
Technical
Journal

Volume 2 Issue 3 May 1981

ICL Technical
Journal

Contents
Volume 2 Issue 3

A dynamic database for econometric modelling
T.J. Walters 223

Personnel on CAFS: a case study
J. W.S. Carmichael 244

Giving the computer a voice
M.J. Underwood 253

Data integrity and the implications for back-up
K. H.Macdonald 271

Applications of the ICL Distributed Array Processor in econometric
computations

J.D.Sylwestrowicz 280
A high level logic design system

M.J. Y. Williams and R. W.McGuffin 287
Measures of programming complexity

Barbara A.Kitchenham 298

Editorial Board

Professor Wilkes retired from his Chair at Cambridge in the autumn of 1980 and is now living
in America; he has decided to resign from the Editorial Board, on grounds of practicality. The
Board and the management of ICL take this opportunity to record their very warm appreciation
of the great amount he has done for the Technical Journal. His wisdom and his advice, based on
his unrivalled experience as one of the pioneers of the computer age, and his insistence as a
scientist and a scholar on high but realistic standards have been invaluable. The Board sends its
thanks and good wishes to a colleague who is greatly respected and whose company has always
been enjoyed.

It is the Board’s good fortune that Mr. Donald Davies of the National Physical Laboratory has
accepted the Company’s invitation to become a member. He too has experience going back to
the earliest days of the digital computer, for whilst Professor Wilkes was building one classic
machine, EDSAC, at Cambridge, he was one of the team which was building another, ACE, at
NPL. The Board welcomes Mr. Davies with this issue of the Journal.

ICL TECHNICAL JOURNAL MAY 1981 221

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus Limited
on behalf of International Computers Limited

Editor
J.Howlett
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor)
D.W.Davies
(National Physical Laboratory)
D.P Jenkins
(Royal Signals & Radar Establishment)
C.H.Devonald

D. W. Kilby
K.H. Macdonald
B.M. Murphy
J.M. Pinkerton
E. C.P. Portman

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £10 (cheques should be made out to ‘Peter Peregrinus
Ltd.’, and sent to Peter Peregrinus Ltd., Station House, Nightingale Road, Hitchin,
Herts, SG5 1RJ, England. Telephone: Hitchin 53331 (s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8 , Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the UK
Copyright Act 1956, part 1, section 7, whereby a single copy of an article may be
supplied, under certain conditions, for the purposes of research or private study, by
a library of a class prescribed by the UK Board of Trade Regulations (Statutory
Instruments 1957, No. 868), no part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is however, not required to copy
abstracts of papers or articles on condition that a full reference to the source is
shown. Multiple copying of the contents of the publication without permission is
always illegal.

©1981 International Computers Ltd

Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142-1557

222 ICL TECHNICAL JOURNAL MAY 1981

Adynamic database for
econometric modelling

T.J.Walters
ICL European Division, Putney, London

Abstract

Many countries, especially those in the Third World and COMECON
groups, have government agencies responsible for macro-economic planning.
These agencies maintain large econometric databases covering national and
international economic statistics. The paper describes an integrated system
which has been designed to enable such organisations, who may not have
any specialist computer knowledge, to construct, evaluate and tune econo
metric models. Particular attention is paid to the needs for storage, cata
loguing, identification and retrieval of data and the facilities provided are
based on the ICL Data Dictionary System. Examples are given of typical
dialogues which might take place between a user and the system.

1 Introduction

The system which forms the subject of this paper is the result of a feasibility study
made on behalf of a State Planning Committee for a new system to be implemented
in 1982-83; it looks forward also to the likely development of the system beyond
that date. The bulk of the work of the Committee is the formulation of national
macro-economic plans with time-frames of 1, 5 and 15 years which, when they have
been agreed, must be monitored in operation to enable corrective measures to be
taken if economic performance starts to deviate from the plan. Plans are based on
models of national and international economies and optimisation is done by Linear
Programming (LP) techniques: indeed, LP was developed specifically in the USSR
in the 1920s for this purpose and a wealth of experience in such modelling has been
amassed by mathematicians and economists world-wide over the years.1

The impact on this work of the ‘information explosion’ has only recently begun to
be felt. In the organisation on which this study was based there is at present a
library of economic statistics containing about 3x l09 bytes of data, largely organised
into about 60 000 ad hoc matrices which have been built up over the last 15 years.
In spite of a decision to discard data relating to periods of over 20 years in the past,
this library is expected to exceed 1010 bytes within the next 10 years. This growth
comes mainly from two sources: externally in the form of new (‘raw’) data
provided by various outside bodies such as the country’s Department of Trade or
the Census Bureau, internally through the generation of new statistics and analyses
as a by-product of users’ processing of existing data. Merely to maintain the cata
logue of such a volume of data is itself a major task and in this case the problem is

ICL TECHNICAL JOURNAL MAY 1981 223

compounded because different users may take radically different views of the same
aspect of the economy and of the data relating to it, and there is a need for the
catalogue to reflect these varying points of view. At present the catalogue is held
manually in the computer centre, whose staff are involved in assisting the econo
metricians in constructing their models. It is felt that as the demands grow this
will place too great a burden on the computer centre staff and that a new method
of procedure must be found, taking advantage of the developments in decentralised
computing. The outcome of the study has been that a new system has been
proposed, aimed at enabling econometricians to interact directly with the com
puter through a terminal, the system providing them with the guidance previously
provided by the computer centre staff on what data is available, what suitable
processing techniques there are and how to use these.

Since users of the system will, as a by-product of their work, be generating data
which may be relevant to other users at some later date, and since it is not feasible
to impose a discipline on this when it is actually happening, we must design a self-
documenting database which will assume many of the functions traditionally
performed manually by the Data Administrator. This type of requirement arises in
other contexts than econometric modelling and the problems which it presents are
being tackled as a logical extension o f recent work on data dictionaries.2

Typically an econometrician takes several weeks to construct and tune a model,
running and refining it repeatedly until it is well behaved and he is satisfied that it
is a satisfactory representation of reality. During this process he will make regular
use of a MAC terminal to tune and try out his model, just as any programmer
might when developing a program. In the new system he has two distinct methods
of identifying the data he wishes to process. If he has used this recently, as will
often be the case because he will tend to develop one model over several months, he
may be able to identify it by a previously-allocated name and so enable the system
to retrieve it directly. But when he starts to construct a model he may not know of
any identity for the data he wants; indeed he may not know what relevant data
there is or whether any exists at all. He then needs to locate any data related to his
problem, with enough descriptive information to enable him to decide whether any
is suitable, or can be made suitable, for his purposes. The system must allow him to
express his needs in terms which are familiar to him.

The system which has been developed does provide such a service, and also enables
a user to specify directly the processing he wishes to perform, if he knows this, and
how to specify it. Otherwise the system enters into a dialogue with him and
discusses his requirements interactively until it has established what processing is to
be done; it then tells the user the direct way of specifying these processes and
performs them. This is illustrated in Appendix 1. In many cases only the require
ments for data and processing are established interactively, the system then setting
up a batch job to extract and process the data. This is so if the data is not on-line
or if the processing is mill-intensive. Only about 10% of data is held on-line at any
time, although this is expected to represent over 80% of data accesses.

224 ICL TECHNICAL JOURNAL MAY 1981

2 How the user sees his data

As mentioned above, there is considerable disparity between the ways different
econometricians, modelling different areas of the economy, see the same data.
However, most see their data as occupying positions within a space which can be
conceived of as having several dimensions or ‘axes’. There is considerable agree
ment between different econometricians’ concepts about what the main axes are,
the four most generally visible being:

Time
Geography
Product/product type
Economic unit/grouping.

This does not mean that all users use all of these, nor that they use only these, nor
even that where they use the same axis they agree about its structure. But these
four standard axes do form a lowest common denominator to which all users can
relate easily even when disagreeing about details. Another point of agreement is
that the axes are organised hierarchically; for example, some users considering
foreign trade will see the geography axis as

the world made up of
continents made up of
countries.

metastructure

world

A
continent

A
country

structure

Fig. 1 Hierarchical structures

This view may be represented schematically as in Fig. 1. The left-hand diagram
represents the metastructure, with the crow’s-foot symbol showing a one-to-many
relationship between the elements. The right-hand diagram, which for space reasons

ICL TECHNICAL JOURNAL MAY 1981 225

is obviously incomplete, shows the actual structure. Other users may group countries
by trading block and see the following structure

the world made up of
trading blocks made up of
countries.

These two classifications overlap and, as in many cases, have elements in common
at the lowest level; here because both users mean the same thing by ‘country’. The
relationship between the two structures is shown in Fig. 2. The overlap and
commonality have important benefits in that they make it possible for data
structured to one user’s view to be accessed meaningfully by another user. In this
example the ‘raw’ data would be by country and the system would summarise it
by continent or by trading block as appropriate.

metastructure

structure

Fig. 2 Overlapping structures

226 ICL TECHNICAL JOURNAL MAY 1981

Other users group countries in yet further ways, for example by GNP per head of
population, or according to major imports or exports, and all these alternative
structures can be superimposed. In the example above there is also commonality at
the highest level since ‘the world’ in both cases covers all countries. This however
is not always the case since some users wish to consider only certain countries and
ignore the rest: someone studying energy production may wish to consider only
countries which export coal, gas and petroleum for example. In this case there is
still commonality at the lowest level, although one user sees only a subset of the
other’s countries, but none at the top.

Still other users see a very different geographical axis, especially if they are model
ling the internal economy. They see the country at the highest level, divided into
counties, towns etc, with various alternative groupings of the same lowest level
units. It is conceivable that some econometricians analysing imports or exports by
county will want actually to have two geographic axes, one domestic and one inter
national. A case can be made for regarding these as two distinct standard axes and
it is possible that this maybe done in the future. The system is deliberately designed
to be evolutionary and thus allows changes to the standard axes.

Other axes may have similar hierarchical structures; for example, in the case studied
here the time axis is divided into 5 year, 1 year, quarter and month periods. There
is no 15-year unit because the 15-year plan is a ‘rolling’ one, meaning that at any
instant the current 15-year plan is composed of the current 5-year plan followed by
its two successors. At the other end of the scale, whilst the shortest term plan is
for 1 year, modelling for this is done on a finer time scale and much raw data is on
a quarterly or monthly basis. The time axis is not expected to have alternative
hierarchies, although some users will use only a subset of the standard; but in the
interests of homogeneity the system treats all axes identically, so the potential for
alternatives exists.

Alternative structures are particularly prevalent on the remaining standard axes,
Product and Economic Unit. There are many different ways of grouping pro
ducts together and since the construction of economic models involves considerable
skill and judgement there could be as many structures as models. However in
practice human nature comes to the rescue: defining these structures is laborious
and boring, so there is a tendency for a worker to use the same structure as for his
last model or to ‘borrow’ a structure from a colleague. It could be argued that the
system, in the interests of facilitating the construction of accurate models, should
make it easy for users to define new structures but in practice there are good
reasons for not doing so. First, there is no simple way of providing an effortless
means for defining structures; second, minor deviations from the ideal do not have
any significant effect on the accuracy of the model; and third, an undue proliferation
of alternative structures will produce an unnecessary overhead, particularly of disc
storage.

Similarly there are many ways of grouping firms, for example by type of business,
by location, by size (number of employees, turnover etc.) or by economic sector,
e.g. public or private.

ICL TECHNICAL JOURNAL MAY 1981 227

Apart from standard axes, users can also see other structures. For example, a user
modelling economic performance in some industry is interested in the income,
expenditure, profits, labour costs, capital investment etc. of firms and may see this
as having a structure. Fig. 3 illustrates this. In this example the structure reflects
mathematical relationships as well as logical ones. In other cases only the logical
relationship may be present; thus if ‘number of employees’ is added to the above
example there is the non-mathematical relationship between number of employees
and labour costs.

Fig. 3 Possible financial structure for an industry

2.1 Representing user-seen structures

The ICL Data Dictionary System (DDS)3 provides a suitable vehicle for represent
ing these structures. The Data Dictionary is partitioned into four main areas or
quadrants, as shown in Fig. 4. The user-seen structures are recorded in the ‘Con
ceptual Data’ quadrant which records entities, attributes and relations between
entities as shown in Fig. 5 . As we shall see later, the actual data can be represented
in the ‘Computer Data’ quadrant and the conceptual data mapped on to it.

The standard approach is to use the ‘Conceptual Data’ quadrant of the DDS to
record metastructures and to hold the actual hierarchies elsewhere, for example in
an IDMS database, and this is well suited to a conventional data-processing environ
ment where the metastructure can be defined in a (relatively) static schema4 In
such an environment, where changes to the schema are infrequent and are controlled
by the data administrator4 , this causes no difficulty; but in the present system
where users can create new hierarchies at will it imposes an unacceptable restriction.
The DDS,on the other hand, is designed to be dynamic and it allows new elements
and structures to be defined at any time and is therefore a much more suitable
vehicle for defining the user-seen hierarchies.

228 ICL TECHNICAL JOURNAL MAY 1981

Fig. 4 Data Dictionary Quadrants

In defining these hierarchies we must decide whether the elements are entities or
attributes — a question frequently debated by data lexicographers with the same
fervour as in mediaeval theologians’ disputations over the Trinity or as physicists
once argued over particles and waves. The distinction between an entity and an
attribute becomes very difficult to maintain in an environment where users often
take radically different views of the same data, so we have embraced the precedents
of the theologians and the physicists and fudged the issue by adopting the con
vention that every element is simultaneously an entity and an attribute.

3 How data is held

The most common structures are tables, matrices and data matrices; others such as
arrays, scalars and lists are also required. For the present purposes we shall consider
only the first three; they are the most interesting and once they have been dealt
with the representation of the others is a trivial problem.

ICL TECHNICAL JOURNAL MAY 1981 229

Fig. 5 Conceptual Data Quadrant

3.1 Data matrix

This is a rectangular array of data in rows and columns in which the rows are called
cases and the columns variates. It normally contains raw data such as is obtained
from a survey or a census. For a census a case would represent a person and a
variate the answers by all persons to one question. One important characteristic of a
data matrix is the fact that variates can be of different types: real and integer are
most common but other types such as character, logical and name are often re
quired. Most statistical systems treat the data matrix as a serial file with one record
for each case, reflecting the normal means of processing case by case. It is rare for it
to be either necessary or possible to hold the complete matrix in main store; data
matrices can usually be stored as serial files.

In computer terms, data matrices are held as a sequence of data records, each corres
ponding to one row or case and containing a series of items which are the variates

230 ICL TECHNICAL JOURNAL MAY 1981

for this case. In addition each matrix has three header records which act as
identifiers: one for the data matrix as a whole, a column header record containing
a series of column headers or variate identifiers and a row header record containing
a series of row headers or case identifiers. These case and variate identifiers cor
respond to entities/attributes at the conceputal level. For example, a data matrix
of company results would have column headers corresponding to the elements of
the structure shown in Fig. 3 and the row headers would be the case identifiers
relating to individual firms represented on the hierarchy of the Economic Unit axis.
We shall examine later how we record these correspondences, as well as other
relationships between the data matrix and the user’s view such as the year to which
the data relates (time axis) and the fact that it relates to all products and the whole
country (product and geography axis).

3.2 Table

This may have any number of dimensions although two is the most common.
Tables of more than two dimensions can be treated as a sequence of two-dimen
sional tables. The entries must be all of the same type; they are often frequencies
and therefore of type integer but they could be of other types, for example the
numerical values of a variate. Most statistical systems which recognise the table as
a data structure retain as part of the table some descriptive information on how the
cells were formed: that is, the boundaries, ranges, levels etc. which define the cells
are retained for each dimension. Tables with just two dimensions are frequently
held in main store, particularly when access to individual entries is required; thus
there is usually a main-store form as well as an external backing-store form for a
table.

Tables are held externally in backing store in a way similar to data matrices, that is,
as a sequence of data records corresponding to individual rows; and in main store as
an n-dimensional matrix. In addition, as with data matrices, each table has a series
of header records: a table header record followed by an axis header record for each
dimension, where each axis header contains a series of vector header items identify
ing that row or column. The vector headers may correspond to entities/attributes at
the conceptual level, but not necessarily so; for example, if a table contains
frequency distributions the vector headers for one or more axes will contain
boundaries, limits of ranges which do not correspond to user-seen entities.

3.3 Matrix

This is the usual rectangular arrangement of values, all of the same type. Values are
usually o f type real or integer but again other types such as boolean are possible.
The matrix may frequently be held in main store with operations on individual
elements allowed. The internal representation is usually as a normal computing-
language array with two dimensions, and a number of arrangements on external
magnetic media is possible. The matrix is often formed from a data matrix, a
table or other matrices and does not often contain raw data. Among many possi
bilities it may contain frequencies obtained from one or more tables or values such
as correlations derived from a data matrix.

ICL TECHNICAL JOURNAL MAY 1981 231

Matrices are held as a special case of tables, with only two dimensions.

3.4 Recording data structures

We can generalise these data structures as shown in Fig. 6 where ‘Matrix’ is used as
a general term for Table, Matrix or Data matrix. Some of the relations are many-to-
many because the same vector may occur in different axes (of different matrices)
and it is even possible for different matrices to have a complete axis in common —
as, for example, when one matrix is a by-product of processing another.

Fig. 6 Metastructure of data

The ICL DDS does not recognise Matrix, Axis or Vector as element types but does
recognise File, Record and Item which have the required relationships and which
we can use in their place. These are shown in Fig. 7. This use of the elements is
unorthodox but not unreasonable, since in fact each matrix is held in the VME/B
filestore as a file and, as explained above, we wish to hold a record for each axis
containing an item for each vector. What is more unconventional is that the Record
element is meant to refer to a record type, whereas we have one for each axis
although the axis records are, strictly speaking, all of the same type. Similarly we
have an Item element for each vector although they are repeated items of the same
type. In fact, just as in the Conceptual Data quadrant, we are using the Data
Dictionary to hold the data of these axes records and not just their description. The
reason we do this is that the data, in particular the vector identifiers, relate to
elements in the Conceptual Data quadrant and we can use the DDS’s mapping
mechanisms to record these links, as shown in Fig. 8. Because we are holding the
axis data in the Data Dictionary we do not need to hold it again in the data file, so
this latter is reduced to holding only the data records.

232 ICL TECHNICAL JOURNAL MAY 1981

4 How the user processes the data

4.1 Finding the data

Now that we have described the structures of the Conceptual Data and Computer
Data quadrants of the data file we can trace the paths used by the system in helping
the user to identify his data and to locate this for him.

To start with, a user will name a variable which he wishes to process and the system
will search for an entity with this name. If it cannot find one it will ask him for
alternative names or names of related variables until it has found the variable he
wants. It will confirm this by displaying the structure of which this entity is part ; if
this structure is too large to display conveniently it will display the other entities
most closely related to the one in question. If no suitable entity can be found this
phase is abandoned and the system proceeds to the next stage.

Fig. 7 Computer Data Quadrant

ICL TECHNICAL JOURNAL MAY 1981 233

Fig. 8 DDS mapping of Conceptual and Computer Data

Next the system asks how the user wants to analyse his variable, offering analyses
by each of the standard axes. If the user asks for any of these he is asked what
structure he wants to use, being prompted with standard structures for this axis
plus any special ones he may have defined in the past. If none of these is suitable
he is asked to define the structure he requires. Once the system has located these
structures in the Conceptual Data quadrant it uses the links to the Computer Data
quadrant to find any matrices, tables etc. linked to the structures he wishes to use
as analysis criteria, and to the variables he is interested in. If the system cannot find
any suitable data it identifies data linked to related entities and offers this,
suggesting ways it can be manipulated to make it fit the user’s specification. Finally
the system enquires what other variables the user is interested in and whether he
wants these classified in the same way, and locates suitable data. When the user has
identified all his data the system tells him the quick way to specify it for him to use
the next time he wants it and goes on to enquire what processing he requires.

234 ICL TECHNICAL JOURNAL MAY 1981

An example of such an interactive session is given in Appendix 1.

This navigation of the Data Dictionary is possible because

(a) all elements have, in IDMS terms, CALC keys containing two sub-keys,
element type and element name

(b) the linkages shown in Fig. 8 are all recorded.

Furthermore, all elements have an ‘owner’ who is the user who created them; this
does not necessarily preclude others from accessing them but it does enable the
system to distinguish one user’s axis structures from another’s.

The processing requirements also can be determined interactively if the user is not
sure how to specify them; this is done with the aid of a development of the ICL
Package-X statistical system.5

4.2 Specifying the processing requirements

Package X enables the planner to approach the system from three positions.

He may know - the program he requires
— the analysis he requires but not the program
— neither the analysis nor the program.

The information necessary to identify the program for the planner from these
starting positions can be organised in an IDMS database with the structure shown in
Fig. 9. We consider the three possibilities.

(i) If the planner knows the name of the program this can be CALC computa
tion on the PROGRAM record type.

(ii) If he knows the analysis but not the program, the appropriate ANALYSIS
record may be located by CALC computation. From this the program
or programs that provide the analysis can be located via the ANALYSIS IN
PROGRAM record or records.

(iii) If he wishes to explore what is available for a particular problem he will
enter an appropriate economic term which if necessary will be converted
by the system into a standard term. Access can then be gained to a des
cription of the term in the TERM DESCRIBE and to the appropriate
analyses. Since many analyses may be appropriate, and one analysis may
be relevant to many standard terms, access to ANALYSIS records can be
made via the TERM IN ANALYSIS records. Having located the required
program, the user may choose to select the dialogue which will allow him
to specify what he wants the program to do for him. For this, the control
program must first determine from the user which of the three starting
positions applies. If (i), then access to the appropriate dialogue is direct. If
(ii), the control must identify a possible program or programs. If there is

ICL TECHNICAL JOURNAL MAY 1981 235

only one then access is again direct; if there are several then the user must
be asked to choose which one he wants and this may require display of
information about each of the possible programs.

These possibilities, and the way in which the system deals with them, are illustrated
in the example given in Appendix 1. 5

Fig. 9

5 Setting up and maintaining the dictionary

One of the major attractions of the structure described is the ease of both creation
and maintenance of the dictionary. Once standard structures have been defined for
each of the standard axes — a relatively trivial task — work can begin on inputting
the matrices contained in the present library. This involves only a small amount of
human intervention for each one, giving the matrix identity, input format (the
present system uses half-a-dozen standard formats corresponding to various ap
plication packages in use) and the user to whom the data belongs. This last is not to
restrict access but to assist in linking the vectors to any user-defined structure in
the Conceptual Data quadrant. If a matrix has vectors which do not correspond to
any previously defined entity/attribute in the conceptual data then an attempt to
create a link will not fail; instead the DDS will create a skeleton entry for the
missing element and continue processing. This will normally occur when a user’s

236 ICL TECHNICAL JOURNAL MAY 1981

data is input before he has defined the appropriate non-standard structures. Sub
sequently the DDS can output for each user a prompt list of all such unsatisfied
cross-references, inviting him to define the missing elements.

Matrices generated during processing can be accommodated even more easily
because the format is standard and the user is known, so all that remains to be done
is to supply an identifier, which the user must do for the relevant application
package anyway.

6 Implementation

The full implementation of such a system is likely to take many years; this paper
has described only the direction of the first phase. The final specification — if an
evolutionary system can be said to have a final specification — will emerge from the
experience gained with the earlier stages, but the broad aim is clear: to make the
user more self-sufficient and to lessen his dependence on other staff. Meanwhile, to
enable a basic package to be developed quickly so that users may start to reap
benefits before the development costs have risen too high, we have chosen to use as
many existing products as possible, in particular Package-X and the DDS. The
architecture of Package-X is such that it can be readily extended to encompass
further processing routines, and even data retrieval routines, by expanding its
database of programs and dialogues. The DDS provides a proven package for
building and maintaining a data dictionary with facilities for amending and inter
rogating this and for ensuring integrity, security and resilience.

6.1 Adapting the DDS

There are some 15 standard interrogations supported by the DDS, of which the
most common are:

(a) to find a particular instance of an element type:
e.g. FIND ENTITY GROSS-PROFIT

(b) to find all elements of a given type linked directly to a named element:
FOR RECORD SETTLEMENT AXIS FIND ALL ITEMS*

(c) to find all elements of a given type which are indirectly linked to a named
element, the type of indirection being indicated:
FOR ENTITY GROSS-PROFIT VIA ATTRIBUTES VIA ITEMS VIA
RECORDS FIND ALL FILES

(d) to find all elements of all types which refer to a given element:
FIND USAGE OF ATTRIBUTE GROSS-PROFIT.

*The term SETTLEMENT, here and later, is used to denote some geographical entity such as a
town, a district etc.

ICL TECHNICAL JOURNAL MAY 1981 237

More refinements of these interrogations are possible by further qualifying the
elements to be searched. For example, as mentioned in Section 4, each element is
‘owned’ by a user and searching can be restricted to elements belonging to a
particular user, not necessarily the current one. Elements can also be assigned to
user-defined classes and only elements of particular classes retrieved. Any element
can belong to several classes, up to a maximum of five, so that overlapping classifica
tions are possible. These facilities are used, for example, in user-defined hierarchies
where the ‘owner’ is the user who defined the hierarchy and the entities belong to
classes which indicate whether they represent a metastructure or a structure,
whether or not they are the root of this structure (or metastructure) and which
axis they describe. This makes it easy to retrieve, say, all the geographical structures
for a particular user in order to ask him which one he wishes to use.

Fig. 10 Metastructure of a tailor-made dictionary

While these interrogations provide some useful functions they do not operate on the
terms or on the level which the user sees; it is therefore necessary to package them
to present a more suitable user interface. There are two main ways of doing this.

238 ICL TECHNICAL JOURNAL MAY 1981

The first is for the routines supporting the extended Package-X interface to call
some of the routines from the standard enquiry program; this will be adopted in the
first instance as it is a way of providing the interaction which is cheap and simple
even though not always the most efficient. The second, which will be done later, is
to write a purpose-designed program to support the required interrogations, using
the formal DDS interface which enables COBOL programs to read the Data
Dictionary. It would of course be possible to incorporate some of the routines from
the standard enquiry program into this purpose-built software, to reduce the work
involved, either as a temporary or a permanent measure.

6.2 Subsequent developments

As the data volumes and numbers of users increase it may become desirable to
structure the dictionary differently so as to reduce the number of elements needed
to describe the data and the user’s view and to reduce the number of linkages used
to connect them. In that case a totally purpose-built system could be constructed
using IDMS, analogous to the standard DDS but employing the elements and
relations which are particular to the data in question. An example of how such a
tailored dictionary might look is given in Fig. 10. This has four sections instead of
the two in the standard DDS, representing conceptual metastructure, conceptual
structure, actual metastructure and actual structure. As can be seen, this arrange
ment has no many-to-many relationships and therefore can be implemented in
IDMS. An order of magnitude estimate for implementing such a tailor-made system,
including archiving, recovery, maintenance and interrogation facilities is 20 man-
years. In view of the steadily rising cost of custom-built software and the falling
cost of hardware it is the author’s belief that it will always be more cost-effective
to provide a more powerful hardware engine than to embark on a software project
of this magnitude.

Acknowledgments

The author wishes to thank the following for their contributions to and comments
on the system described in the paper: C.Clayman and B.E.Cooper, ICL Dataskil;
AJones, ICL Sweden, and J.Watters, ICL European Division, Putney.

References

1 AUGUSZTINOVICS, M.: Application o f mathematical models and computers in long
term planning - a methodological summary, NPD, Budapest, 1977.

2 JONES, M.T. and SANKEY, T.: The MIAS oceanographic database: an integrated data-
base/Data Dictionary in Database achievements, British Computer Society, London,
1979.

3 BOURNE, T.J.: The data dictionary system in analysis and design, ICL Tech. J. 1979,
1(3), 292.

4 IDMS technical overview, ICL Publication P1307, 1980.
5 COOPER, B.E.: Statistical and related systems, ICL Tech. J. 1979, 1(3), 229.

ICL TECHNICAL JOURNAL MAY 1981 239

Appendix 1

Example of dialogue between a user and the system

A .l Dialogue to identify data

System: What variable are you interested in?

User: PROFIT

What is profit an aspect of?

HELP

Do not recognise the variable profit
Do you sometimes use another term for it?

GROSS PROFIT

I have a group of variables called COMPANY
ACCOUNT: it is:

Total income
Gross Profit

Net Profit
Taxes

Total Expenditure
Capital Expenditure
Running Expenditure

Material Costs
Wages Costs
Overheads

Is this the GROSS PROFIT you mean?

YES

How do you want to analyse GROSS
PROFIT?

HELP

Do you want to analyse by time?

NO

Do you want any particular time?

1978

Do you want to analyse by geography?

YES

The standard geographical analysis is:

Country containing:
County containing:

District containing:
Settlement

The last geographical analysis you used was
ECONGEOG:

Country containing:
Region containing:

Settlement size group containing:
Settlement

Is one of these suitable?

ECONGEOG

By which units of ECONGEOG do you want
to analyse?

SETTLEMENT SIZE GROUP

Do you want to analyse by industry?

NO

Do you want any particular industry?

NO

Do you want all industries?

YES

All industry is called “TOTAL ECONOMY”
Do you want to analyse by product?

TOTAL PRODUCTS

I do not have a product structure called
“TOTAL PRODUCTS”
Do you want to analyse by product?

YES

Do you want any particular product(s)?

TOTAL PRODUCTS

Do you want to analyse by any other
criteria?

NO

I have no analysis of GROSS PROFIT by
SETTLEMENT SIZE GROUP for 1978 for
TOTAL ECONOMY for TOTAL PRO
DUCTS.
I have an analysis of GROSS PROFIT by
SETTLEMENT for 1978 for TOTAL

240 ICL TECHNICAL JOURNAL MAY 1981

ECONOMY for TOTAL PRODUCTS. This
is called 1978 COMPANY RESULTS BY

ALGORITHM = AGGREGATE)

SETTLEMENT. Can 1 use it?

YES

How should I derive the SETTLEMENT
SIZE GROUP figure from the SETTLE

EXTRACT (VAR = WORKFORCE,
SOURCE = 1978 COMPANY STATISTICS
BY ENTERPRISE,
ALGORITHM = AGGREGATE,
EXECUTE = YES)

MENT figures? How would you like to process the variables?

HELP

I have standard algorithms called AGGRE
A.2 Dialogue to introduce new data

GATE, MEAN, MEDIAN, MAXIMUM,
MINIMUM, ALGEBRAIC MEAN. Will one

User: INPUT MATRIX

of these derive SETTLEMENT SIZE GROUP
figures from SETTLEMENT figures?

System: What is the matrix name?

AGGREGATE
1978 COMPANY RESULTS BY SETTLE
MENT

Are you interested in any other variables? How may dimensions does it have?

WORKFORCE 2

Do you want to analyse by the same criteria? What is the first dimension called?

YES SETTLEMENT

I do not have an analysis of WORKFORCE
by SETTLEMENT SIZE GROUP for 1978

Is this a geographic grouping?

for TOTAL ECONOMY for TOTAL
PRODUCTS.

YES

I have an analysis of WORKFORCE by
What is the second dimension called?

SETTLEMENT by ENTERPRISE for 1978
for TOTAL PRODUCTS. This is called 1978

COMPANY DATA

COMPANY STATISTICS BY ENTERPRISE.
Can I use this?

Is COMPANY DATA a time grouping?

YES
NO

How can I derive the figure by SETTLE
MENT SIZE GROUP for TOTAL

Does the data refer to a particular time?
(Replies: No particular time)

ECONOMY? from the figures by SETTLE
MENT by ENTERPRISE?

YEAR 1978

AGGREGATE
Is COMPANY DATA an economic group
ing?

Are you interested in any other variables? NO

NO

I will extract the variables you want.

Does the data refer to a particular economic
unit? (Replies: No particular unit)

I will call them GROSS PROFIT AND
WORKFORCE.

TOTAL ECONOMY

The quick way to do this is: Is COMPANY DATA a product grouping?

EXTRACT (VAR = GROSS PROFIT
SOURCE = 1978 COMPANY RESULTS BY

NO

SETTLEMENT, Does the data refer to a particular grouping?

ICL TECHNICAL JOURNAL MAY 1981 241

TOTAL PRODUCTS

Since the second dimension does not cor
respond to a standard axis may I assume the
structure of this dimension is a simple list of
variables as named with the matrix?

YES

Where is the matrix now? (Reply: file name)

CORESLTSET7 8

The quick way to specify this using the
system control language is:

INMAT (NAME = 1978 COMPANY
RESULTS BY SETTLEMENT

SOURCE = CORESLTSET78
DIM = 2
AXIS = SETTLEMENT &

DATA
GEOG = SETTLEMENT
TIME = YEAR 1978
ECON = ALL
PROD = ALL)

Thank you, I have input the matrix.

A.3 Dialogue to identify and initiate
process

System: What is your area of interest?

User: INPUT-OUTPUT MODELS

I know INPUT-OUTPUT MODELS as
Leontief Models. Would you like a defini
tion of Leontief Models?

YES

Leontief Models
Also known as input-output Models.
Leontief Models represent the interrelation
ships between different sectors of a country’s
economy. Output from an industry or
sector is often used as:

1. immediate consumption
2. input to other industries

Leontief Models are based on input-output
matrices giving the values of industry and
primary goods to produce unit of industries
output.
The models are used to find best ways of
satisfying a bill of goods each year from the
economy.
Leontief Models are solved using linear

242

programming via the Leontief Model Genera
tor.
Would you like a brief description of this?

YES

Leontief Model Generator
This application system produces Linear
programming data for a Leontief Model
from a number of input-output matrices.
Would you like a brief description of
Linear Programming?

YES

Linear Programming (LP)
LP is the mathematical statement of opti
mising (minimising of maximising) a linear
function of a number of variables whilst
satisfying a number of linear equality or
inequality constraints.

For example given
C(J)
B(J)
A(I,J) 1=1, M;J = 1,N
L(J) >-INF
U (J)<IN F

Find X(J) that minimises sum (J): C(J)*X(J)
such that sum

(J): A (I,J) X (J) < B(I); I = 1,M
L(J) < X(J) < U(J) ; J = 1,N

Do you require more details about Linear
Programming?

NO

Leontief models may be solved using the
Leontief Model Generator.
Do you wish to use this?

YES

Control has now passed to the Leontief
Model Generator.
How many industries or sectors?

3

How many primary goods?

HELP

Primary Goods are limited resources such as
labour or productive capacity. You are re
quired to give a number greater than or
equal to 1.

How many primary goods?

ICL TECHNICAL JOURNAL MAY 1981

1

How many time periods?

5

Please give names of industries

COAL STEEL

Only two names. Please give 1 more.

TRANSPORT

Please give name of primary goods

LABOUR

Name the 1-0 production matrix. Should be
4 x 3 .

PRODIO

What is time delay in periods?

1

Name the 1-0 productive capacity. Should
be 4 x 3.

PRODCAP

What is the time delay in periods?

2

Name the initial stocks matrix. Should be
6 by 1.

STOCKO

Name the initial productive capacity matrix.
Should be 3 by 1.

PRODCAPO

What is periodic primary goods capacity for
LABOUR?

470

What is objective:
Max total capacity, at year 5 (cap)
Max total production in year 4+5 (prod)
Max total manpower over period (Man)?

CAP

What is exogenous consumption each year

coal?

60 60

steel?

30

transport?

70

Do you wish to see the results at the
terminal?

YES

I am now 1. Generating the LP model
2. Solving the LP model
3. Producing the results

ICL TECHNICAL JOURNAL MAY 1981 243

Personnel on CAFS:
a case study

J.W.S. Carmichael
ICL Corporate Information Systems, Putney, London

Abstract

Over the past two years the entire body of personnel files for ICL’s staff in
the UK, covering over 25 000 people, has been transferred to a system
based on the Content Addressable Files Store, CAFS. This has resulted in
considerable benefits to all the personnel services which can be summarised
by saying that the new system gives greatly increased flexibility and better
services at lower cost. The paper describes in outline the system and the
process of transfer to CAFS and indicates the effort involved in the transfer
and the scale of the benefits obtained. The success of the CAFS system has
been so great that a ‘packaged’ personnel system has been produced and is
available as an ICL product.

1 Background: the environment and the problem

1.1 Corporate Information Systems

Corporate Information Systems (CIS), in the ICL Finance Group, is the name
given to that part of ICL’s central organisation which is responsible for the internal
administrative dataprocessing and statistical services. It has Data Centres at Hitchin,
Letchworth and Stevenage, all in Hertfordshire, equipped with a variety of
machines in the 2900 range and running under the VME/B and DME operating
systems. There is a CAFS system at Hitchin. About 500 terminals are linked to
these centres and at peak periods the traffic flow exceeds 100000 message pairs per
day.

CIS’s responsibilities cover system design, programming and providing and running
the machines to provide operational services. The compiling, holding and proces
sing of the data used in any of these services is the responsibility of the Division
requesting the service.

1.2 Personnel

The Personnel Division has sole responsibility for the essential staff records. It
maintains a database of personnel records of all staff in the United Kingdom, the
corresponding information for overseas staff being held in the relevant country
headquarters. The database is a set of records, one for each employee and each

244 ICL TECHNICAL JOURNAL MAY 1981

consisting of about 200 data elements; some details of a typical record are given in
Appendix 1. The total number of records held at any one time always exceeds the
number of staff on the payroll at that time, because it is always necessary to allow
for possibilities o f actions or enquiries for some time after an employee has left the
company. In the period under discussion here this number has varied around 25 000.

The database had been built up on conventional lines and was held as a set of serial
files, the master files being on magnetic tape and up-dated weekly in batch-mode
machine runs. There has been from the start a requirement for regular and pre
dictable processing, typically for payroll and for the repeated printing of periodical
reports and statistical analyses. The system was designed with this in mind and gave
a satisfactory service. But as so often happens, information recorded for one set of
purposes soon proved to be valuable in other contexts and a rapidly increasing
demand built up for ad hoc enquiries of the database and for accompanying
reports — an obvious example being the need to look for staff with unusual com
binations of qualifications in order to meet the needs of new and unusual projects.
The standard ICL FIND-2 information retrieval package was available for work of
this kind and served well enough in the early days, but as the needs for such
enquiries grew the demands on the computers and, more important, on the time
and effort of the senior personnel officers, who had to plan such enquiries in detail,
began to become unacceptable. In early 1979 when it became clear that the system
would have to be redesigned the amount of machine time used by the personnel
services was excessive and there was a strong feeling that what one may call the
tactical work was encroaching seriously on the time the senior personnel officers
could give to more important strategic studies. It was clear also that the amount of
effort required by CIS to deal with the ad hoc workload would prevent any funda
mental improvement of the personnel information systems by conventional means.

1.3 Decision to develop a CAFS system

The essential problem is the classical file-searching one: to find a means, first, of
formulating possibly very complex criteria for the searching of a very large file of
records and, second, of extracting quickly and effectively the possibly very small
number of records which satisfied those criteria. Or, to put it more informally, to
be able, with as little effort as possible, to ask any kind of question of this large
body of information and to get quick and meaningful answers. This is exactly the
situation to which the Content Addressable File Store, CAFS, is so well adapted.
To have attempted to improve the performance of the existing personnel system
simply by providing more machines and more people would have been too costly;
CAFS offered the possibility of an intrinsically better system with better perform
ance and lower costs. Therefore the CIS and Personnel managements decided
jointly in early 1979 that a new system should be developed,based on CAFS. 2

2 Development of the CAFS system

2.1 About CAFS

CAFS was developed in ICL’s Research and Advanced Development Centre (RADC)

ICL TECHNICAL JOURNAL MAY 1981 245

at Stevenage and was launched as an ICL product in October 1979. No detailed
knowledge of the device is necessary for an understanding of this paper. In fact, it is
enough to know that it is a very fast hardware character-matching device capable of
reading information from a standard disc store at three megabytes per second and
making character comparisons at a rate of 48 million per second; together with
mainframe software which allows one to formulate search criteria of almost
unlimited complexity. There is a description of the device and its method of working
in a paper by Mailer1 and more operational information in the ICL Manual, CAFS
General Enquiry Package.2

The development of the CAFS personnel system was a joint undertaking between
CIS and RADC, for good symbiotic reasons: RADC had the expertise from which
CIS could learn and gain and CIS had a large, serious, real-life problem, the tackling
of which would give RADC valuable experience of the scope and power of CAFS.
The CAFS personnel service started on the RADC machine and was transferred later,
first to a machine at Bracknell and finally to CIS’s own machine at Hitchin.

2.2 Tasks to be performed

Let us first recall that the body of information with which we are concerned is a
large number (over 25 000) of records, each of which relates to an individual
employee and is made up of some 200 fields, that is, separate pieces of information
about that inidividual. These pieces of information can be of any length and in any
mode - for example, numerical for age or pay, literal string for languages spoken
and boolean for answers to questions like ‘drives a car?’. An enquiry may be
directed at any of the separate items or at any logical combination. In the original
system the records were held in the format required by the 1900-DME operating
system. For the transfer to CAFS the following tasks had to be performed:

(i) Create a formal description of the data, to identify and describe the struc
ture of each record to the CAFS basic software. This had to include field
identifiers which would be used not only by the CAFS software but also
by the personnel officers making enquiries and were therefore, so far as
possible, to be in plain English and easily comprehensible - for example,
PAY, JOINDATE.

(ii) Define a format for the records in the new system, also for the use of the
CAFS basic software.

(iii) Write a program to convert the records from the original format to the
new, and load on to CAFS discs.

(iv) In this particular case there was a further need because, for historical
reasons, the original database was held as two master files with somewhat
different structures. It was therefore necessary to write a program to
combine the two, making data conversions as necessary, into a single file
with one structure.

(v) Because of the sensitive nature of the information being handled, build in
the most rigorous checks on privacy and barriers to misuse.

This last point will be dealt with specially, in Section 4.

246 ICL TECHNICAL JOURNAL MAY 1981

Appendix 2 gives details of the data description and of the record format which was
produced.

2.3 Effort involved in the transfer

The whole exercise was completed with quite a small effort. The work started in
February 1979 and the enquiry service from terminals communicating with the
RADC machine first became available to users in May 1979. The total manpower
used was about two man-months by CIS and about one man-month by RADC. In
the light of first experience, modifications were made to the system to improve
performance at a cost of about £2 000. A note on these is given in Section 3.2. The
total implementation cost was therefore less than £10000.

3 Experience with the CAFS service

3.1 Preliminary training

One of the important benefits expected of the CAFS system was that it would
enable the users, whose speciality was personnel work rather than computer tech
niques, to become self-sufficient. A User Guide was therefore written which, in
about 30 pages, gave a basic account of CAFS, described the structure of the
personnel file and gave the names of the data fields in the records, the ways in
which enquiries could be formulated and the forms in which responses could be
displayed, whether on a VDU screen or as printed output. The Guide included all
the information which a user would need in order to use a terminal, including how
to browse through retrieved information. After some study of the Guide, members
of the personnel staff were given training in the actual use of the system under the
guidance of an experienced member of CIS. But in the event, training proved
remarkably simple: the potential users took to the system quickly and easily and
essentially trained themselves. This has been one of the most gratifying features of
the whole project and emphasises the fact that the use of a CAFS enquiry service is
natural and easy for non-technical people. This point is returned to in Section 3.2
below.

3.2 The system in use

CIS has now had nearly two years operational experience of the CAFS service,
building up from the initial limited use on the RADC machine to the present full
time availability on its own equipment. From the first the results were exciting.
Perhaps the most dramatic effect was the almost immediate disappearance of
demands for ad hoc reports, for the simple reason that the personnel staff found
that, for the first time, they could formulate their own questions and get their own
answers, without the aid of data-processing specialists. For the same reason they
found that they no longer needed to ask for comprehensive general reports from
which to abstract particular pieces of information, but instead could ask the
questions directly and get accurate and relevant answers immediately. All expressed
pleasure in being able to work in this way.

ICL TECHNICAL JOURNAL MAY 1981 247

The benefits are due to two fundamental properties of CAFS acting together: the
scope for asking questions of almost any degree of complexity, including that for
putting rather indefinite questions such as when one is not certain of the spelling
of a name; and the very high speed with which information is retrieved. In this
application it takes only 14 s to scan the whole file and, as will be explained later,
the system has now been organised so that a full scan is needed in only a minority
of enquiries. Further, the basic software has powerful diagnostic facilities which
give simple and self-explanatory error messages if a mistake is made in input such as
mistyping an identifier, or if a logically inadmissable question has been asked; thus
error correction is quick and easy. Of course, many enquiry languages have these
desirable properties and can provide as much; what is unique about CAFS is the
combination with such high speed, so that mistakes scarcely matter — certainly
they cannot lead to any disastrous waste of mainframe time. This has the important
consequence that use of the system becomes very relaxed. The personnel officers
soon found that they could start an enquiry with a simple question, see what it
produced and refine it in stages by adding more qualifications successively. This was
in striking contrast to the approach which was necessary with the original con
ventional system, where the whole enquiry had to be planned and specified in full
detail, and the values for all the parameters given, before the search could be
initiated.

In the light of experience gained in real-life use, various changes have been made to
the system to improve its performance by tuning it more accurately to users’
requirements. Most of these have been changes to the grouping and location of the
fields and the records. For example, the file was loaded initially in simple order of
personnel number and almost every enquiry entailed a full file scan. ICLin the UK
is organised into five major Groups — Manufacturing, Product Development,
Marketing, Services and Finance & Administration; it was soon seen that the
majority of enquiries were restricted to the user’s own Group. The file is now held
in sequence of salary scale code within Administration Centre. This has reduced the
average search time considerably; a senior officer accessing the file at Group level
seldom needs to scan more than one-quarter to one-third of the file, involving at
most 4 to 5 seconds; whilst a user accessing at Administration Centre level can scan
all the records with which he is concerned in at most 1 second. The changes, to
gether with the necessary changes to the loading and search programs referred to in
Section 2.2, took very little effort and in fact it was practical to experiment with
several different arrangements of the material before settling for the one now in
use.

An indication of the gain in performance is given by the fact that with the previous
system, using FIND-2, a scan of the whole file took about 25 minutes; the absolute
maximum for a scan is now 14 seconds - a speed increase of over 100 - whilst, as
has just been said, many enquiries now take not more than 1 second and so have
become tasks of almost negligible magnitude.

A few examples of typical questions are given in Appendix 2.

248 ICL TECHNICAL JOURNAL MAY 1981

4 Privacy and security

No-one needs to be told that information so sensitive as personnel records has to
be handled with the utmost care and protected with the most comprehensive
security mechanisms. This of course was done in the original system. CAFS allows
several levels of protection to be implemented which will now be indicated.

First, of course, a potential user must be authorised by being given a user number
and told the password which goes with that number — this is common form. Users
have not needed to be told that passwords are to be carefully guarded.

Each Group’s data can be treated as a logical subfile, so that a user can be restricted
to a single Group’s data and prevented from accessing records in any other Group.
The principle can be carried to finer subdivisions, for example to Administrative
Centre. Thus a user can be confined to the records of the one specified body of
staff with which he is authorised to deal.

The data description facilities include what is called the subschema method of pro
tecting specified areas of data. For example, salary information can be designated as
one area and any user can be prevented, by an entry in the code associated with his
authorisation, from any form of access to this — users thus restricted can neither
enquire of it, count it, display it nor change it in any way.

A problem is presented by the need of certain users for restricted access to particular
records across the whole file or some large area. This is dealt with by setting up
‘predicate locks’, which in effect deny such a user certain logical combinations of
enquiry. For example, a user may be authorised to scan the whole file for all but
certain items for which he is restricted to a specified area. He might seek to fmd a
total for the forbidden area by getting this for the permitted area and for the whole
file, and subtracting. The predicate lock method can be used to prevent this and in
fact to prevent a user so restricted from asking any question of the whole file which
concerns information to which he does not have explicit right of access. This
method of control operates by incorporating into any enquiry additional selection
terms which impose the desired restrictions; all this is invisible to the user and is
invoked automatically without any degradation in performance.

5 Conclusions

(i) There is no doubt of the service’s popularity with users. Not only has there
been a continual series of comments on how successful and helpful it is, but it is
used directly by many senior personnel officers who now prefer to use the terminals
themselves where previously they would have delegated the tasks. They find they
are able to think at the terminal and develop enquiries in a manner they find logic
ally and intellectually natural and stimulating.

(ii) From the point of view of CIS the results are also uniformly successful. For the
first time a means has been found of reducing the burden of tactical work and of
freeing resources foT strategic developments: the tactical, ad hoc work has simply
disappeared, being completely absorbed into the enquiries made by the users them

ICL TECHNICAL JOURNAL MAY 1981 249

selves. It is as though the department had doubled its resources without any
increase in numbers of staff or in salary costs.

(iii) Operationally there have been considerable savings. Apart from the elimination
of the ad hoc work, many of the regular reporting suites have been suspended from
normal operation or their frequency of use reduced: the information which used to
be found by extraction from a comprehensive print-out is now obtained directly in
response to specific questions. This has given a worthwhile reduction of the batch
processing load on the machines and helped in realising the aim of reducing the
amount of work needed to be done in unsocial hours and transferring this to prime
shift.

(iv) The experience of this project has shown that CAFS is a powerful and valuable
tool not only in dealing with such massive and highly-structured bodies of informa
tion as telephone directory enquiries - which was its first application - but also in
tackling quite general information retrieval problems.

(v) Based on this experience, ICL is now studying the application of CAFS to all
of its internal data processing.

(vi) The success of the Personnel project has led to the system being made available
as an ICL software product.

Appendix 1

Structure of the records

The personnel file consists of a set of records, one for each employee. Each record
is divided into fields, each of which gives a precise item of information about the
employee; the intention is that the complete record for any employee shall contain
all the information that is relevant to his or her position and activities in the
company. As now constituted, each record has about 200 fields and a total length
of about 700 characters. An enquiry can be directed at any record or any logical
combination of records, and within a record can be directed at any field or any logi
cal combination of fields.

The following list gives a small selection of the fields, together with the names (in
capitals) which are used to access them in an enquiry; with explanatory notes where
necessary.

Administration centre
Basic annual salary
Building code
Date joined Company
Foreign languages
GSS code
Initials
Job title
Notes

ADCENTRE
SALARY
BUILDING where working: site and building
JOINDATE
LANG
GSS Company grading, salary scale
INITIALS
JOBTTL
NOTES allows up to 100 characters of

text to be included

2S0 ICL TECHNICAL JOURNAL MAY 1981

Quart ile
Surname
Tour date started

Tour date ended

QUARTILE location within salary scale
SURNAME
TOUR-ST refers to tour of duty away from

usual location, such as to an
TOUR-END ICL centre overseas

Appendix 2

Examples o f enquiries

The following examples illustrate the kinds of enquiry that can be made of the
system. The questions are given in the exact form in which they would be entered
at a terminal.

(i) To find the salary, grading, age and date of joining the Company for a stated
individual, identified by personnel number:

PERSNO 999999 TABLIST SALARY GSS AGE JOINDATE

Here, TABLIST displays the information on the enquirer’s VDU screen. There
is, of course, no personnel number 999999.

(ii) To list all the individuals who joined the Company after 30th September 1980
with surname, administrative centre, job title, grade, location, date of joining:

JOINDATE AFTER 300980 TABLIST SURNAME ADCENTRE JOBTTL
GSS BUILDING JOINDATE

(ii) How many staff were there at 31st December 1979?

JOINDATE BEFORE 010180

How many of these left in 1980?

LEAVER JOINDATE BEFORE 010180 LEAVEDATE AFTER 311279
LEAVEDATE BEFORE 010181

How many of these were retirements?

(as above, followed by) LREASON 50

(iv) To find the number of staff in GSS 110 (NB — the first digit is a location, the
others giving the grading), the total salary for the group, and the average,
maximum and minimum :

CURRENT GSS 110 TOTAL SALARY

ICL TECHNICAL JOURNAL MAY 1981 2S1

The output would be:

RECORDS SELECTED 9999
TOTAL £##)01(
MAXIMUM £****
MINIMUM £***:(:

(v) To find for Region 1 (a defined geographical region), the number of staff in each
lowest quartile of their grade, for each grade from 1 to 32 inclusive, and the
total of the salaries in each case:

CURRENT REGION 1 QUARTILE 1 GSS(101 132 1)
TOTAL SALARY

The output will be

GSS NO. TOTAL AVERAGE

Below 101 £*>11*** £******

101

102

etc.

132

Above 132 ***** £***** £*****

Here, the request (GSS (101 132 1) neans that we want the information for
every GSS number in the range 1 to 32. If we had wanted it in the form of a
total for each group of, say, five consecutive GSS numbers we should have
written GSS (101 132 5). The same principle applies to selection from any
range of parameters.

References

1 MALLER, V.A.J.: The content addressable file store - CAFS\ ICL Tech. /., 1979,
1(3), 265-279.

2 ICL Manual CAFS General Enquiry Package. RP 3024,1980.

252 ICL TECHNICAL JOURNAL MAY 1981

Giving the computer
avoice

M.J. Underwood
ICL Research and Advanced Development Centre, Stevenage, Herts

Abstract

Recent developments in semiconductor technology, together with advances
in digital signal processing, have led to silicon chips that talk. Important
though the techniques for speech generation are, their successful and wide
spread use in commercial computing systems will depend upon their care
ful incorporation into the overall systems design. This paper describes a
systems approach to giving the computer a voice that will enable the end-
user to obtain information easily and accurately. The first part of the paper
is concerned with an analysis of requirements, with particular emphasis on
the needs of the end-users. The concept of a speech subsystem as a
modular component is described, together with some details of its
prototype implementation. Some indication is given of the current and
future applications for a computer with a voice. Spoken output from
computers is likely to play a more important role in the future as the
pattern of computer usage moves towards more human-oriented informa
tion processing.

1 Introduction

Speech has evolved as man’s most natural and important means of communication.
Spoken communication developed much earlier than the written form, yet when
it comes to the communication between man and his information-processing
artefact, the newer written form is dominant. Why should this be? The answer
probably lies in the different nature of the two means of communication.
The evolution of speech is deeply interconnected with the evolution of human
behaviour as we know it to-day. Organised human life without speech is inconceiv
able. Because it is so much a part of us it may be very difficult for us to be intro
spective about it and to understand it fully. As a means of communication it is
informationally much richer than writing. Writing can be be regarded as a sub-set of
natural human communication and this has led to it being mechanised much earlier.
The ability to generate speech, as opposed to transmitting or recording it, has had
to await the arrival of the information processing age.

There are two aspects to spoken communication, its generation and its understand
ing. Eventually the techniques for the automatic execution of both of these proces
ses will have been developed to the point where people will be able to communicate
naturally with computers; it is likely to be many years before this is achieved.
Indeed, it could be argued that such a situation is unnecessary and undesirable,
since the reason for designing information processing systems is to complement

ICL TECHNICAL JOURNAL MAY 1981 253

man rather than copy him. Nevertheless, as more people come into contact with
computers in their everyday lives there is a need to improve the means of man-
machine communication. This paper is concerned with the requirements for giving
the computer a voice and with the solution that has been developed in the ICL
Research and Advanced Development Centre (RADC). The aim has been to design
an intelligent speech controller that provides the necessary facilities for speech out
put in the commercial computing environment. The recently announced semicon
ductor ‘speaking chips’ have been designed for different purposes to meet mass-
market requirements.

2 Speech as a communication medium

As a means of communication, speech has both advantages and limitations and it is
important to understand these before attempting to design speech output equip
ment.

First, the advantages, as these will play an important part in determining how
speech output is used. Speech is an excellent medium to use for attracting a person’s
attention, even though their eyes are occupied with another task: it is very difficult
to block the auditory channels. It is excellent also for broadcasting information
simultaneously to many people as it does not require direct line of sight. It can also
be a very private means of communication if played via a headset directly into the
listener’s ear. Finally there are very extensive speech communication networks in
existence — the national and international telephone networks — and it would be
very attractive to be able to use these for computer-to-man communication without
the need for equipment such as modems. Every telephone would then become a
computer terminal.

An important limitation is imposed by the fact that the rate of speech output is
controlled primarily by the speaker and not by the listener, which means that, unlike
printed output, speech output cannot be scanned. Therefore computers, like people,
should talk to the point. Another arises from an interesting property of the human
processing system, the restricted capacity of the short-term memory, typically
seven items.1 This places a limit on the amount of information that can be presented
to a listener at any one time if he is to remember it well enough to do something
useful with it, such as write it down. A further characteristic is that speech leaves
no visible record and therefore is best suited to information which is rapidly chang
ing or ephemeral.

The main conclusion to be drawn from this is that speech should not be regarded as
a replacement for existing means of machine-to-man communication but as a
complementary channel, best suited to the transmission of certain types of informa
tion.

3 Requirements

The requirements of three groups of people have to be considered: the user (i.e. the
listener), the programmer and the equipment supplier. The primary objective of the
user is to obtain information easily and accurately, whilst the programmer is

254 ICL TECHNICAL JOURNAL MAY 1981

concerned with what the machine is going to say and how. The objective of the
equipment manufacturer is to supply and support the requirements of the listener
in a cost-effective manner. The requirements of these three groups affect not only
the choice of speech output technique but also the way any speech subsystem is
interfaced and controlled. In addition, the use of speech may have implications for
the design of the system which uses it. For example, the information held on a file
may need to be different to allow spoken output as opposed to printing.

3.1 Listener’s requirements

The way in which the information is presented is as important for the listener as is
the method of speech production. Traditional methods of testing speech communi
cation systems such as telephones or radio have relied extensively on articulation
tests. In order to strip speech of the important contextual clues that enable a
listener to infer what was said even though he did not hear it properly, articulation
testing consists of using isolated words spoken in an arbitrary, linguistically non
significant order. This approach falls a long way short of assessing the usefulness of
the communcation channel for genuine human conversation. So it is with computer
generated speech also. A system that can produce individually highly intelligible
words, for example some random-access method of wave-form storage, will not
necessarily produce easily understood speech when the individual words are
assembled to make a sentence. Context plays an important role in speech percep
tion: we are all familiar with the anticipation of football results from the way the
newsreader reads them, giving different emphasis to teams with significant results,
like a scoring draw.

In English, emphasis is signalled largely by changes in the prosodic features of
speech, namely rhythm (rate of speaking) and intonation (voice pitch). Moreover,
these changes are used to signal the meaning of a sentence. Thus a rising pitch at the
end of a sentence often denotes a question. Consequently the prosodic aspects of
spoken messages from computers should conform to normal human usage, otherwise
there is the possibility that the listener may infer the wrong meaning.

It could be argued that it will be some time before we need true conversational out
put from computers, as they largely contain information of a highly structured and
often numerical nature and consequently control over prosodic aspects is not
important. However, a series of comparative experiments at Bell Laboratories2
showed that people’s ability to write down correctly a string of computer-generated
telephone numbers was significantly improved if the correct rhythm and intonation
were applied. Telephone numbers that were made from randomised recordings of
isolated spoken digits were judged by the listeners to sound more natural but
produced more transcription errors.

This raises the question of what the voice should sound like. There are several
aspects to describing speech quality and these can be factored into two main head
ings: those that contribute to the understanding of the message and those that do
not. In commercial systems the prime requirement is for good quality speech that is
easy to listen to and does not cause fatigue on the part of the listener. This means
that it must be clear and intelligible and possess the correct prosodic features that

ICL TECHNICAL JOURNAL MAY 1981 255

facilitate understanding. The non-message related factors include such things as the
fidelity of the voice — does it sound as though it was produced by a real vocal tract
as opposed to an artificial one? — and the assumed personality of the character
behind the voice. This arises from the fact that there is much more information
conveyed by the voice than the text of the message being transmitted: for example,
mood, character, dialect and so on. Whilst the message-related factors determine the
understanding of the message, the non-message related factors are likely to deter
mine human reaction. There is much to be said for providing a computer voice
which is understandable but which possesses a distinctly non-human characteristic
to remind the listener that it is not another person speaking. The balance of import
ance between the message-related and non-message related factors may well depend
on the application, yet again indicating the need for a flexible voice output
technique.

Another relevant aspect is the way that words are used to form messages. On a
VDU screen the interpretation of a string of numerical characters is determined by
the context or the position of the characters in a table of values. Thus 1933 could
be a telephone number, a quantity or a year (or even a rather aged line-printer) and
there might be no distinction between these representations on the screen. For this
to be readily assimilated in a spoken form, however, the style of presentation
should match the nature of the number, thus:

telephone number one nine three three
quantity one thousand nine hundred and thirty three
date nineteen thirty three.

A speech sub-system which provides control over the prosodic aspects goes a long
way towards providing a sufficient degree of flexibility to generate different
numerical forms easily.

Other timing considerations have an effect on the listener and imply constraints in
the way that any speech subsystem is controlled. Once started, speech output must
be continuous with pauses only at semantically significant points like phrase and
sentence boundaries. These pauses probably help the listener get the messages into
and out of his short-term memory and, as every actor knows, the timing of these
pauses has to be accurately controlled. The insertion of pauses at random is likely
to have a disturbing effect on the listener and too long a pause may mislead him
into thinking that the speech output has finished.

Another timing consideration is the speed of response to a listener’s reaction.
Because of the transitory nature of speech, together with the limitations of the
human short-term memory, the listener must have the ability to cause the system to
repeat the last message. As the use of speech is likely to be in interactive communi
cation, delays of several seconds which are common and are acceptable in VDU-
based systems will be quite unacceptable; the response to requests like ‘repeat’ or
‘next please’ must be short, of the order of 0-5 seconds. The implication of all these
considerations and constraints is that computer output of speech must be controlled
by an autonomous subsystem and not by a general time-sharing operating system
which has to satisfy many competing demands for processing power.

256 ICL TECHNICAL JOURNAL MAY 1981

3.2 Programmer’s requirements

The listener’s requirement for spoken output that is easily understood and remem
bered implies a controllable means of speech output. The programmer’s task is to
control this from the information and data available to him. The detailed control of
flexible speech output is complex and requires a good knowledge of speech science
and related topics. The programmer should be shielded from the details of how
rhythm and intonation are controlled, but he should have available the means to
control them. This principle can be extended to providing a means of specifying
different types of numerical output and leaving the speech subsystem to work out
how they should be done. The kind of interface envisaged therefore is similar to
and an extension of the kind provided for the control of VDUs, where the program
mer has the options of choosing lower case, italics, colour, flashing characters and so
on. If the programmer is provided with an easy-to-use interface it is much more
likely that he will be able to play his part in satisfying the listener’s requirements.

The ideal in speech production would be the ability of the system to say anything
that could be printed, which would imply the ability to generate speech from text.
Techniques for doing this are being developed3 but until they have matured to the
level of commercial acceptability, any speech subsystem is going to be working with
a restricted vocabulary of words and phrases. If the subsystem is to be responsive to
changes in a user’s business which lead to changes in the vocabulary, for example
the introduction of a new product with a new proprietary name, there must be pro
vision for changing the vocabulary easily.

3.3 Manufacturer’s requirements

The equipment manufacturer has some requirements to satisfy in addition to the
commercial ones of meeting his customers’ requirements in the most cost-effective
manner. One of the most important is the connectability of the equipment. Ideally
it needs to be connectable to existing systems with the minimum amount of disrup
tion, preferably using an existing channel.

The requirement to be able to supply new vocabularies to meet changing customer
requirements means that vocabulary up-dates should be supplied on conventional
computer media so that they can be loaded like new software. Moreover, a support
service has to be provided with suitably trained staff that can carry out this vocabu
lary preparation. An important requirement here is that if the vocabulary is derived
from real human speech, then access to the original speaker must be maintained and
facilities provided to match new utterances to ones that have been provided some
time previously: it is well known that speakers’ voice characteristics change with
the passage of time.

Although initial systems will use data derived from real speech, the long term
requirement of synthesis from text, to handle name and address files for example,
must be considered. Thus it is important for the manufacturer to choose a speech
output technique that can be enhanced to meet this future requirement.

ICL TECHNICAL JOURNAL MAY 1981 2S7

4 RADC speech output project

4.1 Speech generation technique: general considerations

In summary, a good speech output system must have the following properties:

(i) it must be capable of producing intelligible speech
(ii) the rhythm and intonation must be under programmer control

(iii) the storage requirements for the vocabulary must be reasonable
(iv) the technique used for the speech generation must be capable of

enhancement to meet later expanded needs such as synthesis from text.

The simplest of all methods of speech generation is the use of prerecorded words
and phrases which can be called in the appropriate order from storage. This has
been used for small-vocabulary applications quite successfully but it does not meet
the above requirements very well. The rhythm and intonation cannot be controlled
without repeating the items in different forms; the storage demands are large, a
minimum of 20000 bits being needed for one second of speech; and the technique
cannot be expanded to meet the needs for large vocabularies like names and
addresses.

A satisfactory technique should use some method of synthesising spoken words and
phrases from more basic material and should be modelled on the human speech pro
duction process. The best method seems to be that of formant synthesis4 ; this is
the one chosen for the RADC project and will now be described.

4.2 Formant synthesis

The formant description of speech models the acoustic behaviour of the vocal tract
in terms that are related to what the speaker does with his vocal apparatus when
speaking, rather than to capture the detailed wave form of the spoken sound. The
primary energy in speech comes from the flow of air from the lungs. In voiced
speech (e.g. vowel sounds) the flow of air through the vocal cords causes them to
vibrate at a rate determined by the air flow and the muscular tension applied to the
cords. The resulting puffs of air excite the resonances of the air in the vocal tract,
the frequencies of which are determined by the positions of the articulators, i.e.
tongue, lips, jaw. In unvoiced speech (e.g. s, sh) the flow of air through a narrow
gap in the vocal tract produces a noise-like sound whose frequency content is
determined by the position of the articulators. The formant description of speech
is a way of describing the frequency spectra of speech sounds in terms of the posi
tions and amplitudes of the dominant peaks in the spectrum (Fig. 1). As the
articulators move from one position to another, the formant peaks move accord
ingly, but because the articulators move much more slowly than the vibrating air
molecules, a formant description of speech is much more compact than that of the
acoustic waveform. A formant synthesiser takes as its input a formant description
of speech (Figs. 2 and 3) and computes the values of a waveform according to
the mathematics of the model incorporated within it.

258 ICL TECHNICAL JOURNAL MAY 1981

frequency, kHz

frequency, kHz

frequency, kHz

Fig 1 The formant description of speech describes the transfer function of the vocal tract
in terms of the positions of the peaks in its frequency spectrum. The positions of
these peaks depend upon the positions of the articulators (tongue, lips, etc.). The
spectrum of a speech sound is the product of the spectrum of the source and the
transfer function.

a Frequency spectrum of vocal cords during voiced speech
b Transfer function of the vocal tract for a typical voiced sound
c Frequency spectrum of the resultant speech sound

Formant synthesisers have been studied and used extensively by speech scientists.5
Typically four formants (the four lowest resonant frequencies) have been found to
be sufficient to produce highly intelligible speech. Three formants are sufficient for

ICL TECHNICAL JOURNAL MAY 1981 259

telephone use with its restricted bandwidth. The formant description of speech is
only an approximation to what happens in real speech, but if sufficient care is
taken in deriving the formant parameters from real speech it is almost impossible to
distinguish resynthesised speech from the real speech from which it was derived.6
This more than meets the need to produce highly intelligible speech. Moreover the
formant description of speech is a very compact one and good quality synthesised
speech can be produced from a data rate as low as 1000 bits/second.

Time
(ms)

ST F0 F1 F2 F3 A1 A2 A3 F AF

10 0 140 0 0 6 -48 -4 8 0 -48
20 138 234 25
30 125 28
40 119 156 1638 2691 31 -30 -30
50 103 195 1599 2652
60 102 234 1560 2730 34 -42 -24
70 2769 37 -24
80 101 1521 -30
90 1482

100
110 100 546 1638 2808 40 -12 -12
120 101 585 - 6
130 102 624 1560 43 -12
140 103 1521 - 6 -18
150 104
160 663 1404
170 702 1326 2847
180
190 1287 2886 -24
200
210
220 105
230
240 104
250 103 1326 -12
260 100 663 1404 2647
270 1521 40 - 6 -18
280 99
290 100 1560 2808
300 624 1638 2769
310 1716 -12
320 101 546 1872 2691 37 - 6 -12
330 1950 -12 -18
340 507 2028
350 2067 -18
360 468 2184 2652 34
370 429 2223 -24
380 100 390 2262 -24

Fig. 2 continued on facing page

260 ICL TECHNICAL JOURNAL MAY 1981

Time ST
(ms)

F0 F1 F2 F3 A1 A2 A3

390 101 2691
400 102 2301 -18 -30
410 103 351 2106 -24
420 104
430 105 312 1443 2652 -30
440
450 1521 2769 -36 -24
460 106 1482 31 -24 -18
470
480 1443 -24
490
500 120 0 0 0 6 -48 -48

Fig. 2 Synthesiser parameters for the word 'NINE'
Each line represents 10 ms of speech. Blanks indicate that the parameter value remains un
changed
ST: Sound type 0 = voiced, 2 = voiced fricative, 3 = unvoiced
F0: pitch of the voice in Hz
FI, F2, F3: first three formant frequencies in Hz
A1: overall amplitude in dB
A2, A3: relative amplitudes of F2, F3 in dB
F: unvoiced sound type
AF: relative amplitude of unvoiced sound.

The use of formant synthesis also meets the requirement of being able to control
prosodic aspects. The parameters that are used to control a formant synthesiser
(Fig. 2) can be manipulated independently of one another, and these include the
voice pitch. Thus in order to modify the pitch of the synthesised voice it is neces
sary to change only the values corresponding to this parameter. The speed of talking
can be varied by altering the rate at which parameters are fed to the synthesiser.
A typical up-date rate of parameters is 100 times a second. If the same parameters
are sent at twice that rate, the synthesiser model is driven more quickly and the
resulting speech is twice as fast but with none of the ‘Donald Duck’ kind of distor
tion associated with speeding up a tape recorder. In practice, the control of
speaking rate is more complex than the simple overall alteration of the rate at
which parameters are supplied to the synthesiser. The perception of some speech
sounds is influenced strongly by dynamic effects, that is by how rapidly the articu
lators move from one position to another, whilst the perception of steady-state
sounds like vowels is largely independent of changes in the rate of speaking. The
need to control carefully the way speed changes are carried out is a very good
reason for shielding the programmer from this kind of complexity.

It is not only the synthesiser design that determines the quality of the speech
produced, but also the values of the parameters that drive it. There are three main
sources of data from which these values can be derived. The first is by analysis of
real speech. This has been studied extensively and has been found to be difficult to

ICL TECHNICAL JOURNAL MAY 1981 261

automate completely.7 With careful manual intervention and editing, excellent
quality speech can be produced but it is an expensive process. The RADC approach,
to be described later, is to employ a combination of computer and manual methods
and has proved more cost-effective.

52-

O OO Ooo
_ _ o o o o o o o o o u w O O O O . -

. 0 0 0 0 0 00

Dn□□ 0 Do□ □□ O 0 r

x x x x x x X x X x x x x x x x x x x x x x x

0 0 0 0 0 0 0 00 0 0 0 0 0

□ □ o

0 0 0 0 3rd formant

00
_o o □□

* X X s

Do d o ° q □ 2nd formant

xx xx x x xx x1st formant
_j______1______1______1______L-

0 50 100 150 200 250 300 350 400 450 500
time, ms

Fig. 3 Formant representation for the word 'NINE'

Another method is what is called synthesis-by-rule.8 This is based on the linguistic
premise that a spoken utterance can be described in terms of discrete sounds, in the
same way that a written message can be constructed from the letters of the alpha
bet. Every speech sound can be described in terms of a set of synthesiser parameters,
together with rules that determine how the parameters are modified by the context
of the preceding and succeeding sounds: the dynamics of the articulators are such
that these cannot be moved instantaneously from one position to another. The
input to a synthesis-by-rule system is a string of phonetic elements specifying what
has to be said, together with some parameters that specify rhythm and intonation.
Thus synthesis-by-rule is a completely generative method, but the present state of
the art is such that it requires trained and experienced operators to produce good
quality speech.

The third method is synthesis from text. Synthesis-by-rule enables the programmer
to specify any speech output but requires control at the phonetic level. Synthesis
from text takes the method a stage further by providing a mechanism for convert
ing the orthographic representation into a phonetic one. The difficulty here is that
English in particular is a mix of rules and exceptions — a classic example is ‘- ough’,
for which there are several pronunciations depending on the context. Synthesis
from text will provide the ultimate means of speech output, enabling material to be
printed or spoken from essentially the same data. But because of the vagaries of
pronunciation it is unlikely that any automatic system will be capable of producing
the correct one for all names and addresses, for example. It is likely that an intelli
gent speech subsystem would deal automatically with the common names but that

262 ICL TECHNICAL JOURNAL MAY 1981

some additional pronunciation guide would be included with other items. This
would be phonetic in character and would occupy no more than an amount of file
space equivalent to that of the orthographic representation. At present, synthesis
from text has not matured sufficiently to be commercially acceptable or economic
ally viable, significant amounts of computation being needed to convert from text
to speech, along with the rules necessary to impart the correct emphasis.

The requirement for commercial systems is not to be able to read English prose but
to speak aloud information of a much more restricted kind and content, such as
‘the customer’s name is . . . and the address is . . . ’.

Until the completely generative approaches of speech synthesis have developed to
the point of commercial quality and viability, speech output based upon formant
synthesis will use parameters derived from real speech, giving good quality speech at
modest storage costs with the desired degree of control and flexibility. When the
time comes to use the generative approaches it will still be possible to use formant
synthesis, but controlled in a different manner. Thus the use of formant synthesis
provides an open-ended development path for customer and supplier alike.

4.3 Hardware implementation

Analogue techniques were used in the early synthesisers.8 Bandpass filters whose
centre frequency could be controlled were used to simulate the formant resonances
and these were excited by either a controllable periodic source or a nosie source,
corresponding to voiced and unvoiced speech, respectively. Analogue circuitry
made from discrete elements is prone to drift and needs careful setting up and sub
sequent adjustment. The RADC decision, taken in the early 1970s, was to build a
synthesiser using wholly digital techniques. At that time an economical design
could be produced only by using a multiplexed technique whereby the synthesiser
could be shared among a number of channels, because of the stringent need to
compute a new wave-form sample every 100 jus. A design was produced that
enabled 32 independent output channels to be supported simultaneously.9
Subsequent developments in semiconductor technology have made it possible to
build a synthesiser using a standard microprocessor and this has formed the basis of
the current implementation. It is now possible to put a formant or other synthesiser
on a single chip and several semiconductor manufacturers have developed such chip
sets for mass-market applications including electronic toys. However it is the
control aspects that are important for the commercial market and consideration of
these was a leading factor in the design of the RADC system.

Fig. 4 shows the prototype synthesiser controller which has been developed to pro
vide the degree of flexibility and control required in a high-quality system. The aim
has been to design modular low-cost equipment that could be readily attached to
existing computer systems and easily enhanced to provide a multichannel capability.
The three main components are an 8-bit microprocessor with store and I/O ports, a
synthesiser and Touch-Tone signalling detector and a line unit to interface to tele
phone lines.

The controller uses an 8-bit industry-standard microprocessor with 64 kbytes of
RAM storage and serial and parallel interface ports. The serial port is used

ICL TECHNICAL JOURNAL MAY 1981 263

for the mainframe link and the parallel ports for controlling the synthesisers,
signalling detectors and line units. Although two independent speaking channels
are shown, only one has been implemented in the prototype. The
storage is used for both code and vocabulary data, there being room in the
prototype for approximately 100 seconds of speech, or 200 words of half-a-second
duration. As this is considered to be adequate for many applications, no particular
effort has been made to produce a more compact representation of the data
although there is scope for reducing the data rate further.

P0 lines PO lines

Fig. 4 Block diagram showing the main hardware units of the prototype speech output sub
system

264 ICL TECHNICAL JOURNAL MAY 1981

The synthesiser uses another microprocessor with associated support circuitry in an
implementation of the technique used by Underwood and Martin.9 In many
applications it will be necessary for the end-user to have some means of
communication with the speech subsystem. In the long term, speech recognition
techniques10 will have matured sufficiently to make two-way speech communica
tion possible. Until then the input will be by means of a limited function keyboard,
similar in concept and lay-out to that used with Prestel. However, the signalling
method normally used in voice response systems (MF4) employs the selective use of
two tones out of eight, as used in Touch-Tone telephone dialling in America. Until
that signalling method or some other becomes an integral part of every telephone,
the keypad will be a separate portable unit that acoustically couples to the micro
phone of a standard telephone handset. The synthesiser board incorporates
circuitry to decode the pairs of tones that are transmitted down the line by such a
terminal.

The line units provide the necessary interfacing protection between the speech sub
system and the telephone network. The unit has provision for both receiving and
making telephone calls under program control.

4.4 Synthesiser control

The code in the controller performs three types of function:

(i) detailed control of all the I/O: maintaining data flow to the synthesiser,
receiving data from the Touch-Tone detector, controlling the line unit
and servicing the communications protocol

(ii) provides the high-level interface for control of speech output
(iii) provides the interaction management, independent of the mainframe.

The most interesting of these is concerned with the control of the speech output.
Given that the synthesiser approach enables the style of output to be controlled,
the question arises as to how this should be done. It is envisaged that different
levels of control are appropriate to different application, so a number of levels have
been implemented.

At the lowest level, each vocabulary item can be called by item number; these items
can be of any length and any one can be a phrase, a word or a part word. This is a
most flexible arrangement and enables the best compromise to be made between
naturalness and efficient use of the store. If all the words in a particular phrase
appear nowhere else in the vocabulary, the most natural utterance results from stor
ing it as a complete phrase. If a word or part word occurs in several contexts, more
efficient use can be made of memory by storing the item once only and concatenat
ing it with different vocabulary elements to form complete words.

It is likely that when a vocabulary item is used in different contexts it needs to be
emphasised differently. For example, the ‘six’ in the word ‘six’ is shorter than the
‘six’ in ‘sixteen’. To accommodate changes in emphasis two optional control
characters can be used to control the pitch and speed of each item independently.
As noted earlier, changes in the rate of speaking cannot be applied uniformly to the

ICL TECHNICAL JOURNAL MAY 1981 265

speech, so the vocabulary data contain information that allows speed changes to be
carried out in an appropriate manner.

Whilst this level of control provides the programmer with a powerful way of chang
ing the speech and at the same time shelters him from the details of how it is done,
there is a need for some commonly-used strings of vocabulary items to be handled
more easily. One example is the different forms of numerical output which are like
ly to form a part of most application vocabularies. To save the programmer from
having to remember and to use explicitly the rules for generating quantities — the
machine should say ‘thirty three’, not ‘threety three’ — these rules are coded in the
controller and enable the different types of output to be generated automatically.
Thus:

N(digit string) causes the digits to be output with suitable
pauses and prosodic changes to make them
easily understood

0(digit string) gives the ordinal form: first, second . . twenty-
fifth . .

Q(digit string) causes the digit to be spoken as a quantity e.g.
one hundred and seventy two

Another feature is the message facility, whereby a string of user-defined vocabul
ary items can be referred to by a message number. Moreover, this facility is para
metrised so that variable information can be included.

A particularly important requirement for a speaking system is that the listener must
be able to cause the last message to be repeated. It is a natural human reaction,
when asked to repeat something, for the speaker to say it again more slowly and
deliberately, so that the listener will have a better chance of understanding it the
second time. The controller is provided with a facility which mimics this aspect of
human behaviour.

The controller also provides a means for requesting and handling Touch-Tone data
and for controlling the line unit. In order that the controller can react quickly to
events such as the input of data or detection of ringing current on the line it must
do so autonomously without reference to the mainframe. The prototype enables
sequences of instructions, using all the facilities which it controls, to be stored and
actioned. This enables the listener and the controller to interact independently of
the mainframe until a point is reached at which mainframe action is required, like
the retrieval of some stored information. This is analogous to the filling in of a form
on a VDU screen, which goes on under local control until the ‘send’ key is
depressed.

4.5 Vocabulary preparation

Until the truly generative approaches to speech synthesis are mature enough to
produce the high quality speech required for commercial systems, thereby enabling
the computer user to develop his own vocabularies, vocabulary preparation will be
a specialised bureau-type service that will have to be provided by the supplier of the

266 ICL TECHNICAL JOURNAL MAY 1981

speech subsystem. Vocabulary preparation is the crucial factor in using a formant
synthesiser, as it largely determines the quality of the synthesised speech. The
major requirements here are:

(i) it must be capable of producing good quality speech;
(ii) the service must not be costly to operate, either in terms of the equip

ment it uses or the time it takes;
(iii) the level of skill required to operate it must not be great;
(iv) it should contain facilities to enable vocabulary up-dates to be closely

matched to earlier vocabulary items as a customer’s requirements
change.

The analysis of real speech to provide parameters for a formant synthesiser is a
complex process and is only one stage in preparing a vocabulary for a particular
application. The major stages are as follows.

The first stage is to list and analyse the utterances that have to be made and to pre
pare a script for recording purposes. Although the formant synthesis approach
enables synthetic speech to be massaged to suit the context, experience in vocabul
ary preparation shows that the best results are produced if the words are recorded
in a context which is identical or as similar as possible to the context in which they
are to be used. The next stage is to produce a studio-quality recording of the script,
using a speaker with good voice control. Information that is lost at this stage cannot
be recovered, so it is worth taking care with this part of the process.

Once the recording has been checked for correct pronunciation, signal level etc., it
is transferred to a conventional disc file via an analogue-to-digital converter. The
resulting digital recording is listened to and then split up for subsequent processing.
A suite of analysis programs has been developed at RADC to produce files of synth-
siser parameters, which then require manual editing. The editing process uses an
interactive program that enables the parameters to be modified and the resulting
synthetic speech to be listened to. The need for this editing arises because the
analysis programs do not handle all speech sounds equally well, so that mistakes
have to be corrected and omissions repaired. More importantly, such processes as
defining the boundaries of vocabulary items and adjusting the balance (loudness,
pitch etc.) between them require human skill and judgement. The balance of man
time and machine-time in vocabulary preparation is such, however, that further
automation of the process in its current form would not be cost-effective.

The final stage of the vocabulary preparation is the encoding of the synthesiser data
into its compact form and the preparation of files suitable for loading into the
synthesiser controller.

4.6 Current status

The project has reached the stage where the design principles of all the required
software and hardware components have been verified with the prototype imple
mentation. A number of trial applications have been modelled using simulated data

ICL TECHNICAL JOURNAL MAY 1981 267

bases. The next stage is to mount realistic field trials in order to gain first-hand
experience in applying the techniques to practical computing tasks.

S Applications

The kinds of situation in which speech output could be valuable have been
indicated earlier in the paper and are summarised in Table 1. Several systems have
been produced commercially, particularly in the USA, within the following fields
of application:

order entry by mobile salesmen
status reporting, for example for work in progress
banking enquiries and transactions
credit authorisation
spares location
ticket enquiry and reservation
direct mail order.

Most of these systems have been remote data entry or database enquiry, where
voice has been the sole means of communication with the user. So far, speech
output has not been integrated into existing terminal facilities. Once this happens
there are likely to be many instances where the use of voice provides a valuable
adjunct to those facilities. Some initial applications might be to the following tasks:

(i) to provide verbal feedback of data that has just been entered, allowing
complementary use of eyes and ears for checking;

(ii) to provide instructions to operators in large computer installations;
(iii) where a screen is already full of information and a simple message is required

to guide the user, for example, Computer Aided Design (CAD) or Computer
Aided Instrumentation (CAI)

Table I. Situations where speech output could be valuable

The end-user is mobile, so that any telephone could become a terminal using a highly-
portable acoustically-coupled keypad.
There is a requirement for a large number of widely distributed users, particularly if the
access by any one user is relatively infrequent and does not justify the use of an expensive
terminal.
The volume of data to be input or output as part of any transaction is small and relatively
simple in nature.
The information to be disseminated is constantly changing (hard copy would be out of
date).
There is a need for a database to reflect an up-to-the-minute situation. This includes
order entry systems for products with a short shelf-life, as well as stock control systems.
A service has to be provided on a round-the-clock basis.
In announcements or alarms where the attention of one or more individuals must be
drawn to a message.
Where a message needs to be communicated privately to a user.

268 ICL TECHNICAL JOURNAL MAY 1981

It is inconceivable that such an important and powerful means of communication as
speech should not play a significant role in the man-computer communication of
the future. Ultimately speech output and input are likely to be an integral part of
every computer, just as VDUs are today. However, from our current viewpoint
where we are only just becoming accustomed to the speech technology that is now
available it is very difficult to predict just how widespread its use is going to be.

Two main factors are likely to affect the use of speech in the long term. The first
is what computers will have to talk about. Developments such as CAFS11 mean
that it is now possible to design information systems that are able to answer
requests quickly enough to make conversational working a real possibility. Speech
output needs the change in emphasis from data processing (computer-oriented
facts) towards information processing (human-oriented facts) that is now taking
place.

The second factor is the human reaction to the idea of computers that talk. Con
sider the likely effect on a computer operator for example when the computer
booms out in an authoritative voice ‘load tape three six seven five’. Such a message
may well be acceptable when displayed on a screen, but the wrong tone of voice
from the computer may have an effect which is entirely contrary to the user-friendly
one we are trying to create. Although we cannot predict what the human reactions
to computer speech will be, we are now in a position to use the technology in real-
life situations in order to assess them. The next step forward is to start to apply
speech output to practical use.

6. Conclusion

This paper has attempted to show that there are a number of aspects other than the
purely technological ones that have to be considered when designing equipment to
give a computer a voice. Good design is a compromise between ends and means,
goals and constraints.12 When designing machines that will use speech, with all its
linguistic, cultural and psychological implications, it is clear that consideration of
human requirements must play an important role. Requirements can often be met
without regard for cost; but the solution described in this paper not only satisfies
these human requirements but does so in a highly flexible, modular and cost-
effective manner that provides a development path for the future.

Acknowledgments

The work described in this paper is the result of a team effort in RADC over a num
ber of years and the author acknowledges with gratitude the contributions of all
those who have participated. Particular mention should be made of M.J. Martin
who has been responsible for the design and implementation of the equipment, and
of the late Roy Mitchell for his insight and guidance; and of Gordon Scarrott,
Manager of RADC, for creating and sustaining the environment in which the work
was done. Grateful acknowledgments are due also to the Department of Industry
which, through the ACTP scheme, gave valuable support in the early stages of the
project.

ICL TECHNICAL JOURNAL MAY 1981 269

References

1 MILLER, G.A.: The magical number 7, plus or minus two. Psychological Rev., 1956,63,
81-97.

2 RABINER, L.R., SCHAFER, R.W. and FLANAGAN, J.L.: Computer synthesis of
speech by concatenation of formant-coded words, Bell System Tech. J. 1971,50,1541-
1588.

3 ALLEN, J.: Synthesis of speech from unrestricted text, Proc. IEEE 1976,64 (4), 433-
442.

4 FLANAGAN; J.L., COKER, C.H., RABINER, L.R., SCHAFER, R.W. and UMEDA, N.
Synthetic voices for computers, IEEE Spectrum 1970, 22-45.

5 FLANAGAN, J.L. and RABINER, L.R. (Eds), Speech synthesis, Dowden, Hutchinson
and Ross, 1973.

6 HOLMES, J.N.: The influence of glottal waveform on the naturalness of speech from a
parallel formant synthesiser, IEEE Trans. Audio & Electroacoust. 1973, 21, 298-305.

7 SCHROEDER, M.R.: Parameter estimation in speech: a lesson in unorthodoxy, Proc.
IEEE 1970,58 (5), 707-712.

8 HOLMES, J.N., MATTINGLEY, I.G. and SHEARNE, J.N.: Speech synthesis by rule,
Language & Speech 1964,7(3),127-143.

9 UNDERWOOD, M.J. and MARTIN, M.J.: A multi-channel formant synthesiser for
computer voice response, Proc. Inst. Acoust. 1976, 2 - 1 9 - 1 .

10 UNDERWOOD, M.J.: Machines that understand speech, Radio & Electron. Eng. 1977,
47 (8/9), 368-378.

11 MALLER, V.A.J.: The content-addressable file store CAFS, ICL Tech. J. 1979, 1(3),
265-279.

12 SCARROT, G.G.: From computing slave to knowledgable servant, Proc. R. Soc. London
Ser. A . 1979, 369,1-30.

270 ICL TECHNICAL JOURNAL MAY 1981

Data integrity and the
implications for back-up

K.H. Macdonald
ICL Product Planning Division, Putney, London

Abstract

The paper considers the ways in which errors can occur in the recording of
information on magnetic tapes and discs, the methods available for detect
ing such errors and the possibilities for protecting the user of the informa
tion against possible ill effects. From a consideration of the high standard
of reliability of modern equipment the conclusion is reached that the best
policy for back-up of data held on a magnetic disc is to hold a second copy
on a second disc.

1 Introduction

The term ‘data integrity’ means many things to many people. To engineers it is an
expression of the incidence of transient or permanent errors on magnetic media. To
a user it implies quite simply that his data has not been lost or abused by others and
that it retains its accuracy. Generally it is assumed that data will maintain these
characteristics irrespective of who else may have raked over the data since the user
last consulted it.

The term is also applied to many other aspects of computing and of information
distribution, for example to indicate that data despatched has not been corrupted
during transmission. The essence of the problem of maintaining data integrity is the
corruption of stored data and the causes and cures for this.

The vagueness of the definition leads to parallel vagueness about the fundamental
problem and in turn to confusion about the ownership of this problem. The com
plete spectrum of those involved in computing are blamed for perceived failures in
data integrity. As with the equally obscure problems of security and privacy,
responsibilities are dispersed throughout the data processing community. There are
contributions to the problem at every stage in the development of a computer
system and application.

2 Why is there a problem?

Computers started as computing machines. Without delving too deeply into the
history or philosophy of computing, it is clear that modem computers are mostly
used for storing, maintaining, manipulating and providing access to data or informa-

ICL TECHNICAL JOURNAL MAY 1981 271

tion. Examination of the work done by a typical ‘mill’ clearly shows that most of
the time is not spent on computation. Rather the manipulation of information
dominates, including in this the multitude of operations needed to provide access
to information to an authorised enquirer, changing information and protecting the
information from abuse. Computers are ‘inventory systems’ in which data is the
commodity kept in the inventory. They are thus essentially record keeping machines.

It is commonly thought that, besides the investment in the computing equipment
itself, a customer’s or user’s main investment is in the programs that he has devel
oped. This often undervalues the investment that has been made in the creation of
the data, and the human endeavour and computing time that have been spent on
getting the data into the system, getting it right and keeping it right. There are
many situations where what is contained within the store of a computing system
is essentially an expression of the affairs of the enterprise. The commercial opera
tion of the enterprise may not only be aided by the computer, but may be depen
dent upon it and upon the data contained within it.

What is increasingly evident from new product announcements and from the
literature of the industry is that a shift has occurred away from the conceptual
attachment of files to processors, towards the attachment of processors to files.
Specialised processors now exist solely for the purpose of managing information
storage, ranging from conceptually simple though intrinsically complex control
ler devices to functional subsystems such as, for example, the Content Addressable
File Store.

To develop the inventory analogy further, the fundamental disciplines of managing
an inventory apply equally to data. Stopping unauthorised persons from putting
bad material into inventory or stealing material from inventory corresponds to the
security and privacy functions. Knowing where the commodity is in the inventory
is one of the main tasks of the data management system. Physical changes can
occur, such as print-through on magnetic tape, random landing of heads on a
spinning disc, deterioration of the storage medium, and prevention of this intrinsic
decay is one of the most common interpretations of the term, data integrity.
Taking account of corruption when it occurs, as it inevitably will, is data recovery.
Just as it is necessary to take stock of a physical inventory from time to time, so it
is necessary to review the contents of files, to reorganise them, preserving and
simplifying their structure while eliminating those obsolete items that can be
written off. This data management operation can serve to identify ‘rogue’ records
and to allow their elimination or correction, and by this ‘refreshment’ of the files
reduces the probability of intrinsic failure.

3 Data corruption and intrinsic integrity

There are three main contributors to the corruption of data within a storage system,
namely:

(i) users’ programs and operating errors
(ii) failures in the system such as hardware, supervisory software or data

management software
(iii) intrinsic failures in the storage devices themselves.

272 ICL TECHNICAL JOURNAL MAY 1981

Recovery is needed for all these circumstances and is a common problem. The solu
tion to any one is equally applicable to the others. However, some consideration of
the incidence of corruption suggests that the solution can be biased to provide a
better service to the end user.

Data storage products are dominated by magnetic tapes and discs. Optical storage
systems are beginning to appear but widely available and economical optical de
vices will not be with us for some time yet. If we concentrate on magnetic tapes
and discs it is evident that the growth of computing is bringing conflicting demands
for increased capacity, increased transfer rates, shorter access times to support
higher performance or shorter response times, lowers costs, increased reliability and
all the other virtuous attributes.

4 Magnetic tapes

Magnetic tape is the oldest really large-scale storage medium. All the usual curves
can be drawn showing developments in the favourable direction over time of all the
attributes. At a simple level, the basic cost is determined primarily by the maximum
speed of stable motion of the tape itself; the difficulties of other problems such as
that of starting and stopping the tape, and therefore the cost of overcoming these
difficulties, increase as the tape speed increases. The total cost is made up of that of
providing the tape speed, the acceleration and deceleration, the vacuum control, the
resolution of the recording and the power needed to drive the whole system and
increases almost linearly as the tape speed increases. Whilst the achievement of
higher tape speeds has contributed to increased throughput, parallel increases in the
density of information recording on the tape have enabled higher rates of informa
tion transfer to be achieved with lower tape speed than would otherwise have been
the case. The cost of data transfer rate has in fact declined because the increase in
packing density has allowed lower cost mechanisms to be used.

A basic problem that remains is the medium itself. This is long, flexible and flawed
and the control of its movement at the required transport speed is the basic con
tributor to cost. The flexibility contributes to the complexity of maintaining a
steady rate of movement; it also means that physical shocks, applied for example by
the capstan, can easily migrate to other parts of the system such as over the heads.
All the vices and virtues combine to give a sub-system which we tend to take for
granted and frequently scorn but which is actually very complex and probably very
long lived. The history of magnetic tape is littered with confident predictions of
their early total replacement, all premature.

Early tape units recorded information at very low density. I can remember the im
pressive demonstrations of magnetic recording that we gave by laying a strip of
recorded tape under a thin piece of paper and sprinkling iron filings (‘Visimag’)
over it. The individual bits could be clearly seen.

Such a demonstration would be difficult today because of the high packing densi
ties, and the very small magnetic fields that are recorded. These early units de
pended for the reliability of their information recording on the massive signals that

ICL TECHNICAL JOURNAL MAY 1981 273

could be generated at relatively low transport speeds. Each recorded bit was rela
tively large in comparison with the contamination or the flaws in the medium.

As information density had to be increased as a means of improving transfer rates
and device utilisation, so in parallel it was necessary to ensure accuracy of informa
tion being recorded at the time that it was recorded. Reading-after-writing and
parity are now taken for granted. Reading by a second head after recording allows
comparison of the recorded data with what was to be recorded. If the data coding
includes parity, then the need for such a comparison is avoided and the validity of
the recording can be tested by a parity check. Parity, by including redundant
information, allows the detection of either a ‘drop-out’ or a spurious bit. By in
creasing the amount of redundant information, possibly both laterally across the
tape and longitudinally along its length, the sensitivity of the detection system can
be increased to allow for double and even triple errors. Likewise the redundant in
formation can be used to calculate what incorrect signals have been read, usually to
a lower degree of resolution than the error detection system. These techniques are
well documented.1

The essential integrity elements of the storage system were:

(i) Ensuring that information was correctly recorded before continuing.
(ii) If information could not be correctly recorded in a particular place on the

tape, then that area of tape could be erased and the information recorded a
little further down the tape.

(iii) On reading, the accuracy of the reading could be checked and if an error
was detected, the tape could be backspaced and further attempts made.

(iv) If after several attempts the data still could not be recovered, the system at
least knew that the data was faulty and had not attempted to process faulty
information.

(v) Systems techniques such as the grandfather-father-son approach for file
maintenance provided a simple, although time consuming, method of
retrieving the situation.

(vi) Combinations of prelude and postlude information surrounding data blocks,
in some cases with software recorded block numbers also, provided protec
tion against the loss of a block.

As recording densities increased, so the likelihood of a transient error on reading
the data also increased. The information recorded on the tape could well be correct,
but the time taken to backspace and re-read could seriously reduce the productivity
of the system. Thus, when phase encoded tape at 1600 bytes per inch was intro
duced, a coding system was provided which allowed the controller, if it detected a
single bit error, to correct that error without the need to re-read. In providing this
capability, the tape unit also acquired the ability to detect drop-outs of more than
one bit in a data frame. The concept has been further enhanced in the Group Code
Recording scheme, in which data appears to have been recorded at 6250 bits per
inch. This is in fact an average apparent recording rate since the density of flux
changes is about 50% greater. A coding scheme is used which allows error correc
tion on the fly for any single or double combination of tracks simultaneously.
Errors may be corrected in all 9 tracks of a single block, provided that they occur in
combinations limited to 2 tracks at a time.

274 ICL TECHNICAL JOURNAL MAY 1981

This tape system includes the automatic recording of synchronisation bursts of data
at the beginning of each reel. This allows automatic adjustment of the reading
circuitry when that tape is subsequently read, to allow for any small maladjust
ments of the recording mechanism. Within long blocks, bursts of synchronisation
data are inserted to reset the error correction logic and thereby maintain maximum
error correction capability. Because of the scope of the error correction facilities on
reading, it is possible even to tolerate some errors during the writing of tape, thus
minimising the backspace - re-write occurrences. At least one major manufacturer
does this.

S Magnetic discs

Disc developments have been even more dramatic. Here the density of informa
tion recording has been increased not only in respect of the number of concentric
tracks recorded on the disc surface, but also the density of the information
recorded within a track. The majority of current disc drives today contain 300 to
600 information tracks per inch (compared with 9 tracks across half an inch of
magnetic tape). Information within a track is recorded at densities that are typically
6000 bits per inch. Some recently announced disc units probably record close to
1000 tracks per inch, with information at densities close to 12,000 bits per inch
around each track. Developments in new disc coating techniques as well as new
head technology suggests that 2000 tracks per inch and 20,000 bits per inch are
achievable in the medium term.

These data densities bring inevitable problems in their train. Increasing track
density requires very close alignment of the head to the track and the need for very
accurate positioning. The reasonable tolerances of mechanical positioners have been
exceeded, with fine adjustment of the head position now being controlled by servo
techniques. The high recording density leads to the requirement for the recording
head to fly very close to the surface. Several specialist disc manufacturers illustrate
this low flying height by suggesting that the engineering task is similar to flying a
747 around the world only an inch above the ground. The rate of revolution of the
disc must be sufficient that readable signals are obtained. At high recording density
this results in very high transfer speeds for the information flowing from the disc, or
required to flow to the disc. Instantaneous transfer rates in excess of a million bytes
per second are common, with some very large capacity units transferring at 3
million bytes per second and higher rates envisaged. These high rates of information
transfer can cause indigestion in even large computer systems.

At the same time, the problems of manufacturing the disc media themselves have
needed to be addressed. It has not been, for some time, practical to provide discs
that are totally free of flaws. Manufacturers have overcome this problem by testing
the assembled stack of discs, identifying flaws and, provided that the number of
these is reasonable, assigning spare tracks to maintain the overall capacity of the
unit. As densities have increased, so the problem of flaws has also increased to the
point where it is prudent to assume that every track has a flaw. Assigning spare
tracks thus becomes no longer adequate. Instead, spare sectors may be needed with

ICL TECHNICAL JOURNAL MAY 1981 275

each track, with spare tracks used to cover those situations where flaw occurrences
are such that the spare capacity of a track cannot handle the situation because
several sectors must be re-assigned.

Error detection and correction coding systems have needed to be developed in
parallel. Practical engineering considerations limit the feasibility of using a pair of
writing and reading heads to give a “read-after-write” check. Instead a complete
additional revolution of the disc may be needed, with the information read on the
second revolution to check that the recording has been correct. ‘Defect skipping’
and ‘defect swallowing’ techniques hide the flaws from the user.

As the density of both tracks and data has increased, but particularly that of the
tracks, it has been necessary to preserve a fixed relationship between heads, media
and recorded information. A similar situation has been recognised for many years in
the case of magnetic tape: even setting aside the intrinsic quality of the tape, it has
long been known that particular formulations and head profiles are satisfactory in
combination while others generate problems such as tape wear, head wear,
“stiction” and so on. Reading and writing on the same transport usually gives best
results. In the case of discs, the disc pack and the heads used to record and read the
data on the pack need to be kept together.

Mechanical considerations limit the track density and information recording density
that can be achieved on exchangeable units. The capacity of an individual drive in
which the pack is exchangeable is limited in comparison with what can be achieved
if the heads are permanently associated as in a “fixed” disc. Even at relatively
modest track and bit densities the cost of units with the same capacity will be
greater in the case of an exchangeable unit because of the mechanical linkages
which must be provided, as well as the provision of a ‘cleaning’ system to minimise
the build up of environmental contamination within the pack. An intermediate
solution, in which the heads were contained within a closed exchangeable pack was
introduced by one major manufacturer some years ago. This approach has not
survived. Today, virtually all high density and high capacity disc storage devices
use fixed media, in which the heads and discs are contained within a sealed environ
ment. Exchangeable discs are thus limited to medium capacity devices or cartridges.

6 Reliability

To avoid withdrawing the heads and thereby reducing the access ‘stroke’, the heads
must be able to land on the disc without causing a ‘head crash’. Having solved this
problem and having adopted a fixed disc, with the heads permanently associated
with the recording surfaces, additional mechanical simplifications can be applied
which reduce cost and increase reliability. The systems advantages of exchangeable
disc units are lost, although it is noted that many large organisations with large
‘disc farms’ have, for some time, been using exchangeable discs essentially as if they
were fixed. Reliability improvements are noticeable when this is done.

The usual measures of intrinsic reliability are the Mean Time Between Failures, and
the commonly quoted Data Integrity Parameters of the number of errors encoun
tered during the reading of a large volume of data.

276 ICL TECHNICAL JOURNAL MAY 1981

MTBF is a misleading statistic considered in isolation. It is affected by environ
ment, usage and the other factors. In general, medium capacity exchangeable disc
units demonstrate MTBF in the range of 3000 to 4000 hours. A typical medium
capacity fixed disc unit, with double the capacity of the same sized exchangeable
units, demonstrates MTBF of 8000 hours or more. The actual head and disc
assembly itself, excluding the electronics and other support functions in the
transport/drive, may have an MTBF between 15,000 and 20,000 hours. The re
liability of the disc drive itself now exceeds the reliability of the electronic compo
nents of a small system. The most unreliable component in a medium sized fixed
disc could well be the local disc drive control electronics.

Data integrity is normally specified for transient and irrecoverable (or hard) read
errors. Transient errors are normally considered as those that are not repeated if
an attempt is made to read the data again. The definitions are sometimes confused
by the quotation of transient error rates that take account of data recovery through
the use of a sophisticated error correction coding scheme. Typical data integrity
parameters for discs are in the range of 1 error in 1011 or 1012 bits or bytes read,
with transient errors normally an order of magnitude worse than hard errors.

The engineering approach to disc drive design usually first ensures that good data
recording can be achieved and confirmed through a system of error detection. From
the user’s standpoint, the priority is probably the detection of the error. The other
priority is to provide a mechanism for correcting as many of the errors during
reading as possible, in order to minimise the necessity for a further revolution and
repeated reading and reduce the probability of unreadable data.

The big bogey for both discs and tapes remains the undetected error. I have been
involved in many arguments where the inclusion in a specification of an Undetected
Error Rate has been demanded. A theoretical analysis of the error detecting code
and the recovery algorithms may suggest the irrelevant and trivial probability of a
situation in which an error may not be detected or may be corrected incorrectly.
This does not take account of the physical considerations. In any event, there seems
little point in providing a specification parameter that cannot be measured. A
fundamental characteristic of a undetected error is that it has not been detected
and therefore cannot be counted. The circumstances are so remote that enhancing
current detection codes is not very significant. In the context of actual data corrup
tion the problem does not deserve consideration.

7 Occurrence o f corruption

The combination of MTBF and data integrity parameters implies very high standards
of intrinsic reliability for fixed discs. The logical conclusion is that' failures of the
device itself are unlikely to be a large proportion of the total population of incidents
concerning data-recovery failures. Computer manufacturers are still addressing the
intrinsic reliability issues and improvement in these can be expected. What is now
clear is that in terms of ensuring access to data, the preservation of information
paths and subsystem control functions is probably far more significant than the
intrinsic reliability and data integrity of the disc drives themselves.

ICL TECHNICAL JOURNAL MAY 1981 277

Unfortunately very little information is available covering the total range of system
errors that relate to data, and the causes of those errors. What information is avail
able suggests that the data integrity problem is swamped by corruptions of data
caused by program faults or system faults. Thus even if the data storage devices
themselves are made infinitely reliable, enormous progress has still to be made in
the general field of preventing or containing system errors and preventing these
from contaminating information on a disc. The conclusion therefore is that data
recovery procedures should be biased towards recovery from program deficiencies
and application system failures rather than recovery from failures in the disc devices
themselves. We can rely on the discs - we cannot rely so much on the systems and
programs that use them.

8 The tradition of back-up

When discs first appeared, like any new device they were suspect and procedures
evolved to compensate for both actual and imagined problems. Installation
practices have developed in which all the information on a disc is regularly copied
either to another disc or to tape. In parallel, practical operating considerations and
the difficulties of mapping required combinations of files on to discs in an
economical manner has led to the widespread practice of treating the exchangeable
discs as if they were fixed. This involves storing the files on removable media (either
some disc packs or more commonly on magnetic tape) and then loading ‘working
discs’ with these files prior to processing. After processing, the files are ‘taken
down’ by being copied either to other discs or, more frequently, to magnetic tape.
Traditional practices of transferring copies of files to archival storage has preserved
particular techniques of providing data recovery in the event of a failure of the file
as recorded on a disc.

These techniques have been relatively satisfactory for batch processing systems.
Special system recovery techniques have needed to be developed for transaction
processing and multi-access services. Nevertheless, the problem of back-up and
recovery from corruption of the data is all too often considered at the level of the
complete storage capacity of the disc concerned, rather than in terms of the files
or even the records which may have been corrupted. After all it is the records and
presumably only a few of these, that have probably been destroyed, rather than the
entire recording.

If account is taken of the high intrinsic reliability and data integrity of the fixed
disc itself, what emerges is that fixed disc storage is itself excellent back-up to fixed
disc storage. This is clearly true if a file on one disc can be backed up with a copy
on another disc. The reliability is such that the use of another mechanism may only
be demanded by considerations of total capacity and the provision of alternative
data paths to ensure accessibility of data.

There are of course considerations of protection of data against the hazards of fire,
flood and other pestilences. These clearly demand explicit system solutions.
However, the most common cause of data loss arises in normal operation and it is
the provision of recovery from this that can be achieved most reliably and rapidly
by backing up data held on a disc with a second disc.

278 ICL TECHNICAL JOURNAL MAY 1981

9 Advantages of fixed disc back-up

If copies of active files are taken and preserved on fixed discs then, in the event
that a prime working file is found to contain corrupt data, the offending records
can be recovered from the copy, without resorting to external media. Appropriate
systems management procedures are required to ensure that application programs
only address files in a working area and only system functions are used in connec
tion with the copies, thus protecting the copies from deficiencies in the application
programs.

By the appropriate management of transaction journals (which themselves might
well be contained on fixed discs) and including the use of ‘before-and-after-looks’,
on-the-fly record recovery systems can be constructed at a record or subfile level.
Thus a service could be maintained even though corrupt records have been identi
fied. Transactions related to the corrupted record can be processed after a simple
record recovery procedure. In the event that this recovery procedure leads to a
repetition of the corruption, then the user is in the satisfactory state of having not
only the applications-program modules but the specific data that leads to corrup
tion isolated for subsequent analysis and correction procedures. The evidence has
been assembled, which is usually the critical step in establishing a case.

Such systems could not only be rapid, but they can also be logically simple. In a
transaction processing system, if a corrupt record is detected, the terminal user may
notice a delay while a record recovery procedure is invoked. Nevertheless the trans
actions will be applied or a well defined set of error conditions established for that
record.

External recovery media are thus required only in those cases where massive data
volumes arise, where archiving is required or where legal or other considerations
demand the preservation of major historical records. This may in some circum
stances mean that traditional recovery devices will not be required, or that slower,
more economical or alternative devices can be used, since they are required to
provide for the hard residue of a data removal function, rather than an intrinsic
data recovery function.

This means that in future the total storage capacity must no longer be considered
only in terms of active file storage but also in terms of the duplication, or even
triplication, of files on fixed disc. This may still be more economical than the
additional types of devices with their attendant controllers that may be required.
This approach has the prospective desirable characteristic that the customer’s data
storage will be concentrated on devices of high intrinsic reliability. This must be an
advantageous direction of systems development for the future.

Reference

1 HAMMING, R.W., ‘Coding and Information Theory’ Prentice Hall, Hemel Hempstead,1980

ICL TECHNICAL JOURNAL MAY 1981 279

Applications of the ICL
Distributed Array Processor

in econometric computations
J.D.Sylwestrowicz

DAP Support Unit, Queen Mary College, University of London

Abstract

Two approaches to econometric modelling lead to complicated multi
dimensional integrals and large sets of nonlinear algebraic equations,
respectively. Both require very heavy computation. The application of
methods of parallel processing, as provided by DAP, to these situations is
discussed.

1 Computational problems in econometrics

Most of the practical large-scale econometric studies involve very heavy calculations
on large amounts of data. There are two particularly important types of computa
tional problem. First, the frequently-used Bayesian approach to econometric
modelling leads to complicated multidimensional integrals, accurate evaluation of
which is well beyond the capabilities of current sequential computing techniques.
Secondly, models are often expressed as sets of nonlinear algebraic equations in
possibly large numbers of variables, which also are intractable by conventional
methods. In this second case, the equations are often linearised to bring them
within the limits of available computer time and space, and estimates are made by
using conventional least-squares techniques. This is often inappropriate and may
give misleading results.

There is a considerable need for computer hardware and software that will allow
the present restrictions to be relaxed. The Monte Carlo method provides a compu
tational technique that promises to be valuable in the first case, and the use of
parallel processing offers a means for enlarging the scope and applicability of both
methods of attacking econometric modelling. The paper discusses the application
of the ICL distributed-array processor (DAP). This has been described in several
published papers;1’2 to summarise, the present production model consists of a
64 x 64 matrix of parallel processing elements (PEs), each with a local store of
4096 bits, equivalent to about 120 32-bit floating-point numbers. Each PE has
access to the four neighbouring elements and to their stores. All the PEs obey
simultaneously a single instruction stream broadcast by a Master Control Unit
(MCU). A high-level language DAP Fortran3 has been provided by ICL; this is a
derivative of Fortran with additional features that enable parallel algorithms to be

280 ICL TECHNICAL JOURNAL MAY 1981

expressed naturally and efficiently. The work described here is in progress in the
DAP Support Unit at Queen Mary College, University of London, where the first
production DAP was installed in May 1980.

2 Monte Carlo method

This was developed originally for the study of systems consisting of large numbers
of discrete particles in random motion, such as gas molecules or the neutrons in a
nuclear reactor. It was so called because, in these original applications, it depended
on simulating the behaviour of samples of the particle population by choosing
random numbers and processing these in appropriate ways — in effect, by playing
theoretical games of chance. Later work showed that the principle of the method
was not at all restricted to discrete-particle systems but could be used to attack
quite different types of problem in which chance played no part; and that it could
often have great advantages over conventional numerical methods. There is a useful
account in the book of Hammersley and Handscomb 4

Monte Carlo is particularly well suited to the computation of difficult integrals,
especially to multiple integrals; and the type of computation to which it leads can
exploit the possibilities of parallel processing very fully.

2.1 Parallelism in Mon te Carlo methods

There are two stages in solving a problem by Monte Carlo methods. First, a
probabilistic model has to be constructed, such that the required solution is given
by a statistical parameter of the model. Then the parameter, and therefore the
solution, is estimated by repeated random sampling. In general, convergence of
Monte Carlo methods is rather slow and a large number of trials must be made to
get accurate results.

Parallel processing has a major advantage in Monte Carlo methods because the
individual computations of the trials are independent and can be performed simul
taneously. Also, the total number of trials can be adjusted to the number of
processors so that the full capacity of the parallel computer is used.

To illustrate the method, consider the evaluation of the integral

l
/ = f f (x) d x (1)

o

For simplicity, a one-dimensional integral over the interval [0,1] is used; the
principle and the method remain the same for general multidimensional integrals.

The probabilistic model is that this integral is the expected value F of the random
variable

F = f (X)

ICL TECHNICAL JOURNAL MAY 1981 281

where X is uniformly distributed in [0 ,1]. To estimate this we can compute the
mean F of F:

 ̂ - l N

i~l

where the x t are random numbers uniformly distributed in [0,1] and N is the
sample size.

A

An estimate of the variance of / is s2 given by

, 1 N S2 = ------- , V [f(Xi) - I]2
N(N-\) A 1

i = i

and clearly this decreases, that is the accuracy of the estimate I increases, as the
sample size N increases.

We can now define an elementary Monte Carlo integration algorithm:

Step 1 Generate N random numbers uniformly distributed in [0,1]

Step 2 Compute f (x 1) , f (x2), . . . f (x N)

A 1 N
Step 3 Compute / = — y f (x t)

N ' i= 1
A

which gives the required approximation I to I.

An indication of the precision of this approximation can be found by computing
the variance s2 , as above.

On the DAP the random numbers needed in Step 1 can be generated simultaneously.
A parallel random number generator which produces 4096 numbers simultaneously
has been developed in the DAP support unit; it employs the same algorithm as the
NAG Library* sequential generator. Then in Step 2 all the function values can be
computed simultaneously if N does not exceed 4096, otherwise in A/4096 steps or
the next integer above if this is not an integer. Usually the sample size N can be
equal to the size of the DAP matrix or to a multiple of this, to take full advantage
of the computational power.

♦Numerical Algorithm Group: a standard library of numerical routines available for almost all
the principal makes of computer.

282 ICL TECHNICAL JOURNAL MAY 1981

This algorithm was used to estimate the integral (1) for the Gaussian or Normal
Error function

/(*) = 1 - i * 2~ i= e\/2n

taking a sample size N = 8192. This was done both on the DAP and, in a sequential
version, on the ICL 2980. The DAP run was approximately 90 times faster than the
2980, which is generally rated a 2 to 3 MIPS (millions of instructions per second)
machine.

There are three main reasons for this very high performance ratio. First, the bit
nature of the DAP processing permits the random number generator essentially to
be microcoded, which itself gives a high performance relative to the serial NAG
routine used on the 2980; secondly, the DAP uses very fast exponential and squaring
routines — these are described in Gostick’s paper;3 and thirdly, the fact that DAP
performs 4096 operations simultaneously means that there are virtually no over
heads due to loop control, which probably account for up to 50% of the time on a
serial computer.

This elementary integration algorithm was chosen as a good example of the Monte
Carlo approach. There are more complicated algorithms which are more efficient
statistically, some of which are described in Ref. 4. Adaptation to parallel pro
cessing should improve their performance similarly. In general, it can be expected
that the timing of any Monte Carlo experiment will be greatly improved by
exploiting parallel processing techniques.

3 Nonlinear econometric models

Many quite general econometric models can be written as a system of nonlinear
equations in economic variables (y's and z's) and unknown parameters (d's):

fu(yit>y2t> • • ■ ynt>zit>z2t’ • • ■ z mt> ® i » ■ ®p) ~ u i t

f 2 t (y i t> y 2 t > • • • ynt'>z it>z 2t>■ • ■ z mt>&u&2>--- ®p) = u 2t

f n t i y i t ’ y2t> • • • y n t ’ z lt<z 2t> ■ ■ • z m t >91 > 0 2 > - - - 6 p) - u n t

which can be written in vector form

f t (y t , zt ,0) = ut

Here y t is a vector of n endogenous (unknown, dependent) variables

z t . . . m exogenous (known, given) variables

(2)

ICL TECHNICAL JOURNAL MAY 1981 283

9 p unknown parameters

ut . . . n random disturbances, assumed to independent and
normally distributed

The variables y t , z t can relate to any observable quantities of economic interest,
such as employment, production or national income; the suffix t takes integer
values 1, 2 , . . . T (say), each referring to a set of simultaneous observations of the
values of these variables. The problem is: given these sets of values, to estimate the
unknown parameters so that the equations can be used for prediction.

Several methods for this estimation have been developed: surveys of these and discus
sions of some special cases are given by Hendrys and by Sargan and Sylwestrowicz.6
The method considered here is the maximisation of the concentrated log-likelihood
function. For the model represented by the system (2) the function to be
maximised with respect to the parameters 6 can be written

T
L(0) = c+ Y logldet/ , 1- 0-5 Tlog I det (f f /T) \ (3)

r=i

where c is a constant, / without a subscript denotes the matrix of elements / „ / ' i s
the transpose of / and / , is the Jacobian of the system (2), [3 /,/3y ,J. As usual, det
denotes the determinant of the matrix and tr (below) the sum of the leading
diagonal elements.

The gradient of L can be written in the form

31« — 3 , , 3 —
— = log Idet/ ,1 - 0 - 5 ^ - logldet £ / , / ,1 (4)

t t

An interesting algorithm for maximisation of L was proposed by Berndt et al.1
Following their approach we define

3Jthr] (5)

It can be shown that

bL —

t

(6)

(7)

284 ICL TECHNICAL JOURNAL MAY 1981

and that the matrix of the second derivatives of L can be approximated by

1
G= m e ' ^ = T ^ (Pt~ qt)(Pt~ qt)' (8)

t

The search for the maximum then follows the Newton-type iteration

ei+i=0i + \ i G - 1 g

where g and G are, respectively, the gradient and the matrix of second derivatives
of the objective function evaluated at the current point. X, is chosen at each
iteration to maximise /(0 1 + \G ~ 1g) with respect to X. Here g = 9 //90 and the above
approximation G is used instead of the exact G.

It was realised that the amount of matrix manipulation involved in the use of this
algorithm, and the amount of parallel computation with respect to the suffix t,
make the procedure suitable for implementation on DAP.

In most econometric applications the sample size T varies between SO and several
thousands. Computing the vectors p t , q t simultaneously for all t will be of great
advantage, and the computation of the cumulative formulae 7 and 8 will be very
efficient on DAP. The DAP will be efficient also for the matrix operations in 3 ,5
and 6 - inversion, multiplication and evaluation of determinants. Its efficiency
relative to serial processing will depend on the values of n (number of equations)
and p (number of parameters), because / , and / ' / a r e n x n matrices and 9/,/90
is a p x n matrix.

The procedure is being implemented on the DAP; the implementation is based
partly on the serial version recently written for the CDC 7600. An interesting
feature of the program is the inclusion of a subroutine for automatic differentiation
of a set of functions, due to Sargan and Sim.8 With this, the user need only specify
the functions / , (as Fortran expressions) and the program calculates the necessary
derivatives.

4 Conclusions

Although the work described above is still in its early stages, the advantages of using
DAP are quite clear. Monte Carlo experiments can be considerably speeded up and
nonlinear models of greater complexity can be estimated.

In both cases the development work is being done in the context of econometric
computing. However, the problems discussed are of quite general nature and the
outcome should be of interest to research workers in many other fields. Monte
Carlo methods are used in many disciplines involving computing; and the nonlinear
estimation algorithm can be applied to most of the problems where unknown
parameters of a nonlinear system have to be determined.

ICL TECHNICAL JOURNAL MAY 1981 285

Acknowledgment

The author is grateful to Professor D. Parkinson for his helpful comments and
suggestions.

References

1 FLANDERS, P.M., HUNT, D.J., REDDAWAY, S.F. and PARKINSON, D.: Efficient high
speed computing with the Distributed Array Processor in 'High speed computer algorithm
organisation’ Academic Press, London, 1977 pp.113-128.

2 PARKINSON, D.: ‘The Distributed Array Processor - DAP’ IUCC Bulletin, 1980, 2,
119-121.

3 GOSTICK, R.W.: ‘Software and algorithms for the Distributed Array Processor’ ICL Tech.
J. 1979,1(2),116-135.

4 HAMMERSLEY, J.M. and HANDSCOMB, D.C.: Monte Carlo Methods Methuen, 1964.
5 HENDRY, D.F.: ‘The structure of simultaneous equation estimators’, / , o f Econometrics,

1976,4 51-88.
6 SARGAN, J.D. and SYLWESTROWICZ, J.D.: ‘A comparison of alternative methods of

numerical optimisation in estimating simultaneous equation econometric models’, London
School of Economics, Econometrics Discussion Paper No. A3.

7 BERNDT, E.K., HALL, B.H., HALL, R.E. and HAUSMAN, J.A.: ‘Estimation and inter
ference in non-linear structural models’, An. Economic Social Meas., 1974, 3/5, 653-665.

8 SARGAN, J.D. and SIM, Y.Y.: ‘A general differentiation program, with particular applica
tion to the estimation of econometric models’, London School of Economics, Working
Paper 1981 (in preparation).

286 ICL TECHNICAL JOURNAL MAY 1981

A high level logic
design system

M.J.Y. Williams and R.W. McGuffin
ICL Product Development Group, Technology Division, Manchester

Abstract

The paper describes a system for the early detection and correction of
errors in the logical design of large computer systems. The system being
designed may be described at successive levels of detail as the design pro
ceeds in a top-down fashion. A novel method of describing simulated time
permits the results of simulations of alternative descriptions to be com
pared to verify that a design gives the same response as its specification.
The system has been in use for two years in the design of a mainframe
computer.

1 Introduction

The development of computer-aided design, especially in the computer industry has
kept pace with the complexity of the problems being solved. However, in the past,
more attention has been paid to design translation (placement, routing, production
etc) than to aiding the process of design capture and its natural development.

The design of modern mainframe computers presents a wide range of problems.
Briefly, these may be summarised as follows:

Specification

Structure

Formalism

Communication

This is often done informally (English narrative) and leads to
incompleteness, ambiguities and inconsistencies.
Many projects, at inception, are well defined in terms of the
hierarchies required to implement the design. However, as
design progresses, it is often apparent that the design team
loses sight of the original goal and undisciplined changes can
cause the original goal to become unrecognisable.
Due to a lack of formalism many unsafe design decisions may
be made.
or the lack of it, is possibly one of the principal reasons why
major logical errors are propagated through to commissioning.

The trend towards LSI-derived machines increases the penalty for errors which are
not detected until the chips are fabricated. Modifications, of whatever derivation,
are fatal to cost-effective manufacture and these, combined with LSI, are leading to
design paralysis.

ICL TECHNICAL JOURNAL MAY 1981 287

These problems have been recognised and many attempts have been made to over
come them by capturing and recording design in the form of a high-level logic
design or hardware description language. However, there is quite often a confusion
between structure and behaviour. For example, register transfer languages show
structure of memory elements but not explicit control or data flow. Structure is
concerned with the interconnection of subsystems to form a whole, while be
haviour is concerned with the behaviour of the whole, not with its realisation.
Further, a high-level logic desgn system must be able to move design forward from
concept through to implementation.

This paper describes a high-level logic design system which is being applied to the
design of mainframe computers. The system comprises:

a language - SIMBOL 2 which describes subsystem behaviour such that it
can be simulated.

a simulator - this simulates networks of subsystems described in SIMBOL 2.
a comparator - this compares the simulated outputs of alternative descriptions

of a subsystem

The syntax of the language and the novel features of the simulation and compari
son functions are described.

2 Design environment

In many respects, the ‘shape’ of a mainframe computer is determined by market
forces and not by what can be achieved with contemporary technology. In other
words, design is constrained by:

Existing order codes
Existing software
Predefined partition of hardware and microprogram determined by cost - per
formance aspects

and other important considerations concerned with manufacture and testing. Conse
quently, although from an academic standpoint it would be advantageous to
develop a computer design from its primitive order code, many decisions have
already been made.

The current ICL design automation system is called DA4, i.e. it is the fourth
generation of a CAD system. As the title implies, the primary concern is with design
automation (translation) since, when it was conceived, it was considered that this
provided the most cost-effective solution to ICL’s design problems. The overall
structure is shown in Fig. 1, and as may be seen, DA4 provides a ‘total technology’
outlook:

(i) Compressed logic data capture and automatic expansion to the level of
detail required for implementation. When the systems level description, described in
this paper, has reached a level low enough to be translated into detailed logic dia
grams, engineers sketch the design on gridded paper. These rough diagrams are
coded by technicians and entered into the design database. This task is tedious and

288 ICL TECHNICAL JOURNAL MAY 1981

error prone. Techniques such as multistrings (highways etc) and multisymbols re
duce the drawing and data entry problems and hence, at the same time, reduce
errors and show better logic flow.

Fig. 1 ICL's integrated CAD system

(ii) Microprogram assembly — where the output of the microprogram as
sembler is often being burnt into PROMS and used to produce flow diagrams going
to the service engineer, microprogram assembly is a vital part of the total tech
nology. Further microprograms provide a useful source of test patterns for simula
tion.

(iii) Logic simulation — As distinct from high-level simulation, this is con
cerned with complex logic elements, nominal and worst-case delays, timing race and
hazard analysis etc.

ICL TECHNICAL JOURNAL MAY 1981 289

(iv) Logic data file — the logic content of the computer is stored as ‘pages’ of
logic. Conceptually, the whole machine can be thought of as an enormous logic
diagram. This diagram is cut into manageable portions (say 1000-3000 gates) and
called a page. The page is also a convenient drawing unit and contains all the neces
sary design information for design and service engineer alike.

(v) Assembly extract and production output — in common with other DA
systems, a wide variety of output is produced.

It is into this environment that the high-level logic design system fits.

3 High level logical description and simulation

The high-level logic simulator plays a central part in the system, as the facilities for
design verification depend on comparison of the results of simulating alternative
descriptions of a logical subsystem. The alternative descriptions are usually a be
havioural description, in the procedural description language SIMBOL 2 which is
described later, and a structural description. The structural description is a des
cription of the network which describes the subsystem at the next lower level of
detail. This description is read by the simulator from a file which is in the standard
format used throughout the design automation system to describe logical networks
and logic drawings.

The simulator is conventional in the following respects:

It is event-driven
It uses three values, 0,1 and X (i.e. unknown or changing)
It is table-driven in that the networks being simulated are represented internally

as data structures linked by pointers.
Input patterns are read from a file as a sequence of state changes on primary

inputs interspersed with time intervals.
The sequence of states occurring at any specified points in the simulated net

work may be printed.

However, the simulator has the following, more unusual, features:

Networks within networks are simulated without first being expanded.
A special type of event is used to cause restarting of subsidiary paths within

elements being simulated.
Simulation may use ‘no-time’ mode, a novel way of representing time by means

of delays of different orders.
Complex connections may be represented compactly as highways or bundles.

Each of these more unusual features will now be described in further detail.

The simulated system may consist of a network of interconnected logical elements
each of which is described to the simulator in SIMBOL 2, the procedural descrip

290 ICL TECHNICAL JOURNAL MAY 1981

tion language. Alternatively, each element may be described as a further network of
elements. Networks within networks are simulated without first expanding them to
give a single-level network. Instead, the nested networks are simulated like procedure
calls, which are followed during simulation.

This reduces the amount of space needed in the host computer to hold the data
structures representing the networks when there is more than one call to the same
network. This is because the representation of the called network is stored only
once. The penalty for using this technique is increased cpu usage, which arises from
housekeeping on a variable length list associated with each event to indicate the
nested elements that the event refers to.

The simulator uses events to represent predicted changes of state of connections in
a simulated network, as is conventional in logic network simulators. The events are
held in singly-linked lists which are accessed through a hierarchy of circular indices,
of the type described by Ulrich.1 At high levels of description, it is sometimes con
venient to describe a system as several interacting processes, or paths, which
proceed concurrently. The paths may suspend themselves, either awaiting other
events or waiting for a specified interval of simulated time. This last facility is
implemented by means of a second kind of event, which consists of a pointer to the
path and the simulated time when the path is to be resumed. Both kinds of events
are mixed in the same lists of events.

The simulator provides an alternative option, called ‘no-time’ mode, in which
delays are represented by a hierarchy of delays of different orders. A delay order is
an integer, and a delay of higher order is considered large compared with any
combination of delays of lower orders. The delay order of a signal propagation path
which passes through two delays is equal to the delay order of whichever delay has
the higher delay order. This is illustrated in Fig. 2. This method of modelling time
is intended to provide a means for the system designer to specify the relative orders
of magnitude of delays in his system without having to consider relative values and
the tolerances on each one.

Logical connections between elements in a simulated network are classed as wires,
highways and bundles. The simplest connection is a wire', its state may be 0,1 or X
representing an unknown or changing state; and its shape is denoted by W. A
highway state is a fixed length string of bit states; each bit state is 0, 1 or all bit
states are X. Highway connections are used mainly for representing parallel data
paths. The fact that the simulator does not account for individual X bits in a
highway greatly simplifies the simulation of arithmetic operations on highway
states. The shape of a highway is denoted by H(ri), where n is the number of bits in
the highway. The simulator processes state changes on entire highways.

A bundle consists of a number of members, where each member is a wire, a
highway or another bundle. For example, a bundle might consist of two wires and
four further bundles, each consisting of a 32-bit highway and a wire. The shape of
this bundle would be denoted by B(2*W+4*B{H(32)+W)), where + separates
member specifications and * indicates replication. Bundles provide a means for

ICL TECHNICAL JOURNAL MAY 1981 291

representing complex structured connections compactly. The simulator processes
state changes on wire or highway members of bundles, but not on bundles as
entities.

A indicates the delay order of each box

path delay order
order of arrival of state change at D,
propagating from input I

ABC 20 1 2 ,3 (relative order is indeterminate)
E 20 J

FG 15 1
H 35 A

Fig. 2 Rule for compounding delay orders

4 Procedural description language: SIMBOL 2

Each SIMBOL 2 description specifies how to simulate the external behaviour of an
element. Unlike a register transfer language description, it does not give any indica
tion of how the element will function internally. SIMBOL 2 descriptions are
preprocessed into ALGOL 68, which is compiled with a standard compiler and
incorporated in the simulator for the run.

To give a flavour of the language, some of the features will be briefly described in
relation to the example of Fig. 3. Each SIMBOL 2 description includes two main

292 ICL TECHNICAL JOURNAL MAY 1981

parts, a specification part and an element simulation routine. The specification part
commences with ‘SPEC’ at line 1. The next line indicates that the element has four
inputs. Input 1 is a wire, input 2 is a 4-bit highway, and inputs 3 and 4 are each
32-bit highways. The outputs and internal memories are specified similarly in lines
3 and 4. The next line gives the name MILL by which the element may be called.

1 'SPEC'
2 'INPUTS' (W, H(4), H(32), H(32»;
3 'OUTPUTS’ (W, H(32));
4 'MEMORIES' (W);
5 'ELTYPE' "MILL"
6 'ESR'
7 'D E L A Y 'D = (2, 5);
8 'IF' 'BOOLVAL' ('INPUT' 1 'AND' 'NOT' 'MEMORY' 1) 'THEN'
9 'CASE' 1 + 'ABS' 'INPUT' 2 'IN'

10 'C '0 0 0 0 'C '
11 'OUTPUT' 1 'BECOMES' W 0 'AFTER' D:
12 'OUTPUT' 2 'BECOMES' 'INPUT' 3 'AND' 'INPUT' 4 'AFTER' D,
13 'C '0 0 0 1 'C '
14 'NAME' T = 'INPUT' 3 'B+' 'INPUT' 4;
15 'OUTPUT' 1 ‘BECOMES’ T 7 0 'AFTER' D;
16 'OUTPUT' 2 'BECOMES' T ? (32, 1) 'AFTER' D,

(etc.)
17 'ESAC'
18 'FI';
19 MEMORY' 1 'BECOMES' 'INPUT' 1
20 'FINISH'

Fig. 3. Example of SIMBOL 2 language

The element simulation routine commences with ‘ESR’ at line 6 and continues to
‘FINISH’ at the end of the description (*). D is declared to represent a delay order
2 if the simulation is in ‘no-time’ mode, or a delay of 5 units if the simulation is in
‘time’ mode. The ‘IF’ - ‘FI’ construction of lines 8 to 18 detects a rising edge on
input 1, since memory 1 holds the previous state of input 1, by virtue of line 19.
The operator ‘BOOLVAL’ (line 8) takes the wire state resulting from the ‘AND’
opertion, checks that it is not X , and converts the 0 or 1, to a boolean ‘FALSE’ or
‘TRUE’ as required for ‘IF’. Similarly, the ‘ABS’ operator in line 9 causes the state
of the highway input 2 to be treated as an unsigned integer, so that the ‘CASE’ -
‘ESAC’ construction selects a function according to the state of input 2. In this
example, output 2 is a result highway, and output 1 is a carry-out signal. A binary
value of 0000 on input 2 selects a bitwise AND function (lines 11 and 12; line 10 is
a comment) which never produces a carry-out. A value o f0001 in input 2 causes the
element to perform an unsigned binary addition (lines 14 to 16). The addition is
performed by the operator ‘B+\ which treats the two highway states of its operands
as unsigned binary integers. It produces as a result a highway state which is one bit

* It is called whenever any of the inputs to the element changes state.

ICL TECHNICAL JOURNAL MAY 1981 293

wider than the wider of its operands. In the example, this result has shape //(33),
and it is given the temporary name T. Bit 0 of T is output as the carry bit (line 15),
while in line 16, the construction T? (32, 1) selects 32 bits of T, starting at bit 1
the second bit), for the data output.

The operator ‘BECOMES’, in line 11, places an event in a queue which is associated
with the first output of the element. Any events, which are already in this queue,
for a simulated time or delay order greater than or equal to that of the event being
scheduled, will be removed from the queue. This is in order to give correct results
when simulating delays which have different values or orders for rising and falling
signals.

Delays on the outputs of elements are normally simulated as ‘lossy’ delays, in which
the output only takes on a known state when the input to the delay has been un
changing in a known state for as long as the delay value or order. This facility is
used for modelling delays which might not transmit short pulses, and it provides
some measure of detection of significant spikes. Lossy delays are implemented as
follows: Each event with a lossy delay has a flag set to indicate that it is ‘lossy’.
When the event is processed, the event queue for the output is examined, and if
there are any later changes of state in the queue, the output is set to X instead of
the state indicated in the event. If required, a pure delay may be simulated by
declaring the delay value as ‘PURE-DELAY’ instead of ‘DELAY’.

5 The comparison of simulation results

The comparison of simulation results is used to determine whether two simulated
systems give the same response when they are supplied with equivalent input
sequences. The relations between files and programs in the system are depicted in
Fig. 4. At some stage in the design process, the design of all or part of the system
will be described as a network of interconnected high-level elements, in which each
element has a behavioural description in SIMBOL 2. A sequence of input patterns
to drive a simulation of this network is also needed. From this simulation, the
sequence of patterns occurring on the inputs and outputs of one (or more) of the
elements in the network may be captured, that is, recorded in a file. At some
later stage in the design process, the element will have been specified by the de
signer to be a network of simpler, lower-level elements. The DRIVER program
may be used to read the file of captured patterns, and extract from it the sequence
of input state changes in a format suitable for use as input to a simulation of the
lower-level network. The sequence of patterns on the inputs and outputs of this
entire network may be captured from the simulation, and compared with the
patterns captured from the higher-level simulation, by means of the program
COMPARATOR. The same process may be continued for each of the elements in
the network, down through successive levels of design, until, eventually, a level is
reached where the elements correspond to circuits within ICs, or to standard cells
or gates in an LSI chip.

When two files of captured patterns from simulations in ‘time’ mode are compared,
COMPARATOR checks that the sequences of patterns in the files match. The time

294 ICL TECHNICAL JOURNAL MAY 1981

intervals between the patterns are ignored, because it is unreasonable to expect a
designer, when writing his behavioural description in SIMBOL 2, to predict the
exact timing properties of the network realisation which is not yet designed.
However, the advantage of simulating in ‘no-time’ mode is that comparison will
check that the delay orders between corresponding patterns in the two files are
equal. This is, in fact, the reason for providing ‘no-time’ mode in the system.

comparison
error reports

Fig. 4 Top down design with comparison

ICL TECHNICAL JOURNAL MAY 1981 295

If the COMPARATOR program detects a difference in delay orders between the
two files of patterns, it simply reports a ‘delay order error’, and continues
comparing the files. If the files are found to differ in any other way, that is, if a
difference in the sequences of patterns is encountered, the program reports a
‘sequence error’. It then attempts to resynchronise the files, by skipping a few
pattern changes on either file, to find a point at which the pattern changes
correspond, so that comparison may continue. If this heuristic fails, comparison is
abandoned.

At high levels of design description, the comparison procedure just described may
be too restrictive. An element representing a subsystem may have several interfaces
to other elements. It is possible that what is of significance is the sequence of
patterns on each interface, independently of how these patterns interleave in time
with the patterns on other interfaces. For example, if a processor is sending records
to a line printer and a tape punch, what matters are the sequence of records to the
printer and the sequence of records to the punch, not the overall sequence of
transfers. To accommodate this type of situation, the user may specify that the
inputs and outputs, of the element whose simulation results are being compared,
are divided into ‘ordered groups’. Comparison is then performed as an independent
logical process on each ordered group of inputs and outputs.

The ordered groups are specified by the user in a text file in a form known as the
Brick Interface Specification Language (BISL). An example of a BISL specification
is shown in Fig. 5, where ordered groups called SCU and PCU are declared. In SCU,
0 to 1 changes on input 3, all changes on output 3, and 1 to 0 changes on output 4
are considered significant, that is, they are used in the comparison. In the ordered
group PCU, output 9 is specified to be a data connection associated with 0 to 1
changes on output 7. The effect of this is that whenever output 7 goes significant,
the status of output 9 from the two files are compared. However, changes in the
state of output 9 have no significance, as it is not a member of any ordered group.

SCU:
'UP' 'INPUT' 3, 'OUTPUT' 3, 'DOWN' 'OUTPUT' 4;

PCU: 'INPUT' 1
'DATA' ('INPUT' 7, 'INPUT' 8, 'INPUT' 10),

'DOWN' 'OUTPUT' 6,
'UP' 'OUTPUT' 7 'DATA' 'OUTPUT' 9

Fig. 5 Example of the Brick Interface Specification language.

The effect of supplying a BISL specification COMPARATOR is to reduce the
requirements for equivalence between the two files which are being compared. A
means is therefore needed for verifying that the operation of an element is indeed
independent of the relative ordering between input state changes in different
ordered groups. A means is provided by the SHUFFLER program, which may be
used to process the file of captured patterns before the file is supplied to DRIVER
to provide the inputs to the lower-level simulation (see Fig. 4). This program alters
the sequence of pattern changes in the file in a pseudo-random fashion, subject to

296 ICL TECHNICAL JOURNAL MAY 1981

the constraint that both the sequence and the delay orders are preserved for
changes on inputs and outputs within each ordered group. The expectation is that,
if the ordered groups are not completely independent, the shuffling should cause
some comparison errors to be reported.

6 Discussion

The high level logic design system has been used in the design of a new mainframe
computer for approximately two years. It is worthwhile examining the benefits
which the design project team claims it has derived.

Specification by using the design language, ambiguities, etc, in the English
narrative were uncovered.

Documentation - The SIMBOL 2 descriptions, combined with the structure
diagrams, provided a necessary part of an adequate ongoing
design documentation system.

Simulation/ This provided some evidence of safe design decisions. Further,
Comparison by extending the procedural descriptions to the detailed logic

level and by incorporating the microprogram, sets of test
patterns were derived for a technology-independent descrip
tion which will be subsequently applied to different implemen
tations.

Management These benefits provided some of the evidence with which the
project could be adequately monitored and controlled.

However, problems have been encountered:

SIMBOL 2

Additional
Features

‘No-time’
Simulation

The design language is slightly clumsy and this provides an
additional reason for non-use for engineers who do not wish to
program.

Since the system is being used as it is developed, there are
regular requirements for new operators etc.

This feature has not been extensively used at present.

However, despite these the system is gaining wider acceptance within the computer
design projects.

Reference

1 ULRICH, E.G.: ‘Exclusive simulation of activity in digital networks’, Communications o f
the ACMVoL 12, no. 2, February 1969.

ICL TECHNICAL JOURNAL MAY 1981 297

Measures of
programming complexity

Barbara A. Kitchenham

ICL Product Development Group, Northern Development Division,
Kidsgrove, Staffs

Abstract

The increasing cost of software development and maintenance has revealed
the need to identify methods that encourage the production of high qual
ity software. This in turn has highlighted the need to be able to quantify
factors influencing the amount of effort needed to produce such software,
such as program complexity.

Two approaches to the problem of identifying complexity metrics have
attracted interest in America; the theoretical treatment of software science
by Halstead of Purdue University and the graph-theoretical concept devel
oped by McCabe of the US Department of Defense. This paper reports an
attempt to assess the ability of the measures of complexity proposed by
these authors to provide objective indicators of the effort involved in soft
ware production, when applied to selected subsystems of the ICL operating
system VME/B. The proposed metrics were computed for each of the mod
ules comprising these subsystems, also counts of the numbers of machine-
level instructions (Primitive Level Instructions, PLI) and measures of the
effort involved in bringing the modules to an acceptable standard for field
release. It was found that all the complexity metrics were correlated posi
tively with the measure of effort, those modules which had proved more
difficult having large values for all these metrics. However, neither
Halstead’s nor McCabe’s metrics offered any substantial improvement over
the simple PLI count as predictors of effort.

1 Introduction

1.1 Background to the investigation

In recent years there has been an increasing interest in obtaining objective and
quantifiable measures of software quality and complexity. These differ from
previous attempts to define good programming or design practices1-3 in
that they attempt to make quantifiable predictions about the behaviour of
programs, where behaviour is meant in the widest sense to refer to bug rates, size,
reliability, complexity etc.

Several different approaches have been made to the problem of quantifying software
quality. Lehman4 has investigated the behaviour of whole systems, Kolence5 has

298 ICL TECHNICAL JOURNAL MAY 1981

looked at the problems of capacity management, of relating hardware to workload,
while Halstead6 and McCabe7 have looked for software metrics that can be used to
describe individual programs.

This paper reports an attempt to evaluate the results of applying the work of
Halstead and McCabe to VME/B software. The method used was to obtain the
Halstead and McCabe metrics for all the modules comprising two VME/B subsystems.
The purpose of the evaluation was to investigate the possibility both of ranking
VME/B subsystems as a whole and identifying well-behaved and badly-behaved
modules within subsystems.

1.2 Halstead metrics

Halstead’s theory of software science is based on the definition of an algorithm (or
program or module) as a combination of operators and operands. He defines four
basic metrics:

n , = the number of distinct operators appearing in a program

n2 = the number of distinct operands appearing in a program

N i = the total number of occurrences of operators in a program

N 2 = the total number of occurrences of operands in a program

He defines the vocabulary of a program to be

n = «! + « 2 (1)

and the length of a program to be

N = N t +N2 (2)

Halstead then postulates a relationship between the vocabulary and length of a
program such that:

N = n 2 log2n i + n2 log2/i2 (3)

where N is used to indicate a calculated estimator of N the observed length.
Halstead defines the volume of a program to be

F=A rlog2/i (4)

He points out that the volume of a program is the number of bits required to
specify the program.

Halstead next considers thelevel o f abstraction of the implementation of a program.
He argues that since a high level language requires fewer operators and operands to
implement a program than a low level language, it follows that volume is inversely

ICL TECHNICAL JOURNAL MAY 1981 299

proportional to level of abstraction (L). He therefore proposes the following conser
vation law:

L V = Vp (5)

where Vp is the constant of proportionality and is designated the potential volume
of the program.

He proposes the following estimator for L :

L = (2 /n j) * (n2IN2) (6)

Using the concept of language level and potential volume he attempts to identify a
metric that could be used to distinguish between different languages. He identifies
the language level X to be

X = VpL (7)

or X = VL2 (8)

where the value of X is high for high level languages and low for low level languages.

The final metric considered in this study refers to the mental effort (E) required to
create a program. Halstead argues that the difficulty of programming is directly
proportional to program volume and inversely proportional to program level. He
therefore proposes the following definition of mental effort:

E = V/L (9)

To summarise, the vocabulary (n), length (TV or TV) and volume (V) of a program
may be considered as fairly gross complexity metrics, with a large value of any of
these metrics indicating a complex program. The metric E provides a very specific
measure of complexity since it purports to measure the actual level of mental effort
required to create the program. Using this measure Halstead has predicted the time
needed to write programs and other workers8’9 have investigated the effort needed
to understand programs. Thus, the metric E could provide a very sensitive method
of determining the complexity of programs.

The level of abstraction (/,) should not be expected to behave like the other metrics.
If we assume that a high level implementation of a program is less complex than a
low level implementation, it implies that simple programs will have higher values of
L than more complex programs.

The language level (X) is not a complexity metric at all. The value obtained for a
particular program is an estimate of the language level of the particular language in
which the program is written. Thus, it is not directly related to the complexity of
an individual program.

300 ICL TECHNICAL JOURNAL MAY 1981

1.3 McCabe’s metric V(G)

This is usually referred to as a measure of cyclomatic complexity since it is based
on the cyclomatic number obtained by treating a program as a mathematical graph.
It is related to the number of basic paths through the program.

In graph theory the cyclomatic number V{G) of a graph G is defined as

V(G) = e - n + p (10)

where e is the number of edges, n the number of vertices and p the number of con
nected components.

Fig. 1 An example of a program control graph (G) of a structured program with cyclomatic
complexity IA G) = 5.

In this application a program is considered as a directed graph with an unique entry
node and an unique exit node. Each node in the program is represented by a vertex
of the graph and corresponds to a sequential block of code; the edges of the graph

ICL TECHNICAL JOURNAL MAY 1981 301

are the arcs joining the nodes and correspond to branches in the program. A com
ponent of the graph corresponds to a complete unit such as a subroutine. Such a
graph is called a program control graph. It is assumed that each node can be reached
from the entry node and that each can reach the exit node; in his treatment McCabe
adds a hypothetical arc linking the exit node to the entry, giving what is called a
strongly connected graph for which the number of connected components p is
always 1. An example is given in Fig. 1, inspection of which reveals 10 nodesand
14 arcs; so for this graph (or program)

V(G) = 14 - 10+ 1 = 5

McCabe gives a simpler formula applicable to structured programs, which are
defined as programs in which the following are prohibited

branching (a) out of a loop (b) into a loop
branching (c) out of a decision (d) into a decision.

His simpler equation is

V(G)= n +1 (11)

where n is the number of predicate nodes, which in turn is the number of decision
points in the program. For example, IF Cl THEN is treated as one predicate and IF
Cl AND C2 THEN as two. To estimate the cyclomatic complexity of Fig. 1 it is
only necessary to identify and count the branching points. These are only nodes b,
c,d and h so we have

V(G) = 4 + 1 = 5, as before.

VME/B coding does in fact obey the rules of structured programming, so the
simpler eqn. 11 can be used to obtain V(G).

1.4 Software production procedures

The production of VME/B software has been described previously.10 However,
several aspects of the process are necessary to an understanding of this paper and
are therefore explicitly described here. Fig. 2 shows the process diagrammatically
and may be summarised as follows:

(i) Software production teams write holons (a general term used for entities
such as subroutines) in the System Definition Language (SDL).

(ii) Once coded the SDL holon is transferred to computer files controlled by a
CADES service unit (which is a group of people and programming tools).

(iii) Using information about holon-holon, holon-data interactions held by the
CADES database, a group of one or more holons may be processed (by an
Environmental Processor) into S3 code, where S3 is an ALGOL 68-like
language.

302 ICL TECHNICAL JOURNAL MAY 1981

(iv) Processing a group of related holons using the Environmental Processor
results in the generation of S3 code which is referred to as a module (or an
S3 program).

(v) Modules are transferred to a Construction service unit (which also is a group
of people and programming took), compiled using an S3 compiler into
machine code and incorporated into a version of VME/B software called an
Incremental Construction.

(vi) Periodically an Incremental Construction is considered suitable for release
to customers as a VME/B release product.

Fig. 2 The VME/B software production route

(vii) Most of the above steps are iterative: during the development of VME/B
software several versions of a holon may be transferred to CADES before
a version is considered suitable for inclusion in a module and for transfer to
the Construction service unit. Similarly several versions of a particular module
may be included in different Incremental Constructions before it is
considered suitable for release to the field.

2 Data collection and analysis

2.1 Subsystems selected for analysis

For this study data were obtained from two subsystems of VME/B. One sub
system, here called SSI, was developed before the introduction of Incremental
Construction; the other subsystem SS2 was a newly designed and coded subsystem
that replaced SSI in the SV40 release of VME/B.

ICL TECHNICAL JOURNAL MAY 1981 303

The selection of SSI and SS2 for analysis hinged on several factors. First, they were
both fairly small subsystems and therefore it was possible to analyse them without
too much effort. Second, they represented extremes of VME/B code in terms of age
and the availability of software development aids. Last, since the subsystems had the
same basic function, differences between them could not be attributed to different
functional requirements.

SSI is composed of 27 modules compiled from a total of 47 holons; some modules
were a composite of several different holons. SS2 is composed of 41 modules com
piled from a total of 45 holons. Both sets of modules also contained expanded code
from other VME/B subsystems obtained by the facility of macro expansion. Three
holons of SS2 were macros, none of the SSI holons were macros. One of the SS2
modules was a ‘data-only’ module used to hold information about all the global
data required by the subsystem. The data-only module contained no S3 code and
was therefore excluded from all analyses. From now on the SS2 subsystem will be
considered to be composed of 40 modules compiled from 44 holons. This
procedure will not influence the analysis because Halstead excludes declarations
from his operator and operand counts.

2.2 Information obtained

The S3 compilation listings, provided by the S3 compiler, were obtained for the 27
modules in SSI and for the 40 code modules in SS2. From these the following
metrics were obtained for each module:

(i) — (iv) Halstead’s metrics n i , n 2, N lt N 2 as defined in Section 1.2.

(v) McCabe’s cyclomatic complexity measure V(G) as defined in Section 1.3.

(vi) Number of machine code instructions (Primitive Level Instructions,
PLI) in the compiled code.

In order to investigate the efficiency of the various metrics, some observable
indicator of program behaviour which could be related to complexity was required.
A measure such as the number of bugs per module would have been ideal but
suitable records were not available. What was readily available was information col
lected during the automated stages of holon and module development. Thus it was
possible to obtain a count of the number of different versions of each holon pro
cessed by CADES during the development of both SSI and SS2 and also of the
number of different versions of each module processed by Construction for SS2.
Versions of modules and holons are changed for a variety of reasons including error
clearance, enhancement, design change and so on. However, on the assumption that
a complex program (module or holon) would require more attempts before it was
acceptable than a simple program, measures of behaviour based on observed num
bers of changes were constructed.

Two measures of module behaviour were obtained, one based on the observed
changes to the constituent holons and the other related to the observed changes to
each module during Incremental development, thus:

304 ICL TECHNICAL JOURNAL MAY 1981

(vii) Number of transfers to CADES (TC). This was derived from the
observed changes to the constituent holons of a module. In order to avoid biasing
the results because of the different numbers of holons in different modules, the
following procedure was adopted: the initial transfer of all the holons comprising a
module gave a TC count of one and thereafter the count was increased by one
every time a new version of a holon was transferred. Thus a module of five holons,
none of which was changed after the initial transfer, would have a TC value of one,
whereas a module of two holons, one of which was altered four times after the ini
tial transfer, would have a TC value of five. Any effects of macros were ignored in
this procedure.

(viii) Number of transfers to Construction. This was a simple count of the
number of different versions of the module that existed in Incremental versions of
VME/B during module development. It was available for the modules comprising
SS2 but not for SSI which was written before the introduction of Incremental
development.

2.3 Statistical analyses

The data were analysed using the 2900 Statistics System11. The additional Halstead
metrics described in Section 1.2 were calculated for each module. The statistical
analyses were performed on each subsystem separately to provide the following
information:

(i) The mean and standard deviation for each metric.

(ii) The frequency histogram of each metric.

(iii) The correlations between the measures of module complexity and the
measures of module behaviour defined in Section 2.2.

(iv) The partial correlations between the measures of complexity and the measures
of module behaviour using the PLI count as the partial control variate.

(v) The percentage of variation accounted for by fitting each of two linear regres
sion models relating complexity metrics to module behaviour measurements.

a
(vi) The program length N plotted against its estimator N.

The limitations of any exploratory study12 apply to this investigation. Two parti
cular points require consideration. First, there is a bias towards finding a general
difference between the two subsystems because they were written and coded by
different people at different times. Second, although statistical techniques are used
to present the information in concise form, reliance on statistical tests of significance
is not appropriate because these rely heavily on the Gaussian (Normal) distribution
and, as the following Tables will show, the metrics used here are not distributed in
this way. However, it was believed that the investigation would provide useful
information concerning gross trends and suitable background information in the
event of a more rigorous investigation being required.

ICL TECHNICAL JOURNAL MAY 1981 305

3 Results

3.1 A verage values o f the metrics

The mean values for each metric together with their standard deviations are shown
in Table 1 for SSI and Table 2 for SS2. The striking feature of these two Tables is
the similarity observed between complexity metrics for the two subsystems.

Table 1 shows two values for the SSI subsystem. One value includes all 27 SSI
modules, the other excludes one module that had extremely large values for all
complexity metrics except program vocabulary. This module was considered atypi
cal not simply because of its large values but because the large values were obtained
as a result of a large number of macro expansions of a different subsystem. Thus, the
complexity measures for that module were inflated as a result of the complexity
and method of implementation (macros as opposed to procedures) of an unrelated
subsystem.

Table 1. Mean and standard deviation o f measurements obtained from the 27
modules in the SSI subsystem

Measurement Mean* Standard deviation*

Halstead’s metrics

n 80-9 (79-6) 50-4 (50-8)
N 426-5 (340-3) 554-9 (334-3)
V 2909-4 (2316-5) 3970-6 (2554-8)
E 390840-9 (202818-6) 1031224-6 (336551-4)
L 0.059 (0-061) 0.115 (0-117)
X 1-23 (1-27) 1-00 (1-00)
N 459-3 (450-2) 349-5 (351-1)

McCabe’s metric

V(G) 21-4 (19-3) 21-6 (18-9)

Size

Number of PLI 334-7 (295-5) 381-2 (328-6)

Behavioural
measurements

Transfers to CADES 5-2 5-1

* The measurements in brackets indicate the values obtained by excluding an atypical module.

Once the atypical module is removed from the analysis, it is apparent that not only
are the mean values of the metrics similar but the variability, as demonstrated by
the standard deviation, is very similar for each metric within each subsystem.

306 ICL TECHNICAL JOURNAL MAY 1981

The individual operator and operand counts are not shown in the Tables because
they are treated by Halstead merely as building blocks for his other metrics.

Table 2. Mean and standard deviation of measurements obtained from 40 modules
in the SS2 subsystem

Measurement Mean Standard deviation

Halstead’s metrics

n 81-5 48-8
N 355-3 326-3
V 2417-5 2436-3
E 225840-3 392994-6
i 0-067 0-130
\ 1-20 1-18
N 461-5 337-0

McCabe’s metric

V(G) 20-1 19-1

Size

Number of PLI 263-0 236-4

Behavioural
measurements

Transfers to CADES 3-05 2-31

Transfers to Construction 2-05 1-08

3.2 Distribution o f the metrics

Examination of the frequency histograms for each complexity metric revealed two
points. First, the distributions of the metrics were not normal. Second, the distri
butions again showed a high degree of similarity between the two subsystems.

To illustrate these two features Fig. 3a, b and c show the frequency histograms for
program vocabulary, n, the cyclomatic complexity, V(GJ, and the PLI count for
SSI. Fig. 3d, e and / show the equivalent histograms for SS2. (These particular
histograms were chosen simply because they provide a representative set of the
results.) The class boundaries for each histogram were calculated from the mean
and standard deviation of each metric and therefore differ between the two sub
systems.

3.3 Correlations between the complexity metrics and the module behaviour

Table 3 shows the correlations between the measures of module behaviour and the
complexity metrics for each subsystem.

ICL TECHNICAL JOURNAL MAY 1981 307

It is clear that all the complexity metrics, except those related to the language used
(i.e. L and X), show consistently large positive correlations with the measures of
behaviour, although the correlations observed for SSI are dependent upon the
exclusion of the atypical module.

class boundaries

class boundaries

Fig. 3 a Frequency histogram for program vocabulary n of modules in SS1
b Frequency histogram for cyclomatic complexity V(G) o f modules in SSI
c Frequency histogram for PLI count of modules in SSI
d Frequency histogram for program vocabulary n of modules in SS2
e Frequency histogram for cyclomatic complexity l/ (G) of modules in SS2
f Frequency histogram for PLI count of modules in SS2

The results, therefore, indicate that the most frequently modified modules (which
may be considered the badly-behaved modules) are those which exhibit the larger
values of the complexity metrics. There is also a weak indication that modules with
a high level of abstraction are less frequently amended (well-behaved).

The complexity metrics were highly correlated among themselves as can be seen in
Tables 4 and 5 for SSI and SS2 subsystems, respectively. (The results for SSI,
shown in Table 4, are given for the 26 normal modules only.) The correlations are

308 ICL TECHNICAL JOURNAL MAY 1981

extremely consistent in pattern between the two subsystems. All the straightforward
complexity metrics are highly positively correlated, while the two different metrics,
language level (X) and level o f abstraction (£,), are only moderately and negatively
correlated with the other metrics although highly correlated with each other.

Table 3. Correlations between the complexity metrics and module behaviour
measurements for SSI and SS2

Transfers to
Complexity metrics Transfer to CADES Construction

SSI modules* SS2 modules S2 modules

(a) Halstead's

n 0-74 (0-75) 0-72 0-64
X 0-45 (0-77) 0-70 0-51
N 0-76 (0-77) 0-73 0-64
V 0-48 (0-78) 0-70 0-51
E 0-26 (0-83) 0-53 0-32
L -0-28 (-0-28) -0-34 -0-36
X -0-40 (-0-41) -0-38 -0-39

(b) McCabe’s

V(GJ 0-68 (0-79) 0-70 0-46

(c) Size

PLI 0-66 (0-80) 0-72 0-51

*The bracketed values are those obtained when the atypical module is excluded from the
analysis.

N.B. For pairs of bivariate normal random variables, a value of the correlation coefficient
significant at the 0-01 level is 0-50 for 26 observations and 0-40 for 40 observations.

The high positive correlations between the complexity measures indicate a potential
problem, in that they may all be measuring the same thing. For this reason, the par
tial correlations between the complexity measures and the behavioural measures
were investigated. The PLI count was chosen to be the control variable for two
reasons: the simplest hypothesis is to suggest that all the complexity metrics are
related to size and, for future use, the PLI count is the simplest metric to obtain,
since it is provided by the S3 compiler.

The partial correlations between the complexity metrics and the module behaviour
measurements using PLI as the partial control variable are shown in Table 6. The
partial correlations indicate the relationships between the complexity metrics and
module behaviour for fixed module size.

It can be seen that the correlations are no longer consistent between the two sub
systems nor do they show any consistent trends within the subsystems. Most of the
correlations are now negligible, and the few that remain moderately large are not
confined to one subsystem or one metric.

ICL TECHNICAL JOURNAL MAY 1981 309

Table 4 . Correlations between the compexity metrics for the SSI subsystem*

Halstead’s metrics McCabe’s

V(G)

Size

PLIn N
A

N V E
A
L A

n _
N 0-94 -

N 100 0-96 _

V 0-94 1-00 0-96 —

E 0-88 0-97 0-91 0-98 _

L -0-52 -0-39 -0-46 -0-36 -0-27 —

X -0-59 -0-48 -0-55 -0-47 -0-41 0-75 _

V(G) 0-85 0-84 0-86 0-83 0-82 -0-38 -0-51 —

PLI 0-91 0-99 0-93 0-99 0-92 -0-35 -0-47 0-93 —

4The correlations in this Table are based on the 26 normal modules

Table 5. Correlations between the complexity metrics for the SS2 subsystem

Halstead’s metrics McCabe’s

V(G)

Size

PLIn N
A

N V E
A
L X

n _

N 0-91 —

N 1-00 0-92 _

V 0-92 0-93 0-93 —

E 0-73 0-74 0-74 0-73 -
L -0-57 -0-51 -0-40 -0-57 -0-25 _
X -0-61 -0-56 -0-56 -0-61 -0-34 0-83 -

V(G) 0-83 0-92 0-94 0-93 0-86 -0-40 -0-45 -

PLI 0-93 0-93 0-93 0-99 0-89 -0-44 -0-51 0-94 -

Because partial correlations are not guaranteed robust to the effects of non-normality,
these results were verified Jpy investigating the effects of fitting a number of regres
sion models. The metrics L and X were excluded from this analysis since they are
measures of language rather than program complexity. Two types of regression
model were used, as follows:

y = b0 + b lXl (Model 1)

y = bo + b\X\ + Z?2*X2 (Model 2)

For the first model, each complexity metric was used in turn as the independent
variable, xj, and the module behaviour measurements (transfers to CADES and
transfers to Construction) were taken in turn as the dependent variable y. The sub
systems SSI and SS2 were analysed separately. Each model was summarised by the
percentage of variance of the dependent variable y accounted for by fitting the

310 ICL TECHNICAL JOURNAL MAY 1981

regression model, where the higher the percentage of variance accounted for the
better model.

For the second model, a similar analysis was performed except that the first inde
pendent variable, x 2, was always taken to be the number of PLI while the other
complexity measures were taken in turn as the second independent variable, x 2.
Each model was, again, summarised by the percentage of variance accounted for by
fitting the regression model.

Table 6. Partial correlations between the complexity metrics and module behaviour
measurements using PLI as the partial control variable

Transfers to CADES Transfers to
Complexity metrics --- Construction

SSI modules* SS2 modules SS2 modules

(a) Halstead’s

n 0-46 (0-14) 0-18 0-51
% -0-57 (-0-10) -0-17 -0-01
N 0-49 (0-15) 0-21 0-52
V -0-56 (-0-04) -0-15 -0-01
E -0-08 (0-51) -0-37 -0-37
L -0-56 (0-00) -0-04 -0-12
\ -0-11 (-0-07) -0-02 -0-12

(b) McCabe’s

V(G) 0-28 (0-42) 006 -0-08

♦The bracketed values are those obtained when the atypical module is excluded from the
analysis.

The results of applying both models to the two subsystems when using transfers to
CADES as the dependent variable (y) are shown in Table 7. The results of applying
both to SS2 when using transfers to Construction as the dependent variable are
shown in Table 8.

It is apparent from Table 7 that when transfers to CADES is used as the measure of
module behaviour, the results for Model 1 suggest that using PLI as independent
variable is usually as good as using any other metric; and that no other is consistent
ly better. Inspection of the results for Model 2 shows that in general only a very
modest improvement over the Model 1 results for PLI alone can be expected from
introducing a combination of PLI and another metric.

When transfers to Construction is used as the measure of module behaviour, the
results shown in Table 8 indicate that Halstead’s vocabulary metric n and estimated
size metric N appear to be better predictors of module behaviour than PLI, using
Model 1. However, the results for PLI are similar to those for most of the other
metrics and are substantially better than Halstead’s ‘mental effort’ metric E. The

ICL TECHNICAL JOURNAL MAY 1981 311

results of using Model 2 show that, apart from the combination of PLI and E, com
bining PLI with any other metric does not provide a substantial improvement over
Model 1.

Considering the correlation and regression analyses together, it appears that PLI is a
fairly good and consistent indicator of module behaviour although other metrics
may be better for specific cases. In general therefore most of the complexity
metrics cannot be shown to provide information in excess of that provided by the
PLI count.

Table 7. Percentage o f variation accounted for by regression models using transfers
to CADES as the dependent variable

Independent variates SSI SS2

Complexity Model 1* Model 2* Model 1 Model 2
metrics

(a) Halstead’s

n 51-7 541 56-6 62-8
N 48-4 53-7 59-4 62-3
A

N 53-0 54-6 58-5 63-0
V 48-8 53-5 60-5 62-0
E 28-2 59-0 69-6 72-0

(b) McCabe’s

V(G) 48-5 52-6 62-9 68-8

(c) Size

PLI 52-4 - 62-0 -

* Model 1 isy = bo + b tx t

Model 2 is y - bo + 6 1*1 + b2x2 where x l is PLI.

3.4 Relationship between N and N

As mentioned in Section 1.2, Halstead proposed an estimator of program length
based only on the number of distinct operators and operands (eqn. 3). The correla
tions in Tables 4 and 5 indicate that N and N are very closely related to one another
(0-96 for SSI, 0-92 for SS2). However, it is not clear from correlations whether or
not an identity relationship holds.

Figs. 4 and 5 demonstrate the nature of the relationship between N and N observed
in this investigation. It is clear that the relationship N = N is not a good fit to the
observed data for either subsystem. Both subsystems show the same trend which is
for N to over-estimate N.

312 ICL TECHNICAL JOURNAL MAY 1981

Table 8. Percentage of variation accounted for by regression models using trans
fers to Construction as the dependent variable

Independent variates SS2

Complexity metrics Model 1* Model 2*

(a) Halstead’s
n 41-2 45-8
H 25-6 26-5
N 40-9 46-1
V 25-8 26-5
E 1 0 0 36-7

(b) McCabe’s
F(G) 21-6 26-9

(c) Size
PLI 26-5 -

♦Model 1 is y = bo + bix l
Model 2 isy = b0 + b lx 1 + 62*2 where is PLI.

4 Discussion

4.1 Distributions o f the complexity metrics

The most striking feature of the distributions of the complexity metrics is the simi
larity observed between the two subsystems. The similarity exists not only for aver
age values but also for standard deviation and frequency histograms.

The similarity is surprising for two reasons. First, there was almost certainly a bias in
favour of finding a difference (see Section 2.3). Second, the subjective opinion of
programmers responsible for maintaining the subsystems is that SSI is more
complex than SS2.

Fig. 4 a Relationship between length N of a module and proposed estimator N, for modules
in SS1

b Relationship between length N of a module and proposed estimator N, for modules
in SS2

ICL TECHNICAL JOURNAL MAY 1981 313

A possible explanation is that this phenomenon is another example of the influence
of program size. One feature of the software design, common to the development
of both subsystems, was the requirement to constrain holon size. Now, the average
PLI count is similar for each subsystem, indicating that the size constraint has influ
enced module size as well as holon size. It is therefore possible that the similar
distributions of the Halstead and McCabe metrics have occurred because the metrics
themselves are highly correlated with PLI count.

4.2 McCabe’s complexity metric

This measure of complexity has a good deal of intuitive appeal, when viewed in
terms of a measure of the number of paths through a program. Although it is obvious
that there must be a gross relationship between the size of a program and the num
ber of paths through it, it is surprising that this measure of complexity offered little
or no additional information to the ranking of programs.

McCabe7 applied his work to application programs written in FORTRAN and con
cluded that a cyclomatic complexity number of 10 should be considered as a practi
cal upper limit for software modules. The average value obtained from both subsys
tems investigated in this study was 20. It may be that above a certain level of com
plexity McCabe’s metric is unable to discriminate between programs, and that the
only conclusion to be drawn is that VME/B software written in S3 is extremely
complex.

4.3 Halstead’s metrics

Halstead’s metrics have less intuitive appeal than McCabe’s metric because they are
derived metrics. However, Halstead6 has provided a detailed justification of them
and the reported results have usually confirmed their usefulness.

Two features concerning the internal consistency of Halstead’s metrics can be
found in this study. First, the language level for S3 was estimated as 1-23 for SSI
and 1-20 for SS2. In view of the high level of S3, and compared with the values
of 1-21 for Algol 58, 1-14 for FORTRAN and 1-53 for PL/1 which have been
reported,4’13 a language level of approximately 1 -2 seems rather low.

Second, the relationship between the observed program length N and the estimated
program lengtji N predicted by Halstead does not appear to hold for the modules
studied here. A is highly correlated with N but overestimates N. Halstead has indica
ted a number of reasons why N should fail to estimate N accurately. However, there
is no suggestion in his work of a systematic deviation from the proposed relation
ship which could explain the results observed in this study.

4.4 Relationship between complexity metrics and measures o f module behaviour

McCabe’s metric, all Halstead’s metrics (with the exception of Language Level and
Level of Abstraction) and PLI count show moderate to high correlation with the
measures of module behaviour (transfers to CADES and transfers to Construction).

314 ICL TECHNICAL JOURNAL MAY 1981

However, the metrics themselves and the relationships were very susceptible to the
values obtained for one atypical module.

The partial correlation and regression analyses suggest that in most cases neither
McCabe’s nor Halstead’s metrics offer much additional information over and above
that to be obtained from the F̂ LI count. It was found that Halstead’s vocabulary
metric n and estimator of size N were better than PIT as estimators of the numbers
of transfers to Constructions of SS2 modules. However, the good results for these
two metrics are unexpected in terms of Halstead’s own theories: he does not regard
vocabulary as a basic complexity measure, but as more of a building block for other
metrics. The result for N is even more unlikely, since this is supposed to be an esti
mator for program size N and is therefore expected to behave in a similar way to N;
but in this case N is apparently a better predictor of module behaviour than N itself.

5 Conclusions

This investigation has confirmed that module size is a good measure of program
complexity and a reasonable indicator of subsequent module behaviour for VME/B
modules.

It also seems clear that McCabe’s and Halstead’s metrics offer little assistance to the
evaluation of VME/B modules or subsystems beyond that obtained by considering
module size. In addition, it is worth noting that McCabe’s and Halstead’s metrics
are extremely arduous to obtain compared with PLI count, which restricts their
usefulness in practice.

The results of this study also cast some doubts on the generality of Halstead’s and
McCabe’s metrics. This is in contrast to much of the previously published work
summarised by Fitzsimmons and Love13 , but is similar to the results of Curtis
et al8, which also observed strong correlations between program size and McCabe’s
and Halstead’s metrics. Now, the research — both theoretical and empirical — relat
ing to the McCabe and Halstead metrics is of far too comprehensive a nature to be
ignored. The results of this study would therefore seem to suggest that more
research is required to identify the particular conditions under which these metrics
are of practical use.

Acknowledgments

The author would like to thank Dr. R.A. Snowdon and Mr. B.C. Pearson for their
constructive comments concerning the presentation of the material in this paper.
She is also extremely grateful to Mrs. C. Lodge for her help with the preparation of
the manuscript.

References

1 DUKSTRA, E.W.: ‘The Structure of the “THE” - Multiprogramming System’, Commun.
ACM, 1968,11(5), 341-346.

2 PARNAS, D.L.: ‘On the criteria to be used in decomposing systems into modules’,
Commun. ACM, 1972,15(12), 1053-1058.

ICL TECHNICAL JOURNAL MAY 1981 315

3 WIRTH.N.: ‘Program development by stepwise refinement’, Commun. ACM, 1971, 14(4),
221-227.

4 LEHMAN, M.M.: ‘Laws of program evolution - rules and tools for programming manage
ment’, in Why software projects fail, Infotech State of the Art Conference, 1978, 11/3-
11/25.

5 KOLENCE, K.W.: ‘Software physics’, Datamation, 1975, June, 48-51.
6 HALSTEAD, M.H.: Elements o f software science, Elsevier North-Holland Inc. N.Y., 1977.
7 McCABE, T.J.: ‘A complexity measure’, IEEE Trans. Software Eng., 1976, SE-2(4),

308-320.
8 CURTIS, B., SHEPPARD, S.B., MILL1MAN, P., BORST, M.A. and LOVE, T.: ‘Measuring

the psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics’, IEEE Trans. Software Eng., 1979, SE-5(2), 96-104.

9 GORDON, R.: ‘Measuring improvements in program clarity’, IEEE Trans. Software Eng.,
1979, SE-5(2), 79-90.

10 McGUFFIN, R.W., ELLISTON, A.E., TRANTOR, B.R. and WESTMACOTT, P.N.:
‘CADES - software engineering in practice’, ICL Tech. /., 1980 2(1), 13-28.

11 COOPER, B.E.: ‘Statistical and related systems’, ICL Tech. /., 1979, 1(3), 229-246.
12 CAMPBELL, D.T. and STANLEY, J.C.: Experimental and quasi-experimental designs for

research, Rand McNally College Publishing Co., Chicago, 1966.
13 FITZSIMMONS, A. and LOVE.T.: ‘A review and evaluation of software science’, Comput.

Surv., 1978, 10(1), 3-18.

316 ICL TECHNICAL JOURNAL MAY 1981

