
id
TECmiCAljouRmi

Y ,,. * •

V o l u m e 4 I s s u e 1
M a y 1 9 8 4

i dTecmicRi
jo urim

Contents
Volume 4 Issue 1

Editorial 3

The ICL University Research Council 4
P.D. Hall

The Atlas 10 computer 13
T.L. Faulkner and C.J. Pavelin

Towards better specifications 33
K.J. Turner

Solution of the global element equations on the ICL DAP SO
A. McKerrell and L.M. Delves

Quality model of system design and integration 59
T.L. Faulkner and M. Small

Software cost models 73
B. A. Kitchenham and N.R. Taylor

Program history records: a system of software data
collection and analysis 103

B.A. Kitchenham

Notes on the authors 115

ICL Technical Journal May 1984 1

ICITEcmicm
jouriiai

The ICL Technical Journal is published twice a year by
Peter Peregrinus limited on behalf of International
Computers Limited

Editor
J. Howlett
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor)

H.M. Cropper
D.W. Davies
(National Physical Laboratory)
G.E. Felton
M.D. Godfrey

C.J. Hughes
(British Telecom Research Laboratories)
K.H. Macdonald
J.M. Pinkerton
E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor

1984 subscription rates: annual subscription £14.00 UK, £17.00 ($37.00)
overseas, airmail supplement £7.00 ($15.00), single copy £8.50 ($20.00).
Cheques should be made out to ‘Peter Peregrinus Ltd.’, and sent to Peter
Peregrinus Ltd., Station House, Nightingale Road, Hitchin, Herts. SG5 ISA,
England, Telephone: Hitchin 53331 (s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus limited
PO Box 8, Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the
UK Copyright Act 1956, part 1, section 7, whereby a single copy of an article
may be supplied, under certain conditions, for the purposes of research or
private study, by a library of a class prescribed by the UK Board of Trade
Regulations (Statutory Instruments 1957, No. 868), no part of this publication
may be reproduced, stored in a retrieval system or transmitted in any form or by
any means without the prior permission of the copyright owners. Permission is
however, not required to copy abstracts of papers or articles on condition that a
full reference to the source is shown. Multiple copying of the contents of the
publication without permission is always illegal.
©1984 International Computers Ltd.

Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

2 ICL Technical Journal May 1984

Editorial

It will be obvious that there has been some change in the design of the cover
with this issue of the ICL Technical Journal', in 1983 the company adopted a
new house style - logo, colours and lettering - and this is embodied in the new
cover.

Given that this change would be made, and that the Journal had now been in
existence long enough for some stock-taking to be meaningful, the Editorial
Board discussed other changes that might be made, both in the physical form
and the content, taking into account comments that had been received from
readers. For the first, the physical form, we came to the conclusion that only
minimal changes were either necessary or desirable. The present format had been
chosen after much consideration of the practical possibilities as pleasant and
easy to handle and to read, and easy to carry around. All the comments we have
received indicate that it is well liked, and the great majority - admittedly from
only a small fraction of the total readership of over 6000 - are explicitly against
any change. An important consideration to us was that this format and general
appearance have established a clear identity for the Journal, familiar in many
parts of the world; and this is something we should not wish to disturb.

We have therefore made only some small changes; a new typeface and an
increase in the page margins. We believe these will improve the appearance of the
page and add to the ease of reading.

On the content, again it seems that the level and general style of the papers are
welcomed, as is the fact that most of the issues have covered a range of topics.
However, there is much to be said for concentrating on particular themes, and
the May 1983 issue, largely devoted to communications, was very well received.
We therefore plan to publish ‘theme’ issues more frequently in the future.

The Editorial Board always welcomes comments and suggestions, and I can
promise that anything of this nature sent to me is considered by the Board.

J. Howlett
Editor

ICL Technical Journal May 1984 3

The ICL University
Research Council

P.D. Hall
ICL University Research Council Chairman

Abstract

The paper is in two parts. The first is a brief description of an organisation
recently set up by ICL to encourage and support collaborative research
projects between universities and the company. The second lists the 20
projects currently supported, together with a short note on each giving the
aims and the motivation.

1 The Council

The establishment of the ICL University Research Council in 1982 was a recog
nition - some might say a belated recognition — by the company of the
importance of academic research to the company’s future.

Based on research carried out in Europe and the USA in the 20 years or so
following the Second World War, in which the role played by a number of
university laboratories was of fundamental importance, the computer industry
has grown spectacularly to become one of the largest industries worldwide and
certainly of vital importance to the economic health of the UK. In 1982 ICL
recognised that its own earlier close relationships with academic research teams
had not developed and that research in British universities was no longer making
a proper impact on its development plans and its products. As a matter of Board
policy, therefore, it was decided in the spring of 1982 that the company’s future
needs would be met increasingly by arrangements with the academic world
rather than by expansion of the in-house capability. Recognising the need to
isolate a programme of research to be carried out by a university team from the
short-term pressures on ICL management, and the need for non-ICL input to the
determination of research needs and plans, the company set up a body which it
named the Universith Research Council, with three outside members.

The Council’s remit from ICL was to concentrate on long-term research, and
specifically to leave those short-term R & D projects which were contracted to
universities to be funded by the company’s development divisions or business
centres. Recognising that the funds available to the Council were small compared
with those of the Information Engineering Committee of the Science and
Engineering Research Council (SERC) and that it would be of little value to ICL

4 ICL Technical Journal May 1984

to use these funds as an insignificant top-up to the latter, it was clearly necessary
to focus activity in areas of particular importance to the company and to seek
out areas of research which were, from the company’s viewpoint, under-funded
by SERC.

To assist in this task the URC supports workshops to which are invited research
workers outstanding in the field to be studied, together with ICL R & D
personnel. The URC aims to run eight to ten such workshops a year; the subjects
of those held to date are as follows, and give a good indication of the areas of
research judged to be of importance to ICL.

- the PROLOG language and PERQ
- logic and functional programming - tackling the issues
- novel architectures
- distributed UNIX
- expert systems and applications of knowledge engineering
- databases
- man-machine interfaces
- specification techniques
- measuring software throughout the life cycle
- impact of information technology on ICL’s business and ICL’s customers

(seminar)
- future languages for development of information systems
- communicating sequential processes (seminar)

Workshops are restricted to a minimum of 24 hours to always allow time for
informal discussion and numbers are limited by invitation to about 40 partici
pants. They have certainly helped the URC in its consideration of where to
spend its funds and also provided an opportunity for their audiences to make
their own views known on what ICL should be about.

Since the URC got underway Alvey, Esprit and the ECRC — the European
Computer-Industry Research Centre set up in Munich by ICL, Siemens and
CII - have come on the scene as very welcome additions to Europe’s research
programme in information technology. The URC is now looking to support
research relevant to ICL which does not fall within the remit of these pro
grammes or which for some reason is best handled, at least initially, outside
them. In particular, and as an example, it is looking to support research projects
which will help to determine what ‘Decision Support Systems’ will be doing, and
for whom, a decade from now.

The Council is now supporting 20 projects in British universities and is continu
ally discussing new projects; a member of the appropriate ICL R & D group is
closely and personally associated with every project. The second part of this
paper deals with these projects. It is intended that wherever appropriate, URC
projects shall form the subjects of papers in the ICL Technical Journal.

These activities have been an undoubted success from ICL’s standpoint; and the

ICL Technical Journal May 1984 5

Council believes that the academic world has gained from this closer involvement
with the company’s long-term projects.

2 Projects currently supported by the URC

2.1 Introduction

The Japanese have recognised that within 20 years society will be faced with a
potentially disastrous demographic change: the proportion of the population
which is productive and wealth-generating will decline sharply in relation to the
proportion which is dependent and wealth-consuming. The challenge of this
situation can be met humanely only by rapid developments in the intelligent-
systems industry based on computers and robotics.

Thus, society will place increasing demands on the computer industry. Hardware
costs are coming down rapidly enough to meet these demands, so the problems
are falling increasingly within the software sector. The ratio of software to
hardware investment is rising dramatically, a current estimate being a factor of
100 every 5 years. This rate of increase will only be halted by developments in
hardware and software technology, in particular in the following fields.

- Formal specification languages and techniques: Much of the cost of a soft
ware system is incurred during the implementation and testing stages of
development, in correcting mistakes made in the design stage. The effects of
these mistakes tend to accumulate, to spread and to become increasingly
costly during the lifetime of the system. Formal specification languages and
techniques can ensure that problems that need to be tackled during the design
stage are tackled then and are tackled satisfactorily.

- Novel languages: Much of the cost of a software system derives from the low-
level, machine-oriented and mathematically impure nature of programming
languages. Their low-level nature makes them time consuming and difficult
to use and their mathematical impurity makes them error prone in use.
Components written in such languages do not lend themselves to reuse in
different circumstances, with the consequence that the computer industry
is continually churning over small variations on old themes. Novel and mathe
matically sound languages of the logic and functional programming types are
overcoming these difficulties, taking the programmer to a higher, more
problem-oriented and more reliable level of working.

- Novel architectures: Sequential hardware engines are reaching the limits of
their performance capability. Increased performance for some important
classes of problem has been achieved with single instruction multiple data
(SIMD) engines such as DAP, but increased performance in general will need
multiple instruction multiple data (MIMD) engines. These can be used
effectively only with languages of logic and functional programming types,
which need engines of this type of architecture to reach and surpass the
performance of conventional languages. Thus, the future lies in the marriage
of novel engines and novel languages.

6 ICL Technical Journal May 1984

— System architectures: A number of dichotomies have been introduced into
computer systems over the years: for example between program and data,
between programming languages and database languages, between pro
gramming languages and job-control languages, between filestore and virtual
store, between distributed and nondistributed processing, between applica
tion and operating-system software, between catalogue and data dictionary
and between hardware/firmware and software. Some of these stemmed from
the needs to meet the performance constraints of the 1960s and 1970s and
some arose as a result of the order in which new ideas developed in the
industry. However, they are now seen as outdated and seriously hampering
the work of the application system designer and must be removed wherever
possible.

— VLSI and CAD: VLSI is the technology which will make it possible to pro
duce the novel engines of the future; it will also enable us to produce hard
ware tailored to particular application requirements, for example spread-sheet
hardware, just as we now produce tailor-made software. Hardware is in
creasing in complexity to mirror the complexity of software, and the tech
niques of formal specification languages and of the languages discussed above
can and should be applied to hardware design as well as to software.

Even if we had solved the problems of software development we should still be
faced with those inherent in interfacing computer systems with human organ
isations and environments. We have to plan the evolution of these systems and
the environments in which they are used so as to ensure their synergistic growth.
This involves the following considerations:

— Organisation modelling: As the interaction between computer systems and
human organisations and environments becomes more complex we shall need
to put more effort into designing and modelling these systems and their
interfaces. The techniques we already have can be adapted to the modelling
of the human organisations and environments, and also to that of
noncomputer systems such as flexible manufacturing production lines.

— Flexible manufacture of software and hardware: Flexible manufacturing
techniques are already being introduced into the production processes of
many artefacts, enabling production to be tailored to the requirements of
individual customers. These techniques will be needed also for the artefacts
of the computer industry, that is, hardware and software systems.

— Expert systems: Techniques are being developed for capturing the knowledge
of experts in particular fields, making this available for general use. These
are increasing the synergy between the computer system and the human
environment.

— Decision support systems: These are aimed at providing intelligent-system
support for key managerial and technical staff in industry and the professions.
They integrate the computer system into these key positions in the human
environment.

— Man-machine interface (MMI): The language level of the interface between
the computer and the user is being steadily, if gradually, raised and oriented
more towards the human environment and the problem to be solved.

ICL Technical Journal May 1984 7

Consideration of all these points has governed the selection of projects for URC
support. The remainder of this paper is given to listing the projects now being
supported, with brief descriptions intended to show the essence and the aims of
each. They are presented in groups of broadly related projects, but as will be
dear the groups are not mutually exclusive.

2.2 Curren t URC projects

2.2.1 Group 1: Formal specification languages and techniques

(i) System architecture specification
Professor C.A.R. Hoare, FRS, Programming Research Group,
University of Oxford

The project aims to apply specification techniques to the description and
continuing design of the ICL VME operating system. The work is at two archi
tectural levels. The higher level is concerned with features such as block structure,
context mechanisms, processes, virtual machines and synchronisation and the
lower level with the detailed design of some components such as record manage
ment software, ring architecture and part of the data dictionary. The languages
used are Pascal+ (i.e. Pascal with capabilities for concurrent processing), CSP
(communicating sequential processes), Occam and Z.

(ii) Functional and concurrent programming specification languages
Professor R.M. Burstall, Department of Computer Science,
University of Edinburgh

The functional languages HOPE and ML, and the support system for the con
current process specification language CCS, are being implemented on ICL
PERQ and 2900-series machines; and the project is assisting in the use of these
languages in particular for protocol description.

(iii) Reliability modelling of large software systems
Dr. B. Iittlewood, Mathematics Department,
City University

This is aimed at developing practical models of software reliability. Most current
models are in fact poor predictors of future reliability and do not concern them
selves with the real-life problems arising from a large customer base using a given
software system in many different ways. The project will attempt to develop
new theoretical models addressing these problems, which will be validated using
data from the ICL VME operating system.

(iv) Theoretical and practical aspects of software technology
Professor C.B. Jones, Department of Computer Science,
University of Manchester

The project supports formally-based techniques for software engineering and

8 ICL Technical Journal May 1984

tools by means of which these techniques can be made available to software
engineers. In particular, it relates to an existing SERC-funded project to consider
the development of tools supporting the Vienna Development Method of formal
specification and rigorous development of software; it also supports a number of
visiting experts and tool providers.

(v) Application of specification languages to CAD
Dr. G.J. Milne, Computer Science Department,
University of Edinburgh

Some support has been given to Milne and Taub in their research into the silicon
compilers of the future. As the size and complexity of VLSI chips increase it
becomes more and more necessary to adopt formal design approaches involving
formal specification and automatic design translation. A further problem of
interest is the formal proof that the silicon compiler itself does not contain
errors. Building on the CIRCAL concurrent specification language, the
Edinburgh group have been investigating the use of LISP on PERQ to specify
and verify the designs of small VLSI cells.

2.2.2 Group 2: Novel languages and architectures

(i) PROLOG-X system, support environments and implementations
W.F. aocksin*, St. Cross College,
University of Oxford

PROLOG-X supports the version of the logic language PROLOG described in the
textbook by Qocksin and Mellish. This is a high-performance implementation
with hooks to allow interfacing to graphics, database systems and other proce
dures written in high-level languages. The PROLOG-X system includes a program
development environment for PROLOG written in PROLOG; it has been made
available on ICL 2900 series and will be made available on PERQ, and a version
based on UNIX is under development. The aim of the project is to provide a base
for development of significant applications written in PROLOG.

(ii) Abstract machine design for functional programming, and related topics
Dr. P. Hendersont, St. Cross College,
University of Oxford

The project is concerned with the LispKit system, the portable implementation
of the functional language LispKit LISP, described in Henderson’s textbook,
Functional programming — application and implementation. It has been made
available on ICL 2900, PERQ and DRS, on the ICL Personal Computer and on
numerous small machines. It has been microcoded on PERQ and is being micro-
coded on 2900. LispKit provides an excellent subject for experiments in micro
code, hardware and system support of functional programming, and a basis for

* now at the University of Cambridge
t now at the University of Stirling

ICL Technical Journal May 1984 9

experiments in the use of functional programming languages. A personal
database system and protocol simulation tool have been written in IispKit.

(iii) Logic system implementation, and databases
Professor R.A. Kowalski and Dr. K.L. Qark, Department of Computing,
Imperial College, University of London

The project includes a programming development environment for
MicroPROLOG, a version of PROLOG developed at Imperial College and de
scribed in the textbook by Clark and McCabe. This has been made available on
ICL DRS and will be made available on PERQ, 2900 and the ICL Personal
Computer. The project is now concentrating on the problem of interfacing
PROLOG to databases in general and to CAFS in particular.

(iv) Concurrent hardware support for functional and logic programming
Dr. J. Darlington, Department of Computing, Imperial College,
University of London

The project is concerned with parallel systems. The ALICE machine, designed
by Dr. Darlington’s team, is a multiple instruction multiple data concurrent
processor machine, intended to support functional and logic languages. An
intermediate-level language CTL is intended as a standard target language for
compilers, which can then be further compiled into machine code for ALICE
or other languages. An interpreter for CTL has been transferred to ICL 2900.

(v) Persistent programming and database systems
Dr. M.P. Atkinson, Computer Science Department,
University of Edinburgh
Dr. R. Morrison, Computational Science Department,
University of St. Andrews

The object of this project is to remove the differences now found between
languages for programming, database description, data manipulation and job
control, respectively, and to present one coherent language interface to the
application developer. A language, PS-Algol, has been developed which incorp
orates these ideas, the PS standing for ‘persistent’ to indicate that the language
may be used to access the persistent data of a database as well as the transient
data of a program workspace. PS-Algol is being made available on ICL 2900,
and applications developed using the language will be made available later in
the project.

(vi) BASIX — a language for programming distributed systems
Professor B. Randell, Computer Science Department,
University of Newcastle upon Tyne

The project is concerned with the development of a new language, BASIX, and
along with this programming models which take into account the movement of
computing from concepts of centralisation and sequentiality to those of de
centralisation and parallelism.

10 ICL Technical Journal May 1984

2.2.3 Group 3: Expert systems and decision support systems

(i) Expert systems and PROLOG
Professor R.A. Kowalski and Dr. K.L. Clark, Department of Computing,
Imperial College, University of London

The Imperial College team has developed a number of expert-system tools based
on MicroPROLOG. The project is investigating the application of these in real-
life situations, including official regulations of the UK Department of Health and
Social Security and of the British Nationality Act; cartographic and software
engineering applications are also being studied.

(ii) Dictionary concepts using linguistic techniques; language design
Professor G.N. Leech, Department of linguistics,
University of Lancaster

The project is supporting the development of a system, using grammatical tag
analysis of English texts, for checking spelling and typing. The text-correction
system is being designed to recognise errors not only through spelling but also
through the detection of unlikely combinations of words. The project aims to
improve the success rate of the tagging system beyond its present 96-5% and to
lead to a system for analysing the grammar of any English text, and also to the
development of a computer dictionary of English. The dictionary will store
words together with information concerning their grammatical classification, the
way they occur together, their idiomatic characteristics and their meaning.

(iii) Text composition on PERQ
Professor J. Smith, Department of Computer Science,
Queen’s University of Belfast

The project is concerned with the representation, storage and retrieval of
characters; the emphasis is strongly on accurate representation, so that the final
reproduction is of very high quality.

(iv) Impact of computer-based information systems on high-level decisions
Dr. G.W. Winch, Business School,
University of Durham

The project attempts to shed light on those aspects of decision processes at
senior-management level which may be supported by computer-based decision
aids. The intention is to focus particularly on discretionary, interactive use of
such aids by senior managers when involved in unstructured decision making
concerning strategic or policy issues.

(v) Intelligent business systems
Professor P. Henderson, Department of Computing Science,
University of Stirling (in collaboration with the Departments of Manage
ment, Business and Accountancy)

ICL Technical Journal May 1984 11

The project will study the use of functional programming methods in various
applications in the fields of small business and local government. One aim is to
identify the improvements needed in both hardware and software support.

2.2.4 Group 4: man-machine interface (MMi)

(i) Man-machine interaction, computer graphics and multi-dimensional
modelling
Dr. C.J. Garratt, Department of Chemistry, University of York

The aim is to produce graphical display software to aid modelling of molecules.
Three-dimensional dynamic images are required, composed of intersecting
spheres representing the electron distribution in the molecule; no existing
display provides the required combination of speed and quality. It is believed
that DAP will be an attractive vehicle for the implementation of the system.

(ii) Workstation design, raster graphics
Dr. I. Page, Department of Computer Science and Statistics,
Queen Mary College, University of London

The project is to investigate the hardware and microcode structure for a two-
dimensional Raster-Op engine suitable for use in a bit-map display system; and
the application of such an engine in a single-user workstation.

(iii) Speech compression
Dr. C. Xydeas, Department of Electronic and Electrical Engineering,
University of Loughborough

The aim is to solve some of the problems encountered when attempting to
enable office systems to handle both text and spoken information with equal
facility, as is required by the convergence of the telephone with the computer
workstation. A number of speech-compression schemes are being developed and
assessed to meet a range of requirements for medium/high compression, econo
mic, real-time implementation and high quality.

Acknowledgment

I am much indebted to G.D. Pratten of ICL’s Mainframe Development Division
for the notes on the individual projects.

12 ICL Technical Journal May 1984

The Atlas 10 computer

T.L. Faulkner
ICL Atlas Division, West Gorton, Manchester

C.J. Pavel in
Science & Engineering Research Council, Rutherford Appleton Laboratory, Chilton,

Oxfordshire

Abstract

The paper is concerned with a very powerful and technologically very
advanced general-purpose computer, compatible with the IBM S/370
principles of operation. The machine was designed and is manufactured in
Japan by the Fujitsu company. It is the highest of a range of IBM-compatible
machines and is marketed and supported in the United Kingdom and other
countries by ICL under the name of Atlas 10, as part of an agreement
between the two companies. The first part of the paper, by T.L. Faulkner,
deals with the architecture and the more notable technological features of
the machine; the second, by C.J. Pavelin, gives a user view from the
Rutherford Appleton Laboratory of the UK Science & Engineering
Research Council, where the first Atlas 10 in Britain was installed in April
1983.

Part I: Architecture and technology of the Atlas 10 computer

1 Background

As part of ICL strategy for intercepting technology in the design and develop
ment of the 2900 range of computer mainframes and systems, discussions were
held with the Fujitsu company of Japan in 1981. These led to agreements in
October 1981 to co-operate in the field of very advanced technology and for
ICL to market and support, in the UK and certain other territories, a large
machine already designed by Fujitsu itself, the machine given the name Atlas 10
by ICL. In addition to the main processing part of the system ICL is marketing a
full range of compatible peripheral and communications equipment.

The Atlas 10 has been designed to be fully compatible with the IBM System
370 principles of operation. Its architecture and its basic design include features
which enable it to incorporate extensions to these principles, for example the
recently announced IBM extended architecture (XA). The IBM-compatible
market is a very large one and is of strategic importance throughout the world;
the agreement with Fujitsu gives ICL access to that part of this market where the
need is for the largest and most powerful systems. Atlas 10 is a single-CPU
system which is more powerful than the ‘dyadic’ IBM 3081 Model K. A dual

ICL Technical Journal May 1984 13

processor system can be assembled which, at the time of writing, can claim to be
the most powerful general-purpose system available.

The name Atlas 10 was chosen for historical reasons. One of the classical
computers was the Ferranti Atlas, which pioneered many of the features now
taken for granted such as virtual storage, paging, interrupt control, microcode
and the operating system. It was designed by a Manchester University team led
by Professor Tom Kilburn FRS and manufactured initially by Ferranti; the
Ferranti Computer Division later became part of ICT and thus of ICL when the
company was formed in 1968. The First Atlas was installed in the Atlas Computer
Laboratory at Chilton in Berkshire in April 1964, in the same building in which
the first Atlas 10 was to be installed in April 1983. The installation and com
missioning of the two machines is itself an interesting comment on the progress
of computer engineering and technology over the past 20 years. The Atlas,
roughly a ’/£ MIP (million instructions per second) machine with a ferrite-core
main store equivalent to 288 kbytes, was transported from Manchester to
Chilton in 19 truckloads, took a month to instal and a further four months to
commission for service. Atlas 10, a 15 MIP machine with a semiconductor main
store of 16 Mbytes, was flown from Tokyo to London on a Sunday night, taken
from Heathrow to Chilton in a single truck on the following Tuesday, installed
Wednesday and was a fully operational machine on the Friday — Friday 29th
April 1983, to be precise.

2 The IBM architecture

Some features of this are discussed in Dr. Pavelin’s paper; the following is more
of an overview. The significant fact from the point of view of a manufacturer is
that it is a very firmly established architecture on which not only IBM products
are based but also those of many other manufacturers, the so-called plug-
compatible manufacturers (PCMs). The total investment worldwide in hardware
and software which is tied to this architecture is very large indeed, and therefore
the market it represents is, as has been said, of great size and strategic
importance.

The architecture, known as the IBM System 370 principles of operation, has
now had a life of 20 years; while there have been many small changes and
enhancements over that period, there have been two particularly significant
changes, at intervals of roughly 10 years. The facts of commercial and industrial
life, for both manufacturer and user, dictate that with so large an installed base
this is about the maximum frequency with which large changes can be
introduced.

The architecture first appeared in 1964 with the IBM 360 series, from which the
370, 303S, 43XX and 308X series have evolved by a continuous process. The
System 360 architecture was characterised by the 8-bit byte, storage addressing
of up to 24 bits, an instruction set based on 32-bit words, common peripheral
interfaces and a batch operating system — OS/360, later simple OS — which was
to be used on any machine designed to the specification of the architectural

14 ICL Technical Journal May 1984

interface. The aim of this last was, of course, to make it possible for a user to
replace a processor by a more powerful member of the series without losing any
of the investment in software.

The early- to mid-1970s saw the first major shift in the architecture with the
introduction of the System 370 machines. The concepts of virtual store and
virtual machine were now included, with operating software developments
moving forward in three main directions. The original OS was developed to use
the virtual-store implementation, with dynamic address translation later
performed by hardware, and has become a large system which itself needs a large
system configuration to perform effectively. A smaller disk-operating system,
originally called DOS, has evolved for use mainly on the smaller processors, and
a supervisory type of system control program, VM/370, has emerged for use on
all machines. This has two distinct uses: first, it can act as a ‘host’ to one or
more ‘guest’ operating systems, and hence allow one mainframe to support
concurrently several different types of operating software. It can be used, for
example, to continue production work with an older system while developing a
new one. Secondly, VM can be used as an operating system itself without any
‘guests’; this is usually done with CMS, a conversational monitor system, to
provide a popular transaction processing environment.

The mid-1980s are now witnessing the second major shift in the architecture,
aimed at meeting the needs of today’s largest users, whose systems are constrained
by some of the original limits set in the S/360 and S/370 design. This ‘extended
architecture’, or XA, addresses the three main problem areas in the existing
system architecture; operating system overheads, real- and virtual-store address
ing and, thirdly, input/output bottlenecks on systems with high throughputs.

The original design of what is now the largest operating system, MVS, envisaged
separate programs running concurrently in separate virtual-address spaces, with
limited communication between them controlled by access to common software.
The need in practice to communicate more fully, and to share programs and
data between address spaces, is now realised and a ‘dual address space’ concept
has been introduced which, by using a system of primary and secondary address
ing, allows direct communication between address spaces and thus avoids the
overhead of waiting until the common software procedure is free for use. The
storage constraint arises from the original 24-bit addressing; this limited both
real and virtual store sizes to 16 Mbytes, a serious handicap in today’s needs.
XA now provides 31-bit addressing, thus theoretically allowing up to 2 Gbytes
both for real store and for each virtual address space. On the I/O handling side,
the original limit that only 16 channels could be addressed directly from either
CPU is removed by the use of subchannels up to a theoretical limit of 64
thousand, all directly addressable from any CPU, multi-CPU configurations now
being allowed. I/O bottlenecks in the operating software are avoided by building
intelligence into the I/O hardware to determine the best routing for commands
and interrupts.

At both major shifts in the architecture the aim was to protect the investment in

ICL Technical Journal May 1984 15

users’ current software by providing modes of operation in which programs
obeying the previous rules can still run. The architectural extensions allow the
new concepts and methods to be used in new programs being developed for new
and extended applications.

3 Atlas 10

3.1 Architectural principles

It will be seen from the preceding discussion that the architecture to which the
Atlas 10 is designed is not static but is in a process of evolution. The driving
forces for change are the need to overcome the current weaknesses in the design
as they become apparent to leading users, and to take advantage of various
technological developments as they become available, in different parts of the
system. The pace of change is, however, very much regulated by the large size of
the user base and the need to protect to a high degree the users’ investment in
current hardware, software and the management of their business. Therefore,
although the architecture is evolving, it is possible to forecast future changes and
thus to prepare for them in time to meet the future needs of the great majority
of the market. This is the principle on which the design of the Atlas 10 has been
based: the system meets all the detailed requirements of the System 370 archi
tectural specification (and therefore supports all the IBM S/370 operating
software) and the overall design anticipates the changes coming with XA. A
balance of hardware, microcode and firmware implementations provides
sufficient flexibility to allow the detailed requirements of XA to be incorporated
into the later production models without unwarranted impacts or performance
penalties. The design also allows for machines already supplied at the previous
architectural level to be enhanced in the field to the level at which XA is fully
supported.

Fig. 1 is a functional diagram of Atlas 10, showing how the system has been
partitioned to give the best performance and flexibility while retaining compati
bility with the S/370 architecture.

The hardware is arranged to follow the S/370 concepts of CPU, main storage,
channels, device control units, devices and communications controllers, with the
use of standard I/O interfaces and order codes. The system can be expanded
with store modules, extra channels and a second processor. A key feature is the
use of a global buffer store within the main store control unit; this provides a
very large, fast access cache store accessible from both the CPU and the channel
processor and gives very short access times for most operations.

The original design used 31-bit store address highways throughout, and a channel
cross-call function which allows the CPU, or either CPU in a dual system, to
address any of up to 96 channels. The CPU itself obeys a wider instruction set
than that specified for the S/370 and uses microcode techniques to fetch and
action individual instructions. Some functions, such as the implementation of

16 ICL Technical Journal May 1984

MSU MSU M5U MSU

unit

Fig. 1 Atlas 10 functional diagram (dual system)

dual address space and various ‘assists’ for running under VM, are also partly
implemented by firmware; the CPU then obeys special machine-code instructions
loaded into the main store at initial microprogram load. The use of microprogram
and firmware techniques allows further enhancements to the architecture to be
introduced with minimal hardware changes; and the use of the large high-speed
caches in the CPU and MCU enables these to give a performance commensurate
with the overall power of the machine. With dual address space already
supported and 31-bit addressing included in the basic design, MVS/XA, the XA
version of MVS, will be supported on Atlas 10 by the summer of 1984.

3.2 Engineering principles

The engineering strategy in Atlas 10 has been to provide the high performance
by developing a technology capable of meeting the speed requirements of each
part of the system. The use of individual components for each function is
tailored to the performance requirements for that function, so that an overall
economy is maintained for the design of the complete system.

For the central processing function a three-element major technological advance
has been achieved in the development of LSI chips with their associated RAMS
and their packaging on to PCBs and into modules.

The LSI chips, shown in Fig. 2, are designed in ECL technology with a basic
master slice mounting up to 400 gates with a gate delay of 350 ps. For parts of
the CPU logic the number of transistors per gate can be reduced, allowing 1300
gates to be mounted on a chip with the same gate delay. The chips are powered
from -3-6 V with a maximum dissipation of 3 W. Heat transfer is by air cooling

ICL Technical Journal May 1984 17

from ten radiation fins mounted on a tower attached to the chip — these are
shown in Fig. 2. Each LSI has 84 connection pins. The use of the 4 kbits RAM
chip and LSI chips of this speed has made it possible to design the CPU with a
clock cycle time of only 15 ns, the fastest of its type.

Fig. 2 RAM (left) and logic LSIs

Two types of high-speed RAMS are used with the LSI chips, of 4 kbits and
16 kbits. These are constructed with four chips mounted on a multilayer ceramic
board, each having its own radiation tower with nine fins. The four-chip package
has 60 connection pins. The 4 kbit chips are usually organised as 1 kbit x 4, with
an access time of 5-5 ns, and are used in local buffer stores and control stores in
the CPU. The 16 kbit chips, organised as 4 kbits x 4, have a 16 ns access time

Fig. 3 An MCC, mounting up to 121 chips or RAMs

18 ICL Technical Journal May 1984

and are used in the global buffer store in the MCU to give the very fast access
rate for a high proportion of store accesses.

The second element is the packaging of the LSIs and RAMs on to multiple chip
carriers (MCCs), each carrying up to 121 packages; these are shown in Fig. 3. A
multilayer MCC is about 1 foot square in size and shape, its 14 layers including
eight layers for logical interconnection. Three off-carrier connectors, each with
192 pins, are mounted on each side of the MCC. To increase the tracking
capacity and permit operation at LSI speeds without crosstalk Fujitsu have made
the technological innovation of using tracks at angles of 30° and 60° in addition
to the usual 90°.

The third element, illustrated in Fig. 4, is the housing of up to 13 MCCs in a
‘cube’. The MCCs are fitted horizontally into what are called zero insertion force
(ZIF) connectors mounted on multilayer panels at each side; logical interconnec
tion is thus made by tracking in the side panels and not by means of the more
usual coaxial cables which are slower, less reliable and more expensive. A special
tool is used to move the MCCs into or out of the cube, which move the ZIF

Fig. 4 Atlas 10 CPU: 'cube' construction
1 new MCC 4 air filter
2 side panel 5 I/O connector
3 Zif connector 6 power-supply plate

ICL Technical Journal May 1984 19

connectors from being in contact with both the side panel header pins and the
MCC pins to a position where they are no longer connected to an MCC. This is
shown in Fig. 5.

SP header MCC header

Fig. 5 Atlas 10 CPU: 'ZIF' connector

The complete CPU logic is contained on 12 MCCs, and so the whole processing
power of this 15 MIP machine is contained in a single cube, the volume of which
is not very different from 1 cubic foot. And despite the exceptionally high speed
of the logic it is air cooled: chilled air is drawn from an underfloor void, taken
horizontally over the MCCs of the CPU and of the MCU which is housed above
it, and expelled from the top of the cabinet. Thus water cooling, with all its
attendant problems, is completely avoided. Fig. 6 shows the cooling system.

The CPU and MCU are housed in one self-contained cabinet together with all the
required AC/DC control and power supplies, and the main store and channel
equipment are in a second cabinet. The two cabinets are linked with cable
ductings. For the minimum single-CPU system, these two cabinets are required
together with the console for the service processor (SVP).

20 ICL Technical Journal May 1984

Fig. 6 Atlas 10 CPU: cooling arrangement

3.3 Design features

3.3.1 Processing: The CPU comprises three functional units: the local buffer
store, the instruction unit and the execution unit. High-speed pipeline control is
used, with independent pipelines and microprogram control for each of the
instruction and execution units. The control stores use the 5 -5 ns RAMs and are
housed on the same multichip carrier as the logic which they control to give
very fast operation. The CPU provides storage protection for blocks of 2 k and
4 kbytes, and for lower order addresses. High-speed floating-point, decimal and
logical operations are also provided within the design.

A high-performance dynamic address translation unit is included. Using trans
lation lookaside buffers each CPU in a system can modify the addresses for up to
512 pages by holding corresponding pairs of logical and real addresses which
have been translated previously. A ‘common segment function’ allows the
buffers to be shared between programs which use segments in common. Virtual-
to-real address translation is further speeded up by means of a 128-entry stack in
the CPU for segment table origins.

Execution of branch instructions accounts for a significantly high percentage of
the total instruction time, sometimes exceeding 20%. Successes, meaning that
the branch is followed, and failures occur almost evenly, and when a success

ICL Technical Journal May 1984 21

occurs in a pipelined CPU all instructions processed before the outcome is
known are invalidated, with a consequent waste of time. Thus in the Fujitsu
M-200, for example, most of the unsuccessful branch instructions can be pro
cessed in two machine cycles, whereas five cycles are needed when the branch
succeeds. Atlas 10 has a special high-speed branch function to reduce this loss.
When a branch instruction is detected in the instruction buffer this function
calculates the branch target address before any execution of the instruction
takes place, so that if the branch is unconditional the target instructions can be
executed immediately after the branch instruction. If the branch is conditional
both the instruction succeeding the branch instruction and the branch target
instruction are fetched simultaneously and whichever is required is executed
when the conditions are determined. The amount of time saved by this
arrangement obviously depends on the actual software in use; but each success
ful branch saves two machine cycles.

3.3.2 Memory control and main store: Each main store unit (MSU) contains
two ‘segments’ of sizes 8, 12 or 16 Mbytes: the term is not to be confused with
the S/370 definition of a virtual store segment of 64 kbytes or 1 Mbyte. The
logical data width of each segment is 64 bytes. To optimise the transfer to main
store on large-store configurations the MSU is normally operated in four-way
interleave mode so that the full power of the data path is used; otherwise the
interleaving is two-way. The current design uses 64 kbit dynamic RAMs.

The main store control unit (MCU) contributes to the overall performance of
the system by providing the large fast-access intermediate buffer store between
main store and the CPU cache; also, it is linked to the service processor (SVP)
through the system control interface and by means of this link provides the
communication route for reporting errors to the service processor and controls
the automatic system reconfiguration function. This last isolates a faulty CPU,
main store unit or channel processor and reconfigures the system dynamically to
use the units which are operating correctly; and can reincorporate a unit after
it has been repaired, without interrupting operation. Dual systems with two
CPUs can be partitioned into two single-CPU systems.

The storage protection keys are held in the system control interface; two keys
indicated whether or not the protection block has been referred to and/or written
to. To save time in accessing these reference and change bits a separate
key buffer store for these is held in the MCU also.

Each main store control unit normally drives up to two main store units and up
to two channel processors. A bus extension feature is available allowing both
these numbers to be increased to four.

3.3.3 Channels: Each channel processor (CHP) handles up to 16 channels which
can be of either byte-multiplex (MXC) or block-multiplex (BMC) type. The first
are used by slow devices which transfer data a few bytes at a time and have a
maximum rate of 80 or 110 kbyte/s; up to four of these can be attached to each

22 ICL Technical Journal May 1984

channel processor. The second are used by magnetic and other fast devices
operating in burst mode. Two speeds are available: 2 and 3 Mbyte/s. Device
addressing is organised to provide 2048 subchannels for each processor. A
processor has a maximum throughput of 24 Mbyte/s, and so the maximum total
throughput is 96 Mbyte/s.

A feature here is the inclusion in the design of dynamic address translation in the
channel. Real store addresses can be derived by means of a virtual channel
command word address which is issued by a special command which locks a
channel program to operate in virtual mode; the address translation process is
then followed in a similar way to that of the CPU. This has the advantages that
an operating system designed to use this feature does not need to check page
boundaries for chains and data areas, as is required with the S/370 indirect data
address method, and free space arising from main store fragmentation can be
used for more channel command words. Other special features are a command to
lock a channel program into real address mode, and in dual configurations a
channel cross-call to allow either CPU to address any device on any channel.

Each Atlas 10 channel is fully compatible with the S/370 channel interface
specification, and special features are supported such as data streaming, which
is required by the latest types of disk subsystem. Thus the mainframe can
support compatible peripherals from other manufacturers, and equally Atlas
peripherals can be attached to other compatible mainframes.

3.3.4 Service processor: This has three functions: it acts as the operating
console of the system, it controls the configuration and reconfiguration of the
system and it is used by the engineer for maintenance purposes. Some of the
engineering functions have already been described; in its systems operating role
it can perform the communications functions of the operating software - which
may also be handled or supplemented at a terminal — and controls resets, initial
microprogram load (IML) from data held on a floppy disk, initial program load
(IPL) and dump functions.

A useful additional feature is the inclusion of a performance monitor, by means
of which the service processor can display system operation states on a VDU,
as follows:

CPU utilisation rates: total utilisation rate
supervisor-mode rate

channel utilisation rate: utilisation rates of three selected channels

The display is in three colours and a light pen can be used for input.

3.4 Reliability provisions

Modern computer systems incorporate three tiers of design to provide high
levels of reliability and availability: the intrinsic reliability of the components

ICL Technical Journal May 1984 23

and connections, the use of fault-tolerant techniques within the hardware and
the co-operative use of recovery and fallback techniques by the operating
software.

On Atlas 10, use of the advanced LSI, MCC and ‘cube’ technologies has reduced
the number of interconnections by a factor of 10 compared with
previous designs of CPU, and thus contributes powerfully to the intrinsic
reliability.

The fault-tolerance techniques employed include the following:

— instruction retry at the CPU, in co-operation with the service processor
— Hamming codes for single-bit error correction and two-bit error detection

in the microprogram stores in the CPU
— automatic fallback function in the CPU cache. If an error occurs the

operation is repeated up to four times and if necessary a 4 kbyte section is
deleted from the cache.

— duplicated, and in places triplicated, logic in the MCU
— extended error-correction code in the global buffer store of the MCU. This is

a considerable extension to the Hamming code technique, enabling any error
in a four-bit block of store to be corrected and any errors occurring within
two such four-bit blocks to be detected.

— an alternate chip assignment function has been incorporated in the main store
unit, in addition to the conventional Hamming correction and detection pro
visions. Independently of any CPU or channel processor accessing, the MCU
periodically reads the contents of the main store unit. If a one-bit error is
detected the data is corrected and written into the main store unit, thus
correcting an intermittent error. At the same time the MCU checks all the bits
in the 64 kbit RAM containing the error bit; if another error is detected the
RAM is assumed to have a fixed one-bit error and is replaced with an alter
native chip. By this means a two-bit error composed of fixed and intermittent
one-bit errors can be prevented. One alternative chip is provided for each 16
Mbytes of main store.

4 Conclusion

The field experience from the installation and support of the Atlas 10 mainframe
since the delivery of the first machine to SERC is witness to both the reliability
provisions and the quality control processes followed during all stages of
manufacture. Despite the size and power of the system, a reliability measured as
several thousand hours between events is being obtained. The performance of
the system has also been confirmed during benchmark experiments performed
on behalf of customers and prospective customers, and by running benchmarks
supplied by the independent Institute of Software Engineering. The results of
these tests show that Atlas 10 is superior to all the competitive products, the
advantage in scientific computing being very marked indeed.

24 ICL Technical Journal May 1984

Part It: A user's view of the Atlas 10

1 Computing environment

1.1 Introduction

Rutherford Appleton Laboratory (RAL) is the largest establishment of the
Science & Engineering Research Council (SERC), the body which supports
scientific research in universities and polytechnics in the UK. The Computing
Division supplies large-scale computing facilities to SERC users throughout the
UK and also supports SERC-promoted programmes in Computer Science
research. The Division supports central (IBM compatible) mainframes for batch
and interactive work, together with multiuser minicomputers and single-user
computers (notably the ICL PERQ) located on site and in university depart
ments. All these computers are networked on a private X25 network previously
known as SERCnet, but now being taken over as part of the National Academic
Network (JANET). The mainframes are linked to similar systems at high-energy
physics laboratories in Geneva (CERN) and Germany (DESY).

1.2 Requirement for mainframes

Despite the large growth in the numbers of small time-sharing and single-user
systems, a significant role is still seen for mainframe services in the SERC
community throughout the rest of the decade.

One requirement for the mainframe is to supply the traditional ‘batch processing’
needed for analysis of data from high-energy physics experiments. A recent
major international experiment at CERN involved 100 million proton/antiproton
collisions (‘events’) of which five turned out to involve the W particle (the carrier
o f the weak nuclear force), which had been predicted but never observed. The
event measurements were contained on 3000 (full) 6250 bpi magnetic tapes.
Analysing the UK share of this data (about 300 tapes) needs over 1000 h pro
cessing time on a 5 MIP (million instructions per second) processor. This is
typical of the combination o f intense number crunching and data processing
which is part of the contemporary ‘big’ experimental science. This type of
application, together with numerical work arising from image processing,
simulation, finite-element calculation etc. and the administrative needs of a
large organisation such as SERC are seen as justifying ‘traditional’ mainframe
batch facilities for probably the rest of this decade.

A large amount of interactive work - program development, office automation,
database queries etc. — is also carried out on mainframe systems. Although at
RAL the development of the mainframe interactive service arose as an adjunct to
the batch, it is now regarded as very cost effective in its own right. Although it is

ICL Technical Journal May 1984 25

technically possible to run office automation or interactive databases over
distributed systems, a shared mainframe makes the task very much easier once
the scale of use can justify the cost. There will be a gradual movement of many
of the functions of the mainframe interactive service out to single-user work
stations, but for many years the mainframe will remain important in this role.

1.3 Pre-Atlas configuration

At the beginning of 1982 the basic processor configuration was as shown.
Although the 360/195 ‘back-end’ computers were about 10 years old, they each
gave greater than 5 MIP performance on a scientific workload — they had in
their day been among the fastest processors in the world. Since they were not
virtual-memory systems they did not support MVS, the IBM mainline operating
system for large processors. The laboratory was therefore running its predecessor,
MVT, an operating system which had been unsupported by IBM for several
years and which the laboratory itself had been modifying and enhancing for
many years.

The 3032, which was used as ‘front end’, is roughly a 2½ MIP system which does
support virtual memory. It was running IBM’s ‘hypervisor’, a virtual-memory
operating system in which each virtual machine presents an interface exactly like
the real machine. Thus VM can run underneath itself multiple copies of IBM
operating systems like MVS or MVT, or indeed VM itself. VM also supports the
‘conversational monitor system’ (CMS), a timesharing system specifically
designed for VM. CMS had been chosen by the laboratory to support its main
frame interactive work, mainly because it was very cost-effective in terms of
average users supported per unit of any resource compared with the IBM
alternative TSO; this was so even although TSO runs as part of MVS (and MVT)
and would have been more convenient. CMS gives fully interactive facilities and
also an associated batch system. Fig. 1 shows a number of ‘CMS virtual
machines’, one per user, plus support of the network, and the MVT system for
communication with the back end.

network

Fig. 1 Pre-Atlas processor configuration

26 ICL Technical Journal May 1984

A programme of replacement of the mainframe complex was becoming urgent
for a number of reasons.

- The costs of maintenance and electricity associated with the 360/ 195s were
very large compared with costs on contemporary equivalent machines.

- Although still surprisingly reliable, the 360/195s were at an age when
substantial deterioration could be expected.

- MVT was an unsupported system — it demanded substantial effort to main
tain and users were cut off from modern facilities.

- The resources were under strain, particularly the front end 3032 which had
no cost-effective upgrade. In particular there was no spare resource even to
begin the move from MVT to MVS, estimated at two years work to achieve
in full.

1.4 The replacement programme

In November 1981 the laboratory invited tenders for IBM-compatible systems to
replace the mainframe complex. In the same month ICL announced their agree
ment with Fujitsu allowing ICL to support and market the largest of the new
Fujitsu IBM-compatible machines. Unfortunately ICL was not quite in a posi
tion to tender for machines (the formal launch of the product took place in May
1982). As a result of the tender exercise, the IBM 3081D was chosen to meet
the front-end requirement and allow one 360/195 to be removed.

ICL then proposed the first Atlas 10, as the M380 had now been named, SERC
was given approval to make a single tender invitation to ICL, provided that the
technical criteria were met and that suitable contractual conditions could be
negotiated. This proved to be the case, and the following timetable was followed:

July ’82
August ’82
October ’82
April ‘83
August ’83
September ’83
October ’83

delivery of 3081D, removal of one 360/195
3081 swapped to front end, 3032 to back
second 360/195 removed
Atlas 10 installed as second back end (MVT)
formal handover of Atlas 10
3032 removed from scientific use (for administration)
trial MVS service begins on Atlas 10

As this would be the first Atlas 10 to be installed in the UK, this extended
timetable was planned to allow for possible difficulties. In the event, as the
companion paper by Faulkner shows, everything went very smoothly indeed and
the machine was fully operational only three days after its delivery to the site.

The final configuration is shown in Fig. 2. The whole change in mainframe
configuration took place with no disturbance to users or to the general develop
ment programme.

ICL Technical Journal May 1984 27

network

Fig. 2 Final Atlas configuration

2 Plug-compatible systems

2.1 Compatibility

RAL, like many other prospective purchasers of a ‘plug-compatible’ system, had
to satisfy itself not simply on the usual range of issues - price/performance, re
liability, support etc. — but on the key issue of compatibility with IBM. The
term ‘plug-compatible manufacturer’ (PCM) applied first to those suppliers of
equipment which attached to IBM channels or control units, and later to a
new breed, led by Amdahl, who supplied processors compatible with IBM.
Fujitsu, who had been manufacturing computers since 1954, introduced their
first IBM-compatible machine (230 series) in 1974, and ICL entered the market
in 1981. (Strictly speaking, it already had in 1965 with the System 4 range, but
this was never sold as an IBM-compatible system, and it ran non-IBM operating
systems. There are still System 4 computers supported by ICL in the field.)

When designing its mainframe replacement strategy RAL made a decision to
remain with IBM-compatible mainframes and with the IBM systems VM/CMS
and MVS. This was not simply because of the current workload and the problem
of converting programs and data. IBM would continue to be a leading supplier
of mainframe systems at the performance levels required by the laboratory, IBM
and IBM-compatible systems were installed in collaborating laboratories such as
CERN, DESY, Daresbury and others, and this would also continue. The IBM
architecture is thus being chosen not necessarily because of intrinsic technical
merit but for strategic reasons — the strategic importance of the IBM-compatible
market is emphasised in the companion paper. The fact that there are competing
suppliers for the hardware and for high-level software makes it possible for a
public-sector organisation like SERC to take this view without favouring
particular suppliers.

28 ICL Technical Journal May 1984

The Fujitsu computers are sold in Japan not simply as IBM-compatible systems.
The assembler code interface is a superset of the IBM ‘Principles o f operation’1.
Fujitsu have implemented an operating system (OSIV F4) which is claimed to be
an enhanced version of MVS with improved performance. There is similarly a
Fujitsu equivalent to VM (known as AVM). In the RAL environment, although
there may be much technical merit in alternative operating systems, the strategic
effect of any departure from the ‘standard’, must be carefully considered. Thus
RAL could not have incorporated the Atlas 10 unless it was clear that the
standard IBM control software would run without any modification, and would be
fully supported. At the time of the ICL/Fujitsu announcement, the attendant
publicity stressed the alternative software, but it is now clear that ICL regards
support of IBM standard software as paramount.

The version of MVS which was then the most recent was ‘MVS system product,
version 1, release 3’, and it was crucial that this ran without problems. The
order code had been enhanced in the latest Principles o f operation to support
MVS SP 1.3, and it was therefore not simply a matter of running new software
on proven hardware — Fujitsu had to ensure that new hardware features were
implemented. MVS SP 1.3 was not available in Japan when the RAL bench
mark (see below) was first run, and so OSIV F4 was used with the proviso that
the acceptance tests would involve repetition under MVS SP 1.3 (demonstrated
in Japan in March 1983, before delivery).

IBM licence their control software for non-IBM processors, but (reasonably) do
not undertake to look at any problems which cannot be duplicated on an IBM
processor. Although RAL has a 3081, it is not always possible or convenient to
duplicate problems even if there are genuine MVS bugs, and RAL will rely on
the PCM supplier (ICL) to act as the prime MVS support on the Atlas 10. ICL
will tell RAL, or even IBM directly, if faults turn out to be essential MVS ones.
In fact the only specifically Atlas 10 MVS problem encountered was caused by
an interaction with VM (see below).

RAL had a requirement for VM on the Atlas 10 for two reasons: to act as a
back-up for the front end, and to allow MVS during the conversion phase to run
in parallel with MVT. Ability to run VM SP release 2 was therefore also specified
in the acceptance tests. Certain bugs were discovered; the most serious was a
subtle problem in the area of maintenance of ‘shadow tables’. These are real
page tables which VM must maintain on behalf of operating systems running
beneath it (a real copy of the virtual tables which the system believes it is
operating on). An error caused MVS occasionally to ‘hang’ when the system was
loaded. This was corrected by a change to the microcode.

2.2 Future compatibility

Apart from compatibility with current hardware, the other interest is the future.
As the Principles o f operation develop, how long will it be possible to upgrade
the Atlas 10 incrementally to take advantage of the most recent software (and
possibly peripherals)? The same question is of course asked when buying IBM

ICL Technical Journal May 1984 29

processors, but there is an assumption that IBM will have planned at least the
more immediate developments and will have built the support for these in the
processor. The microcoded nature of the Atlas 10 should make it fairly easy to
respond to such changes. There is also a facility for interrupting into a
hypervisor where ordinary 370 code can effectively act as microcode in imple
menting a new order. This means very rapid response to developments can be
made, although at the expense of relative performance.
ICL has now stated that it will be able to upgrade the Atlas 10 to support the
‘extended architecture’ (XA), extensions to the IBM Principles o f operation2
which allow 31-bit addressing and enhancements to the channel architecture.
Although RAL has no committed plan to move to XA yet, it is the obvious
strategic path, and it is useful to have both main processors, 3081 and Atlas 10,
able to support this move.

3 Performance

3.1 Processor power

The M3 80 processor was benchmarked simply by running a series of batch jobs
for which timings were already available on the IBM 360/195 (MVT) and the
IBM 3081D (MVS). The jobs were run both singly in series, and then altogether
to confirm that a high level of multiprogramming had no untoward effect. Each
job yielded a ratio M380:360/195 and Atlas: 3081, and the mean ratio (i.e. each
job weighted equally) was

Atlas: 360/195 2-6
Atlas: one processor of 3081D 2-8

(The 3081 is actually a dual-processor system, so the throughput of the machine
is potentially almost twice what the CPU times imply.)

The 360/195 was rated at about 6 MIP for this work (scientific), and the bench
mark thus confirmed the 15 MIP rating. The individual jobs showed a wide
variation: 1-3-5-3 in the case of the 360; 1-8-4-3 in the case of the 3081D.

This high single-processor performance has subsequently been confirmed in
production scientific work. Some finite-element codes have given the following
ratios of Atlas 10 to one processor of 3081D.

integer arithmetic 2-3
single precision matrix algebra 3-0
double precision matrix algebra 3 -6

The Alas 10 is run transparently to the end users — when batch jobs are
submitted they run on the 3081 or the Atlas 10 according to the loading of the
system. The user thus does not directly see the power of the Atlas as the system
is arranged so that on average there is an equitable charge. For jobs whose Atlas:

30 ICL Technical Journal May 1984

3081 CPU times vary from the average, the charges for CPU time are unfortu
nately different on the two machines.

The amounts of processing power, measured in MIPs installed, at various stages
in the replacement programme are shown diagrammatically in Fig. 3.

30 -

'20
Ioa

2 1 0
C

14.5

'3 0 3 2
+

2x360/195

18-5

3032
+

3081D
+

360/195

27.5
25

12-5

3032 3032 3081D
+ + +

3081D 3081D
+

Atlas 10

Atlas 10

Oct *82 Apr’83 Sep’83

Fig. 3 Installed power for scientific computing during the replacement programme.

3.2 Channels

Between the Atlas 10 channels there are various subtle dependencies which must
be taken into account when configuring data-streaming devices, i.e. those which
run up to 3 Mbyte/s rather than the 1-5 Mbyte/s limit of the older style channel
protocols. For example, the channels are in groups and within any one group
there is a limit of 6 Mbyte/s on the total throughput. When first configuring the
device layout, RAL was unaware of the impact of these dependencies and the
initial positioning of the data-streaming devices caused performance problems
which were difficult to diagnose.

3.3 VM performance

The Atlas 10 has been used in a front-end role, as this is necessary when the
3081 is down for any reason. It was noted that the processor times for certain
operations under CMS were much higher than might be expected, and investiga
tions showed this to be due to the implementation of ‘VM assist’. This feature3,
is a facility to improve the performance of certain privileged instructions. A
guest operating system issues privileged instructions in what it assumes is in
privileged mode, but in fact, since it is running in VM, is in problem state. This
causes an interrupt into the VM supervisor (CP) which emulates the action of
the instruction and returns to the guest system. With VMA the interrupt to CP is
avoided in certain common cases by an extension to the Principles o f operation.
On Atlas 10 VMA is implemented not in microcode but in a hypervisor which

ICL Technical Journal May 1984 31

runs in normal assembler code. Thus although the function of VMA is imple
mented, it does not have the effect of increasing performance to the extent
expected, especially for programs running in basic control mode such as MVT.
This is currently being investigated by ICL and Fujitsu.

4 Summary

To sum up, the experience of the first IBM-compatible system sold by ICL
(System 4 excepted) and the first Fujitsu M 380 in the UK has been remarkably
good. It is a tribute to the machine that the users were scarcely aware of the
transition to the Atlas 10 - simply there was suddenly a lot more power
available. There have been no ‘compatibility’ difficulties. The greatest problem
arose from the assumption that the channels were mutually independent in
performance; in fact there are idiosyncracies which it is essential to take into
account when configurating the layout of devices on channels.

Acknowledgements

Thanks are due to the staff of ICL and of RAL Computing Division who co
operated so well in the installation of Atlas 10. Particular mention must be made
of David Rigby of RAL Computing Division who unfailingly unearthed the most
recondite technical detail.

References

1 ‘IBM System/370 principles o f operation’. IBM Systems Library order number GA22-
7000-7, IBM Corporation, Department D58, PO Box 390, Poughkeepsie, New York
12602, USA.

2 ‘IBM System/370 extended architecture'. IBM Systems Library order number SA22-
7085-0, IBM Corporation, Department D58, PO Box 390, Poughkeepsie, New York
12602, USA.

3 ‘Virtual-machine assist and shadow-table bypass’. IBM Systems Library order number
GA22-7074-0, IBM Corporation, Department D58, PO Box 390, Poughkeepsie, New
York 12602, USA.

32 ICL Technical Journal May 1984

Towards better specifications

K.J. Turner
ICL Technical Directorate, Kidsgrove, Staffordshire

Abstract

This is a tutorial paper intended for the general reader who desires a
broader knowledge of how to write precise specifications. To whet the
reader's appetite for deeper study, various specification methods are illus
trated using examples of familiar systems. The paper opens by defining
what a specification is and how specifications can be compared. The
problems of writing specifications in natural language are pointed out. A
survey of specification methods is then given under three broad headings:
informal, semiformal and formal. Finally, future trends in specification
techniques and ICL's work in this field are explained.

1 Introduction

1.1 Specifications

What is a specification? The Collins dictionary definition1, slightly edited is:

‘A detailed description of the criteria for the constituents, construction,
appearance, performance, workmanship, etc. of a material, apparatus, etc.’

This neatly puts over the point that a specification is about the properties of
something, whether these properties be physical, logical, aesthetic, qualitative or
whatever.

The word specification is usually used to mean a design specification. The word
implementation is usually used to mean the realisation of a design. Specifications
and implementations can thus be thought of as extreme ends of a spectrum.
Here is an example of how a high-level specification from a customer might be
elaborated through successive design stages to something a supplier might deliver:

Something to allow a loudspeaker to be sited remotely from its amplifier
4

A 10 m loudspeaker extension cable
4-

(1) 10 m, two-core flexible cable suitable for low voltage, medium current.
(2) Cable to be terminated with standard two-pin DIN connectors

4-

ICL Technical Journal May 1984 33

(1) 10 m of cable type . . .
(2) Cable to be terminated with socket type . . . at one end and plug type . . .

at other end in accordance with DIN standard . . .
(3) Cable with connectors to be supplied in package type

. . . with legend . . . at price . ..

At each of these steps the specification is made less abstract and more imple
mentation-oriented, until finally something which can be delivered is reached.
The steps from a specification to an implementation constitute the process of
refinement.

1.2 Comparison o f specifications

In what sense can one specification be said to be better than another? Obviously
a specification has a number of desirable attributes, such as being:

- easy to read
- clear
- free from errors
- precise
- appropriate
- complete.

What is not as obvious is how these attributes can be captured in an objective
way so as to permit comparison of specifications. The work of Gilb2 has shown
that it is possible to describe attributes in a meaningful and measurable way.
Some attributes translate easily into objective measures: for example, part of
being ‘easy to read’ is that a suitable range of typefaces and typesizes is used.
Other more subjective attributes such as being ‘clear’ could be measured by
asking readers to complete a comprehension test after reading a specification.

In general, then, it is possible to quantify how good a specification is and
therefore to show that one specification is better than another for a given set of
measurable attributes. For at least two reasons it is desirable to aim for high-
quality specifications. First, specification writing is a major part of the work of
any business; ICL’s Product Specification Document library alone runs to about
1900 documents, totalling tens of thousands of sheets of paper. Secondly, the
specification of requirements and design is the start of a long and costly develop
ment process. Any errors or misconceptions introduced at the specification stage
are likely to be repeated and magnified in later stages. It is typically estimated3
that it costs 400 to 500 times as much to fix a fault once a computer product
has been installed compared with correcting the errors at the requirements stage.

1.3 Using natural language

Most specifications are written in natural language (English, French etc.). The
vagaries of natural language have been very amusingly illustrated by Hill4 ; most
of the following examples are taken from his paper.

34 ICL Technical Journal May 1984

Ambiguity
police club visitors (on a sign)

Double negatives
I don’t know nothing

Scope
‘I feel like going to bed with Brigitte Bardot again tonight.’
‘Again?’
‘Yes, I have felt like it before.’

Program-like constructs
Shampoo, rinse and repeat (indefinitely?)

Punctuation
‘BR hope to have trains running normally, late this afternoon’,
printed as ‘BR hope to have trains running normally late, this afternoon’

1. 4 Purpose o f this paper

The moral is clear, that using natural language in a precise way is difficult. Legal
language, of course, aspires to this, but is notoriously difficult to read. So what
is the way forward? A variety of techniques are now available which make better
specifications possible. The purpose of this paper is to bring descriptions of some
of these methods together in one place. Section 2 provides a broad classification
of specification methods into informal, semiformal and formal techniques.
Sections 3, 4, and 5 expand on each of these and show some of the methods at
work on small problems. Section 6 rounds off the paper and explains what ICL
is doing to improve its own specifications.

Because this is intended to be a tutorial paper for the general reader, only a small
part of each specification method is described and illustrated. It would therefore
be wrong to conclude from the paper that the methods are trivial and offer no
advantages over traditional methods. It would also be wrong to conclude that
the methods are applicable only to trivial problems. No attempt has been made
in this paper to compare and contrast the methods since this would have
required a more detailed exposition. However, the reader is encouraged to try
the examples so as to get a feel for the methods. The References section gives
guidance on further reading if more information is required.

The choice of which methods to mention and which to illustrate was a difficult
one for the author. There are probably hundreds of specification methods,
counting their variants. The criteria for selecting the methods cited in this paper
were that they should be important, used in ICL and suitable for illustrative
purposes. The interested reader will find a great wealth o f papers and books
covering methods not mentioned. 2

2 Specification methods

2.1 Broad classification

By way of a broad classification of specification methods, the terms informal,

ICL Technical Journal May 1984 35

semiformal and formal will be used. There is no clear definition of what
formality means5, but a common view is that a formal language consists of
symbols plus rules for combining and manipulating symbolic expressions.

At one end of the spectrum informal methods are those without any (overt)
mathematical basis. Informal specification languages, such as ordinary English,
abound. They are a convenient and natural way of expressing a great deal more
than specifications, but their lack of precision and mathematical basis makes
them unsatisfactory where accurate descriptions are needed.

It is convenient to introduce semiformal methods as an intermediate classifica
tion. These methods can be given some sort of mathematical rigour, but are
generally not used in this way. The emphasis is less on proofs of system
properties and more on conveying ideas in a readily understood form.

At the other end of the spectrum lie formal methods, which fall into the province
of mathematics. The familiar rules of arithmetic, for example, constitute a
formal system. Do not be put off by this emphasis on mathematics. All of us do
elementary arithmetic, for example, without having to know the intricacies of
number theory. Similarly, it should be possible to use specification languages
without being highly proficient in mathematics. The great advantages of using
formal methods are that precision is assured and that formal proofs can be
conducted. Just as at school we learn to prove theorems in geometry using
standard rules, so a computer program can be mathematically checked against its
specification to see if it has correctly implemented it.

2.2 Detailed Classification

Fig. 1 attempts to categorise specification methods under a number of general
headings. It should be stressed that this is a personal classification and is not

specification methods

informal semiformal formal

natural
language

diagrams hierarchic
decomposition

programming state
languages machines

algebras grammars axiomatic net temporal
methods theory logic

Fig. 1 Classification of specification methods

36 ICL Technical Journal May 1984

exhaustive. In particular, the three classes of method are only broadly dis
tinguished and it could be argued that some methods should appear in an
adjacent class. Based on the categorisation given, Sections 3 ,4 and 5 now discuss
examples under each of these headings.

3 Informal methods

3.1 Natural language

The use of natural language to write specifications has already been covered in
Section 1.3.

3 .2 Diagrams

Diagrams are often used to complement textual specifications. Many kinds of
stylised graphical representation are used. Flowcharts6 for computer program
design are well known, and exist in many varied forms. Less well known, perhaps,
are the techniques for modelling entity and function relationships. As an
example of this genre, part of the D2S27 (Development of Data Sharing Systems)
methodology will be described.

D2S2 can be used to model the relationship between entities, which are the
objects of interest; they could be files, events, processors, systems or whatever.
Entities are shown as boxes with rounded comers. Between entities there exist
relationships. Lines of various types are drawn between entities to show differ
ent relationships (e.g. optional, mandatory, one-to-many). Fig. 2 shows an
example of this technique to describe the ICL Technical Journal itself.

3 .3 Hierarchic decom position

Hierarchic decomposition techniques work by forcing the specification to be
given at a high level first and then broken down into successively smaller parts.
This is, of course, a commonplace design procedure: the hierarchic decomposi
tion methods merely make it systematic. There are so many methods of this
type that it seems almost invidious to single any out for mention. However,
HIPO8 (Hierarchical Input-Process-Output) is cited because of its widespread
use by IBM.

The specific method to be illustrated, however, is DBO2 (Design By Objectives).
This is chosen as an example because it is different in character to most of the
specification methods mentioned in this paper. DBO is ideally suited to writing
requirements specifications rather than design specifications. There are three
basic principles behind DBO. First, complex things are decomposed progressively
into simpler ones. Secondly, the functions (‘what’), attributes (‘how well’) and
solutions (‘how’) of a problem are carefully distinguished. Thirdly, all attributes
are quantified in a meaningful and measurable way.

Suppose, for example, that one treated having a meal at home as an activity to be

ICL Technical Journal May 1984 37

Notation
/ ------------- \

V________

entity

mandatory relationship
optional relationship
many-to-one and one-to-many

Fig. 2 D2S2 specification of ICL Technical Journal structure

specified. To begin with, identify the functions that have to be performed: these
are taken to be PURCHASE, PREPARE, EAT and TIDY. Now consider the
attributes of each of these functions. For PURCHASE, one might wish that the
purchase of food would be within our means, good value etc. Some of these
attributes may require subdividing before a sensible definition of them can be
given. To quantify an attribute it is necessary to define a measuring concept
(e.g. ‘time’), a measuring method (e.g. ‘use a stopwatch’) and the tolerable range
of values. The values may be specified as: worst (poorest value tolerable),
planned (expected value) or best (optimistic but realistic value). Fig. 3 shows a
partial explosion of the specification for having a meal. The specification could
be given to another person to fulfil parts of it (not the eating!) in the knowledge
that one would get exactly the service required. 4

4 Semiformal methods

4.1 Programming languages

Programming languages have been used for the specification of algorithms for

38 ICL Technical Journal May 1984

MEAL

I------------------1-----
PURCHASE PREPARE EAT

PURCHASE

—I
TIDY

affordable convenient timely good value

local portable

light compact

portable

definition
explosion

light

definition
measure
method
worst
planned
best

compact

definition
measure
method
worst
planned
best

the ease with which the foodstuffs can be transported
see 'light' and 'compact'

ease of lifting foodstuffs
weight
scales
10 kg
0-5-1kg
0-25 kg

ease of carrying foodstuffs
longest dimension when packed
ruler
30 cm
15 - 20 cm
10 cm

Fig. 3 DBO partial specification of a meal at home

some time. There are many examples of ALGOL, and more recently PASCAL9,
used in this style of specification. It has been argued that programming languages
are really implementation languages and hence not suitable for abstract specifica
tion. The main argument in favour of programming languages in this role is that
a high-level language should be machine-independent and so appropriate for
specification. Unfortunately, most conventional languages make it impossible to
avoid building in some implementation bias (e.g. trading store against processing
time). The best approach seems to come from very high level languages such as
those employed in functional programming10. It is possible to give the elements
of a programming language a precise mathematical meaning, or semantics. A
programming language treated in this way can be regarded as formal. However,
most examples of specifications using programming languages rely on the
informal understanding of the reader.

ICL Technical Journal May 1984 39

A typical functional language10 allows atomic values (e.g. 10 and FRED), lists
(e.g. (ALPHA BETA GAMMA)), variables (e.g. x), expressions (e.g. length(side)
+5) and function definitions (e.g. square (y) = y*y). An empty list is denoted by
the atom NIL. Built-in functions include eq (equality), car (to extract the first
item of a list), and cdr (to produce a list with its first item removed).

Suppose that a simple calculator to add or multiply a list of numbers is required.
The calculator is to be given its input as a list like (SUM 31 3 19) or (PRODUCT
5 2 9) and is expected to output 53 or 90, respectively. The specification of such
a calculator might be:

calculator(list) = if eq (list,NIL)
then NIL
else if eq(car(list),SUM)

then sum(cdr(list))
else if eq(car(list),PRODUCT)

then product (cdr(list))
else list

sum(list) = if eq(list,NIL)
then 0
else car(list)+sum(cdr(list))

product(list) = if eq(list,NIL)
then 0
else car(list)*product(cdr(list))

4.2 State machines

State machine techniques stem from the theory of finite state automata11. This
is closely related to the theory of grammars (Section 5.2) and nets (Section 5.4).
However, the widespread use of state machine descriptions by people unfamiliar
with the theory shows that the underlying mathematics does not need to be
visible. A state machine consists of a number of states between which transitions
are possible. The machine exists in one state at a time, and is triggered to move
to a new state by some event', this transition to a new state may be accompanied
by an action Extended finite state machines allow for a number of state variables
in addition to the basic machine state. The basic machine state describes the
gross behaviour of the machine, and the state variables describe the finer details.

Graphical and tabular notations are both used for state machines. The precise
notations used vary somewhat; the following description is based on the way in
which ICL has specified some communications protocols. In the graphical
notation, states are shown as circles and transitions as arcs between them. States
are named, and transitions are labelled with their event and action; a null action
is omitted. In the tabular notation, states are shown as columns and events as
rows in a matrix. Each entry in the table shows the resultant action and the

40 ICL Technical Journal May 1984

button pushed/
button release

States
Events

not ready
(initial)

ready heating hot

button pushed
button release heater on

X
button release

. heating -

water hot X
• heater off and

button release X
hot hot

water cold - - X
"

ready

water high
-

X X X
ready

water low X
heater off and
button release

*

not ready not ready not ready

Notation

event/action

- null action or no state change X impossible

Fig. 4 State machine specification of hot-water urn

action

new state

ICL Technical Journal May 1984 41

resultant state. A dash is used to indicate a null action or no state change. If an
event is impossible in a given state, a cross is shown in the entry; this implies that
some implementation-dependent error action must be taken.

The example of a state machine given in Fig. 4 is that of a hot-water urn. The
urn has a button which is pushed to heat the water; when the water is hot the
button is automatically released. The urn has a thermostat and a water-level
indicator to prevent damage. To get the feel of the method, try following the
paths through the diagram or table. It is instructive to try out some of the more
unusual sequences like emptying the urn while it is heating, or filling it with hot
water.

5 Formal methods

5.1 Algebras

A whole family of algebraic specification methods exists. Note that this is not
the kind of algebra which is taught at school, but can be thought of as a general
isation of it. An algebraic specification technique defines a set of symbols,
operators for combining symbols, and laws which describe the properties of the
operators. Some algebraic techniques are better suited for specifying static
characteristics, such as the properties of data structures or sequential systems.
Others are better suited for specifying dynamic characteristics, such as the
behaviour of concurrent systems (i.e. those with components which operate in
parallel). Only the latter category of specification technique will be discussed in
what follows.

The common theme in algebraic methods for specifying concurrency is that a
system can be thought of as a collection of processes. These processes may
communicate along channels. The processes run independently except when
they have to communicate with others. A multilevel description is also possible,
with processes at one level being viewed at a lower level as a collection of com
municating smaller processes. It is possible to give general algebraic rules about
the ways in which processes behave and can be combined.

Two of the algebraic specification languages for concurrency which have been
developed in the UK are CSP12 (Communicating Sequential Processes) and
CCS13 (Calculus of Communicating Systems). Both have been well researched
and have been applied to a variety of problems14’15. To illustrate the approach a
simple CSP example will be given, omitting the more complex features of the
language.

A CSP process can be specified precisely by giving its traces, i.e. a description of
all the sequences of messages which can pass along its channels. The expression
c!m means that message m is transmitted on channel c; similarly c?m is used to
indicate reception of a message. Each step in the unfolding of process behaviour
is separated by the arrow symbol. At some point a choice of behaviour may be

42 ICL Technical Journal May 1984

RECORDED ANNOUNCEMENT SERVICE
= TELEPHONE II CONTROLLER II SWITCHING EQUIPMENT II WATCHDOG TIMER

CONTROLLER = DISCONNECTED

DISCONNECTED = signal ?off-hook -* toneldialling -*■
(signal?on-hook -+ DISCONNECTED

o signal?number -► switchlnumber-*
timerlstart -+ CONNECTING)

CONNECTING signal?on-hook -*• switch I abandon -+
timerlstop -+ DISCONNECTED

o switch?waiting -+ timerlstop -+
tonelringing -BRINGING

□ switch?engaged -+ timerlstop -*
tonelengaged -+ CONNECTING

o switch?unobtainable -*• timerlstop -►
tonelunobtainable ->■ CONNECTING

□ timer? expired -♦ switch I abandon -►
tonelunobtainable -+ CONNECTING

RINGING
C

signal?on-hook -+ switch I disconnect -*• DISCONNECTED
switch? connected -+ CONNECTED

CONNECTED
□

signal ?on-hook -+ switchldisconnect -+ DISCONNECTED
switch ?voice -+ tonelvoice -+ CONNECTED

Notation

elm transmit message m on channel c
c?m receive message m from channel c
-+ followed by
□ alternative operation
II parallel operation

Fig. 5 CSP partial specification of recorded announcement service

possible: in this case the alternatives are separated by the box symbol. Finally,
parallel running of processes is allowed: the parallel bar symbol is used to join
concurrent processes into a single larger process.

Using this compact notation it is possible to describe a wide variety of systems.
By way of example, Fig. 5 gives a CSP description of telephoning a recorded
announcement service. The complete telephone system (seen from one side)
consists of the calling telephone, the controlling unit in the telephone exchange,
the telephone switching equipment and a watchdog timer to deal with equip
ment failure. Only the exchange controller process is described in detail. This
starts off in the disconnected state and then unfolds through various sequences

ICL Technical Journal May 1984 43

of events. Try following the example: it is not difficult to understand given a
knowledge of how telephones usually behave.

5 .2 Grammars

The theory of grammars is very closely related to that of algebraic specifications
(Section 5.1) and state machines (Section 4.2) but is usually studied as a
separate subject. Once again, this is not the schoolroom meaning of grammar but
is a general mathematical treatment of the same concepts. Grammars concern
themselves with the syntax rules of a stream of symbols, i.e. the rules which
govern in what order the symbols can be written.

Many varieties of grammars exist, some quite exotic. Most programmers will be
familiar with BNF (Backus Naur Form), originally used to define Algol 6016 but
subsequently employed in many variants to describe other languages. The
example below uses some of the features of the British Standard17 style.

The form of a language can be specified as a set of syntax rules: these show how
symbols in the language can be expressed as other combinations of symbols.
Some symbols are basic to the language and are written in double quotes.
Normally, however, symbols are defined in equations of the form ‘symbol = . . .’
The right hand side of the equation may list alternative definitions, separated by
the symbol |. Optional parts of a definition are shown in square brackets [] ,
and repeated parts (zero or more repetitions) are shown in curly brackets { } .
A series of parts forming one alternative definition is separated by commas.

Using this simple subset of the full notation it is easy to specify the syntax of
simple expressions. For example, the definition of floating-point numbers such
as 314159 o r -0-618 might be:

number = [sign], digits, [point, digits]
sign =
digits = digit, {digit}
digit = “0” | “ 1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
point =

5 .3 A xiom atic m ethods

Axiomatic methods specify the behaviour of a system by asserting axioms about
its initial and final states, i.e. general properties which a system must satisfy.
Two of the axiomatic specification techniques used in the UK are the Rigorous
Software Development approach18 and Z19. The Z technique is straightforward
and has a simple mathematical basis; only some of the basic concepts are de
scribed in the following example.

Z is based on the concept of a schema, which is shown as a box divided
horizontally into two parts. The box is labelled with the schema name in the top
left hand corner. The upper part of the schema box defines the inputs and

44 ICL Technical Journal May 1984

outputs as a set of variables. Each variable is named and given a type, which
simply represents the set of permissible values. For example, ‘e : EVENS’ might
declare a variable which was one of the set of even numbers. The lower part of
the schema box defines the relationships, or predicates, which must hold
between the variables. Because operations frequently change the state of a
system, it is convenient to refer to the variable values which result from an
operation by adding a single quote to their name, e.g. e'. Predicates expressing
input/output properties generally state the relationship between the unprimed
and primed values. A schema name may be used as an abbreviation for its upper
and lower parts, and schema names may also be used with a single quote to
denote their results. When a schema name is used inside another schema, it is
understood that the two parts of the schema are added to those of the schema
in which it is mentioned.

This notation is illustrated by the example of a cashpoint machine. It is first
assumed that a current account is represented by total deposits and withdrawals
to date and the resulting balance; the obvious relationship between these holds.
This is shown in the first schema of Fig. 6. A cashpoint withdrawal is specified
by relating the amount required and the state of the account before and after
the withdrawal attempt. The second schema of Fig. 6 expresses the fact that the
withdrawal is forbidden if it would take the account into the red; otherwise the
account is updated by the amount of the withdrawal.

5.4 Net theory

Net theory has close affinities with algebraic methods (Section 5.1) and state
machines (Section 4.2), but has a well developed culture of its own. A system is
viewed as a set of potential states with possible transitions between these. The
actual global state is indicated by placing tokens, or markers, in potential states
so as to show which conditions hold. A graphical representation is generally
used, and the resultant network of states and transitions gives the specification
technique its name. Net theory has been applied to many problems and has
developed into a number of specialised varieties. It has been used on a number
of systems to show that they are live (i.e. will not lock up) and safe (i.e. will
always satisfy certain properties).

Petri Nets20 are simple forms of state transition networks which have been well
studied. Potential states are shown as circles and transitions are shown as boxes.
The tokens are shown by placing a dot in a potential state. Arrows point from
states to transitions and transitions to states to show the structure of the system.

The example in Fig. 7 is for a simple communications protocol with handshaking
on each data transfer. The source process receives input messages and passes
them via a line to the sink process for output. The Petri net shown is quite easy
to follow using small counters to represent the tokens; the initial position of the
tokens is in the waiting for input and waiting for receive states. Transitions may
occur only when all the states leading to a transition hold tokens. When this
happens, the tokens in all the input states disappear, and tokens in all the output

ICL Technical Journal May 1984 45

CURRENT-ACCOUNT.

deposits NN-INT
withdrawals : NN-INT
balance INT

balance deposits — withdrawals

WITHDRAW____________

amount : POS-INT
CURRENT-ACCOUNT
CURRENT-ACCOUNT'

if amount > balance
then CURRENT-ACCOUNT' = CURRENT-ACCOUNT
else deposits' = deposits

withdrawals' = withdrawals + amount

Notation

Name

variables

predicates
schema

POS-INT a positive integer (1,2 . . .)
NN-INT a non-negative integer (0, 1, 2 . . .)
I NT any integer (. . . - 2 , - 1 , 0, 1,2 . . .)

Fig. 6 Z description of cashpoint withdrawal

states appear. Try playing the ‘token game’ with Fig. 7 by starting with an
input message (i.e. letting the waiting for input to waiting to transmit transition
occur).

5.5 Temporal logic

Mathematical logic concerns statements of truth or falsity plus rules of deduc
tion. Propositional calculus21 is the simplest form of logic. It operates with
propositions, which are assertions that are true or false (e.g. ‘the author of this
paper is a Martian’), and with connectives, which expresses relationships between
propositions (e.g. ‘it is raining’ implies ‘the streets are wet’). Predicate calculus21
extends propositional calculus by allowing predicates, which are general
assertions about variables (e.g. ‘X is red’), and quantifiers, which express
properties of the whole set of things being considered (e.g. ‘there is some Y such
th a t . . .’). Finally, temporal logic22 adds predicates over time (e.g. ‘the light is
on now') and temporal operators (e.g. ‘henceforth it is the case th a t . . .’).
Temporal logic can be thought of as a kind of axiomatic method (see Section
5.3) but is usually treated as a separate method.

46 ICL Technical Journal May 1984

input •output

-source line sink

input output

Notation

O state

0 state with token

| | transition

Fig. 7 Net theory description of handshaking protocol

Many flavours of temporal logic are used, but a particularly simple one will be
taken as illustrative. This employs two temporal operators: a square □ indicates
that the following statement will henceforth hold, and a diamond 0 indicates
that the following statement will eventually hold. A highly desirable property of
restaurants is that once they are open one will ultimately be served. This can be
specified as:

OPEN => □ (WAITING => 0 SERVED)

where the arrow symbol means “implies” .

6 ICL involvement

ICL has considerable experience in most of the specification methods described
in this paper. Among the informal methods, ICL is actively using Gilb’s
technique2 to clarify project and corporate goals. Another major piece of ICL
work that deserves mention is CADES23 (Computer-Aided Design and Evaluation

ICL Technical Journal May 1984 47

System). This is a design system which allows, among other things, a structural
model of a system to be developed and manipulated in a database. The model
reflects the hierarchical breakdown of data and functions within the system.
CADES was used to develop ICL’s operating system VME (Virtual Machine
Environment). Among the semiformal methods, the use of state machines will
be mentioned. ICL has used this technique to specify and implement many
system components, including some major communications protocols such as
X2524 and ECMA-7214.

Formal methods offer the best long-term hope for precise and verifiable
specifications. ICL, of course, uses grammars in compiler and language design. A
variety of system components have been specified using CSP12, CCS13 and the
Rigorous Software Development method18. CSP and Z19 are currently being
used to specify facilities such as communications services and protocols, input/
output systems, and database systems. Work on tools to support specification
methods has also begun. ICL is collaborating with the leading UK universities
on specification techniques.

7 Conclusion

A classification of specification methods has been presented. Examples of
methods in each of the informal, semiformal and formal classes have been given.
Most of these methods have been used in ICL, some quite extensively. There are
two clear future trends in specification methods: the formal ones are becoming
more popular, particularly in industry; and a general shaking out and unification
of methods is taking place. The future seems to hold two main approaches:
transition methods (algebras, grammars, nets, state machines etc.) and assertion
methods (axiomatic systems, temporal logic etc.).

Specification techniques are rewarding to study and are passing through a very
interesting phase at the moment. It is hoped that the reader has learned that
plain English is not the only approach and that there really is a way forward
towards better specifications.

Acknowledgments

I am grateful to the colleagues who have supported my work and gently
educated me out of my ignorance. Special mention must be made of Graham
Pratten who first introduced me to formal methods, and of John Brenner for
making possible the QUASARS project, which is studying specification
techniques. My thanks also go to Alastair Tocher and Bob Snowdon for
commenting helpfully on a draft of this paper.

References

1 COLLINS: ‘Concise English dictionary, Collins, London, 1982.
2 GILB, T.: ‘Design by objectives’, North Holland, Amsterdam, (in press).

48 ICL Technical Journal May 1984

3 SMITH, W.: 'Software quality assurance’, Invited ICL Lecture, London, November
1983.

4 HILL, I.D.: ‘Wouldn’t it be nice if we could write computer programs in ordinary
English’, The Computer Bulletin, June 1972, 306-312.

5 NAUR, P.: ‘Formalisation in program development’, BIT, 1982, 22, 437453.
6 BSI: ‘Data processing program and data flow chart symbols, rules and conventions’,

Standard BS 4058, British Standards Institute, London 1973.
7 MacDONALD, I.G. and PALMER, I.R.: ‘System development in a shared data

environment’, in ‘Information systems design methodologies', OLLE, T., SOL, H.G.,
and VERRIJN-STUART, A.A. (Eds.), North Holland, Amsterdam, 1982, 235-283.

8 IBM: ‘HIPO - a design aid and documentation technique’, Manual GC20-1851,
International Business Machines Corp., Research Triangle Park, North Carolina, 1975.

9 ECMA: ‘Local area networks - CSMA/CD baseband link layer’, Standard ECMA-82,
European Computer Manufacturers Association, Geneva, 1982.

10 HENDERSON, P.: *Functional programming - application and implementation’,
Prentice-Hall Int., Eaglewood Cliffs, New Jersey, 1980.

11 HOPCROFT, J.E. and ULLMAN, J.D.: ‘Formal languages and their relation to
automata', Addison-Wesley, Reading, Massachusetts, 1969.

12 HOARE, C.A.R.: ‘Notes on communicating sequential processes’, in Monograph
PRG-33, Programming Research Group, Oxford University, 1983.

13 MILNER, R.: ‘A calculus of communicating systems’, in Lecture notes in computer
science 92, Springer-Verlag, Berlin, 1980.

14 MAPSTONE, A.S.: ‘Specification in CSP language of the ECMA-72 Class 4 transport
protocol’, ICL Tech. / . , 1983, 3, (3), 297-312.

15 SHIELDS, M.W., and WRAY, M.J.: ‘A CCS specification of the OSI network service’,
(Internal Report CSR-136-83), Department of Computer Science, Edinburgh Univer
sity, 1983.

16 NAUR, P. (Ed.): ‘Revised report on the algorithmic language ALGOL 60’, Comm. ACM,
1963,6,1-17.

17 BSI: ‘Method of defining syntactic metalanguage’, Standard BS 6154, British Standards
Institute, London, 1981.

18 JONES, C.B.: ‘Software development - a rigorous approach’, Prentice-Hall Int.,
Eaglewood Cliffs, New Jersey, 1980.

19 SUFRIN, B.A.: ‘Formal system specification - notation and examples’, in 'Tools and
notations for program construction’, NEEL, D., (Ed.), Cambridge University Press,
1982.

20 JANTZEN, M. and VALK, R.: ‘Formal properties of place/transition nets’, in ‘Lecture
notes in computer science 84’, Springer-Verlag, Berlin, 1980.

21 LIPSCHUTZ, S.: ‘Set theory and related topics’, McGraw-Hill, New York, 1964.
22 HAILPERN, B.T.: ‘Verifying concurrent processes using temporal logic, in ‘Lecture

notes in computer science 129', Springer-Verlag, Berlin, 1982.
23 SNOWDON, R.A.: ‘CADES and software system development’, in 'Softwareengineering

environments’, HUNKE, H., (Ed.), North Holland, Amsterdam, 1981, 81-95,
24 TURNER, K.J.: ‘Designing for the X.25 telecommunications standard’, ICL Tech. /.,

1983, 2, (4), 340-364.

ICL Technical Journal May 1984 49

Solution of the global element
equations on the ICL DAP

A. McKerrell
Department of Applied Mathematics and Theoretical Physics, University of Liverpool

L.M. Delves
Department of Statistics and Computational Mathematics, University of Liverpool

Abstract

The global-element method is a variant of the finite-element method for
the solution of elliptic partial differential equations which uses a few very-
high-order elements; because of this, its implementation involves a great
deal of regularity and has considerable inherent parallelism. As part of a
study of parallel algorithms for PDEs we have implemented the two-
dimensional GEM program on the ICL 2980 computer at Queen Mary
College and then transferred the solution phase of the program to the DAP
which is embedded in that system. We report here on the results obtained.

1 Introduction

There is now considerable experience of the use of the distributed array processor
(DAP), on a wide variety of problems; some of this is reported briefly in
Reference 1. In particular, it has been evident from the initial design stages that
architecturally the DAP is well suited to the solution of partial differential
equation problems by finite-difference techniques because the nearest-neighbour
connectivity reflects quite well the local approximations made in that method.
We report here on work undertaken on an alternative method for solving PDEs,
the global-element method2'3 . This method is a variant of the finite-element
method; it differs from the conventional FEM in using a few elements with a
high- (and variable) order approximation in each, defined in terms of a
Chebyshev polynomial expansion within each element, the polynomial being in a
set of suitably mapped co-ordinates. The algorithm which results is interesting
from the DAP viewpoint; it contains a high degree of inherent parallelism but
without the obvious local connectivity of the DAP processor matrix. It is
therefore not obvious how well the DAP can exploit the parallelism, i.e. how
well the GEM algorithm will perform on the DAP.

We have underway a research programme designed to answer this and other
questions:

— what algorithms best implement the basic GEM method on a parallel pro
cessor architecture such as that of the DAP?

50 ICL Technical Journal May 1984

— how does the DAP compare with other available machines for this type of
problem?

— how well does the global-element method compare with a fixed-order finite-
element method or with a nested dissection approach?

In a previous paper4 preliminary results were discussed for a one-dimensional
GEM program. These results were encouraging; and in this paper we report our
experience in adapting the full two-dimensional GEM program (GEM2) for the
DAP. This program, like any other general PDE solver, is a quite substantial
piece of code; the conversion exercise gives some indication of the effort needed
to adapt an existing code for the DAP, given that no attempt is made to carry
out any major rethinking of the algorithms used. Since it is often said that
algorithms should be completely rethought for the DAP, the results are also of
interest in indicating what performance gains can be made without such a
rethink; we do not yet know what further gains might be made if we did rethink
the algorithms used.

The program GEM2 is described briefly in Reference 5. It provides facilities for
specifying an arbitrary region, differential equation and boundary conditions,
and for subdividing the region into a number m of elements. It then proceeds in
two stages. In the first stage the linear equations describing the approximate
solution are constructed in a special condensed form. With m elements and an
approximation of order n in each element there are mn2 equations in mn2
variables; the corresponding matrix may be partitioned as an m x m set of
blocks, with each block being n2 x n2. The blocks are either full or empty;
diagonal blocks are full, whereas off-diagonal blocks are empty unless they
correspond to two elements which have a side in common. Off-diagonal blocks
also have a relatively simple structure (they are of low block rank), which
implies that they can be produced relatively cheaply using fast Fourier transform
techniques and that the information they contain can be stored in coded form in
order (n2) rather than order («4) locations3. FFT techniques are used also to
compute the essential information required for the assembly of the diagonal
blocks in order (n2 log(n)) operations, although filling the n* entries requires
order «4 arithmetic operations.

The result of the matrix-assembly phase is a block sparse matrix in partly coded
form. There is considerable structure in the matrix, and it is possible to develop
rapidly convergent iterative methods for the solution of the linear equations
defined by the matrix and right hand side, which for large m,n have an operations
count of order mn4 4,6 Unpublished work suggests that even lower operation
counts may be achievable. However, the current production version of GEM2
does not make use of these techniques, but incorporates a disc-based direct
solver with an operations count of order (mn6). For large n, and especially for
problems with relatively large m, the solution phase of the program both domi
nates the time taken and limits the problem size which may be tackled.

The performance of GEM2 on a variety of problem types has already been re-
ported7,8,9. The results suggest that the techniques used do indeed provide a

ICL Technical Journal May 1984 51

Table 1 Overall times for matrix setup on several systems

m System /1=4 n= 6 /1=8 n=10 n=12 /1=14 n=16

i ICL1906S 2-4 3-2 i i 15 23
i CDC7600 1-7 61 231 270
i ICL2980 2-0 2-8 7-4 11 17 27 61
6 ICL1906S 15 20 73 103
6 CDC7600 29 55
6 ICL2980 11 16 50 74 109 166 406

m is the number of elements;/! the order of approximation in each element. Times are in s.

Table 2 Overall times for m atrix solution on several systems

m System /t=4 «=6 n= 8 n=10 n=12 n=14 n=16

i ICL1906S 0-2 0-7 2-4 6-5 15
i CDC7600 0-4 2-1 7-5 20
i ICL2980 0-6 11 3-0 7-7 18 38 76
i DAP, R*8 0-8 1-2 1-8 3-8 7-8 14-3 16-4
i DAP, R*4 0-6 0-7 1-0 1-9 3-6 6-2 7-8
6 ICL1906S 4-2 23 94 309
6 CDC7600 30 164
6 ICL2980 4-9 25 120 421 1278
6 DAP, R*8 7-6 18 42 130 308 574 1095
6 DAP, R*4 5-8 14 34 90 199 386 819

Notation as in Table 1. Times for the DAP include both 2980 (host) and DAP mill times

method which is rapidly convergent as the order of approximation n is increased,
and that GEM2 performs well on a fairly wide class of problems. We are
interested here, however, not in convergence rates but in speed: how fast does
the program run, in a serial environment and on the DAP? GEM2 is written in
Algol 68; Tables 1 and 2 give an indication of its performance on several
conventional serial machines (ICL 1906S; CDC 7600; ICL 2980) for which Algol
68 compilers are available. Results are given for two model problems using one
and six elements to describe the region and for various values of n. The upper
limit for n indicates the maximum which could conveniently (i.e. without a
great deal of extra work) be run on the relevant machine. This limit is set either
by the amount of main store available or (more usually) by the run times needed
for larger n. Both model problems require the solution of Laplace’s equation
over a square, with smooth (m=l) or discontinuous (m= 6) boundary conditions;
they are described in Reference 8 (examples 1 and 9).

The relative performances of the machines are discussed later (see Section 3).
The results show clearly the main characteristics of GEM2 on conventional
serial machines:

- The matrix setup time is roughly proportional to the number of elements
m. For small m solution times increase somewhat faster than this but are
expected to be proportional to m for large m.

— For large n the setup times increase3 roughly as n2 log(/i); the solution

52 ICL Technical Journal May 1984

times increase as n6. For m=6 and «>=12, the setup times are less than 10%
of the total time taken. In converting GEM2 for the DAP we have therefore
looked at the solution phase first.

2 Conversion for the DAP

The solution phase as programmed in the current production version of GEM2
treats the mn2xmn2 matrix involved as an mxm matrix of n2x«2 blocks, most
of which (for large m) are empty. The setup phase is the part of the program
which generates these blocks; however, in GEM2, the blocks are not produced
directly. Rather, for reasons of efficiency in both time and space, the setup
phase of GEM2 produces a coded and compressed form of the blocks; specifi
cally, it produces a set of n vectors uk , vk , wk ,y k , and of n x n matrices A k ,B k .
The vectors depend on the form of the expansion set used to define the approxi
mate solution; the matrices, on the coefficients in the differential equation3.
The suffix k labels the vectors and matrices; k runs from 1 to an upper Emit
which is only slightly problem dependent and which is in any event independent
of the parameters m, n. The relationship between these vectors and matrices and
the «2 x n2 blocks is given by eqn. 1 below.

Using this compression technique, the storage needed by the setup phase is only
of order mn2, rather than the mnA which would be needed to hold the fully
assembled blocks. As noted in the previous section, the (serial) operations count
for the setup phase is only of order «2log(«) using the FFT techniques described
in Reference 3.

The solution code in GEM2 therefore has two major components, which we
consider in turn.

2.1 Matrix expansion

The compressed form of the matrix produced in the setup phase is first
expanded to normal matrix form. This expansion first represents the differential
operator involved and then adds the boundary and interelement interface
conditions, which form a contribution to the diagonal blocks and represent the
whole of the nonzero off-diagonal blocks. For a given block, the requirement is
to form an n2 x n2 matrix L with elements of the form3

x max ymax

Lpq, rs X uk q * vk s * ^ k p r + 2] wkp*ykr*& kqs (usually) (1)
*=1 *=1

= 0 (sometimes, depending on the values of the pairs (p,q) and

ICL Technical Journal May 1984 53

Table 3 Times, in s, for suboperations in the matrix solution code

n Operation:
Time on

matrix
expansion

A: =
A-B*C

solve
block

complete
solution

4 2980 m 0-9 0-6 4-6
OCP 0-6 0-3 0-23 3-1
DAP 1-4 3-2 4-6

6 2980 4-7 9-4 4-9 244
OCP 1-4 1-0 0-7 8-6
DAP 2-1 7-2 9-3

8 2980 18-6 61 28 187
OCP 3-4 3-7 2-3 27
DAP 2-8 12-9 15-8

10 2980 38 242 111 434
OCP 8-1 9-0 5-5 65-8
DAP 3-5 60-8 64-3

12 2980 78-8 785 357 1316
OCP 15-0 18-9 15-4 134
DAP 4-2 170 174

14 2980 _ _ . .

OCP 27-9 35-6 27-0 269
DAP 4-9 300 305

16 2980 - _ . .

OCP 64-7 61-6 47-2 588
DAP 5-5 501 507

Problem: Motz problem (see Reference 7) withm=6
2980: times for operations running on the 2980 in Algol 68
DAP: mill time on the DAP (DAP Fortran) in REAL*8
OCP: residual 2980 times, after conversion to the DAP

In eqn. 1 ukq refers to the <?th element of the vector uk , and similarly for vks,
wkf and y kr. A kpr and Bkqs are the pr and qs elements of the matrices A k and
Bk ; and the sufficesp,q,r and s run from 1 to n.

The expansion in eqn. 1 takes a significant proportion of the total time (see
Table 3). The serial implementation involved a straightforward coding of eqn. 1
in which each sum of the form of eqn. 1 was performed in turn. Considering for
simplicity only the first of the two summations, the code had the structure
shown in Fig. 1 a. A possible first suggestion is to transfer the k loop to the DAP,
as indicated in Fig. 1 a. This is very straightforward, but fails to utilise the
processors very effectively because this loop is very short, with a length (x max:
see eqn. 1) which is independent of m and n. However, reordering the loops as
in Fig. lb produced two advantages:

— the serial code with reordered loops ran almost twice as fast as before
(which made us feel a little foolish, if gratified)

54 ICL Technical Journal May 1984

we could now transfer the r,s loops directly to the DAP as indicated by the
DAP1 markers in Fig. lb , giving a potential parallelism of order n2.

Fig. 1 Structure of the code for eqn. 1

Initial structure

For p,q
Check (p,q); skip if necessary

Check (r,s); skip if necessary

*-pq,rs :=

*..........**DAP START?
For k
Lpq.rs *-pq,rs + ukq*vks*^kpr

End k-loop

. . * * » * . . DAp e n d ?

End pqrs loops

Recoded form

L :=0.0
For k
............ START
For p,q
Check (p,q); skip if necessary

• **********«*«*QAp1 START

For r
temp:=Ukq*Akpr
For s

Check (r,s); skip if necessary

I '8 ILpq,r$ • upq,rs

+temp»vks
End r,s loops

»****»«»***QAp‘l end

End p,q loops

............... DAP2 END
End k loop

b

Since GEM2 currently runs with n in the range 8-16, we expected a reasonably
effective DAP code to result from this strategy. In the event, we found that the
overheads required in repeatedly calling the DAP (and converting the storage
mode of the data from host to DAP mode) inside the p,q loop, were quite high.
The final version of the code included the p,q loops in the DAP code as
indicated by the DAP2 markers in Fig. lb . This yields a parallelism of order n4,
provided we can utilise it. The serial implementation of GEM has so far used
values of n up to 12. For n up to 16, the n2 x n1 matrix involved for each
element can be fitted into a DAP supermatrix of the form M(, ,16). For fixed k,
and ignoring the conditional tests implied in eqn. 1, we are required by eqn. 1 to
produce, for the first sum, contributions of the form

^k .pq .rs ~ uk q vk s ^ k p n P’Q>r’S - 1, 2 / 1

The code written produced the contributions for given p i n , p). The columns
Ak„ and vectors uk and vk were suitably broadcast into DAP matrices by rows
ana columns, and then 3 /(,, p) could be generated with two pointwise matrix
multiplies. The second sum in eqn. 1 was treated similarly ; and the conditionals,

ICL Technical Journal May 1984 55

which involve skipping entries with certain values of p,q,r,s, were treated after
the sums over k were complete during the necessary copying of L from Fortran
Common to the array to be passed back to Algol 68.

2.2 Solution o f the block equations

The other main component of the solution phase is the solution of the mn2
x mn1 set of equations. These are stored as a set of m x m blocks of size n2
x n2; these blocks are stored on disc and buffered in as required by a block
Gauss elimination routine.

During elimination two main operations dominate: the reduction of individual
blocks to traingular form and the basic operation of a standard row elimination
algorithm:

A := A - B *C (2)

where A, B and C are n2 x n2 matrices. It is straightforward to transfer these
two operations to the DAP; the Gauss elimination algorithm, used in the serial
version to reduce the diagonal blocks, was replaced by a call to a DAP library
Gauss-Jordan routine, while the routine used to carry out the operation in eqn. 2
was replaced by a corresponding DAP routine.

Table 2 gives timings for the resulting DAP code, and Table 3 gives results for
the individual code sections. All calculations have been carried out in both
REAL*8 and REAL*4 arithmetic; the former corresponds to the standard
REAL variables in the 2980 Algol 68 compiler. We comment later on the choice
of DAP working precision. Several aspects of these results are of interest.

- On any host-attached processor system, the speed improvement is limited by
the proportion of code which remains host-resident; if h% of the host code
remains after conversion the speedup factor cannot exceed 100/h no matter
how fast the attached processor may be. In Table 3 the 2980 entries refer to
the mill times taken on the 2980 before conversion to the DAP; those labelled
OCP refer to the remnant 2980 mill time after conversion. The results show
that, for the sections relating to the operation in eqn. 2 above and solution of
individual blocks, the residual host code takes only about 6% of the original
times even for «=8, and the proportion reduces rapidly as n increases;
potentially very large speedups are possible. The actual speedup ratios
(compared with the host 2980) also increase with n.

— Speedup factors for the complete solution phase depend upon m and n as
well as on the arithmetic precision used on the DAP. The observed ratios
increase with n, as expected; for m =1 and «=16 the ratio obtained reaches
4-6:1 for REAL*8 and 9-7:1 for REAL*4 arithmetic. For m > l, the factors
might be expected to be lower than this, since the disc buffering times are
significant and cannot be avoided with the current solution algorithm. For
m= 6 and «=12, the largest value of « for which a direct comparison could be
made, the overall factor reaches 4-1:1 in REAL*8 and 6-4:1 in REAL*4arith

56 ICL Technical Journal May 1984

metic. We were unable to obtain direct measurements for larger n and this
number of elements because of the time taken by the serial version; however,
the ratio of 64:1 compares with 5:1 for n=12 and m=l, so that it would
seem that the disc buffering times are outweighed by the extra arithmetic
carried out for m -6. This extra arithmetic stems mainly from operations of
the form of eqn. 2 above, and are treated very efficiently on the DAP. The
speedup for m=6 and n=16 is estimated to be between 9:1 and 13:1, this
range depending on how the extrapolation is made.

— Table 2 relates the overall times to those measured on other systems. This
table shows that:
— For the largest value of n for which direct comparisons could be made

(n=10 with one element) the DAP REALM version of GEM2 runs
approximately 5-3 times as fast in the solution phase as the CDC7600
version; the REALM version about 10-5 times as fast. These ratios
increase with m and n. The m =6 runs on the 7600 were abandoned for
n> 6 because of the time taken.

— The large homogeneous store on the DAP and its higher speed makes it
possible to use significantly higher order elements. This is particularly
important with the GEM algorithm, since9 accuracy improves on a
‘typical’ problem by a factor of ten as n increases by two.

3 Conclusions

The interest in these results lies both in the speed of the converted GEM
program and in the ease of the conversion process.

3.1 Speed

The speed of the DAP version depends markedly on the precision of the
arithmetic used. We view this here from the engineer’s viewpoint. Most PDE
applications do not require very high-accuracy solutions, and it seems likely to
us that a ‘production’ version of a PDE program on the DAP would best be set
for normal use at REALM (40-bit reals) as giving adequate accuracy at minimum
cost. For such arithmetic our results indicate a speedup ratio of about 8-5:1
(m=1) or 7-10:1 (m=6) compared with the ICL2980. These are more or less
in line with those reported for other floating-point-dominated applications1.

Our high ratios relative to the CDC7600 show this machine in an unexpectedly
poor light; one would generally rate the 7600 as being significantly more
powerful than either the 1906S or the 2980. However, both these machines have
very efficient Algol 68 compiler systems; and our figures reflect the relative
efficiencies of the Algol 68 compilers on the machines as well as their relative
raw powers. That on the 7600 shows up worse in the setup phase, where the
code of GEM2 makes heavy use of the advanced structuring facilities of the
language, than in the solution phase, where the code is much more straight
forward. Unexpected or not, the efficiency of compilation and the overall
measured ratios are certainly relevant for the GEM2 package.

ICL Technical Journal May 1984 57

3.2 Conversion costs

Equally interesting is the scale of the effort needed to achieve these speedup
ratios. We have not attempted to redesign the algorithms used, nor to carry out
any large-scale restructuring of the code. One routine was recoded before conver
sion; two more replaced by equivalent DAP-Fortran routines (the larger of these
was taken from the DAP subroutine library); and, otherwise, routine effort was
put into placing data into Common blocks and calling the DAP via the mixed-
language facilities on the 2980. This experience is in apparent contradiction to
the common belief that it is necessary to rethink algorithms from scratch before
the DAP can be utilised effectively. There is reason for such a statement; but it
applies particularly to the basic operations needed. We have simply made use of
a few of the many basic operations for which the rethink has been carried out
already, and routines provided in the DAP library. The resulting conversion was
in our opinion very cost-effective.

Acknowledgments

The research reported here was funded in part by the US Army European
Research Office via Grant No DAJA45-82-C-0010; and by the UK SERC via
Grant No GR/A48990 to the University of Liverpool.

References

1 HOWLETT, J., PARKINSON, D. and SYLWESTROWICZ, J.: ‘DAP in action’, ICL
Tech. J. , 1983, 3, (3), 330-344.

2 DELVES, L.M. and HALL, C.A.: ‘An implicit matching principle for global element
calculations’, JIMA, 1979, 23, 223-234.

3 DELVES, L.M. and PHILLIPS, C.: A fast implementation of the global element
method’, JIMA, 1980, 25, 177-197.

4 HENDRY, J.A. and DELVES, L.M.: ‘GEM calculations on the ICL DAP’, Proceedings
of a Workshop on Vector and Array Processors, Bristol, 1982, (in press).

5 PHILLIPS, C., DELVES, L.M. and O’NEILL, T.: ‘GEM2: a program for the solution of
elliptic PDEs’, Proceedings of a Conference on Tools, Methods and Languages for
Scientific and Engineering Computation, Paris, May 1983, North-Holland, (in press).

6 HENDRY, J.A., DELVES, L.M. and MOHAMED, J.: ‘Iterative solution of the global
element equations’, Comp. Meth. Appl. Mech. Eng., 1982, 35, 271-283.

7 HENDRY, J.A. and DELVES, L.M.: ‘The global element method applied to a singular
harmonic boundary value problem’,/. Comp. Physics, 1979, 33, 33-44.

8 DELVES, L.M., PHILLIPS, C. and O’NEILL, T.: ‘A manual of GEM2 examples’,
Research Report SCM/83/1/1, University of Liverpool, 1983.

9 DELVES, L.M., McKERRELL, A., PETERS, S.A. and PHILLIPS, C.: ‘Performance of
GEM2 on the ELLPACK problem family’, (in preparation).

58 ICL Technical Journal May 1984

Quality model of system design
and integration

T.L. Faulkner* and M. Small
ICL Mainframe Systems Development Division. West Gorton, Manchester

•now at the ICL Atlas Division, West Gorton

Abstract

In this paper a model is presented relating the quality of a design at each
stage of the design and integration processes to the initial parameters of the
design and the methods of test used. This model is used to demonstrate the
improvements in final design quality which can be expected if integration
testing occurs at each level of design decomposition.

1 Introduction

This paper arises from the need to develop computer hardware to a desired level
of design quality within an acceptable timescale and cost. This leads to a need to
understand the relationships between the various development activities and
design quality. The problem of design quality and development cost is becoming
more important with the increasing application of VLSI, which permits much
greater design complexity for a given product value, but which is costly to
develop by cut and try.

The literature contains various models, which have been targetted on software,
relating bugs expected to various parameters of the design1' 2' 3 . Data concerning
the observed rates for different kinds of faults found during different stages of
development is also available5’ 6.

This paper attempts to produce a structure for understanding this latter infor
mation, so as to consider how it may be applied to changing the development
methodologies to yield fewer faults. To this end the design and development is
assumed to use a top-down structured approach. This can be regarded as a two-
stage activity: system design and system integration.
System design is basically a divergent top-down process whereby the system is
structured into a hierarchy of partitions with the specified interfaces between

This paper was first presented at the IEEE 13th Annual Symposium on Fault-tolerant
Computing, 1983. It is reproduced here with acknowledgment to the IEEE.

ICL Technical Journal May 1984 59

partitions. Partitions at the lowest level are then designed independently to meet
the requirements of these interfaces. System integration is the convergent
bottom-up process of testing a simulated or a real implementation of each
partition both independently and then as assemblies of partitions, until the
complete system is integrated and tested in the way it will be required to work
by the user.

A mathematical model is developed for the process of system integration. This
is a Bayesian model which relates the quality of the design at each stage (in
terms of the confidence in the absence of design faults or the remaining number
of undetected design faults) to the parameters of the initial design and the
methods of test. The model is then extended to the design process and used to
demonstrate that dramatic improvements in final quality can be expected if
system integration testing occurs at each level of design decomposition.

2 Design and development processes

A system design may be regarded as a hierarchy represented by the structure of
system specifications illustrated in Fig. 1.

The process of system design is considered to be the partitioning of the design
at any level into specifications of partitions and interfaces between partitions.
At the lowest level the partitions are the basic building blocks of the design

(basic building blocks)

Fig. 1 Hierarchical structure of system design

60 ICL Technical Journal May 1984

(which may be gates, cells, MSI ICs, order code instructions etc.) which are
assumed to be perfectly specified and without internal design faults. At each
level in the system design process design faults in the specifications of partitions
and interfaces may occur. At the lowest level only design faults in the building
block interconnections are recognised. To correct these faults interconnections
and building blocks may be changed or added to, but the set of available
building blocks remains unchanged.

The process of system integration is considered to be the progressive assembly of
partitions and interfaces, starting from the lowest level until the full system is
assembled. This process is regarded as analogous to that of production assembly.
During production assembly it is normally accepted that components and
assemblies may exhibit mechanical faults which, if left uncorrected, would
increase system unreliability. These are monitored and controlled by processes
of test and repair at various stages during the production assembly process.

Similar processes are employed during the integration of the design of a new
system. Test and design modification processes are introduced to discover and
correct faults in the specifications of the design at any level. These design faults
are removed by correction of the specification at the highest level at which the
fault applies and modification of the lower level designs to agree to this new
issue of the higher level specifications. The test is repeated with the changed
design and if passed successfully, the integration process is continued. This is
illustrated in Fig. 2.

Tests may be organised to validate each stage of the integration process, or may
be used in series to give repeated tests at each stage.

The design integration process need not start with the realisation of the final
implementation: integration using simulations and hardware or software models

Fig. 2 System integration

ICL Technical Journal May 1984 61

of the design or part of it, at any level, may be used with appropriate tests to
identify design faults before the final product is built.

3 Concept of quality

Quality may be thought of as a measure of the absence of faults in a product.
Any complex object, such as a computer system, can be faulty in a very large
number of ways; so many ways, in fact, that some concept is necessary to reduce
the problem to manageable proportions. The concept proposed is that all faults
which have some similar property be grouped together and the group as a whole
rather than the individual faults be considered. These groups of faults will be
called fault classes.

Faults may be grouped into virtually any classification which is considered to be
useful, the only important rules are that each fault class must be essentially
independent of all other classes and the list of classes should be complete. This
latter requirement is far more difficult to achieve and, in practice, any statement
of quality can only be made with respect to some defined list of fault classes. An
example of a suitable classification for hardware design faults is given in
Reference 5. This data also indicates the various levels of faults which can be
expected. To achieve high quality, either the basic processes must be changed to
reduce the fault rates or tests must be applied to detect and remove the faults
introduced.

4 Representation of quality

Quality may be represented numerically as the probability that a product is free
from a certain class of fault. This probability can be thought of as the proportion
of items which would be fault free in an infinitely large sample (batch); the
observed proportion of fault-free items in any finite batch will show the normal
variations due to sampling effects.

For fault class j let q;- be the probability of freedom from faults of this class
prior to the process or test, and q ' j the probability of freedom from faults of this
class among items which have undergone the process or passed the test.

5 Quality and numbers of faults

As well as knowing about the quality of a product, it is also useful to have infor
mation concerning the fault rates; This is because the actual fault rates may be
observed during the development processes and may be used for control
purposes, and also the rework capacity required will be determined by the
number of faults found.

Quality and fault rates are related by a fault distribution. This gives the prob
abilities that various numbers of faults will occur per class or per product and
includes zero faults which is, of course, the ideal quality. The fault distribution
may be a set of observed values or be represented by a mathematical model. Two

62 ICL Technical Journal May 1984

such models are the single-fault model, in which it is assumed that no more than
one fault may occur, and the Poisson model, in which it is assumed that there
are an infinitely large number of possible faults, each of which is equiprobable.

The Poisson model gives the average number of faults as a function of the
quality:

/, = 111(1/4,.) (1)

where f j is the average number of faults of class /.

Neither of the above models is completely satisfactory, since faults are not
usually equiprobable and, although there may be more than one fault, there is a
finite limit to the number of faults. However, considering faults to be Poisson
distributed within each fault class gives an acceptable compromise and this is
what will be assumed.

The average number of faults in total (F) over n fault classes is:

F - i f i (2)
/=1

and the probability of no faults:

n

<2= n qt (3)
/=1

The above functions, relating quality and number of faults, illustrate how quite
small numbers of design faults imply very low design quality (as defined above).

6 Testing and its effect on quality

The quality of items passing a test can be expected to be greater than the quality
of those submitted for test providing that the test detects the relevant kinds of
faults and is nondestructive. The actual quality of items passing a test depends,
for each fault class, upon the quality of items input and the test detection rate
for faults of that kind. There are various models which have been described7, 8
relating post-test quality to pretest quality and test detection. The difference
between these models concerns the assumption made regarding the distribution
of numbers of faults. Both of the models cited above assume that the test
detection rate is the same for all faults and that it is only necessary to detect one
of many faults to identify the item as bad. This leads to an increase in the
apparent effectiveness of the test when input quality is low and the probability
of more than one fault is high.

ICL Technical Journal May 1984 63

Assuming faults are Poisson distributed, the quality post test of a given fault
class can be derived from Reference 8 to be:

In q'j = (l-c/^ln qf (4)

where dj is the detection rate for fault class /. Also the number of faults post test
f ' j is given by

7 Sequence of tests

Subjecting some part of a design to a series of tests can improve quality more
than any of the tests taken individually can, providing the various tests are
independent. Whether or not tests are independent can be difficult to judge;
however, the criterion of independence is very simple:

A test may be considered to be independent of another if that test detects the
same proportion of faults which are undetected by the other test, as it would
detect in the total population of faults. If tests are not independent, then the
overall detection of a sequence is, in the worst case, no greater than the highest
individual test detection in the sequence.

Fig. 3 Sequences of test

64 ICL Technical Journal May 1984

Providing tests are independent, the detection of a sequence may be modelled
as follows.

Let the detection of the kth test in the sequence be djk . If there are Nt tests
the number of faults post sequence is:

Nt
f j =fj n (i-d jk) (5)

k=1
i.e. the effective total detection offered by the sequence is:

Dj = l - n (i-dj k)
k =1

(6)

If each test in the sequence has the same detection characteristic (unlikely), the
required value for this to obtain a given quality improvement can be seen to be:

The way in which quality is improved by a sequence of tests, assuming the
detection per stage of test is a constant, is illustrated in Fig. 3.

8 Design decomposition

Considering now the design phase, the quality of the overall system expressed in
terms of the quality of the specifications at the level of partitioning reached can
be seen to decrease if the design is taken to be an assembly of the lower level
specifications. The qualities reached at the lowest level of design dominate
overall quality at the start of the system integration phase.

What is not clear is the quality at each stage as the decomposition process
proceeds. Each of these quality values will depend on the skill of staff in
interpreting, expanding and contributing to specification and requirement
statements defined at a higher level. Each of these specifications will state the
lower level partitions and the functions required from these partitions, and will
also need to specify the constraints which implementing the lower levels has
imposed on the design.

A simplifying assumption may be made that the quality value of the lowest
level of design remains approximately constant during the system design process.
This shows how the system quality deteriorates during the design decomposi
tion. It is, however, an optimistic assumption, as it implies that the number of
faults is a linear function of size. This is to some extent supported by measure
ments on software11 provided certain limits are accepted (e.g. small modules).

ICL Technical Journal May 1984 65

9 Effects of decomposition on quality

Starting from the lowest level of decomposition, each higher partition is formed
by collecting together lower level partitions. If it is assumed that this process
detects no faults and introduces none which did not already exist in the lower
partitions, the effect of this on quality can be modelled at each level as follows.

First, where several partitions have the same fault class, the quality of the
assembly in respect of that class is the product of the item qualities. Secondly,
the list of fault classes which must be considered for the assembly must be
arranged to include all those applying to the individual items.

Let q'j be the quality of an assembly of n items in respect of fault class/ after
assembly but before considering other effects. Let qi;- be the quality of the /‘th
item possessing that fault class, then:

n n
q) = n qv and f) = £ f tj (8)

i=l /=1

Since the total decomposition of a system may be large, this can result in a
considerable compounding effect on the total number of faults. If there are r
levels of breakdown and the expansion at the kth level is nk the total expansion
N is given by:

r
N= n nk (9)

*=1

It may be noted that, for a constant expansion per level of n, N = i f , and if the
basic elements have equal qj and f j the overall qualities <2/ and Fj are:

Qj = qjN and Fj =Nfj (10)

The way in which overall design quality deteriorates (numbers of faults increase)
as the system design is expanded is illustrated in Fig. 4. Here it is assumed that
the expansion ratio at each level is a constant.

Consider for example, a system with 100 integrated circuits per PCB, 12 PCBs
per subunit, three subunits per unit and three units per system. If it is expected
that the original logic design will have one fault per ten integrated circuits the
total decomposition quantity will be 3 x 3 x 1 2 x 1 00= 10800. Hence the total
number of faults which may be expected is 0-1 x 10800 = 1080, corresponding
to an overall quality of 10-4 3 5.

10 System integration

A common approach to system integration is to assemble, test and correct at

66 ICL Technical Journal May 1984

Fig. 4 Design decomposition

each level of recomposition of the design. This modifies the model of collection
described above, improving the quality obtained due to the detection of faults
at each stage. Assuming independence of tests, the model of collection may be
combined with the model of test sequences to give the following model of the
process.

At each stage in integration the quality for each fault class is given by:

N
Q'j ~ where Qj= U qif (11)

i = l

N
F) = Fj (l~djk) where F;.= £ f if (12)

z=l

If there are r + 1 levels in the design, implying r independent test stages in system
integration, the total detection of Dj of the integration sequence is:

r
D r I " n (i - < * / *) (1 3)

k = 1

ICL Technical Journal May 1984 67

Hence the final quality after integration is:

Q ^ Q .i l - D j) and F 'i = p. (\-D j) (14)

If it is assumed that the quality of each element of the final level of decomposi
tion of the design (<jy, fj), the expansion ratio («) at each level and the detection
(dj) at each stage are constant, the final number of faults is given by

F ’j = nr f j {\-d j y

or In (F'j) = r {In (n) + In (1 -d j)} + In (fj) (15)

If the final number of faults F j is required to be the same as that in the first
level of design (fj) then:

In (n) = - In (l-d))
or (16)

dj = (« 'l) /«

Fig. 5 illustrates the average detection per test stage required with this system
quality equal to that of the first level of design. Assuming the expansion ratio
per level is constant (n) and the detection required per stage is constant (d),
combining Figs. 3 and 4 shows that d is a simple function of n.

Fig. 5 System integration only after total decomposition

68 I CL Technical Journal May 1984

Consider the previous example of a system with a 100 integrated circuits,
12 PCBs per subunit, three subunits per unit and three units per system. If the
required design quality is 0-9 the required overall fault detection and detection
per stage required may be calculated.

required final fault rate

F'j = In (1 /0-9) = 0-105

given fault rate f j = 0-1 (17)

total expansion N= 10 800 and faults = 0-1 x 10 800 = 1080

Hence the total detection required of the integration sequence

Dj = 1 - (0-105/1080) = 0-9999 (18)

and the detection per stage of integration (assuming equal detection per stage)

/ 0-105 '
d,,= 1 - ------- I = 0-9
1 \ 1080/

(19)

11 System integration at each level of decomposition

If design decomposition proceeds without testing, then all the faults introduced
by the process remain to be detected at the recomposition or system integration
stage. This is clearly expensive and inefficient, and so various techniques have
been developed, which include modelling, simulation and inspection, to allow
the design to be checked at each stage of its decomposition. This can be
expected to result in an increase in the final design quality, assuming the
detection of the extra tests is similar to the detection obtained from the others
and that all the tests can be considered independent.

In the extreme case, assume that at each level of decomposition of the design a
full system integration is performed (i.e. each level is tested and corrected). This
leads to the total number of tests applied being an arithmetic progression. So for
r+1 levels of decomposition, the number of tests applied (Nt) is:

r(r+ 1) r = _ :__ i (20)

Hence if each of these tests is independent, the total fault detection obtained fox
this process will be:

Nt
d = l - n (1 -d jk) (21)

k =1

ICL Technical Journal May 1984

Fig. 6 illustrates the average detection per test stage required to achieve a final
system quality equal to that of the first level design with this system integration
strategy. This detection (d) is a function of the expansion ratio per level (n)
and the number of levels (r+1), assuming that d and n are constant per stage of
test and expansion, respectively.

Considering the previously given example and assuming equal detection at each
stage, the required stage detection can be calculated.

4(4+1)
number of test stages Nt = —----- = 10 (22)

required detection per stage

= o -603 <23)
This is considerably less detection per stage than if tests were applied only
during recomposition.

Fig. 6 System integration at each level of decomposition
D: design I: integrate

12 Utility of the model

Taking the mathematical model on its own and accepting the simplifications,
especially the assumption of constant detection rate for test stages, it provides a

70 ICL Technical Journal May 1984

very convincing justification for the use of a multilevel design and integration
development route. The model would also appear to be directly relevant to the
software development process and seems to explain the improvements in
software quality experienced by the use of formal inspection techniques.

There should be little difficulty in constructing a modelling system using the
ideas described here, which would permit the evaluation of the impact of several
different testing and development strategies on particular fault classes, providing
a database of fault rates and test detections could be constructed. This data could
be based, at least in part, on analysis of previous development experiences
supplemented by judgments of the impact of change. There is some evidence9,10
to indicate that this kind of analysis and modelling is effective for manufacturing
and field testing. In any case, the process of attempting to model is usually
useful in exposing problem areas.

A significant worry in the application of results is the creation of sufficiently
independent test methods. It is usually fairly difficult to obtain a large set of
systematically designed yet independent test data for a given design. On the
other hand, the process of attempting to test, for example assembling modules,
is often a test method in itself, since it leads to the discovery of certain kinds of
problems. Test independence should not be an insurmountable problem and at
least the use of this kind of modelling system provides a set of decomposed
tangible targets for the various test stage.

Once a quality plan for development has been established using this kind of
technique, performance monitoring is possible, since estimates of performance
at various stages have been derived. This is likely to encourage the management
to control the production process so that these targets are met. Different tech
niques may be required to measure the different parameters. For example, actual
numbers of faults found may be an adequate indicator of quality, but seeding of
faults may be necessary to measure test detection.

One limitation of the model described here is that it does not fully represent the
way in which intermodule errors become more likely, due to complexity, as the
total size of the design increases. This is an area for further investigation.

Another area for further development of the model is the incorporation of test
cost. Increasing the coverage of tests usually results in an exponentially
increasing test cost. It would be interesting to investigate the relative merits of
increasing the number of test stages against increasing the test cover of few
stages from a cost point of view.

Acknowledgment

Acknowledgments are due to Dr. J. Howlett, J.B. Bell, Dr. B.A. Kitchenham and
Conway Berners-Lee for commenting on a draft of this paper and for their
helpful suggestions.

ICL Technical Journal May 1984 71

References

1 GILB, T.: ‘Software metrics', Winthrop, Cambridge MA, 1977.
2 HALSTEAD, M.H.: ‘Elements o f software science’, Elsevier North-Holland, New York,

1977.
3 BOULTON, P.I.P. and KITTLER, M.A.R.: ‘Estimating program reliability’, The

Computer J., 22, (4), 328-331.
4 McCABE, T.J.: ‘A complexity measure’, IEEE Trans., 1976, SE-2, (4), 308-320.
5 FAULKNER, T.L., BARTLETT, C.W. and SMALL, M.: ‘Hardware design faults - a

classification and some measurements’, 12th IEEE Fault Tolerance Computing Sympo
sium, 1982.

6 MONACHINO, M.: ‘Design verification system for large scale LSI designs’, IBM J. Res.
Develop., 1982, 26, (1), 89-99.

7 WADSACK, R.L.: ‘Fault coverage in digital integrated circuits’, Bell Systems Tech. J.,
1978,57,(5), 1475-1488.

8 WILLIAMS, T.W. and PARKER, K.P.: ‘Testing logic networks and designing for testa
bility’, Computer, Oct. 1979, 9-22.

9 SMALL, M. and BARTLETT, C.W.: ‘A Bayesian approach to test modelling’, ICL
Tech. J, 1980, 2, (2), 207-217.

10 SMALL, M. and MURRAY, D.: ‘Evaluating manufacturing test strategies’, ICL Tech. J.,
1982,3,(1), 97-116.

11 KITCHENHAM, B.A.: ‘Measures of program complexity’, ICL Tech. J., 1981, 2, (3),
298-316.

72 ICL Technical Journal May 1984

Software cost models
B.A. Kitchenham

ICL Mainframe Systems Development Division, Kidsgrove, Staffs.
N.R. Taylor

British Telecom Computer Support Team, Ipswich, Suffolk

Abstract

The paper reports the results of a joint research project by ICL and British
Telecom aimed at establishing methods of evaluating software cost models.
The document considers some of the problems involved in software cost
estimation and some of the features that would be required of a reasonable
cost model.

Some methods of evaluating cost models are discussed and the remainder
of the document considers applying these principles to the evaluation of
two popular cost models. The models evaluated were Putnam's Rayleigh
curve model and Boehm's COCOMO model.

The models are evaluated theoretically by considering their underlying
assumptions and their internal stability, and empirically by comparing their
predictions with historical development data from ICL and BT.

The final conclusion is that neither model can be recommended for use in
the ICL/BT environments. It is suggested that the best method of improving
cost estimation is to set up a historical database of cost information which
can be used initially to assist project managers' judgement and which can
provide the data necessary to develop cost models tailored to specific
environments.

1 Introduction

Software cost models have arisen because of the need to produce large software
systems. Small systems produced by small autonomous teams of analysts/
programmers can be expected to be produced more or less to a schedule
determined by the individual teams, but experience has shown that large projects
usually experience cost-overruns and delays to such an extent that many systems
have never been completed at all.1’*

Software cost models attempt to provide a coherent model of software develop
ment relating the cost of producing a particular software product to the resources
available during the various stages of the production process.

Boehm3 of Thompson Ramo Woolridge (TRW) considers the importance of
software cost estimation is that it brings the concepts of economic analysis to
the particular world of software engineering, and that it provides an essential
part of the framework for good software management. Wolverton,4 however,

ICL Technical Journal May 1984 73

admits that efficient costing methods have been sought by TRW because their
customers began to expect the problems of cost and schedule overruns to be
born by the developer. Thus, whether we desire better procedures for their own
sake or whether harsh necessity forces them on us, it is clear that software cost
estimating is an important aspect of large system development.

This paper describes the research undertaken jointly by British Telecom and ICL
to investigate two particular software cost estimating models. One model,
developed by Lawrence Putnam5, is Quantitative Software Management (QSM),
which is based on describing the relationship between software life-cycle time-
scales and the manpower available to produce software in terms of a Rayleigh
curve. The other model was developed by Barry Boehm3 and is based on an
algorithmic relationship between product size and production effort refined by
the application of a number of cost drivers.

This paper first considers methods of cost estimating in general and then indicates
how models may be evaluated.

The Boehm and Putnam models are described in more detail. Both models are
then evaluated theoretically and empirically using historical data collected
within ICL and British Telecom.

2 Methods of cost estimation

A number of different suggestions have been made for classifying cost estimation
techniques.3'6 Ignoring guesswork, Parkinson’s Law and price to win (since such
techniques are methods of costing but not methods of cost estimation), the main
estimating techniques are considered to be:

(i) Cost models: these provide one or more formulas which produce a
software cost estimate as a function of one or more variables.

(ii) Analogy: this method involves reasoning by analogy with one or more
completed projects. The similarities and differences between the new
project and completed projects are used to estimate the cost of the new
project.

(iii) Expert judgement: this method involves consulting one or more experts.
When a group is involved, techniques such as the Delphi7 method can
be used to obtain an overall consensus.

(iv) Top down: an overall cost estimate for the project is derived from global
properties of the software product. The total cost is then split up
among the various components.

(v) Bottom up: a software project is split up into its individual components.
Each component is separately costed, preferably by the individuals
responsible for implementing the component. The individual estimates
are then summed to give an overall cost.

Although this is one way of separating the various methods of estimating it is

74 ICL Technical Journal May 1984

important to realise that all the methods share certain similarities. The major
similarity is that they all require some historical knowledge of other software
projects. This is true not only in the obvious case of costing by analogy, but also
in the case of even the most theoretical cost models, which must be validated
against real data and calibrated for particular environments.

No particular cost estimation technique can obviate the need for systematic and
accessible information regarding the cost and nature of completed software
projects, and all techniques would be substantially improved by such information.
Thus, a fundamental requirement for all cost estimation techniques is a historical
database recording software cost and project information.

Another important factor is that no one method is consistently better than the
others from all aspects, a summary of the relative strengths and weaknesses of
the methods based on Boehm3 is given in Table 1. Boehm points out that the
particular strengths and weaknesses are often complementary so that the best
method of estimation is a combination of techniques. Thus, a top down estimate
using the judgement of several experts based on analogy can be compared with a
bottom up estimation using a cost model whose inputs are provided by the
future implementors of the systems, in a continuing iterative process.

3 Validation of models

3.1

The first step in validating a model must be to determine the validity of the
functional form of the model and its associated parameters. This can be done in
two ways:

(a) If the model is derived from underlying assumptions about the nature
of software development, it may be possible to evaluate the reasonable
ness of the assumptions.

(b) If not, the form of the model and the values of its parameters may be
investigated empirically using historical data. The degree to which the
model may be validated will therefore depend on the number of
parameters and the size of the database.

3.2

The next step is to check the fidelity of the model. This involves two consider
ations:

(a) What is the accuracy of the model, given that the input parameters are
completely accurate (the model’s theoretical fidelity)?

(b) What is the accuracy of the model, given input parameters which are
themselves estimates (the model’s actual fidelity)?

ICL Technical Journal May 1984 75

To check the theoretical fidelity of a model whose input parameter is a number
of source statements, the actual number of source statements is used as the input
parameter and estimates produced are checked against the actual values.

Table 1 Strength and weakness o f software cost estim ation m ethods

Method Strengths Weaknesses

Cost models objective, repeatable
permit sensitivity analysis

objectively calibrated to
experience

inputs are often subjective
exceptional circumstances not
considered
calibrated to past not future

Expert judgement can assess representativeness of
past experience
can estimate the effect of new
environmental factors
and production techniques
can cope with exceptional
circumstances

no better than the quality of
the experts
subject to biases

Analogy based on representative experience past experience may happen not
to be representative

Top down system level focus less detailed
less stable4

Bottom up detailed basis
more stable due to cancelling-
out effect of aggregation
fosters individual commitment

may overlook system-level costs
requires more effort

To check the actual fidelity of such a model, the original estimated number of
source statements is used as the input parameter.

3.3

The stability of a model may be evaluated by manipulation of the model itself,
by simulation or by running various test cases through the model. Manipulating
the functional form of the model allows any structural weaknesses in the model
to be found. Simulation allows an assessment of the effect of the inaccuracy in
estimating input parameters on the model’s subsequent cost estimates. Running
particular test cases permits a more detailed understanding of the results of using
the model.

3.4

There still remains the problem of interpreting the results of a validation exercise.
Any theoretical model of software cost assumes that the software development

76 ICL Technical Journal May 1984

process represented by the model is the ideal method of developing software.
Thus, failure to predict the actual costs of past developments produced without
using the model under consideration could be interpreted to imply that the
method of past software development was at fault rather than the model.

Similarly, software developments which were costed and managed using a
particular cost model may demonstrate a good agreement between estimates
and actuals because the development was constrained to follow the model.

4 The COCOMO models

Boehm3 has developed a hierarchical series of three models under the generic
term COCOMO (Constructive COst MOdel) based on his experience of TRW
models and expert opinion. They are called basic, intermediate and detailed
COCOMO.

Basic COCOMO is intended to provide quick, early, rough order of magnitude
estimates suitable for first cut costing exercises.

Intermediate COCOMO includes additional factors relating to the particular
project and its personnel and environment and allows costing to take place at a
component level. This additional information is intended to increase the accuracy
of the estimate. Intermediate COCOMO is suitable for use once some details of
the internal structure of the project have been identified.

Detailed COCOMO, as its name implies, is the most finely tuned version of the
model. It attempts to address some of the problems and over-simplifications of
the intermediate model by allowing the effects of cost drivers to vary from phase
to phase and permitting some cost drivers to influence the estimate at a module
level, some at a component level and some at a system level.

4.1 Description o f the COCOMO models

4.1.1 Basic equations: All the COCOMO models assume that two basic cost
relationships hold, one between the size of the software being developed and the
total development effort, the other between schedule (elapsed time) and
development effort. The relationships are of the form:

where MM is development effort in man months, KDSI is thousands of delivered
source statements and a and b are parameters dependent on the version of the
model being used (basic or intermediate) and the mode of development, see

MM = a (KDSr)b (1)

Table 2.

TDEV = c {MM f (2)

ICL Technical Journal May 1984 77

where TDEV is the development schedule in months and c and d are parameters
dependent on the mode of development, see Table 3.

Table 2 M ultiplier and exponent to m s fo r the COCOMO effort/size equations

Model

Basic Intermediate

Multiplier Exponent Multiplier Exponent
Mode a b a b

Organic 2-4 105 3-2 1-05
Semidetached 3-0 112 3-0 112
Embedded 3-6 1-20 2-8 1-20

Table 3 M ultiplier and exponent term s fo r the COCOMO schedule/effort equations

Multiplier Exponent

Mode c d

Organic 2-5 0-38
Semidetached 2-5 0-35
Embedded 2-5 0-32

4.1.2 Mode o f development: Boehm distinguishes three modes which identify
the type of development environment used by software production groups.

(i) Organic mode, which refers to a situation where relatively small software
teams develop software in a highly familiar inhouse environment.

(ii) Embedded mode, which refers to the environment established to develop
products which operate in a strongly inter-related complex of hardware,
software, regulations and operational procedures.

(iii) Semidetached mode, which is intermediate between embedded and
organic.

4.1.3 Cost drivers: An important part of the intermediate and detailed models
is the concept of cost drivers, additional factors which influence the effort
required to produce a software product. Boehm identifies 15 cost drivers grouped
into four categories.

Product attributes
- required software reliability
- database size
- product complexity

Computer attributes
- execution time constraint

78 ICL Technical Journal May 1984

- main storage constraint
- virtual machine volatility
- computer turnaround time

Personnel attributes
- analyst capability
- applications experience
- programmer capability
- virtual machine experience
- programming language experience

Project attributes
- modern programming practices
- use of software tools
- required development schedule

Each is ranked on a scale indicating its importance to a particular product. The
ranking determines a multiplying factor which estimates the effect of the
attribute on the software development effort. The multipliers are applied to the
estimate of effort obtained from the COCOMO effort equation (eqn. 1) to
produce a refined estimate of effort.

The three COCOMO models treat the cost drivers differently. In the basic model
they are ignored completely, in the intermediate model they are applied either
to the whole product or to components of the product. Detailed COCOMO,
however, considers some cost drivers at a system level, some at a component
level and some at a module level, and further applies different multiplication
factors for the cost drivers for each phase of the development process. Thus, for
intermediate COCOMO, the multiplying factor for applications experience if it is
rated very high is 0-82; for detailed COCOMO it is 0-75 for the product design
phase, 0-80 for detailed design and 0-85 for the code and unit testing and inte
gration and test phases.

4.1.4 Phase and activity distribution: In addition to equations for effort and
schedule, Boehm provides tabular breakdowns of the effort and schedule distri
bution for the main phases of software development. This relates the proportion
of effort and schedule to phase on a basis of mode of development and size of
development.

In addition, Boehm considers the main activities of the software development
process and the proportion of time spent on these activities in each phase and
produces tables that give details of the percentage of effort involved for each
activity, within each phase of development based on the three development
modes and the size of the software development.

4.1.5 Other features o f the models: The models do not explicitly cost software
maintenance but Boehm provides a method of estimating the yearly costs.

ICL Technical Journal May 1984 79

In addition, the basic equations assume that the code is to be produced from
new, but Boehm provides equations to cater for enhancement or adaptation of
existing code.

4.2 Basic assumptions used in the model

It is assumed that:

(i) Eqns. 1 and 2 are valid and that the parameters take the values shown
in Tables 2 and 3.

(ii) The different modes of development exist and can be identified.
(iii) The 15 cost drivers selected by Boehm are complete and sufficient and

their assigned multiplicative values are valid.
(iv) The proportion of total effort can be split accurately between the

various phases and activities of the development process.

5 Putnam's model

Putnam’s model is based on Norden’s investigations into life-cycle patterns for
software projects.11 The development is considered to be a set of unsolved
problems (the problem space) and work progresses until the set is exhausted.
Solving problems is assumed to be a sequential process in time such that the
occurrence of solutions may be modelled by use of the Poisson model, with
associated exponential interevent intervals.

Norden suggested that the manpower curves associated with an engineering
development programme could be described using a Rayleigh curve of the form:

y = 2 Kate'0(2

where y is the instantaneous staffing level, K is the total life-cycle effort and a is
a shape parameter (this is Putnam’s notation).

Putnam used the basic Rayleigh curve in conjunction with a number of
empirically derived assumptions to obtain the equation:

lu 4/-+
*S = CK K * ' d (3)

where S$ is the number of source statements in the final product, td is the time
at which y (the manpower curve) reaches a maximum and is identified with the
development time and CK is the ‘technology factor’, a constant (for a particular
development) subsuming a number of terms measuring:

(i) the state of technology being applied
(ii) the environment in which the development is undertaken

(iii) the development equipment available and the time needed for
debugging and testing

80 ICL Technical Journal May 1984

(iv) the extent to which modem programming practices are utilised.

Hence Putnam’s model postulates a relationship between product size and the
development time and total effort for a particular project. The model can be
used to show the effects and limitations of ‘tradeoffs’ between development
time and effort (synonymous with cost).

Putnam’s model then describes the software lifecycle of the project as a Rayleigh
curve, composed of a number of subcycles corresponding to design and code,
test, maintenance etc., activities of the project.

Fig. 1 illustrates the Rayleigh curves for y(t), the total manpower loading — the
project curve — and for ^ i(r) , the loading for the design and coding cycle. The
total effort is the area under the project curve and this, from the form chosen
for the function y(t), is K:J y (t) d t = K

o

We define the development effort E as the total effort expended up to the time
td defined above:

f td •E= J y(*)d t

o

and the design and code effort as the effort expended in this cycle up to the
same time td :

[*d .
K i =J y\ (t) dt

0

Putnam makes the assumption — based on practical experience - that td is the
time at which 95 per cent of the design and coding work has been completed, i.e.:

f y \(t) d t = 0-95 f y i(t)d t
o o

and that this is the stage at which the system becomes operational. He assumes
also that the design and coding curve - already assumed to have the Rayleigh
form — has the same initial slope as the total project curve, i.e.:

dy i (t)/dt = dy(t)jdt at t = 0

It follows from these assumptions and from the mathematics of the Rayleigh
form that if t0 is the time at which the design and code effort is maximum (the

ICL Technical Journal May 1984 81

time corresponding to td for the total project effort) then

{d

and the design and cost effort is

Ki K/6

Given that S can be estimated, can be assigned a value, eqn. 3 (referred to
as the ‘software equation’) contains two unknowns (K and td , the parameters
that the model is used to estimate). To derive the software equation from the
basic Rayleigh curve, Putnam identified a number of empirical relationships.
First he identified the difficulty, D, as:

and proposed that the larger the value of D, the harder the system. The difficulty
gradient v D (often referred to as C) is defined:

By plotting K, td and D using existing data, to obtain a difficulty surface,
Putnam suggested that the quantity v D takes on only discrete values such that,
for example:

(i) If the system is entirely new and has many interfaces and interactions
with other systems, C « 8 .

(ii) If the system is a rebuild or composite built up from already existing
systems, and where much of the logic and code already exist, C 5® 27.

Putnam defines productivity PR to be:

As can be seen from Fig. 1, the total effort to produce the code is a burdened
number; it includes overhead (and also test and validation) effort, and PR must
be adjusted to refer only to the design and code effort.

The adjustment factor is

K

K

PR =
total end product code

total effort to product code

y dt
o

= 2-49

o

82 ICL Technical Journal May 1984

Putnam shows that empirical results suggest that productivity could be related to
the difficulty by an equation of the form:

- 2/ ,
PR = CnD 3

where C„ is a factor related to CK ■ From this relationship the software equation
3 is derived.

Fig. 1 A comparison of the project curve and design and coding curve

5 .1 Summary o f assuumptions used in the model

It is assumed that:

(i) Norden’s derivation of the manpower curve is valid, the derivation
being dependent on the following assumptions:

(a) the development can be thought of as a set of unsolved problems
(b) modelling of solution occurences can be represented by the Poisson

model
(c) manpower at any given time is proportional to the number of

problems available for solution at that time
(id) there is a linear learning curve associated with the problem solving

activity.

(ii) At r=0, y= 0. This means that it is assumed that the effect of the initial
specification and requirements analysis in the development curve does
not influence the subsequent software development manpower curve.
This could be considered to contradict Norden’s assumptions.

(iii) The term K jt\ is a measure of the difficulty of a project.
(iv) If a difficulty surface is plotted, using the difficulty (K /t%), total effort

ICL Technical Journal May 1984 83

(K) and development time (td), then systems will lie on a number of
discrete lines, on a surface of the form

m - c

(v) The design and coding effort, like the total project effort, is described
by a Rayleigh curve; and this has the same initial slope as the project
curve.

(vi) The time td at which the total manpower loading is greatest coincides
with that at which 95 per cent of the design and coding work has been
completed, at which stage the system becomes operational.

It follows from points (v) and (vi) that the design and coding loading is at a
maximum at a time t0 such that t0/td = y j 6, approximately; and the effort
expended on design coding, the development effort, at that stage is , where
Ki / K = 1/6, approximately.

Table 4 C onstant and exponent term s found by other researchers for effort/size equations

Constant Exponent
Source a b

RADC 4-55 0-96
Watson and Felix9
Basili and Freburger10

5-2 0-91

(i) total lines 1-38 0-93
(ii) developed lines 1-58 0-99

Table 5 C onstant and exponent term s found by o ther researchers for schedule/
effo rt equations

Source
Constant

c
Exponent

d

RADC 2-58 0-36
Watson and Felix 4-1 0-36
Basili and Freburger

(i) total lines 4-55 0-26
(ii) developed lines 4-62 0-28

6 Evaluation of the models

6.1 Theoretical considerations

6.1.1 COCOMO:

(i) The COCOMO models are not derived from any underlying mathe
matical assumptions, but assume that relationships between effort and
size, and effort and schedule exist and take a specific functional form:

84 ICL Technical Journal May 1984

and
effort = a x size*

schedule = c x (effort)d

The actual values of the multipliers and exponents used by Boehm are
shown in Tables 2 and 3.

This form of relationship has been established in a number of other
studies as shown in Tables 4 and 5. The figures for the RADC source
are quoted in the Putnam tutorial on software cost estimating.13

In general, the exponent terms observed by other investigators are fairly
similar to COCOMO exponents, whereas the multiplier terms vary quite
substantially.

(ii) The underlying assumptions of the model do imply some theoretical
problems:

(a) The parameters of the model, i.e. the values of the multiplier and
exponential in the basic equations, the quantifier associated with
each rank of each cost driver and the distribution of effort and
schedule across phase and activity, were all estimated by expert
opinion with the associated risk of bias.

(b) The number of different parameters, when the cost drive quantifiers
and the effort, schedule and activity distributions are recognised as
such, is extremely large:

For basic COCOMO the following parameters are assumed to be
known:

— multiplier and exponential, terms in the effort and schedule
equations for 3 modes (i.e. 12 terms)

- 70 independent values to determine the distribution of effort
across each phase for five given product sizes for each of the
three modes

- 42 independent values to determine the distribution of schedule
across each phase for five given product sizes for each of the
three modes

— 308 independent values to determine the distribution of
product activity for each phase for five different product sizes
for each of the three modes.

For intermediate COCOMO all the above are required plus:
- 54 effort multipliers corresponding to the non-nominal ratings

of the various cost drivers.

For detailed COCOMO all the same requirements as basic COCOMO
plus:
— 216 effort multipliers corresponding to the non-nominal ratings

ICL Technical Journal May 1984 85

of the various cost drivers in each phase of the development
process.

This number of values makes it extremely difficult to validate all
the parameters in the model even if a database large enough to
cover all the possible combinations were available.

(c) There is a dichotomy in the model between the value of the
parameters used for the basic COCOMO effort equation, and the
intermediate and detailed effort equations.

6.1.2 Putnam's model: As was explained in Section 5, Putnam proposes two
equations to summarise software development. The primary equation which he
calls the software equation relates code size (¾) to total life-cycle effort (K)
and development time (td).

SS = CK K / 3td% (3)

where Cr is a state of technology ‘constant’.

The second equation relates lifetime effort to development time via the diffi
culty gradient:

K/td = c (4)

where C is a ‘constant’ related to the type of development being undertaken.

In addition, Putnam relates development effort E to life-cycle effort via the
equation

K = E/B (5)

where B is a ‘constant’ depending on the size of the development.

The values taken by the three ‘constants’ are shown in Tables 6, 7 and 8 for
CK> C and B, respectively. In Table 6 CK is related to a technology factor TF
which is sometimes used by Putnam rather than Cg.

Therefore, rewriting eqn. 3 in terms of development effort gives

= CK (E/B)1>3 td 4/3 (6)

and rewriting eqn. 4 gives

E/B = C t3d (7)

86 ICL Technical Journal May 1984

The implications of these equations are that:

(i) there is not just one software equation relating size, effort and develop
ment times but 138 equations depending on the different values of Ck
and B

(ii) eqns. 6 and 7 may be combined to eliminate in turn either t j or E to
produce equations comparable to those used by other researchers and
by COCOMO

(iii) eqn. 7 can be adjusted to man months instead of man years and should
then be directly comparable to equations investigated by other
researchers.

Thus eqn. 7 becomes

?d(MM) = 122'3 (BC) "1/3 ^(MM)1'3 (8)

Table 6 Values of the state of the technology constant Ck and technology factor TF

Ck 610 987 1597 2584 4181 6765
TF 0 1 2 3 4 5 6 7 8 9 10 11
CK 754 1220 1974 3194 5168 8362

Ck 10946 17711 28657 46369 75025 121393
TF 12 13 14 15 16 17 18 19 20 21 22

cK 13530 21892 35422 57314 92736

Table 7 Values of the difficulty gradient constant C

Type of system Gradient value

New 7-3
Standalone 14-7
Rebuild 26-9
Composite 1 55-0
Composite 2 89-0

Table 8 Values of the size adjustment constant B

System size
(in 1000 lines)

Value of B

5-15 0-16
20 0-18
30 0-28
40 0-34
50 0-37
70 0-39

>100 0-39

ICL Technical Journal May 1984 87

The permissible values of the ‘constant’ relating development schedule to effort
are shown in Table 9. It seems logical that as the type of development becomes
simpler (i.e. C increases in value) for the same size development, the constant
should become smaller, but it is not obvious why the constant should decrease as
the size of the development increases.

The actual values of the constant of proportionality may be compared with the
COCOMO values in Table 3 and the values found by other workers given in
Table 5. The nearest equivalent to the COCOMO constant occurs for rebuild
systems of 40 000 lines of code. The exponent term corresponds to the value for
the COCOMO embedded mode.

Eliminating t$ from eqns. 7 and 8 and converting to man months and 1000 lines
of code gives

£(MM) = 12 x (1000)9/7 C h BCK ~9/1 S ^ K O S l) '1
¢0-571 (9)

= 86 533 — — — B SsiKDSJ)1 ’286
CK l ‘w

Eqn. 9 provides a set of 690 different equations relating effort and size depending
on the values assigned to C, C% and B. A subset of the possible constant values is
shown in Table 10.

The variation of the constant shown in Table 10 is somewhat paradoxical. It
seems logical that the constant should decrease for developments of the same
size and same difficulty as the state of technology increases, but it is not at all
clear why the constant should increase for developments of the same size with
the same state of technology as the type of development becomes easier.

The actual values of the constant and exponent in eqn. 9 may be compared with
the values used in the COCOMO models shown in Table 2 and the empirical
results obtained by other researchers shown in Table 4. It can be seen that the
exponent term is quite high compared with the other proposed values and is
closest to the COCOMO embedded mode exponent. The constant term used in

Table 9 C onstant o f proportionality relating developm ent tim e and effo rt

Values of C

Values of B 7-3 14-7 26-9 55-0 89-9

0-16 4-98 3-94 3-22 2-54 2-16
0-18 4-78 3-79 3-10 2-44 2-08
0-28 4-13 3-27 2-67 2-11 1-79
0-34 3-87 3-07 2-51 1-97 1-68
0-37 3-76 2-98 2-44 1-92 1-64
0-39 3-70 2-93 2-39 1-89 1-61

88 ICL Technical Journal May 1984

Table 10 Constant of proportionality relating size and effort

C

7-3 14-7 26-9 55-0 89-0

5 = 016
CK

1220 4-63 6-90 9-74 14-66 19-29
5168 0-72 1-08 1-52 2-29 3-01

10946 0-27 0-41 0-58 0-87 1-15
75025 0-023 0-035 0-049 0-073 0-097

B = 0-28
CK

1220 8-09 12-07 17-05 25-55 33-76
5168 1-26 1-89 2-66 4-01 4-27

10946 0-48 0-72 1-02 1-53 2-01
75025 0-041 0-060 0-085 0-13 0-17

B = 0-39
CK

1220 11-27 16-82 23-70 35-72 47-02
5168 1-76 2-63 3-71 5-58 7-35

10946 0-67 1-00 1-41 2-13 2-80
75025 0-056 0-084 0-12 0-18 0-23

Putnam’s work seems rather low compared with other proposed values unless the
technology constant is assumed to be very low or the software being developed
is assumed to be very simple.

However, for both the size/effort and schedule/effort it is clear that Putnam’s
model implies a functional relationship similar to that proposed by Boehm and
observed by other investigators.

There are other criticisms which have been made relating to the basic assumptions
of Putnam’s model:

(i) Parr8 has criticised two of the underlying assumptions. He points out
that the linear learning curve proposed by Norden is not theoretically
supported, and that the skill available depends on the resources, so
there is a confusion between the intrinsic constraints on the rate at
which software can be developed and management’s economically
governed choice about how to respond to those constraints.

He then criticises Putnam’s assumption that the work done on require
ments definition and specification prior to the start of code and design
can be ignored. He argues that there are dependencies between problems
such that one task cannot begin until others have been completed. Thus,
the unsolved problem space is partially ordered. At any point in time a
subset of problems exist, called the visible set, which are capable of
being worked on. It is the visible set that determines the level of staffing.

ICL Technical Journal May 1984 89

Thus Parr concludes that after the requirements have been defined and
specified, the visible set of problems has increased so that the staffing
levels for code and design need not (and probably should not) start at
zero.

(ii) Basili and Beane12 compared Parr’s manpower utilisation curve, Putnam’s
curve, a parabola and a trapezoid with seven actual project records. They
found that Parr’s curve fitted the data best while Putnam’s Rayleigh curve
was a worse fit than either the parabola or the trapezoid curves. It is
worth noting that five of the seven plots of actual data appeared to
confirm Parr’s suggestion that the manpower utilisation curve would
not pass through the origin at the start of the time period.

6.2 Stability o f the models

To investigate the stability of the two models we investigated the estimates they
gave when costing a development of 14000 lines required to be produced in
approximately 10 months elapsed time.

For Putnam’s model the following values were estimated:

(i) The effort E for a range of technology constants from Q- = 4181 (tech
nology factor 8) to Cr = 17 711 (technology factor 14) which is the
range of values Putnam reports finding over a wide range of different
companies.15 This effort was calculated for t j = 0-83 years (10 months)
and trf = 1-2 years with Ss = 14000.

(ii) E was also calculated for Ss = 12 000 and Ss = 16 000 for each value of
Ck to investigate the effect of uncertainty in the size estimate.

For COCOMO, the following values were estimated.

(i) The effort for each development mode required to produce 12000,
14000 and 16000 lines of code.

(ii) The schedule for each development mode required to produce 12000,
14 000 and 16 000 lines of code.

(iii) For semidetached mode, the effort and schedule were estimated
(a) with all cost drivers nominal
(,b) assuming analysis capability high, with all other cost drivers

nominal.

The results of this analysis for Putnam’s model are shown in Figs 2 and 3. Fig. 2
shows the estimated effort for each of the three estimates of code size assuming
the development is constrained to take 0-83 years. Fig. 3 shows the estimated
effort when the schedule is stretched to 1 -23 years. (It should be noted that the
scales are different for the two Figs.)

It is clear from these Figs, that there is a strong interaction between the various
sources of inaccuracy in Putnam’s model. Thus, if the number of lines of code is

90 ICL Technical Journal May 1984

ef
fo

rt
,

m
an

 y
ea

rs

Fig. 2 Estimated effort to produce approximately 14000 lines of code in 0-83 years
using Putnam's technique

size = 16000 --------
size = 14000 --------
size = 12000 --------

underestimated, this will cause a much greater potential inaccuracy in the effort
estimate if the technology factor is at the lower end of the range than if it is at
the upper end of the range. Similarly, an inaccuracy in the estimation of the
technology factor will cause greater inaccuracy if the true value of the technology
factor is low.

ICL Technical Journal May 1984 91

Fig. 3 Estimated effort to produce approximately 14000 lines in 1-2 years using
Putnam's technique

size = 16000 ----------------------
size = 14000 ---------------------
size = 12 000 ---------------------

The dependency on the development time is in line with Putnam’s predictions
and shows that a difference of 0-37 years (approximately 3 months) can have a
difference in effort of up to 9-5 man years depending on the technology factor.
However, it is again true that the differences in estimates are much greater the
smaller the technology factor.

The results of the analysis for COCOMO is shown in Tables 11,12 and 13. The
results are given in man years rather than man months to permit easier compari-

92 ICL Technical Journal May 1984

Table 11 Effort in man-years to produce code using basic COCOMO

Mode 12k
Size

14k 16k

Organic 2-7 3-2 3-7
Semidetached 4-0 4-8 5-6
Embedded 5-9 7-1 8-4

Table 12 Schedule in years using basic COCOMO

Mode 12k
Size

14k 16k

Organic 0-78 0-83 0-88
Semidetached 0-81 0-86 0-91
Embedded 0-82 0-86 0-91

Table 13 E ffort and schedule estim ates, using sem idetached m ode interm ediate COCOMO
w ith (i) all cost drivers nom inal and

(ii) one non-nom inal cost driver

12k
Size

14k 16k

(i) Effort 4-0 4-80 5-60
Schedule 0-81 0-86 0-91

(ii) Effort 3-40 4-10 4-80
Schedule 0-77 0-82 0-86

son with Putnam’s estimates. It appears from these results that the COCOMO
estimates are much less variable than Putnam’s. For the COCOMO effort equation
it appears to be more dangerous to identify development mode wrongly than to
estimate size wrongly. The COCOMO schedule equation is very stable but in
contrast to the effort equation it is slightly worse to estimate size wrongly than
it is to identify development mode wrongly.

However, the effect of altering one of the cost drivers by one level has an effect
on the predictions comparable to the effect of either misestimating size or
incorrectly identifying development mode, and in the intermediate model there
are 15 cost drivers which may be assigned to any one of four or five different
levels. Thus, although the basic COCOMO results may be very stable, the effect
of cost driver misestimation on intermediate COCOMO estimates could be very
serious.

A much more detailed stability/sensitivity analysis will be provided in the final
report of this project.14

6.3 Empirical results obtained from BTand ICL data

6.3.1 The constant terms o f Putnam's model: As part of this study a data
collection activity was initiated in both environments, resulting in a joint data

ICL Technical Journal May 1984 93

base of some 20 projects. The BT data was all from projects concerned with the
development of original control and operation procedures of advanced tele
phone switching centres. Many were of a real-time nature, and the projects were
undertaken at many development sites. The ICL data came from projects con
cerned with the development of an operating system and associated file-handling
routines, all of which were completed on one site.

Table 14 Estimates of C and C% for ICL and BT developments

Project S t K C=K/t3 c * TF

1 17431 1-325 29-70 12-8 3868 8
2 14142 0-90 57-60 79-0 4214 8
3 6534 0-75 18-75 44-4 3609 7
4 3040 0-80 2-08 4-1 3207 7
5 4371 0-48 12-92 116-8 4956 9

BT 6 15091 2-27 155-42 13-3 941 2
7 29570 1-00 13-99 14-0 12272 12
8 23300 0-75 68-94 163-4 8339 11
9 3000 0-50 7-50 60-0 3862 8

10 25751 1-90 34-49 5-0 3362 7
11 19637 1-58 118-89 30-1 2170 5

12 6050 0-38 3-83 70-0 14049 13
13 8363 0-51 7-46 56-2 10159 12
14 13334 0-60 13-16 60-9 11159 12
15 5942 0-47 1-187 11-4 15355 13

ICL 16 3315 0-26 3-914 222-4 12676 13
17 38988 1-00 9-673 9-7 18298 14
18 38614 0-73 1-749 4-5 48757 18
19 12762 0-50 6-294 8-1 17418 14
20 13351 0-35 3-556 82-9 35462 17

Table 14 shows the values of C and C% obtained from ICL and BT data. It should
be noted that Putnam’s development effort equation (obtained by replacing K
by E/B in the software equation) relates to 95 per cent of the detailed design
and coding effort plus the test and integration effort which occurred during the
time needed to achieve 95 per cent of the detailed design and coding effort. High-
level system design and system-feasibility effort are excluded. Thus, where a
breakdown of the effort for each stage of development was available the effort
and schedule data were adjusted to correspond to Putnam’s definition (this was
possible for all ICL data), otherwise the gross effort and schedule data were used.

Using the gross effort and schedule data could result in a substantial under
estimation of technology factor. However, all the BT results (numbers 1-11)
would be subject to this bias, and so comparisons between these projects could
be made.

It is clear from Table 14 that the actual values of C are not always close to the
theoretical values. Putnam now tends to interpret the difficulty gradient in
terms of manpower build-up rate (1983, personal communication) so that any
particular type of development — new, standalone, composite etc. — may be

94 ICL Technical Journal May 1984

developed in its characteristic manner, resulting in an actual value close to the
theoretical C value; or may be developed in a manner similar to a different type
of development. This allows the development to take advantage of the slow
build up, long development time, low total effort effect.

This avoids the problem that certain types of developments appear to have
anomalous C values but adds a further difficulty for anyone who wishes to use
the model in a predictive sense as the user needs to know not only what sort of
system is being developed but also how it is going to be developed.

Table 14 also shows the actual technology constant C% obtained for each of the
developments. The results show a fair degree of variability even for the ICL
developments (numbers 12—20) which were all developed in a similar environ
ment using similar techniques, by in some cases the same development teams
(i.e. developments 12 and 19, developments 13 and 14, and developments 17
and 20). This is a particular problem if Putnam’s model is to be used predictively
because the accuracy of any estimates depends critically upon the accuracy of
the estimate of the technology constant (see Section 6.2).

6.3.2 COCOMO estimates: Figs. 4 and 5 compare COCOMO effort predictions
for the basic and intermediate models with the actual effort for the BT/ICL

Table 15 Actuals compared with estimates using basic and intermediate COCOMO

Effort (man months) Schedule (months)

Actual
Basic
COCOMO

Intermediate
COCOMO Actual

Basic
COCOMO

Intermediate
COCOMO

1 16-7 17-3 16-2 23-0 6-8 6-6
2 22-6 24-9 21-6 15-5 7-7 7-3
3 32-2 42-2 17-5 14-0 9-2 6-8
4 3-9 17-0 17-4 9-2 6-7 6-8

ICL 5 17-3 8-8 10-3 13-5 5-4 5-7
6 67-7 139-8 160-8 24-5 14-1 14-8
7 10-1 138-3 102-7 15-2 14-0 12-6
8 19-3 40-0 34-0 14-7 9-1 8-6
9 10-6 42-8 16-9 7-7 9-3 6-7

10 60-5 73-7 98-7 15-9 11-26 12-47
11 110-5 58-3 56-0 10-8 10-4 10-2
12 36-0 24-6 NAY 9-0 7-7 NAY
13 R* 4-0 15-4 NAY 9-6 6-5 NAY

BT 14 R 24-8 20-6 NAY 5-75 7-2 NAY
15 298-4 62-7 73-4 27-2 10-6 11-2
16 47-0 133-2 142-5 12-0 13-9 14-2
171 148-9 102-0 NAY 9-0 12-6 NAY

14-4 10-3 NAY 6-0 5-6 NAY
115-9 114-1 196-4 22-8 13-1 15-9

20 R 256-8 87-0 67-1 19-0 11-9 10-9

* R implies simple rebuild (NAY“ not available yet)
** Firm implies firmware

ICL Technical Journal May 1984 95

X

40 60 80 100
actual effort, man months

Fig. 4 Relationship between actuals and estimates for basic COCOMO
excluding projects 15 and 20
X ICL
O bt

data. This information, together with the schedule predictions is shown in Table
15. It can be seen that the basic COCOMO predictions match the actual data
only very crudely and a few estimates are very poor indeed. The basic model is
not intended to give any more than a rough first estimate of costs; however, it is
apparent that the intermediate model does not provide any substantial improve
ment on the basic estimates.

As well as providing gross estimates of effort and schedule COCOMO also permits
a breakdown of effort and schedule across phase. The actual breakdown of
effort was available for eight out of the nine ICL projects, and is shown in Table
16 together with the COCOMO predictions for developments of size 2K, 8K and
32K lines of code (K = 1000). It can be seen that the average actual values are
not dissimilar to the COCOMO predictions. However, it is also clear that the
individual values vary widely among developments. Thus, any effort breakdown
based on the COCOMO figures could be wildly inaccurate for a particular de
velopment, although it could be argued that the COCOMO breakdown might be
what should be aimed for.

96 ICL Technical Journal May 1984

Table 16 Percentage breakdown o f effort by phase

Development size
Product
design

Detailed
design and
code

Integration
and
test

1 6050 23 32 45
2 8363 12 59 29
3 13334 11 83 6
4 5942 21 62 17
5 3315 11 44 45
6 38988 28 44 28
7 38614 21 74 5
8 13351 7 66 27

Average 17 58 25

COCOMO 2000 16 68 16
8000 16 65 19

32000 16 62 22

It is interesting to note that two ICL developments appear to have used a dis
proportionate amount of effort during the integration and test phase; this would
indicate that there were problems associated with these developments. A disad
vantage of Putnam’s model is that it ignores time spent in integration and test so
it would fail to flag these developments as anomalous whereas a cost model such
as COCOMO does highlight the problem.

Table 17 Summary o f empirical relationships

Statistically Pet cent of variation
Relationship significant accounted

(p<b-05) for

BT EFF = 315 (size)1-20 d 61%
SCH = 3-964 (EFF)0,27 J 41%
SCH = 4-5 (size)0,40 J 39%

ICL EFF = 8-196 (size?'30 X .
SCH = 5-6723 (EFF)0,33 J 41%
SCH = 11-22 (size)0,10 X -

ALL EFF = 4-41 (size)0,83 J 27%
SCH = 7-11 (EFF)0,21 J 17%
SCH = 6-51 (size)0,28 J 22%

where EFF is total effort in man months
size is thousand lines of code
SCH is elapsed time in months.

ICL Technical Journal May 1984 97

actual effort, man months

Fig. 5 Relationship between actuals and estimates for intermediate COCOMO

projects 15, 19 and 20 not plotted
projects 12-14 and 17-18 not available
X ICL
OBT

6.3.3 Empirical relationships: Figs 6, 7 and 8 show logarithmic plots of the
relationships between size, effort and schedule on the BT/ICL data. Regression
analysis was applied to the BT and ICL data using all the data and also on the
two sets of data independently. The relations were tested to see whether they
were significant over the data points used for their calibration: that is, whether
or not the points indicated when there was a definite relation between the
variables. A test indicating the percentage of the variation of the /-variable
accounted for by the relation was performed also; this can be thought of as a
measure of the goodness of fit of the line to the data, 100 per cent indicating a
perfect fit. The results of the analysis are shown in Table 17.

The results show a clear difference between BT and ICL which supports both
Putnam and Boehm’s ideas, as the results could be attributed either to different

98 ICL Technical Journal May 1984

O bt
X ICL

composite
ICL results
BT results

technology factors or to different development modes between the two environ
ments. The results do emphasise the need to calibrate any models to the particu
lar environment in which it is to be used.

The estimates of the regression parameters shown in Table 17 show some simi
larity to the COCOMO equations for the effort/size and schedule/effort equations
for BT and the effort/schedule equation for ICL.

7 Conclusions

In general, neither of the models performed well in the BT and ICL data sets.
Putnam’s model was difficult to use because the data to be included and that to
be excluded did not conform to the data normally recorded by projects. Also,
Putnam suggests his model should be used for medium to large projects, which
restricts its applicability, particularly in the ICL environment where small teams
produce many relatively small developments. In addition, the exclusion of inte
gration test costs gives spuriously good productivity and technology factors for
projects which suffered from integration and test problems which a full develop
ment cycle would highlight.

The COCOMO model did not achieve anything like the level of accuracy it

ICL Technical Journal May 1984

7 r

0 80
—I_____________l____________ l____________ I_____________l _
8-5 90 9-5 100 10-5

size, lines of code
VK)

*1000

Fig. 7 Relationship between effort and size

attains for Boehm’s data set. However, the methodology of the COCOMO model
is suitable for developing similar models calibrated to particular environments,
which is the procedure Boehm recommends (1983, personal communication).
However a fairly large historical database is required - COCOMO was first de
veloped with a database of about 20 developments and needed 60 projects before
it was suitably defined. We are, therefore, unable to recommend either model for
use directly in BT or ICL environments. To improve cost estimation, our main
recommendation would be to establish a database of historical information
within each environment which can be used immediately to assist expert opinion
and costing by analogy. Such a database may then be used to establish empirical
relationships (such as those identified in this document) to provide individual
models calibrated to their intended use environment.

For current cost estimation problems we would suggest that empirical relation-

100 ICL Technical Journal May 1984

3.5r

1.0
8 0 8 5

_ l___________ i______________ i
9 0 9-5 100
size , lines of code 10 5 xIOOO

Fig. 8 Relationship between size and schedule

ships identified in this paper can provide a gross check on estimates and that the
data set obtained provides the first input to any future historical database.

Acknowledgements

The authors are particularly grateful to Paul Reid for invaluable work on the BT data, and
to Christine Lodge for her help in preparing many drafts of this paper. We wish to acknow
ledge also the permission of the Chief Executive, British Telecom Switching Development
Department, to publish the paper.

References

1 BROOKS, F.P.: ‘The mythical man month’, Addison-Wesley, 1975.
2 BABER, R.L.: ‘Software reflected’, North-Holland, 1982.
3 BOEHM, B.W.: ‘Software engineering economics’, Prentice-Hall, 1981.
4 WOLVERTON, R.W.: ‘The cost of developing large-scale software’, IEEE Trans.

Comput., 1974.
5 PUTNAM, L.L.: ‘A general empirical solution to the macro software sizing and estima-

tine problem’,IEE Trans., 1978, SE-4, 4.
6 BASILI, V.R.: ‘Models and metrics for software management and engineering’, IEEE

Computer Society Press, 1980.
7 BERNSTEIN, C.B. and CETRON, M.J.: ‘SEER: A delphic approach to applied infor

mation processing’, Technol. forecast., 1969, 33-54.
8 PARR, F.N.: An alternative to the Rayleigh curve model for software development

effort,IEEE Trans., SE-8 1980, 291-296.
9 WALSTON, C.E. and FELIX, C.P.: ‘A method of programming measurement and esti

mation ,IBMSys. /., 1977,16.

ICL Technical Journal May 1984 101

10 BASILI, V.R. and FREBURGER, K.: Programming measurement and estimation in the
software engineering laboratory,/. Syst. it Software, 1981,2,47-57.

11 NORDEN, P.V.: Useful tools for project management, in Operations research and de
velopment, DEAN, B.V. (Ed.) J. Wiley and Sons, 1963.

12 BASILI, R. and BEANE, J.: ‘Can the Parr curve help with manpower distribution and
resource estimation problems?/. Syst. & Software, 1981,2, 59-69.

13 PUTNAM, L.H.: ‘Software cost estimating and life-cycle control: getting the software
numbers’, IEEE Computer Society Press, 1980.

14 K1TCHENHAM, B.A. and TAYLOR, N.R.: ‘Software cost estimation techniques’, ICL/
BT Report (in preparation).

15 PUTNAM, L.H.: ‘Seminar on software cost estimating’, London, 1982.

102 ICL Technical Journal May 1984

Program history records*, a system
of software data collection

and analysis

B.A. Kitchenham
ICL Software System Development Centre, Kidsgrove, Staffs

Abstract

This paper describes a semi-automatic system of software data collection
and analysis which has been in use in VME production projects since
March 1981. The paper outlines the nature of the system itself and indicates
the way information about the software development task has been used in
practice. It concludes by indicating some of the problems that have been
encountered in attempting to use the system.

1 Introduction

Many industrial and academic research workers have stressed the need for and
the importance of measurement of software and the software development
process.

Some investigators1,2 have concentrated on the relationship between software
characteristics and production constraints to develop cost estimation models;
others have considered the relationship between error types and software de
velopment techniques3 "s . However, they have all concluded that the availability
of software data is essential for visibility and control of the software development
process, evaluation of software products and development techniques, and
estimation and prediction of software attributes (e.g. quality or cost).

Nonetheless, there are problems involved with collecting and analysing software
data. Basili and Weiss6 point out that large quantities of data will be generated
which will almost certainly require correction and will need to be kept for
relatively long time periods (i.e. covering the development and life of a software
product). Thayer et al.3 stress the potential cost and schedule impact and lack
of resources available for data analysis.

This paper describes a semi-automatic data collection and analysis system used
by production staff producing ICL’s VME operating system to record details of
all enhancements to the VME system. The system is currently only available for
SDL developments using the ICL CADES system7; however, CADES is being
extended to allow projects using any high-level language to use its version control
and project librarian facilities, with optional use of CADES database facilities,

ICL Technical Journal May 1984 103

and the new CADES facilities will also incorporate the data collection and
analysis system.

The system has been in use since March 1981, so this paper not only outlines the
system’s functions and how it is used but also includes some examples of the
practical use of the software data which has been collected.

2 The data collection and analysis system

2.1 Overview

The data collection and analysis system revolves around the concept of program
history records (HRs) which provide the mechanism for recording the details of
all changes to a software product during its initial development and subsequent
maintenance and enhancement.

The main advantage of the HR system is that it is not form-based, it is computer-
based. The history records are structured into the form of normal Algol-type
macro/procedure calls, which are incorporated into the program which is being
developed.

Currently the HR macro calls are put within comment symbols at the start
of the program; when the new CADES development is completed, they will
exist as self-standing macro calls in the header section of the program. The
detailed format of the HR macro is described in a later Section.

Software tools are available to analyse the HR information. One suite of pro
grams identifies the HR macro calls in the amended programs and executes the
HR macro; this causes the data incorporated within the macro call to be
subjected to preliminary validation and then stored in a normal file which can be
edited directly to correct errors in the data. A second suite of programs provides
a series of standard summary reports and analyses.

The separation of the extraction and report functions means that the information
is available for any additional analyses in a format compatible with other
analysis packages (such as the VME 2900 statistics package8).

2 .2 Format o f the HR macro

The HR macro has 15 parameters which may be used to describe a change or
enhancement to code, although most of the parameters may be defaulted. A full
specification of the HR macro is given in an internal ICL report9, but a summary
of the parameters is given below.

DATE the date of the change

INITIALS the person who altered the program

104 ICL Technical Journal May 1984

REASON the reason for the change and may take one of the
four values

N indicating a newly created program
E indicating an enhancement to an already exist

ing program
B indicating a change to debug the program
D indicating a change for documentation pur

poses

CLASSIFICATION this can assume one of 12 permitted values and
provides additional information for enhancements
and error clearance classifying the type of change

LINES this identifies the number of non-comment lines
of source code involved

OCCURRENCE this can assume one of 24 permitted values. It
applies only to error clearance and identifies at
what stage in the development process the error
occurred

NUMBER this parameter is used to allow a number of similar
HR calls to be grouped together into one — it is
always defaulted to 1

TESTING this can assume one of 11 permitted values and is
used for errors found on in-house services or by
customers to indicate by what means the error
could have been found earlier in the development
process

DAF6
SWNOTICE
UREGISTER

these three parameters allow any error to be cross-
referenced to other error recording schemes which
in VME terms are the DAF6 register, software
notice register and the usability register

DRENTRY this permits a change to be linked to an overall
software development project. In VME terms this
identifies the development register entry

SYSTEM this parameter is only used for error clearance and
identifies the version of the system which intro
duced the error. N.B. this allows for the cases
where errors in old code are found by new
development testing to be identified

ICL Technical Journal May 1984 105

SEVERITY this parameter is only used for error clearance. It
may take up to six different values indicating the
severity of the error in terms of the effect it had
(or would have had) on a user service

EXTRA INFORMATION this parameter is only used for error clearance. It
has 19 possible values which allow for a very
detailed classification of the error type (e.g. MLLO
means missing logic, line of code omitted)

2.3 Analysis tools

2.3.1 Data extraction. A normal SCL macro interface is available which will
extract information from the HR calls in either an individual program or in each
of the programs within a standard VME library. The interface permits either the
use of all HR calls, or the use of HR calls related to a particular time period.

Once the HR calls have been identified, they are executed as macros which
cause the information in the call to be given a preliminary validation and then
stored in a specified file. The preliminary validation procedure checks the
internal consistency of the information and indicates any missing or misleading
information with an asterisk in the output file. If the format of an incorrect HR
call violates the normal SCL macro constraints, it will be rejected by the data
extraction system and will not be validated nor will it appear in the output file.

If the caller of the data extraction program identifies an output file that already
exists the system will append the new information to the end of the file.

The format of the output file is described in detail in an internal ICL docu
ment10.

2.3.2 Data analysis. A normal SCL macro interface is available10 which provides
a number of summaries and analyses of the information obtained by the data
extraction program. The reports provide the following information:

— for each program, the amount of change and the number and type of errors
found, with overall totals

— for each program, the amount of change and the type of enhancements
taking place, with overall totals

— for each program with errors, the stage of the development process at which
errors were found

— for each program with errors found by customers or on the ICL in-house
service, an assessment of how the errors should have been found earlier

— for each program with errors crossreferenced to code repairs and patches, a
list of the patches that were cleared

— two-way tables indicating the relationships between:

106 ICL Technical Journal May 1984

— type of error and how errors were found
— code age and how errors were found
— code age and error severity
— error severity and how errors were found
— detailed error classification and how errors were found
— detailed error classification and the severity of error

The data analysed may be all the data in a particular output file, or the data
relating to a particular time period, or the data relating to a particular DRE.

2.4 Control

To ensure that HR records are maintained by the production staff, the CADES
system does not permit the transfer of a new version of a program into trusted
filestore unless there is an extra HR call compared with the old version of the
program. However, there is no check on the internal consistency of the HR call
until the data extraction and analysis programs are used.

3 Use of HR information

Information obtained from the HR macro calls may be used for a number of
different purposes including individual project control and quality control, gross
productivity figures and assessment of new working methods. In this Section a
number of examples will be given of the way HR information has been used.

3.1 Individual pro ject control

The HR analysis programs may be used to give ‘snap-shots’ of the state of a
particular development by indicating the programs that have been involved in
the development with the amount of work progressed and error screening
patterns to date.

Simple crosschecks between programs scheduled to change and programs which
have been changed can (and do) reveal changes which have been overlooked.

3 .2 D evelopm ent quality control

Fig. 1 shows a scatter diagram of program size against number of errors for a
small development (N.B. the system does not produce the plot, it provides the
data for the plot). This shows a fairly typical pattern of a nearly linear relation
ship between size and number of errors. Such relationships seem relatively
normal for VME developments5 and indicate that the development has been
broken down into individual programs reasonably well. A disproportionate
number of errors in either large or small programs would indicate potential
problem areas with the overall design.

Another important point to be gained from such scatter diagrams is that specific
anomalies are pinpointed. In Fig. 1 the largest program (which is circled) appears

ICL Technical Journal May 1984 107

Fig. 1 Relationship between program size and number of errors (development 1)

to have disproportionately few errors. This implies that the program must be
checked to ensure that it really is error free and not that it has not been properly
tested. The program in fact was a control program which identified what work
was required and directed subsequent processing into more complex programs. It
was therefore large but fairly simple and its simplicity was the reason for its low
error rate.

Fig. 2 shows quite a different development pattern. The scatter diagram is
separated into five regions with different characteristics. Region A covers the
majority of the programs in the development. It shows a relatively random
distribution of errors with the error rate for larger programs quite low. Region B

108 ICL Technical Journal May 1984

comprises a number of relatively small programs with relatively high error rates.
They were a series of interrupt handlers with similar problems and were high
lighted by the team leader as an area for redesign. Region C includes three
programs of moderate size and moderately high error rate which were the
initialisation and contingency handling routines. These programs exhibited the
high error rate often found in programs that interface with other subsystems.
Region D includes two programs of moderate size and very high error rates.
These programs were written by an inexperienced person and included a large
amount of complex parameter checking. The programs were subject to a large
amount of testing effort. Region E comprises four very large programs with very
low error rates. These programs were transformations of already existing and
tested programs so the low error rate was anticipated and confirmed by the
results. This development again shows the use that can be made of simple
development statistics but emphasises the importance of the detailed knowledge
of the project or team leader for interpreting any statistical results.

3 .3 Project costing and estimation

The information on size of code produced and the breakdown into new code
enhancements to existing programs, unplanned changes and error clearance, can
be related to work schedules and development effort statistics to provide
historical information to improve future time scales and cost estimates.

3.4 Gross productivity and quality trends

Gross statistics tend to be less interesting than individual developments but they
do reveal important trends if the information is available over a reasonably long
timescale. Table 2 shows the planned, and unplanned production within the
VME production projects between October 1981 and June 1983 contrasted with

Table 1 VME production and error screening between O ctober 1981 and June 1983

Time period
Planned
production
per month
(lines of code)

Unplanned
production
per month
(lines of code)

Error
screening
per 100
lines

October 1981 to
March 1982 15 852 4 554 2-02

April 1982 to
August 1982 26 283 5 289 1-65

September 1982 to
December 1982 39 114 5 715 1-40

January, 1983 to
June 1983 22411 4 876 2-77

ICL Technical Journal May 1984 109

the error screening rates (based only on errors found in-house). This demonstrates
an almost inverse relationship between software production and error screening
implying that achieving very high productivity figures will reduce the time
available for clearing errors.

Tables 2 and 3 show the overall trends for error type and the methods by which
errors are found during the development process. These tables can be used as the
current ‘standards’ by which to judge both the progress of individual develop
ments, and the effect of different development techniques.

Table 2 Type o f errors found (January 1983 to June 1983)

Type of error Number of errors Percentage

Software interface 79 2-1
Design 495 13-3
Code 2613 70-3
Other 528 14-2

Table 3 M ethod o f error screening

Method of error screening Number of errors Percentage

Dry checking and code inspection 995 37-6
Testing by code execution (test beds
and development base) 1353 51-2
Exposure on in-house services 295 11-2

Customer bug report 215

Unclassified 1072

3 .5 Assessing working m ethods

The use of detailed project data to help assess project working methods has
demonstrated the need for methods which will improve the detection of design
errors, and which will increase the efficiency of current techniques5. Practical
results outlining the effect of changed working methods have been observed and
will be reported in a future paper.

3 .6 Empirical tests o f software engineering hypotheses

Collection of data from real-life software projects can sometimes furnish the
information needed to determine the validity of theoretical models of software
engineering.

For example, there are several schools of thought with regard to reliability: one

110 ICL Technical Journal May 1984

extreme view is that reliability need not be measured if the software is proved
correct. However, it is more usual to accept that current development methods
cannot guarantee error-free software, so there is a need to estimate the relia
bility actually achieved.

There are two quite different techniques used to estimate reliability; one method
involves analysis of failures observed when a program executes in its intended
environment12, the other method involves error counting throughout develop
ment13. Results from VME data show that in one project 155 errors were
cleared in code released to customers between January 1983 and June 1983 of
which only 80 were found as a result of customer bug reports, the other 75
being found by the production staff and by the in-house services.

This suggests that error counting models would seriously underestimate the
reliability of VME as perceived by customers. Thus, an accurate measure of
reliability should be based on execution in the anticipated use environment.

4 Problems with the system

The experience gained using the system since March 1981 has shown a number
of practical uses of the data as outlined in Section 3, but have also indicated a
number of problems.

Practical problems arise because programmers are required to record a large
amount of data for each code change for error clearance and there are usually
between 1 and 3 errors to clear for each 100 lines of code produced. When
time pressures arise there is a tendency to put in the minimum amount of
information and not to worry about using the correct keywords or positional
parameters. This means that, as Basili and Weiss6 found, a good deal of time is
spent correcting data and it is not always possible to obtain accurate data, since
the programming staff forget what sort of errors they were dealing with after a
3-6 month interval.

To help the programming staff to construct their HR calls, it has been found
useful to attach a ‘crib sheet’ (see Appendix) outlining the permissible variables
but it probably requires management interest and commitment to maintain the
quality of records.

Theoretical problems arise in two ways, firstly because of the nature of the
classification scheme and secondly because of the problems of dealing with a
continually evolving product. The first problem arises because the current
version of the scheme only allows an error to be classified in one way, for
example a ripple error cannot also be classified as a design or code error. Thus
the classification scheme itself does not preserve mutually exclusive categories
and the user of the scheme cannot remedy this defect by multiple classification.

The second problem arises because VME code has a relatively long life expectancy
and will be amended and enhanced throughout. Thus, during enhancement of

ICL Technical Journal May 1984 111

112
IC

L T
echnical Journal M

ay 1984

Appendix Table 4 HR macro checklist which is placed beside videos as an aid for production staff

parameters: keywords and position
1 DATE 2 INITIALS 3 REASON 4 CLASSIFICATION 5 LINES 6

(of SDL)
OCCURRENCE
(how bug was
found)

7 NUMBER
(total number
of changes
recorded
default = 1)

8 TESTING
(how bug should
have been found)

9 DAF6 10 SWNOTICE 11 UREGISTER 12 DRENTRY 13 SYSTEM
(where code is)

14 SEVERITY 15 EXTRA INFORMATION

Classification-
enhancements

planned changes :
N - new development

unplanned changes :
E - high-level specification change
I - high-level design change
D - design/specification deficiency
O - other
X - unknown
M - mode change
S - standards

Testing
D/DC - desk checking
U/SCL/PRO - unit/project testing
C - code execution
R - residual error
E - special environment
X - unknown
TVP - TVP testing
FI - inspection

System
null - not released
IDS
ICRS
valid system id
(e.g. 6.11)

Reason
B — bug
E - enhancement
N — new code
D - documentation

Classification - bugs
I - interface to S/W
H - hardware
C - code/logic
D - design
R - ‘ripple’
S - source clearance error
L - compilation
E - EP/database
O - other
X - unknown

Occurrence
DC/D - desk checking
SCL/PRO/U - unit/project testing
A - alpha testing
B - beta testing
DB - development base
IDS - IDS query
ICRS - ICRS query
IQE/QE/Q - QE query
BCRS - Bracknell ICRS
OCRS - other in-house
C - customer query
X - unkown
FI - formal inspection
TVPDC/TVPD - TVP dry checking
TVP/TVPSCL/TVPRO/TVPU - TVP

Severity
F - system crash/idle
M - VM crash/idle
L - job failure
T - trivial
X - unknown
H - service severely degraded

Extra information
LCCI loop count
LCWU while/until
BCSC simple branch control
BCCB compound Boolean
MLLO line omitted
MLUR unitialised RC
MLUV uninitialised variable
MLCO condition overlooked
S3DE dereferencing error
S3BI misuse of BIPS
S3CC cast/coercion wrong
GESR slicing wrong
GETD TLD wrong
GEIA array index wrong
GEWV wrong variable
GEWM wrong mode
IFIC call set up wrong
IFIR return values
N.B. add/R for repeats

existing software old errors may be cleared which may or may not have been
found by customers. All these cases can be distinguished by the system but it is
fairly cumbersome and requires the DRE parameter and the SYSTEM parameter
to be specified correctly in each HR call. This aspect of the system is also difficult
to validate automatically so that errors in the HR calls are unlikely to be
identified.

5 Final comments

The HR system has been used within the VME production projects since March
1981 and has provided a number of insights into the nature and effectiveness of
VME development methods and the quality of individual software developments.
It is not possible to make quality statements about the VME system as a whole,
however, because the system was not instituted at the start of VME develop
ment. It is likely that a completely new software product would benefit even
more from such a data collection scheme if it was instituted at the start of
development, and the extension of CADES to languages other than SDL/S3 will
allow other ICL projects to take advantage of both the CADES facilities and the
HR data collection and analysis scheme.

Acknowledgments

The format of the data collection scheme owes a great deal to the helpful and
perceptive comments provided by Allen Kitchenham. It was entirely Allen’s
idea to structure the history records in the format of a macro call and to use that
feature to facilitate the data analysis system. I should also like to thank Brian
Hayselden for providing the detailed technical expertise necessary to interpret
some of the statistical results. In addition, John Fellows did the programming
necessary to extend the basic data analysis routines to include the two-way tables
needed to investigate relationships between the various data items. It should
also be noted that without the co-operation and patience of the VME production
staff, there would be no data for me to analyse. Finally, I should like to thank
Christine Lodge for her help with the production of the manuscript.

References

1 BOEHM, B.W.: ‘Software engineering economics’, Prentice-Hall, 1981.
2 PUTNAM, L.H.: ‘A general empirical solution to the macro software sizing and

estimating problem’, IEEE Tram., 1978, SE-4, 345-361.
3 THAYER, T.A., LIPOW, M„ and NELSON, E.C.: ‘Software reliability’, TRW Scries of

Software Technology 2, North-Holland, 1978.
4 WEISS, D.: ‘Evaluating software development by error analysis: the data from the

Architecture Research Facility’, / . Syst. 4 Software, 1979, 1,57-70.
5 KITCHENHAM, B.A.: ‘The use of software metrics to assess software production

methods’, Proc. FTCS-13 Milan, 1982.
6 BASILI, V.R., and WEISS, D.M.: ‘A methodology for collecting valid software engin

eering data’, University of Maryland technical report, TR-1235,1982.
7 McGUFFIN, R.W., ELLISTON, A.E., TRANTOR, B.R., and WESTMACOTT, P.N.:

‘CADES - software engineering in practice’, ICL Tech. /., 1980, 2, (1), 13-28.
8 COOPER, B.E.: ‘Statistical and related systems’,ICL Tech. / . , 1979, 1, (3), 229-246.

ICL Technical Journal May 1984 113

9 KITCHENHAM, B.A.: ‘The format and use of Holon history records’, DRS/PN/2007
3.1, 1982.

10 KITCHENHAM, B.A.: ‘Tools for the analysis of SDL Holon history records’, OSTC/
IN/2233 1, 1982.

11 KITCHENHAM, B.A., and TAYLOR, N.R. ‘Software cost models’, ICL Tech. /., 1984,
4, (1), 73-102.

12 LITTLEWOOD, B., and VERRALL, J.L.: ‘A Bayesian reliability growth model for
computer software’, Appl. Stat., 1973, Series C, 22, 3.

13 REMUS, H., and ZILLES, S. ‘A prediction and management of program quality’ Proc.
4th Intern. Conf. Software Engineering, 1979.

114 ICL Technical Journal May 1984

Notes on the authors
Dr. A. McKerrell Solution of the global element equations on the ICL DAP

Dr. McKerrell graduated from the University of Glasgow in 1965 with a Ph.D. in
Theoretical Physics. After appointments at Princeton, Iowa State and Cambridge
he was appointed to a Lectureship in the Department of Applied Mathematics
(now the Department of Applied Mathematics and Theoretical Physics) at
Liverpool in 1968.

Professor L.M. Delves Solution of the global element equations on the ICL
DAP

Professor Delves graduated from Oxford with a D.Phil. in Theoretical Physics in
1960. After appointments at the University of New South Wales and at Sussex
he was appointed to the Chair of Computational Science (now Computational
Mathematics) at Liverpool in 1969.

T.L. Faulkner The Atlas 10 computer (with C.J. Pavelin)
Quality model of system design and integration (with M. Small)

Trevor Faulkner is the manager responsible for product introduction and
technical support within ICL’s Atlas Division and manages the design authority
function for Atlas 10 products within ICL as a whole. He joined ICL from Elliot
Automation at the time of the formation of the company in 1968 and worked
in Stevenage on the design and development of the 7903 and of an early 2900
processor. Moving to West Gorton in 1975 he managed the development of
various 2900 products, including the system integration of 2950, 2955 and
enhancement to 2966 before joining the Atlas 10 project in October 1981.

M. Small Quality model of system design and integration

Mike Small graduated from Brunei University in 1967 and has worked for ICL
since then. He has been involved in the development of the 1900 and 2900
series and the ME29, his principle contribution to these developments having
been to develop test design methodologies. He has published a number of papers
on this subject in this Journal and elsewhere. His current post is as a system
designer in the Knowledge Engineering Business Centre at West Gorton.

Dr. C.J. Pavelin The Atlas 10 computer (with T.L. Faulkner)

Dr. Pavelin graduated from Cambridge in 1964 and worked for three years in the
Computer Division of the English Electric Company (which later became part of
ICL) before going to Edinburgh to read for a Ph.D. He joined the Science
Research Council’s Atlas Computer Laboratory (now the Computing Division,
Rutherford Appleton Laboratory, Science & Engineering Research Council) in
1972, where he is Head of the Systems Development Group.

ICL Technical Journal May 1984 115

Dr. K.J. Turner Towards better specifications

Ken Turner graduated in Electrical Engineering at Glasgow University in 1970
and went on to study at Edinburgh, where he gained a Ph.D. in 1974 for his work
on computer perception. After this he joined ICL and worked on many aspects
of communications design and implementation. He is currently running a project
which is studying specification and development methods for networking.

Dr. B.A. Kitchenham Program history records: a system of data collection and
analysis
Software cost models (with N.R. Taylor)

Barbara Kitchenham received a B.Sc. in Mathematics and Statistics (1969), M.Sc.
in Statistics (1970) and Ph.D. (1972) at the University of Leeds, and worked for
three years as a statistician before joining ICL as a systems programmer. After
several years working on the production of the VME operating system she
moved into the area of software management and since 1980 has worked on the
problems involved in measuring software and in integrating measurements into
the development process. She has published a number of papers on software
development, based on empirical studies of VME production.

P.D. Hall O.B.E. The ICL University Research Council

Peter Hall retired from ICL in April 1980. He had been with ICT, where his
career had included periods as Main Board Director responsible for the develop
ment and production of the ICT medium and large computer systems — 1904
and upwards, Atlas and Orion — and as Marketing Director. On the merger of
ICT and English Electric Computers in 1968, to form ICL, he became responsible
for Personnel, Education and Training and also for Software Development and
Field Engineering. Later he returned to marketing, and retired as Director of
Corporate Communication. He was appointed to the University Research
Council on its formation in 1982.

Peter Hall has been an active Governor of Queen Mary College, University of
London for several years and chairman of the College technology-transfer
company QMC Industrial Research Ltd. He was President of the British
Computer Society in 1981/2 and Chairman of Council during the Duke of
Kent’s term as President for the Silver Jubilee year 1982/3. He gave the Faraday
Lecture of the Institution of Electrical Engineers in 1966.

N.R. Taylor Software cost models (with B.A. Kitchenham)

After working for a year at the UK Atomic Energy Authority’s Fluid & Heat
Transfer Laboratory, Neil Taylor graduated in Mathematical Sciences at Teesside
Polytechnic in 1982. In that year he joined the British Telecom System X
Software Support Division, where he is now working in the Computer Systems
Support Group.

116 ICL Technical Journal May 1984

