
Technical
Journal

Volume 1 Issue 3 November 1979

/

ICL Technical
Journal

Contents
Volume 1 Issue 3

Meteosat 1 : Europe’s first meteorological satellite
D . A in sw o rth 195

An analysis o f checkpointing
A . B ro ck 211

Statistical and related systems
B . E. C ooper 229

Structured programming techniques in interrup-driven routines
P.F . P alm er 247

The content addressable file store — CAFS
V .A .J. M ailer 265

Computing in the humanities
S. H ockey 280

Erratum 291

The data dictionary system in analysis and design
T. J. B ourne 292

Notes for authors 1 299

ICL TECHNICAL JOURNAL NOVEMBER 1979 193

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus limited
on behalf of International Computers limited

Editor
J Howie tt
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor)
D.P. Jenkins
(Royal Signals & Radar Establishment)
M.V. Wilkes FRS
(University of Cambridge)
C.H. Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £5 (Details from: The Technical Journal Office, ICL
House, Putney, London, SW15 1SW)

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8 , Southgate House, Stevenage, Herts SGI 1HQ, England

D. W. Kilby
K.H. Macdonald
B.M. Murphy
J.M. Pinkerton
E. C J \ Portman

This publication is copyright under the Berne Convention and the International Copyright
Convention. All rights reserved. Apart from any copying under the UK Copyright Act 1956,
part 1, section 7, whereby a single copy of an article may be supplied, under certain conditions,
for the purposes of research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form or by any means
without the prior permission of the copyright owners. Permission is however, not required to
copy abstracts of papers or articles on condition that a full reference to the source is shown.
Multiple copying of the contents of the publication without permission is always illegal.

© 1979 International Computers Ltd

Printed by A. McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

194 ICL TECHNICAL JOURNAL NOVEMBER 1979

M e te o sa tl: Europe's first
meteorological satellite

David Ainsworth
ICL Manager, European Space Agency Project, Darmstadt, W.Germany

Abstract

Meteosat is a geostationary satellite designed and equipped for the
collection and transmission to Earth of meteorological and environ
mental data. For the control of the satellite and the processing and dis
semination of this information a very large and complex system of com
puters and ancillary equipment has been set up in the European Space
Operations Centre at Darmstadt in West Germany. Two large ICL 2980
computers form the core of the system and ICL was the main contractor
for the whole installation. The paper describes the main features of the
satellite and of the computing system and also of the information collected
and the analyses performed.

1 Introduction

Television viewers in the British Isles and Germany are becoming accustomed to
nightly pictures showing cloud over Northern Europe along with tomorrow’s
weather forecast. These pictures are one of the more public products of Europe’s
first meteorological satellite Meteosat 1.

The European Space Agency has co-ordinated European industry in the design and
construction of the satellite and its associated ground facilities. The Agency is res
ponsible for the operation of Meteosat on behalf of the European Meteorological
Community. Meteosat was launched on the 23rd November 1977 into its transfer
orbit off the coast of Brazil. Over the following fortnight it was moved into its
operational geostationary position 36000 km above the equator and Greenwich
Meridian. The first pictures were taken on the 7th December 1977 when the space
craft was in position at 0 degrees North 0 degrees East above the coast of Africa
between Gabon and Ghana.

The Meteosat system meets the main data acquisition needs of the European
Meteorological services which, in turn, provide weather forecasting facilities for
their user communities. The responsibility for providing the local weather fore
casts, however, is the prerogative of national weather bureaux such as the British
Meteorological Office at Bracknell or the German Meteorological Service at
Offenbach. Meteosat also represents Europe’s contribution to two programmes set
up by the World Meteorological Organisation. The first is a permanent undertaking
and is known as the world weather watch programme. The second is an experi

ICL TECHNICAL JOURNAL NOVEMBER 1979 195

mental study undertaken jointly with the International Council of Scientific
Unions and is known as the global atmospheric research programme (GARP).

The first GARP global weather experiment (FGGE) commenced on the 1st
December 1978 and will be operational for one year. The experiment consists of
a network of five geostationary satellites distributed every 72° around the equator
(Fig. 1). Japan has one satellite named GMS covering Eastern Asia. The USA has
two satellites GOES-W and GOES-E covering the western and eastern coasts of
America. The USSR was responsible for covering Western Asia. Unfortunately,
however, their satellite was not available in time for the experiment so a third
GOES satellite was provided by the USA. The operational control of this satellite
is provided by the European Space Agency which also collects the satellite experi
mental data and retransmits it to the USA for processing.

The Meteosat satellite is controlled by the Meteosat ground computer system
(MGCS) which is located in the European Space Operations Centre at Darmstadt
in the Federal Republic of Germany. The link is provided by a 50 km broadband
landline to the Odenwald from where a 12 m diameter antenna provides the radio
link to the satellite. The Meteosat system provides the following facilities for its
users: earth imaging, image processing, meteorological information extraction,
archiving, dissemination, and environmental data capture. In addition to these
user facilities the system must also provide for the operational control of the
satellite.

2 User facilities

2.1 Earth imaging

The principal payload of the satellite is a 3-channel radiometer which can provide
images in three spectral bands:

(a) two visible channels providing images in the 0-4 - IT pm spectral band
(b) an infrared water-vapour channel providing images in the 5-7 - 7T pm

water-vapour-absorption band
(c) an infrared thermal channel providing images in the 10-5 - 12-5 pm

spectral band.

The infrared image of the full Earth’s disc visible from the satellite is composed of
2500 lines comprising 2500 picture elements (pixels) per line giving a spatial
resolution of 5 km at the subsatellite point.

When the water vapour channel is switched off the two adjacent visible channels
produce 5000 pixels per line and 5000 lines. Hence the visible spatial resolution at
the subsatellite point is 2-5 km.

196 ICL TECHNICAL JOURNAL NOVEMBER 1979

I C
L T

E
C

H
N

IC
A

L
 JO

U
R

N
A

L
 N

O
V

E
M

B
E

R
 1979

197

Fig. 1 Coverage of the geostationary satellites
telecommunications and image coverage
image coverage for calculation purposes

(GOMS temporarily replaced by a GOES satellite at 58°E during the global weather experiment and controlled by the European Space Agency -
1st December 1978-30th November 1979)

Fig. 3 Ml EC processing system

200 ICL TECHNICAL JOURNAL NOVEMBER 1979

within the 50° circle arc of the subsatellite point. For each of these segments a
3-stage analysis is made.

Stage 1 consists of a full description of the a priori status of the segment. A seg
ment characteristics table is built up showing for example: physical characteristics
such as land, sea, or sun glint; meteorological characteristics; cloud climatology;
spacecraft and solar elevation and azimuth.

Stage 2 consists of a multispectral analysis of the satellite radiance data for the
segment. The output is a cluster analysis in which each pixel is assigned to a specific
cluster which in turn is defined in terms of its mean radiance and variance.

Stage 3 assigns each radiance cluster to a particular source of radiation such as a
cloud level, land or sea. The segment can then be used as input to product pro
cessing.

(a) Cloud motion vectors: A sequence of three consecutive images is used to
determine the motion of clouds from one image to the next and hence to deduce
the apparent wind speeds at three altitude ranges per segment. The actual output
depends upon suitable cloud traces for the method used. Individual segments from
the second consecutive image are treated as target windows and a search is made
over a 3 x 3 segment window in each of the adjacent images for a good match.
Matching is achieved by the calculation of crosscorrelation coefficients for each
possible displacement of the target window in the larger search window. The cross
correlation surfaces are analysed for significant peaks, and peak displacements are
accepted as wind vectors if there is an acceptable degree of symmetry between the
two displacements obtained from two image pairs.

In the calculation of wind vectors, for example, some transparent cirrus clouds
present a particular problem where a high-level wind may be calculated and shown
as a seemingly low-level wind at variance with other surrounding low-level winds.
Partially, this can be corrected automatically using the water-vapour channels but
orographic effects must still be corrected. Therefore, following automatic calcula
tion, the wind vectors need to be validated by meteorologists at coloured video
terminals.

(b) Sea surface temperatures: For each segment covering sea the ‘skin’ tempera
ture of the ocean is measured. The method is based upon infrared clustered radi
ances converted by means of tables to temperatures. Relative temperatures can be
measured to an accuracy of 1°C but correlation with other measurement sources is
difficult. For example, in weather ships ocean temperature is measured by dropping
a bucket over the side of the ship and putting a thermometer into the resulting,
contents!

(c) Cloud analysis: The cloud analysis produced represents the percentage of
cloud cover in each of the segments processed.

(d) Upper tropospheric humidity: The method used is based upon the interpreta
tion of the 6 pm water-vapour channel per segment. The results are representative

ICL TECHNICAL JOURNAL NOVEMBER 1979 201

of a fairly deep layer in the upper troposphere and cannot be assigned to a particular
level.

(e) Radiation balance data: The production of radiation balance data is highly
experimental. The objective is the evaluation of the mean radiation fluxes per seg
ment arriving at and departing from the Earth’s surface.

(/) Cloud-top heights: The objective is to provide information on the highest
cloud determined in each section of 4 x 4 infrared pixels. The resulting product is
a map where the height of the top is represented by one of eight grey levels. Black
is used to represent sections with no cloud or no cloud tops above 3000 m. White
indicates cloud tops above 12,000 m. and the remaining six grey levels correspond
to layers of 1,500 m. depth between those two extremes.

2.4 Archiving

The Meteosat ground computer system provides for the archiving of all processed
images in both digital and photographic formats. The data are recorded on high-
density magnetic tapes at a packing density of 22,000 bit/in on each of 14 tracks.
Hence all the data for one day can be stored on one tape instead of the 48 con
ventional magnetic tapes that would otherwise be necessary.

The photographic archive is provided on photographic negative film produced on
a Vizir laser beam recorder. The film size is 425 x 460 mm and is of such a quality
to reproduce 64 levels of grey scale. The laser beam has a spot diameter of 40 pm
and gives some 11,000 separate points for each of 11,000 lines. Three 20 x 20 cm
pictures are stored on one film thus facilitating a complete record of all images
taken during a 30 min slot. In addition some full 40 x 40 cm visible pictures are
archived.

2.5 Dissemination

The first five meteorological products are transmitted over the meteorological
global telecommunications system (GTS). In addition however, Meteosat has two
dedicated dissemination channels operating at 1-691 GHz and at 1-6945 GHz
which are both used to distribute a variety of data. Two forms of transmission
are used: conventional analogue transmissions (Wefax) and high-resolution digital
transmission (Fig. 4).

The Wefax transmissions can be received by the simplest kind of receiving station
known as a secondary data user station (SDUS). This consists essentially of a 3 m
antenna, a receiver, and some form of recording device.

202 ICL TECHNICAL JOURNAL NOVEMBER 1979

The digital transmission requires the more complex primary data user stations
(PDUS). This consists of a 5 m antenna, receiver, frame synchroniser and a mini
computer in a basic system. To this can be added a variety of devices such as tape
recorders and video terminals.

When image processing has been completed the images are cut into convenient
formats which have had latitude and longitude grids and coastlines added before
transmission. Digital images from all three spectral ranges can be line multiplexed
in the dissemination schedule. The schedule is designed to include the entire
Meteosat field of view (A) at least once every three hours and Europe (B) every
half hour. For Wefax visible images the European areas (C2 and C3) are trans
mitted on a half-hourly basis and the rest of the field of view at intervals of 1-3 h
during the daylight period. Infrared images dividing the Meteosat field of view
into nine sectors are transmitted at a similar frequency but on a 24 h basis. Water-
vapour images, again on a 9-sector basis, are transmitted twice daily. In total some
500 image formats are disseminated daily, including data from other geostationary
spacecraft (GOES-E, and GOES-Indian Ocean).

Fig. 4 Digital image formats and Wefax visible formats disseminated from ESOC

ICL TECHNICAL JOURNAL NOVEMBER 1979 203

Cloud-top height maps and prognostic charts from the weather forecasting agencies
will also be disseminated in Wefax format by the satellite on a scheduled basis.

In addition to the dissemination of Meteosat products high-resolution and Wefax
images of the Americas are received at the Centre de Me'te'rologie Spatiale in Lannion
in France. From here they are transmitted to Meteosat and are incorporated in the
dissemination schedule on a 3-hourly basis.

2.6 Environmental data collection

In addition to its meteorological function Meteosat also has a 66-channel facility
for the collection and distribution of data collected by automatic or semiautomatic
data collection platforms (DCPs). The DCP can exist in a variety of platform types
such as fixed land stations, ocean buoys, ships, aircraft and balloons (Fig. 5). In
this case the European Space Agency is simply a spacecraft operator with a flexible
data storage and translation facility in the ICL 2980. Having had the DCP radio set
certified by ESA the DCP operator is entirely responsible for the DCP operation
following agreement of admission procedure. In principle each DCP is interrogated
or has transmission facilities once per hour for one minute, and hence a theoretical
total of over 3000 DCP connections are available.

Some current projects under consideration include:

(a) study of the ecological behaviour of desert plants in Namibia
(b) warning of ideal locust breeding conditions
(c) direction of fishing fleets to areas of cold water plankton in warmer

seas
(d) unmanned hydrological stations in Greenland, the UK and Germany
(e) airborne weather reports using commercial airlines.

Three basic types of DCP platforms are available to cope with these studies:

(a) a self-timed platform which transmits at regular intervals
(b) an interrogated platform in response to a telecommand from MGCS
(c) an alert platform which monitors environmental data and transmits only

when certain criteria have been exceeded.

The Agency has an active policy of encouraging the use of the DCP facility for the
collection of useful environmental data.

3 The satellite

Now that the products available to the meteorological and scientific communities
using Meteosat have been described it is interesting to consider the satellite necessary
to provide these facilities (Fig. 6). Meteosat 1 is 2-1 m in diameter and 3-195 m in
length. Its weight at the beginning of its life in orbit was 293 kg. This weight will
gradually reduce to 245 kg as the hydrazine propellant is utilised during its lifetime.
In orbit the satellite is stabilised by rotation at 100 rev/min with elaborate control
of its spin axis to less than 0-3° of the orbit plane normal.

204 ICL TECHNICAL JOURNAL NOVEMBER 1979

IC
L T

E
C

H
N

IC
A

L
 JO

U
R

N
A

L
 N

O
V

E
M

B
E

R
 1979

205

(1) s a te l l i te m issions
cloud cover observa tion in v is ib le
light and in fra -re d
d irec t tran sm iss io n of raw
i ma

(2) sa te llite m issions
recep tion of processed im ages and Wefax d a ta
re la y of p ro c e sse d im ages and d a ta to users

(3) s a te l l i te m iss io n s
v i ng d a ta -c o lle c t ion platform s
e rro g a t i on relay
t a a n d m easurem ent collection
d relay to mai n s ta tio n

1* x *•V- <•* ̂ 1» »■
r \ r \ v

Fig. 5 Meteosat data flow

The spacecraft has four main thrusters together with two vernier thrusters. The
system is used to control Meteosat’s attitude in space and also to return Meteosat
from 1° E up the geopotential slope to 1° W longitude approximately every five
months. Two of the main thrusters are mounted with their thrust axes parallel to the
satellite spin axes. They generate a torque about the spacecraft’s centre of gravity
and can be used for spin axis manoeuvres and inclination control. The other two
main motors are radial thrusters acting with thrust axes through the in-orbit centre
of gravity and at right angles to the spin axes. They are used for east-west station
keeping and active nutation damping. The small vernier motors act at an inclina
tion of 12° to the radial thrusters and are also offset from the centre of gravity in
opposition to each other. The torques generated contribute to both spin-rate
control and to active nutation damping.

Fig. 6 Meteosat

Power for the satellite’s electrical equipment is supplied by 16128 silicon solar
cells mounted on six panels surrounding the main cylindrical body of the satellite.
During eclipses power is supplied by a 7 Ah nickel-cadmium battery.

The Radiometer is an electro-optical device comprising a Ritchey-Chretien 40 cm
aperture telescope, scanning mechanism, focusing and calibration devices and
electronic detection chains. Earth images are generated at 30 min intervals. An
image consists of picture elements transmitted on a line-by-line basis to the ground.
An east-west line of elements is generated as the radiometer scans the Earth due to
the spinning motion of the satellite. A succession of lines is obtained by racking up
the radiometer telescope from south to north synchronously with the satellite spin
periods in 2500 steps. As the satellite is spinning at 100 rev/min this takes 25 min.
The remaining 5 min are-used for resetting the mechanisms and restabilising the
spacecraft.

The cylindrical body of the smaller drum-shaped body is covered with an array of
radiating dipole antenna elements. The individual rows are activated in reverse

206 ICL TECHNICAL JOURNAL NOVEMBER 1979

sequence to the satellite spin sense so that at any point in time the five rows nearest
the Earth are energised. This system constitutes an electronically despun antenna
for transmission in the S-band. The data rate of the raw image signal, transmitted
in stretched mode at 1686-33 MHz, is normally 166 kbit/s. During each space
craft spin period the radiometer sees the earth from l/20th of a resolution. The
image data is then buffered in an onboard memory and transmitted to the earth
during the remaining 19/20th of the resolution. Should the memory fail it can be
bypassed and the raw data transmitted in burst mode at 2-7 Mbit/s. The two
cylinders mounted on top of the drum are toroidal-pattern antennae for S-band
and UHF, respectively. The UHF at 400-470 MHz is used to receive data from the
data-collection platforms. The four thin rods forming a turnstile antenna for VHF
links (137-149 MHz) were used during launch for telecommanding, telemetry, and
ranging functions. During normal operations the VHF system acts as a backup to
the S-band for these functions.

4 Ground control hardware

The control of the satellite is exercised by the computer system for which ICL
was the prime contractor and project manager. ICL from the United Kingdom
provided the main processors; CIT Alcatel from France furnished the image dis
play subsystem; Christian Rovsing from Denmark constructed the archiving sub
system and array processors; Siemens from West Germany supplied the front-end
and back-end processors; and Logica from the United Kingdom supplied the hard
ware interfaces (Fig. 7).

Application software was partly written directly by the Agency and partly pro
duced by contracts to European software houses.

A simplified view of the interconnection of the various subsystems can be obtained
by examining the information flow through the computer system. Data are received
at the 12 m diameter antenna in the Odenwald and transmitted over land lines
through the data transmission and routing system.

Image acceptance and conditioning take place in the Siemens front-end processors.
The images are then transferred to an ICL 2980 where the main processing tasks are
carried out with some help in rectification and correlation from Rovsing array
processors and hard-wired fast Fourier transform units. Each image line is pro
cessed in real time at the rate of one line every 0-6 s and stored on intermediate
files. Data are then available for inspection by the meteorologists using the MIEC
subsystem videos. Data are then archived and formatted data are assembled for
distribution through the global telecommunication service and scheduled for trans
mission through the Siemens back-end processors to the antenna at a rate of one
image format every 4 min. In parallel with this product data, satellite-status informa
tion is being received at the Meteosat operations control centre subsystem and
control data are being transmitted automatically on instruction of the operations
controllers.

In practice the interconnection is more complex, as most equipment is duplicated
and is capable of being switched between mainframes. The system was designed to

ICL TECHNICAL JOURNAL NOVEMBER 1979 207

208
IC

L T
E

C
H

N
IC

A
L

 JO
U

R
N

A
L

 N
O

V
E

M
B

E
R

 1979 Fig. 7 Ground control hardware

O d e n w a l d

be capable of running in partial hot standby mode. During the 500 h acceptance
trial in September 1978 the back-end provided a hardware availability of 99*72%
for spacecraft control. The total system provided a hardware availability of 99-3%
for essential data acceptance, preservation functions and dissemination, and 97-2%
for image and meteorological processing.

The criteria set by the Agency for these tasks were, respectively, 99-7%, 99%, and
95%. Since the trial the back-up machine has been used primarily for application
development work and is only being used in cold standby giving an average hard
ware system availability for image processing of 96% 24 hours per day, 7 days per
week. End-user availability of the real-time dissemination products varies from
85 to 95% and for specific products such as wind determinations is 95% and above.

5 Operating system

To provide the facilities described, ICL has enhanced the 2900 VME/K operating
system and has provided ‘hooks’ to enable ESA to interpose its own system soft
ware at the operating system user interface. VME/K-ESA contains several major

MCTETlCQT 1979 M0HTH 3 2 TIME 1155 GMT (NORTH) CH. MIS 2
I d I d U _ * i 1 I NW1INBL SCWVPREPROCESSEB SLOT 24 CATALOGUE 1018810204

Fig. 8

ICL TECHNICAL JOURNAL NOVEMBER 1979 209

additional facilities. To communicate with the non-ICL processors a high-speed
communications protocol had to be developed. Although designed in 1974 the
resulting protocol is similar in structure to X-25. To provide for the high level of
availability, the software, including applications, had to be capable of being switched
from one mainframe to another in 3 min. Peripheral controllers are provided with
automatic recovery features which allow recovery from most transient hardware
failures. If a fault is unrecoverable then VME/K-ESA makes the controller un
available to the system and continues working without it. An alternative controller
can then be switched in by operator command.

The standard VME/K product, since it was designed originally for ICL medium
range computer systems, contained a fairly simple scheduler. The Agency has pro
vided a higher level scheduler which enables over 1000 jobs to be scheduled per day
on a time critical basis. User jobs operate at a concurrency level of -22-25 in a
3’75 Mbyte 2980 during the peak periods of meteorological processing. In addition
there are also four spooling concurrencies and 2 MAC jobs in the operational
system.

The operating system also had to be tuned to the high data transfer flow require
ments of 166 kbit of information per 0-6 s and to the strenuous real-time require
ments of processing the information within 0-6 s every 0-6 s while sustaining the
above multiprogramming levels. Some of the early application programs were
developed on an ICL System 4/72 computer under Multijob also installed at ESOC.
As a result a requirement existed for a transfer of development jobs between the
System 4 and 2980. Hence one of the JCL/Macro systems available in VME/K-
ESA is familiar to System 4 users.

After the early teething troubles always associated with the development of large
operating systems VME/K-ESA is maturing as a product. In the spring of 1979 it
provided a mean free time between software failures of 218 hours on the opera
tional system and 100 hours on the development system.

6 The future

Meteosat 1 is exceeding expectations in performance. So when Meteosat 2 is
launched in 1980 the operational software in the ground computer system will
have been modified to provide for the operational control of two satellites in
orbit at the same time. Full processing will continue for one spacecraft at a time.

Already in 1979 the European meteorological community is preparing plans for
two further satellites as Meteosat moves from an experimental to operational
phase. Future Meteosats are planned to be operational satellites providing weather
data between 1983 and 1993.

Acknowledgment

The author wishes to express his thanks to the Meteosat Data Management Depart
ment for their help in the preparation of this paper. Further information on aspects
of the system can be obtained from: Meteosat Data Management Department,
ESOC, Robert-Bosch-Str. 5, D - 6100 Darmstadt, Federal Republic of Germany.

210 ICL TECHNICAL JOURNAL NOVEMBER 1979

An analysis of
checkpointing

Alan Brock
Senior Consultant Lecturer, ICL Education and Training Centre

Beaumont, Old Windsor, Berkshire

Abstract

Checkpointing is a technique that is often used to reduce the penalties
incurred when, because of some failure, normal execution of a program
cannot continue; the technique allows the program to be resumed correctly
from an earlier point in its execution. This paper presents a quantitative
analysis of the effects of checkpointing, giving:

(a) estimates of the optimum time interval between checkpoints
(i) estimates of the penalties incurred by including checkpointing in
programs and restarting a program after some failure (Le. the penalties
incurred because o f the fallibility of computers, data and programs)
(c) comparisons of those penalties with those incurred by not using
checkpointing.

The paper is oriented primarily towards batch programs.

1 The checkpointing technique

While a program is being obeyed, a failure may occur that prevents the program
from continuing normal execution to successful completion. Such failures can be
caused by, inter alia:

(a) failure of the computer system (hardware, operating system etc.)
(b) erroneous data, if the program does not include adequate error-handling

procedures
(c) deliberate or accidental termination of the program run by the computer

operators
(d) errors in the program itself, such as attempted division by zero or looping

indefinitely. (These may be consequences of errors in the data.)

Failures of type (d) can often be regarded as irrecoverable, since they may necessi
tate correction of the program. Any attempt to rerun the program without correct
ing the error may merely result in recurrence of the failure. Many other failures,
including those of types (a) and (c), are often recoverable in the sense that, if the
program is rerun as it stands, the failure may not recur and the program may run to
successful completion. Failures of type (b) may also be recoverable by correcting
the data and rerunning the program.

ICL TECHNICAL JOURNAL NOVEMBER 1979 211

If a program makes no provision for restarting part-way through a run (e.g. by
checkpointing), then recovery from a recoverable failure necessitates starting a
fresh run from the beginning. The work that was done during the abortive run is
then repeated and is therefore effectively wasted.

Checkpointing allows a failed run of a program to be resumed from an earlier point
in its execution, and not necessarily from the beginning, with obvious benefit by
reducing the amount of repeated, and therefore wasted, work. Checkpointing is
normally achieved by writing, at intervals during the run, appropriate information
to a checkpoint file, which is usually a serial file. This information will include:

(a) all or part of the program’s store image, especially data areas that may be
altered during execution

(b) the settings of relevant registers, accumulators etc.
(c) a note of the current positions reached in the files being accessed by the

program.

If a failure occurs, the state of the program as it was at the time of a checkpoint can
be recreated by:

(a) reconstituting the program’s store image
(b) resetting the relevant registers, accumulators etc
(c) repositioning the files.

The program’s execution can then be resumed, effectively as though the time
between making the checkpoint and the instant of the failure had not existed. The
work done in that interval of time is repeated (and thus wasted), but that is
normally much less than would be wasted if a fresh run were initiated.

The making of a checkpoint constitutes work (by the processor and peripherals)
that is of no direct value if no failure occurs to necessitate a restart from that
checkpoint and that would not be necessary if the computer, data etc. were infalli
ble. In short, it is a true overhead and it is desirable to minimise it. This argues for
the minimum number of checkpoints, and therefore for a long time interval
between checkpoints. On the other hand, if a failure does occur, restarting involves
both the work to restore the correct state of the program and (usually more signifi
cantly) the repetition of work done since the checkpoint was made. This argues for
a short time interval between checkpoints. Clearly one can expect to find an opti
mum balance between these opposing requirements. One purpose of this paper is to
investigate that optimum.

The analysis in this paper is based on the premise that run time is the prime
criterion and that the objective is to minimise the total run time consumed in
achieving a given number of complete, successful runs of a given program. In a
single-programming computer, run time is indeed the most important measure of
the consumption of machine resources. In a multiprogramming or multi-virtual-
machine computer, other considerations such as store occupancy and the amount

212 ICL TECHNICAL JOURNAL NOVEMBER 1979

of processor and peripheral activity are also important and are all likely to be
increased by the use of checkpointing. They must therefore be taken into account
in assessing the practical benefit of checkpointing.

2 The analysis

There are two cases to be considered, programs without checkpointing and
programs with checkpointing.

2.1 Programs without checkpointing

Consider a program which, if it runs without failure, reaches successful completion
after an elapsed time of r. It is subject to recoverable failures occurring randomly in
time, with a mean time interval between failures o f f . Then the interval t between
successive failures can be assumed to follow a negative-exponential distribution
with the probability density function:

p (r)= y e x p (- t/f)

Assume, for simplicity, that a run of the program is initiated at the start of an
interval between failures. Then the probability that the program will run to success
ful completion is:

Pr (success) = Pr (t > r) = J j exp (- t/f) dt
r

~ exP (~ r/f) (1)

It follows that the mean number of runs needed to achieve a complete, successful
run is

M = exp (r/f) (2)
and

Pr (failure) = 1 - exp (- r/f) (3)

Consider the time interval t to t + dt where t + dt < r. Out of a large number of
runs, the proportion p(t) dt will fail in that interval after a mean run time of
t + 1/i dt. Thus the mean duration of an unsuccessful run, if terms of order (dt)2 are
ignored, is

r ,

J -yexp (- t/f) d t = f I 1- (1 +j) exp (-r/f) (4)

Out of the same large number of runs, the proportion exp (-r/f) will succeed, each

ICL TECHNICAL JOURNAL NOVEMBER 1979 213

having a duration of r. Therefore the average duration of all runs is

T = /av 1

whence
T fa v _ J

r r

1- (1 +j) exp (-r/f)J 11- exp (-r/f) | + r exp (-r/f)

1 -2 exp (-r/f) | + (1 + -) exp (- 2r/f) (5)

The total run time needed on average to achieve one complete, successful run is
therefore:

f „ = M T „ (6)
whence

A
T fA av _ J_

r r
exp (r/f)~ 2

f
+ (1 + -) exp (- r/f) (7)

Note the following:

(a) As r/f -+ 0, Tav/r -+ 1 from below and Tav/r -»• 1 from above.

This accords with expectation since, if the time for a complete run is small com
pared with the mean interval between failures, most runs will be complete, that is,
most run times will equal r. The few runs that fail will have shorter elapsed times
and therefore the average time for all runs will be slightly less than r. Because most
runs succeed, there will be little time lost on abortive runs and therefore the total
run time needed to achieve one complete run will, on average, be only slightly
greater than r.

(b) As r//-+ » , Taw/r -+f/r and Tav/r -+ °°

These, too, are what one would expect. When the time for a complete run is large
compared with the mean^interval between failures, most runs will fail, their average
elapsed time being/, i.e. Tav -+ f In the same circumstances, the success rate will be
so small, and the time wasted on abortive runjs so large, that the total time
expended for each successful run will be large, i.e. Tav -+x .

Note also that, in the absence of checkpointing, the performance depends on the
single parameter r/f. It will be shown later that, with checkpointing, the relative
performance is independent of the run time.

2.2 Programs with checkpointing

As described earlier, if a program includes checkpointing, it periodically writes
selected information to a file. Doing so takes time and processor and peripheral
activity, thereby increasing the elapsed time for a run, even if no failure occurs. If

214 ICL TECHNICAL JOURNAL NOVEMBER 1979

the extra elapsed time taken to create each checkpoint is rw, then the total elapsed
time for a run is, with n checkpoints,

r + ntw (8)

If the time interval between checkpoints is T (assumed constant), then the number
of checkpoints is

n (9)

In practical terms, there must be an integral number of checkpoints during a run.
Thus, strictly, n should be truncated to the nearest integer below. In the following
analysis that constraint is ignored. Note also that, in calculating n, only the basic
run time is considered, the extra elapsed time due to checkpointing being ignored in
computing the number of checkpoints; i.e. T is the interval between the completion
of one checkpoint and the commencement of the next. In practice the taking of
checkpoints is often directly geared to the application-oriented functions of the
program (for example, by checkpointing every so many records) and is therefore
consistent with this definition of T. Thus the time per run without failures is

Consider an arbitrarily large number N of runs. The expected number of failures is
total run time_________ _N r / (rw \ .

mean interval between failures f \ T) ^

If we assume that T is small compared with / (as is likely to be the case in practice
and is justified a posteriori for the optimum interval) then, on average, any failure
that occurs will do so midway in an interval between successive checkpoints. There
fore work occupying T/2 units of elapsed time will need to be repeated. Suppose
that each such restart also involves tT units of elapsed time to recreate the program’s
state from a checkpoint. Then each restart/repeat incurs a total of tT + XAT units of
elapsed time or, from eqn. 11,

y (1 + t) + (12)

in total for N runs of the program. But a failure may occur during the restart/
repeat actions, the expected number of such failures being

f (>+£-)(',+**•)
and each can be assumed, as an approximation, to incur a further time of tr + XAT.
Thus the total extra time for these ‘failures during recovery’ is

^ (l + ^) (r r + > ^) 2

I CL TECHNICAL JOURNAL NOVEMBER 1979 215

But failures may occur during that extra time and so on, whence the total time
involved in restart/repeat actions is:

Nr (13)

Hence the total time for all N runs is, from eqns. 10 and 13

(14)

and the mean run time taken over all runs is

2 (/ - J - T F r’ Say (14a)

w(iere

F = (1(2 (/ - fr) - r
2/ (146)

In eqn. 146 the first term on the right-hand side represents, essentially, the time
consumed in writing checkpoints and the second is related to the time taken in
recovery from failures.

Given that the objective is to minimise the average run time, it is necessary to find
the minimum value of F, Fmin. For a given program with a given form of check
pointing running on a given computer, r, f tw and tT are fixed, leaving T as the only
free variable in eqn. 146. Thus to minimise F, T must have the value, Topt say, that
gives dF/dT = 0.

Note that Topt and F are independent of r.

In many practical cases, tw and tc are small compared with / , e.g. seconds or frac
tions of a second compared with hours. In such cases approximations can be made,
as follows:

Now

whence

7’o Pt = V fw { 2 (/ - t r) + t w } - / , (15)

^opt ~ \ / (2 fw /)

^min - (1 + «) / (! - a) - 1 +2fl

(15a)

(14c)

216 ICL TECHNICAL JOURNAL NOVEMBER 1979

where a = V (tw/2f) — Toptl2 f is small and terms of order a2 are neglected.

These approximations over-estimate Topt and underestimate F min.

2.2.1 Discussion o f tw and tT

tw is the elapsed time to write a checkpoint, tr is the time to recreate the state of
the program as it was at the time of a checkpoint. Thus tw includes the times to:

(a) locate the place in the checkpoint file at which to write the checkpoint
information

(b) write that information
(c) return to execution of the ‘application-oriented’ part of the program.

and possibly the time to bring in the checkpoint-writing routine from an overlay or
virtual store.

Of these, (a) will depend on the medium used for the checkpoint file. If it is a mag
netic tape, used only for the checkpoint file, then the time will be zero. If it is a
disc used only for the checkpoint file the time will consist of rotational delay (typi
cally 0 to 25 ms). If the disc is shared with other programs the time is likely to be
that for a random access, including head movement and queuing delays, perhaps
50 to 200 ms.

Time (b) is the time to write the appropriate amount of data to a serial file. If the
file is on a disc shared with other programs the writing may become, in effect,
random writing, with head movements and queuing delays between successive
blocks.

Time (c) will usually consist only of the processing time to return control from the
checkpointing procedure to the ‘main’ program and is thus negligible.

The restart time tr includes the times to:

(a) locate the required checkpoint data in the checkpoint file
(b) read that data
(c) reposition the other data files
(d) return to execution of the ‘application-oriented’ part of the program.

Of these, (a) depends on the medium used for the checkpoint file, and on the
strategy used to locate the correct block(s). For example, if the checkpoint file is
on magnetic tape it may involve rewinding the tape to the beginning and doing a
serial search. At the other extreme it may involve merely a ‘skip back to tape mark’
and read, or even ‘read reverse’ a few blocks. On disc this time will be similar to
(a) of tw .

Time (b) is the time to read the relevant checkpoint data, and can be assumed to be
equal to time (b) of tw .

ICL TECHNICAL JOURNAL NOVEMBER 1979 217

Time (c) also depends on the medium and the facilities available for repositioning.
For disc files it can be regarded as the time for a random positioning on each file,
overlapped with each other if the computer system permits. For magnetic-tape
files it may involve rewinding and serially searching each file, or it may involve
skipping to tape marks if such marks are written to the data files whenever a
checkpoint is made.

If a data file is on a disc and is updated in situ (ie the updated version of a record
overwrites the previous version), then mere physical repositioning of the heads may
not be sufficient restart action. Instead it may be necessary to reverse the updating
that has been done since the checkpoint was made, by reference to associated
recovery files. Such actions may take some minutes.

The repositioning of input files on slow media such as cards and paper tape is likely
to necessitate operator action, the time taken being difficult to assess in general
terms. For slow output devices such as line printers no physical repositioning may
be necessary in fact, since any repeated output can usually be excised manually after
completion of the run, taking no computer time directly. However, auditing and
security requirements may call for stricter control relating to repeated output.

Time (d) is usually negligible.

3 Examples

Example 1

A program has a basic run time r of 1 h and is subject to failures at random with a
mean interval of 8 h. Checkpointing involves writing 50,000 bytes to magnetic
tape with an effective transfer rate of 200 kbyte/s. The magnetic tapes have a
‘read reverse’ facility. The four data files are on dedicated disc cartridges with an
average time for random access of 50 ms.

What are:

(a) the optimum inverval between checkpoints Topt
(b) the average time per run with checkpointing Fr
(c) the average time per run without checkpointing Tav ?
(d) the average total time per successful run without checkpointing Tavl

First calculate rw:

(a) with checkpoint file on magnetic tape, time to position file for writing = 0
(b) time to write 50,000 bytes at 200 kbyte/s = 0'25 seconds

tw = 0-25 s.

For t t

(a) with read reverse, time to locate checkpoint data = 0
(b) time to read 50,000 bytes = 0-25 s.
(c) time for four random positionings on the data files = 200 ms = 0-2 s.

218 ICL TECHNICAL JOURNAL NOVEMBER 1979

Therefore

tT - 0-45 s.

= 119-75 s (say 120 s)

(Note how small tT is compared w ith /in this case.)

With this value for T, F min becomes

F ■min 57600 - 0-9 - 120
57600 = 1-0042

Thus the average run time = 1-0042 h.

Checkpointing and failures thus increase the average run time by 0-42%, i.e. 15 s in

In the absence of checkpointing, with r / f = 1/8, the number of attempts needed to
achieve a complete run is exp (1/8) = 1 -133.

Thus if checkpointing were not used the average duration of each run would be
0-8893 h and a total of 1 -0076 h would be expended on average for each useful 1 h
run, i.e. failures would lead to consumption of 0*76% more elapsed time than on an
infallible machine.

For this particular example it might be decided that checkpointing is not worth
while, since it saves little time (about 12 s per hour), against which must be set the
increased size of the program (and hence increased store occupancy and perhaps
paging), the extra load on the processor, the extra demands on the peripherals, and
the extra time and cost to write, test and develop the program.

Example 2

This assumes the same program as before, but subject to failures at a mean inter
val of 4 h.

1 h.

Tav = 8 { 1 - 2 exp (- 1/8)} + 9 exp (- 1/4) = 0-8893

A

= 1-0076

ICL TECHNICAL JOURNAL NOVEMBER 1979 219

Example 3

A program with a basic run time of 6 h is subject to a mean interval between
failures of 12 h. Checkpointing involves writing 100,000 bytes to a shared disc
in 2000 byte blocks, the average access time per block being 100 ms (allowing
for queuing and contention for the disc). Two data files are on disc, with the same
characteristics as in Example 1, and the other two files are multi-reel magnetic-
tape files with the same characteristics as the tape in Example 1.

For writing the checkpoint, fw can be calculated as the time to write 50 blocks at
100 ms per block, i.e. 5 s. This includes the initial positioning time.

For fr , locating and reading the checkpoint data will take the same time as locating
and writing which is 5 s.

Repositioning the disc data files will take (as Example 1) 50 ms each = 100 ms for
two. For repositioning the magnetic-tape files, it is assumed here that:

(a) the tapes must be rewound and then wound forward for, on average, half a
reel length, taking the assumed time of 3 min

(b) repositioning of the magnetic-tape files can be overlapped with each other,
but not with repositioning of the disc files, and no repositioning can be done until
the checkpoint file has been read.

Then tr = 5 + 3 x 60 + 0-1

=? 185-1 s

■ o p t V 5 (2 (43200- 185-1) + 5} -5

= 651 secs and F min = 1-0197

Therefore average run time = 6 x 1-0197 h = 6h 7 min

r / f = 0-5,///- = 2

Tav = 0-6775

Therefore the average run time without checkpointing is

6 x 0-6775 h = 4 h 4 min

f av = 0-6775/exp (-0-5)= 1-1170
r

Average time expended per complete run = 6 x 1-117 h

= 6 h 42 min

222 ICL TECHNICAL JOURNAL NOVEMBER 1979

In this case, then, checkpointing offers- a saving of some 35 min compared with
no checkpointing, and without checkpointing it would be necessary on average to
make 1-65 attempts to achieve each successful run, i.e. 39% of the runs initiated
would fail.

Number of attempts per complete run = exp (0-5) = 1 -65

4 Results

Some results from the analysis are presented in Figs. 1-5.

Fig. 1 shows the variation of M, Tay/r and Tay/r with r /f for a program without
checkpointing. It demonstrates clearly the increase in the number of attempts M
necessary to achieve a successful run as the basic run time r increases in relation
to the mean interval between failures / , and the corresponding decrease in average
run time Tay/r and the increase in the total elapsed time (Tay/r) consumed in
achieving a successful run. The decrease in average run time (T av) comes about, of
course, because an increasing proportion of runs fail before completion, i.e. with
actual run time less than basic run time. From eqn. 4, it can be shown that, if only
runs that fail are considered, Ta \vlr is zero at r / / = 0 and °°, and has a maximum of
0-298 when r/f= 1-79.

Fig. 1 Programs without checkpointing. Variation of M, T&y/r and / av/r with r/f

ICL TECHNICAL JOURNAL NOVEMBER 1979 223

If we turn now to programs that do use checkpointing, Fig. 2 shows how T0 t ,
the optimum interval between checkpoints, varies with / , the mean interval be
tween failures. Curves are shown for four combinations of tw (time to make a
checkpoint) and tr (time to restart from a checkpoint). The curves show clearly
that tw has a marked effect on T t while tT has relatively little effect, such effect
as it has decreasing as / increases. These results are of course readily seen from the
form of eqn. 15, as also is the fact that, if tw and tr are both small compared with
/ , then J opt is approximately proportional to / / as is shown by the nearly
straight curves with slope 0 5 in Fig. 2 and by the curve of / (2twf) for fw = 250 s.

Fig, 2 Variation of optimum checkpoint interval with mean failure interval

fw as stated, fr = 0-25 s
fw as stated, tr = 250 s
T'opt = J <2fw0 for fw = 250 s

If we take the particular case of tw = tt = 2-5 s, the range of Topt is interesting,
perhaps even surprising. When / = 1-0 h (an extremely high failure rate) Topt is just
over 2 m in, while if / = 64 h, T t is about 18 min. Perhaps because some manu
facturers’ contracts exclude liability for more than 20 min spoiled work, there
appears to be a tendency to checkpoint at 20 min intervals: the present analysis

224 ICL TECHNICAL JOURNAL NOVEMBER 1979

shows this rule-of-thumb to be substantially away from the optimum in many
practical cases.

Fig. 3 Increase in run time with and without checkpointing

with checkpointing without checkpointing

fw =2-5s (e) r = 0-5 h
(a) fr = 0‘25 s and 2'5 s (f) r= 1 h
(6) fr = 25 s <ff) r = 4 h
(c) fr = 250s (/1) r= 16 hr
id) fr = 2500 s

The solid curves in Figs. 3 and 4 show how F mjn varies with tw, tT and / . In Fig.
3, fw is constant at 2-5 s and in Fig. 4, t . is constant at 25 s. It is seen that F .
increases as tw and tz increase and decreases as / increases. Qualitatively, these
variations are what one would expect intuitively; Figs. 3 and 4 show the quanti
tative dependencies. Also shown in Figs. 3 and 4, as the broken curves, are the
variations of Tav/r with / for various values of the basic run time r, calculated
from eqn. 7. Now, both F min and f ^ / r are factors by which the basic run time of
a program is increased because of fallibility; they are therefore directly comparable

ICL TECHNICAL JOURNAL NOVEMBER 1979 225

quantities. In particular, if, for any given case,Fmin < f av/r it follows that the use
of checkpointing is beneficial from the point of view of machine time consumed in
achieving a given number of successful runs of a program. If F min > ^avA. less
machine time is consumed without checkpointing than with. Suppose, then, that a
program has a basic run time r of 4 h and, if it is checkpointed, tw = 2-5 s and tT
= 250 s. Then, from curves (c) and (g) in Fig. 3, it is seen that checkpointing is
beneficial if f is less than about 30 h, and not beneficial if f exceeds that value.

Fig. 4 Increase in run time with and without checkpointing

with checkpointing without checkpointing

fr = 25 s (e) r = 0-5 h
(f) r = 1 h

(a) tw = 0-25 s (:9) r = 4 h
(b) rw = 2-5s (:h) /-= 16 h
(c) fw - 25 s
(of) fw = 250s

226 ICL TECHNICAL JOURNAL NOVEMBER 1979

Given that there is, for any given case, an optimum interval between checkpoints,
what is the effect of checkpointing at some other interval? Fig. 5 shows the effect
for the particular case tw = 25 s, tr = 250 s; F is plotted against T, the actual
interval between checkpoints, for various values of / , the mean interval between
failures.

fzlh

Fig. 5 Effect on run time of varying the checkpoint interval
fw = 25 s, rr = 250 s

For / = 1 h, rw = 25 s, and fr = 250 s the effects of checkpointing at half and at
twice the optimum interval are given in Table 2. It is seen that:

(a) departing from the optimum interval by a factor of 2 in either direction
results in a 3% increase in run time

(b) making the interval twice the optimum causes the greater increase in F.

Fig. 5 and other graphs not reproduced here show that the effects of departure
from the optimum checkpointing interval decrease as / increases and increase as
fw and fr increase.

Table 2

T F W min

s
192-5 1-250 1-030
385 1-214 1
770 1-254 1-032

ICL TECHNICAL JOURNAL NOVEMBER 1979 227

A program with checkpointing is likely to be more consistent in its time to
completion than is a program without checkpointing, even though the average
elapsed time to completion may actually be longer than without checkpointing.
This consistency can be advantageous vis-a-vis scheduling of programs, especially if
there is a deadline for completon of the run.

Another point of practical importance is operational convenience. Consider
a program that updates multireel files on magnetic tape. Without checkpointing,
recovery from a recoverable failure would necessitate remounting and reprocessing
all the reels that had been processed up to the time of the failure. With checkpoint
ing, it would be necessary to remount only those reels that had been processed
since the most recent checkpoint; this might well involve no tape changing at all
for the restart.

Further, as this paper has shown, F is not very sensitive to deviations from Topt
for many practical values of f, tr and tw. That being so, it may cause little increase
in F, and yet make operation of the program much simpler and quicker, if check
pointing is arranged to coincide with the natural changing of tape reels. If that is
done it may be possible to write the checkpoint data at the front of each main-
file reel, eliminating the need for a separate checkpoint file and easing operation
still further.

5 Conclusions

(a) If checkpointing is used in a program, there is a particular time interval
between checkpoints that minimises the average total run time consumed in achiev
ing a successful run to completion of that program. This optimum time interval is
a function of:

tw : the time taken to write a checkpoint

tT : the time taken to restart from a checkpoint

and / : the mean interval between failures
and is independent of the basic run time of the program.

(b) Depending on tw, tr, f and r (the basic run time of the program), the use of
checkpointing may or may not be beneficial. It is beneficial if F (from eqn. 14b)
is less than Tay/r (from eqn. 7).

(c) The criticality of conforming to the optimum interval between checkpoints
varies substantially. It becomes more critical as tw and tT increase, and less critical
as f increases.

(d) In deciding whether to apply checkpointing, factors such as the cost and time
of program writing and development and the effect on processor and peripheral
utilisation in a multiprogramming environment must be taken into account, as well
as the elapsed time discussed in this paper.

228 ICL TECHNICAL JOURNAL NOVEMBER 1979

Statistical and
related system s

B.E. Cooper
Consultant in Statistics and Data Management

Dataskil Ltd., * Reading

Abstract

The paper discusses the design considerations that underlie the develop
ment of application systems for statistics and related subjects. There are
two primary considerations. The first is the need for extreme flexibility in
the interface between the user and the system. The second is the relation
ship between one system and another and between the systems and a
database. The practical realisation of these principles is illustrated by
descriptions of the main features of the ICL Applications Control Lan
guage, the ICL Data-Analysis System and the statistical system Package-X
developed by Dataskil for the British government.

1 Introduction

Potential users of an application system need to be convinced that it will meet their
requirements and that they will be able to use it without any fundamental change
to the way in which they normally work. In most cases it is not difficult for a user
to determine what facilities the system offers and whether or not it will meet his
requirements. The second consideration is, however, one to which the designer
must give careful consideration. He must see his system from the users’ viewpoint.
He must be able to persuade potential users that it is easy to learn and that it will
not distract them from their main activities. This is particularly true for systems
written for the data analyst, including systems for statistics, forecasting and econo
metrics, survey and census analysis, matrix handling and mathematical program
ming. There is a particularly important need in such systems for a flexible approach
to the handling of data as well as for the provision of appropriate analysis facilities.

Various aspects of application systems designed for the analysis of data are discus
sed. The discussion begins by considering the facilities that are required and
identifies those that are common to all application areas. The nature of the inter
face between the user and the system are considered next and the flexible approach
taken by the statistics system Package-X, in which the user chooses his own level of
communication, is described. The structure of the 2900 Data Analysis System
embracing a number of application systems is then discussed. The final section is
devoted to the possibilities for linking such application systems to a database.

* Dataskil Ltd. is a wholly-owned subsidiary company of ICL. The address is Reading Bridge
House, Reading RG1 8PN

ICL TECHNICAL JOURNAL NOVEMBER 1979 229

The development of the 2900 range provided the opportunity to consider from first
principles the facilities that should be provided in application systems for the data
analyst. This general class includes the aforementioned systems, i.e. those for
statistics, forecasting and econometrics, survey and census analysis, matrix handling
and mathematical programming. The opportunity was almost a unique one, permit
ting not only detailed consideration of the requirements of each application but
also the study of the relationships between them.

Design studies for these individual systems quickly revealed a large area of common
ground. In a previous paper1 I discussed in some detail the facilities that are required
in such systems and identified the extent and nature of the comon ground. Thus, in
the Sections which follow, I confine myself to a brief statement of facilities. The
identification of which facilities are particular to one, or perhaps two, application
areas and which are of a general nature and useful in all applications forms the key
part of the design of such systems.

2.1 Data structures and types

The design study for each application system must identify the data structures
that the system is to recognise and how the various facilities it provides are to be
related to these structures. Bringing together the design studies for the various
applications systems for the 2900 range established that general access was required
to the following data structures.

scalars - single value
arrays - many values, one or more dimensions
lists - list of values referred to by one name.

These structures were required to hold values of the following types:

Integer
Character
Logical
Name
Real

Readers with an eye for mnemonics will observe that the initial letters for these five
types are ICL NR. Unfortunately type Character has since been dropped because it
is contained within type Name.

Particular data structures for particular applications are also required. For example,
the series is required by the forecasting system and the data matrix is required by
the statistics and survey systems. These are described in more detail later but it
should be noted at this stage that the data types that may be stored in these
structures should correspond to the data types of the structures already listed so
that data transfer between the general and the particular structures is permit
ted.

2 Facilities and properties of an application system

230 ICL TECHNICAL JOURNAL NOVEMBER 1979

2.2 Gassification o f facilities

The facilities of an application system may be organised into three groups. The first
group contains those facilities which provide access to the analyses, displays and
techniques that characterise the particular application. For example, the facility
for regression analysis in a statistics system or for the Box-Jenkins method in a
forecasting system would fall within this first group.

The second group contains data management facilities which are particular to an
application but not directly associated with a particular technique. For example,
amalgamating two data matrices to form a new data matrix for analysis in the
statistics system would fall within this group.

The third group contains operations on data structures, either general or particu
lar, which are normally found in a general purpose computing language such as
Fortran. I have previously1 used the term ‘support operations’ to describe this
group, but in the following Sections will refer to them as ‘program operations’. The
group contains facilities for arithmetic, branching (IF, GOTO), Looping (DO) and
input and output.

It is revealing to observe the gradual development of statistics systems. Most, in
their first version, have concentrated on providing facilities for particular tech
niques; i.e. the initial emphasis is on providing Group 1 facilities. In subsequent
releases of the system the emphasis gradually changes to include a higher and higher
proportion of facilities of Groups 2 and 3. The inflexibility of a system concentrat
ing on Group 1 facilities is quickly revealed by users. Statistical analysis, for
example, is usually a multistage process; it is rare for the statistician to be satisfied
with just one formal analysis. As a minimum he will usually need to see some
additional results or to observe the effect of modifying his original approach in
some way.

Response to these pressures is therefore necessary. However, introduction on a
gradual basis often produces a rather piecemeal range o f facilities. This is particu
larly true of facilities in Group 3. Careful consideration of this group as part of the
original design of the system is very important. When considered from the outset,
the facilities in this group are found to correspond to those of a general program
ming language with certain concessions to the needs of the applications. In fact the
facilities involving the general data structures arrays and scalars correspond very
closely to those in a general computing language such as Fortran. Thus the initial
task is one of designing a general computing language which can also form a natural
basis for corresponding operations on the particular data structures recognised by
the application systems and which can co-ordinate appropriately with the Group 1
and 2 facilities. Faced in this way the facilities fall into place in a natural manner.
It will be seen in Section 4 that the design of the 2900 Data Analysis System was
approached in this way and that a selfcontained language, referred to as the Appli
cations Control Language, was produced which may be used with a number of
applications systems.

ICL TECHNICAL JOURNAL NOVEMBER 1979 231

The relationships between the facilities in the three groups is a particularly impor
tant design consideration. The need for common data types has been mentioned
already as essential to ensure proper transfer of data between data structures both
general and particular. A further stage in this process is to ensure proper integra
tion of the general data structures arrays, scalars and lists with the Group 1 and 2
facilities which depend on the particular application. For example, it should be
possible to include the names of scalars or arrays in statements selecting statisti
cal or forecasting analyses. Equally, it should be possible to store values which
have been computed as part of such analyses in either general or particular data
structures so that further analysis involving them is possible.

To illustrate the inclusion of names of scalars consider the statement:

POLYNOMIAL REGRESSION OF Y ON X DEGREE ND

If ND is an integer scalar this statement would fit a polynomial of degree speci
fied by the value of ND. Thus the degree of the polynomial to be fitted could be
based on a previous computation or subject to comparisons with other values.
Furthermore, this statement could be contained within a DO loop controlled on
the scalar ND and thereby repeated for a number of different degrees of fit.

To illustrate the storage of analysis values in system data structures consider the
statements:

2.3 Relationships between facility groups

REAL ARRAY CF (0:4)
REGRESSION OF Y ON XA XB XC XD
ESTABLISH COEFFICIENTS IN CF

The second statement fits a regression function involving four variables. The third
statement transfers the coefficients of this function to the array CF which was
defined by the first statement. This process, normally referred to as feedback, is a
particularly important part of a system’s flexibility. It is missing from a surprisingly
high number of application systems.

In summary, therefore, it is important to ensure that the facilities of all three
groups are included in full, that the facilities within each group are self-consistent
and that the three groups of facilities fit properly together to form a coherent
whole.

3 Communication between user and systems

A system designer should be aware that there is an initial threshold to be overcome
by the new user of his system. The user is not interested in computing for its own
sake but in the results the system can provide. He should not be distracted from his
main task of analysing data by the intricacies of the system he has to use to do this
analysis. Thus the time taken to learn how to use the system should be made as

232 ICL TECHNICAL JOURNAL NOVEMBER. 1979

small as possible. Use of the system should fit naturally into the normal work
pattern of the data analyst. It will not so fit if he is expected to learn detailed and
complicated rules. Minimising the time taken to learn to use a system has a similar
effect on the time taken by the occasional user to relearn the system. Aspects of
the interface between user and systems are discussed in the next Sections.

3.1 User language

If the data analyst can write statements which are close to the form of instructions
he would give to an assistant, use of the system will fit naturally into his normal
work pattern. This is possible for selection of facilities in Groups 1 and 2. State
ments corresponding to facilities in these groups should be as close to normal
English as possible. The sequence of statements from the 2900 Data Analysis
System are in a near-English form and are readily understood with little explanation:

REAL ARRAY C(0:3)
READ DATA MATRIX DMA WITH VARIATES Y XI X2 X3

FILE MYDATA
REGRESSION OF Y ON XI X2 X3
ESTABLISH COEFFICIENTS IN C

The facilities in Group 3 cannot conveniently be expressed in terms of English-like
statements. The best form of statements for this group is one close to that adopted
by the general computing languages such as Fortran. For example, arithmetic is
best expressed in the form of the arithmetic statements found in most general
computing languages. Most languages use some form of IF statement to express
conditional branching. Thus, statements for this group of facilities most conveni
ently resemble their counterparts in established languages. Since these are rather
different in form from those for Groups 1 and 2 it is important to ensure that
where they share a construct with other statements this should be expressed in a
common manner. The DO statement in the 2900 Data Analysis System provides
an example here. Its form is:

<label> : DO <dummy scalar> = < list>

The construction of the list in this statement follows the same rules as apply to
lists included in any other statement in the system’s language. The values in the list
must be of the same type as the scalar but all types may be used. For example,
control of a EX) loop using a name scalar is particularly valuable as illustrated by
the following sequence:

LI: DO NY = Y l, Y4, Y7, Y8
REGRESSION OF NY ON XI X2 X3 X4
END LI

3.2 User selection o f his interface with the system: Package-X

Package-X is a statistics and data management system designed for, and in
close co-operation with, the Government Statistical Service. It is currently in regu

ICL TECHNICAL JOURNAL NOVEMBER 1979 233

lar use on over 40 installations. Apart from being a useful and well-liked system its
development is important because of the new approach it takes to the interface
between the user and the system. Package-X can operate in four different modes,
two for terminal users and two for batch.

Modes 1 and 2 are for the terminal user. Mode 1 is a fully conversational mode in
which the user responds to questions put to him by the system; he requires very
little knowledge of the system before he attempts to use it. He may ask the system
to introduce itself by displaying information pages explaining various features, or
indexes listing its facilities. If he does not understand a question he can type HELP
for explanation.

Mode 2 is an interactive mode in which the user at the terminal types statements in
the system’s control language, which has the easy-to-use properties argued for in the
previous Sections. If he makes a mistake in a statement the system will ask him
appropriate Mode 1 questions to enable him to correct the error.

The user may transfer freely between Modes 1 and 2 during a run, using Mode 2
for those parts of the system he is familiar with and Mode 1 for the rest. A further
degree of flexibility is scheduled for Release 5 of Package-X, due early in 1980,
concerning the selection of different versions of the file on which questions and
messages are stored. The user will be able to select between short and long versions
of questions and alternative message files translated into other languages could
easily be made available. Thus, with transfer between message files and between
modes, and with Mode 1 responses to errors in Mode 2 statements, the user may
select with great flexibility his interface with the system. Further flexibility is avail
able using the macro and program facilities described in Section 3.3.

The other two modes of operation are for the batch user. Mode 3 is a normal batch
mode in which the user expresses his requirements in the same control language as in
Mode 2. Mode 4 is a syntax checking mode which will normally be used to check
a program before it is run in Mode 3. The use of the same control language for both
batch and terminal work gives the great advantage of requiring the user to learn
only a single language.

3.3 Macro and program facilities

To select operations in Group 3 the user of Package-X writes what is referred to as a
program. The sequence of operations is introduced by a PROGRAM statement and
terminated by an END PROGRAM statement. In Release 5 the user will be able to
name a program and perform a number of actions on it. For example, programs
may be saved on user or installation SAVE files and fetched and run as required.
Thus, commonly-used sequences of such operations may be written once and saved
for other users.

Any user may define a macro consisting of any sequence of statements in the
Package-X control language. These may be saved, fetched and run in the same way
as programs. Since macros and programs are made up of statements used in Modes

234 ICL TECHNICAL JOURNAL NOVEMBER 1979

2, 3 and 4 but not in Mode 1 they must be written by users familiar with the
system’s control language. However, this does not prevent a Mode 1 user from
running a macro or program. Thus the macro and program facilities represent a
considerable increase of flexibility in the user’s use of the system no matter which
mode he uses. A further increase in flexibility will take place in Release 5 when
extensive facilities for editing macros and programs will be introduced.

The facilities in Package-X for defining, saving, fetching, editing and running macros
and programs, coupled with facilities described in Section 3.2 for selecting different
modes of operations and different message files, represent an important advance in
the way in which a user may choose how he communicates with the system.

4 Communications between application systems

The first consideration in the design studies for the various application systems for
the 2900 series was the identification of those facilities common to many systems.
This has been discussed in some detail in Section 2 where it was identified that the
data structures scalars, arrays and lists were required in all application systems and
that the facilities for their access and manipulation corresponded to those of a
general computing language such as Fortran. The language which has been de
signed to meet this need is the Applications Control Language. This provides the
necessary common facilities for all applications and is described briefly in Section
4.1.

The second consideration was the need to achieve flexible communication of data
between applications systems. The need to transfer data freely between survey and
statistics systems has been recognised for many years, but many other situations
requiring interchange of data between one application and another were readily
acknowledged. To meet this need the 2-tier structure of the Data Analysis System
was devised, with the Applications Control Language forming the system’s founda
tion. The structure of this system embracing many application areas is described in
Section 4.2.

4.1 The Applications Control Language

The Applications Control Language (ACL) for the 2900 series is a selfcontained
language with most of the facilities of a general computing language such as Fortan.
It forms the basis of many of the 2900 series application systems and provides a
means of communication between them.

ACL is a block structured language in which the outermost block must be called
PROGRAM. Thus an ACL program begins with a BEGIN PROGRAM statement
and closes with END PROGRAM. Other blocks may be opened as required by the
user with the names of his own choice. Procedure definitions and CALL and
RETURN statements of the form common in many languages are available to
define and to access user procedures.

ACL recognises the data structures scalars, arrays and lists which may be of types
integer, logical, name and real. Statements to declare these structures and give them

ICL TECHNICAL JOURNAL NOVEMBER 1979 235

initial values are similar to those of other languages; they must follow the conven
tions for expressing lists, in shorthand form where appropriate, which apply
throughout ACL and any application systems associated with it.

Assignment statements are available to assign values to all four data types. Real,
integer and logical assignment statements follow the normally accepted rules. Name
assignment statements are initially confined to a restricted right hand side form
consisting of a constant or a single variable of appropriate type.

The looping statement again employs the form of list construction used throughout
ACL and its associated application systems. The fullest form of the loop is:

< label > : DO < control scalar > = < list > WHILE < logical expression >

END < label >

The statements within the IX) loop are obeyed until either the list is exhausted or
the logical expression is no longer true. The list control or the WHILE control may
appear on their own. If both are omitted the loop is obeyed once. The list must be
of the same type as the control scalar. The use of a name scalar and list is a particu
larly useful facility, as illustrated in Section 3.1. DO loops may be nested in the
usual way.

The IF statement is an extended form of that available in many languages; it recog
nises three values of the logical expression - true, false and missing. The form is:

IF < logical expression > THEN < c s > ELSE < c s > MISSING < c s >

where cs represents a single statement or a compound statement. The single state
ment may not be DO, BEGIN, END or IF.

A compound statement is written as a DO loop. It may have a list control, a WHILE
control, both or neither. A second form of IF tests specifically for missing values:

IF < logical expression > IS MISSING THEN < c s > ELSE < c s >

In both forms of IF statement the THEN, ELSE or MISSING phrases may be omit
ted although at least one phrase must be present.

Two unconditional branching statements are available. These are:

GO TO < label >
JUMP < name scalar >

The name scalar contains the label of the statement to which the branch is to be
made.

236 ICL TECHNICAL JOURNAL NOVEMBER 1979

Statements similar in form to their PL/I equivalents are available for input and
output.

It is readily seen therefore that ACL has most of the features of a language such as
Fortran. However, it is stressed that ACL is not intended as a competitor to Fortran.
It has been developed to form the foundation for a number of application systems
and provides all the facilities of Fortran for direct use in conjunction with the facili
ties of these. ACL, being an interpreter rather than a compiler, will run both
interactively and in batch. Some additional facilities for program editing and
display of values are available to the interactive user. Further statements are
included to facilitate communications with application systems as described in
Section 4.2.

4.2 The Data Analysis System

The 2900 Data Analysis System (DAS) has a 2-tier structure with the Applications
Control Language (ACL) as the first tier and various applications represented in the
second tier. The first tier is often referred to as the system level or more specifically
as ACL. The second tier is referred to as the subsystem level with each application
represented by a subsystem. For example, there is a statistics subsystem which
combines with ACL to provide the fullest possible facilities for statistics. Each
subsystem includes data management operations for handling the data structures
recognised specifically by that subsystem and achieving communication with the
general data structures recognised at the system level by ACL. Thus the structure
of the Data Analysis System is as shown in Fig. 1, which shows five subsystems.

Fig. 1 Structure of the Data Analysis System

At the time of writing the statistics and matrix handler subsystems are available
from ICL. Work is in progress on the detailed design for the survey subsystem and an
earlier design for the forecasting subsystem is being reviewed. The fifth subsystem
shown as a user’s subsystem is included to illustrate the fact that further subsystems
can be added to meet particular needs.

DAS will run with ACL and all currently available subsystems organised as one
complete system. The user may reference any or all subsystems within one program.

ICL TECHNICAL JOURNAL NOVEMBER 1979 237

Alternatively, each subsystem is available separately with ACL. The statistics
subsystem and ACL together are known as 2900 statistics4 and the matrix handler
subsystem and ACL together are known as 2900 Matrix Handler.5 The 2900 Linear
Programming system6 also uses ACL as its basis and, therefore, has the same struc
ture as 2900 Statistics. Although the LP system has never been considered to be
part of DAS it has the full benefit of ACL in the same way as any of the subsystems
that are part of DAS.

When included as part of DAS, ACL recognises an INVOKE statement which selects
a particular subsystem. The user may then mix statements from the control lan
guage of that subsystem with those from ACL. An example of such a mixture is
given in Section 3.1, where a REGRESSION statement from the statistics
subsystem control language is included within a DO loop which is processed by
ACL. Thus a user’s program may have, for example, the following structure:

BEGIN PROGRAM
ACL statements

INVOKE STATISTICS
STATISTICS dsvdACL statements

INVOKE FORECASTING
FORECASTING and ACL statements

INVOKE STATISTICS
STATISTICS and ACL statements

END PROGRAM
FINISH

This program begins with some ACL statements before calling in the statistics
subsystem. Later the forecasting subsystem is called to replace the statistics subsys
tem which is later recalled. Thus subsystems may be called and recalled as required.
At each stage statements from the current subsystem may be mixed with those of
ACL. ACL therefore not only provides common facilities to all subsystems but it
provides one means of communicating data between subsystems. This is achieved
using the facilities for including ACL structures in subsystem statements and the
feedback facilities whereby values computed by subsystem analyses are trans
ferred to ACL structures along the lines described in Section 2.3.

5 Subsystems of the data analysis system

Before discussing the different facilities of the individual subsystems it is important
to emphasise the common features. The DAS control language is made up of ACL
and the control languages for each of the subsystems. Although subsystems have
their own control languages designed to meet the requirements of their particular
subject areas, they employ common constructs to ensure that they, together with
ACL, present a unified appearance to the user. Statements in all subsystem lan
guages have a form which is close to English. They are all based on the same
keyword approach and the same routines are used in their interpretation. Three

238 ICL TECHNICAL JOURNAL NOVEMBER 1979

examples from three different subsystems illustrate the common English form:

REFORM DATA MATRIX DMEXAM ADDING VARIATES NEW1 AND
NEW2 AND DELETING VARIATE OLD

INVESTIGATE SERIES SI USING EXPONENTIAL SMOOTHING
MODEL LINEAR GROWTH AND PARAMETER 0.3.

INVERT MATRIX A USING CHOLESKI METHOD STORING
RESULT IN B, RANK IN R AND DETERMINANT IN DA

The statements are shown in their full form including a number of redundant
words; these emphasise the English nature and serve to aid the user’s memory.
In addition there are a number of alternatives for certain keywords, particularly to
allow abbreviations. Replacement or supplement of keywords by their equivalent
in other languages is possible so that the control language could be adapted for use
in countries where English is not the native language. Countries with more than one
language in regular use could also be catered for.

A second common feature of the subsystem control languages is the inclusion of
references to system structures, namely, scalars, arrays and lists. For example, a
number of keywords introduce a single value. In all subsystems it is usually possi
ble to present the name of a scalar of appropriate type instead of the value, thus
allowing parametric presentation of values. Many statements require specification
of lists of various types. The rules for presentation of these lists apply throughout
the system. Numeric lists may be presented in a variety of shorthand forms. The
list 1,2,3,4,6,8,10 may be written in any of the following ways:

1,2,3,4,6,8,10
1:4,6,8,10
1,2,3,4(2)10
1:4(2) 10

Alternatively, if AL is the name of a list with values 1,2,3,4,6,8,10, the name AL
may be presented instead. Further, if values 11,12 and 13 are to be added to this
list for a particular statement, this could be presented as

AL ‘11:13

There is a correspondingly wide variety of shorthand ways of presenting lists of
names that may be used in all subsystem control languages.

5.1 Statistics subsystems

The statistics subsystem3 provides a wide range of data-management operations to
enable the user to make the best use of what is probably the most comprehensive
range of analyses and displays provided so far in any statistics system. Two ad
ditional data structures, the data matrix and the data set, are recognised by this
subsystem. They are defined in Sections 5.1.1 and 5.1.2, respectively.

ICL TECHNICAL JOURNAL NOVEMBER 1979 239

5.1.1 Data Matrix

The data matrix, as in most statistical systems, is a rectangular organisation of data
values referred to by a single name. The variates (columns), which may be the same
types as scalars, namely integer, logical, name or real, are identified by a unique
name. The points or cases (rows) are identified by number within the sequence of
cases. The subsystem may be aware of any number of data matrices or data sets
but only one is ‘current’ at any one moment. Data analysis statements relate
always and only to this current structure.

Access to data values in a data matrix is permitted within the formal organisation of
a scan of the cases. In the example which follows the cases have been given the
name MEN by the user. The scan begins with a SCAN statement and ends with an
END statement, the name MEN being used in these statements to delimit clearly
the scan. The operations specified are to set the value of variate XI and to set
variate Y to zero if its value was previously missing. These operations are performed
for the first case in the data matrix, then for the second and so on until all cases have
been processed:

SCAN MEN
XI = X2 + X3 / (X7-X8)
IF Y IS MISSING THEN Y=0
END MEN

Statements available in such scans are identical to those in ACL but reference to
variates is permitted. The opening of a scan may be considered to be opening a
particular kind of block providing access to variates. Thus the scope of variates is
confined to such blocks and the scan construct therefore fits with the block struc
ture of the DAS language.

5.1.2 Dataset

The data set is an extension of the data matrix which it includes as a special case.
The terms cases and variates are used as in the data matrix. In a data matrix the
case contains one value for each variate and is of fixed length. In the data set the
case consists of a number of segments following a hierarchical structure. Each
segment contains one value for each variate and is itself of fixed length. However,
segments may appear more than once within a case.

Consider data collected for each of a number of families. A first series of questions
is answered once for each family and a second series of questions is answered once
for each child in the family. Thus in a data set representing such data a case corres
ponds to a family and it consists of two types of segments, one containing family
details and the other containing child details. One case, therefore, consists of one
family segment and a number, possibly zero, of child segments. This example illus
trates the simplest hierarchy consisting of two segment types. The hierarchy
associated with a data set may contain any number of segments arranged in any
branching pattern.

240 ICL TECHNICAL JOURNAL NOVEMBER 1979

The hierarchy is specified using a TREE phrase consisting of the word TREE
followed by segment names separated by one or more uses of the special characters
< and > which have the following meaning:

< means go down one level in the hierarchy
> means go up one level in the hierarchy

Use of these characters therefore follows the normal bracketing rules. Consider the
following three examples:

TREE FAMILY < CHILDREN >
TREE FAMILY < CHILDREN < ILLNESS »
TREE FARMS < SECTIONS < CROPS > X BUILDINGS < ROOMS X

The first describes the two segment hierarchy referred to above while the second
extends this to a three segment hierarchy. The third has five segment types arranged
as shown in Fig. 2.

Fig. 2 Data set with five segment types

The scan of cases in a data matrix described has a natural extension to permit access
to values in a data set. The scan of a data set may again be considered as following
block structure concepts. The scan consists of a nested sequence of scans of seg
ments with the nesting following the hierarchical structure. For example the scan
of a data set representing farm data with the hierarchical structure given above
would be organised as follows:

SCAN FARMS
operations on farm variates

ICL TECHNICAL JOURNAL NOVEMBER 1979 241

SCAN SECTIONS
operations on farm and section variates

SCAN CROPS
operations on farm, section, and crop variates

END CROPS
operations on farm and section variates

END SECTIONS
operations on farm variates

SCAN BUILDINGS
operations on farm and building variates

SCAN ROOMS
operations on farm, building and room variates

END ROOMS
operations on farm and building variates

END BUILDINGS
operations on farm variates

END FARMS

Thus we see that the rules for access to variates agree with the basic principles of
block structures. If the scan of a segment is open then access to variates in that
segment is permitted; and the ACL structures of scalars, arrays and lists may be
referenced in statements included within scans.

5.1.3 Data management and analysis

A complete description of the many displays, plots, histograms, tabulations and
formal analyses is not possible here. An impression of the comprehensive range of
analysis facilities available may be gained from the following lists:

Tabulations
Histograms
Plots
Summaries
Analysis of variance
Regression

Components analysis
Factor analysis
Discriminant analysis
Canonical analysis
Cluster analysis

any number of dimensions
with distribution fit
scatter diagram, bar charts, probability plots
whole matrix or in groups
with polynomial partitioning
multiple, polynomial, stepwise, Beale-Kendall-Mann,
Garside 2n, Element analysis, ridge regression
on correlation or covariance matrix
3 different methods, many methods of rotation
2 different methods

3 different methods

Facilities are included in all these analyses for the feedback, either to new variates
in the data matrix or to ACL arrays and scalars, of values computed in previous
analyses. Thus further analyses may be specified on previous results and sequences
of analyses are possible. The stage-by-stage process of data analysis is thus fully
recognised.

242 ICL TECHNICAL JOURNAL NOVEMBER 1979

Analysis and feedback operations are supported by a comprehensive range of data
management operations including the creation of derived variates in a data matrix
or data set, reading additional data, creating new data matrices or data sets by
amalgamation of existing structures or by selecting cases or segments. Data matrices
and data sets may be saved on system SAVE files and retrieved later in the same run
or in subsequent runs. They may be read in from, or output to, a variety of file
types. The user thus has complete flexibility in handling, reorganising and analysing
his data.

5.2 Matrix handler subsystem

This subsystem recognises vectors and matrices of various different forms and with
different properties. Facilities are provided for the input and output of matrices
and vectors and for the usual matrix operations including addition, subtraction,
multiplication, division, inversion and for computation o f eigen values and vectors.
English-like statements such as those exemplified in Section 5 are available to
select these operations. Alternatively they may be selected using statements of the
matrix arithmetic form which may include ACL structures, namely arrays and
scalars. A matrix may be declared as an array and hence made available to ACL and
to other subsystems; and, conversely, a matrix may be picked up from an array.

Facilities have been designed for implementation in a later release whereby the
correlation matrix or its equivalent may be passed between the matrix handler and
statistical subsystems. These will allow useful combinations of the facilities of the
two subsystems.

5.3 Forecasting and econometrics subsystem

A first draft of this system has been completed and is being revised in the light of
later developments and appreciation of the needs. Although details may change, the
main features are expected to be as follows.

The data structure recognised by the forecasting subsystem is the series. This is held
in the same form as an ACL array so that ACL and the other subsystems may access
series in the same way as arrays. In particular, some of the facilities of the statistics
subsystem may be applied directly. The subsystem provides, through its English-
based control language, facilities for the input, output, manipulation and analysis
of series. The input facilities follow closely the corresponding facilities of the statis
tics subsystem. Other facilities include:

(a) the trial fit of any of a number of models to the whole or part of a series
and the production of forecasts

(b) the establishment of a particular model with a particular series. Details of
the model are retained and are saved with the series if this is saved

(c) the production of forecasts for series using their established models

ICL TECHNICAL JOURNAL NOVEMBER 1979 243

(d) the updating of series and the comparison between previous forecasts and
actual data now supplied.

As with other subsystems, a full complement of feedback and data management
operations is provided.

5.4 Survey subsystem

The design of the survey subsystem will be based on the results of a detailed inves
tigation of user requirements which is in progress. In the absence of this subsystem
facilities will be provided in the statistical subsystem.

The subsystem will recognise the same data structures, namely the data matrix and
the data set, as the statistics subsystem. There will be complete interchange of these
structures between the two subsystems. In fact a data matrix established as the
current data matrix by one subsystem will remain current when the other is
invoked. Facilities will include input of data, data validation and correction, the
formation of frequency and other tables and the display of tables in a wide range
of arrangements.

The subsystem will also recognise the table as a data structure. This will enable the
user to specify operations on tables such as combining tables and performing
arithmetic on and comparisons between tables. The saving and fetching of tables
will allow the user to retain tables from one run to another. Transfer between a
table and an array will permit useful communication with ACL and other
subsystems.

6 Database management

Previous Sections have stressed the need for a comprehensive range of facilities for
the management of data, to enable the user of the various analysis sytems to make
full use of the facilities which they offer. The data-management facilities included
in such systems as Package-X and DAS form major parts of these systems and pro
vide a major part of their flexibility in practical use. The next stage is to consider
the database and possible relationships between it and these systems. The following
Sections deal with the statistical system in this context; similar considerations apply
to relations with other application systems.

6.1 A statistics system as database manager

Package-X and the Data Analysis System have facilities for saving the various data
structures on system SAVE files for later retrieval. In addition, the user may ask the
system to report on the structures currently stored on SAVE files. Thus both
systems are able to manage a user’s database made up of data matrices, arrays,
scalars and lists. DAS can, in addition, include other structures such as the data set.
DAS and Package-X can therefore accept the role of manager of a database that
would not justify the use of a more comprehensive system such as IDMS.

244 ICL TECHNICAL JOURNAL NOVEMBER 1979

IDMS5, available on the 1900 and 2900 series, is a powerful and flexible tool for
the management of a database which occupies a central position in an organisation’s
operation. Such a database requires this power and flexibility and DAS or Package-
X could not provide it. However, these systems could provide a useful supplement
to the facilities of IDMS. The IDMS system would be responsible for the day-to-day
management and with appropriate links between the database and DAS and
Package-X, to be discussed in the next Section, these systems could be used to per
form any necessary re-arrangement or transformation of the data in preparation for
analysis. They could also be used to save data temporarily, away from the database.
The statistics system would be managing a separate ad hoc database for the
duration of the current analysis and thus providing valuable supplementary facilities.

6.2 Links with the IDMS database

The most easily established links between an IDMS database and an application
system such as DAS or Package-X are indirect links at file level; i.e. programs using
IDMS are written to access the required data and write it to a file in a form which
Package-X or DAS can read. Such communications programs will often not be
difficult to write or to use. They can provide satisfactory links for those users who
are able to define clearly, at the beginning of a study, the data they require to
access. If it is likely that the user will wish to change his data access requirements
during the analysis, then the indirect links will be noticeably less convenient than
more direct links. The user will have to break off his use of the statistics systems,
use an appropriate link program to extract the required data and write it to a file,
describe the data to the statistics system and initiate its input, before he is able to
continue the analysis. This is a purely computing process that the statistician is
likely to find an irritating distraction.

It is clear that if the statistics system is capable of accessing the database directly
the access process will no longer be a distraction and will fit more comfortably into
the analysis process. Thus the user will be able to access data simply as required
during analysis. The direct link preserves the interactive analysis approach favoured
by most data analysts.

To achieve the direct links the data structures recognised by the statistics system
must have a clear and unambiguous correspondence with structures in the database.
The data matrix recognised by the statistics system is represented in an IDMS data
base by a set. The scan of a data matrix as exemplified in Section 5.1.1. would
correspond to accessing each member record in the set in their linked sequence
within the set. The name of the data matrix would normally correspond to the
name of the member record type. Thus the statement SCAN FARMS would have a
clear and direct interpretation in IDMS terms.

The relationship of the DAS data set containing hierarchically structured data to an
IDMS database is particularly interesting. The record types contained in an IDMS
database may be linked to form a complex network. The DAS data set corresponds
to a number of record types linked in a hierarchical arrangement. For example, the
scan of the data set exemplified in Section 5.1.2 involves five record types. This
scan pattern again has a clear and direct interpretation in IDMS terms. Thus any

ICL TECHNICAL JOURNAL NOVEMBER 1979 245

subset of record types linked in hierarchical structured relationships may be scan
ned in this way.

The structure of an IDMS database is defined in the schema. Record types and their
relationships are part of this definition. Thus, if a statistics system such as DAS or
Package-X were to be linked to an IDMS database, it would be able to identify
references to record types such as data matrices or data sets by appropriate refer
ence to the IDMS schema. Definition of the data would therefore be permanently
available to the statistics systems and it would no longer be necessary to define a
matrix or data set to the system before it could be analysed. The system would
simply check by reference to the schema that references to record types follow
proper relationships appropriate to the data set.

A new system, providing direct access to an IDMS database and bringing together
many of the features of DAS, Package-X and IDMS, is being implemented for one
particular ICL user. When complete this system should demonstrate the substantial
benefits to be gained from the direct links and should show that similar links for
DAS and Package-X would be as valuable and should not be difficult to achieve. It
is hoped that a description of this system and an account of the experience of using
it can be given in a later paper.

References

1 COOPER, B.E.: ‘Advances in statistical system design’. J. Roy. Stat. Soc. A., 1977,140.
2 Publications on Package-X are in course of preparation. Information is available from

Dataskil Ltd. or the Central Statistical Office. Package-X is a Crown Copyright product
3 2900 Statistics Reference Manual: ICL Publication TP 6873
4 IDMS Technical Overview: ICL Publication P 1124
5 2900 Matrix Handler: ICL Publication TP6907.
6 LP2900 : ICL Publication TP6880

246 ICL TECHNICAL JOURNAL NOVEMBER 1979

S tructured programming techniques
in interrupt-driven routines

P.F.Palmer
Product Development Group (Southern Development Division), Bracknell

Abstract

The application of structured programming techniques to the production
of interrupt-driven code is illustrated by the design of a microcode module,
recently implemented on the 2903/4. The Jackson method used provides
a powerful means of developing an accurate design and well structured
microcode

1 Introduction

Structured programming techniques are popular in some areas of software develop
ment, less so in others. These techniques are often analysed in the context of high-
level languages and ‘commercial’ software. However, much system software has
characteristics quite unlike the software used as examples of structured program
ming. Although there is always a trend towards more structured designs, many of
the ideas of structured programming have still to find a place here. One area where
formal structured programming techniques are little used is the area often called
‘firmware’ — the low-level system software, including the microcode of machines
like the 2903/4. One aspect of this code is that it is frequently interrup-driven; and
as will be shown in Section 3, interrupt-driven code is inherently difficult to
structure cleanly.

In May 1978 the 2903 microcode team started on the development of a new micro
code module to drive a communications coupler, called an SMLCC, a new addition
to the set of 2903/4 peripherals. In an effort to improve still further our design
techniques we chose to experiment with a design using Jackson structured
programming techniques.1 This paper is the story of how the design went and what
was achieved. The result of the experiment was a success, rather more so than had
been expected at the outset. As well as producing a self-documenting design and
well organised code it elucidated several features of the interrupt-driven code.

The Jackson techniques turned out to be almost purpose-designed for our applica
tion. The paper presents the design of the new microcode module from the initial
stages of writing down the data structures representing the way the microcode
views the transmission blocks on the line, to the point of writing the microcode.
The design technique throws light on several aspects of the code, and some of the
features which come out of the design are clearly relevant to any interrupt-driven

ICL TECHNICAL JOURNAL NOVEMBER 1979 247

package. Comparison with other 2903/4 microcode shows that the code produced
is at least as good as other implementations. With the benefit of such a clear design
methodology the approach must be strongly recommended.

2 The problem

In this Section we outline the way in which the microcode module fits into the
2903/4 system. Of necessity some understanding of programming terms is required;
a glossary is given in Appendix 1.

The microcode we are going to discuss drives an SMLCC coupler which is connected
to a communications line on which there may be several terminals, say 7181 videos
or 7502 remote job entry terminals. The line protocol can be ICLC01, ICLC02, or
ICLC03, with the 2903/4 acting as the primary; for a definition of these protocols
see, for example, Reference 2. The coupler is operated in a character-by-character
manner, interrupting the microcode when it requires the next character. An inter
rupt mechanism is a fundamental part of all modern computers and it is not the
purpose of this paper to describe it. However, to set the context for which our
design is intended we shall describe the operation in a little more detail.

SMLCC | output char 1 | output char 2
act ion | I I I

m icrocode

1
j request
| interrupt
*

i c h ar 2
j to SMLCC,

ready for
|o u tp u t
1
1

1
| request
| in terrupt

j char 3
I to SMLCC.
1 ready for
j output

1
1interrupt

level
1
1
1

1
1
1

♦
1
1

1
1
1

microcode

1
1 1

*

1
1
1

1

1
b asic
level

t
first
interrupt
s ta r ted

t
first
interrupt
fin ished

t
second
interrupt
s ta r ted

t
second
interrupt
f in ished

Fig. 1 Timing diagram

When the 2903/4 executive wishes to communicate with a terminal it passes the
addresses of two buffers to the microcode with a special START instruction. The
first buffer contains data to be transmitted to the line, for example a status poll.
The second is a buffer for the response of the terminal, say a status response. The
microcode’s function is to move data from the output buffer to the SMLCC until it
recognises a character which terminates the output. This character is transmitted,
followed by a block-check character (BCC) if required. The microcode then stops
transmitting, puts the line into receiving mode and waits for a response. Incoming
data are transferred from the coupler to the store until again a terminating character
is detected, when the microcode desynchronises the line.

248 ICL TECHNICAL JOURNAL NOVEMBER 1979

The SMLCC handles one ISO line character at a time. On output, when it has serial
ised a character onto the line, it interrupts the microcode, requesting another
character. The microcode fetches the next character from the store, passes it to the
coupler and exits from the interrupt. This sequence continues until the end of the
transmission block. Reading data works in a similar way.

When the SMLCC requests an interrupt the hardware of the 2903/4 stops the exe
cution of the system in its basic level and automatically switches the microcode
into its interrupt level which then starts executing from the interrupt entry point.
The microcode runs on in interrupt level until the character from the SMLCC has
been processed and then obeys a special INTERRUPT EXIT instruction which
causes the hardware to restart the basic level at the point at which it was when the
interrupt occurred. A timing diagram for this process is given in Fig. 1.

As can be seen the interrupt servicing microcode is executed in a series of paths,
each one separated from the next by an interval spent executing a quite different
piece of microcode. The design problem that is specific to such interrupt-driven
code is to decide how to remember what happened between one interrupt and the
next.

3 The microcode design

3.1 Method

The design method adopted was based on some of the ideas expounded by
M.A.Jackson.‘ The basic technique is to write down the design first as a simple
structured diagram and then as pseudocode. The latter, however, is written not as if
it were interrupt-driven but as if the data were always available and could just be
written or read as a serial file, using READ or TRANSMIT routines. At this level
the fact that the code is interrupt-driven is completely disguised and as a result the
structure is clear and easy to follow. The program is then ‘inverted’ to produce
pseudocode which is interrupt-driven but has a less obvious structure. This ‘inversion’
is a purely mechanical process and may be viewed as just an implementation of the
design; it is explained in more detail in Section 3.3. The term is due to Jackson; it
does not have the same meaning as, for example, inversion of an indexed file. After
the inversion, additional features for handling interrupts, such as timers, are added.

Fig. 2 Tree diagram

ICL TECHNICAL JOURNAL NOVEMBER 1979 249

3.2 Initial design

First we have to describe the transmission blocks in more detail. The notation used
by Jackson1 is suitable for this; to summarise, it uses a tree diagram for the data, as
in Fig. 2.

Fig. 2 shows ‘item’ made up of a sequence part A, part B, part C, part D. A small
circle indicates a selection, so part A is shown as made up of X or Y. A box with an
asterisk means that the item may be repeated an unspecified number of times; thus
part D is Z or ZZ or ZZZ etc. ‘Item’ could therefore be, for example, X part B part
C ZZ or Y part B part C ZZZ. In this notation the microcode’s-eye view of the
transmission is given in Figs. 3-5. Terms such as SYN, ETB are defined in the
Glossary, Appendix 1.

Fig. 3 Data tree

Fig. 4

To the microcode, there is no significance in the different types of transmission
block, say between a poll or a select, although they will be significant to higher

250 ICL TECHNICAL JOURNAL NOVEMBER 1979

levels of software. A full definition of the data may be found in several places, for
example, Reference 2.

Note however that the microcode does make some distinction between text and
status responses. On a text response, the whole block is translated to 2903/4 3-shift
code before it is placed in the buffer. On a status response, it is not. Although the
reason is minor, it does affect the design.

Fig. 5

Once we have the data structure, again following Jackson, we draw a tree diagram
for the code based on the data structure. We did not use the code tree very much in
our original design, since it is relatively easy to write down the pseudocode directly
from the data diagram. For a problem where the actions to be performed are more
intricate, a code tree is a useful tool. For completeness a simplified code diagram is
given in Figs. 6-8. Notice how the structures match those of Figs. 3-5.

Fig. 6 Simplified code tree

The next step is to represent the design in more detail as pseudocode. For our
problem, this step is straightforward, and the code is given in Fig. 9. Notice again
how the structures of Figs. 6-8 and Fig. 9 match. Boxes with ° map onto conditional

ICL TECHNICAL JOURNAL NOVEMBER 1979 251

statements (i f . . /?), boxes with an asterisk map onto loops (until do repeat). For
the first time, we can see how the choice on selections is made, and how loops
terminate.

Fig. 7 Simplified code tree

Fig. 8 Simplified code tree

The ‘transmit’ and ‘read’ calls in Fig. 9 are the way data are output to, and taken
from the line. Representing the input and output in this way is a major feature of
the design method. We know the final microcode cannot look like this, since it is
interrupt-driven. However, pretending it can makes the pseudocode clear and easy
to follow.

252 ICL TECHNICAL JOURNAL NOVEMBER 1979

LABEL A:

LABEL B:

set SYN count = 2;
c In the simple case, two SYN chars are sent
until SYN count = 0
do decrement SYN count by 1;

transmit (SYN) c {SEND SYN}
repeat;
c Two SYN chars have been output. Now the data can be sent,
until fetch next data character from store;

data character = ETB or ETX or ENQ . .
do transmit (data character) c {SEND CHAR/
repeat;
if data character = ETB or ETX
then transmit (ETB or ETX); c\SEND BCC\

transmit (BCC) c |SEND PAD 1 j
c The SMLCC calculates the BCC automatically

else c Assume ENQ
transmit (ENQ) clsEND PAD2}

fi;
set PAD count = 2;
c We pu t two PAD characters at the end o f the output
until PAD count = 0
do decrement PAD count by 1; .

transmit (PAD) c\SEND PAD3\
repeat;
desynchronise line;
c That is the output complete, now read the reply.
read (char); c [r e a d FIRST CHAR}
if char = SOH
then until char = ETB or ETX

do convert char to 3-shift;
put char in buffer;
read (char) c [READ CHAR AND CONVERT}

repeat; 1
convert char to 3-shift;
put char in buffer;
read (BCC); c{READ BCC}
set error status if BCC incorrect
c Again it is the SMLCC which does the BCC calculation,

else c Assume status response
c For the convenience of the system software, the status
c characters are not translated to 3-shift,
until char = ACK or NAK
do put char in buffer;
read (char) c^READ CHAR^
repeat;
convert ACK or NAK to 3-shift;
put char in buffer

fi;
desynchronise the line;
c The transfer is complete. p '9- 9 structural pseudocode

ICL TECHNICAL JOURNAL NOVEMBER 1979 253

3.3 Inversion about the read/transmit routines

Fig. 9 shows the design so far. In some ways, it can be regarded as the complete
design, since all the essential flow is there. For example, if it became necessary to
modify the design to terminate a status response on an additional character, then
the place to change Fig. 9 is clear. However, it assumes data are available by means
of subroutines when it is required; an assumption that is incorrect because it is the
SMLCC that decides when a character is wanted, and interrupts.

To obtain the interrupt-driven code we ‘invert’ Fig. 5 about the read/transmit
routines. This inversion is performed below. Its great importance is that it is a mech
anical process which can be performed in a systematic way on the pseudocode.

We achieve the inversion by a systematic substitution of code. First, we pick out
and label uniquely each read or transmit call. In Fig. 9 the label is enclosed in) } as
a comment. Now we pick one word of store which we call a state variable. We use
this state variable as a row of flags. To each of the labelled calls we picked out
earlier, we associate a flag. Now, we take, for example,

transmit (ENQ) c { SENDPAD2}. c

For this call, we substitute the code in Fig. 10.

give character to SMLCC;
set 'sendpad2' flag in state variable;
interrupt exit;

SENDPAD2: clear 'sendpad2' flag.

Fig. 10

In addition, at the interrupt entry point we add the code

i f ‘sendpad2’ flag set then goto SENDPAD2 f l

Notice that we have used the convention writing the labels introducing the inversion
in italics to make them stand out.

We make this substitution at all the marked calls in Fig. 9. The code is expanded
somewhat, so in Fig. 11 we show only the expansion of the code between LABEL A
and LABEL B.

In Fig. 11, we can see for the first time how the individual interrupts are routed.
Notice how the interrupts cut right across the block structure; an interrupt will start
by jumping into the middle of one block and finishing in the middle of another.
The diagram illustrates vividly why interrupt-driven code is difficult to structure.

254 ICL TECHNICAL JOURNAL NOVEMBER 1979

if data character = ETB or ETX
then give char to SMLCC;

set 'send BCC' flag in state variable;
interrupt exit;

SEND BCC: clear 'send BCC' flag;
c This completes the first transmit,
c Now start the next transmit.
tell SMLCC to send BCC;
set 'send pad1' flag in state variable;
interrupt exit;

SEND PAD1: clear 'send pad1' flag;
c This completes the second transmit

else c Assume ENQ.

SEND PAD2:
fi;
set pad count = 2;
until pad count = 0
do

SEND PAD3:

give char to SMLCC;
set 'send pad2' flag in state variable;
interrupt exit;
clear 'send pad2' flag;

decrement PAD count by 1;
tell SMLCC to send PAD;
set 'send pad3' flag in state variable;
interrupt exit;
clear 'send pad3' flag

repeat;
c That is the end of that code,
c A t the interrupt entry point we will have the code.
INTERRUPT ENTRY: if 'send BCC' flag set then goto SEND BCC fi;

if 'send pad1' flag set then goto SEND PAD1 fi;
if 'send pad2' flag set then goto SEND PAD2 fi;
if 'send pad3' flag set then goto SEND PAD3 fi;

Fig. 11 Inverted pseudocode

The purpose of our state variable is to remember from one interrupt to the next
where one finished and where the next should start. A state variable is a standard
feature of any interrupt-driven code, although in many examples of such code, it is
not always clear quite what constitutes the state variable.

The flag word we used is only one way of implementing a state variable. The state
variable could have been a value to be used as an index to a jump table, or could
have been the microprogram address of the return point. This is an implementation
decision. We chose this implementation on 2903/4 because there are some excellent
conditional-jump-on-bit instructions, but implementing a jump table is costly.

ICL TECHNICAL JOURNAL NOVEMBER 1979 255

3.4 Completion o f pseudocode

The pseudocode is only two stages away from completion. First we implement all
the do repeats and i f then f i with simple i f then goto f i statements. Once this is
finished, looking at Fig. 12 we can see some obvious optimisations to make. For
example, having returned to label SENDPAD1 on interrupt entry, the code jumps
smartly to SENDPAD. The optimisation is to jump directly to SENDPAD on inter
rupt entry.

SEND BCC:

SEND PAD1:

TRANSMIT ENQ:

SEND PAD2
TRANSMIT PAD

SENDPAD

SEND PAD3:

END OF OUTPUT:

if data character = ETB or ETX
then goto TRANSMIT ENQ ft;
give char to SMLCC;
set 'send BCC' flag in state variable;
interrupt exit;
dear 'send BICC' flag;
tell SMLCC to send BCC;
set 'send PAD 1' flag in state variable;
interrupt exit;
clear 'send PAD!' flag
goto TRANSMIT PAD;
c Assume ENQ.
give char to SMLCC;
set 'send PAD2' flag in state variable;
interrupt exit;
clear 'send PAD2' flag;
set PAD count = 2;
if PAD count = 0 then goto END OF OUTPUT fi;
decrement PAD count by 1;
tell SMLCC to send PAD;
set 'send PAD3' flag in state variable;
interrupt exit;
clear 'send PAD3' flag;
goto SEND PAD;

c That is the end of that code,
c A t the interrupt entry point we will have the code.

INTERRUPT ENTRY: /Y'send BCC' flag set then goto SEND BCC fi;
if 'send PAD1' flag set then goto SEND PAD1 fi;
if 'send PAD2' flag set then goto SEND PAD2 fi;
if 'send PAD3' flag set then goto SEND PAD3 fi;

Fig. 12 Pseudocode before optimisation

To finish the design we add one more feature. The microcode must be resilient to
an expected interrupt not appearing, perhaps because the modem has failed or the
terminal does not respond. Therefore, before each exit, on transmission paths, a
timer is started, and is cleared when the next interrupt occurs. On read the whole
message is timed out. The timer fail code is not shown. In the microcode module

256 ICL TECHNICAL JOURNAL NOVEMBER 1979

we are designing, if a timer fail occurs, the whole transmission is aborted, and in our
design we did not use Jackson techniques for this relatively easy part of the code.
However it is easy to see ways to introduce the timer fail case, if it were necessary.

Addition of the timer code completes the pseudocode and our design. Fig. 13
shows the final version of the code in Fig. 11. Appendix 2 contains all the final
pseudocode.

set PAD count = 2;
if data character = ETB or ETX
then goto TRANSMIT ENQ fi;
give char to SMLCC;
set 'send BCC' flag in state variable;
start timer; interrupt exit;

SEND BCC: clear timer; clear 'send BCC' flag;
tell SMLCC to send BCC;
set 'send PAD' in state variable;
start timer; interrupt exit;

TRANSMIT ENQ: give char to SMLCC;
set 'send PAD' in state variable;
start timer; interrupt exit;

SEND PAD: clear timer; clear 'send PAD' flag;
if PAD count = 0 then goto END OF OUTPUT fi;
decrement PAD count by 1;
tell SMLCC to send PAD;
set 'send PAD' in state variable;
start timer; interrupt exit;

END OF OUTPUT:
c That is the end of that code.
c A t the interrupt entry point we will have the code.

INTERRUPT ENTRY: if 'send BCC' flag set then goto SEND BCC fi;
if 'send PAD' flag set then goto SEND PAD fi;

Fig. 13 Final pseudocode after optimisation and addition of timers

4 Characteristics of the design

The steps to the final design were:

Step 1 produce data structure diagrams
2 produce code structure diagrams
3 write pseudocode based on structure diagram, treating data as if it were

from an immediately accessible serial file
4 invert the pseudocode
5 add interrupt specific code.

We took the opportunity to optimise at several of these stages, and examination of
the final pseudocode shows no obvious design-induced inefficiencies. In Section 5

ICL TECHNICAL JOURNAL NOVEMBER 1979 257

we compare the microcode produced from this design with other microcode, and
show that it is at least as good when measured in terms of size and pathlengths.

The final pseudocode superficially shows none of the structure visible earlier. The
nesting, clear in Fig. 9, has all but disappeared. However, should we ever have to
modify the code, we will be able to use the diagrams from step 3.

If the final pseudocode is examined, there is still visible a consistent organisation
which is inherited from the earlier stages. We suggest these are characteristics which
improve the structure of any interrupt driven code.

Characteristic 1

A path through the code is clearly partitioned into the sequence

(a) interrupt handling code
(b) switch code, from interrupt to inline code
(c) inline code
(d) interrupt exit.

The code itself is structured into units of independent inline code, with each unit
performing only one action. Diagrammatically this can be represented as in Fig.14.

Fig. 14 Structure of code

Characteristic 2

The state variable is handled consistently. There are some implied rules:

Rule 1 state variables are clearly identified and not intermingled with other flags
Rule 2 state variables are accessed once only during each interrupt
Rule 3 state variable for next interrupt is set after in-line code.

In our pseudocode, Rule 2 above was enforced by actually clearing the flag after use.
This keeps the flag word tidy. The rule is:

258 ICL TECHNICAL JOURNAL NOVEMBER 1979

(a) interrupt pending - one and only one flag set
(ft) interrupt being actioned - no flags set.

Rule 3 above is important structurally. Consider the difference between the two
pieces of pseudocode in Figs. 15 and 16.

set state variable
Action 1
Action 2
exit

Fig. 15

Action 1
Action 2
set state variable
exit

Fig. 16

In execution, there can be no difference. However the code of Fig. 15 is structural
ly weaker. Once it is implemented, changing action 2 so that it has a choice of exits
will have a drastic effect.

There is one further point to be made. In Fig. 9 we used the technique suggested in
Reference 1 of ‘reading ahead’ for the first character of the incoming block. The
read ahead is the first read after turning round the line.

Following the read ahead through the inversion shows that the effect is to intro
duce a special once-entered read-first-character piece of code. In the final version,
this code has the special actions of clearing the timer used to detect no response
from the terminal and starting the timer on the whole input message. It is instruc
tive to see how this read-ahead rule generates this code in a natural way, and that
first-character actions do not have to be inserted in an ad hoc fashion.

5 Resulting microcode: assessment and comparisons

The microcode which has its design described in Section 3 represents just under half
the final microcode written for the SMLCC. The other half is the code which
supports the 2903/4 Executive, makes the line connection, updates timers etc. This
has a simple structure and the pseudocode was produced by writing it down directly.
We are able to compare the two halves and Table 1 gives the number of errors
discovered during testing and validation.

Here, design error means an error where the microcode faithfully represented the
intention of the design but the intention was later found to be incorrect. Coding

ICL TECHNICAL JOURNAL NOVEMBER 1979 259

error means an error where the microcode did not faithfully represent this inten
tion.

Table 1
code designed using

techniques of this paper
code designed
conventionally

number of
design errors 1 6

number of
coding errors 15 31

The improvement in design accuracy vindicates the method. The improvement in
coding accuracy is also a direct benefit of having a design which has been carefully
worked through and which is available in detail. The one design error noted was
actually an undocumented hardware restriction which was discovered the hard way
on the machine - it had nothing to do with the design method.

We are also in a position to compare our new code with another module written
earlier to drive the integrated communications coupler. Direct comparison is
difficult: the couplers are different, the line-connection and error-reporting facili
ties are improved in the newer module. In addition, the way the data are held
differs: the earlier module has four dedicated Nvorking store’ locations while the
new one has none and consequently requires more instructions to access a given
piece of data. The comparison is therefore subjective but is still worth making.

The earlier code has obviously been carefully optimised to reduce the length of the
most common path, and the other paths have increased lengths. The new code is
more even over all path lengths and there is still room for reducing the lengths of
the frequently used paths by jumping on the less frequent cases. When we measure
the number of changes of control (jumps) between different parts of the code in
one interrupt, we find the two are the same on the standard paths but the new code
has fewer jumps on the unusual paths, for example when an ACK or ETB is received.
As we showed in Section 4 (Fig. 14), we should expect our design method to give
this improvement.

The new code is larger, but this is mainly accounted for by the differences in
couplers and facilities mentioned above. Overall, the new code is clear and has an
obvious organisation.

Given the fact that some reduction in path lengths is still possible, the comparison
shows that the new code is at least as good as the earlier module; and we expect, of
course, to have the benefits of easier maintenance from our design.

260 ICL TECHNICAL JOURNAL NOVEMBER 1979

6 Conclusions

We have used a structured programming technique,1 to provide a design for an
interrupt-driven microcode module for 2903/4.

The strategy is to produce a block-structured design which disguises the interrupts
by assuming the communications coupler can be driven as a serial file. This design
is then ‘inverted’ to produce the interrupt-driven code.

The idea of inversion is crucial to the technique. It provides a simple mechanism
to identify conceptually the two different types of code organisation, and a proce
dure for converting from one to the other. The code can be designed in a block-
structured way, which gives substantial benefits in having a ‘self-documenting’
design and well organised code.

The application of this technique to the 2903/4 microcode was very successful, and
produced high-quality code which contained almost no design errors.

Structured programming techniques are not widely used in low-level firmware. Our
example shows that they can be used with good effect, and that the Jackson tech
nique in particular should always be considered when interrupt-driven code is being
designed.

Acknowledgments

A.W.Radgick, Senior Programmer, implemented the SMLCC microcode.

References

1 JACKSON, M A . Principles o f program design (Academic Press)
2 TA SU ICL. XBM

Appendix 1

Glossary

This paper assumes some understanding of programming terms. This glossary offers
additional explanations, especially of the communications terminology.

pseudocode Code written to represent the microcode. It is not compiled,
but used as a template for the final microcode. We choose to
write it to look like S3.

flag A piece of store to remember a true or false condition. The flag can
be set (true) or clear (false).

SMLCC A communications coupler, i.e. a piece of hardware connected
to the communications line, which operates the line under the
control of the microcode.

ICL TECHNICAL JOURNAL NOVEMBER 1979 261

ISO codes One particular way of encoding data onto a communications
line. The ISO characters mentioned in this paper are:
SYN a character transmitted at the start of all blocks

ETB, ETX

to get the two ends of the line in step (synch
ronisation).
two characters used to mark the end of test
blocks. As far as the microcode is concerned,
the two are interchangeable.

BCC Block check character, used to detect errors in
a block. Small blocks, like status response, do
not have a BCC.

ACK, NAK, ENQ ENQ marks the end of a poll, ACK or NAK
marks the end of a status response.

SOH
PAD

a character put at the beginning of a text block,
the character used to round off all blocks.

Appendix 2 Final pseudocode

c The code starts initially in the basic level, processing
c the 'START'command from the 2903/4 executive.

set SYN count = 1;
give SYN to SMLCC;
set 'send SYN' flag in state variable;
start timer;

c This first SYN wakes up the SMLCC.
c it will output this S YN and then interrupt for all subsequent
c characters.
• continue processing 2903/4 program;
c The transfer has been started. The basic level goes on to
c do other work.
c AH the following code is obeyed in interrupt level.

SEND SYN: clear timer; clear 'send SYN' flag;

SEND CHAR:

if SYN count = 0 then goto SEND CHAR fi;
decrement SYN count by 1;
give SYN to SMLCC;
set 'send SYN' flag in state variable;
start timer; interrupt exit;
clear timer; clear 'send char' flag;
fetch next data character from buffer;
if char = ETB or ETX
then goto TRANSMIT ETBX fi;
if char = ENQ then goto TRANSMIT ENQ fi;
c some changes here from fig. 13 for optim
isation
give char to SMLCC;

TRANSMIT ETBX:
start timer; interrupt exit;
give char to SMLCC;
set 'send BCC' flag in state variable;

262 ICL TECHNICAL JOURNAL NOVEMBER 1979

SEND BCC:
start timer; interrupt exit;
clear timer; clear 'send BCC' flag;
tell SMLCC to send BCC;
set 'send PAD' flag in state variable;
start timer; interrupt exit;

TRANSMIT ENQ: give char to SMLCC;
set PAD count = 2;

SEND PAD:

set 'send PAD' flag in state variable;
start timer; interrupt exit;
clear timer; clear 'send PAD' flag;
if PAD count = 0 then goto END OF
OUTPUT fi;
decrement PAD count by 1;
tell SMLCC to send PAD;
set 'send PAD' flag in state variable;
start timer; interrupt exit;

END OF OUTPUT: desynchronise SMLCC;
c That is the whole output block transmitted.
c The SMLCC will automatically synchronise on the incoming message,
c All we have to do is wait for the interrupt

set 'receive first char' flag in state variable;

RECEIVE FIRST CHAR:

start timer; C Allowing time for the terminal
to respond, interrupt exit;
clear timer; clear 'receive first char' flag;
start timer on whole of input message;
c There is time for a 2000 character message.
take char from SMLCC;
if char = SOH
then goto RECEIVE STATUS fi;
goto RECEIVE TEXT;

READ CHAR AND CONVERT: clear 'read char and convert' flag;
take char from SMLCC;

RECEIVE TEXT: if char = ETB or ETX
then goto RECEIVE ETBX fi;

RECEIVE BXTB

convert char to 2903/4 3-shift;
put char in buffer;
set 'read char and convert' flag in state variable;
interrupt exit;
convert char to 2903/4 3-shift;
put char in buffer;

CHECK BCC:

set 'check BCC' flag in state variable;
interrupt exit;
clear 'check BCC' flag;
if BCC incorrect then set error status fi;
c The SMLCC does this calculation for us.

READ CHAR:
goto DESYNCHRONISE;
clear 'read char' flag;
take char from SMLCC;

ICL TECHNICAL JOURNAL NOVEMBER 1979 263

RECEIVE STATUS:

RECEIVE ACKNAK:

c This path is taken if the first char of the
c incoming block is not SO H, implying a status
c response.
c The status characters are not translated but
c the terminating ACKor NAKis.
if char = ACK or NAK
then goto RECEIVE ACK NAK fi;
put char in buffer;
set 'read char' flag in state variable;
interrupt exit;
convert char to 2903/4 3-shift;
put char in buffer;

DESYNCHRONISE: desynchronise SMLCC;
clear timer;

c That is the end of the transmission. After tidying, a peripheral interrupt is set to
c the 2903/4 executive. There is then the final interrupt exit.

interrupt exit;
c At the interrupt entry point there is the code.
INTERRUPT ENTRY: if 'send SYN' flag set then goto SEND SYN fi;

if 'send char' flag set then goto SEND CHAR fi-,
if 'send BCC' flag set then goto SEND BCC fi;
if 'send PAD' flag set then goto SEND PAD fi;
if 'receive first char' flag set
then goto RECEIVE FIRST CHAR fi;
if 'read char and convert' flag set
then goto REACH CHAR AND CONVERT//;
if 'check BCC' flag set then goto CHECK BCC fi;
if 'read char' flag set then goto READ CHAR fi;

264 ICL TECHNICAL JOURNAL NOVEMBER 1979

T he con ten t addressable
file sto re-C A F S

V.A.J. Mailer
ICL Research & Advanced Development Centre,

Fairview Road, Stevenage, Herts.

Abstract

The ICL content addressable file store (CAFS) is an autonomous unit to
which a mainframe computer can devolve information retrieval tasks. Very
complex selection criteria can be handled and very high rates of search can
be achieved, typically one to two orders of magnitude greater than with
conventional methods. This paper describes the equipment and the prin
ciples on which its operation is based and gives examples of its perform
ance.

1 Introduction

The use of specialised hardware to improve the performance of data management
systems is currently providing a central theme to much research, and the literature
now abounds with references to such work.1 Although there is a rich variety of
opinions as to the characteristics of such hardware, there is general agreement that
there is more potential in this approach than on further improvements in software.

The underlying motive behind these developments arises from a growing realisation
that conventional systems, based on the classical von Neumann processing concepts,
are unable to meet current and expected user demands, in both performance and
facilities, in an effective and efficient manner. The changing pattern of data proces
sing from batch to interactive working has exacerbated the situation, and nowhere
is this more apparent than in large real-time systems in which there is significant
structural complexity in the stored information.

In the past, levels of performance have been largely determined by a combination
of software ingenuity and raw central processor power. Now, however, the techno
logical virtuosity of the semiconductor industry has enabled hardware concepts to
be realised cost-effectively that hitherto have been impractical, if not indeed
impossible. This new found freedom, when fully exploited, heralds radical changes
in much established practice for system design.

The content addressable file store represents one such concept.2

ICL TECHNICAL JOURNAL NOVEMBER 1979 265

2 Rationale for content addressing

Storage devices with content addressable or associative properties have been dis
cussed frequently in the literature for many years. However, whilst their utility has
been acknowledged, the technology to provide a device of anything more than
trivial size has been lacking. In all cases the objective has been to construct a store
which may be accessed directly by using the intrinsic properties of the data items
themselves as keys, rather than to rely on some explicit referencing structure.

The concept is therefore not new. Indeed the requirement for such devices arises
from the observation that from the earliest days much data processing has been
concerned with extracting relevant information from files using single or multiple
key matching. This method of file searching is so taken for granted that it is often
not appreciated that it is content addressing. In fact, in many installations as much
as 60% of available machine time may be used in serial searching of one form or
another for such operations as report generation, selective updating and file main
tenance.

To execute such tasks on conventional equipment necessitates each record in the
target file being brought into the mainframe, tested for relevance and then either
discarded or processed in some way to an output file. Such operations are intrin
sically inefficient since the real activity on a file in any particular run is determined
by the number of external events since the previous run, and this is likely to be low.
Indeed in many applications ‘hit rates’ on files may not exceed 5% of the records
present.

During the period when the magnetic tape recorder was the only form of backing
storage such inefficiencies were tolerated as if they were part of the natural order,
but who, given freedom of choice, would willingly record his information on a
piece of material half an inch wide and half a mile long with the only means of
access being to reel through it from end to end?

The advent of the moving arm disc file provided an extendable pseudorandom
access store and thereby enabled indexing schemes to be developed which, it was
hoped, would ensure that only records having a high probability of relevance would
be retrieved. The use of such schemes was mandatory for online interactive working
where high selectivity of retrieved data and rapid response were required. However,
a disc store is not a true random access device and consequently it is only possible
to index a file efficiently along one access dimension. Moreover, indexes can possess
immense nuisance value. For simple index sequential and random files the overheads
in most cases are acceptable. However, as soon as secondary data items are required
as keys, the number and average size of the indexes may begin to grow alarmingly
as the volume and complexity of the primary data increase. There are, in fact,
instances where the indexes can occupy between two and four times the volume
occupied by the data to which they refer — a perfectly absurd situation.

Difficulties with indexes are of two kinds. First there is the sheer manipulation
required, and secondly there are the complexities of maintenance. Updating of

266 ICL TECHNICAL JOURNAL NOVEMBER 1979

primary data may spawn multiple update tasks which may involve substantial
processing and be a very severe overhead in a real time environment. Also, it should
not be assumed that indexable operations cover the totality of useful functions.
There are, for example, occasions where the relationships between two or more
data items within the same record may constitute a selection criterion. Indexes are
really very primitive projections of files and consequently their utility should not
always be taken for granted.

A further problem of particular relevance in the real time environment is that of
how to cope with queries containing imprecisely defined search arguments. Such
queries often have the term ‘fuzzy matching’ applied to them, and indeed this
endearing expression arose from a recognition of the human genius for imprecision.
An efficient solution to this problem is clearly vital if acceptability of information
systems to the lay user is to be achieved.

So far only files have been discussed and not databases. Although there are various
views as to what constitutes a database, there is general agreement that the term
implies a coherent set of data of greater generality than a simple file which, more
over, can be shared by a wide variety of application programs. This sharing of data
raises another problem. Each program may have its own particular logical view of
the data which has to be mapped to the stored data. These mappings are often
complex due to the impossibility of designing a storage structure which will effic
iently satisfy the diverse requirements of different application programs. The
consequences of this for conventional implementations are often to interlock the
logical and physical structures with complex indexing and linking systems, and
thereby make reorganisation difficult and evolutionary growth virtually impossible
without complete recompilation. Nevertheless current database techniques permit
systems to be built which can satisfy a wide variety of operational requirements for
both batch and real time working where these can be accurately predefined.3 They
are much less efficient when it comes to handling ad hoc queries, particularly those
involving multi-key record selection criteria. Such queries in many cases can only be
handled as background batch tasks, and this, although better than nothing, is irri
tating to many end users who would much prefer to operate interactively.

Although conventional von Neumann processing techniques provide solutions in the
functional sense to the problems outlined above they are unable to do so efficiently,
and most importantly they restrict interactive working to simple transactions. The
system designer is therefore in a dilemma; either he can provide a comprehensive
range of selection facilities in a software package which relies heavily on serial
search in batch mode, or he can offer an elaborate indexing scheme which at best
will give limited real time facilities with only moderate performance, and at consid
erable cost in terms of index compilation and general updating.

The clue to a possible solution lies in the fact that despite the manifest inefficiency
of serial search it is often the only solution and the concomitant penalties have to
be grudgingly accepted. It is therefore pertinent to investigate the possibility of
building an autonomous searching engine to perform this task and thereby relieve
the mainframe of a rather trivial, but nevertheless mill-hogging, comparison and test
procedure.

ICL TECHNICAL JOURNAL NOVEMBER 1979 267

3 An autonomous searching engine

There has been considerable discussion in the literature regarding the possibility of
subcontracting the entire data management function to a specialised unit, the
data base machine, operating autonomously from the central processor or main
frame. Although this form of functionally decentralised architecture is potentially
feasible, many problems remain to be solved if efficient and reliable implementa
tions are to be achieved. Nevertheless substantial performance improvements should
be obtainable if certain search and retrieve functions are implemented in the storage
subsystem under the control of a mainframe resident data management system.

Several groups have pursued this approach4-7 and during the last few years a team
at the Research and Advanced Development Centre of International Computers
Limited has developed a machine known as the Content Addressable File Store
(CAFS)8-11 This is a disc file subsystem containing specialised hardware operat
ing under software control, but using parallel processing techniques for implement
ing multi-factor selection across either single files or the join of multiple files. The
essential requirements placed upon the hardware in this system are those of concur
rent execution of powerful selection and retrieval functions on multiple data streams
arising from the simultaneous reading of many disc channels. Although these
features have been realised in conjunction with the moving arm disc file, they are
applicable to other cyclic random access storage devices such as magnetic drums,
fixed head discs, bubble memories etc. An important principle in the design was to
resist the temptation of using exotic technology by using only ‘state-of-the-art’
components, and thereby avoid the danger of confusing a system experiment with a
device experiment.

3.1 Functional requirements

The choice of functions executed in the CAFS subsystem and the balance between
those performed by hardware and those performed by software was of crucial
importance if the resulting system were to have both adequate flexibility and
attractive performance. The aim was to construct a filtering hierarchy in which the
intrinsically high disc data transfer rate was handled by simple repetitive hardware,
with progressively more complex operations being performed on successive abstracts
of diminishing volume, culminating in procedures executed in the mainframe. If
this were to be achieved it was necessary to identify functions which had a wide
range of utility and independence of applications. Encouragement that this should
be possible was obtained by noting the great success and widespread use of report
generating packages such as ICL’s FIND2. Many of these programs contained general
purpose parametric routines capable of direct hardware implementation. Neverthe
less, it did become clear that file structures would have to be kept reasonably
simple if hardware complexity were to be contained. In practice this meant placing
restrictions on the use of hierarchic records. However, this was not considered to be
a serious deficiency, since, at the time, the project was being significantly influ
enced by the normalisation techniques of E.F.Codd in his proposed relational data
base management system.12

268 ICL TECHNICAL JOURNAL NOVEMBER 1979

The project commenced with an applications study from which it was concluded
that the following functions were desirable in the disc store sub-system:

(a) Evaluation of record selection expressions that may involve nested boolean
functions of many variables using the logical operators AND, OR, NOT.

(b) Evaluation of record selection expressions involving weighted threshold func
tions of many variables.

(c) Subsetting of selected records so as to return to the mainframe only those
data items specified by the task generating process.

(d) Counting occurrences of records satisfying a selection expression.

(e) Using the relationships =, > , < , > , < , between specified key values and
data item values as terms in a record selection expression.

if) Masking of data item values to a resolution of at least a byte or character.

(g) Stem matching of individual terms.

(/i) The use of maximum and minimum values of a data item value as a search
term.

(/) Performing the summation of specified integer data item values in records
satisfying a selection expression.

if) The comparison of data item values of the same type to be available as a
search term. This requirement was later augmented to include arithmetic
operations involving addition and subtraction of data item values and literals.

ik) Evaluating selection expressions across virtual records formed by joining two
or more physical files.

(/) Projection of a set of records satisfying a selection expression to remove
redundancy with the option of counting the occurrences of each unique
record.

The functions listed under (a) — ig) were implemented initially in a small experi
mental system which enabled a preliminary evaluation of the approach to be made.
On the basis of the favourable results obtained a design was produced for a full
scale disc controller incorporating special hardware for autonomous associative
search.

3.2 Hardware

At the outset it was decided that the special features in the CAFS disc controller
should be in addition to the standard direct access facilities of conventional equip-

ICL TECHNICAL JOURNAL NOVEMBER 1979 269

CPU

Fig. 1 CAFS controller functional subunits
main data paths
control paths

270 ICL TECHNICAL JOURNAL NOVEMBER 1979

ment, i.e. block read and write. Within the controller there are six principal sub
units, namely:

(a) control processor
(b) direct access unit
(c) associative searching unit
(d) record retrieval unit
(e) file correlation unit
(/) drive control unit

The control processor is the 64 Kbyte machine taken from the ICL7503 terminal
controller. Its primary functions are task scheduling and resource management. The
direct access unit, as its name implies, performs the standard functions of physical
block reading and writing. The novel components in the system are the associative
searching unit, the record retrieval unit and the file correlation unit. An outline
block diagram is shown in Fig. 1.

The associative searching unit (ASU) is the heart of the system. Its function is to
execute concurrent search tasks on a multiplexed data stream produced by the
simultaneous reading of several disc channels. These channels may be allocated
either separately or in groups to the disc drives. The drives themselves have addi
tional read amplifiers so that several heads on any one may be read in parallel. Up
to eight such multi-head read drives and six single head read drives may be connected
to any one controller giving a total storage capacity of 840 Mbytes with EDS 60
drives. Within the ASU there are three principal subunits. These are the data multi
plexing and format control unit, the key channel unit and the search evaluation
processor. The first of these, as its name implies, takes the raw data from the
multiple disc read channels and produces a single multiplexed output on a byte
wide highway operating at 4 Mbytes/s. The present system will accept 12 individual
disc channels of which up to ten may be allocated to a multi-head read drive for
those tasks where intensive searching is required. The unit also issues format control
information to the other units such as start of record, start of field, end of record etc.

The key channel unit permits up to sixteen key and mask registers together with
corresponding comparators to be allocated to any task. Up to seven such tasks may
run concurrently. These key matching channels, when loaded with appropriate key
data and masks, operate simultaneously on the data stream, and for the record
being scanned will register presence of key type, equivalence of key data, the ine
qualities ‘less than’, ‘greater than’, as well as all their logical inversions. These
operations are performed ‘on-the-fly’ as it were; there is no block or track buffering.
After each key channel has performed its specific comparison the result is stored
and then subsequently used as an operand in a microprogram executed by the
search evaluation processor when all key comparisons for that record have been
made; i.e. when the hardware detects end of record. This processor is a small
specially designed vector machine which is programmed specifically for each search
task and may execute several search programs simultaneously. In order for the key
channels to carry out their function the data stored on disc needs either to be in a
fixed format or to be self-identifying. At the outset of the project a decision was
made to adopt a format which permitted records to be of variable length and to

ICL TECHNICAL JOURNAL NOVEMBER 1979 271

contain multiple occurrences of variable length group fields. Each group field is
preceded by an identifier code and a length and may consist of a set of fixed length
data items followed by one variable length data item (Fig. 2). Any individual item,
if required for key comparison, may then be isolated by means of a mask which is
stored in the key channel together with the data. This facility, when applied to
variable length items such as text words, enables stem matching to be easily imple
mented.

■D 2
I

group
field

Q . ^ Q . -C
d c 3 o> fixed length
CT2&I data items

y ■ - A

variable length
data item

record

record
first group field second group field trailer

>1 F 1 F 2 F 3 F4 v , L2 F5 F 6 F 7 v 2 T T

Fig. 2 CAFS record format

At the same time as the associative searching unit is carrying out its key comparisons
the record retrieval unit is matching its identifier list against the data stream and
collecting the contents of the designated fields in each record. If the record is
subsequently declared to be a ‘hit’ these are returned; if not they are overwritten.
This feature of hardware deblocking and editing of records is particularly valuable
in interactive situations where high throughput is necessary. The data from the
record retrieval unit is passed to the store of the control processor, where it may be
further processed if required, before finally being returned to the user’s work space
in the mainframe. The further processing that could take place would, for example,
be evaluating arithmetic selection expressions and summing integer field values.

The mechanism of selection is illustrated in Fig. 3. A search task, which may have
come from a terminal enquiry or a batch program call and be of the form, ‘GET
NAME, PERSONNEL CODE FOR JOB = SALESMAN AND AGE < 2 8 and
BONUS > 750’, is compiled by data management software held in the mainframe
into a search and retrieve task specification. The latter, in the form of a list, contains
key data, a microprogram for the search evaluation processor and a list of data
items to be retrieved from selected records. This list is then passed by the operating
system in the mainframe to the CAFS controller together with the physical ad
dresses of the file areas to be searched. The size of these may vary from a single
track to a whole disc cartridge depending on the extent of the file and the indexing
strategy adopted. The control processor, having accepted the task, selects the
appropriate disc drive and then transfers the task parameters to the relevant CAFS
units.

272 ICL TECHNICAL JOURNAL NOVEMBER 1979

batch
program terminal
call l anguage

get nam e p e rsonnel code for
job = s a l e s m a n & a g e < 26
a n d b o n u s > 750

ta s k g e n e ra to r
selector

Boolean
e x p re s s io n
re tr iev e r

1. jo b sm an
2. a g e 26
3. b o n u s 750

] - & 2 < & 3 >
n a m e PC

executive

CAPS controller
h a r d w a r e key

re g is te r s

^ / / K.

|PC:186|name: B row n |age : 28 | job: sm a n | bonus: 8 9 0 1 s a la ry : >

key com para to rs
1 / 7 / 3 /

j- | | <| | >|

J
(m ic ro p ro g ram m ed lo n
e v a lu a t e selection
e x p r e s s io n 1 = & 2<& 3>)

retr ieval
r e g i s t e r s

g a t e

out put
buffer

r e s u l t : Brown num ber 186

Fig. 3

A very valuable extension to the capability of the system is provided by the file
correlation unit. This enables selection expressions to be evaluated on the joins of
physical files without the overhead of sorting and merging intermediate results, or
relying on precompiled pointer structures, provided that there exists a data item
shared by records in the two files. The principal components of this device are a
set of 256K 1 -bit wide stores, any one of which may be addressed by the value part
of a designated data item in the record being processed by the associative search
unit. If the latter classifies a record as a ‘hit’ then the addressed bit can be set. At
the end of a search task the store contains, in effect, the set of different data item
values, coded as addresses, occurring in the designated field in all the records
satisfying the search selection expression. On a subsequent search, on the same or a
different file, the store containing these coded values may again be accessed during
the processing of a record, but this time the state of the addressed bit may be treated
as if it were a key channel comparator output by the microprogram performing the
evaluation of the selection expression, thereby enabling a linked selection operation

ICL TECHNICAL JOURNAL NOVEMBER 1979 273

to be carried out across the two files. This is illustrated in Fig. 4. In this example,
there are two files, a parts file and a supplier file, containing, respectively, part
number, part description, supplier code and supplier name, supplier code, supplier
address. Consider the enquiry, ‘Find all suppliers of l/4in Whitworth brass bolts in
Birmingham’. To execute this, the parts file is first searched using ‘part description
= l/4in Whitworth brass bolts’ as the selection expression. For all records found a
bit in the map is set using the supplier code as an address. The supplier file is then
searched using ‘supplier address = Birmingham and supplier code addressed bit set
in map’ as the selection expression. Supplier names are then retrieved from all
records satisfying this expression.

file correlation system

map (supplier code)

parts (part number, part description,
supplier code)

. /

supplier (supplier name.supplier code,
address)

/
/

Pig. 4 'Find all suppliers of 'A in Whitworth brass bolts in Birmingham'

For the record being processed the bit map store may be addressed directly by the
value of the data item itself, by a numerical equivalent stored in the record or by a
value obtained by hardware hashing. The latter, moreover, can be used on a virtual
field assembled dynamically from more than one data item in the record. However,
the use of hashing in this way can give rise to false ‘hits’ or ‘ghosts’, but the number
of these can be reduced to almost negligible proportions by using several bit maps
each of which is addressed via a different hashing function. Any residual ghosts are
then removed by a backtracking operation.

3.3 File organisation and indexing

The physical organisation of a CAFS file can be termed a cellular serial one. The file
extent is divided into a series of storage cells whose size may vary from one disc

274 ICL TECHNICAL JOURNAL NOVEMBER 1979

track to a cylinder depending on the particular requirements of the application.
Any search task is then directed to one or more cells which are exhaustively
scanned. In many applications a half cylinder is used as a cell and then using 10-
head read the whole cell may be searched in one revolution of the disc pack. Since
access to a record within a cell is associative the physical location is irrelevant unless
there is an applications requirement to maintain records in a given sequence.
Although the CAFS hardware can provide very fast searching it is necessary to
complement this by a low resolution indexing system in order to achieve the best
performance. However, such indexes need only resolve to the level of storage cells.
In many applications this means that each addressable unit, e.g. a half cylinder,
may contain approximately 500-1000 records. There is then little difference be
tween the time taken to select and retrieve one record from among a thousand
others using CAFS than in making a random access to one using conventional
methods. Indeed, in certain instances, the overall time for the latter could well be
greater since additional disc accesses might well have to be made for index searching.
Moreover, a CAFS file sequenced on a primary key would have only as many entries
in the index as there were storage cells.

In addition, secondary or alternative key indexes can be readily compiled as an
ordered list of values of a given data item in which each value has associated with it
a binary vector having as many bits in it as there are storage cells in the Hie. Any
particular bit in the vector is then set if there is at least one occurrence of this value
in the corresponding storage cell. For a multi-factor selection expression, the low
level system software can manipulate the index vectors of the various terms in the
expression to produce a search vector. The bits that are set in this vector then
correspond to the storage cells in the file in which it is worth making a search. This
procedure is subtly different from conventional inverted indexing. Whereas the
latter indicate where records are, the CAFS scheme indicates where they are not.
This is illustrated in Fig. 5 for the simple enquiry on a personnel file. Assume that
the file contains name, address, profession, and is ordered on name with secondary
indexes for address and profession. Consider an enquiry such as, ‘Find all molecular
biologists in Manchester’. To execute this the secondary indexes would first be
accessed and the vectors retrieved for ‘address = Manchester’ and ‘profession =
molecular biologist’. These vectors would then be intersected by the data manage
ment software in the mainframe to give a search vector containing bits set corres
ponding to the cells worth searching.

3.4 Creating and updating CAFS files

The physical mapping of a CAFS disc conforms to range standards, but, as already
indicated, the format of records and their logical organisation within a file extent
do not. Consequently, before a standard file can be read in CAFS search mode it
has to be reloaded. Nevertheless, standard utilities can be used for disc initialisation,
file allocation and file copying. Hard recording flaws are avoided by skipping the
cylinder containing the flaw at the time of file allocation. Since the incidence of
flaws on the 60 Mbyte cartridges used on the experimental system was extremely
low, this simple minded approach to flaw management did not lead to a profligate
waste of disc space.

ICL TECHNICAL JOURNAL NOVEMBER 1979 Z75

276
IC

L T
E

C
H

N
IC

A
L

 JO
U

R
N

A
L

 N
O

V
E

M
B

E
R

 1979

O>

oo3a

3a

address index
cell location

data item
value

Aberdeen 1 0 1 0 0 0 1 1 0 1 0
Birmingham 0 0 1 1 0 1 0 0 0 0 1
Cardiff 1 0 0 0 1 1 0 0 1 0 0
Edinburgh 1 1 0 1 0 0 0 0 0 1 0
London 1 0 1 0 1 1 1 0 0 0 1
Manchester 0 0 1 0 1 1 0 0 0 0 1
Southampton 1 1 0 0 1 0 0 1 1 0 0
York 0 1 1 1 0 0 1 0 0 0 1

profession index
cell location

search
vector

data item
value

aeronautical engineer 0 0 1 1 1 1 0 0 0 1 0
chemist 1 1 0 0 0 1 0 0 1 0 1
computer engineer 1 0 0 1 0 0 0 1 1 0 0
electrical engineer 0 1 1 0 0 0 1 0 1 1 0
mechanical engineer 1 0 1 0 0 0 1 1 0 0 1
molecular biologist 1 0 1 1 0 0 1 1 0 0 1
physicist 0 0 1 1 0 0 0 1 1 1 0
zoologist 1 0 0 0 1 0 1 0 0 1 0

personnel
file

10

The updating of CAFS files can be performed purely conventionally using normal
direct access methods or by using logical record insertion/deletion in CAFS mode.
In the latter the mainframe software merely has to identify in which storage cell the
insertion or deletion is to occur and then issue the appropriate commands. The
CAFS controller will then perform the necessary block reading, repacking, writing
back and check reading. In a transaction processing environment concurrent update
control and jounalising for recovery remains entirely a mainframe data management
function.

3.5 Performance

During the development of the CAFS system considerable emphasis was placed on
pilot trials of applications already implemented conventionally. The results of these
trials confirmed that substantial gains in performance were achievable over a wide
variety of application types.

Table 1 lists some of these pilot implementations.

Table 1

Application Comments

order book processing
production control
purchasing control
keyword document retrieval
text retrieval
telephone directory enquiries
personal credit control
map cataloguing and retrieval
personnel record enquiries

mixed batch and TP
mixed batch and TP
mixed batch and TP
online enquiries and batch update
online enquiries and batch update
online enquiries and batch update
online enquiries and batch update
online enquiries and batch update
online enquiries and batch update

To generalise the results obtained from these trials and attempt to quantify the
overall gain is virtually impossible and would be of dubious value. In some situa
tions, such as hashed random accessing of single records, there is hardly any dif
ference at all, unless some advantage can be taken of concurrent reads on different
disc drives. On the other hand, in batch mode multikey searching using programs
such as FIND 2, reductions of 50-100 times in elapsed time and 10,000 times in
mill usage are possible.

The latter is illustrated in Table 2 where the results are given for a serial search of a
file containing all the commercial entries of the London telephone directory: a total
of 250,000 records of some 23 million characters of loosely structured text. The
search task was to match a single left-justified key stem of four characters against

ICL TECHNICAL JOURNAL NOVEMBER 1979 277

all words falling within the generic classification of name and business description
and to provide a count of ‘hit’ records.

Table 2
Number o f

Configuration mainframe inst. Elapsed time Mill usage

1903A + DA disc 148,000,000 16 min ~ 100%
1903A + CAFS 15,000 11 s 1%

Moreover, the CAFS hardware can execute a search using up to 16 key terms in a
complex selection expression without there being any appreciable difference in the
number of mainframe instructions and negligible difference in the elapsed time. If
16 keys had been used in the above example the number of mainframe instruc
tions could well have been around 1000 million and the elapsed time would then be
nearly 2 h.

Although the greatest performance gains can be achieved in the batch mode, it is
with interactive enquiry systems that the processing power of CAFS can be most
effectively used. The combination of high speed autonomous search and coarse
indexing can enormously reduce the mainframe workload per terminal message-pair
in many applications, and thereby enable a given mainframe to handle a substantially
increased number of terminals with an acceptable response time. An illustration of
this comes from the telephone directory enquiry application. An early analysis
suggested that a software only system running on a 1904A might cope with one
enquiry every two seconds, whereas a CAFS system on the same mainframe should
manage eight enquiries per second. The recently completed Post Office trial estab
lished that this estimated performance for a CAFS system was indeed achievable,
achievable.

4 Conclusions

The aim of the CAFS project was to demonstrate a new but essentially simple
systems concept; namely, that by providing functionally specialised and dedicated
processing units operating under the overall direction of mainframe software, but
requiring only its minimal involvement, performance gains varying from one to two
orders of magnitude could be obtained over a wide class of applications.

Such spectacular improvements could not have been achieved either by improving
conventional software techniques or by increasing the raw power of the central
processor. An appreciation of the limitations of von Neumann processing was
required in order that a new balance be struck between hardware and software.
Nevertheless these achievements would have been neither possible nor cost effective
but for the dramatic developments in semiconductor technology over the last few
years.

278 ICL TECHNICAL JOURNAL NOVEMBER 1979

The potential processing power made available through the CAFS approach should
have its major impact on the interactive environment, particularly in the field of
information retrieval. Comprehensive language facilities may now be made available
to a large number of users with response times such that a truly conversational and
harmonious dialogue be established between man and machine.

Acknowledgments

The author is indebted to the Advanced Computer Techology Project of the Depart
ment of Industry which has supported a significant proportion of the work. He is
also indebted to his colleagues at the Research and Advanced Development Centre,
without whose industry and dedicated teamwork the project would not have been a
success, and in particular to the late R.W.Mitchell who conceived the original idea.

References

1 BERRA, P.B.: ‘Data Base Machines’. Proceedings of Infotech Conference, ‘Database - The
Next Five Years’, December 1977.

2 SCARROTT, G.G.: ‘Wind of Change’,ICL Tech. / , 1978,1, pp.35-49
3 CODASYL DBTG 1971 Report. Conference on Data Systems Languages, ACM, New York.
4 COPELAND, GP., LIPOVSKI, G J. and SU, S.Y.W.: The architecture of CASSM: a

cellular system for non-numeric processing’. Proceedings of the First Annual Symposium
on Computer Architecture, December 1973.

5 OZKARAHAN, E.A., SCHUSTER, SA. and SMITH, K.C.: ‘RAP — associative processor
for data base management’, AFIPS Conference Proceedings, 1975,44.

6 LIN, S.C., SMITH, D.CP. and SMITH, J.M.: ‘The design of a rotating associative memory
for relational data base applications’, A CM Trans, on Data Base Systems, March 1976,1

7 LEILICH, H.O., KARLOWSKY, I., and ZEIDLER, H.C.: ‘Content addressing in data bases
by special peripheral hardware’, Workshop on Computer Architecture, Erlangen,
May 1975.

8 COULOURIS, G.F., EVANS, J.M. and MITCHELL, R.W.: ‘Towards content addressing in
data bases’, Comput. / , February 1972,15.

9 MITCHELL, R.W.: ‘Content addressable file store’. Proceedings of Online Conference on
Database Technology, April 1976.

10 BABB, E.: ‘Implementing a relational database by means of specialized hardware’. ACM
Trans, on Database Systems 1979,4, pp. 1-29

11 MALLER, V.A.J.: ‘A content addressable file store’. IEEE Spring Computer Conference,
San Francisco, 1979.

12 CODD, E.R.: ‘A relational model of data for large shared data banks’, CACM, June 1970,
13.

ICL TECHNICAL JOURNAL NOVEMBER 1979 279

Computing
in th e hum anities

Susan Hockey
Oxford University Computing Service

Abstract

This paper describes some of the ways in which computers are being used
in language, literature and historical research throughout the world. Input
and output are problems because of the wide variety of character sets that
must be represented. In contrast the software procedures required to pro
cess most humanities applications are not difficult and a number of pack
ages are now available.

1 Introduction

The use of computers in humanities research has been developing since the early
1960s. Although its growth has not been as rapid as that in the sciences and social
sciences, it is now becoming an accepted procedure for researchers in such fields as
languages, literature, history, archaeology and music to investigate whether a com
puter can assist the course of their research.

The major computer applications in the humanities are essentially very simple pro
cesses. All involve analysing very large amounts of data but do not pose many other
computational problems, once the data is in computer readable form. The data may
be a text for which the researcher wishes to compile a word index or alphabetical
list of words, or it may be a collection of historical or archaeological material which
the researcher wishes to interrogate or catalogue or from which he may perhaps wish
to calculate some simple statistics.

2 Input and output

Getting the data into computer readable form is a major problem for any humanities
application, not only because of its volume but because of the limited character set
that exists on most computer systems. The original version of a text to be pro
cessed is more likely to be in the form of a papyrus, a medieval manuscript or even
a clay tablet than a modern printed book. Many texts are not written in the Roman
alphabet but, even if they are, languages such as French, German, Italian or Spanish
contain a number of accents or diacritics which are not usually found on computer
input devices. The normal practice is to use some of the mathematical symbols to
represent accents so that for example the French word k te would be transcribed as
E*te*, assuming of course that the computer being used has upper and lower case
letters.

280 ICL TECHNICAL JOURNAL NOVEMBER 1979

A text which is not written in the Roman alphabet must first be transliterated into
‘computer characters’, so that for example in Greek, the letter alpha becomes a,
gamma becomes g and not so obviously theta could be transliterated as q. In some
languages such as Russian, it is more convenient to use more than one computer
character to represent each letter. This presents no problems provided that the pro
gram which sorts the words into alphabetical order knows that its collating sequence
may consist of such multiple characters. They are also necessary for modern langu
ages such as Welsh and Spanish.

Arabic and Hebrew, though written from right to left in the original, are input in
transliterated form from left to right. In neither language is it usual to write the
vowel marks. Hebrew is easier in that it has only 22 letters, five of which have an
alternative form when they appear at the end of a word. By contrast, each letter
of the Arabic alphabet has four forms depending on whether it occurs in the
initial, medial, final or independent position. Each of these forms can be trans
literated into the same character, for it has proved possible to write a computer
program to simulate the rules for writing Arabic, if the output should be desired
in the original script.

There are of course a number of specialised input devices for non-standard scripts.
The University of Oxford already has a visual display unit which displays Greek
with a full set of diacritics as well as Roman characters. Other such terminals exist
for Cyrillic, Hebrew and Arabic. Some, like the Oxford one, generate the characters
purely by hardware, others use a microprocessor or even the mainframe computer
to draw the character shapes. While this type gives a greater flexibility of character
sets, it is slow to operate when its prime use is for the input of large amounts of
data. Ideographic scripts such as Chinese, Japanese or even Egyptian hieroglyphs
can be approached in a different manner. An input device is now in use for such
scripts, which consists of a revolving drum covered by a large sheet containing all
the characters in a 60 x 60 matrix. The drum is moved so that the required charac
ter is positioned under a pointer. The co-ordinates of that character on the sheet
are then transmitted to a computer program which already knows which character
is in that position.

Specialised devices are the only adequate solution to the problem of output. An
upper- and lower-case line printer may be used at the proofreading stage but it
does not have an adequate character set and the quality of its output is unsuitable
for publication. A daisy-wheel printer may offer a wider character set and better
designed characters but its printout resembles typescript rather than a printed
book. There have been a number of experiments to use graphics devices to draw
nonstandard characters. These have proved more successful than the devices men
tioned above, particularly for Chinese and Japanese, but their main disadvantage
is the large amount of filestore and processing time required to print even a fairly
small text. It seems that the best solution to the output problem is a photo
composer which offers a wide range of fonts and point sizes and which can be
driven by a magnetic tape generated on the mainframe that has processed the text.
Such devices have been used with great success to publish a number of computer
generated word indexes and bibliographies.

ICL TECHNICAL JOURNAL NOVEMBER 1979 281

Besides simply retyping the text, there are other possible sources of acquiring a
text in computer readable form. Once a text has been prepared for computer
processing it may be copied for use by many scholars in different universities.
There exist several archives or repositories of text in computer readable form which
serve a dual purpose of distributing text elsewhere and acting as a home for material
for which the researcher who originally used it has no further use. The LIBRI
Archive at Dartmouth College, Hanover, New Hampshire, USA, has a large library
of classical texts, mainly Latin. The Thesaurus Iingae Graecae at Irvine, California,
USA, supplies Greek text for any author up to the fourth century AD. Oxford
University Computing Service has an archive of English literature ranging from the
entire Old English corpus up to the present day poets. The Oxford Archive will
also undertake to maintain text in any other language if it is deposited there. The
literary and Linguistic Computing Centre at the University of Cambridge has a large
collection of predominantly medieval text. All these archives maintain catalogues
of their collections and will distribute text for a small charge. There has usually
been no technical difficulty in transferring tapes from one machine to another,
provided that variable-length records are avoided. Another source of text on tape
is as a by-product of computer typesetting. A number of publishers have been able
to make their typesetting tapes available for academic research after the printers
have finished with them. These have been particularly valuable for modern material
such as case and statute law as well as dictionaries and directories.

3 Applications

The most obvious text-analysis application is the production of word counts, word
indexes and concordances. A word count is simply an alphabetical list of words in a
text with each word accompanied by its frequency. In a word index each word is
accompanied by a list of references such as chapter, page or line showing where that
word occurs in the text. In a concordance each occurrence of each word is accom
panied by some context to the left and to the right of it showing which words
occur near it. The reference is usually also given. In many cases the context con
sists of a complete line of text, but it may be a whole sentence or a certain number
of words to the right and to the left.

Sorting words into alphabetical order is not as simple as one might think. Most
concordance programs, as they are usually called, recognise several different types
of characters. Some may be used to make up words and can be called alphabetics.
Some may be punctuation characters and are therefore always used to separate
words. These two categories are fairly obvious, but consider the case where an
editor has reconstituted a gap in an original manuscript and has inserted within
brackets the letters which he considers are missing, for example the Latin word
fort[assej. In a concordance this word must appear under the heading fortasse
therefore the brackets must be ignored when the word is alphabetised but retained
so that the word appears in the context still in the form in which it appears in the
text. Thus we have another category of characters, those which are ignored for
sorting purposes but retained in the context. A fourth category is usually used for
accents and diacritics and very often for apostrophe and hyphen in English. We can
consider the simplest case, that of the French words a, part of avoir, and a, the

282 ICL TECHNICAL JOURNAL NOVEMBER 1979

preposition. The latter form must appear as a separate entry in the word list
immediately after all the occurrences of a, but before any word beginning aa-. If
the accent is treated as an alphabetic symbol it must be given a place in the alpha
betic sequence of characters, but wherever it is placed it will cause some words to
be listed in the wrong position. Therefore it is more usual and indeed necessary to
treat accents as a secondary sort key which is to be used when words can no longer
be distinguished by the primary key. The same treatment is necessary for an apost
rophe and hyphen in English. There is no position for an apostrophe in an alpha
betic sequence which will allow all the occurrences of III to appear immediately
after all those of ill and all those of can’t to come immediately after all those of
cant.

The alphabetic sequence for sorting letters may vary from one language to another.
Reviewers of concordances of Greek texts have been rightly scornful if the Greek
words appear in the English alphabet order. A concordance program should be able
to accept a user-supplied collating sequence of letters and operate using that. It
should also be able to treat the double letters of Welsh or Spanish and the mul
tiple characters of transliterated Russian as single units in the collating sequence.
More importantly, it should have a facility to treat two or more characters as
identical so that for example all the words beginning with upper case A do not
come after all those beginning with lower case a, but are intermingled with them in
their rightful alphabetic position. It follows then that the machine’s internal collat
ing sequence is not suitable for sorting text and it is regrettable that too many
manufacturers rely on this collating sequence for their sorting software.

There are several different kinds of concordances and word lists. The most usual
method is to list all the words in forward alphabetical order. They may also be
given in frequency order beginning with either the most frequent or the least
frequent. In this case when many words have the same frequency the words within
that frequency are themselves listed in alphabetical order. Words may also be listed
in alphabetical order of their ending, i.e. they are alphabetised working back
wards from the ends of the words. This is particularly useful for a study of rhyme
schemes or morphology (grammatical endings). In a concordance, all the occur
rences of a word may appear either in the order in which they occur in the text or
in alphabetical order of what comes to the right or left of the keyword, as it is
called.

A vocabulary distribution of a text always gives a very similar sort of curve, ranging
from a few very-high-frequency words down to a very long tail of many words
occuring only one. The high-frequency words occupy a very large amount of room
in a concordance and are therefore sometimes omitted. In the handmade concord
ances of the nineteenth century they were almost always omitted because they
accounted for such a large proportion of the work. Words can be missed out either
by supplying a list of such words or by a cutoff frequency above which words
should not appear. A third option in a concordance is to give only the references
and not the context for high-frequency words.

Foreign words, quotations and proper names can also cause problems in com
puter-generated concordances. If there are many of them and particularly if they

ICL TECHNICAL JOURNAL NOVEMBER 1979 283

are spelled the same as words in the main text, they can distort the vocabulary
counts to such an extent that they become worthless. This problem is usually re
solved by putting markers in front of these words as the text is input. For example,
in a concordance of the Paston letters in preparation in Oxford, all the proper
names are preceded by t and all the Latin words by $. These markers can then be
used to list all these words separately or if the editor wishes they can be ignored
at the sorting stage so that the words appear in their normal alphabetic position.

Word counts and concordances are the basis of most computer-aided studies of text.
Their uses range from authorship studies, grammatical analysis and phonetics to the
preparation of language courses and study of spelling variations and printing. A few
examples will suffice to show what can be done.

Vocabulary counts have been used in several ways for preparing language courses.
The University of Nottingham devised a German course for chemists using vocabu
lary counts of a large amount of German technical literature as a basis for selecting
which words and grammatical forms to teach. It was found, for example, that the
first and second person forms of the verb very rarely appeared in the technical text,
although they would normally be one of the first forms to be taught. A second
approach in designing a language course is to use a computer to keep track of the
introduction of new words and record how often they are repeated later on in the
course.

A word list of a very large amount of text can give an overall profile of one
particular language. Several volumes of a large word count of modern Swedish have
been published, using newspapers as the source of material. Newspaper articles are
an ideal base for such a vocabulary count as they are completely representative of
the language of the present day. Another study of modern Turkish, again using
newspapers, is aiming to investigate the frequency of loan words, mainly French
and Arabic, in that language. By comparing two sets of vocabulary counts with a
5-year interval between the writing of the articles, it is possible to determine how
much change has taken place over that period.

Some forms of grammatical analysis may also be undertaken using a concordance,
particularly the use of particles and function words which are not so easy to notice
when reading the text. In several cases the computer has found many more ins
tances of a particle in a particular text than grammar books for that language
acknowledge. It is also possible, albeit in rather a clumsy fashion, to study such
features as the incidence of past participles in English. They may conveniently be
defined as all words ending in -ed. This will of course produce a number of un
wanted words such as seed and bed but they can easily be eliminated when the
output is read. It is more important that no words should be missed and experi
ments have shown that the computer is much more accurate than the human at
finding them.

Concordances can also be used to study the chronology of a particular author. It
is certainly true that for a number of ancient authors, the order of his writings is
not known. It may be that his style and particularly his vocabulary usage have

284 ICL TECHNICAL JOURNAL NOVEMBER 1979

changed over his lifetime. By compiling a concordance or word index of his works,
or even by finding the occurrences of only a few items of vocabulary, it is possible
to see from the references which words occur frequently in which texts. In this
kind of study it is always the function words such as particles, prepositions and
adverbs that hold the key, for they have no direct bearing on the subject matter of
the work. These words have been the basis of a number of stylistic analyses of
ancient Greek texts. In the early 1960s a Scottish clergyman named A.Q. Morton
hit the headlines by claiming that the computer said that St. Paul only wrote four
of his epistles. Morton has popularised the use of computers in authorship studies
and at times tends to use too few criteria to establish what he is attempting to prove.
His methods have, however, been taken up with some considerable success by a
number of other scholars, notably Anthony Kenny, now Master of Balliol College,
Oxford. Kenny used computer-generated vocabulary counts and concordances to
study the Nicomachean and Eudemean Ethics of Aristotle. Three books appear in
both sets of Ethics and these three books have been traditionally considered to be
part of the Nicomachean Ethics and an intrusion into the Eudemean Ethics. By
analysing the frequencies of a large number of function words, Kenny found that
the vocabulary of the disputed books shows that they are more like the Eudemean
than the Nicomachean Ethics.

Authorship studies are undoubtedly the popular image of text-analysis computing.
There have been a number of relatively successful research projects in this area,
but it is important to remember that the computer cannot prove anything; it can
only supply facts on which deductions can be based. Mosteller and Wallace’s
analysis of the Federalist Papers,1 a series of documents published in 1787-88 to
persuade the citizens of New York to ratify the constitution, is a model study.
There were three authors of these papers, Jay, Hamilton and Madison, and the
authorship of 12 out of 88 was in dispute and that only between Hamilton and
Madison, for it was known that they were not written by Jay. This was an ideal case
for an authorship study for there were only two possible candidates and the papers
whose authorship was known provided a lot of comparative material for testing
purposes. Mosteller and Wallace concentrated on the use of synonyms and discovered
that Hamilton always used while when Madison and the disputed papers preferred
whilst. Other words such as upon and enough, for which there are again synonyms,
emerged as markers of Hamilton. Working at roughly the same time as Mosteller
and Wallace, a Swede called Ellegard applied similar techniques to a study of the
Junius letters. Although he was not able to reach such a firm conclusion about
their authorship, he and Mosteller and Wallace, to some extent together with
Morton, paved the way for later authorship investigations.

There are other stylistic features besides vocabulary which can be investigated
with the aid of a computer. In the late 19th century T.C. Mendenhall employed
a counting machine operated by two ladies to record word-length distributions
of Shakespeare and a number of other authors of his period. Although he found
that Shakespeare’s distribution peaked at 4-letter words, while the others peaked
at three letters, he was not able to draw any satisfactory conclusion from this.
It goes without saying that word length is the simplest to calculate but it is argu
able whether it really provides any useful information. Sentence length has also
been used as a criterion in stylistic investigation. This again has proved a variable

ICL TECHNICAL JOURNAL NOVEMBER 1979 285

measure, too often used because it is easy to calculate. Mosteller and Wallace first
applied sentence-length techniques to Hamilton and Madison and found their
mean sentence length was almost the same.

One feature which is more difficult to investigate with a computer is that of
syntactic structure. Once one has gone further than merely identifying words
which introduce, say, temporal clauses, it is not at all easy to categorise words into
their parts of speech. Related to this question is the problem of lemmatisation,
that is putting words under their dictionary headings. The computer cannot put
is, am, are, was, were etc. under be unless it has been given prior instruction to do
so. Most computer concordances do not lemmatise, but most of their editors would
prefer it if they did. The most sensible way of dealing with the lemmatisation
problem is to use what is known as a machine dictionary. This is in effect an
enormous file containing one record for every word in the text or language. When
a word is ‘looked up’ in the dictionary, its record will supply further information
about that word such as its dictionary heading, its part of speech and also some
indication if it is a homograph. The size of such a dictionary file can truly be
enormous but it can be reduced for some languages if the flectional endings are first
removed from the form before it is looked up. This is not so easy for English where
there are so many irregular forms, but even removing the plural ending -s would
reduce the number of words considerably. For a language like Latin, Greek or even
German it is far more practical to remove endings before the word is looked up.
For example in Latin amabat could always be found under a heading ama, which is
not a true Latin stem, by removing the imperfect tense ending -bat.

A machine dictionary can therefore be used to supply the part of speech for a
word. In the case of homographs such as lead, a noun, and lead, a verb, some
further processing may be required on the sentence to decide which form is the
correct one. Once the parts of speech have been found they can be stored in
another file as a series of single letter codes and this file interrogated to discover,
for example, how many sentences begin with an adverb, or what proportion of
the author’s vocabulary are nouns, verbs and adjectives.

Besides vocabulary and stylistic analysis, there are two more branches to text
analysis where a computer can be used. We can consider first textual criticism,
the study of variations in manuscripts. There exist several versions of many
ancient and modern texts and these versions can all be slightly different from
each other. With ancient texts, the manuscripts were copied by hand sometimes
by scribes who could not read the material and inevitably errors occurred in the
copying. When a new edition of such a text is being prepared for publication the
editor must proceed through several stages before the final version of his text is
complete. First he must compare all the versions of the texts to find where the
differences occur. This technique is known as collation and the differences as
variant readings which can be anything from one word to several lines. Once the
variants have been found, the editor must then attempt to establish the relation
ship between the manuscripts, for it is likely that the oldest one is closest to what
the author originally wrote. Traditionally manuscript relationships have been
described in the form of trees where the oldest manuscript is at the top of the

286 ICL TECHNICAL JOURNAL NOVEMBER 1979

tree. More recently cluster-analysis techniques have been applied to group sets of
manuscripts without any consideration of which is the oldest. The printed edition
which the editor produces consists of the text which he has reconstructed from
his collation and a series of footnotes called the apparatus criticus which con
sists of the important variants and the names of the manuscripts in which they
occur.

The computer can be used in almost all these stages. It might seem that the colla
tion of the manuscripts is the most obvious computer application, but this does
have a number of disadvantages. The first problem is to put all the versions of the
text into computer-readable form, a lengthy but surmountable task. More difficult
problems arise in the comparison stage, particularly with prose text. In verse an
interpolation or extra line must fit the metre. In prose it can be any length and
most programs have been unable to realign the text after a substantial omission. If
the manuscripts are collated by computer, the variants can be saved in another
computer file for further processing. It is the second state of textual criticism,
namely establishing the relationship between manuscripts, that a computer has
been found more useful. Programs exist to generate tree structures from groups of
variants, though most of them leave the scholar to decide which manuscripts should
be at the top of the tree. Cluster-analysis techniques have also been used on manu
script variants to provide dendrograms or 3-dimensional drawings of groups of
manuscripts. If one complete version of the text is in computer readable form it
can be used to create the editor’s own version and together with the apparatus
criticus be prepared on the computer and phototypeset from it.

The other suitable text-analysis application is the study of metre and scansion in
poetry, and to some extent also in prose. There are two distinct ways of express
ing metre. Some languages like English use stress while others like Latin or Greek
use the length of the syllable. In the latter case it is possible to write a program
to perform the actual scansion; in the former it is more usual to obtain the scan
sions from a machine-readable dictionary. The rules of Latin hexameter verse are
such that a computer program can be about 98% accurate in scanning the lines.
The program operates by searching the line for all long syllables, that is those with
a diphthong or where the vowel is followed by two consonants. The length of one
or two other syllables, for example the first, can always be deduced by the position.
It is usually then possible to fill in the quantities of the other syllables on the basis
of the format of the hexameter line which always has six feet which can be either
a spondee (two long syllables) or a dactyl (one long followed by two shorts). For
languages like English, the scansion process may be a little more cumbersome but
the net result is the same: a file of scansions which can then be interrogated to
discover how many lines begin or end with particular scansion patterns.

Sound patterns of a different kind can be analysed by computer, particularly
alliteration and assonance. Again the degree of success depends on the spelling
rules of the language concerned. English is not at all phonetic in its spelling and
simple programs to find two or more successive words which start with the same
letter can produce some unexpected results. In other languages where the spelling
is more phonetic this can be a fruitful avenue to explore. An analysis of the
Homeric poems which consisted merely of letter counts revealed some interesting

ICL TECHNICAL JOURNAL NOVEMBER 1979 287

features. It was convenient to group the letters according to whether their sound
was harsh or soft. When the lines that had high scores for harsh letters were investi
gated it was seen that they were about battle or death or even galloping hooves,
whereas the soft sounding lines dealt with soothing matter like river or love. A
comprehensive study of metre and alliteration was conducted by Dilligan and
Bender^ on the iambic poems of Hopkins. They used bit patterns to represent
the various features for each line and applied Boolean operators to these bit pat
terns, for example to find the places where alliteration and stress coincided.

In contrast to raw text, historical and archaeological data are usually in a record
and field structure. In fact many of the operations performed on this material are
very similar to those used in commercial computing and many of the same pack
ages are used. The files can be sorted into alphabetical order by one or more fields
or they can be searched to find all the records that satisfy some criteria. If the
material being sorted is textual, the same problems that occur for sorting raw
text can also arise here. Another difference from commercial computing is the
amount of information that is incomplete. It is quite common for a biographical
record which can have several hundreds of fields to contain the information for
only a very few. If the person lived several hundred years ago it is not likely that
very much is known about him other than his name. Such is the case for the
History of the University of Oxford [a Department of the University] who use
the ICL FIND2 package for compiling indexes of students who were at the Uni
versity in its early days. The computer file holds students up to 1560 and for
each person gives such categories as their name, college, faculty, holy order, place
of origin etc. The file is then used to examine the distribution of faculty by college,
or origin by faculty etc. A related project of the History is an in depth study of
Corpus Christi college in the seventeenth century. Here most of the information
is missing for most of the people, but when the project is complete it is likely
that some of the gaps can be filled in.

Historical court records have also been analysed by computer again to investi
gate the frequency of appearance of certain individuals and to see which crimes
and punishments appear most frequently.

Archaeologists use similar techniques though their data more usually consists of
potsherds, coins, vases or even temple walls. Another project in Oxford which
now has about 50,000 records on the computer is a lexicon or dictionary of all
the names that appear in ancient Greek, either in literary texts or inscriptions on
coins or papyri. Each name has four fields which beside itself are the place where
the person lived, the date when he lived and the reference indicating where his
name was found. The occurrences of each name are listed in chronological order
by place. Ancient dates are not at all simple. In this lexicon they span the period
1000 BC to 1000 AD approximately. Very few of the dates are precise. More often
than not they consist of forms like ‘possibly 3rd century’ or ‘in the reign of Nero’
or ‘Hellenistic’. When they are precise the ancient year runs from the middle of
our year to the middle of the next year so that a date could be 151/150 BC. Sort
ing these dates into the correct chronological sequence is no easy task. It was
solved by writing a program to generate a fifth field containing a code which could

288 ICL TECHNICAL JOURNAL NOVEMBER 1979

be used for sorting, but even after four years on the computer, more date forms
are still being found and added to the program when required.

4 Software

Humanities users are reasonably well provided with packaged software. This is a
distinct advantage in persuading them to use a computer because they frequently
do not need to leam to program. The policy in universities is for the researchers
to do their own computing but courses for both programming and using the operat
ing system are normally provided and there is adequate documentation and ad
visory backup when it is needed. Most universities offer at least some of the
humanities packages. For historical and archaeological work FIND2 has been used
with considerable success. FAMULUS is a cataloguing and indexing package which
is also used by historians and the Greek lexicon project mentioned above. It is
really a suite of programs which create, maintain and sort files of textual informa
tion which are structured in some way. It is particularly suitable for bibliographic
information where typical fields would be author, title, publisher, date, ISBN etc.
It always assumes that the data are in character form so that the user must beware
when attempting to sort numbers. In practice these are usually dates and can be
dealt with in the same way as the lexicon dates. FAMULUS has a number of
limitations, particularly that it only allows up to ten fields per record and that its
collating sequence for sorting includes all the punctuation and mathematical
characters and cannot be changed. It also sorts capital letters after small ones.
There have inevitably been a number of attempts to rectify these deficiencies and
versions have thus proliferated, but the basic function of the package remains the
same. Its success is also due to the fact that it is very easy to use. Within the
humanities it has been applied to buildings in 19th century Cairo, a catalogue of
Yeats’ letters, potsherds, court records as well as numerous bibliographies.

The advent of database-management systems such as IDMS could well bring some
changes to humanities computing, but they are not easy to understand. The
humanities user is almost always only interested in his results and it should be made
as easy as possible for him to obtain these results. Work so far has shown that data
base users need a lot of assistance to start their computing but that there are con
siderable advantages in holding their data in that format. Experiments in Oxford
with court records and with information about our own text archive have shown
that the database avenue is worth exploring much further.

A number of packages exist for text-analysis applications, particularly concord
ances. At present the most widely used concordance package is COCOA which was
developed at the SRC Atlas Computer Laboratory. COCOA has most of the facilities
required to analyse text in many languages but its user commands are not at all
easy to follow. In particular it has no inbuilt default system so that the user who
wants a complete concordance of an English text must concoct several lines of
apparent gibberish to get it. A new concordance package is now being developed
in the Oxford laboratory which is intended to replace COCOA as the standard. It
has a command language of simple English words with sensible defaults and in
corporates all the facilities in COCOA as well as several others which have been

ICL TECHNICAL JOURNAL NOVEMBER 1979 289

requested by users. The package is being written in Fortran for reasons of corm
patibility. Fortran is the most widely used and widely known language in the
academic world and it is hoped that a centre will be prepared to implement such a
package even if it only has one or two potential users. To ensure machine indepen
dence, the package is being tested on ICL 2980, ICL 1906A, CDC 7600, IBM
370/168 and DEC 10 simultaneously. Tests will shortly be performed on Honey
well, Burroughs, Prime and GEC machines.

There are other concordance packages in the UK. CLOC, developed at the Uni
versity of Birmingham, is written in Algol 68-R and has some useful features for
studying collations or the co-occurrence of words. CAMTEXT at the University
of Cambridge is written in BCPL and uses the IBM sort/merge and CONCORD
written in IMP at Edinburgh is not unlike COCOA .

Other smaller text analysis packages are worth mentioning. EYEBALL was designed
to perform syntactic analysis of English. It uses a small dictionary of about 400
common words in which it finds more than 50% of the words in a text. It then
applies a number of parsing rules and creates a file containing codes indicating
the parts of speech of each word. EYEBALL has a number of derivatives including
HAWKEYE and OXEYE. All can give about 80% accurate parsing of literary
English and higher for technical or spoken material. The only complete package
for textual criticism is COLLATE, written in PL/1 at the University of Manitoba.
This set of programs covers all the stages required for preparing a critical edition of
a text, but it was written for a specific medieval Latin prose text and may not be
so applicable to other material. Dearing’s set ofCobol programs for textual criticism
has proved difficult to implement on other machines. OCCULT is a Snobol pro
gram for collating prose text and VERA uses manuscript variants to generate a
similarity matrix which can then be clustered by GENSTAT. One at least of the
Latin scansion programs is written in Fortran and is in use in a number of uni
versities.

Although Fortran is the most obvious choice of computer language for machine-
independent software, it is not very suitable for text handling. Cobol is verbose and
not widely used in the academic world and none of the Algol-like languages was
designed specifically for handling text rather than numbers. Algol-68 has its ad
vantages and supporters but it is not particularly easy for beginners to learn. The
most convenient computer language for humanities research seems to be Snobol,
particularly in the Spitbol implementation. It was designed specifically for text
handling and with its patterns, tables and data structures it has all the tools most
frequently needed by the text-analysis programmer. The macro Spitbol implemen
tation written by Tony McCann at the University of Leeds and first available on
1900s has done much to enhance the popularity and availability of Snobol. It has
also dispelled the belief, which arose from earlier interpretive implementations,
that it is an inefficient language. But until there is a standard version of Snobol
with procedures for tape and disc handling it is unlikely that it will ever have the
use it deserves in text-analysis computing.

To sum up, then, there are ample facilities already available for the humanities
researcher who wishes to use a computer. The software certainly exists to cover

290 ICL TECHNICAL JOURNAL NOVEMBER 1979

most applications. Even if the input and output devices leave something to be
desired, it can be shown how much benefit can be derived from a computer-aided
study.

Interest in this new method of research is now growing rapidly and it is to be
hoped that soon all humanities researchers will take to computing as rapidly as
their scientific counterparts.

REFERENCES

1 MOSTELLER, F., and WALLACE, D.L.: Inference and disputed authorship (Addison-
Wesley, 1964)

2 DILLIGAN, R.J., and BENDER, T.K.: ‘Lapses of time: a computer-assisted investigation
of English prosody’, in AITKENT, A.J., BAILEY, R.W., and HAMILTON-SMITH, N.
(Eds.): The computer and literary studies (Edinburgh University Press, 1973)

Erratum
ICLTechJ., 1979,1, p.180
The correct title of the paper by Prof. D.W.Barron is ‘The next frontier: three
essays on job control’

ICL TECHNICAL JOURNAL NOVEMBER 1979 291

The da ta dictionary system
in analysis and design

T J Bourne
ICL UK Division, Euston, London

Abstract

The Data Dictionary System is an information system for the data process
ing function. The paper introduces the subject with particular reference to
ICL’s data dictionary system (DDS). The need for a user oriented descrip
tion of business information needs is discussed and an approach based on
the use of the Data Dictionary System is outlined.

1 Introduction

The management and control of a data-processing department has never been easy.
As well as the problems faced by the manager of any service department, the data-
processing manager has to live with rapidly changing technology and an unusually
high level of staff mobility. As a result, awareness has been growing in recent years
of a number of common difficulties which adversely affect the efficiency and
effectiveness of the data-processing activity. One approach which has been adopted
by a number of users and software suppliers is to employ database techniques to
provide an information system for the data-processing department, commonly
known as the Data Dictionary System (DDS). This paper provides the background
information on data dictionary systems in general and on ICL’s DDS in particular,
and describes an approach to systems design based on the use of a DDS.

The high cost of maintenance, typically amounting to well over half of the systems
and programming budget, is a major problem for many organisations. The work
commonly described as maintenance covers the correction of programming and
design errors and the enhancement of an application system to provide additional
facilities to its users; these latter range from minor operational conveniences to
substantial changes to meet legal requirements, such as an increased number of
VAT rates or a change in the method of calculating depreciation. The common
factor in this work is that it is not a continuous job: the person doing it may have
been on a different job yesterday and another tomorrow, and thus has to become
familiar with the system before he can make a change to it. Good documentation is
the key to this, and manually-maintained documentation is notoriously inadequate:
it tends to be time consuming and expensive to keep up-to-date and difficult to use
for ad hoc retrieval purposes.

A second area in which substantial problems arise is the co-ordination of distinct

292 ICL TECHNICAL JOURNAL NOVEMBER 1979

but related applications. It is not uncommon for what started as different applica
tions to develop in such a way as to overlap, and this results in duplication of effort
and inconsistent data. A large part of the problem here is that the process of
systems design and analysis is carried out in many different ways, using many
different types of documentation. Even where standards are laid down for this
documentation it is very difficult to ensure that they are always followed in the
same way.

These problems become even more apparent when an organisation adopts a policy
of sharing a central database between a number of related applications. The require
ment for a computer-based data-description library of some sort becomes so strong
in this case that a number of users have made the implementation of their own data
dictionary system their first application using a database management system.1 The
conclusion reached by users and suppliers alike is that the information needs of the
data-processing department are at least as great as those of other departments such
as production and accounting, and that these needs can best be met by a computer-
based system. Such a system, usually known as a Data Dictionary System (DDS),
would automate the storage and retrieval of information about applications and
their implementation; the concept has significant benefits to offer to a data-process
ing department.

2 Background to ICL’s DDS

The need for a data dictionary system was apparent from the inception of the 2900
series. Following a pilot study, work began on the present product in 1975 and it
was made generally available early in 1977 after field trials from November 1976.

From the start there was active participation by prospective users in the specifica
tion of DDS and discussions continue with the user group which has now been
formed. Another major influence on the development of the product has been the
work of the Data Dictionary Systems Working Party (DDSWP) set up by the British
Computer Society.2 This group, composed of a representative mixture of users,
research workers, consultants and suppliers, has done much valuable pioneering
work in identifying potential areas of application of data dictionary systems and in
outlining the facilities which such systems can be expected to provide. In particular,
the working party emphasises that a complete system must go much further than
simply documenting the data as it is held in the computer; this point will be develo
ped further in the following Sections.

3 Features of ICL’s DDS

The DDS meets the needs outlined previously by providing a single integrated
database for the data-processing function. This covers not only computer data, such
as records, files and IDMS databases but also the business view of data, describing
things such as orders and deliveries. Furthermore, it includes descriptions both of
computer processes, such as programs and modules, and of the corresponding busi
ness processes such as order processing, paying staff and so on. This dictionary
database is shown diagrammatically in Fig. 1.

ICL TECHNICAL JOURNAL NOVEMBER 1979 293

real world

c o m p u te d w orld

Fig. 1 Dictionary database

It is not enough, however, to provide a comprehensive database. The system also
provides flexible facilities for input and output and a very wide range of reports,
including the sort of cross-reference reports which could never be provided by
manual documentation. Where data descriptions are required by other products,
e.g. IDMS (Integrated Database Management System) or Cobol, they can be con
veniently taken from the dictionary. The use of the database software IDMS
by DDS means that any item of information about data or their use may be acces
sed in different ways for different purposes. This means that duplication can be
greatly reduced or even eliminated. For example, a data item such as ‘PART
NUMBER’ can be described just once, with its properties such as text description,
permissible values and so on, and then referred to in many different record des
criptions. An inquiry can then produce a list of all the records or files in which the
item appears.

294 ICL TECHNICAL JOURNAL NOVEMBER 1979

To facilitate its use by development teams working separately but on related pro
jects, the system allows users or groups of users to be defined. Each such user has
full control over any information which he entrusts to the system but can permit
others to have access to it where necessary. Even where a dictionary is used by only
a single project it may be necessary to record the changing state of a system during
a phased development by holding several versions of data and program descriptions;
DDS allows this also. To permit additional classification of the information held in
the dictionary according to the needs of a particular organisation, each element
(record, program, data item etc.) may be given a number of classification keys;
these keys may then be used to qualify subsequent enquiries, thus restricting the
amount of information retrieved.

4. The statement o f business needs

The documentation of a computer-based information system has, in the past,
tended to consist mainly of a description of the computer programs and computer-
held data, together with a statement of the inputs to the system (forms etc.) and
the outputs from it (reports, display screen formats etc.). Although other docu
ments of various sorts have no doubt been used in the system design and analysis
process, they have seldom been considered a part of the ultimate system documen
tation. A number of attempts have been made in recent years to improve the posi
tion, either by providing formal means for describing the original business situation
or by separating the functional design from the details of a particular computer
implementation.* ’3’4 Such developments can yield a number of benefits: in par
ticular, it should be possible to define the business requirement in terms which can
be fully understood by the user who has no data-processing background. The ICL
approach is described in some detail below; first it may be helpful to outline some
of the more significant influences on this aspect of DDS.

In their Interim Report3 the ANSI/X3/SPARC DBMS Study Group put forward
the case for a ‘Conceptual schema’. This was to be a definition of the content and
logical structure of a database biased neither to the needs of particular applica
tions nor to the constraints of a particular implementation. This idea has been
discussed extensively and in considerable detail by the ISO Working Group on
DBMS (ISO TC97/SC5/WG3), but no detailed proposal has yet emerged and there
is little prospect of standards in this area being defined for some years to come.

From its inception the aforementioned BCS Data Dictionary Systems Working
Party saw an immediate need for facilities ‘to record and analyse requirements
independently of how they are going to be met’. It developed the notion of a
‘conceptual view which describes the nature of the enterprise and its data
in terms which are quite independent of any data-processing implications’.
This conceptual view would constitute a model of the enterprise, describing the
things of interest to it, the functions it can perform and the events which influ
ence its behaviour. The facilities provided in ICL’s DDS for documenting the
‘real world’ (Fig. 1) have evolved as a result of ICL’s participation in the DDSWP
and provide an interesting example of the potential value of such a group.

ICL TECHNICAL JOURNAL NOVEMBER 1979 295

5 An approach to systems analysis

For the purposes of this paper, systems analysis can be defined as the process of
investigation, study and documentation which results in a model of an enterprise
and its data which are sufficient for some stated objective. This objective may be
the design and implementation of one or more computer-based applications or
simply to gain a better understanding of the enterprise and how it works. In the
context of the Data Dictionary System, then, the output of a systems analysis
exercise will be a model expressed in terms of the ‘real world’ half of the DDS, in
sufficient detail for the stated objective.

Fig. 2 Five concepts to describe an enterprise and its associated activities, interactions and
information

The terms used by the DDS to describe the real world may be new to some but
are those which are becoming widely accepted. Experience has shown that the
following five concepts are sufficient to describe an enterprise, the activities which
must go on within it, the way it interacts with the world around it and the infor
mation with which it is concerned (Fig. 2).

Entity

Attribute

Relationship

An entity is any thing, person, place, event or concept which can be
identified as being of interest to the enterprise and about which
information may arise or be required, e.g. employees, parts, sales
areas and orders may all be entities
An attribute is any property of an entity which is of interest, e.g.
the name of an employee, the weight of a part or the value of an
order
A relationship is a connection between two entities, such as the fact
that a particular employee works in a particular department. It is
generally possible to represent such a relationship in terms of two
entities having a common attribute: e.g. one may treat the depart
ment in which an employee works as an attribute of the employee

296 ICL TECHNICAL JOURNAL NOVEMBER 1979

and thus represent the relationship implicitly. However, in practice
it has been found helpful to represent relationships explicitly and
DDS therefore allows either approach

Operation An operation is an activity which changes the state of the enter
prise, by changing values of attributes, creating new entities and so
on, or which transfers information between the enterprise and the
outside world. Examples of operations are the allocation of stock to
meet an order, the processing of a stated increase in staff salaries or
the production of the annual company report. It is often convenient
to define an operation initially at a fairly high level and subsequently
break it down into suboperations as the analysis proceeds. The DDS
allows operations to be broken down in this way to as many levels
as necessary

Event An event is something which happens, within the enterprise or in the
outside world, which triggers one or more operations and may be the
result of the completion of an operation, e.g. the arrival of an order
is an event, triggering validation of the order, allocation of stock and
so on.

How are these concepts to be used in building a model of an enterprise and its data?
There are of course many possible approaches; one which is recommended by ICL
is described in Reference 5. What follows is an illustration of the key points, inten
ded particularly to demonstrate how the concepts are used in practice.

Consider the publication of an issue of this (or any) journal and in particular the
selection of the papers it is to contain. In what types of entity are we interested?
Some obvious ones are: issues of the journal, papers, authors, referees. In each of
these cases each individual entity (a paper, an author) is easy to identify, by date,
title or name, so we know what are the entities in which we are interested. The
question is: how does each enter our field of interest? What is the operation which
brings the entity into being? It is often only by examining this question that the
real meaning of the entity can be made clear. For example, consider a paper. It
becomes of interest when the editor becomes aware of its possible existence, not, as
we might have supposed at first thought, when it is written. In fact there are
probably two possible operations which can create the entity ‘paper’ in the model:
‘commission a paper’ and ‘consider offer of a paper’. Having established some of the
main entities and operations in this way, we can now look for the events which
trigger these operations and for the information we need about each entity, in
terms of attributes and relationships. For example, for an author we should need
name, address and telephone number, possibly something on his professional
position or status and whether or not we had previously considered any papers
from him. The first four would be attributes and the last would be represented by
relationships with papers about which we already had information.

The DDS is designed for interactive use, and it is quite permissible to enter partial
definitions to be completed later, or to include reference to definitions which are

ICL TECHNICAL JOURNAL NOVEMBER 1979 297

yet to be entered. The following example shows how some of the information
discussed above could be entered:

INSERT
ENTITY PAPER
♦ATTRIBUTES TITLE, LENGTH, AUTHOR-NAME
♦IDENTITY TITLE
ENTITY AUTHOR
♦ATTRIBUTES AUTHOR-NAME, ADDRESS, PHONE
♦IDENTITY AUTHOR-NAME
OPERATION CONSIDER-OFFER
♦ENTITIES PAPER, AUTHOR
ATTRIBUTE LENGTH
* UNITS WORDS
* NOTE NORMALLY ABOUT 12 WORDS PER LINE

The commands for retrieval are equally simple, e.g. to find all the entities with the
attribute AUTHOR-NAME, the DDS user would enter

FOR ATTRIBUTE AUTHOR-NAME
ENQUIRY ALL ENTITY

This brief and simple example should indicate the value of the technique in arriving
at a clear understanding of an area of interest. The ability to use the DDS to docu
ment such work, and to obtain answers quickly to questions which would otherwise
have involved much searching through files of forms, can transform the job of the
systems analyst. It has the further great benefit of making his work readily accessi
ble to other analysts, as well as to the users for whom he is working.

6 Summary

In view of the present combination of rising staff costs and falling hardware prices,
any data-processing manager must surely be interested in any approach which can
use assistance from the computer to increase the productivity of his staff. The Data
Dictionary System offers this assistance, not only in development and maintenance
of computer-based applications, but also in the earlier stages of systems analysis and
design. As is common when the database approach is adopted, the existence of this
database in the data processing department can be expected to open the way to
other related applications using the same data.

References

1 GRADWELL, D.J.L.: ‘Why data dictionaries?, Database Journal, 6, p.2
2 BRITISH COMPUTER SOCIETY: Report of the Data Dictionary Systems Working Party,

March 1977
3 ANSI: Interim Report of the Study Group on Data Base Management Systems, ANSI/X3/

SPARC, 1975
4 TEICHROW, D. and WINTERS, E.: ‘Recent developments in system analysis and design’,

Atlanta Economic Review, 1976, Nov-Dec
5 ELLIS, H.C.: ‘Analysing business information needs,’ Conference Proceedings on Data

Analysis for Information Systems Design BCS, 1978, June

298 ICL TECHNICAL JOURNAL NOVEMBER 1979

Notes for authors
1 Content

The ICL Technical Journal publishes papeis of a high technical standard intended
for those with a keen interest in and a good working knowledge of computers and
computing, but who nevertheless may not be informed on the aspect covered by a
given paper.

The content will have some relevance to ICL’s business and will be aimed at the
technical community and ICL’s users and customers. It follows that to be accept
able, papers on more specialised aspects of designs or applications must include
some suitable introductory material or references.

The Journal will usually not reprint papers already published, though this does
not necessarily exclude papers presented at conferences. It is not necessary for the
material to be completely new or original (but see 10,12 and 13 below). Papers will
not reveal matter related to unannounced ICL Products.

2 Authors
Anyone may submit a paper whether employed by ICL or not. The Editor will
judge papers on their merits irrespective of origin.

3 Length
Full papers may be of up to 10 000 words, but shorter papers are likely to be more
readily accepted. Letters to the Editor and reviews may also be published.

4 Typescript
Papers submitted should be typed in double spacing on one side of A4 paper with
full left-hand margin. Mathematical expressions are best written in by hand. Care
should be taken to form Greek letters or other unusual symbols clearly. Equations
referred to in the text should be numbered. Detailed mathematical treatments
should be placed in an Appendix, the results being referred to in the text.

At least two copies should be submitted, both carrying the author’s name, title
and date of submission.

5 Diagrams and tables
Line diagrams supplied will if necessary be redrawn before publication. Be
especially careful to label both axes of any graphs, and mark off the axes with
values of the variables where relevant.

All diagrams should be numbered and supplied with a caption. The captions
should be typed on a separate sheet forming part of the manuscript. Since diagrams
may have to be separated from their manuscript every diagram should have its
number, author’s name and brief title on the back.

All diagrams and Tables should be referred to in and explained by the text.
Tables as well as diagrams should be numbered and appear in the typed MS at the
approximate place, at which they are intended to be printed. Captions for Tables
are optional. Be careful to ensure the headings of all columns in Tables are clearly
labelled and that the units are quoted explicitly in all cases.

6 Abstract
All papers should have an abstract of not more than 200 words. This ought to be
suitable for the various abstracting journals to use without alterations.

ICL TECHNICAL JOURNAL NOVEMBER 1979 299

7 Submission

Before submission authors are strongly urged to have their MSS proof read carefully
by a colleague, to detect minor errors or omissions; experience shows that these can
be very hard for an author to detect. Two copies of the MS should be sent to the
Editor.

8 Referees
The Editor may refer papers to independent referees for comment. If the referee
recommends revisions to the draft, the author will be called upon to make those
revisions. Minor editorial corrections, e.g. to conform to a house style of spelling
or notation, will be made by the Editor. Referees are anonymous.

9 Proofs
Authors will receive printed proofs for correction before publication date.

10 References
Prior work on the subject of any paper should be acknowledged, quoting selected
early references. It is an author’s reponsibility to ensure references are quoted; it
will be unusual for a paper to be complete without any references at all.

11 Style
Papers are often seen written in poor or obscure English. The following guidelines
may be of help in avoiding the commoner difficulties.

• Be brief.
• Short sentences are better than long ones but on the other hand do not

write telegrams.
• Avoid nested relative clauses; preferably start new sentences.
• Define the meaning of ordinary words used in special senses. Define acronyms

or sets of initials by quoting the full meaning the first time the initials are
mentioned.

• Include a glossary of terms if necessary.
• Avoid words in brackets as much as possible.
• Avoid the frequent use of the type of construction known as a ‘buzzword’.

This often takes the form of a noun followed by a present or past participle
followed by another noun e.g. ‘system controlling parameters’.

• Take care in using the word ‘it’ that the reader will easily understand what
‘it’ refers to. An unambiguous rule, that cannot always be applied, is that
‘it’ refers to the nearest preceding noun in the singular.

• Several ‘its’ in one sentence each used in a different sense can cause consider
able confusion. Similar remarks apply to ‘this’, ‘that’ and other prepositions.

12 Copyright
Copyright in papers published by the ICL Technical Journal rests with ICL unless
specifically agreed otherwise before publication. Publications may be reproduced
with permission and with due acknowledgement.

13 Acknowledgements
It is customary to acknowledge the help or advice of others at the end of papers
when this is appropriate. If the work described is not that of the author alone it will
usually be appropriate to mention this also.

300 ICL TECHNICAL JOURNAL NOVEMBER 1979

