems International, Winnersh, Berks. UK

Abstract

In common with all large companies ICL is completely dependent on
computer systems for the running of its business. Over the years the
company has developed a number of systems, primarily tailored to
its own needs but of various degrees of generality. One of the most
powerful of these, with what would now be called a particularly user-
friendly Man-Machine (or Human-Computer) Interface was
PERICLES; this was developed for the ICL 1900 series and first went
live in 1975. The paper summarises the history of this system and its
main features.

1 Historical Background

During the early 1970s, the organisation of internal IT departments within
ICL had not yet been co-ordinated, and each main operating division of
the Company had its own separate computer system development group.
Such groups were based at Putney, Stevenage, Letchworth, Kidsgrove, West
Gorton, and Sydenham.

Until 1972 or thereabouts, this separation of functions had caused no serious
difficulty. Each group had been actively engaged in the development of
primary application systems for its own local masters. Interchange of
information between systems in different organisations had not progressed
much beyond the stage of A producing a print-out and B re-keying the
relevant data.

Different standards and procedures were in force in the various units, but
at least one potential source of difficulty had been eliminated: all groups
were operating on similar 1900 series configurations, so that there was no
fundamental technical incompatibility.

842 ICL Technical Journal November 1991

Nevertheless, it was obvious that a greater degree of co-ordination would
become essential, and that more efficient data interchange would involve a
convergence of standards.

In one field, this convergence gave rise to one of the most important of all
internal software developments: the Pericles system for running online
applications.

Each of the computer groups had by this time developed one or more online
applications, and they exhibited a great extent of incompatibility. Even
the authors of the basic software for handling transactions from online
terminals would admit that their early efforts were at a very low level,
and provided ample opportunity for application builders to produce
systems with widely differing approaches to system disciplines and styles
of end-user interface.

This meant, at the first level, that a user of a Stevenage system would feel
quite unfamiliar with the demands of a Putney system, the user of a
Kidsgrove system would feel very strongly the effects of cultural difference
if he ever tried to access a West Gorton system, and even that a Letchworth
user would have difficulty signing in to a Stevenage system, despite the fact
that it had been developed only seven miles away.

During 1973, therefore, a study was inaugurated into the existing online
applications, and their underlying software structures, in order to determine
what would be the best basis for a Company-wide standard for the future
development of online applications. It is not the purpose of this paper to
recapitulate the arguments which took place, nor to revive the pride and
ardour with which the supporters of each contesting system quite properly
advocated the strengths and merits of their local candidate. Let it simply
record that the principles of Pericles carried the day.

2 Establishing the Needs

Pericles started from the observation - daring at the time, for all its obvi
ousness now - that a user might want to access more than one online
application from his terminal, and that he might want to do so via a common
interface. Hence arose the idea that Corporate Information Services (CIS)
should aim to provide an online service, within which multiple applications
would be available.

Thoughtful application developers had also become aware by then that
writing online applications involved much more than simply creating,
accessing, and amending the data records which were their prime concern.
A great deal of housekeeping was also involved: locking, security, and
recovery were all topics to which they had to devote effort, and such effort

ICL Technical Journal November 1991 843

was grudged as a diversion from the interesting business of building
applications.

From there it was really but a short step to deciding that a common online
application environment should be produced, with the most comprehensive
set of facilities for controlling access - to the service itself, to applications
within the service, and even to commands within each application; for
maintaining the integrity of the service, through centralised record-locking,
journalising, and recovery; and for monitoring the performance of the service
through the creation of statistics on connectivity, activity, throughput, trans
action existence times, etc.

3 What PERICLES provided

The development of Pericles, incorporating all of these common functions,
occupied the whole of 1974 and extended into 1975. The very first Pericles
application - Scratchpad, (of which more later) - went live in August 1974.
The Orders application followed it at the turn of the year, being implemented
in late 1974 and inaugurated for live use in early 1975.

Even at an early stage major advantages became apparent from the discipline
of segregating application code from lower-level functions. In the earliest
days, Pericles used the Scanner Housekeeping package to communicate with
user terminals. The fact that this package was limited to 32k-word addressing
almost immediately necessitated a progress toward full sub-programming,
with WMC (Within Machine Communication) facilities used to pass data
and control between application code and communications code. Later on.
Communications Manager naturally became the primary vehicle for control
of all communications traffic. But such changes were mercifully transparent
to the application code, because the interface had been defined at a suffi
ciently high level.

From the start Pericles incorporated a Control Application, to provide
system-wide control over user access. Initially users were identified by a
distinct user number within each Pericles service to which they had access.
But for many years such identification has been achieved by the use of the
individual’s personnel number, and this has been checked for validity against
the main Personnel File.

The Control Application also allowed the system managers to monitor
which files were in use at any time, to review which users were attached
to the system, and so forth. It was also the focus of much of the system
security functionality, which even now must not be described in a general
publication.

An application-independent user interface was established by means of a
series of system-level commands. These were distinguished by being intro
duced by an asterisk, which ensured that there could be no ambiguity

844 ICL Technical Journal November 1991

between them and commands which only applied within a single application.
The most common of these were:

*SI Sign-in
*SO Sign-off
*CA Change Application; (this was found to be a real boon, when con

trasted with the preceding rigmarole of totally signing off from one
application and re-establishing contact with a different online service
for access to a second application.)

*CP Change Password
*?? This provided a primitive sort of HELP facility. Within each applica

tion it gave access to one or more screens which briefly described the
available commands and their parameters. The detail was obviously
application-specific, but at least the means of accessing it was common.

System controllers could also benefit from such restricted commands as:

*WUWhich Users? This provided a table identifying the current population
of logged-in users to an application, and could be used by an applica
tion controller to ensure that modifications could be enacted without
disrupting current activity.

*WF Which Files? This displayed the current status of all files known to
the system.

*RR Recovery Recall. In cases where the service had temporarily broken
for any reason, this provided a means of confirming which was the
last creation or updating transaction which had been successfully
completed.

More for use in debugging situations than in live running there were also
commands such as:

*DP Display File Contents, which output unformatted details of particular
records, much as one can do with List Records or Browse File within
a VME service.

*PT “Print”, to display the contents of specified words or areas of main
store.

Broadcast facilities were also supported as part of the Control Application:
the central system control could send messages to all system users, to the
users of a particular application, to the user of a particular terminal, and
so on.

System controllers were also provided with the capability to activate or
suppress particular applications without inhibiting the running of the Per
icles service as a whole. Many of the applications accessible through live
Pericles services were dependent on files which were also subject to a large
amount of overnight batch running. Sometimes this running was merely

ICL Technical Journal November 1991 845

concerned with re-organising to optimise the file for online access; sometimes
with actually applying updates to files which in online mode were only
subject to enquiry access. Often the overnight runs were concerned with the
generation of voluminous print-outs. But if, for any reason, the overnight
procedures did not run to time, the system controller needed the ability to
bring up the Pericles service with yesterday’s version of the tardy file, and
to generate a suitable warning to users of the affected application. Later on,
he needed the ability to suspend the application, to dose yesterday’s file, to
assign and open today’s file, and to re-activate the application. All of these
facilities were available.

Pericles also offered three ‘standard’ applications - SCRATCHPAD, DAT-
APAGE, and I-SPY. Of these, SCRATCHPAD was perhaps the simplest.
It simply provided to each user of a Pericles service a number of ‘pages’ in
a personal segment of a common file, which could be used in whatever way
the user chose. This proved to be a very useful medium for a form of
prototyping of potential new online applications, since the user could try
out the effect of various screen formats without having to incur the consider
able expense of actual application development.

DATAPAGE provided, in a more extensive and better-managed way than
the old Management Terminal System, a means of generating online substi
tutes for the printed reports which most applications churned out in profu
sion. It was perhaps less vigorously exploited than it deserved.

I-SPY had been developed before the inception of Pericles, but was poten
tially so useful that it was rapidly incorporated into the standard service
framework. It offered the first truly flexible ICL enquiry language for use
in an online context. At this time, of course, the language development
associated with early CAFS hardware was still confined to the laboratory;
equally, I-SPY could not take advantage of the fast searching capability of
CAFS hardware. But the construction of selection predicates by the boolean
combination of individual comparison conditions, and the formulation of
retrieval and display specifications, were in principle very similar in both
contexts. Not having CAFS meant that an I-SPY transaction involving a
long search had the potential to be disastrously anti-social for other users
of the online service. The software therefore contained its own fragmentation
mechanism, ensuring that any long search would be conducted in a series
of conveniently short bursts.

DATAMAIL was a later addition to the Pericles environment, providing
facilities of two kinds: it could control the distribution of requested hard
copies to the appropriate printers; and it offered a simple early form of
electronic mail between users. An online user could be alerted to the fact
that a new message for him had been recorded in the system. Or, when he
next logged in he could be informed that the system was holding one or
more messages for him.

846 ICL Technical Journal November 1991

4 Later developments

Progressively over the years, as operating system capabilities became more
effective, more and more aspects of the running of Pericles services became
automated. Thus a service could be automatically activated in the morning
by a George 3 Timer Task. The start-up procedure checked against ‘applica
tion markers’ to determine which applications had completed their overnight
processing and were therefore available for online opening. Thereafter the
service could autonomously, at suitable intervals, check to see whether any
laggard applications had subsequently become available, and make them
available online.

At the other end of the day, automatic close-down procedures also became
the norm. The normal system close time was held in a standing file as the
basic suitable time. That time could be extended, but could not be brought
forward. When the normal time came, another timer task would activate a
check on the file to determine close-down conditions. If the close-down time
had been extended, the checks would be postponed. At the final close-down
time, ongoing activity would be monitored. Applications with no active
users could be closed at once; those with late users would be put under
sentence of closure; no new transactions would be accepted, but transactions
already within the system would be followed to correct completion; and the
applications and the system would then be closed.

The availability of statistics on system usage was an invaluable aid to tuning,
and greatly helped in the justification of periodic system upgrades. For many
years Pericles applications covered all the data which is the life-blood of
ICL, and use of those applications grew and expanded to an extent which
often astounded their initiators.

The ‘justification’ of computer systems seems still to be stuck in the days
where the worth of developing, say, an invoicing application could be
quantified in terms of the number of clerks saved. The ‘value’ of speedy
access to online information cannot be so simply calculated, yet all those
who demand such access are in no doubt of the value. Pericles systems, in
this innumerate sense, were of the very greatest value to users at all levels
within ICL.

5 The influence of PERICLES

This paper has spoken of Pericles services as though they were things of the
past. Indeed, the first services, as has been mentioned, went live as long ago
as 1975. At their peak there were five such services within ICL in the UK,
and there were others in at least two ICL companies overseas.

Even today there are still three Pericles services running and doing useful
work for ICL in the UK. This prettily typifies a paradox of our industry:

ICL Technical Journal November 1991 847

everything is always changing, with new products and services appearing at
a hectically accelerating rate; but there are also things that work well, that
don’t need to be improved, and that can persist for decades.

The Pericles software was never formally adopted as a product by ICL. This
is sadly characteristic of a continuing short-sightedness in the product devel
opment organisations of the Company. CIS and its predecessors GIS and
IMIS have consistently built, on the sound foundation of primary software
products, service standards which are a model for the industry and poten
tially of great benefit to other ICL users. (The only exception to this general
rule was the FIND information retrieval utility. This was developed by CIS,
before being adopted by Dataskil. It then became, by virtue of its func
tionality being obviously of universal relevance, the most widely exploited
software package in the ICL 1900 user community). Three UK customers
did in fact purchase Pericles; the writer believes that figure should have been
nearer 300.

Pericles was the fore-runner of Hero, which performs a similar service in
managing multiple online applications for ICL users of online VME services.
Hero also is well worthy of much wider dissemination and implementation.

6 Acknowledgements

Acknowledgements are due to many people who took part in various stages
of the development of Pericles. I would mention, in particular, Arnie Shaw
of West Gorton, later of the NCC, who was the brains behind I-SPY,
Richard Dimond, more recently well known for his activities in the ICL
CUA, who put much effort into DATAPAGE and Jerome Tucker, last heard
of with Severn and Trent Water, who did invaluable work in the communica
tions, journalising, and recovery areas. Brian Gosling, who was in at the
beginning, and was responsible for much of the system design and develop
ment, has reminded the author of many important historical details. He has
been in charge of Pericles support for many years, and is even now
enhancing Pericles services to improve their interoperability with VME
applications.

Finally, there’s the question of the name. It has long been agreed that
PERICLES is an acronym for the PERsonalised ICL Enquiry Service, but
this is a clear case of the acronym having been devised after the name had
been chosen. David Dace and the author (an ex-classicist) were walking
down Putney High Street, pondering what we should call this great develop
ment. He said that the names of Greek gods seemed to be popular in the
industry; I said that they’d all been used; he asked what other Greeks might
be available - philosophers, politicians, etc. The name Pericles obviously
occurred and, bingo!, it had the letters ‘id ’ in the middle. The conclusion
was foregone. We haven’t had cause to regret it.

848 ICL Technical Journal November 1991

Biography

H a m ish C a rm ich a e l

Hamish Carmichael was educated at Trinity College, Glenalmond and after two
years National Service in the Royal Navy, at Wadham College, Oxford, where he
read Greats, taking his BA in 1958 and MA in 1960.

He joined Powers-Samas as a sales trainee in August 1958, when that company had
just created a Computer Department, with a staff of three. Experience in operating
and applying punched card equipment led, via the intermediate process of plugging-
up 542, 550, and 555 calculators, and after a spell as lecturer in a training school,
to ‘proper’ programming on the ICT 1301. For this machine he developed the central
time-analysis module of 1301 PERT, and made a premature, over-ambitious attempt
to automate the “serial-setting” process.

In the mid-60s he was involved in the formation of Corporate Information Systems,
which pioneered many of ICL’s now standard techniques of requirements analysis,
software engineering, and database management.

A long-term interest in information retrieval and the uses of information by senior
management led him to recognise the strategic potential of CAFS at an early stage.
After helping to implement its earliest in-house applications, he transferred to
marketing to promulgate its benefits more widely. In recent years he has pursued
two themes; the importance of CAFS hardware - with its associated INDEPOL
software - for intelligence and investigative systems, and the vital necessity of
protecting data in secure and sensitive environments.

He is a Fellow of the British Computer Society, a Member of the Association for
Computing Machinery, the author of numerous papers and articles, and a frequent
lecturer.

ICL Technical Journal November 1991 849

Book Reviews

T h e C o r p o r a t io n o f th e 1 9 9 0 s — I n f o r m a tio n T e c h n o lo g y a n d O r g a n is a t io n a l
T r a n s f o r m a tio n by Michael S. Scott Morton (Ed), Oxford Univesity Press,
(New'York $24.95), ISBN 0-19-506358-9
In the mid 1980s the impact of IT on how organisations work was becoming
just as interesting as the technology itself — at least for more enlightened
organisations. A group of them — including ICL — joined together to
sponsor the Management in the 1990s research programme at the Sloan
School of Management at MIT. Taking as a “given” the pervasive and ever
extending impact of IT, the study sought to discover, record and codify the
“best practice” in US and European business.

An overview of the results has been published in this 330 page book. Written
by fourteen of the leading contributors to the programme, it pulls together
an overview and a logical path through the mass of detailed research
undertaken on the programme.

That there is no pretense of being a book about IT itself is clear from the
brief section devoted to the “the Information Technology Platform”. Con
taining only one obligatory “cloud” diagram of a network, a few stick-men
representing users and one trend graph it makes clear from the start that
the particular state of technology at any given time should not be a concern
for the reader — it certainly was not for the authors.

The book improves with a distinct change of pace and style in the chapter
on Competition and Collaboration by Rotemberg and Saloner. In this, and
in Venkatraman’s excellent following chapter on business reconfiguration,
we are taken to the leading edge of MIT’s thinking on the dynamics of
markets and businesses. At first reading it is difficult to see why this particu
lar line of reasoning should have emerged from a study of the impact of IT,
but by the time examples have been given of competition and reconfiguration
within the IT industry itself, the basic argument — that access to and the
control of information are power points in many markets — becomes
convincing.

Taken together the next two chapters — by Venkatramen and ICL’s own
Hugh Macdonald — begin to show how management can respond to these
market forces — and even proactively shape them. Venkatraman’s chapter
presents an extremely powerful model of the different ways in which IT can

850 ICL Technical Journal November 1991

be managed as an integral part of business reconfiguration, while Macdon
ald’s chapter and appendix (the latter curiously relegated to the rear of the
book — presumably because it is practical and useful rather than “aca
demic”) present a process methodology which shows organisations how to
manage the “strategic alignment” of business strategy, organisation,
information systems and technology.

In the final three chapters the book reverts to a more descriptive style; while
there may be gems of wisdom hidden herein, all that is superficially visible
is an academically upmarket version of a business magazine review of
experiences of organisational change.

Taken as a whole the book betrays its origins: it is a slightly edited version
of the final report to the programme sponsors, which itself seems to have
been compiled as an afterthought to the real academic business of publishing
the outputs of the thirty two individual research projects.

For the reader trained in engineering management the middle three chapters
are quite exciting; they offer the possibility of an “engineering” approach
to competition, business management and organisational development. The
book is well worth reading for these chapters and associated appendices
alone. Using this approach must require an organisation to have investment
and change management soundly based on process competence and rational
logic — no mean requirement in the era ofthe “one minute manager”. The
book gives no indication of whether the programme sponsors are equal to
this challenge, nor whether they have gained any benefits from their consider
able investment in this facinating programme.

C .L .F . H a y n e s
Director, Advanced Technology
AT&T Istel Limited

C A L S '. A n I n tr o d u c t io n to C A L S , th e S t r a t e g y a n d S t a n d a r d s by Joan Smith,
published by Technical Appraisals at £35.00.
CALS (Computer-aided Acquisition and Logistic Support) is a US standards
initiative for document and data exchange in the context of military Integ
rated Logistics Support. It is a set of current or proposed international
standards for interchange of text, diagrams and drawings. To achieve the
standards involved there are two phases of implementation of CALS.

An initial phase (Phase 1) replaces paper and the other tangible documenta
tion with electronic media. Compliance with phase 1 was mandatory for all
technical submissions to the (US) Department of Defense on January 1
1991. A second phase (Phase 2) integrates a common supplier and subcon
tractor database with the end-user. Data updates occur only once, since all

ICL Technical Journal November 1991 851

other users up and down the chain will not duplicate that databank for their
own needs but draw on it. Many problems are yet to be solved, not the
least being the security of both commercial and military data.

The timescales set for implementation of CALS mean that the development
of the concepts of the MIT Management in the 90’s program on the
integration of the complete supplier/user chain (in fact a business network)
need to be understood and to be acted upon in those industries where CALS
and CALS-like initiatives will be used. In this respect the results of the MIT
90 study have a key role to play, (see review of the book edited by Scott
Morton in this issue).

The Phase 1 standards for each area have already been specified; for example
for Text, it is SGML; illustrations, CGM; and product data, IGES. CALS
is above all an evolutionary initiative. Although current standards are rigidly
set, future and long term standards will be added as CALS grows and as
OSI becomes more widely accepted.

The key to Phase 2 is PDES — a set of standards being developed by a
consortium of US companies. Since European interest in CALS became
evident the Consortium has modified its prescriptive view of PDES and
allowed some inclusion of current European standards developed through
appropriate programmes.

Joan Smith’s book presents an easy-to-read introduction and overview of
CALS. It is a useful tool for managers approaching CALS for the first time
who need guidance through the CALS maze rather than IT support. In non
technical language, Mrs Smith describes the rationale for each choice of
standard and summaries each without going into technical detail. Full
references to the standards, publications in which they may be found and
addresses from whom they may be obtained are given. Contentious issues,
such as whether CALS could be used in the furtherance of unfair trade
practices, or whether UK Ministry of Defence should adopt the same
standards, or whether suppliers (or the military for that matter) are ready
for the paperless environment are, wisely, not addressed.

Constantly flicking backwards and forwards hindered concentration; the
153 abbreviations should be on a foldout page for easy reference; the
gobbledegook needs to be cleaned up (“G O S I P is to b e u s e d a s th e w a y in to
O S I , F I P S P U B 1 4 6 s p e c i f y in g a g o v e r n m e n t O S I p r o f i l e , k n o w n a s G O S I P . ”
(p59)) and the relevance of some of the necessary technical terms (X.400)
should be explained. Which systems are being discussed should be make
clearer. UK GOSIP and US GOSIP are not identical. Mrs Smith does not
distinguish between them. This makes matters confusing for the uninformed
reader. On the other hand, the end of chapter summaries and the biblio
graphies, the “Where to find more information” and the help sections are
very good indeed.

852 ICL Technical Journal November 1991

Overall the book is eminently readable, encouragingly slim, practices what
it preaches by being typeset directly from the CALS text standard SGML,
but is horrifically overpriced at £35. Still, it is a recommended ‘must’ for all
managers anticipating compliance with CALS to be a requirement in their
business in the near future.

G r a h a m C o o p e r
ICL National Accounts Division
Slough, Bucks. UK.

SGML; Standardised General Mark-up Language
CGM = Computer Graphic Meta-file
1GES = Initial Graphic Exchange Specification.
PDES = Product Data Exchange through STEP (Standard for the Exchange of Product model
data)

ICL Technical Journal November 1991 853

(1) 1-192 (3) 447-658
(2) 193-445 (4) 659-868

Subject index
Volume 7

A A rc h ite c tu re
Architecture of the DRS6000 (UNICORN)
hardware

G. Poskitt 1990 (1) 4-22
The SX Node architecture

J.R. Eaton, G. Allt and K. Hughes 1990 (2) 197-211
Office Documentation Architecture: see ODA
Architectures of database machines

K-F. Wong 1991 (3) 584-613
Architectures of knowledge base machines

K-F Wong 1991 (4) 816
A s s e ts M a n a g e m e n t
A Geographical Information System for
managing the assets of a Water Company

C. E.H. Corbin 1991 (3) 515-536

C C o lo u r
How to use colour in displays

D. Van Laar and R. Flavell
1: Physiology, Physics and Perception 1990 (1) 154-179
2: Coding, Cognition and Comprehension 1990 (2) 362-383
C o n s tra in t h a n d lin g
A conversational interface to a constraint-
satisfaction system

H. Lesan and N.R. Seel 1990 (1) 82-91

Pages contained in each issue

854 ICL Technical Journal November 1991

Using Constraint Logic Programming
techniques in Container Port planning

M. Perrett 1991 (3) 537-545

D D a ta b a s e
Architecture of database machines

K-F Wong 1991 (3) 584-613
An overview of the Raleigh object-oriented
database system

M.H. Kay and P.J. Rivett 1991 (4) 780
The origins of PERICLES

J. W.S. Carmichael 1991 (4) 842
D e s ig n m e th o d s
Designing the HCI for a graphical knowledge
tree editor

K. Lewis 1991 (3) 554-564
Computer simulation for the efficient
development of silicon technology

P.J. Mole 1991 (3) 614-633
Use of the Ward and Mellor structured
methodology for the design of a complex real
time system

R.M. Whetton, A.M.X. Jones, D. Murray 1991 (3) 634-650
D is tr ib u te d s y s te m s s e e D R S 6 0 0 0 , In te rfa c e s ,
S e c u r ity S y s te m s M a n a g e m e n t
D R S 6 0 0 0 (U N IC O R N)
Architecture of the DRS6000 (UNICORN)
hardware

G. Poskitt 1990 (1) 4-22
DRS6000 (UNICORN) software: an overview

T.M. Cole 1990 (1) 23-30
Electromechanical design of DRS6000
(UNICORN)

R. Pullen 1990 (1) 31-40

E E S F
ESF — a European programme for evolutionary
introduction of Software Factories

R. Thomas, C. Fernstroem and O. Hesse 1990 (2) 307-318
E U R O H E L P
Intelligent Help — the results of the EUROHELP
project

M. Smith and C. Tattersall 1990 (2) 328-361

ICL Technical Journal November 1991 855

G G e o g r a p h ic a l In fo rm a tio n S y s te m
A Geographical Information System for
managing the assets of a Water Company

C.E.H. Corbin 1991 (3) 515-536
G IN
Government IT Infrastructure for the Nineties
(GIN) an introduction to the programme

P R. Wiles 1990 (2) 412-431
G o v e rn m e n t see GIN

H H e a lth c a r e (in fo rm a tio n)
Healthcare Information and Communication
Network for Europe (RICHE, q.v.)

T. Drahota 1990 (2) 296-306
H u m a n fac to rs
Human-human co-operation and the design of
co-operative mechanisms

M. Smythe and A.A. Clarke 1990 (1) 110-126
The development of Marketing to Design: the
incorporation of human factors into
specification and design

A.T.F. Hutt and F. Flower 1990 (1) 253-269
Eye movements for a bi-directional interface

R. Epworth 1990 (2) 384-411
Designing the HCI for a graphical knowledge
tree editor

K. Lewis 1991 (3) 554-564
See also c o lo u r

I In te ll ig e n t s y s te m s
Intelligent Help — the results of the EUROHELP
project

M. Smith and C. Tattersall 1990 (2) 328-361
In te r fa c e s
The User-System interface: a challenge for
application users and application developers

A.T.F Hutt and F. Flower 1990 (1) 43-53
The emergence of the separable interface

E.A. Edmunds 1990 (1) 54-65
SMIS — a knowledge-based interface to
marketing data

C. Dobbyn and J. Cheesman 1990 (1) 66-81

856 ICL Technical Journal November 1991

A conversational interface to a constraint-
satisfaction system

H. Lesan and N.R. Seel 1990 (1) 82-91
SODA — the ICL interface for ODA document
access

M. Coon 1990 (1)92-109
Human-human co-operation and the design of
co-operative mechanisms

M. Smythe and A.A. Clarke 1990 (1) 110-127
Regulatory requirements for security: user
access control

C.W. Blatchford 1990 (1) 127-140
Standards for secure interfaces to distributed
systems

T.A. Parker 1990 (1) 141-153
Eye movements for a bi-directional human
interface

R. Epworth 1990 (2) 384-411
Designing the HCI for a grpahical knowledge
tree editor

K. Lewis 1991 (3) 554-564
IS D N
Introduction to the technical characteristics of
ISDN

M. Orange 1991 (3) 451-467
ISDN in France: Numeris and its market

L. Calot and A. Spiracopoulos 1991 (3) 468-492
Future applications of ISDN to Information
Technology

A.R. Fuller 1991 (3) 501-512

K K n o w le d g e E n g in e e r in g
LOCATOR — an application of Knowledge
Engineering to ICL’s Customer Service

G.W. Rouse 1991 (3) 546.553
Architectures of knowledge base machines

K-F. Wong 1991 (4) 816

L L o g ic p ro g r a m m in g
A spreadsheet with visible logic

V. West and E. Babb 1990 (2) 319-327
Using Constraint Logic Programming
techniques in Container Port planning

M. Perrett 1991 (3) 537-543

ICL Technical Journal November 1991 857

M M a in fra m e s s e e S X
M u lt im e d ia
Advances in the processing and management
of multimedia information

M.H. O'Docherty et al 1990 (2) 271-287
An overview of Multiworks

M.E. Morris and I. Cole 1990 (2) 288-295

N N e tw o rk M a n a g e m e n t
The network management domain

A. Maynard-Smith 1991 (2) 763

O O D A (O ffic e D o c u m e n ta tio n A rc h ite c tu re)
SODA — the ICL interface for ODA document
access

M. Coon 1990 (1) 92-109
O ffic e s y s te m s
Making a secure office system

B. J. Moore 1991 (4) 801
see also System Management

P P E R IC L E S
The origins of PERICLES

J.W.S. Carmichael 1991 (4) 842

R R e ta il
Managing data flows in distributed computing
in retail businesses

I.R. Pickworth 1991 (4) 718
R IC H E (Reseau d’lnformation et de
Communication Hospitalier Europ6en)

T, Drahota 1990 (2) 296-306

S S e c u rity
Standards for secure interfaces to distributed
systems

T.A. Parker 1990 (1) 141-153

858 ICL Technical Journal November 1991

Making a secure office system
B. J. Moore 1991 (4) 801

S e m ic o n d u c to rs
Computer simulation for the efficient
development of silicon technologies

P.J. Mole 1991 (3) 614-633
S O D A see ODA
S o ftw a re F a c to ry
ESF — a European programme for evolutionary
introduction of Software Factories

R. Thomas, C. Fernstroem and O. Hesse 1990 (2) 307-318
S p re a d s h e e t
A spreadsheet with visible logic

V. West and E. Babb 1990 (2) 319-327
S X (IC L S e r ie s 5 8 0 M a in fra m e s)
The SX Node architecture

J R. Eaton, G. Allt and K. Hughes 1990 (2) 197-211
SX design process

G.P. Abraham, D.C. Freeth and H. Vosper 1990 (2) 212-232
Physical design concepts of the SX Mainframe

C. Shaw 1990 (2) 233-248
S y s te m M a n a g e m e n t
Distribution management — ICL's open
approach

P. Barthram and T. Howling 1991 (4) 702
System management, a challenge for the
nineties

G. Brown 1991 (4) 663
The evolution within ICL of an architecture for
system management

A.C. Gale 1991 (4) 673
Operations management

D. Hacker 1991 (4) 741
Manageability of distributed systems

G.l. Jenkins 1991 (4) 686
An overview of the Raleigh object-oriented
database system

M.H. Kay and P.J. Rivett 1991 (4) 780
The network management domain

A. Maynard-Smith 1991 (4) 763
Managing data flows in distributed computing
in retail businesses

I. R. Pickworth 1991 (4) 718
OSMC: the operations control manager

M. Small et al 1991 (4) 751
Generation of configurations

J. White 1991 (4) 732

ICL Technical Journal November 1991 859

T T e le c o m m u n ic a tio n s
The Telecomms scene in Spain

J. Larraz 1991 (3) 493-500
see also ISDN, X/OPEN

U U N IC O R N see DRS6000 (UNICORN)

W W a rd -M e llo r m e th o d
use of the Ward and Mellor structured
methodology for the design of a complex real
time system

R.M. Whetton, A.M.X. Jones and D. Murray 1991 (3) 634-650

X X /O P E N
X/OPEN — from strength to strength

C.B. Taylor 1991 (3) 565-583

860 iCL Technical Journal November 1991

Author index
Volume 7

A ABRAHAM, G.P., FREETH, D C. and VOSPER, H.
SX design process 1990 (2) 212-232

ALLT, G.
see EATON, ALLT and HUGHES 1990

B BABB, E.
see WEST and BABB 1990

BARTHRAM, P. and HOWLING, T.
Distribution Management — ICL’s open
approach 1991 (4) 702

BLATCHFORD, C.W.
Regulatory requirements for security — user
access control 1990 (1) 127-140

BOSWELL, A.
Foreword to papers on System Management 1991 (4) 661

BROWN, G.
Systems Management: a challenge for the
nineties — why now? 1991 (4) 663

C CALOT, L. and SPIRACOPOULOS, A.
ISDN in France: Numeris and its market 1991 (3) 468-492

CARMICHAEL, J.W.S.
The origins of PERICLES — a common on
line interface 1991 (4) 842

CLARKE, A.A.
see SMYTHE and CLARKE 1990

CHEESMAN, J.
see DOBBYN and CHEESMAN 1990

COLE, I.
see MORRIS and COLE 1990

COLE, T.M.
DRS6000 (UNICORN) software: an overview 1990 (1) 23-30

ICL Technical Journal November 1991 861

COON, M.
SODA: the ICL interface to ODA document
access 1990 (1) 92-109

CORBIN, C.E.H.
A Geographical Information System for
managing the assets of a Water company 1991 (3) 515-536

CROWTHER, P.J.
see O’DOCHERTY et al 1990

D DASKALAKIS, C.N.
see O'DOCHERTY et al 1990

DOBBYN, C. and CHEESMAN, J.
SMIS — a knowledge-based interface to
marketing data 1990 (1) 66-82

DOORES, J.W.
see SMALL et al 1991

DRAHOTA, T.
RICHE — Reseau d’lnformation et de
Communication Hospitalier Europeen
(Healthcare Information and Communication
network for Europe) 1990 (2) 296-306

E EATON, J.R., ALLT, G. and HUGHES, K.
The SX node architecture 1990 (2) 197-211

EDMUNDS, E.A.
The emergence of the separable user’s
interface 1990 (1) 54-65

EPWORTH, R.
Eye movements for a bidirectional human
interface 1990 (2) 384-411

F FERNSTROEM, C.
see THOMAS, FERNSTROEM and HESSE
1990

FLAVELL, R.
see Van LAAR and FLAVELL 1990

FLOWER, F.
see HUTT and FLOWER 1990

FREETH, D.C.
see ABRAHAM, FREETH and VOSPER 1990

862 ICL Technical Journal November 1991

FULLER, A.R.
Future applications of ISDN to Information
Technology 1991 (3) 501-512

G GALE, A.C.
The evolution within ICL of an architecture
for Systems Management 1991 (4) 673

GOBEL, C.A.
see O’DOCHERTY et al 1990

H HACKER, D.
Operations management 1991 (4) 741

HESSE, O.
see THOMAS, FERNSTROEM and HESSE 1990

HOWLING, T.
see BARTHRAM and HOWLING 1991

HUGHES, K.
see EATON, ALLT and HUGHES 1990

HUTT, A.T.F. and FLOWER, F.
The User-System interface — a challenge for
application users an application developers? 1990 (1) 43-53
The development of Marketing to Design:
the incorporation of human factors into
specification and design 1990 (2) 253-269

I IRETON, S.
see O’DOCHERTY et al 1990

J JENKINS, G.l.
Manageability of a distributed system 1991 (4) 686

JOHNSTONE, K.J.
see SMALL et al 1991

JONES, A.M.X.
see WHETTON, JONES and MURRAY 1991

K KAY, M.H. and RIVETT, P.J.
An overview of the Raleigh object-oriented
database system 1991 (4) 780

KAY, S.
see O’DOCHERTY et al 1990

ICL Technical Journal November 1991 863

L LARRAZ, J.
The Telecoms scene in Spain 1991 (3) 493-500

LESAN, H. and STEEL, N R.
A conversational interface to a constraint-
satisfaction system 1990 (1) 82-91

LEWIS, K.
Designing the HCI for a graphical knowledge
tree editor: a case study in user-centred
design 1991 (3) 554-564

M MAYNARD-SMITH, A.
the network management domain 1991 (4) 763

MITCALF, J.D.
see SMALL et al 1991

MOLE, P.J.
Computer simulation for efficient
development of silicon technologies 1991 (3) 614-623

MOORE, B.J.
Making secure office system 1991 (4) 801

MORRIS, M.E. and COLE, I.
An overview of Multiworks 1990 (2) 288-295

MURRAY, D.
see WHETTON, JONES and MURRAY 1991

O O’DOCHERTY, M.H., CROWTHER, P.J.,
DASKALAKIS, C.N., GOBEL, C.A., IRETON, M.A.,
KAY, S. and XYDEAS, C.S.

Advances in the processing and management
of multimedia information 1990 (2) 271-287

ORANGE, M.
Introduction to the technical characteristics of
ISDN 1991 (3) 451-467

P PARKER, T.A.
Standards for secure interfaces to distributed
applications 1990 (1) 141-153

PERRETT, M.
Using constraint logic programming
techniques in Container Port planning 1991 (3) 537-545

PICKWORTH, I.R.
Experience of managing data flows in
distributed computing in retail businesses 1991 (4) 718

POSKITT, G.
Architecture of DRS6000 (UNICORN)
hardware 1990 (1) 4-22

864 ICL Technical Journal November 1991

PULLEN, R.
Electromechanical design of DRS6000
(UNICORN) 1990 (1) 31-40

R RIVETT, P.J.
see KAY and RIVETT 1991

ROUSE, G.W.
Locator — an application of knowledge
engineering to ICL’s Customer Service 1991 (3) 546-553

S SHAW, C.
The physical design of the SX machine 1990 (2) 233-248

SMALL, M„ MITCALF, J.D., JOHNSTONE, K.J.
and DOORES, J.W.

Open control manager 1991 (4) 751
SMITH, M. and TATTERSALL, C.

The results of the EUROHELP project 1990 (2) 328-361
SMYTHE, M. and CLARKE, A.A.

Human-Human cooperation and the design of
cooperative mechanisms 1990 (1) 110-126

SPIRACOPOULOS, A.
see CALOT and SPIRACOPOULOS 1990

STEEL, N.R.
see DOBBYN and STEEL 1990

T TATTERSALL, C.
see MORRIS and TATTERSALL 1990

TAYLOR, C.B.
X/OPEN — from strength to strength 1991 (3) 565-583

THOMAS, R., FERNSTROEM, C. and HESSE, O.
E.S.F. — a European program for
evolutionary introduction of Software
Factories 1990 (2) 307-312

V Van LAAR, D. and FLAVELL, R.
How to use colour in displays
1: Physics, Physiology and Perception 1990 (1) 154-179
2: Coding, Cognition and Comprehension 1990 (2) 362-383

VOSPER, H.
see ABRAHAM, FREETH and VOSPER 1990

ICL Technical Journal November 1991 865

w WEST, V. and BABB, E.
A spreadsheet with visible logic 1990 (2) 319-327

WHETTON, R.M., JONES, A.M.X. and MURRAY, D.
The use of Ward and Mellor structured
methodology for the design of a complex real
time system 1991 (3) 634-650

WHITE, J.
Generation — a collaborative venture 1991 (4) 732

WILES, P.
Government IT infrastructure for the Nineties
(GIN): an introduction to the programme 1990 (2) 412-431

WONG, Kam-Fai
Architectures of database machines 1991 (3) 584-613
Architectures of knowledge base machines 1991 (4) 816

X XYDEAS, C.S.
see O’DOCHERTY et al 1990

866 ICL Technical Journal November 1991

ICL TECHNICAL JOURNAL

Guidance for Authors

1. CONTENT
The ICL Technical Journal has a large international circulation. It publishes papers of high standard having
some relevance to ICL’s business, aimed at the general technical community and in particular at ICL's users
and customers. It is intended for readers who have an interest in the information technology field in general
but who may not be informed on the aspect covered by a particular paper. To be acceptable, papers on
more specialised aspects of design or applications must include some suitable introductory material or
reference.

The Journal will usually not reprint papers already published, but this does not necessarily exclude papers
presented at conferences. It is not necessary for the material to be entirely new or original. Papers will not
reveal matter relating to unannounced products of any of the ICL Group companies.

Letters to the Editor and reviews may also be published.

2. AUTHORS
Within the framework defined by §1 the Editor will be happy to consider a paper by any author or group
of authors, whether or not an employee of a company in the ICL Group. All papers are judged on their
merit, irrespective of origin.

3. LENGTH
There is no fixed upper or lower limit, but a useful working range is 4000-6000 words; it may be difficult
to accommodate a long paper in a particular issue. Authors should always keep brevity in mind but should
not sacrifice necessary fullness of explanation to this

4. ABSTRACTS
All papers should have an Abstract of not more than 200 words, suitable for the various abstracting journals
to use without alteration. The Editor will arrange for each Abstract to be translated into French and German,
for publication together with the English original.

5. PRESENTATION
5.1 Printed (typed) copy
Two copies of the manuscript, typed lj/2 spaced on one side only of A4 paper, with right and left margins
of at least 2.5 cms, and the pages numbered in sequence, should be sent to the Editor. Particular care should
be taken to ensure that mathematical symbols and expressions, and any special characters such as Greek
letters, are clear. Any detailed mathematical treatment should be put in an Appendix so that only essential
results need be referred to in the text.

5.2 Diagrams
Line diagrams will if necessary be redrawn and professionally lettered for publication, so it is essential that
they are clear. Axes of graphs should be labelled with the relevant variables and, where this is desirable,
marked off with their values. All diagrams should have a caption and be numbered for reference in the text,
and the text marked to show where each should be placed - e.g. “Figure 5 here”. Authors should check that
all diagrams are actually referred to in the text and that all diagrams referred to are supplied. Since diagrams
are always separated from their text in the production process these should be presented each on a separate
sheet and, most important, each sheet must carry the author's name and the title of the paper. The diagram
captions and numbers should be listed on a separate sheet which also should give the author’s name and
the title of the paper.

5.3 Tables
As with diagrams, these should all be given captions and reference numbers; adequate row and column
headings should be given, also the relevant units for all the quantities tabulated. Short tables can be given
in the text but long tables are better submitted on separate sheets and these, as for diagrams, must carry the
author’s name and the title of the paper.

5.4 Photographs
Black-and-white photographs can be reproduced provided they are of good enough quality, they should be
included only very sparingly. Colour reproduction involves an extra and expensive process and will be agreed
to only exceptionally.

ICL Technical Journal November 1991 867

5.5 References
Authors are asked to use the Author/Date system, in which the author(s) and the date of the publication are
given in the text, and all the references are listed in alphabetical order of author at the end.
e.g. in the text: "... further details are given in [Henderson 1986]"
with the corresponding entry in the reference list:

HENDERSON, P. Functional Programming, Formal Specification and Rapid Prototyping. IEEE Trans,
on Software Engineering 1986, SE-12, 2, 241-250.

Where there are more than two authors it is usual to give the text reference as "[X et al ...]”.

Authors should check that all text references are listed, and only text references; references to works not
quoted in the text should be listed under a heading such as "Bibliography” or "Further reading”.

5.6 Style
A note is available from the Editor summarising the main points of style - punctuation, spelling, use of
initials and acronyms etc. - preferred for Journal papers.

6. REFEREES
The Editor may refer papers to independent referees for comment. If the referee recommends revisions to
the draft the author will be asked to make those revisions. Referees are anonymous. Minor editorial
corrections, as for example to conform to the Journal’s general style for spelling or notation, will be made
by the Editor.

7. PROOFS, OFFPRINTS
Primed proofs are sent to authors for correction before publication. Authors receive 25 offprints of their
papers, free of charge, and further copies can be purchased: an order form for copies is sent with the proofs.

8. COPYRIGHT
Copyright in papers published in the ICL Technical Journal rests with ICL unless specifically agreed otherwise
before publication. Publications may be reproduced with the Editor’s permission, which will normally be
granted, and with due acknowledgement.

868 ICL Technical Journal November 1991

