
S Technical
Journal

Issue 1 November 1978

ICL Technical
Journal

Contents

Foreword 3

Editorial 4

The origins of the 2900 series
J.K. Buckle 5

Sizing computer systems and workloads
Alan Brock 23

Wind of change
G.G. Scarrott 35

Standards for open-network operation
Jack Houldsworth 50

Distributed computing in business data processing
M. V Wilkes 66

A general model for integrity control
J.B. Brenner 71

ICL Worldwide 90

Notes for authors 95

ICL TECHNICAL JOURNAL NOVEMBER 1978 1

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus limited
on behalf of International Computers Limited

Editor
J Howlett
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor) D.W. Kilby
D.P.. Jenkins K.H. Macdonald
(Royal Signals & Radar Establishment) B.M. Murphy
M.V. Wilkes FRS J.M. Pinkerton
(University of Cambridge) E.C.P. Portman
C.H. Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £5

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SGI 1 HQ, England

This publication is copyright under the Berne Convention and the International Copyright
Convention. All rights reserved. Apart from any copying under the UK Copyright Act 1956,
part 1, section 7, whereby a single copy of an article may be supplied, under certain conditions,
for the purposes of research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form or by any means
without the prior permission of the copyright owners. Permission is however, not required to
copy abstracts of papers or articles on condition that a full reference to the source is shown.
Multiple copying of the contents of the publication without permission is always illegal.

© 1978 International Computers Ltd
Printed by A. McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

2 ICL TECHNICAL JOURNAL NOVEMBER 1978

Foreword

It is a pleasure for me to introduce this first issue of the ICL Technical Journal.
The electronic digital computer is one of the most important inventions of all

time. Its history is very short, scarcely 30 years, but in that time its development
has been dramatic, and one of the world’s greatest industries has been established.
This year marks the tenth anniversary of the formation of ICL; but in the work of
the companies from which it was formed ICL has been in this development from the
very beginning—I myself and many of my colleagues were personally involved with
some of the first computers—and has made some of the most important contribu
tions. This has been possible only because we have always had on our staffs people
of great technical excellence and lively imagination, and we must always have
people of this kind if we are to continue as one of the leaders in this complex,
exacting and fast-changing industry.

Such people are always thinking independently and along novel lines, whether
producing new ideas or looking afresh, and often critically, at existing products,
practices and concepts. A great amount of this type of thinking, with attendant
discussion, is always going on inside ICL, far more than is generally realised. Much
of it should be more widely known because it contributes to the knowledge and
development of the computational art. Much does, of course, become known
through being incorporated in our products and a significant amount is published
in the regular technical literature. However, much remains, and it is with this in
mind that we are starting this journal. The papers will, in the main, be written by
ICL people and will concern the work and views of the individual authors. We have
an Editorial Board that includes two distinguished non-ICL members, to ensure that
high standards are kept, and it is open to any member of the company to submit a
paper for consideration. We shall invite a minority of papers from authors outside
the company, and I am very pleased to see that Professor Wilkes has a paper in this
first issue.

All the indications are that the journal will bring a great deal of interesting and
valuable information to a wide readership. I wish it every success.

Dr Christopher Wilson
Managing Director, ICL

ICL TECHNICAL JOURNAL NOVEMBER 1978 3

Editorial
The Foreword by the Managing Director of ICL Dr. Christopher Wilson talks about
the aims and objectives of this journal. Here I want to say something about the
choice of papers generally, and of those in this first issue in particular.

In general, the Editorial Board considers that papers to be published should
interest a wide range of people concerned in some way with computers or comput
ing. The Board does not regard the journal as a research journal in the sense of
those published by learned or professional societies. In line with this, I shall assume
in selecting papers for publication that our readers have a good working knowledge
of this very broad subject but may not be familiar with the details given in any
particular paper. I shall try therefore to ensure that all papers are reasonably self-
contained: in other words, that they do not need more background than the
experienced professional computer person can be expected to have.

The Editorial Board felt that the first issue should include papers giving general
surveys, to be followed in later issues by more detailed treatments of more specia
lised areas. This is the style of all those that follow. Two call for special comment:
that by J.K. Buckle on the origins of the ICL2900 range and that by J. Houldsworth
on standards in communications. The 2900, as ICL’s major range of mainframe
machines, is clearly of vital interest to the company and to its customers—and of
intrinsic interest as a contribution to computer architecture. John Buckle was a
member of the team that produced the basic architectural design and has recently
published a book in the Macmillan Computer Science Series. We asked him to write
a paper for us based on the book and he has done so. We are grateful to Messrs.
Macmillan for permission to reproduce material appearing in the book.

As the use of computers and the services they provide gradually spreads to all
members of society, communication with these obviously becomes of greater and
greater importance. The practicality of such communication has already been
increased by the convergence of the technologies of computing and communica
tions, which are adopting common digital and logic techniques. Much more benefit
is yet to come from this convergence and everyone recognises that the specification
and acceptance of standards is essential to the realisation of these benefits. Jack
Houldsworth of ICL’s Letchworth Development Centre is actively concerned with
this as a member of several international bodies concerned with standards. He
recently wrote a paper for the new journal Computer Communications which
seemed to us to give an admirable introduction to the subject, and, as with John
Buckle, we asked him to write for us. We are grateful again to another publisher,
this time the publisher of Computer Communications, for permission to repro
duce material adapted from that journal.

The length of papers in this issue indicates the range that the Editorial Board
has in mind, say 5-10 000 words; but this is not rigid and we shall be happy to
publish both shorter and longer papers if the length is appropriate to the coverage
of the subject. It is not intended to have a regular correspondence section but I
shall be glad to consider written comments on any paper. Also, I shall be grateful
for any general comments and for suggestions for topics to Be dealt with in future
issues.

J. Howlett

4 ICL TECHNICAL JOURNAL NOVEMBER 1978

The origins of
the 2900 series

J.K. Buckle
J K Buckle Computer Consultancy

Abstract

It is several years since the ICL 2900 series was first publicly announced
and already the second generation of both hardware and software systems
are being installed in customer premises. It therefore seems an appropriate
time to record how the 2900 came to be the way it is before the facts
become lost in the mists of folklore. Already almost all of the people
involved with the architectural design have moved on to other things and
the original reasons for particular features or the overall approach are not
necessarily obvious to their successors. This paper, then, is an attempt
to summarise the initial history of the ‘New Range’, the aims and objectives
that were given to the architectural designers, and some of the fundamental
design concepts that were adopted as a result of these constraints. Since
the author was concerned with the 2900 from its inceptiofl until after its
launch the history is complete in the sense that it spans the total incuba
tion period: nevertheless, since the author was obviously not privy to all
discussions or decisions that took place, it must be treated as a personal
interpretation.

1 Early history

The 2900 series arose directly from the formation of International Computers Ltd.
by the merger of ICT and English Electric Computers in 1968. At the formation of
ICL it was realised that within a few years the new company would need a range of
machines to replace the series currently being marketed by the individual compo
nents of the merged corporation. The 1900, System 4 and 4100 ranges inherited by
the new company were incompatible in almost every respect, and the cost of
maintenance of three production lines pointed to the need for some form of
rationalisation.

In addition, although there existed as-yet-unannounced developments of both
the 1900s and System 4s that could prolong the life of these ranges for several years
all three types of machine dated initially from the early 1960s. Major new design
enhancements would be needed to take advantage of improvements in hardware
and software technology over the past decade.

As a result of considerations such as these, one of the first corporate decisions
of the new company was to establish a New Range Planning Organisation under
M.LN. Forrest. The nucleus of this organisation, known by its initials as NRPO,
was formed by ‘professional’ planning staff drawn from the constituent companies.
To this nucleus were added experts in different disciplines from all the operating
divisions of ICL: development and manufacturing staff for both hardware and
This paper is based on extracts from the book The ICL 2900 Series by J.K. Buckle published by
MacMillan Ltd to whom we are grateful for permission to publish the paper.
© 1978 J.K. Buckle

ICL TECHNICAL JOURNAL NOVEMBER 1978 5

software, logic designers, technology experts, and sales and support staff.
The resulting unit was organised into small teams, each with an individual task.

The operation of these teams, who fell into three broad categories, is shown in
Fig. 1. (This is an SADT™ diagram.' Arrows on the top of boxes represent
controls, on the right outputs and on the left inputs. Arrows on the bottom of
boxes represent the mechanisms used to carry out the activity of the box. Two-way
dotted arrows show interactions.)

Fig. 1 NRPO operations

The first category was the ‘aims’ team, who were responsible for establishing the
basic aims and objectives of the new range. They carried out market research,
determined trends, analysed competitive operations and technological develop
ments, and finally established a corporate marketing strategy.

The second category of team was the ‘options’ team. Each options team had the
task of producing the outline design for an archetypal computer system that could
form the basis of a new range. The staff for each options team was drawn from as
wide a variety of disciplines as possible—hardware and software designers, techno
logy experts and marketing and planning staff. The teams were kept small to avoid
‘committee design’, but could call upon the services of a wide variety of experts
for advice from within ICL and outside. Each of the teams had a specified ‘option’
that formed the framework for their design.

The final group consisted of ‘assessment’ teams. Their task was twofold. First
they extended the requirements laid down by the aims teams, by detailed examina
tion of particular aspects of computing with which the new range would be
expected to deal effectively. As an example, one of these orthogonal investigations
was concerned with data management: the growth of data bases and the growth of
techniques for data capture, data transmission and data-independent programming.
Another group was concerned with ‘bridgeware’, the products necessary to ease
users’ transition from their current systems to the new range. The second task of
the assessment teams was to establish detailed criteria by which the output of the
options teams could be measured against the stated requirements.

6 ICL TECHNICAL JOURNAL NOVEMBER 1978

Within the options group, one team considered further, possibly radical, develop
ment of the 1900 series to meet the requirements of the 1970s and 1980s. Another
team considered a similar proposition for System 4, continuing the RCA and
English Electric policy of following IBM. Two of the teams were concerned with
the further development of internal research projects that had been in progress for
some time. One of these was a dedicated high-level-language machine which had
been studied by an ex-ICT team at Bracknell. The other considered the develop
ment of J.K. Iliffe’s Basic-Langauge-Machine, 2,3 a prototype of which was opera
tional in ICT’s Stevenage Laboratories. Smaller teams considered the exploitation
of various developments outside the company.

Finally, there was what was called, rather unprepossessingly, the ‘synthetic
option’. This team had a free hand to consider any known developments or propo
sitions inside or outside ICL and, from any elements it considered good, to synthe
sise a coherent architectural design. The aim was not under any circumstances to
produce a compromise, and the team was at liberty, if it wished, to choose some
other option or external development in its entirety. However, its chief objective
was to incorporate as many compatible modem, but proven, computer concepts
as possible in a unified design. The synthetic option team at this point consisted
of six people, including the author. Between them this group brought together a
wide spectrum of experience. Their previous work within ICL covered most of the
constituent companies, large and small machines from Atlas through to System 4
and 1900, and areas of activity from hardware, logical and technology design,
through executive, supervisor, language and application software to corporate
planning.

NRPO was not a particularly large unit and it was possible to maintain good
communication between the various teams. Thus options teams were able to swap
experience and ideas and to take or adapt part of each other’s designs. This not
only saved effort but allowed the incorporation of good techniques into an option
design at an early stage, before design work had become too frozen. Additionally,
as work proceeded on refining judgement criteria and developing the options
in parallel, it was possible to compare the embryonic designs with the stated ideals.
Such co-operation was encouraged and could result in option-design changes to
meet criteria or the highlighting of defects in the statement of a particular cri
terion. Finally, well established communication channels with the operating divi
sions of ICL, and the availability of the in-house expert consultants mentioned
earlier, provided a fast turnround for new ideas and reactions to them. As a result
of this form of organisation, during the first phase of NRPO operations, several of
the options were eliminated for marketing or technical reasons, or were amalgama
ted with other similar options. At the end of the phase the remaining contenders
were presented to the company at large and were reviewed by, among others, a
‘jury’ drawn from senior and middle management across ICL. The outcome of these
deliberations was that the synthetic option as defined at that time was chosen as
the basis for the future ICL new range. A number of changes and improvements
were, however, also proposed. In particular it was suggested that the protecting
mechanisms should be improved to give something approaching the capability
displayed by the Basic-Language Machine.

Following this decision NRPO entered its second phase and grew in numbers.
Refinement and further development of the Synthetic Option proceeded in parallel
with an expansion of the basic architectural model to include requirements specifi

ICL TECHNICAL JOURNAL NOVEMBER 1978 7

cations for software, initial hardware models, peripheral availability and so on.
More experts were drawn in from operating divisions of ICL to help with this work,
as well as staff who had previously been associated with other options. By the end
of this second phase of NRPO operations the requirements for the initial manifesta
tions of the range were documented to a level at which implementation teams
could be established. At this point control passed back to the main hardware- and
software-development units of ICL and most of the technical staff returned from
NRPO to work on the implementation. The development units began to design
and build what were later to be called the first 2900 series systems.

2 Design influences

The very definition of the task of the Synthetic Option team meant that the result
ing design would be subject to a wide variety of external influences. In searching for
the best modem ideas in computing science and practice, and moulding them into a
whole, the team were subjected to various methods and techniques and, even when
these features did not appear in the final design, they had an effect on the team’s
thinking and its approach to solving particular design problems. External ideas were
considered and, if attractive, remoulded until they fitted into the partial design
edifice that was being built up. This process often introduced much greater genera
lity into 2900 concepts than had been present in the original source. For example,
the virtual machine combines a number of existing concepts into a single coherent
structure which is new, but the implementation of this new structure is by proven
individual techniques.

Many of the direct influences on the 2900 architectural design came, as one
might expect, from in-house systems. For example, concepts originating in Atlas
and its supervisor and developed on the large 1900s with the GEORGE operating
systems^ were well known to all the original team and provided a continuous
influence on the team’s thinking. Again, as already pointed out, there was con
siderable communication between the rival options. The Basic Language Machine
in particular was very carefully studied and many of Iliffe’s innovations became
foundations fox the 2900.

Of the competitive systems studied during the Synthetic Option design, those
most relevant were probably the large Burroughs machines. Although the funda
mental concepts of the 2900 architecture differ considerably from those of
Burroughs, similar design requirements have resulted in an overall design ‘shape’
that is quite similar. The Burroughs approach of a single high-level-language
machine was rejected for the 2900 series but the latter’s requirements for good all
round high-level-language performance led to the selection of some similar imple
mentation details. In the operating system area several Multics^ concepts had a
considerable influence on the 2900, particularly in the sphere of protection where,
even eight years on, it still represents the state of the art.

However, the single most important external influence on the 2900 architecture
was almost certainly the Manchester University MU5 system.9- 10 This is hardly
surprising. The association between Ferranti Computers, a constituent of ICL, and
Manchester University went back to Mark 1 and had progressed through Mercury and
Atlas. At the time of the establishment of the New Range Hanning Organisation
a team at Manchester University had been working on the design of their fifth

8 ICL TECHNICAL JOURNAL NOVEMBER 1978

machine for some time. Indeed, one of the options briefly considered for the new
ICL range was to adopt the MU5 architecture intact. This approach was ruled out
since the objectives of the two developments were not identical., but sufficient
similarities were present to make the Manchester work of considerable interest to
the Synthetic Option team. Two aspects were particularly important. First, both
teams recognised the need to generalise the supervisory software system while
improving its efficiency, and the decisions taken by the university in this area were
well received by the ICL team. Second, both teams were aware of the ever-
increasing trend towards use of high-level languages rather than assemblers, and
therefore of the need to design a system suitable for the support of the resulting
programs. The research and design done at Manchester were of great use in the
formulation of the 2900 architecture in this area.

Although there are fundamental differences which mean that MU5 falls outside
the 2900 range definition, the early co-operation between the two design teams
ensured that there would be a family resemblance between the two systems. Many
of the fundamental approaches to storage management and process structure on
2900 are directly derived from the MU5.

3 2900 system features

The 1900 series was conceived from the start as a range of machines that would
cover a considerable spectrum of power and facilities. This made it necessary to
define the series in terms that were of general application to all the members of the
range and not merely to design the first few models that were to be developed. The
range definition also had to be system-oriented and to cover items that might be
implemented in different ways-purely by hardware, or purely by software, or by
some mixture of the two—on different models of the range.

The description of the range in this fashion forms the basic architecture of the
2900 Series; it includes all the most important and interesting features and re
lationships of the components of a 2900 system. Because of the range and system
concepts underlying the 2900, these criteria are not always what one might expect
from older range definitions. For example, although all the early members of the
2900 range share the same order code, the order-code definition is not a part of
the basic architecture. (In practice, of course, the first implementations are likely to
become a de facto standard but alternatives are still possible.) On the other hand,
considerations of data storage and interchange, as well as international standards,
mean that the data formats do form part of the basic architecture: a 2900 is an
8-bit-byte, 32-bit-word machine, for instance. These considerations in turn place
restrictions on the features necessary in the instruction set, without actually de
fining its contents.

The basic architectural description of a 2900 forms a complex hierarchy. At the
top is the architectural model, which is a general description of a 2900 system. In
producing this model, the feasibility of actual implementations was of course
considered, but the model was kept as simple as possible, and any specific 2900
system design has to be a practical realisation of this. At the bottom level of the
hierarchy are descriptions of implementations of individual hardware and software
components which can be combined to form actual 2900 systems. Between the
extremes are a number of range and subrange standards.

ICL TECHNICAL JOURNAL NOVEMBER 1978 9

The actual design of the 2900 did not, of course, proceed in the strict top-down
sequence implied above. Even before the Synthetic Option had been chosen as the
basis for the new range of machines, detailed investigations of much lower level
hardware and software technology matters were proceeding. The results of these
had an obvious effect on design decisions at a higher level. Again, at a very early
stage the synthetic-option team was forced to sketch out designs for specific
systems to convince the members of the team that such implementations within the
architecture were in fact feasible. The overall 2900 design thus proceeded in an
iterative fashion through the levels, but with the centre of the iteration descending
to lower levels as time went on.

4 Aims and objectives

The guidelines for the design and development of the 2900 series specified by the
aims and assessment teams took the form of a catalogue of requirements, which
were of varying importance and seemed at times to the Synthetic Option team to be
too numerous and in some respects self-contradictory. In retrospect, however, it
can be seen that the requirements do indeed form a coherent set. Not all affect the
architectural model, some being more concerned with implementation details.

Fig. 2 Design-constraint hierarchy

The requirements can best be considered as a hierarchy that has at its apex the
needs and wishes of the user of the system. This hierarchy is set out diagrammati-
cally in Fig. 2. ICL was out to make a system that would be financially successful
and it was realised that modem customers were not prepared to take an off-the-
shelf system, however good, and adapt it to their needs (or, worse, to adapt their
needs to it). The basic requirements for the new range were therefore specified by
the way in which its future customers wished to use their computers. The projected
customer base was not homogeneous and even wthin one customer installation the
needs of the management, technical staff and end users were liable to be different.
However, strong trends could be seen. At the grossest level the users’ needs split
down into cost-effectiveness and ease o f use. There are two possible approaches to
providing a cost-effective system, both of which were taken into account in the
2900 design. The first is to reduce the cost to the customer by reducing ICL
internal costs, the second is to make the end systems as efficient as possible in areas
of importance to the user.

10 ICL TECHNICAL JOURNAL NOVEMBER 1978

Ease of use is much more complex, but again broad areas of agreement over a
wide user spectrum could be discerned. First, users wanted their dealings with the
computer to be at as high a level as efficient use permitted. There was thus a need
to define computer systems from the user levels inwards and not from the hardware
outwards. A closely connected requirement was that of versatility, both in the
variety of applications and in the way in which they were being operated within
the system; as batch, transaction processing, remote job entry or multi-access tasks.

Thirdly, it was recognised that the investment in existing software, hardware and
training is considerable in most installations and it was necessary to provide protec
tion for this investment. Cheap and efficient methods of using existing hardware,
software and data were required. Lastly, users required a dependable system. This
led to requirements not only for high reliability but also for the ability to recover
quickly and cheaply in the event of failure. These in turn need efficient error de
tection and recovery methods for both hardware and software.

Orthogonal to all these was the requirement—less explicitly stated but no less
important—that the proposed solution be a first-class one from a technical point of
view. It was of paramount importance in meeting these requirements that a
coherent architecture should emerge. Existing solutions to individual problems need
to be combined in such a way as to produce a racehorse rather than a camel.

The way in which these objectives eventually gave rise to the 2900 series is far
too complex a story to be recorded here. Because of this, and since the merits of
the 2900 series are already adequately discussed in ICL promotional literature, only
some of the less obvious points are dealt with in more detail below.

5 Cost effectiveness

The efficiency of computer systems is an elusive entity and difficult to measure.
Early measurements of performance, such as addition speeds, have long become
meaningless and even less naive work-measurement units are largely irrelevant in the
face of very complex user applications. In many business applications the speed of
the central processor may be only relevant in terms of its effectiveness at running
the operating system. Efficiency to the user is normally concerned with the speed
and ease with which his own particular problems can be solved and this is often
affected more by data speeds and high-level software effectiveness.

Nevertheless, the speed of basic hardware is by no means totally irrelevant. The
basic design of the 2900 series assumed that the early models would use current
tried technology but that general design principles must permit the exploitation of
possible future developments. In this context it is perhaps interesting to note that
after the 2970 had been designed, the hardware-development organisation of ICL
was able to build, quite quickly, a number of machines that were logically equiva
lent to a 2970 but were constructed entirely using old-fashioned (and cheap)
1900 technology and peripheral equipment. These machines, known variously as
“hardware simulators’ or ‘architectural prototypes’, were used to develop engin
eering and user software before the availability of production machines.

Again, with a range of machines, it was necessary to allow for different mixes of
basic hardware components in various range members, and for the use of pipelining
and instruction-overlap techniques at the top of the range without prejudicing the
performance of smaller 2900 models that could not afford such luxuries. While

ICL TECHNICAL JOURNAL NOVEMBER 1978 11

most of these requirements affected design levels lower than that described by the
architectural model, the Synthetic Option team and its successors had constantly
to check that no decisions they took prejudiced the realisation of these objectives.

To be competitive ICL was of course keen to minimise its own costs for both
hardware and software development, and manufacturing. The means adopted to
achieve this end were basically similar in both hardware and software areas and can
be summed up in the two words: modularity and standards.

As well as the well known and unanswerable technical arguments in favour of
the use of modularity in software implementation, ICL had an enormous task to
produce a software system that would be competitive. It had to produce, from the
outset, a set of software that would be at a similar level, at least in terms of facili
ties, to the software catalogues on existing machines, which had been built up over
several years. It was thus necessary to carry out a complete outline design of the
projected software and then implement selectively so that individual components
could be improved, replaced or added at a later date without collapsing the whole
structure.

In hardware, modularity was again adopted from the outset. However it was
necessary to maintain flexible interfaces in the design so that particular 2900
models could exploit new technology as it became available. As a particular
example of this, the interface between hardware and software itself was deliberately
kept flexible. This has particular importance in the light of the subsequent growth
of microprocessor technology.

6 High-level interfaces

By the end of the 1960s, it had come to be realised that the man-machine interface
was far too close to the computer. To perform even relatively simple jobs required
programmers and operators with a great deal of knowledge and technical skill in the
particular hardware and software of the customer’s installation. As computer usage
increased such people became scarce and expensive. Accordingly there was a
tendency to raise the level of the man-machine interface and to make system input
as close as possible to the level of the natural statement of the problem or the
natural form of the data. This led to the almost universal adoption of high-level
programming languages in preference to assembler, the movement towards inte
grated data-management systems and databases, and in the idea of capturing data
where it occurs and delivering results directly to where they are needed.

Such developments eased the problems of scarce staff and long development
times but introduced new user worries in terms of efficiency. A machine that has
been designed by assembler users for assembler users is unlikely to be well suited
to running structured high-level languages. In the data-handling area data-
management and communication subsystems tended to be grafted onto existing
hardware-software systems. The resulting ‘layers’, while providing some sort of
structured modularity, lead to unnecessary communication problems between the
subsystems and to duplication of code and effort in each.

The task set for the 2900 designers was to overcome these difficulties by start
ing from the outside with the user-interface requirements, and working inwards
towards a sympathetic hardware and basic software design. The data-related aspects
led to specific requirements on the hardware and supervisory system-the need to

12 ICL TECHNICAL JOURNAL NOVEMBER 1978

provide at the basic architectural level

• an efficient but totally protected communications environment
• inherent ability to handle a wide range of communication equipment
• fast interrupt handling
• efficient handling of basic data-management functions
• the ability to handle data and code in as independent a fashion as possible
• an effective matching between the design of the hardware and the basic

supervisory system.

These requirements had a fundamental effect on the 2900 design contributing to
the adoption of virtual machine processing, a hardware stack and descriptor
addressing.

The idea of building a machine that was designed specifically for one high-level
language was rejected at an early stage because of the large investment in programs
written in a wide variety of existing languages throughout the computer commu
nity. Investment in all these languages is now so great that often, although new
technology that could increase efficiency by a considerable magnitude is available,
the cost of replacing existing programs and retraining staff is too large to allow such
a revolution to take place. The 2900 designers were thus faced with the more
difficult job of producing a computer that would be better than a conventional
machine over most languages.

Analysis of the object code and compilation techniques of a wide range of
compilers and languages produced a number of desirable attributes for a system
architecture that were not language-dependent. Five important requirements
emerged.

6.1 A ‘clean’order code

To be useful for a compiler writer an order code must be regular in two respects.
First, it must be regular with respect to data type; integers, floating point, decimal,
single or double length. The hardware should provide the same instruction reper
toire for all data types wherever this makes sense. Secondly, order codes normally
provide several operand types: operands in store or in registers, operands accessed
indirectly via a register or store location, immediate operands contained within the
instruction itself. If these are to be effectively exploited by a compiler they should
be applicable to all instructions, not just an arbitrary subset, and to all data types.
An order code with these two types of regularity, sometimes called an orthogonal
instruction set, is a prime requirement for providing simple but efficient compilers.

6.2 Good procedure handling

One tends to associate procedure handling with Algol and its derivatives but the
basic subroutine concept pervades all programming languages. Again with the
growth of complex operating systems and transaction processing, the interfaces
between the controlling system and the high-level-language application program itself
are of equal importance and these often show the same characteristics as a proce

ICL TECHNICAL JOURNAL NOVEMBER 1978 13

dure call in one of the more modern high-level languages. Most important of these is
that the invoked procedure (or program) requires work space of its own. While it is
possible in many cases to assign this work space long before the procedure is
invoked, this is not normally an efficient use of resources, particularly in trans
action processing or real-time applications, so the basic architecture should handle
dynamic assignment and reassignment of storage space for variables, parameters and
work space in a simple and efficient manner. This mechanism should be capable of
handling the most complex types of procedure and dealing very efficiently with the
simpler, more common types. Recursion is necessary in some circumstances and it
should also be possible to support code that is re-entrant or shared between
different applications simultaneously. Such support must not, however, be allowed
to degrade the efficiency of simpler procedure types. Again, with modem pro
gramming techniques leading to more procedures per program, it is essential to keep
the overheads of the call and exit mechanism down.

6.3 Good structure handling

Considered from the point of view of access, program data is essentially of two, and
only two, types.

Scalar data items are those that correspond directly to individual units of storage
(or small collections of such units). Structured data items, on the other hand, are
collections of scalar items that are treated in some sense as a named aggregate.
While a few languages provide facilities for dealing with these aggregates as entities
(APL, for example), in general the individual elements are accessed and manipu
lated by some form of indexing, slicing or mapping carried out on the named
aggregate. With the older scientific languages one tends to think mainly in terms of
arrays and with commercial languages in terms of records and character strings.
More modern languages have generalised these concepts to provide hierarchical
structures that can themselves contain arrays, strings or other structures as sub
structures.

Some special languages contain even more esoteric structures—lists, trees, etc.
These, and the need for efficient and convenient access to hierarchic structures, give
rise to a new scalar type - reference or pointer variables that can be used to access
other variables indirectly. Such scalars can of course themselves appear in structures,
giving the possibility for extremely complex addressing patterns.

A ‘high-level-language machine’ thus needs to assist as much as possible in the
access of structured elements, and the detection of access errors. The only effi
cient and permanent solution to the latter is to provide some form of hardware
checking that can be done efficiently by overlapping it with other hardware opera
tions. Such considerations become even more important when the structured data
is in some sense self-defining, for example, in database -manipulation languages.

6.4 Ease o f expression evaluation

Although recent investigation of real programs (see, for example, Reference 11)
show that few contain complex arithmetic expressions, it would nevertheless be
nice if the ‘high-level-language machine’ did assist the compiler in this area. Of

14 ICL TECHNICAL JOURNAL NOVEMBER 1978

much more importance is the need to optimise usage of hardware features in object-
program code. For example, although algorithms for register optimisation exist,
some general-purpose registers need to be permanently or semipermanently dedi
cated to specific purposes by the compiler. This wastes the generality of the hard
ware but the hardware designer of a conventional machine cannot take advantage
of such specialisation.

Again, while the hardware designer provides a completely general store, which
the compiler then structures into instruction store, temporary data, scalars and
data structures, neither hardware designer nor compiler writer can take advantage
of the specialisation of data areas. The compiler writer cannot have hardware
checks that data or instructions are not being misused and the hardware designer
cannot optimise his data-access techniques. Any high-level-language programmer
knows that, if he uses the scalar a, there is a high probability that he will use it
again soon, whereas if he uses the array element b [i] there is a much lower probabi
lity of re-use, but a high probability of an access soon to a different element of b.
However a general purpose cache-store designer has no real way if distinguishing
between and exploiting these uses.

The hardware designer should therefore have information about the way in
which object programs will use his hardware to allow him both to assist such usage
and to take advantage of it in his design.

6.5 An efficient object code support environment

In thinking of a high-level-language machine one is apt to consider only the
efficiency or ease of production of the code that the compiler actually generates.
However, the execution of the high-level program will in addition involve code not
generated by the compiler directly—library routines and operating system code. To
the compiler these items are logically equivalent: they are a method of obtaining a
service and can be considered as identical to the call of a high-level-language pro
cedure. In conventional systems, however, the mechanisms are usually very
different.

A particular problem occurs with input/output and file handling. Operating
systems tend to provide either extremely primitive access mechanisms, or high-
level-access procedures, which may mask complex data-management routines but
do not meet the requirements of any particular programming language. What is
needed is a range of access mechanisms from direct data transfer to sophisticated
database handling which can be called in a similar way by the object program, with
mapping information possibly being provided separately in the job description for
a particular run.

Another important aspect is the way in which the total program—code, data,
work space—is mapped on to real storage. If each compiler is forced to take its own
decisions on such mapping, particularly with regard to overlaying code or data or
both if the total size exceeds the available mainstore, not only will there be un
necessary duplication but we will again forfeit the possibility of direct hardware
assistance, and dynamic resource optimisation between programs.
These then are the basic requirements for a good high-level-language engine. Note
that not all are direct hardware-design requirements. Some are requirements on
basic operating-system design, which in turn may themselves give rise to hardware

ICL TECHNICAL JOURNAL NOVEMBER 1978 15

requirements. It is worth noting in passing that many of the requirements of high-
level-language programs are very important to the production of operating-system
software itself. An operating system is, in effect, a large collection of independent
and asynchronous processes and has sections that may be obeyed many times a
second; in these circumstances, such things as error protection and procedure-entry
efficiency become vital concerns. Unless the architectural design helps in these
areas the only choice is between relatively efficient but unstructured and bug-
ridden systems written in assembly code, or maintainable but inefficient systems
written in high-level languages.

7 Fundamental concepts

The remainder of this paper is concerned with the basic principles that underlie the
2900 design; how programs in practice work; how they are conceived by the
programmer, transformed into electrical or electronic patterns in the hardware, how
execution is then carried out and how this maps back on to the original algorithm.
It is in the light of these concepts that the basic architecture of the 2900 series can
best be understood.

In examining these aspects of program structure we are concerned with two
interrelated ideas. First, how does the program actually use the hardware resources
of store, peripherals and processors? Secondly, what is the relationship between the
program in the programmer’s mind and the actual hardware used and the software
that is executed? The second idea itself consists of two parts. We need to study
both the way that the final executable representation of the program is structured,
and the translation process that takes place from the conceptual to the actual.
Consideration of these ideas in as abstract a fashion as possible without the
constraints of existing hardware and software leads to some fundamental architec
tural decisions. These decisions are dealt with in outline in the remaining sections.

8 The virtual machine

The way in which programs use store, processors and peripherals was perhaps first
examined systematically in the joint development of Atlas by Manchester Univer
sity and Ferranti. Essentially we have programs that wish to use more storage or
more peripherals than are available to them, or even than there is available on the
system as a whole. And conversely we have the fact that no individual program can
efficiently use all the available resources all the time.

The second problem was solved by what was originally called ‘time-sharing’,
but is now a generally accepted technique under the name of multiprogramming.
Essentially a supervisory system shares the available processor time between several
programs in order to maximise the use of other resources - peripherals, file devices,
store. Individual programs, however, are unaware of this process and believe that
they have the central processor to themselves - a virtual processor, in fact. The
solution to the peripheral problem appeared long before Atlas, in IBM machines
among others. If a program needs two line printers and the configuration has only
one we accumulate the data being sent to the two distinct outputs on two print
files and then print them sequentially on the single printer. We have created a

16 ICL TECHNICAL JOURNAL NOVEMBER 1978

virtual peripheral. The Atlas supervisor carried this further by allowing not only
more virtual instances of an available device but also the mapping of one device
on to a device of a different type.

The degree of virtuality need not stop there, however. Consider access to data on
a disc file. The lowest level of physical access is by addressing the disc drive via the
controller. At a slightly higher level of abstraction we can address merely the drive,
leaving the routing via a controller to be done by some hardware or software
‘system’. Higher still we might access a named disc whose drive and controller
are discovered by the ‘system’ but whose volume geometry we know. The next
level might be to allow the ‘system’ to handle volume geometry and deal only with
blocks, knowing their physical format and size. Or we could ignore blocking and
deal with logical records. Our ‘system’ has now become some form of data-
management system. Finally, we could deal only in named items; we are supported
by something like a database system.

Each of these forms of access may be considered as a level of virtuality. Within
a total system there will be programs that want to use each of these levels. Each of
these degrees of virtuality should therefore be permitted. (For those concerned with
efficiency, the existence of these ‘layers’ on the basic hardware-access mechanism
does not necessarily mean that top-level accesses need go through all the interme
diate transformations to obtain data. There is no reason why the mapping should
not be direct.)

Storage is more complex. Although prices and speeds have changed considerably
since Atlas, one can still buy either fast main store or slow cheap(er) store and the
price differential has not altered significantly. Programs in any reasonable period of
time tend to use only a small part of their total instructions and data and hence, if
we can arrange that each such part is brought into fast main store when needed, we
can keep the rest on slow cheap backing store. Thus, with some degradation in
speed, it is possible to run programs that are larger than the main store available;
they have a virtual store. Again this mechanism is not even remotely new. Indivi
dual programs have used overlay techniques for years. However, program over
laying is costly since the effort of overlaying is duplicated in each program, and, if
the system is to multiprogram, overall system efficiency will fall considerably if
each program is allowed a partition the size of its maximum overlays.

If, however, we introduce a total-system-overlay mechanism we run into other
problems. Variable-length overlays in store will, as they are used and deleted, leave
variable-length ‘holes’ of available space. This will lead to the situation where
enough free store may be available to load a needed overlay but it is distributed in
unusable pieces throughout the store - store fragmentation, in fact. There is no
complete solution to this problem but techniques that alleviate it are known, such
as paging and segmentation. The actual techniques adopted in any particular 2900
system design are implementation details but the provision of a virtual store for
each program with its own virtual addresses is a fundamental part of the 2900
architecture.

By considering these resource-mapping problems together we can see that the
individual solutions that have been adopted for each set of problems actually form
part of a coherent pattern. Each program can have a complete virtual machine with
its own store, addresses, processor, peripherals and files and these will be mapped
on to the real available resources by the system. It is this total concept that is
perhaps the most important single item in the 2900 architecture, and which allows

ICL TECHNICAL JOURNAL NOVEMBER 1978 17

many of the other features to be included. While the implementation of the various
aspects of the virtual machine may be far from new, the generality of the overall
concept allows for some of the 2900 design innovations.

9 The process

The first step in using a computer to solve a problem is for a programmer to find or
invent an algorithm. This algorithm is then converted into statements in some
machine-translatable language. With knowledge of the requirements of the preced
ing sections we can assume that this is a high-level language of some sort. It is there
fore tolerably close to the programmer’s initial conception and this statement is the
‘highest’ level of expression of the program that we need to consider. This repre
sentation is then translated by a compiler into one or more sections of machine-
code representation. Some of this translation will be direct in the sense that there
will be instructions that correspond in a straightforward manner. In addition some
services (such as type-transformation code) that do not correspond directly to the
high-level language may be added by the compiler. In other words sections of code
have been added to the original statement to make the algorithm work at this
lower level of abstraction.

Applications programs
Compilers
Utilities
Library procedures

and subroutines

Operating system
interfaces

Operating system programs
- Schedulers

Spoolers
Data management
Device management
Processor management

- Store management

Fig. 3 Two-level model of software

The next stage is to assemble and load the program. Unless the program is very
unusual this will result in more code being added to satisfy library calls. However,
even this loaded manifestation is not a complete statement of the algorithm in
terms of the hardware since the program will during execution also use code in the
operating system. Such use may be explicit, as in a ‘get-time’ command or an I/O
initiation, or implicit in the allocation of resources to allow the algorithm to be
executed. This conventional software model is shown in Fig. 3. The operating-
system code is as much part of the program representation as the square-root or
sort routine but it is not ‘added’ to the program in the same way as the other.
Communication between the operating-system code and the rest is slow and ineffi-

18 ICL TECHNICAL JOURNAL NOVEMBER 1978

dent since it involves crossing the operating-system/object-program boundary. This
is to say the least unfortunate, since such communication can be a fundamental
part of the execution of the algorithm. Logically, there is no reason why this code
should not be added in exactly the same way as library routines and this has many
other advantages.

The 2900 architecture therefore provides a single virtual store for each program,
which contains all the code necessary to execute the algorithm. We can cat the
code for this total representation a process image. Although this provides a much
cleaner solution than the conventional operating split, two other problems
immediately suggest themselves. First we cannot afford a physical copy of the
operating system for each process image and we must therefore provide a means of
sharing one copy of the code between several processes. This mechanism will not
only apply to the operating-system procedures but to library routines and complete
utilities. It can allow, for example, multi-access users to share a copy of a compiler.
We can also use it to share user-produced code between co-operating programs.

The other advantage of the 2-level model is that software below the line of Fig. 3
is protected from errors in software above it by the needle eye of the operating-
system interfaces. This, however, is a very crude mechanism since the single ‘fire
wall’ merely divides the code in a fairly arbitrary manner and does not prevent
errors in, say, a spooler, from propagating through the complete operating system
without check. And one pays a considerable overhead penalty each time the fire
wall is breached. We must therefore also provide some more general and more
efficient mechanism for protecting both code and data. Such a mechanism can
allow for multiple levels of protection depending on the privilege of the code
involved. Such a possible multilevel organisation is shown in Fig. 4.

Application programs
e.g. Cobol program for information retrieval

Contingency and service procedures
e.g. recovery of file after system failure

Job command language interpreter
for control of program and system

Record management
blocking/unblockingfiles—serial,
indexed sequential etc.

Catalogue management
user, file, volume-management services etc.

Physical device handling
card read/punch, discs, operator's console etc.

Processor and device dispatching
system-error handling
store management

Hardware

Fig. 4: Multilevel model of software

ICL TECHNICAL JOURNAL NOVEMBER 1978 19

This provides an additional advantage. Some of the routines (such as conversion
procedures) below the operating-system interface barrier of Fig. 4 would be of use
to an applications program but are not used because of the high overhead of an
operating-system call. Indeed, in general there will be no operating-system call that
provides access to them. With a multilevel approach and lower overhead protection
mechanism, such facilities can be used, avoiding duplication of storage and effort.
This in effect provides the basic mechanism for the user to select the degree of
virtuality he requires in peripheral access. The different data-access methods of the
last section can be thought of as procedures within the system software, which call
on each other for services. Choosing the degree of virtuality is then equivalent to
choosing the particular procedure within the chain at which the application
program is to enter. Again, because there is now no logical difference between
routines in the operating system and in applications libraries, provided that the
protection system is designed in the right way, the access to a procedure at any
level of privilege can be identical—specifically a standard procedure call. This means
that a compiler need have no knowledge of whether an external facility is provided
by a library procedure or the operating system. More important even, the compiler
need have no knowledge of whether the code it is compiling is to be part of the
operating system or not. The way in which it invokes other operating-system
facilities will be identical to the way in which they are called by an unprivileged
applications program. We do not therefore need special compiler versions (or worse,
languages) for operating-system development.

10 Program structure

The final set of fundamental concepts arises from consideration of the structure of
programs in their high-level-language form and attempting to find ways to pro
vide a system on to which this natural structure can be easily mapped. What then
are real programs actually like? Examination shows that most are often badly and
illogically structured, but that modern programming techniques are attempting to
eliminate this. The basic unit of structure tends to be a subroutine, procedure or
module; that is, a set of code for carrying out a well defined subset of the algorithm
with its own constants, named scalars and data structures. The data structures could
be simple things like an individual array or a complex entity such as a Fortran
common block.

Fig. 5 shows the structure of a very simple 2-module process. The two modules
each have their own code and constants and a set of named items. Some of these
latter are scalar variables, others are the names of structures that are represented
separately. In addition, there is a need for general work space for use during the
process execution. The size of this area will, unlike other areas, vary dynamically
as the modules are executed. In the diagram module 1 calls module 2 as a procedure
and passes to it a scalar parameter, which is referenced in module 2 as the first of
its named items, A2. Note also that the two modules share access to data structure
Y. This is common since passing complete data structures as parameters is time-
consuming. Sharing scalars is less common but possible, and they can be considered
as degenerate structures. In addition, in some block-structured languages at least,
it may be possible to access the local names of module 1 from module 2.

What we require in an architecture, then, is a natural support for this form of

20 ICL TECHNICAL JOURNAL NOVEMBER 1978

program structure and if we are to allow languages such as Algol or PL/1 we must
also have system (and preferably hardware) support for recursion in individual pro
cedure modules. Note that this form of logical structure leads naturally to the use
of easily shared, pure code since CODE-1 refers to such locations as NAMEA1 and,
by providing a new block of names, the same code can be used without inter
ference.

m odule 1
call

module 2

code-1 c o d e -2
constants-1 cons tan ts -2
work space 1-------------------------------Fw ork space

Fig. 5 Logical process structure

11 Basic 2900 architecture

These then are the basic constraints and fundamental ideas that led to the archi
tecture of the 2900 Series. Singly, or in combination, they gave rise to the intro
duction of a procedural stack, hardware-supported descriptors, virtual-machine and
process-support mechanisms, a sophisticated protection system and the other,
now well known features that distinguish a 2900 system. Anyone wishing to follow
the steps through the formulation of the basic architecture to the first manifesta
tions of the 2900 Series is invited to consult Reference 12.

ICL TECHNICAL JOURNAL NOVEMBER 1978 21

References

1 ‘An Introduction to SADT™’. SofTech Inc., Document 9022-78R
2 ILIFFE, J.K.: Basic machine principles, (MacDonald, London, 1968)
3 SCARROTT, G.C. and ILIFFE, J.K.: ‘The Basic Language Project’ in Information

Processing 68 (North Holland, Amsterdam, 1968), p. 508
4 K1LBURN, T., PAYNE, R.G. and HOWARTH, D.J.: ‘The Atlas Supervisor’ in Program

ming systems and languages (McGraw-Hill, New York, 1967(p. 176
5 HOWARTH, D.J.: ‘A re-appraisal of certain design features of the Atlas 1 supervisory

system’ in Operating systems techniques (Academic Press, London, 1972), p. 371
6 ‘Operating Systems George 3 and George 4’. ICL Technical Publication 4267
7 ‘B6500/B7500 information processing systems’ Burrough Corporation, Detroit, 48232
8 ORGANICK, E.I.: The Multics system: an examination o f its structure (MIT Press,

Cambridge, USA, 1971)
9 KILBURN, T., MORRIS, D., ROHL, J.S. and SUMNER, F.H.: ‘A System Design Pro

posal’ in Information Processing 68, (North Holland, Amsterdam 1968), p. 491
10 CAPON, P.C. and WILSON, I.R.: ‘The Compiler Writer’s MU5’. Conference on Com

pilers, Systems and Technology, IERE. Conference Proceedings 25 (London, 1972)
11 KNUTH, D.E.: ‘An Empirical Study of Fortran Programs’, Software Pract. & Exper., 1,

1971, p. 68
12 BUCKLE, J.K.: 77ie ICL 2900 Series (MacMillan, London, 1978)

22 ICL TECHNICAL JOURNAL NOVEMBER 1978

Sizing computer systems
and workloads

Alan Brock

Consultant Lecturer, ICL Education and Training Centre
Beaumont, Windsor, Berkshire

Abstract

Sizing is concerned with the objective, quantitative evaluation and pre
diction of computer systems performance. It is therefore a valuable aid to
the effective exploitation and development of a computer installation.

1. The general concept

It is self-evident that a data-processing facility represents a substantial investment
both in capital cost and in running cost. To achieve a proper return on that invest
ment calls for attention to many things, including the selection of beneficial appli
cations, and staffing and management to develop those applications efficiently. It
also requires the efficient utilisation of the computer configuration itself. Sizing is
the discipline concerned with the quantitative evaluation of this utilisation.

The basic purpose of sizing can be expressed thus:
(a) a given computer configuration has finite resources, expressed in terms of
processing power, file accessing etc.
(b) the various jobs to be run on that configuration each demand specific
amounts of these resources
(c) sizing is concerned with matching these two.
For any given job running on a given configuration, the demands it makes on

the resources can be expressed in terms of:
(a) the time it takes to run
(b) the amount of main store and backing store it occupies
(c) the loadings it imposes on the hardware components of the configuration.
The loading that a job imposes on a hardware component is usually expressed

as the percentage of that component’s power used by that job. It is often also called
the component’s utilisation. Thus a job might impose a 40% loading on the proces
sor (CPU or OCP) meaning that the job absorbs 40% of the processor’s total
power which in turn means that the processor operates for 40% of its time in ser
vicing that job.

The ‘size’ of a job, expressed in these terms, is important in its own right, indi
cating as it does the cost of running the job and therefore providing one element in
the cost-benefit justification of the job. No less important, the same measures indi
cate the contribution of that job to the complete workload to be run and in
particular allow its effect on multiprogramming to be estimated. Consider for

ICL TECHNICAL JOURNAL NOVEMBER 1978 23

example two representative jobs to be run on a given configuration. One, job A, is a
typical file update with main files on magnetic tape and an amendment file and a
report file on a disc; the ‘size’ of this job can be expressed as component loadings
and run time as in Table 1, which indicate that the job imposes only moderate load
ings on the configuration and suggest that plenty of power is left for multipro
gramming. The second job, job B, is another update but with the main file on disc,
updated in situ; its resource demands are as in Table 2. What would the loadings be
if these two jobs were multiprogrammed together?

Table 1 ‘Size’ of job A

Component Loading
%

processor 44
input magnetic tape 27
output magnetic tape 27
disc controller 1 25

disc unit 1 57
disc unit 2 3
disc unit 3 -

disc controller 2 9
disc unit 4 -

disc unit S 9
disc unit 6 -

Run-time, single programming = 42 min

Table 2 ‘Size’ of job B

Component Loading
%

processor 45
magnetic tape 1 -
magnetic tape 2 -
disc controller 1 9

disc unit 1 8
disc unit 2 -

disc unit 3 6
disc controller 2 52

disc unit 4 -

disc unit S 6
disc unit 6 46

Run-time, single programming = 40 min

The first point to notice is that some hardware components (processor, discs
and disc controllers) are shared by both jobs. Consider the effects of sharing the pro
cessor. From time to time job A will need to use this; sometimes it will be able to
do so without delay, at others the processor will already be occupied by job B and
therefore A will have to wait (ignoring for the moment questions of priority
scheduling). Similarly job B will, on occasion, have to wait for job A and similar

24 ICL TECHNICAL JOURNAL NOVEMBER 1978

delays will occur at the other shared components. Thus each will experience delays—
queuing delays—and will therefore take longer to run in multiprogramming than if
run in isolation. This in turn means that each job will do the same amount o f work
(instructions obeyed, bytes of data read or written) but in a longer time: that is,
each job will impose a lower loading on each component and therefore the loading
on each component in multiprogramming will be less than the sum of the separate
loadings of the jobs run in isolation. This is shown in Table 3. These figures show
the justification for multiprogramming: although each job takes longer to run, the
total loadings and therefore the total amount of work done in a given time are
greater than for either job separately.

Table 3 Effects of contention and queuing delays on component loadings and
elapsed times when multi-programming

Single programming Dual programming

job A job B sum job A job B combined
sum

processor 44 45 89 31 32 63
magnetic tape 1 27 - 27 19 - 19
magnetic tape 2 27 - 27 19 - 19
disc controller 1 25 9 34 18 6 24

disc unit 1 57 8 65 40 6 46
disc unit 2 3 - 3 2 - 2
disc unit 3 - 6 6 - 4 4

disc controller 2 9 52 61 6 36 42
disc unit 4 - - 0 - - 0
disc unit 5 9 6 15 6 44 10
disc unit 6 - 46 46 - 32 32

elapsed time (min) 42 40 82* 59 57 59*

♦These are the total elapsed times to completion of both jobs

Ideally the throughput (the amount of work done in a given time) should
increase more or less linearly with the number of jobs in the system. But this could
be realised only on an idealised ‘infinite’ machine that could give every program the
service it needed whenever it needed it. On a real finite machine contention for
shared components results in queuing delays and, clearly, the contention and delays
increase as the number of programs increases. In practice a state is reached at which
increasing the number of programs yields little further increase in throughput and
may even decrease this. A quantitative understanding of the situation, which
depends on the particular configuration and the particular program mix, is clearly
important for the efficient scheduling of the jobs. Sizing techniques enable this to
be obtained objectively and with acceptable accuracy. Used in this way, sizing can
be helpful in many ways:

(a) assisting in scheduling jobs that do not have deadlines for completion
(b) for jobs that do have deadlines, indicating which other jobs, if any, can be
run concurrently without delaying unacceptably the time-critical job
(c) explaining quantitatively why certain jobs do not multiprogram together
successfully, thus enabling corrective action to be taken

ICL TECHNICAL JOURNAL NOVEMBER 1978 25

(d) assessing the effects on scheduling and on operational time of new applica
tions still under development, leading in turn to a quantitative assessment of the
need or otherwise for enhancement to accommodate the new work.

2 Levels of sizing

Implicit in all the foregoing is the fact that there are two distinct levels of sizing:
(a) application-level sizing, concerned with individual applications or jobs
running essentially in isolation, in particular, not contending with other jobs
for shared resources
(b) installation-level sizing, concerned with the performance of a complete
workload, and taking account of the contention for shared resources.

2.1 Application-level sizing

This can be used for several purposes. It can give a quantitative comparison of
the costs, in machine terms, of different design approaches for a given application,
e.g. serial versus random. It can reveal the elements of a job that are most costly in
terms of machine resources, thus highlighting the elements that will yield most
benefit from optimisation. It can form one element in the cost-benefit justification
of the application. It can enable the effects of increases in data volumes to be
predicted accurately.

2.2 Installation-level sizing

This too has several purposes, notably in scheduling for multiprogramming and for
planning the optimum nature and timing of enhancements as described earlier. It
can also be used to help in planning file placement when disc units, disc controllers
and magnetic-tape controllers are shared by concurrent jobs.

Important though each level is in itself, their full potential is realised when
they are used together, essentially in an iterative loop (Fig. 1).

. ap p l ic a t io n - lev e l s i z i n g

c o n s t r a i n t s on the
v a r io u s jobs

resource d e m a n d s of
th e v a r io u s jobs

in s t a l l a t i o n - l e v e l s i z i n g

Fig. 1 The two levels of sizing form an iterative loop

26 ICL TECHNICAL JOURNAL NOVEMBER 1978

The ‘sizes’ (run times, store occupancies, loadings) of the several jobs are essen
tial input to the installation-level sizing, enabling the benefits of the latter to be
achieved. But the installation-level sizing may indicate the advisability of alteration
to the individual jobs, perhaps to avoid unacceptable degradation of performance
because of overloading of some critical component. For example, there may be
two jobs that, because of deadlines, must be run concurrently. If each job is con
sidered in isolation, random processing of disc files may be the optimum solution
for both, but that may result in excessive loading of the discs and their controllers,
leading to severely degraded performance through queuing delays. Adding more
discs and controllers might solve the problem, but it might be much cheaper to
redesign one of the jobs for serial processing of magnetic-tape files.

Such compromises and tradeoffs are virtually impossible to assess without the
objective, quantitative discipline of sizing.

3 Sizing and tuning

It is important to distinguish between two distinct but related activities: sizing and
tuning.

Sizing can be defined as ‘the continuous process of matching a configuration’s
power to the demands made by the various jobs’.

Tuning can be defined as ‘the continuous process of obtaining the optimum
throughput from a given configuration with a given work mix’.

Sizing is essentially predictive, helping to answer questions such as:
(a) What will be the effect, in machine-loading terms, of introducing this new

application?
(bj What would be the effectof adding two more EDS 100s and another DFC?
(c) What is the optimum job mix between 10.00 am and 11.30 am on Thurs

days?
(d) Can we achieve the required 5s average response time for our new

transaction-processing application? If so, how often will the response time
exceed 20s?

(ej How much would the run time be reduced with faster tape units?
Tuning, on the other hand, is essentially corrective. The implicit basic premise is
that throughput is inadequate, deadlines are not being met, and it is required to use
the existing configuration more effectively in order to rectify the situation. A
representative situation is that a workload originally planned for two shifts actually
occupies two and a half shifts. Why? What level of multiprogramming must be
achieved to get through the work in two shifts? Is that possible, or will it be pre
vented by overloading of some component? Could the situation be remedied by
changing the operating system’s installation parameters, and if so, how should they
be changed? Would changes in the file placement yield an improvement, by redu
cing contention for discs and controllers? How much could be gained by optimising
the programs? Would tape sorts instead of disc sorts give a worthwhile improvement
by reducing the loadings on the disc subsystem?

This set of questions relates essentially to installation-level considerations, but
tuning can equally be applied at application level.

The definitions given above for sizing and tuning both include the word

ICL TECHNICAL JOURNAL NOVEMBER 1978 27

continuous. This emphasises that sizing and tuning ought not to be regarded as
‘one-off activities. The sizing of a new application needs to be done at each major
stage during its design, development and implementation and periodically there
after during its operational life. It is, for example, possible that, during early use,
file hit rates may be low enough to make random processing more efficient than
serial. After a period of operation the hit rates may increase so much that serial
processing becomes the preferable technique. Similarly, installation-level sizing
needs to be done initially and reviewed from time to time, to take account of new
applications and of trends in data volumes and work load.

4 Data collection

An essential adjunct of sizing and tuning is the collection of data. The data required
relates to:

(a) the current workload
(b) the projected workload
(cj the hardware and software characteristics of the configuration.

For the projected workload (i.e. principally the new applications) the quantity and
quality of the data will change as each application’s design progresses. At the
feasibility-study stage, one may have only a rough idea of data volumes, hit rates,
amount of processing etc, and many assumptions and ‘guesstimates’ must be made.
The sizing will necessarily be subject to wide tolerances. As design progresses,
assumptions can be replaced by firm decisions, estimates can be refined or even
replaced by definite values, eg program path lengths. To aid the corresponding
refinement of the sizing, all assumptions and estimates must be recorded and, as
far as practicable, the sensitivity of the sizing results to errors in the assumptions
and estimates should be assessed.

5 Monitoring

Part at least of the data collection relating to the existing workload and the way it
runs on the configuration can be done by actual measurement during practical
running.

There are three principal sources of data:
(a) the applications themselves. Many applications record data about their own
running, such as file sizes and numbers of transactions processed, often for the
purposes of auditing and control. Such statistics can be very useful for sizing
and tuning.
(b) the operating system. Most large, comprehensive operating systems, such as
GEORGE 3 and the Virtual Machine Environments for 2900 Series, include
data-collection facilities, measuring and logging such things as processor utilisa
tion, peripheral and file-store transfers and paging.
(c) ad hoc monitoring, that is, making measurements specifically for the
purpose of sizing and tuning.

Monitoring can be by special hardware or software. For hardware monitoring, a
special item of hardware is connected to the configuration being monitored (the
‘host machine’). Probes from the hardware monitor are connected to selected

28 ICL TECHNICAL JOURNAL NOVEMBER 1978

points in the host machine’s circuitry. The hardware monitor thus receives signals
indicating, for example, when the processor is busy, when the heads on a particu
lar disc unit are moving, when a disc unit is actually transferring data. By careful,
planned selection of the signals thus sampled and analysis of them, it is possible to
derive an accurate and informative picture of the use of the hardware, including not
only the loadings on the components but also such important details as the amount
of overlap between processing and input/output, or how the processing is split
between object programs and operating system. Most software monitoring is in fact
carried out by the facilities intrinsic to the operating systems as already mentioned,
but other facilities such as program-trace routines are also used. By tracing the
actual execution of a program, these enable actual path lengths to be measured and
the highest-cost sections of a program to be identified, these latter being, of course,
the prime candidates for optimisation.

Hardware and software monitoring are complementary rather than alternatives,
since each yields its own type of data organised on a particular basis. For example,
consider processor utilisation. A hardware monitor will normally measure the
processor utilisation at regular, frequent intervals during the test period, producing,
in effect, a graph of processor loading against time. It will not normally give a
breakdown between concurrent programs. Software monitoring, by contrast will
usually indicate how much processing was done for each program, but not how that
was distributed over the test period. A hardware monitor can show how often the
heads moved on a particular disc unit and how much time was spent in head move
ment, but not which programs caused those head movements. Software monitor
ing can show how many disc accesses a program caused, but not how many of those
accesses caused head movement nor how much time was thus consumed.

Thus a complete picture of how the configuration was used, moment by
moment and by the various jobs, really needs the co-ordinated use of hardware and
software monitoring.

6 Sizing techniques

The range of techniques available for sizing studies is outlined below. The principal
groups are:

(a) gross sizing
(b) modelling
(c) analytical methods
(d) experiment

6.1 Gross sizing

This uses simple, quick methods to obtain approximate answers. It is based on rela
tively crude measures such as ‘I estimate that this job is equivalent to 500,000 Post
Office work units (POWUs) of processing and involves 20,000 random accesses to
a disc. The processor power is equivalent to 400 POWU per second, and an average
disc access takes about 120 ms. Therefore, the job will take 1250 s for processing
and 2400 s for the disc accesses. Assuming an average concurrency of 1 *5, then the
run time will be about (1250 + 2400) -r 1-5 s i.e. 2400 s or 40 min. The loadings

ICL TECHNICAL JOURNAL NOVEMBER 1978 29

will then be about 1250/2400, say 50% on the processor and 2400/2400 = 100% on
the discs’

For some purposes, gross sizing is good enough. The illustration above indicates
that the run time will be in the region of 40 m in,not 10 min and not 4 h, and that
the discs will be very heavily loaded. That may be all one needs to know. Even if
such crude answers are not accurate enough for the purpose of the sizing study,
they serve as a valuable check, helping to reveal any mistakes that may be made
when using more accurate, but more complicated, techniques.

6.2 Modelling

Modelling embraces two principal methods: barcharting and simulation. A bar chart
is a diagrammatic representation of the activities in a program. A line is drawn for
each hardware unit used by the program, and on that line are marked the periods
when that unit is actually functioning. The bar chart in Fig. 2 is part of the com
plete chart for the case of an update program with main files double-buffered on
magnetic tape in which, for each block of the main file, there must be a random
access to a reference file on disc. The relatively infrequent accesses to the file of
input transactions and to the print file are ignored. It will be seen that the bar chart
reveals a regular cycle, from the start of processing one block to the start of proces
sing the next. Once that cycle has been discovered from the bar chart the required
results follow easily. The run time is simply the duration of that cycle multiplied
by the number of blocks in the main file. The loading of each component is given
by the percentage of the cycle time for which the component is active.

input
magnetic tape

processor

disc unit
disc
controller

,-1- B
35ms j 35ms

" >-*-120msj
L

22msj
A 62ms

T
i

output
magnetic tape

35ms
B

71 Fi20ms 22ms.
B 62 ms ̂ |

1 9 m s ^ ^ j
63 82

B_L

I A
35ms

35ms
C— j20ms
'Ic 62ms r

i i
19ms

I B
35 ms

Fig. 2 Sample bar chart

Given: Time for magnetic tape block = 35 ms; Disc time per access = 62 ms; Disc controller
time per access = 19 ms per block; Processing time per block = 20 ms before disc access and
22ms after
Then, from barchart:

elapsed time per block = 20 + 62 + 22 ms = 104ms
magnetic tape loading = 35/104, i.e. 33*7% each
processor loading = 42/104, i.e., 40*4%
disc unit loading - 62/104, i.e. 59*6%
disc controller loading = 19/104, i.e. 18*3%.

Except for first and last blocks, magnetic-tape accesses completely overlapped with other
activities. Accessing disc file accounts for 59*6% of the elapsed time.

A bar chart is also valuable in providing a clear picture of how the program uses
the hardware. Fig. 2, for example, shows clearly the large proportion of the cycle
time that is due to accessing the reference file, suggesting that thought could well

30 ICL TECHNICAL JOURNAL NOVEMBER 1978

be given to reducing the access time, or even to eliminating the need to access the
file at all.

Simulation is usually by special simulation programs. They normally yield very
accurate results and can deal with complex cases. Usually, though, considerable
effort is needed to learn how to use one effectively.

6.3 Analytical methods

These involve the use of models expressed in mathematical terms.
Sometimes such models are adaptations of the bar-charting procedures

described earlier, but expressed in a more formal, mathematical way and using
statistical techniques to represent the distribution of lengths of a bar in the chart.

number of concurrent processes

Fig. 3 Three sample FAST curves

(a) Evenly loaded configuration
(b) Relative loadings corresponding to last column of Table 3
(c) Configuration with one component much more heavily loaded than the others.

ICL TECHNICAL JOURNAL NOVEMBER 1978 31

However in most cases such models are based on queuing theory. Simple
queuing theory enables one to predict for example the average time one has to
wait for a ticket at the station in terms of the rate customers arrive and the rate
at which the booking clerk can serve them.

Simple queuing theory can be very useful for calculating delays at particular
points in a system where there are a large number of customers, such as messages in
a transaction system. However, in many cases the total number of customers is
quite small, in which case more comprehensive variants of the theory can be used.

A more general form of queuing theory deals with the movement of a finite
number of customers in a network of servers. Models of this type have been in use
since the early 1970s and are known in ICL as FAST (football analogy for system
throughput). The idea here is that the operation of a batch system can be likened to
a bunch of kids kicking a football around. The kids are system components such as
the c.p.u. and the peripherals. The football is a program.

If now they are given several balls to kick around, their total throughput in
kicks per second will increase. The theory enables this increase in throughput to be
calculated, given the amount of work each player (alias server, alias system compo
nent) has to do and the number of footballs (alias programs or processes) in play.

FAST can be used, inter alia
(aj to estimate the effects of enhancements to a given configuration (and
hence their cost effectiveness)
(b) to estimate the effect on throughput of a change in the workload.
(c) to estimate the effect of changes in the way in which the workload is run as
a result of relocating files in the drum/disc/tape hierarchy.

Fig. 3 gives some typical curves resulting from applications of FAST.

6.4 Experimental methods

Experimental methods are in principle the most accurate and reliable methods for
sizing. Perhaps the best known is benchmarking, in which a job or a mix of jobs is
run on an appropriate configuration and the performance measured. There is, of
course, the problem of obtaining time on a suitable machine. More significant,
perhaps, is the difficulty of ensuring comparable standards of operating and tuning
between the benchmark and the everyday, production running of the job. Also, the
jobs in a benchmark are often ‘typical’ jobs rather than ‘actual’ jobs, introducing
a further degree o f uncertainty into any conclusions that may be drawn.

Another experimental technique is the so-called ‘network simulator’ intended
for testing and measuring the performance of online systems (TP or MAC). To test
a TP or MAC system in real operation necessitates having the mainframe computer,
the network, N terminals, N trained terminal operators and N observers to monitor
the operators, and to have them all available for a period long enough to give a
realistic test. Assembling those resources may not be easy. A network simulator is
a program that generates messages as though from terminals and loads them at a
controllable rate directly onto the mainframe machine in the absence of the
communications network etc.

Since the mainframe and its software are being exercised under (reasonably)
normal operating conditions, the results are, in principle, very accurate. However,
if the network simulator program runs in the mainframe itself, then it absorbs some

32 ICL TECHNICAL JOURNAL NOVEMBER 1978

of the power of the mainframe and thereby interferes with the very thing one is
trying to measure. To overcome this, the simulator program should ideally run in a
separate machine with a direct data link to the mainframe under test. That too may
be logistically difficult to achieve.

Table 4 shows the applicability of the techniques outlined above to the
different areas of sizing studies.

Table 4 Applicability o f sizing techniques

Gross
sizing

Bar
charts

Simulation Queuing
theory

FAST Benchmarks Network
simulater

Application level
batch

j 7 7 X X J X

Application4evel
communications

j X 7 7 X J 7

Installation-level
batch

7 *>* 7 ?t 7 J X

Installation-level
communications

j X J J ?f 7 7

Notes: *Not practicable for more than two simple programs
f Provided interactions are limited and simple
^Communications-based applications treated effectively as batch jobs over periods

short enough for communications load to be regarded as constant.

7 Uses and benefits o f sizing and tuning

The principal uses and benefits of sizing and tuning have been suggested in the
foregoing discussion. Essentially, they can be expressed as the use of objective,
quantitative measures of the current and future workload and of the capacity of the
configuration, to provide a basis for decisions relating to the effective exploitation
and development of a computer configuration.

It is important to realise that sizing and monitoring are tools to aid decision
making. Therefore every sizing activity should have explicit objectives—essentially,
a question that can best be answered by a sizing study and the answer to which can
lead to beneficial action. Therefore the effective use of sizing requires a perception
of the type of question that sizing studies can answer, together with the ability
to interpret the results and use them as a basis for decision and appropriate action.
In that, sizing is no different in kind from many other activities in data processing,
and in commerce and industry generally.

The paper has given examples of the types of question that can be answered by
sizing studies. Anyone whose reponsibilities require the answering of such questions
could well consider sizing as a helpful tool.

ICL TECHNICAL JOURNAL NOVEMBER 1978 33

References

1. BERNERS-LEE, C.M.: ‘Four Years Experience with a Performance Methodology for
Systems Planning’, Proceedings of European Conference on Computer Performance Evalua
tion, 1976, ONLINE, Cleveland Road, Uxbridge, Middx.

2. BERNERS-LEE, C.M.: ‘Understanding System Behaviour through System and Work-Load
Modelling’, Infotech State-of-the-Art Report on System Tuning, 1977, Infotech Interna
tional Ltd., Maidenhead, Berks.

34 ICL TECHNICAL JOURNAL NOVEMBER 1978

Wind of change

G.G. Scarrott
Manager, ICL Research & Advanced Development Centre,

Fairview Road, Stevenage, Herts

Abstract

The paper outlines the analytical arguments underlying the selection of the
projects undertaken at the ICL Research & Advanced Development Centre.
The arguments are derived from consideration of the potential scope of the
business of ICL regarded as an information-engineering company. Four of
the recent ICL projects are described in outline: Variable Computer Sys
tem; Content-Addressable Filestore; Distributed-Array Processor; and man/
machine interaction by speech.

1 Introduction

The ICL Computer Users’ Association took for its 1978 conference* the theme
The wind of change’. It is, therefore, appropriate that we from the Research &
Advanced Development Centre (RADC) should discuss this theme, since it is our
responsibility to be aware of the ‘win ds of change’ and to ensure that the Company
is prepared for them. I should emphasise that industrial research departments such
as ours do not blow these winds; it is the worldwide community of users and
suppliers of information systems who collectively determine events and decide
when change shall be inhibited, which changes shall be encouraged and when
change shall become a hurricane. It is the role of industrial research to forecast the
inevitable and prepare for it: in a word, to be the barometer and not the tempest.

I shall first discuss the role of ICL Research and our point of view. This leads
naturally to a consideration of techniques for technological forecasting, a ten year
forecast for information engineering, some consequential ICL research projects and
conclusions for the Company and its customers. I have used the term ‘information
engineering’, which I feel best describes the field covered by ICL research; perhaps
an unfamiliar term but an appropriate description of the computer business now
that it has become of age. Let us look into the precise meaning. According to
Webster, an ‘engineer’ is an ingenious fellow who puts scientific knowledge to prac
tical use-indeed the very word ‘engineer’ is simply derived from ‘ingenious’. Thus
an ‘information engineer’ is concerned with the deployment of available technology
to meet the information-handling needs of society. I suggest that each of us in this
industry could legitimately cherish an honourable ambition to be such an engineer
by cultivating a deep understanding of the social purpose of our wares as well as
skills in designing and making use of them.

♦This paper is based on a presentation made to the ICL Computer User’s Association at their
Annual Convention, 1978

ICL TECHNICAL JOURNAL NOVEMBER 1978 35

2. Point of view

To undertake this task of industrial research we must be keenly aware of the
present situation in our industry. In order to concentrate our attention on essential
issues we must try to distinguish between V hat’ purpose an information system
must serve and ‘how’ it operates to serve such a purpose. Jargon in the computer
business constantly proliferates and serves a useful purpose as a shorthand for
describing how things work, but the very usefulness of jargon tends to obscure what
it is all for, so that we deliberately try in our own discussions to minimise the use of
jargon e.g. ‘operating system’ and ‘compiler’ are both dangerous words since they
imply what is done at run time, which is strictly an irrelevant detail. Another conse
quence of our insistence on understanding the ultimate purpose is that we tend to
regard established interdisciplinary boundaries, such as that between hardware and
software, to be negotiable. Indeed, all boundaries must be regarded as negotiable
with the exception of only two.

One is the boundary between the information system and its ultimate user and
the other is between the information system and the suppliers of physical devices,
since the components must be potentially available. In a word, only the physical
and human realities are not negotiable.

3 Systematic forecasting

We must first consider which way the wind of change is blowing and which appar
ently well established practices are likely to be swept away, so that we are prepared
to ride the events when they occur. To do this, we must endeavour to forecast
events well before they occur. Such forecasting is hazardous in any business, but
particularly so in the computer business, with its feverish rate of technological
innovation and incomprehensible jargon. It is possible to minimise such hazards but
only by cultivating a sense of history—a feel for the technological evolutionary pro
cess. We can never achieve certainty but forecasting based on an analysis of the
historical record is certainly more trustworthy than science fiction over the period
of about ten years for which systematic forecasting is possible and necessary. A
longer term forecast is of somewhat academic interest, since, even if we got it
right, few would believe it and fewer still would regard such a forecast as a spur to
action. I propose first to take a broad view of the general technological evolution
ary process and then concentrate on the expected events in our particular field of
information engineering.

Let us consider the technological evolution of a typical product in the four
phases: birth, adolescence, maturity and senility. When the new product first
appears, the technology for making it is primitive, but, if it serves a useful purpose
at all, pioneering users exist whose needs for the new products are so pressing that
they are willing to adapt their practices to take advantage of it. Thus, in the begin
ning most of the discussion is concerned with ‘how’ to make and use the product
and there is very little discussion of ‘what’ purpose the product should serve or
what should be its technical specification to serve such a purpose. In the adolescent
stage the main population of users begin to appear. Many of these do not have such
a clearly recognised need, and, indeed, some of them may be only following fashion.
As a result of this, discussions regarding the new product begin to tackle the more

36 ICL TECHNICAL JOURNAL NOVEMBER 1978

fundamental issues of ‘what’.
Nevertheless, the technology is still immature so that the adolescent stage can be

roughly characterised by the fact that ‘how’and ‘what’ debates occur about equally,
often with regrettably little cross-fertilisation between them. When the product is
mature, the technology is fully developed and the market is saturated. All con
cerned know perfectly well that any relevant product specification can be made so
that the crucial questions are entirely concerned with framing a specification that
will attract enough users to justify the business. Thus, at this stage, “what’ is domi
nant. Finally, when the product becomes senile it goes out of use and its social
purpose is met by other products.

Fig. 1 summarises this maturing process as applied to steam engines, aircraft
engineering and information engines. It suggests that information engines are still
in the adolescent stage.

Steam
engines

a irc ra f t

1700 1800 1900_■ ■ ■__

1900 1950 now 2000
. . i i i i. ..

information
engines

1950
.1_ now 2000

- j . . . ____ -L —

now
«

Fig. 1 Technological evolution

The first useful electronic information engine was developed during the Second
World War. Since that time, the physicists and electronic engineers have done a
splendid job introducing solid-state devices and large-scale-integrated fabrication
techniques, which have removed many of the technological constraints that shaped
the early information engines. However, the refinement of technology has not yet
been complemented by an understanding of the natural properties of information
adequate to guide the deployment of our new found technological mastery, so that
a first approximation to an understanding of the present situation in information
engineering would be to liken it to the situation in the evolution of steam engines
in the early 19th century after techniques for casting, forging and machining had
provided the “means’ but before theoreticians such as Carnot and Rankine had
illuminated the ‘ends’ for steam-engine design.

ICL TECHNICAL JOURNAL NOVEMBER 1978 37

4 The present situation in information engineering

Against the foregoing background of general technological evolution it is useful to
summarise the present situation :-

(a) Centralised data processing is common.
(bj Small decentralised data processing systems are proliferating: these con

trasting styles of operation are already being widely discussed.
(c) Interactive use is costly and fragile.
(d) Complexity is difficult to control: the complexity of an assembly of hard

ware or software is essentially measured by the quantity of information
required to describe it. Complexity is not the same as multiplicity. Thus,
for example, if we look at a semiconductor storage chip through a micro
scope we see many thousands of components arranged in a highly systema
tic pattern. Such a storage chip represents high multiplicity but low
complexity. On the otherhand, software comprises almost pure informa
tion so that it is characterised by pure complexity. Indeed, human limita
tions in the handling of complexity now control the range of purposes for
which information engines can be effectively used.

(e) Processors originally designed for arithmetic are mainly used for other
purposes: we have known this for a long time but have done very little
about it.

(f) LSI is used to reduce cost and improve reliability: these are proper objec
tives but LSI has not yet been used to improve basic system designs that
have changed very little over 30 years.

(g) Device companies are beginning to enter the systems business by offering
naked hardware without much software support.

5 Constructional technology

So much for the present situation; what is going to shape the future? It is easy to
summarise the technological situation. The essence of the matter is that planar
microfabrication techniques have rendered the constructional units for processor,
fast store and lst-level backing store so similar that all three elements can now be
assembled in any mixture that we need. There is no longer any over-riding construc
tional reason for continuing the traditional practice, pioneered by Von Neumann,
of concentrating each type of element—main store, backing store and processor—
in a separate box and interconnecting the boxes via bottlenecks. Thus, technologi
cal advance permits us to design our systems to meet our up-to-date understanding
of the users’ requirements but it does not tell us how to do this. Only a deep
understanding of the interface between the system and its human users can do this.

6 Essential requirements

It is not so easy to summarise the requirement situation. It is no use trying to
analyse the tangled web of computer applications: that way leads only to confusion.
Neither is it useful to rake over current systems implementation practice since that

38 ICL TECHNICAL JOURNAL NOVEMBER 1978

has been done many times already. We must start at the beginning. To achieve an
understanding of the nature of information and its role in human affairs, adequate
to guide the design of an information system, the study should be regarded as a
branch of biology rather than mathematics or electronics.

We must recognise that the human race is a species whose original survival and
present dominance is based on the chance discovery by our remote ancestors of a
new field for biological competition-the creation and operation of social groups
dynamically adaptable to the environment by large scale interchange of informa
tion between individuals and groups. We still do this on a grand scale. The hunting
and agricultural teams have now become companies and the day-to-day operation
of the social co-operation mechanism is called business. Nevertheless, in our busi
ness operations we compulsively adopt organisation techniques and associated
information handling techniques that served our ancestors for a million years, so
that when we introduce a computer system we ignore such inflexible human habits
at our peril. However, when computers were first introduced into business, the
constraints imposed by primitive electronic technology necessitated that to a
great extent the user adapt his practices to the computer rather than vice versa.
For example, the centralisation of information processing and its collection into
artificial batches represented such a forced adaptation. These practices have con
tinued to the present day and have led to many frustrations that have contributed
to the somewhat ambivalent image of the computer and its professional attendants
as essential but awkward. We can now recognise that the commercial centre of
gravity of information engineering is concerned with database management, where
the meaning of the phrase should properly be derived from the human realities. The
purpose of a database is to assist communication between the members of a co
operating group of people by maintaining a continuously up-to-date information
image of the current state of the group and its relevant environment. This purpose
can be served only if all the individuals associated with the database, those who put
information in as well as those who access it, feel that the database is of sufficient
value to the group and to each individual to justify its cost. In present practice a
typical database is not always up to date, it permits its users to ask only stereo
typed questions and even to achieve this necessitates a mountain of software that
imposes an unacceptable parasitic load on the available computer power and poses a
formidable software maintenance problem.

7 Natural properties of human information

It is now possible to see clearly that an effective solution of such problems can be
devised only by cultivating an attitude of humility in the design of our information
systems. We must first recognise that there is an underlying unity in the tangle of
computer applications and that it is derived from their common factor-people.

Information structures appear at first sight to be arbitrary and ad hoc, invented
on the spur of the moment for each specific purpose. However, such structures are
heavily influenced by habits that have been evolved over a long period to create and
maintain co-operative social groups. One such habit, the use of tree-type data
structures, obviously derived from the wide use of tree-type social organisation
structures, is well known to the designers of high level languages but has seldom
been reflected in computer design. A consequential and less obvious habit arises

ICL TECHNICAL JOURNAL NOVEMBER 1978 39

from the fact that for every real situation there are many alternative ways of organi
sing the associated information in relevant tree structures, so that as the situation
evolves new tree structures unrelated to those already established tend to be created,
grow in importance and then fall out of use. Thus at any time many alternative
organisation structures can be said to have meaning to the people whose co
operation gives rise to the information and it is not practicable to represent all such
structures by indexes in their database.

A third information handling habit arises from our instinctive preference for the
interactive mode of information transfer. Although the human species can legiti
mately be regarded as an information handling specialist, and we commonly handle
large quantities of information, we can best deal with it in small packets with fre
quent opportunities for checking and clarification. Accordingly, when we access a
database we reserve the right to alter our question in response to the information
obtained. Similarly, we find it impossible to create a large program free of errors,
so that every program needs to be debugged before it can be used, and, indeed,
during use. Curiously, some computer professionals tend to take a puritanical
view of programming errors. However, the prevalence of errors is simply the human
preference for the interactive mode asserting itself and eventually we can expect
that a typical information system will be designed from the beginning to be con
trolled in the interactive mode.

With this view of the social nature of information we can deduce some more
natural properties; we can summarise these as follows:

(a) ‘information’ bonds society
(b) information handling habits have been shaped by long use of information

to operate social groups e.g. hunting, agriculture, business
(c) organisation structure of information reflects the structure of the human

group that it serves
(dj organisational structure of information is normally a blend of order and

disorder
(ej people communicate information in small packets with opportunity for

checking (interactive mode)
(f) some information processes naturally occur in batches, e.g. payroll
fgj most information in the world is not numeric
(h) a growing proportion of information processing is not arithmetic
(i) logical operations can be used for all purposes, including arithmetic

processing.

8 A technological forecast for information engineering

If we extrapolate from the present situation taking into account the analysis of
requirements and available technology that I have outlined, a forecast for the next
decade of information engineering is almost obvious. The prime objectives for
system design will be data management and keeping complexity under control. The
essential technique for ensuring that complexity is manageable is to arrange that the
quantity of information handled by the designers or users at one time is within
human capability. Thus the design of both hardware and software must be modular.
The modules must not be too large and they must be separated by clean and tidy
interfaces so that errors in one module cannot sabotage others. Above all, it will be

40 ICL TECHNICAL JOURNAL NOVEMBER 1978

recognised that universal geniuses do not exist, so that the complexity problem
cannot be brought under control by seeking more competent people or appointing
a new project manager.

A typical system will be designed to be used interactively by people who are
primarily interested in carrying on their own business and have no interest in the
technicalities of data processing. Batch processing will be confined to operations
which naturally occur in batches e.g. payroll. At the present time attempts to assess
the power of a computer system are somewhat confused by empirical and highly
artificial units such as the Post Office Work Unit or MIPS. We shall come to
recognise that the natural measure of the power of a system is simply the number
of people in the organised social group that the system can serve. Systems will be
available that will be cost-effective serving only a few tens of direct users and they
will be purchasable at a cost that will not require user Board approval. Such small
systems will perform functions that can be clearly understood by the user who will
be able to interconnect and redeploy his information engines to meet his constantly
evolving needs. Intrinsically symmetrical communication techniques will be adopted
to make this possible. The proliferation of such small systems will take away some
of the load of a typical centralised data processing system so that the data-processing
manager will change his role. Instead of taking direct responsibility for all the
information processing he will ensure that the small systems distributed over the
users’ organisation are compatible with one another and can be used to extract
corporate information in addition to serving primary roles as departmental in
formation systems.

9 Some ICL research projects

For several years the work of RADC has been selected to prepare for the situation
that I have described. We have put most of our efforts into four projects: variable
computer system (VCS), Content-addressable file store (CAFS), distributed array
processor (DAP) and interactive man/machine communication by speech.*

9.1 Variable computer system (VCS)

The conceptual origin of this project was the recognition that the natural way that
people access information is not by the use of a fixed reference framework, as in
the von Neumann machine, but by the use of a reference map that can be created
and continuously updated by the user to suit his purpose. The objectives were
twofold:

(a) to demonstrate a working system incorporating low level navigation
facilities by means of which a user can create and maintain up to date a
secure reference map showing the organisational structure o f his informa
tion and its mapping on physical storage

(b) to take advantage of systems incorporating fast microprogram storage by

* Papers dealing in more detail with these and possibly other RADC projects will appear
in subsequent issues of this journal

ICL TECHNICAL JOURNAL NOVEMBER 1978 41

permitting the target machine to be adaptable on demand to the high level
language in which the source program is written.

We now know that the first objective is similar to the ‘capability’ systems designed
at the Universities of Chicago and Cambridge.! The provision of a secure map
makes impossible many of the programming errors the unmonitored accumulation
of which accounts for the severe difficulties that are commonly encountered in the
development and maintenance of complex software.

The VCS system has been demonstrable in the Research Department since 1974
and recent work has shown how it could be implemented on standard Company
hardware (the MICOS 1 processor in the 2903). We have compared the performance
of the VCS/M1COS 1 system obeying COBOL programs with the performance of
1900/M1COS 1 (2903) on the same COBOL programs and find that VCS offers:-

(aj a reduction in Cobol compiler size in the ratio of 6:1
(b) a reduction in Cobol object code size of up to 3 :1
(c) an increase of Cobol execution speed in the ratio up to 1:1.8
(d) a more powerful operating system (in the sense of providing more facilities)

which is at the same time more flexible (in the sense of adapting rapidly to
different modes of use), with about the same storage requirements

(ej reduction in main store quotas per job as a result of code sharing and auto
matic adjustment to working set size.

These measurements, taken as they were under experimental conditions, should be
regarded as a spot comparison between an existing COBOL implementation and a
first version of an implementation via VCS. Doubtless both could be improved.

The complete technique of creating, maintaining and using an information map
can be summarised as ‘access by navigation’. This navigation technique is of neces
sity used in all existing computer systems but in most of them the map is specified
completely only in the source version of the program and is irreversibly confused at
the time when it is most needed, that is after compilation. The VCS system pre
serves the information map explicitly at run time so that accidental deviations from
authorised paths on the map can be immediately monitored and controlled. The
intrinsic security that these mechanisms permit operates within as well as between
programs and serves ah the software, including the system software, at trivial cost.

Evidently the use of the navigation technique requires that the work involved in
creating and maintaining the map be small compared with the work representing
the primary purpose of the information system. This was the case for the tasks for
which computers were first used. However, of late it has been increasingly recog
nised that Data Management can be expected to become the most significant use of
information systems. A database, by its very definition, represents in information
terms the activities of people whose interactions cannot be totally predictable. It
follows that the maintenance of the information map of a database involves a very
great deal of work to ensure its continued integrity and accuracy as a true represen
tation of the network of agreements, promises and achievements that bind a co
operating group of people. This situation has become widely recognised by those
who have been trying to devise standardised navigation techniques for data manage
ment. Indeed, this recognition no doubt accounts for the controversial nature of
standardisation proposals such as Codasyl. This problem is a fundamental conse

42 ICL TECHNICAL JOURNAL NOVEMBER 1978

quence of an intrinsically unpredictable component of the natural behaviour of
human information so that it is unlikely ever to be overcome within the limita
tions imposed even by an efficient and secure navigation technique such as used in
the VCS system. It is therefore also necessary to provide a complementary tech
nique to retrieve information by search in those circumstances when the work
involved in maintaining the map up-to-date is either excessive, or, in some cases,
intrinsically impossible. There is, therefore, a concomitant requirement for a cost-
effective technique for accessing information by searching for it. The CAFS project
was undertaken to explore ways of providing such a facility and using it in combi
nation with the navigation technique.

9.2 Content-addressable file store (CAFS)

Over the past few years we have designed and built such a searching device based on
the use of disc files and have conducted extensive experiments on methods of using
this to meet difficult requirements such as telephone directory enquiries, biblio-

te rm in a l
language

get name, p e rsonnel code for
j o b ; s a le s m a n and a g e < 2 8
and b onus> 750

se lec tor

Boolean
e x p ress io n
retr iever .

1 job sm a n
2 a g e 28
3 bonus 750

1 ; 8.2 s&3>

nam e pc

c o m p a ra to r
re su l ts

sea rch
control
microcode

1 ;
&
2<
&

&
re tr ieval
re g is te rs

se a rc h
control ■v

I
output
buffer

I
r e s u l t ; Brown number 186

Fig. 2 Content addressable file store

ICL TECHNICAL JOURNAL NOVEMBER 1978 43

graphic information retrieval and management information systems. The primitive
operations carried out by the searching engine are illustrated in Fig. 2. A selection
function is formed from a description of the required data unit that has been issued
by a terminal message or by a program. The encoded selector is passed to a backing-
store controller equipped with scanning hardware which comprises key-matching
channels operating simultaneously on a stream of data and a special processor that
evaluates Boolean or threshold expressions into which the outputs from the
comparator enter as arguments. A wide range of common types of selection func
tion can be represented in a very direct manner in the 2 level evaluation hardware.
It is possible for more than one independent search task to be active on the same
data stream, the major constraint being the number of key channels available. The
latter plug into a standard highway system and may be thought of as a variable
resource analogous to mainframe storage. Each channel is capable of detecting
relevant data fields by matching against embedded identifiers, and comparator
masking is available to permit part fields to be isolated.

Retrieval of data from ‘hit’ records can be achieved selectively by collecting the
contents of designated fields. It is therefore possible to compose virtual ‘reply
records’ comprising only those data required by the calling process, arranged in a
specified sequence. Alternatively, a count of ‘hits’ may be all that is required, in
which case no data as such are recovered. This editing of results is particularly
valuable in minimising central resource loading in interactive situations and is
generally beneficial in view of the size to which multipurpose records can grow.

The hardware control facilities are completed by normal physical device controls,
including write channel administration. Overall organisation is effected by a mini
processor that is also available to provide a further level of data sieving and compo
sition. The overall balance of search hardware is therefore seen to comprise a
filtering mechanism in which the full backing store transfer rate is handled only by
very simple, repetitive hardware, with progressively more complex operations
being performed on successive abstracts of diminishing volume, culminating in
procedures executed in the mainframe. Thus the sum of the products of data rate
and complexity of operation is minimised, and, in particular, the mainframe mill
and backing store channel load can be reduced by several orders of magnitude
compared with conventional serial file processing.

The storage medium can be serial or block accessed, such as tape or disc. The
most generally useful device is the magnetic disc. On a typical high-capacity disc
handler many heads are available that require only the addition of some fairly
inexpensive electronics to provide a greatly increased readout rate. Such a high rate
would flood all but the most powerful central processor, but the progressive ab
straction scheme of the special scanning equipment described above renders high
speed searching entirely feasible.

Our studies of the use of autonomous file searching devices have shown that it is
quite practicable to implement a relational model of a database. Indeed, we have
found it possible to refine the relational model beyond the published work of Codd
and his associates. As I have explained, this project originated in a conscious
attempt to identify the facilities required for a database management system and to
provide them by taking advantage of up-to-date technology. We have now reached
a stage in which we have studied a variety of specific manifestations of the genera
lised data base problem and we have not yet discovered any reasons for changing
our view of the intrinsic nature of the database management task.

44 ICL TECHNICAL JOURNAL NOVEMBER 1978

9.3 Distributed array processor (DAP)

This project was originated about 5 years ago in direct response to the recognised
requirements of weather forecasting and meteorological research. Since that time
the scope of the work has been broadened to include a very much larger range of
problems, for example plasma physics and associative information retrieval.

The great majority of present computer systems can be regarded legitimately as
direct descendants of the Von Neumann machine in the fundamental sense that
they are characterised by four features:

(a) the processor is primarily designed for arithmetic operations, with logical
operations regarded as a byproduct

(b) the store and the processor are separate
(c) the store-processor combination can obey only one instruction at a time,

each requiring not more than two operands
(d) the essential objective in programming such a machine is to represent the

overall task by a serial string of such instructions.

These primary features have been somewhat blurred in some powerful machines by
tactical measures such as pipe-lined operations on ordered strings of operands, but
the fundamental principle that strings of individual instructions are obeyed sequen
tially is still valid. Hence the connection between store and the processor inevitably
imposes a well defined upper limit to the rate at which the whole assembly can
operate. In short, it is a bottleneck.

With the introduction of semiconductor storage and large-scale integrated
circuits, the original reasons for separating processor from storage are no longer
valid. Furthermore, most of the information in the world is not numeric and
consequently a growing proportion of computer operations are not arithmetic, so
that we should now regard arithmetic processing as a specialised use of more
general and fundamental logical operations. Accordingly, to deploy up-to-date
technology to meet a broad spectrum of users’ requirements, it is now appropriate
to revise all four features of established system design practice. In the DAP all these
changes have been made.

The conventional semiconductor store inevitably is made in many elements, each
typically storing a few thousand bits. In the DAP each element has its own very
simple processor primarily designed to carry out logical operations on one bit
operands. It writes its results into its own storage element and can use, as input,
information from its own store, its immediate neighbours or elsewhere via row or
column highways in a matrix of storage elements. Thus the DAP offers the follow
ing fundamental advantages over current methods:

(a) the simple processing elements are easy to design and build, and are
flexible in use

(b) the physical distance between each processor and its store can be very short
(c) there can be many such store-element/processor-element connections

operating simultaneously
(d) real problems are commonly parallel by nature: the DAP provides a

parallel processing capability that can match the structure of the solu
tion to that of the problem. The DAP Fortran language gives a concise

ICL TECHNICAL JOURNAL NOVEMBER 1978 45

and straightforward way of expressing parallel operations and has already
been used to program several applications on the pilot DAP.

(ej since the processing elements are primarily designed to carry out logical
operations, a valuable speed-up factor compared with present practice is
achieved on all operations, data manipulation as well as arithmetic opera
tions. A typical present computer system tends to spend more of its time
on data manipulation than arithmetic, so that the DAP offers a substan
tial performance advantage on a wide range of applications.

All the processing elements obey a common program but each element can be
instructed or instruct itself to ignore any command in order to provide sufficient
flexibility to enable the apparently rigid matrix to be adapted to the needs of
different problems.

The complete assembly can be regarded as a store that has all the properties of a
traditional store but with the extra facilities that have been described. It can there
fore store its own instructions in the normal way. Moreover, the DAP store can be
incorporated as part of the store of an existing host computer of conventional
design that is responsible for putting the problem in the DAP part of its own
store and also obtaining the answers. In this way it is possible to take advantage of
the power of the DAP to tackle difficult processor intensive parts of real problems
without requiring complementary development of a new operating system.

The proposal was conceived in 1972 and a 32 x 32 pilot machine has been
working in RADC since 1976. This has given firm information on basic perfor
mance and has made it clear that the DAP can be applied to a wide range of infor
mation processing tasks; and indeed that intrinsic serialism in real problems is quite
rare. Table 1 shows estimates of the performance of a 64 x 64 machine, derived
from detailed studies, for a number of complete calculations, as compared with
existing implementations on particular machines.

Table 1 Performance of 64 x 64 machine

Arithmetic-dominated programs
Structural analysis (finite-element method)

Meteorology (complete suite of operational programs)
Many-body problem (galactic simulation)
Magneto-hydrodynamics (3-dimensions)

Decision-dominated programs
A table look-up problem
A pattern-matching problem (binary strings)
Operational research (“the assignment problem”)

6 x IBM 360/195
13 x IBM 360/195
10 x CDC 7600
14 x IBM 360/91

3 x CRAY-1
300 x IBM 360/195

1200 x IBM 370/145

More information on the DAP is given in the Bibliography. With a longer-term
view, the DAP can be regarded as a new system component, a store with built-in
processing capability; this is likely to have far-reaching effects on the evolution of
systems engineering practice, as for example in the efficient implementation of
distributed systems.

A 64 x 64 system has been ordered by the Computer Board for installation at
Queen Mary College, University of London, where it will be attached to a large
2980 host, and the Company is now actively marketing the DAP as an enhancement
to its standard system products.

46 ICL TECHNICAL JOURNAL NOVEMBER 1978

9.4 Man/machine interaction by speech

A clearly recognisable human habit in the communication of information is the
preference for the ‘conversational’ mode. It can be regarded as a behavioural
adaptation to the imperfections of human communications, since each individual
message can be supplemented on request by repetition or clarification.

To carry on a conversation each participant must be able to reply quickly,
before the last speaker has forgotten what he said and why. The CAFS system
permits such rapid interaction using a keyboard and video display for man/machine
communication. Now that we have a machine that can respond fast enough to be a
credible conversational partner, the ultimate objective is man/machine communica
tion by speech to permit conversational working in the full sense of the word. This
is a most difficult problem. The process of human speech communication by
natural language is not fully understood, and certainly could not be reproduced by
a machine. Our objective is to develop techniques that will enable practical speech
communication with an information system to be effected retaining the major
advantages o f using speech: its ease of use and its efficiency as a means of informa
tion transfer.

It is perhaps useful to consider the requirements for a speech input/output
system. It should be based on the use o f an ordinary telephone to avoid expensive
terminal equipment and to allow potential access to a very large number of users. It
should incorporate standard digital technology, which, on account of its intrinsi
cally high speed compared with the information rate of speech, can be multiplexed
to achieve low cost per channel. The use of digital techniques brings the usual
advantages of reliability, repeatability and maintainability to what has traditionally
been the province of analogue techniques.

The recognition device should be adaptive so that it compensates for peculiari
ties of the speaker and the individual telephone. In addition to the vocal adaptation
the overall system should be designed to simplify the recognition problem by
taking advantage of context. At each stage of successful communication in a con
versation, the possible repertoire for the next communication is often known to be
restricted and there is every reason to take advantage of this fact. By such means it
is possible to match a simple machine to a human user capable of great subtlety
without excessively annoying the user. Indeed, it is possible to a limited extent to
make the machine detect whether a user is experienced or casual and untrained, and
structure the interaction accordingly.

Speech output is an easier task for a machine than speech input and is likely to
be of commercial significance sooner. We now have ready for exploitation a speech
synthesiser, a powerful technique for speech output that can be implemented either
in multichannel or single-channel form. This development has great potential and
will enable computer based information services (interactive and noninteractive) to
give direct spoken information to the public. For example, in a directory enquiry
system, about 10 s of operation connect time is spent in relaying the telephone
number to the enquirer. The use of a speech output device for doing this job would
save an estimated £2,000,000 a year in the UK.

Our research activities in the speech interaction field have inevitably caused us to
be more aware of the intrinsic nature of information as a byproduct of human life.
This has been most valuable and will help us to develop techniques for handling the
more complex input/output that will be a system requirement of the future.

ICL TECHNICAL JOURNAL NOVEMBER 1978 47

10 Summary and conclusions

Prognosis for information engineering

(a) A typical information engine will be conceived as a subsystem to a natural
human information system. This needs a little explanation. What do we
mean by system and subsystem? In conventional usage we think of a
computer as a system and its peripherals as subsystems. We used to think
we could make a computer any way we liked but a peripheral device must
be constrained to plug in to the computer. We can now recognise that the
computer itself is a subsystem in this sense, whose existence can be justi
fied only if it is consciously designed to serve people whose behaviour is
unnegotiable. All this will necessitate a new attitude of constructive
humility to be adopted by information engineers.

(b) We must exploit the order that users instinctively impose on their informa
tion and respect the disorder that arises from the fact that human affairs
are not totally predictable. We are already well practised in exploiting order
since the design and use of high level languages is essentially directed to
this end. However, we can expect to gain much advantage by providing the
means for exploiting order at the lowest practicable level in our informa
tion systems so that they can offer advantages for much of the system
software as well as for tine ultimate user. In present practice, disorder is
not respected and is too often regarded incorrectly as a failure of overall
system design.

(c) Technological advance permits such a system to be designed but does not
guide how to do it. Some relevant techniques have been demonstrated in
ICL research.

(d) Profound changes in information system practice are inevitable as a
consequence of a, b and c.

(e) However, the timing of such changes is difficult to predict since large scale
events are controlled by a commercial stick/slip mechanism. This arises
from the fact that all large scale decisions are quite properly made to
maximise return on investment. The total situation evolves by the accumu
lation of understanding of objectives together with ripening technology.
When such reasons for changes are less than decisive no changes occur at
all, since the right business decision is to obtain some more return from
existing investment. When eventually the reasons become decisive, a
bandwagon effect occurs, so that the changes occur more quickly than
might be expected. In my judgement the ‘slip’ is likely to occur in the
next decade.

(f) Genuinely modular system design will be increasingly practised and will
lead to de facto standard functional specifications for modules.

(g) A typical module will comprise a combination of hardware possibly
including active storage modules derived from the distributed array pro
cessor and software whose overall functional specification will be clearly
understood by the user in ordinary human terms.

(h) The user will be able to control the deployment of such modules to match
his evolving requirements.

48 ICL TECHNICAL JOURNAL. NOVEMBER 1978

Bibliography

Variable computer system
1 DENNIS, J.B. and VAN HORN, E.C.: ‘Programming semantics for multiprogrammed

computations’ CACM, 1966,9
2 ENGLAND, D.: ‘Capability concept mechanism and structure in system 250’ IRIA

International Workshop, Protection in operating systems, 1974, pp. 63-82
3 EVANS, O.V.D. and MAY, J.: The VCS system - an overview of its operational aspects’

VCS.20 RADC, ICL, 1975
4 FABRY, R.S.: ‘Preliminary description of a supervisor for a machine oriented round

capabilities’ ICR Quarterly Report, 1968,18, University of Chicago, Section IB
5 FABRY, R.S.: ‘List structured addressing’ Ph D thesis, University of Chicago, 1971
6 ILIFFE, J.K. and JODEIT, J.G.: ‘A dynamic storage allocation scheme’ Comput, 1962,

5, pp. 200-209
7 ILIFFE, J.K.: ‘Basic machine principles’ (MacDonald/American Elsevier, 1968)
8 ILIFFE, J.K.: ‘Basic Machine language’ TR.1021 ACTP final report. RADC, 1969
9 NEEDHAM, R.M.: ‘Protection systems and protection implementations’ Proc. AFIPS,

1972,41
10 NEEDHAM, R.M. and WALKER, R.D.M.: The Cambridge CAP computer and its pro

tection system’ SOSP6,1977
11 SALTZER, J.H. and SCHROEDER, M.D.: The protection of information in computer

systems’, Proc. IEEE, 1975,63
12 Variable computer system’ ACTP Final Report. TR. 1157 RADC, 1974

Content-addressable file store
1 CODD, E.F.: ‘A relational model of data for large shared data banks’, Comm ACM 13,1970
2 COULOURIS, G.F., EVANS, J.M. and MITCHELL, R.W.: Towards content addressing in

data bases’ Computer J, 1972,15
3 LIN, C.S., SMITH, D.C.P. and SMITH, J.M.: The design of a rotating associative memory

for relational database applications’, Trans. Database Syst., 1976,1, pp. 53-65
4 MITCHELL, R.W.: ‘Content addressable file store’ Online Database Technology Con

ference, 1976
5 OZKARAHAN, E.A., SCHUSTER, S.A. and SMITH, K.C.: ‘RAP - an associative processor

for data base management’ AFIPS 1975 National Computer Conference, 44, pp. 379-387
6 SU, S.Y.W. and LIPOVSKI, G J.’ CASSM: a cellular system for very large data bases’

Proceedings of the ACM International Conference on very large data bases, 1975,
Framingham, Mass., pp. 456-472

Distributed array processor
1 FLANDERS, P.M., HUNT, D J ., REDDAWAY, S.F. and PARKINSON, D.: ‘Efficient high

speed computing with the Distributed Array Processor’ in ‘High speed computer and
algorithm organisation’ (Academic Press, 1977), pp. 113-128

2 PARKINSON, D.: ‘An introduction to array processors’ Systems International, 1977

Man/machine intention by speech
1 ADDIS, T.R.: ‘Human behaviour in an interactive environment using a simple spoken

word recogniser’ Int. J. Man-Machine Studies, 1972,4, pp. 255-284
2 ADDIS, T.R.: ‘Human factors in automatic speech recognition’ RADC, ICL. Technical

Note TN. 78/1
3 UNDERWOOD, M J., ADDIS, T.R. and BOSTON, D.W.: The evaluation of certain

parameters for the automatic recognition of spoken words, machine perception of patterns
and pictures’ Institute of Physics Conference Series, 1972,13, pp. 117-125

4 UNDERWOOD, M J. and MARTIN, MJ.: ‘A multi-channel format synthesiser for com
puter speech response’ Proceedings of the Institute of Acoustics, Autumn Conference,
1976,2-19-1

5 UNDERWOOD, M J. ‘Machines that understand speech’ Radio & Electron. Eng., 1977,
47, pp. 368-376

ICL TECHNICAL JOURNAL NOVEMBER 1978 49

Standards for
open-network operation

Jack Houldsworth
Manager, ICL Letchworth Development Centre

Abstract

The introduction of data networks' demands the consideration of open
operation between subsystems of mixed origin and highlights the impor
tance of overall interchange standards. Work on international standards for
interactive, remote job entry and file transfer has begun, but for the
present we will have to live with the existing commercial protocols and
map these on to mainframe and terminal systems. This paper describes the
architectural approach to the design of high-level protocols and the short-
and long-term prospects for standardisation. The overriding conclusion is
that the economic value of standards in the open-network environment is
indisputable.

1 Introduction

Until quite recently, the traditional computing scene was dominated by installa
tions that were planned and implemented as self-contained, ‘closed’ systems.
Some resource-sharing systems with elements from several different commercial
origins have been made to operate successfully but the agreement of the rules for
interconnection have required delicate negotiation, and, more often than not, the
complete adoption of the rules of the dominant supplier in the mix. Even these
systems, for all intents and purposes, operated in a closed-system environment.

A significant change can now be detected as some users begin to explore the
possibilities of ‘open working’. This is defined as the ability of the user or the
program of any computer to communicate with the user or the program of any
other. The awareness of the possibilities of open working is a direct consequence
of the planning for data networks which has been carried out in many countries
over the last few years. Data networks will follow the same pattern of evolution
as voice networks and they will have the same degree of ‘openness’ as the tele
phone and the Telex networks, with complete freedom of interconnection.

The International Telegraph & Telephone Consultative Committee (CCITT)
has defined a standard network-access protocol (X25), which was originally aimed
at packet-switched networks, but it will undoubtedly be offered by all future
packet- or circuit-switched data networks. It is widely believed that this new
protocol will immediately solve all interconnection problems, once the basic hurdle
of introducing the interface has been overcome. This is not so! The interface and
the data networks behind it will be transparent to the interchange between users.
The need for mainframes to be aware of how alien subsystems are driven is un-

This paper is an updated version of a paper published in Computer Communications in
February 1978. We are grateful to the Editor and the publishers for permission to use this
earlier material

50 ICL TECHNICAL JOURNAL NOVEMBER 1978

changed, whereas the additional requirement for mainframes and terminals to be
able to control the path through the network is introduced.

It is a fairly straightforward task to adapt mainframes to drive X25, but it is not
practical to adapt all the existing terminals that users may want to connect to
networks. Hence some way of attaching terminals has to be found and the popular
idea is to define ‘virtual-terminal’ protocols. These will be a synthesis of the
common features of each popular class of terminal. Fringe conversion units will
take care of the differences between real terminals and the virtual-terminal stan
dard. Virtual-terminal standards will only solve the basic communication problem
and, even in the simple case of a ‘scroll-mode’ teletype, the communicating main
frame will have to be aware of the specific code set, the number of characters per
line and any special tabulation facilities at the physical terminal before sensible
information can be transferred and printed.

This begins to indicate the problem. The scroll-mode terminal is only the begin
ning. The problem becomes more complex as keyboard/screen and remote-job-
entry (RJE) terminals are considered. In these cases a sophisticated dialogue with
the mainframe operating system is often involved. The next major step towards
open working will be the free interchange of files. In addition to common file
structures, this will require standards for the dialogue between the operating sys
tems of the communicating mainframes.

The International Organisation for Standardisation (ISO) and the CCITT have
generated standards in many of the areas involved but now a great leap forward is
needed to bring these existing standards together into a properly structured archi
tecture and to add the elements that are necessary to transport information freely
in the open networks of the future.

2 What is an open network?

Fig. 1 gives an impression of an open network of the future and the broken line
shows typical intercommunication paths. In a truly open concept, each terminal,
small processor and host processor will be able to intercommunicate freely and may
agree to delegate, accept or share tasks. Even the systems that were previously
regarded by the CCITT as message-transfer services, such as facsimile and the pro
posed enhanced Telex service (Teletex), are coming under the open network
umbrella. The latter is bound to grow and merge with the general word processing
environment. Ultimately, all data-communication services will be enveloped.

3 The architectural approach

It is essential that a strict architectural approach to the design of the overall com
munication process is adopted. Using this approach it is possible to hide the particu
lar facilities of each network from the higher levels, thus allowing the terminals and
processors to use the communications facility as a subnetwork that is totally trans
parent to the actual data-communication process. Common high-level application-
oriented protocols, which are network independent, can only be designed when this
approach is used.

All the functions involved in the overall communication process can be broken
down using the ‘onion-skin’ architecture technique. This was developed during the
original work by ICL on data-communication protocols which led ultimately to the

ICL TECHNICAL JOURNAL NOVEMBER 1978 51

Fig. 1 Typical open network

current high-level data-link control (HDLC) standard.
ICL recognised that each function in a communication process can be physi

cally or logically separated and that any function that is performed on entry into
a system is exactly reversed on exit. Hence the system is mirrored about the centre
and the heirarchical layers can be drawn as concentric circles; hence the term

52 ICL TECHNICAL JOURNAL NOVEMBER 1978

‘onion skin’. When this principle was synthesised by Mr. D. Ackerman of ICL in
1968 it was called ‘the principle of complementary symmetry’. The current
advanced status of this work will be exposed in a later issue of this journal.

Fig. 2 represents the overall communication process in computer networks.
Typically, the user at one computer will send commands and data down through
these functional levels, across the telecommunication network, and up through
corresponding functional levels in the remote processor. The response is in the
reverse sequence.

Fig. 2 Architecture of communication process

ICL TECHNICAL JOURNAL NOVEMBER 1978 53

4 Definition o f terms

User Level: the user himself or a program in a computer that initiates or controls a
transfer of data either manually or automatically.
Commands: the commands that determine the type of communication, the attri
butes or characteristics of a particular transfer and the control of actions.
Data and its structure: the coding o f information, the formats of messages and the
creation and display of messages, especially in interactive operation where a
terminal is involved.
Files and their structure: database structures, the format of stored data, the means
to access files, sorting sequences and file labelling.
Operating system: the basic software in a processor that controls all processes and
operations. Virtually all processes are routed through this. Access methods must
blend with all the proprietary operating systems.
Command protocols: currently three major types are recognised. These are proto
cols to handle files of data (including the activation of input/output devices),
job-control command protocols (including the loading of new programs into a
remote computer), and message protocols, especially for interactive operation.
Message protocols will include the virtual-terminal protocols mentioned above.
Network management: the method of establishing a transmission link between
sender and recipient. This may involve switching, including the addressing of the
sender and the recipient, and the establishment of the identity of the calling and
called parties. It also includes flow control, recovery from line errors and faults,
alternative routing, means for internetwork operation, priority, security and the
method of terminating a call.
Block or packet structure: the method of distinguishing line-control signals from
data by adding some form of ‘envelope’ with a header (to include addresses and
other link-control data).
Link control: once a transmission link is established, its control, including error
control and retransmission, is referred to as link control. The basic mode and the
HDLC procedure standards that have been produced by ISO are typical of this
level.
Coupling equipment: the means within the data terminal equipment (DTE), which
may comprise a simple terminal or a whole computer, to connect to the line. This
may include the connection to concentrators or multiplexers.
Connection to the PTT network: the PTT equipment is often referred to as the
data-circuit terminating equipment (DCE). In existing systems this will be a modem
but new data networks may have a unit known as a network terminating unit
(NTU). Transmission, timing and synchronisation are provided at this level. It will
also include the circuit into the local concentration point or the switching centre
of the network.
PTT network: includes all the switched or leased network facilities provided by the
PTT. In packet-switched systems it includes all the exchange equipment which
controls the calls and the packet switching exchanges or nodes. It also includes
user-support services, such as testing and fault-finding facilities and the monitoring
of the performance and the quality of the service.

It may be noted that in some cases certain of the above levels may be bypassed
(e.g. an interactive message may not involve a data file) or the route may be
predetermined (e.g. point-to-point communication over a leased circuit).

54 ICL TECHNICAL JOURNAL NOVEMBER 1978

5 The value of an architectural approach

There are three main views of a computer network: the administrator looks at its
value to his users, the computer man sees only the computers and the telecommuni-
cator looks outwards from the network. The architectural concept clearly relates
each function and permits these three viewpoints and perspectives to be combined.

The architectural diagram defines the chain of functions that make up overall
process. If any link in the functional chain is weak—or, worse still, omitted—the
efficiency of the whole system is impaired.

Fig. 2 reveals clearly where interfaces should be established (the term is used
with its proper meaning of an imaginary surface at which the form, function and
procedures for signals that cross the interface are specified). They should lie
between an adjacent pair of the functional units.

The approach also shows ‘regions’ where standards may be prepared effectively—
to fall within one or a few adjacent functional units and fit neatly between pairs of
interfaces.

6 Implementation

It is emphasised that the levels of Fig. 2 are functional levels. Some of them corres
pond on a one-to-one basis with items of equipment, e.g. ‘connection to PTT
network’—to a modem and a circuit to the exchange; others correspond to identifi
able items of software, e.g. the operating system.

There are others, however, that have to be grouped together for implementation
and Fig. 4 shows a typical example o f the arrangements for one user at a simple
terminal to communicate either with another similar user, via the operating system
of a host processor, or directly with a disc-based service in a remote host computer.
In this, the functions between ‘network management’ and the ‘DTE coupling’,
inclusive, are termed the ‘transport service’ and those from ‘connection to PTT
network’ to the telecommunications facility are termed the ‘telecommunication
function’.

In most data networks the preferred interface between the transport service and
the PTT network will be CCITT, X25, which is described below. However, simple
unbuffered character-mode terminals, such as teletypes, will not be able to handle
messages in the form of synchronous packets and the transport-service function
must include a packet assembly and disassembly (PAD) level which can be pro
vided either by the user, the terminal supplier of the network implementer. The
interface between the PAD function and the network can then be at the X25
packet level. The PAD function ensures that characters can be transferred between
the character-mode terminal and the packet network but the actual control of the
mechanism and the display formats are a bigger problem.

Network implemented are busily defining the basic functions of the ideal
character-mode terminal and this notional terminal will be known as the Virtual
terminal’. Users will expect to encounter this virtual terminal, and any physical
terminals that do not conform will be handled by mapping at the command proto
col level. Certain basic functions such as speed control and specific control charac
ters will have to be incorporated at the command protocol level in the PAD func
tion at the terminal end of the link. These functions are shown as VTP in Fig. 4.

ICL TECHNICAL JOURNAL NOVEMBER 1978 55

functional levels s ta n d a rd s technical committees

u se r a n d te rm in a ls

p ro c e s s
contro l p ro g ram s

d a ta

files

o p e ra t in g sys tem

tran sp o r t service
interface

command
protocols

t ransport
service
function

network
m anagem ent

block structure

link control

DTE coupling

— — —

DCE connections

PTT network

S30 (page prin te r)

ISO 1539 (For t ran)
ISO 1538 (Algol)
ISO 1989 (Cobol)

ISO 646 V3
(a lp h a b e t)

ISO 1001 (magnetic
tape)

ISO 4341 (d iscs)

v ir tu a l- te rm in a l
protocols DEVTP
(E uronet) X29
X29 (PAD control)

level 3 of CCITT X25

level 3 of X25

ISO 174 5 (basic mode)
ISO 3309/4335(HDLC)
level 2 of X25

in te r face
specifications

ISO 2110
V24.X21
X24
level 1 of
X25
many Vs and Xs for
modems and other
facili ties
mirror of X25
future X7X (packet
switching) m an y V an d X
recommendations

ISO/TC97 CCITT
SCI SG X

SG XI
SC5
SC9

SC2
SC14

SC15

(CEPT/
EEC)

SG VII

SC6

WGI&2 SG VII

SC6
WG I

SG VII

SC6
WG I SG VII

SC6 SG VII
SGXVII

SG VII
SGXVII

SG VII

Fig. 3 Standards organisations involved

The other function that is shown at the command protocol level in Fig. 4 is
the file-transfer protocol requirement (FTP). If the FTP characteristics are different
in the two hosts more mapping will be required at the command level to interpret
the commands that control the interchange and it may be necessary to carry out
even more mapping conversions at other levels such as the file structure level.

56 ICL TECHNICAL JOURNAL NOVEMBER 1978

7 Progress towards standardisation

The following Sections outline the progress that is being made by ISO, CCITT and
the network implementers, and highlight the important network standards. It is
important to distinguish between a genuine attempt to create standards that fit the
architectural concept and those that are produced to handle the existing population
of terminals and processors.

8 Data-link control procedures developed by ISO

These are in two generations, both of which were originally aimed at star-connected,
multipoint links, with centralised mainframe control.

ICL TECHNICAL JOURNAL NOVEMBER 1978 57

8.1 Basic Mode

The first generation, known as ‘basic mode’, was produced between 1962 and 1973.
This is a character-oriented protocol which uses transmission-control characters to
identify significant events in the flow of data and control information.

Basic mode defines only the data-transmission mechanism and is intended to be
‘more or less’ transparent to the data that are being transmitted.'

Most manufacturers have developed basic-mode compatible equipment. They
all used the same generic standard but the interpretations have been different and
most implementations embody terminal and device-control functions. It is likely
that the best features of the most popular interpretations will be lifted by the
network implemented and regarded as virtual protocols for interactive and RJE
operation. This is discussed later under virtual-terminal protocols.

It should not be forgotten that since the basic-mode protocol defines only the
link-control aspects of the system it can be fitted very neatly into the architectural
pattern described above. Indeed the existing ICL architecture was developed in
association with the basic-mode standard and the higher levels will be transported
to other link-level protocols, such as HDLC.

8.2 High-level data-lin k con trol

The second generation data-link control protocol, known as high-level data-link
control, emerged as a by product of the architectural studies described above.

HDLC has only one transmission delimiting sequence and transmission is always
synchronous, which means that the link-control hardware can be produced in a
standard form for all connections.

HDLC was originally designed to cover mainframe-to-mainframe and mainframe-
to-terminal applications, and was specifically aimed at 2-way simultaneous trans
mission over point-to-point or multipoint leased circuits. One station controls the
scheduling of the link and all other stations are secondaries. The standard is in two
parts:

(a) A ‘Frame-Structure’ standard (IS3309) rigidly defines a transparent
envelope that is used for all data, control and response messages. Each
envelope contains space for an 8 bit address and 8 bits of link-control
information.

(b) An ‘Elements of Procedure’ standard (IS 4335) defines the commands,
the responses and the frame-numbering system which are all included in
the 8 bit control field of the standard frame.

The ‘Elements of Procedure’ standard contains several options and the user must
select the appropriate parts for his particular application. To limit the variety of
implementations, and to improve the chances of compatibility between systems, ISO
has generated two ‘class of procedure’ standards, for point-to-point and multipoint
operation, respectively. These are still passing through the ISO voting process but
the one that is of direct interest in the network context is the point-to-point version,
which has been adopted by the CCITT for the link level of the X25 network-access
protocol.

58 ICL TECHNICAL JOURNAL NOVEMBER 1978

The CCITT has produced a Recommendation (X25) for synchronous access to
packet-switching exchanges. (Note that the CCITT produces recommendations not
standards). This covers the DTE to DCE control levels in Fig. 2 and is divided into
three logical levels:

(a) Level 1 is an electrical and procedural DTE-to-DCE interface.
(bj Level 2 is a rigidly defined point-to-point HDLC class of procedure for

transmission and error control between the DTE and DCE. Currently
two versions of level 2 exist. Some changes took place in the ISO philosphy
after the CCITT prepared its original standard and the CCITT has now
introduced a second version, which is compatible with the latest ISO
point-to-point standard. It is expected that the original version will even
tually fall into disuse.

(c) Level 3 defines how packets are transmitted inside HDLC envelopes using
heading formats to define the packet type, e.g. network-control packets
(call set up and clear down, call progress information, facility control etc.)
and user-to-user data packets. The heading includes the subscriber address
ing information.

A Virtual-call’ approach is adopted, which means that an establishment phase
precedes the data packets and a virtual path is set up for the subsequent data-packet
interchange. The heading of each packet contains provision for logical channel
identifiers for multiplexing a number of calls on the same DTE-to-DCE path. The
need to include the addressing information in each data packet is avoided by
referencing the route to the logical channel number which is used in the call-
establishment packet.

If the system that is being implemented is the equivalent of a leased-circuit star
network a logical channel can be permanently assigned to each possible connection
to avoid setting up and clearing down the virtual circuit for each interchange. This
is known as ‘permanent-virtual-circuit’ operation.

A ‘datagram’ enhancement to X25 is being studied. If this is agreed, it will
allow data and routing information to be sent in the same packet to avoid the over
head of call establishment and clearance for short data messages.

Most PTTs and many other network implementers have already declared their
intent to offer X25 on their future national networks. The UK Post Office and
Euronet are amongst these. The Datapac network in Canada is already offering
X25, but at the moment this implementation uses the old version of level 2. The
French network Transpac also has X25 as the standard interface for packet-mode
terminals. There is no doubt that X25 is the access protocol of the future and we
can now look forward to enhancements within the framework of the standard,
such as the datagram facility. These new facilities will have to be hidden from the
higher levels of the system, within the transport function, to ensure that the high-
level protocols, when produced, can retain their truly network independent
characteristics. This will avoid the need for the network idiosynchrasies to be known
by the main operating system of the host.

The CCITT and the ISO have identified a need for a simplified access protocol
for synchronous HDLC systems. The work was commenced under the heading of

9 Synchronous access to packet-switching networks

ICL TECHNICAL JOURNAL NOVEMBER 1978 59

‘Frame-mode DTE’, which has now been changed to ‘New common DTE/DCE
interface’. The studies are at the early definition stage.

10 Network transport protocols

The node-to-node transport protocol within a data network is invisible to the user
except for the end-to-end delays which are introduced. Standards in this area are
always regarded as the business of the carrier, who may use time-division multi
plexing, circuit switching or packet transmission to achieve what he believes to be
the most effective system. Sometimes the choice is political and is only loosely
related to economics. ‘Gateways’ will exist between networks to take care of any
differences between transport protocols, and these should also be invisible to the
users. However, it should be noted that a fully comprehensive gateway must also
take care of the mismatches between codes and higher-level protocols. This is
mentioned later under virtual-terminal protocols.

It is generally thought that the CCITT X25 recommendation covers the net
work-transport protocol area, but this is not the case and the CCITT is producing
a specific recommendation for this function.

11 Virtual-terminal protocols

Virtual-terminal protocols are being developed by the CCITT, Euronet and others
with loose co-operation and much overlap. These recognise that certain classes of
terminals already exist and attempt to map the popular classes and their current
protocols on the packet-switched networks.

Virtual-terminal protocols aim to create a situation where all mainframes know
the characteristics of a standard notional terminal and the differences between the
virtual terminal and the physical terminal are sorted out by conversion equipment
to produce a sensible presentation. The idea has been derived from network standard
terminals which have been developed for resource sharing networks, such as
Arpanet.

Ultimately it may be possible to remove the virtual-to-physical-terminal conver
sion, when virtual- and physical-terminal protocols correspond directly. It is there
fore important that the virtual-terminal protocol should be specified with the
overall architectural concepts of open networking in mind since this is the real-
terminal protocol that the world will inherit.

It is also important to note that any differences between the virtual-terminal
protocols which are used in separate networks must either be known by the host
which is driving them or be handled by conversion at the gateway between the
networks and, unless the VTPs in the various networks are harmonised, gateway
conversion for all classes of operation will be an almost impossible task. The Inter
Network Working Group of the IFIP is carrying out very good work in identifying
the VTPs that exist in the various worldwide networks and analysing their differ
ences.

12 CCITT recommmendations for packet assembly and disassembly

The CCITT has produced a family of recommendations to cover the attachment of
‘teletype’-compatible terminals to networks. These range from conventional ‘scroll

60 ICL TECHNICAL JOURNAL NOVEMBER 1978

mode’ teletypes to very simple screen terminals which communicate in teletype
mode. As previously discussed, asynchronous teletypes are usually unbuffered and
the need for packet assembly and disassembly (PAD) as a terminal service is intro
duced. The recommendations define the PAD facilities and how they are controlled
by either a remote host or the terminal that is being served by the PAD. They are
numbered X3, X28 and X29.

The recommendations were designed ahead of the open-network studies and it
has already been recognised that they do not fit neatly into the system architectu
ral model that has been proposed. The recommendations include only basic func
tions and it is necessary for the mainframe software to be aware of any complex
characteristics of the device that is being driven through the PAD and any special
display-manipulation facilities that are available.

X3: defines the facilities of the PAD. In addition to the basic packet assembly
and the virtual call-control functions of X25, which it performs on the behalf of
the terminal, it also includes user-selectable functions such as ‘echo’, a range of
message terminations, idle timer periods, suspension of output, discarding of
output, line folding, “padding’ after carriage return etc. The PAD specification
also includes parameters that are predefined for each terminal connection, such
as the line speed (up to 300 bit/s in the present recommendation).

X28: defines the interface between asynchronous terminals and the PAD. It
specifies the call establishment and clearance procedures for the terminal and the
interchange of control and service signals. It also describes how the PAD select
able functions are controlled and checked by the terminal and the responses by
the PAD. All the control and service information to and from the terminal is
transferred by character sequences.

X29: defines how a remote packet-mode terminal (normally a host) communi
cates with an asynchronous terminal via a PAD and how it may access and
control the user-selectable functions in the PAD.

13 Other asynchronous virtual protocols

A draft Euronet Standard for a scroll-mode virtual terminal (ESP25) was close to
agreement before the CCITT produced its recommendations X3, X28 and X29 but
this has now been discarded since the CCITT recommendations satisfy the Euronet
requirements.

Arpanet already has a standard for teletypes and display terminals which operate
in scroll mode, known as Telnet. Telnet differs from the CCITT PAD recommenda
tions. The most fundamental difference is that Telnet embeds all control characters
in the data stream and identifies them by an escape character, whereas the CCITT
recommendation uses separate sequences for control and parameter signalling.

This gives a clear indication that, even at the simple scroll-mode-terminal level
a lot of work still has to be done.

ICL TECHNICAL JOURNAL NOVEMBER 1978 61

CCITT X25 makes adequate provision for the connection of synchronous terminals
and the CCITT is not currently working on synchronous virtual-terminal protocols.
This will be the responsibility of the ISO in the long term but, because adequate
standards do not exist, network implementers are making their own provision for
the connection of the existing population of terminals.

Euronet is studying the synchronous-terminal area and, in particular, single and
clustered interactive terminal systems and remote job entry. Nearly all existing
terminals in these two classes use a derivative of the basic-mode link-control proto
col with some differences of interpretation. However, the reconciliation of the
differences in link protocol is a small problem compared with those that exist at the
the higher levels where each manufacturer has introduced very sophisticated facili
ties.

In video display systems, the accent is on screen-manipulation facilities involving
cursor.-movement liinctions, text manipulation (such as ‘rack up’) and hard-copy
features. If a virtual-terminal protocol is produced for this class of terminal, all the
facilities that are considered to be desirable in the real terminal of the future must
be standardised, including the size and basic geography of the display screen. In the
meantime, the mapping between the virtual and the physical terminal will introduce
many problems. For example, if the application level in this host processor produ
ces a tabular format for a virtual-terminal standard screen size it will, undoubtedly,
produce an illogical format on a screen of a different size, regardless of how clever
the mapping function tries to be. At present it is also necessary for the interactive-
terminal operator to be aware of the formal dialogue that has to be exchanged with
each specific host operating system and no amount of translation by a VTP conver
ter can replace this.

Euronet has produced a screen-mode specification for synchronous interactive
terminals known as the data-entry virtual-terminal protocol (DEVTP). Like the
scroll-mode VTP the specification defines a basic set of functions but the DEVTP
contains more sophisticated elements such as operator interrupt and activation
sequences and screen-manipulation facilities. It also specifies a range of screen
sizes. Although the current specification will be implemented by Euronet it can
only be regarded as a first attempt and improved versions have been proposed that
conform more strictly to the architectural model that is being proposed for open
system operation.

The same synthesis problem exists with RJE terminals but it is compounded by
the range and characteristics of the peripherals on the terminal and its degree of
intelligence. In the open-network concept, the RJE system may be either a simple
passive input-output terminal or a host system which transfers batch jobs on a
resource-sharing basis, although it could be argued that this latter extreme is
covered better by the host-to-host protocols, described below.

It has not yet been decided whether Euronet will provide a ‘black box’ for each
style of VTP that is supported or whether it will be up to the user to provide his
own conversion to the X25 packet interface. It is assumed that the latter will never
be precluded. Whichever is adopted, the basic input/output and display characteris
tics of the terminal will still be visible to the mainframe software and any sophisti
cated features at the terminal must be known before advantage can be taken of
them.

14 Synchronous virtual-terminal protocols

62 ICL TECHNICAL JOURNAL NOVEMBER 1978

The above problems serve as an indication that the generation of synchronous
virtual-terminal protocols will be very difficult and, if they are produced to cover
short-term needs, they may not satisfy the architectural ideals described above.
Until the right standards are produced it is probably better for terminal and main
frame suppliers to continue to emulate each other’s protocols (mapped on to X25),
in order to achieve a satisfactory interconnection, than to try to identify the lowest
common denominator of the facilities of the existing systems in a particular class. It
is assumed that the generation of the new common DTE/DCE interface which has
been mentioned above will simplify the type of connection.

15 Host-to-host protocols

For some years Arpanet has been using a file-transfer protocol (FTP) which in
cludes facilities for full access control and identification of the file name in a
standardised form. Arpanet has developed the idea of carrying control information
on a separate logical channel from that used for data and this requires careful
examination against the architectural ideas mentioned above.

Arpanet also has a generalised host-to-host ‘interprocess’ communication proto
col, known as NCP, that simply conveys control information in the leader field of
each data message, but a new version is now being tested called ‘transmission-
control protocol’ (TCP) which, like FTP, uses separate logical channels for control
and data.

The EIN network implementers have specified a Bulk Function Transfer (BFT)
which is intended for more general host-to-host transfer and which can also be
applied to file transfer. EIN has copied the idea of using separate logical channels
for control and data but there is no direct compatibility between Arpanet FTP/TCP
and the EIN BFT and mapping between them will be difficult.

Considerable work is needed in the area of file transfer and interprocess com
munication for general compatible standards and this work is only just beginning.

16 New work on international standards

Fig. 3 shows the international standardisation groups involved in the various aspects
of this subject and shows the distinctions and the interrelationships between their
work. It also shows some of the important existing standards at their relevant
levels. This list is by no means exhaustive.

The work on structured high-level protocols began in the British Standards
Institute (BSI) in 1975 as a result of the architectural studies which had already
isolated the link-control functions and led to the generation of HDLC. The BSI
has been- a prime mover within ISO on this subject and has been directly responsi
ble for the establishment of the new ISO/TC97/SC16 high-level-protocol committee.

The ideal structure for high-level protocols, based on the onion-skin architecture,
which was proposed by the BSI, has been consolidated by the ISO committee and
a provisional model of open-systems architecture has been produced. This separates
the user tasks and working data, the activation of the network and the interface to
the transport service. Ways of expanding this structure into detailed specifications
have already been considered. These extend far beyond the scope of the virtual-
terminal protocols to cover the entire problem of task interchange.

ICL TECHNICAL JOURNAL NOVEMBER 1978 63

Much work has been done by the BSI on task activitation and network set-up,
including the criteria for establishing and clearing a link between two systems and
the parameters of a network-control language. Requirements for flow planning,
control and recovery have been studied. The work has so far been concentrated
on a command language for four types of information transfer:

Class 1: Short transaction-oriented messages-which do not require either
response from the receiver, or the retention of the communication link.
Class 2: Remote job entry—tasks where the function of the protocol is to signal
the actions to be taken by batch-processing resources.
Gass 3: File transfer—between systems and, on occasion, between different
media. The BSI is taking into account the good work which has already been done
in this area by the UK Post Office EPSS user group.
Class 4: Interactive tasks—using either simultaneous (duplex) dialogue or very
rapid line turnround involving the retention of the communications link during
processing. Interactive task set-up often involves the use of RJE-like protocols to
indicate resource requirements, and arrange for file transfers before or during
processing.

One possible way that has been considered for distinguishing at the command
level between the different classes and different messages in the same class is to
use command verbs with different semantics, i.e. put/get for straight message
transfer, take/give for RJE operation etc.

The interface to the transport service (Fig. 4) has been considered and the basic
functions that should be provided within the transport service have been defined in
outline, including the commands which interface the higher levels to the transport
service. A standard transport-service interface that is independent of the commu
nication network has been identified.

As these standards mature in the international arena, they will lead to a new
dimension in networking. It will be possible to add new application-oriented
interchanges within the same basic procedural structure. The need to perform con
versions at several architectural levels for each new terminal type which is intro
duced will be avoided. However, it will be necessary to pay great attention to
device characteristics, and the need for knowledge of special sophisticated terminal
features at the application level is inescapable, even with this approach.

17 The Value of Standardisation

17.1 Economic

During the next ten years it has been estimated that $1,000 million will be spent
worldwide in the areas considered in the paper by computer users, manufacturers,
software houses and the PTTs. Even if standards can save only a tiny percentage in
this sum, their economic value is indisputable.

Conversely, if the absence of standards contributes to extra work, such as
reprogramming to meet different procedures, or to any increase in confusion, the
wastage will be on a grand scale. Most importantly it will be the wastage of the
world’s most valuable commodity: skilled manpower!

64 ICL TECHNICAL JOURNAL NOVEMBER 1978

17.2 Practical

It is not apparent how any effective degree of open working can be attained with
out network standards.

Clearly, users and manufacturers will not be able to implement the full range of
the new standards overnight and a major aim of network standards will have to be
the harmonisation of related equipment and procedures, to make conversion of
existing equipment as simple as possible.

17.3 Commercial

The major owners of distributed computer systems and the major manufacturers
are currently having to provide packages relevant to the most critical functional
levels of Fig. 2, from ‘command protocols’ to “link control’, inclusive. For example,
the airlines (SITA, IATA, ARINC), the European banks (SWIFT), and several other
commercial networks, for the lack of any alternatives, are being oriented towards
their own immediate needs. The generation of international standards at all the
levels discussed could prevent further drifting apart and will, hopefully, bring these
users more closely together in the future.

18 Conclusions

To permit open operation in the computer-network environment, network stan
dards will be needed.

They will be of significant economic value to computer manufacturers and users.
The need is urgent. Commercial organisations are having to provide customised

equivalents, but these are not yet so rigid or widely adopted as to prevent modifica
tion to attain some degree of harmonisation.

There will be great benefits in looking ahead to known needs, rather than con
stantly suffering the costs of trying to convert previously established, different
schemes.

Acknowledgments

The most siginificant contribution in this area was the original input on system
architecture by David Ackerman of ICL which set the pattern for all this work.

Bibliography

Much of the information that has been described is currently only published in the
papers of the relevant standards organisations or the handbooks of the network-
implementation groups and is not all freely available. The basicmode and HDLC
link-control standards are available from the BSI under BS 4505 (parts 1 to 7) and
BS 5397 (parts 1 and 2), respectively. The CCITT X series recommendations have
been published in Vol. VIII of the CCITT plenary records for 1977 (known as the
‘orange’ books), and a special supplement containing recommendations X3, X25,
X28 and X29 is available from the CCITT publications Department.

ICL TECHNICAL JOURNAL NOVEMBER 1978

Distributed computing in
business data processing

M.V. Wilkes F.R.S.

Professor of Computer Technology, Computer Laboratory,
University of Cambridge

Abstract

The paper discusses the extent to which developments in minicomputers
and in micro-electronics are making it necessary to reconsider the role of
a large central computing installation in a business environment.

1. Introduction

In the computer field, as in other fields, we have our OK terms. The current one is
distributed computing. Everybody is talking about how minicomputers are be
coming more and more powerful and less and less costly, and we keep reading
articles about things that the semiconductor industry has up its sleeve. Some people
will tell you that the big centralised computer centre is already out of date, and
that the work could be done better and more cheaply if every department or office
had a minicomputer or two of its own. All that it necessary, they say, is that people
should stop being reactionary and get on with it. More sober heads point out that,
even if the trend is admitted, you cannot break down an organisation and replace it
by a new one overnight, and that there are other factors besides the availability of
equipment to be taken into account when comparing the advantages of decentrali
sation with those of centralisation.

Before one can form a rational view of what is likely to happen and decide how
immediate the threat to established interests really is, one has to understand clearly
what the technical developments are and what part of a data-processing installation
they affect. A data-processing installation consists partly of mechanical equipment
and partly o f electronic equipment ; often the two elements are mixed in the same
box. On the whole we are much happier nowadays with the electronic part of our
data-processing systems. This was not always the case, and it is a benefit that has
come to us as a result of the development of solid-state circuits.

2. Disc files

We would dearly like to see the replacement of the rotating disc file by something

ICL TECHNICAL JOURNAL NOVEMBER 1978

with no moving parts, but this desirable end can hardly be said to be in sight. On
present showing, bubble and CCD memories are unlikely to provide the capacity
required at reasonable cost. The only approach of which I am aware that might lead
to a device with a capacity rivalling that of a disc file involves the use of a steered
electron beam writing on a semiconductor target. Even if such a device could be put
into production, serious problems of reliability and life might be expected, particu
larly as semiconductors do not like being bombarded with high-voltage electrons.
On the whole, the chance of a nonrotating replacement for the disc file becoming
available in the foreseeable future appears remote. One does not, of course, know
what is just round the corner; something may turn up, but for my part I shall be
lieve it when I see it.

We may still be dependent on rotating magnetic memories, but the present-day
ones are a great advance, both in cost-performance and in reliability, on the primi
tive devices that we had 20 years ago. Developments in this area may not have the
same glamour as developments in semiconductors, but the progress has been truly
remarkable. Few of us would have predicted 20 years ago that densities anything
like those achieved in modern disc files would be possible, let alone compatible
with increasing standards of reliability. Moreover, we have not yet reached the end
of what can be achieved. High performance disc files do, however, require regular
attention and work best in a dust-free and air-conditioned environment. They take
up a lot of space in the computer room, largely because enough space must be left
around them for access by operators and maintenance staff. If the wished-for day
ever arrives when disc files are replaced by some solid state—or even liquid sta te-
device, not the least benefit will be that we shall be able to put the entire com
puter in the basement, with no environmental control other than the removal of
heat, and forget all about it.

The density at which information can be written on magnetic tape has also
increased markedly over the years and is still increasing. As disc files have been
improved, however, the role played by magnetic tape has steadily become less
important. Nevertheless, magnetic tape is so ideally suited to archival and long
term storage that I see a continuing role for it whatever happens.

3. Semiconductor electronics

While we can certainly expect further useful improvements in efficiency and
reliability in mechanical peripherals—including printers—it is obviously in the
electronics that the most dramatic changes will occur. After an uncertain start in
the late 1950s, transistors rapidly became more reliable and faster in operation.
During the last 10 years the use of discrete transistors has been phased out in favour
of integrated circuits containing a small number of gates and flip-flops. It is to these
developments, rather than to the much more recent, although long foreseen, break
through into large-scale integration (LSI), that we owe the low cost of the mini
computer.

LSI is now an accomplished fact and has given us pocket calculators, digital
watches, and microprocessors. Microprocessors are to be found in increasing
numbers in business data-processing installations, but they are tucked away in
disc-file controllers, printers, and the like. Microprocessors have already found
their way into the processing units of low-performance minicomputers. Soon they

ICL TECHNICAL JOURNAL NOVEMBER 1978 67

will be used in the bigger and faster minicomputers as well. This will, however,
have only a marginal affect on cost since the dominant element of the processors
both in cost and number of chips will be the memory. The real impact of LSI on
general-purpose computing will not be felt until we have low-cost memory as well
as low-cost microprocessors. It will be some years before this comes about, but
sufficient is known of the state of progress in the semiconductor industry for
some fairly confident projections to be made.

The cost of the memory depends on the number of bits that can be stored on
a single silicon chip. From the point of view of the semiconductor manufacturer,
the present state of the art is 16k bits per chip. However, although manufacturers
have been delivering chips of this kind for over a year, the number that have found
their way into computers that have actually been delivered to customers must be
very small. Most computers with semiconductor memory, in fact, have Ik bit
chips corresponding to the state of the art of several years back, although the
newer models use chips with 4k bits. It is necessary to use 128 of these chips to
provide a 16 bit minicomputer with 32k words of memory. With 16k bit chips
this number drops to 32 and, when the point is reached at which chips holding 64k
bits can be manufactured, only eight chips will be needed. Present indications are
that this point will be reached in the early 1980s and if this is so the chips should
be'in widespread use by the middle of the decade. During the next few years, how
ever, for any worthwhile computing, as distinct from control, application memory
costs will dominate and it is important that we should not allow ourselves to be
misled by the low cost o f the microprocessors themselves.

4. Small and large computers

In spite of the fact that the semiconductor revolution has still some considerable
way to go, the minicomputer is well and truly with us and has been for some time.
Indeed, the name is fast losing its point. It once meant a computer at the very
small end of the range—off the end of the range, perhaps—but now the mini
computer, given sufficient memory and a full range of peripherals including disc
files, is indistinguishable from a medium-scale computer. In fact, one may expect
that all but a few of the biggest and fastest mainframe computers of the future
will be seen as descendents of the modern minicomputer rather than as descendents
of the mainframe of today.

Some people take the view that there will, for economic reasons, be no future
for the superfast mainframe. The ground is certainly being cut from beneath its
feet by the grown-up minicomputers to which I have just referred. These will be
produced in quantity and therefore at low cost. The argument is that there will
no longer be a cost advantage in using the single superspeed processor and that it
will be better to use a number of slower but still fast processors. This may well
be true in business data processing and in much scientific computing where it is
possible to break the work down into self-contained jobs—indeed, in business
data processing this would only reverse the process that originally brought a large
number of such jobs together in order to achieve economy of scale. There are some
scientific tasks, however, that are indivisible, although no-one seems to knowhow
many. Possibly the superspeed computer will survive for these. Another possibility
is that those who have long scientific calculations to perform against a deadline will

68 ICL TECHNICAL JOURNAL NOVEMBER 1978

commission the building of computers—or rather high-performance processors to be
attached as peripherals to computers-specially adapted to their needs. Designing
such a processor would be a very much easier task than designing a whole system
that would fit into the top end of a range and be suitable for offering as a product
on the market. It has escaped the notice of some observers that the building of one-
off processors is now becoming an entirely feasible and economic proposition.

The use o f a number of minicomputers instead of a single mainframe does not
mean necessarily that the minicomputers should be scattered around the organi
sation. They could perfectly well be grouped together in a central computer room.
This would have the advantage, among others, that they could share the peripherals
and filing facilities. The new developments may be seen as giving us freedom to con
centrate or disperse our computing resources as we may find convenient in given
circumstances.

With the present balance between the cost of printers, disc files, high-speed
memoiy, and processing power, applications favouring geographically decentra
lised processing are those in which little storage, either long-term or high-speed, is
necessary and a simple printer for output and a keyboard for input will suffice.
These are all stand-alone applications such as may be found in small businesses and
in professional offices of various kinds. The alternative that these small local
systems tend to displace is a connection to a time-sharing bureau. Like terminals on
a time-sharing system, the small computers can be used by the ordinary personnel
in the office and it is not necessary to employ anyone in a specific computer role.
Once it is necessary to attach a high-performance printer and a large disc file, this
ceases to be the case and the employment of computer operators becomes neces
sary. In fact, before one knows where one is, one can have all the problems of a
small computer centre on one’s hands. It is then, in a not so small organisation with
a number of such centres, that one begins to wonder whether a single centralised
computer service would not be better after all.

At the other end of the scale we may consider a large computer centre in a
public utility whose main role is invoicing and the issuing of bills to the public.
Unless such a centre is grotesquely large, it is not easy to see how economies could
be achieved by splitting it into two or three independent centres. More high speed
printers would certainly be required in order to provide cover against mechanical
breakdown; more storage would be required because of the fragmentation of the
spare capacity and because certain information would undoubtedly have to be held
in all the centres; air-conditioning and overhead expenditure would almost certainly
increase, as would the expenditure on supervisory staff. From the theoretical point
o f view, the optimum economic size of a computer centre with a clearly defined
workload must be quite large and in practice its size is likely to be limited by other
considerations, such as security and managerial unwieldiness. What will perhaps
come to be questioned is the wisdom of loading the centre up with a great variety
of work that has nothing to do with its main role.

5. Access to data

The day will undoubtedly come when there is no longer any economic need for
computers to be shared between large numbers of different applications. In many
applications, however, a connection to a central filing system will be essential in

ICL TECHNICAL JOURNAL NOVEMBER 1978

order that data may be shared. A connection to a hard copy centre for printing
and plotting may also be a convenience.

Filing systems of the kind familiar to Cobol users are the direct descendents
of systems that were originally developed in the 1950s to use magnetic tapes and
were later adapted to take advantage of the improved access offered by disc files.
Over the years the systems in use in large companies have been subject to continual
modification and evolution, and the feeling grew up a few years ago that the time
had perhaps come to make a clean sweep and to replace the miscellaneous collec
tion of files by a central database. An ideal that was frequently spoken of was to
have in a large company a single database that would contain without any duplica
tion all the information required for carrying on its activities;this database would be
accessed by an application program written to meet the needs of the individual and
diverse departments into which the company was divided. It was said that effi
ciency would be promoted by bringing all the data together and that the absence of
duplication would make inconsistency impossible.

The operation of a corporate database serving many different masters would
raise a host of problems and resolving the data bottlenecks that occur would tax the
resources of any data administrator. It seems to me that a company going in for one
of the modern database management systems will not attempt a simultaneous
changeover to a new total system, but will proceed by stages, transferring various
activities one at a time. The result is much more likely to be a set of federated
databases rather than a monolithic database. The advantage of running some of
these on independent machines in order to obtain fully parallel access would soon
become apparent. I do not think that the resulting replication- of basic data would
be in itself a disadvantage, provided that positive steps were taken to check periodi
cally that data items in the various databases that were supposed to be identical
were in fact so. The avoidance of replication is only one way of ensuring consis
tency.

The individual databases in a federated system need not be all in the same
location. A factor affecting the decision whether to centralise or not would be
the cost of communications. If a federation of geographically distributed databases
could be run with a lower expenditure on communications than if they were
centralised, this might well be a powerful factor affecting the decision. A lot would
depend on the extent to which the sharing of data was really required and the
extent to which it was necessary that information scattered around the organisation
should be fully up to date; in many instances it might be sufficient for it to be
updated at 24 h or longer intervals. It is at least possible that the importance of
online sharing of live data between the suborganisations in an ordinary business
has been exaggerated.

Nearly all of what has been said above is independent of the type of database
management systems used. The design of database management systems continues
to be an area in which controversy rages. The Standards Planning and Requirements
Committee (SPARC) of the American National Standards Committee on Computers
and Information Processing (ANSI/X3) set to work to identify areas in which
standards might be formulated. Instead, it found itself engaged in fundamental
research on data models. Indeed, much work remains to be done before the under
lying problems of database technology are properly understood. Only when this
is achieved will a firm foundation exist for the implementation of efficient
database management systems.

70 ICL TECHNICAL JOURNAL NOVEMBER 1978

A general model
for integrity control

J.B. Brenner
ICL Product Development Group, Technology Division, Manchester

Abstract

Distributed systems pose a new integrity-control problem: how to achieve
consistent processing, file access and recovery with distributed control and
local autonomy? The general nondistributed problem is analysed first to
yield an understanding of the deep structure of integrity control, applic
able to all systems. This is then applied to distributed systems, in the
context of the evolving ISO architectural model for ‘open system inter
connection’.

1 Introduction

This paper arises from ICL research concerned with loosely coupled and distributed
multicomputer systems. The subject of integrity control is a vital issue which is
general to all computer systems, but particularly taxing in this environment.

We start with a brief survey of the problem area. This is a set of intractable prob
lems of concurrent access control and recovery, which are the main aspects of
integrity control as considered here. The subject matter will be new to some readers:
to others it will already be very familiar. What is less generally understood is that
the difficulties are now seen to be diverse surface symptoms of a deficiency in the
deep structure of systems. For this there is a simple structural solution.

The appropriate structure and its implementation are described. It is general to
all systems, and is also readily integrated into distributed systems and their protocol
structures.

The ideas presented here have been taking shape for several years in the database
field. They are now beginning to appear in DBMS products, e.g. the latest ICL 2900
IDMS,1 but they have only recently crystallised into a coherent and general model
for integrity control.

Many different researchers are working on this same problem area, and have
reached essentially the same conclusions at about the same time. Another conver
gent factor is the application of these concepts to standardised ‘open system inter
connection’, which is being studied by the International Standards Organisation
(ISO TC 97/SC 16), and by participating bodies such as the British Standards
Institute (BSI) and the American National Standards Institute (ANSI). The paper
also draws on this work, in which ICL is actively involved.

ICL TECHNICAL JOURNAL NOVEMBER 1978 71

2 Survey of the problem area

2.1 Problem outline

The purpose of this section is to provide an agreed summary of the state of the
art and its difficulties before breaking any new ground. We are concerned here with
three different but related problems:

• concurrent access control
• data recovery after failure
• process recovery after failure.

Each problem is first introduced individually and then the crucial interrelationships
are described. Finally, we consider why the associated difficulties are particularly
acute in loosely coupled systems.

The description is mainly in terms of file data and its processing. This is the most
familiar manifestation of the problems. From it we can correctly generalise to all
kinds of processing involving shared resources.

2.2 Concurrent access control

The essence of the concurrent access control problem is:

• whenever otherwise correct and separate processes share access to the same
data, chance data interactions can cause errors, e.g. inconsistent inputs and
double/lost updates.

Concurrent access to shared data is a general requirement, therefore these problems
must be overcome.

The general approach is to ensure that each process gains temporary and local
ised exclusive or protected access to data. This confinement allows detection of the
chance collisions between concurrent processes. Errors that would otherwise occur
can then be prevented.

The usual means of achieving confinement is by file assignment, and then finer-
grained data-locking techniques. These prevent other processes from reading and/or
writing the particular data concerned. The techniques are well known, well under
stood, but often poorly implemented.

Allocation and locking entail numerous technical problems. Some of the most
important are: •

• what to lock—which data, messages etc?
• which lock granularity-bit, record, block, set, predicate etc?
• when to lock and unlock these entities?
• which kind of lock—wholly exclusive, prevent writes, prevent reads?
• who does locking—applications program, DBMS, operating system?
• how to handle consequent detected collisions between processes?
• how to recognise and handle the special collision case of deadlock?
• usability problems of associated language interface

72 ICL TECHNICAL JOURNAL NOVEMBER 1978

• insidious errors. Difficult to create conditions during testing, difficult to
detect and contain operational errors, and to identify and fix their cause

• performance overheads. Allocation/locking can involve extensive and intri
cate actions, degrading response times and consuming resources.

• false collisions between processes can cause a high proportion of failures and
reruns when there is intensive sharing. Such errors are usually due to indis
criminate or coarse-grained locking.

Each problem has many solutions, and there is a corresponding diversity of solu
tions to the complete set. Even within the same system, different parts (e.g. differ
ent applications, programs and packages, the DBMS, and various aspects of the
operating system) tend to use different techniques. The resultant implementations
are usually complex, and often demonstrably lacking in integrity.

2.3 Data recovery

Systems generally need reliable data storage. The requirement is:

• prompt dependable detection of failures, tight confinement of consequent
data errors, and efficient dependable recovery to a correct, consistent and
acceptably up-to-date state, from which use o f the data can resume.

Techniques for the data-recovery aspect of this are well known. They include:

• transient data and files that automatically vanish after failure, and by their
complete absence restore consistency

• fallback to previous file generations
• spare copies of current files/volumes (static data redundancy)
• multicopy files, updated continuously in parallel (dynamic data redundancy)
• systematic copying of files to dumps (periodic data redundancy)
• continuous logging of the systems state to recovery journals
• logging of new data to journals when updates are written (after-looks)
• restore files after catastrophic failure by using previously secured dumps or an

older generation
• roll-forward from a restored dump to the most recent acceptable correct state,

by re-applying the after-looks secured since the dump, or by applications
rerun

• logging of old data to recovery journals when updates are written (before
looks).

• roll-back after localised failures to re-establish the most recent acceptable
correct state, by using the recent before-looks to undo updates.

Actual implementations vary in scope, details of technique and effectiveness, but
there are now few areas of technical uncertainty. Understandably, there are perfor
mance trade-off difficulties, owing to the overheads of dumps, journals and
multicopy data redundancy. As we see later, the crucial technical problems are now
all at the periphery, where data recovery integrates with process recovery and
concurrent-access control.

ICL TECHNICAL JOURNAL NOVEMBER 1978 73

2.4 Process Recovery

The requirement is similar to that for data:

• prompt dependable detection of failures (but also a deliberate abandon
facility), with tight confinement of consequent process errors, and efficient
dependable recovery to a correct, consistent and acceptably up-to-date state,
from which the process can resume.

Techniques for process recovery are well known. The two main lines of approach
are:

• discard all results so far, rerun from the ‘beginning’ (however defined)
• secure designated intermediate states of a process (checkpoints), and restore

and restart at the most recent suitable one.

The provisions range from completely automatic to unassisted user-provided re
covery. There are now few areas of technical uncertainty. Once again, the main
problems are performance overheads, and integration at the periphery with data-
recovery and concurrent-access control.

2.5 The interrelationships

Data recovery and process recovery are naturally related:

• when a process fails or abandons, this usually requires any data changes
made by it to be undone. Both data and process must then recover

• when data fails, this likewise usually requires any process accessing it to
fail, and both must recover

• the states restored by process recovery and data recovery must be mutually
consistent

• there is a technical similarity. Process recovery is essentially the restoration of
some previous state of process memory. This can be viewed and implemented
as a particular case of general data-recovery provisions.

The relationships with concurrent access control are more complex:

• the concurrent-access-control system is involved in identifying the above rela
tionships between failing processes and failing data

• unsuitable integration with concurrent-access-control provisions may prevent
correct recovery (see below)

• recovery provides a universal escape route from concurrent-access collisions,
especially deadlocks

• the implementation of concurrent-access control must itself store data (tables,
lock lists etc.). Therefore it is dependent upon data recovery for their correct
storage and restoration across failure situations

• vice versa, the recovery implementation must access shared tables and shared
data files concurrent with their normal use (e.g. to dump, or for localised
rollback).

74 ICL TECHNICAL JOURNAL NOVEMBER 1978

It is of crucial importance to understand a point made above, that dependable
recovery is impossible without correct integration with concurrent-access control.
Circumstances in which a process or data might not be recoverable to a previous
state are:

• if any resources allocated to the process might since have been released, but
may be needed for the restored previous state

• if any inputs which it uses might since have been changed by other processes
• if any of its outputs might already have been used by other processes
• if any of its recovery journal information might already have been discarded.

Fig. 1 Profile illustrating that backwards recovery is not generally possible across a period in
which resources have been released.

These constraints generalise to the form illustrated in Fig. 1. Moreover, this is not
just a matter of consistent behaviour within the one individual process concerned.
Recoverability and concurrent-access integrity are also dependent upon the be
haviour of any other processes which might chance to access the same data. There
fore the whole population of all processes in a system must be subject to one
universally consistent integrity-control scheme.

Despite the need for accurate consistent integration of integrity control, its
provisions tend to be poorly integrated in most state-of-the-art systems, even
disjoint. Consequently, they are difficult to use in the necessary coherent manner,
and this generally requires extensive error-prone and ad-hoc user involvement.
With hindsight, it is easy to see what has happened. As shown above, there are
intricate and reflexive relationships between the three aspects of integrity control,
between them and the individual user applications, and among the many user appli
cations. This readily degenerates into complex convoluted situations. However,
given an appropriate structure, it ought to be possible instead to turn this reflex
iveness into recursion, which is a source of orderliness and simplicity.

Our analysis also clearly shows that the main problems are at the periphery,

ICL TECHNICAL JOURNAL NOVEMBER 1978 75

where the three aspects of integrity control and the user processes meet. Therefore
the decisive step to rationalise the situation must be to agree on one common unit
of user processing relating to all aspects of integrity control.

2.6 Pro blems particular to loosely coupled systems

Integrity control is essentially involved in co-ordination. Therefore it is particu
larly significant to loosely coupled systems (e.g. open and distributed systems).

The related technical difficulties are unusual because present techniques and
experience are almost wholly based upon centrally co-ordinated and tightly coupled
computer systems:

• executive/operating system in a single central computer (or tightly coupled
multi-processor)

• central DBMS/filing system providing the sole authority for data-access
control, locking and journalising

• communications and terminal systems with an equivalent centralised star
structure.

In loosely coupled systems, a more natural model is for there to be many work-
stations/computers, generally of equivalent (peer) status, with control and authority
somehow distributed among them. Distributed control can also help avoid per
formance bottlenecks, and critical reliability dependencies. Further, it simplifies
effective exploitation of the natural marginal redundancy which is latent in multiple
computers.

Until the recent developments, which are the subject of the rest of this paper,
there was no general solution to the technical problems of co-ordinating distributed
processing and distributed databases. There appeared to be an unavoidable necessity
for some central all-knowing hierarchy of intelligence to co-ordinate activity in a
distribute^system. This is all the more disturbing, because it would seem to
imply some deep-seated inconsistency between practicable computer technology and
the social and business needs which it must serve. This particular inconsistency
would vitally affect social issues such as autonomy and information privacy.

It is now realised that the state-of-the-art technical difficulty with integrity
control in loosely coupled systems is not intrinsic to them. Instead, this more
demanding environment can be seen as representative of the general case, which
reveals a structural inadequacy, already present and habitually patched over by
ad hoc solutions and by resort to the special case of central hierarchical control.

This completes the state-of-the-art summary. We are now ready to consider the
new findings.

3 Structure for integrity control

3.1 Main concepts

Recent research has yielded an understanding of the principles of a complete and
general structure for integrity control. It is quite simple.

The central idea is that all processing can be subdivided into distinct

76 ICL TECHNICAL JOURNAL NOVEMBER 1978

integrity-control steps, which are called commitment units. These provide a uni
versal granularity for integrity control which is decoupled from the variety and
complexity of application characteristics. The nature of a commitment unit is
such that if the correct integrity-control behaviour of each is individually assured,
then that of all is collectively assured without further provision. This is a vital
simplification.

A related idea is that each and every object (resource) can be accessed only
through dialogue with its one particular custodian, which has a local res
ponsibility for access control and recovery. Each custodian is usually responsible
for many objects, usually in its same locality. Commitment units, and the custodians
which they access, interact systematically, such that the correct integrity-
control behaviour of each individual custodian assures that of all custodians
collectively. This is another vital simplication.

Further, the synchronisation characteristics of commitment units are suitable
for implementation across a loosely coupled system. Also the integrity-control
implementation is wholly in software, which can itself be recursively subject to
its own provisions. This enables complete and distributed integrity control in a
distributed system.

From these premises it logically follows that arbitrary and continually changing
collections of individual commitment units and individual custodians can
achieve correct collective integrity-control behaviour. This is essential for true
open-system interconnection, because this necessarily entails a continually changing
population of participating resources and activities. This contrived amorphousness
is also essential for resilient systems which must survive dismemberment.

The orderliness of the integrity-control structure allows adaptation and tuning to
minimise related performance overheads. There is selectivity of locking and journa
lising, and localisation of related traffic within a distributed system. The user has a
simple interface to integrity control: most of the provisions are automatic and
implicit in the structure. This enhances usability and dependability.

The main components of this integrity-control structure are now considered in
more detail:

• commitment units
• automatic integrity control
• custodians
• commitment-unit synchronisation
• recursion

Afterwards, the resultant implementation characteristics are further explored to
complete the justification of the assertions made above. The description is in terms
of distributed control in a distributed system. This is regarded as the general case.
The same principles are applicable to the special case of centralised systems.

3.2 Commitment unit

Each user process defines its own commitment units, which can therefore properly
reflect applications characteristics.

The only essential criterion is that a commitment unit should comprise a
complete transformation from the generally prevailing stable and consistent state at

ICL TECHNICAL JOURNAL NOVEMBER 1978 77

its beginning, to a new stable and consistent state at its end. In this context ‘stable’
means a point suitable for recovery, and ‘consistent’ means locks are not needed to
constrain access. It is desirable that commitment-unit duration and work content
are reasonably convenient for concurrent-access control and recovery purposes.
That is all. Given these simple characteristics, integrity control can be assured by
formal rules, automatically implemented.

The observations in the next few paragraphs are intended to show that this
subdivision of processing into commitment units is readily attained.

Transaction processing (TP) is the most clear-cut case. The user’s transactions are
generally commitment units. Each is a brief but complete transformation to a new
stable and consistent state. This is so of all aspects: at the terminal (from before
initial input, via wait, to after display of final result); in the communications and
processing system (from a null state, via activity, to a null state); in the database
(from prior state, via possibly inconsistent intermediate states, to a stable and
consistent state afterwards). The integrity-control requirements are that during a
transaction (i.e. commitment unit) there should be isolation from the chance
effects of others, and that failure or abandonment should lead to restoration of the
prior consistent state. Afterwards, the committed durable results should persist,
even if there is subsequent failure.

Multi-access computing (MAC) sessions are likewise readily broken down into
transactions and other distinct subdivisions. These commitment units have the same
kind of integrity-control requirements as in transaction processing.

Batch processing tends to be a concatenation of what might otherwise be sepa
rate commitment units. Alternatively, it can be viewed as successive read and
update cycles, file passes or job steps. These would provide rather larger commit
ment units. However, the integrity-control requirement is essentially the same in all
cases: during a commitment unit there should be isolation from chance interactions
with others, and until its end the outputs should generally be uncommitted and
able to roll back if in error. The end of each such commitment unit provides a
secure committed starting point for any direct successor.

In a busy system, there will be many concurrent commitment units, of varying
duration (Fig. 2). The concept ‘commitment unit’ has previously been referred to as
a ‘database transaction’,^ and a ‘success unit’.3

Fig. 2 Multiple concurrent series of commitment units, each distinct and asynchronous

78 ICL TECHNICAL JOURNAL NOVEMBER 1978

The commitment unit concept does not exclude the possibility of other access
control and recovery granularity. Generally there will also be finer-grained recovery
and retry steps within commitment units and associated transport services. However,
the commitment unit is absolutely fundamental to the structure, because it is the
one place where user processing, concurrent-access control and recovery all meet
and integrate systematically.

3.3 Automatic integrity control

The general nature of the requirement should already be fairly well apparent. There
is a formal definition of the rules for integrity control as ‘degrees of consistency’
in Reference 2. The necessary behaviour of commitment units is described here
more informally. It is later explained how this is largely delegated to the custodians
involved.

To achieve distinctness of each commitment unit:

• any value input to a commitment unit is then automatically locked until its
end, to prevent others from altering it (defined exceptions)

• any value output by a commitment unit is then automatically locked until its
end, as uncommitted and inaccessible to other (defined exceptions)

• all commitment units are automatically constrained to respect these current
locks (some special exceptions).

This automatic distinctness (i.e. isolation) and deferred commitment not only
assures concurrent-access integrity. It also means that if a commitment unit fails or
is abandoned, its potentially erroneous outputs are already confined, and errors will
not have propagated.

To provide the automatic means of current commitment unit rollback and
restart:

• before the beginning of a commitment unit (usually at the end of its direct
predecessor) a check point (or equivalent) is automatically taken and secured
(no exceptions)

• before each uncommitted output is recorded, a before-look (or equivalent)
is automatically taken and secured (no exceptions)

• the automatic locks prevent these uncommitted outputs from being over
written by others (no exceptions)

• a commitment unit is automatically prevented from releasing allocations
or locks before its end (defined exceptions)

• the automatically recorded journal entries supporting commitment-unit
recovery are not discarded until after its end (no exceptions).

Finally, to ensure that the durable outputs of successfully completed commit
ment units can persist, even if there is subsequent failure: •

• all durable outputs of a commitment unit are automatically secured in non-

ICL TECHNICAL JOURNAL NOVEMBER 1978 79

volatile memory, and are subject to automatic after-look journalising (or
equivalent, no exceptions).

The exceptions to the automatic provisions (mentioned above in brackets) are
discussed later. They are intended to allow flexibility and selective minimisation
of associated performance overheads, but without weakening overall integrity
control.

The combined effect of these automatic actions is that the tangible effects of
a commitment unit are generally deferred until its end. At this singular point, the
changes become committed, and generally accessible. Rollback is then no longer
feasible, if only because outputs may have propagated elsewhere and cannot be
snatched back (except with complications which compromise generality).

3.4 Custodians

The role of a custodian has a direct and beneficial equivalence to the
structured programming concepts of monitors4 and information-hiding modu
larity5.

Each individual custodian is responsible for autonomous integrity control
for objects in its custody. The two main functions are:

• current local-access control
• current local recovery

It is implicit in the structure already described that a custodian can derive
the necessary information from the allocation messages, data-access messages,
and commitment-unit end and restart messages which it receives. A custodian
would usually also administer related security/privacy arrangements.

To achieve its required integrity-control function, a custodian autonomously
maintains allocation details and locks which define current relationships between
objects in its custody and commitment units. It will reject any message not con
sistent with these. It also helps maintain related recovery information, such that a
locality can dependably provide local rollback and restart for current commitment
units known to it. This is done by means of before-looks, and by securing the local
outputs and perpetuated allocations at commitment-unit end (equivalent to local
checkpoint for successor commitment unit).

Each individual custodian can therefore ensure that data in its custody is
stable and consistent, even if accessed by many current commitment units (distri
buted access). The global ‘instant’ of each commitment unit end (preceded either
by its normal completion or complete rollback), ensures that its outputs are only
visible when they are globally consistent. Therefore data that is fragmented and
stored in different localities (distributed data) can be kept consistent by the collective
effects of the individual distinct commitment units and custodian processes
involved.

Consistent dynamic update of multiple redundant copies of the same data in
different localities requires no additional provisions. The custodian processes
individually behave normally. Again the commitment-unit end synchronising
‘instants’ ensure global consistancy.

80 ICL TECHNICAL JOURNAL NOVEMBER 1978

3.5 Commitment unit synchronisation

In principle, each commitment unit should have an indivisible end ‘instant’.
Indivisibility is a general requirement for synchronising mechanisms. But this
particular need to be instantaneous is rather special. In the example profile in Fig. 1,
dependable rollback is not generally possible if assignments and locks have already
been released. It therefore follows that, to be a dependable recovery unit with no
indeterminate unrecoverable states in between, the equivalent profile must be like
that illustrated in Fig. 3. The domain of allocations and locks attributed to a
commitment unit may only decrease by instantaneous collapse at its end.

Fig. 3 Profile illustrating that complete dependable rollback coverage is possible if resources
are only released at defined 'instants'.
Rollback through such 'instants' is not generally possible

In practice, this is pseudo-instantaneous, because it can entail a significant
amount of work distributed in time and place, with potentially many participants
(all the computers, work stations, processes and services involved.) Its implemen
tation must also be fail-safe and reasonably efficient.

Therefore a careful automatic sequence of actions is used to effect the end of a
commitment unit (and the beginning of any direct successor). This is illustrated
in Fig. 4.

The securing phase (1) checks with all processes involved (e.g. custodians) that
they are alive and well, and that the commitment unit can safely end. Before
responding, each custodian will store in nonvolatile memory relevant durable out
puts, and the starting conditions of the direct successor (if any). Fig. 5 illustrates
the flow of messages.

The master commit phase (2) records in a journal that the commitment unit is
now committed to end. The actual (disc) write serves as an indivisible instant,
after which the commitment unit is committed and cannot rollback. If there is
now failure before the commitment unit is properly ended, recovery discovers
this write and can restore durable outputs, finish the ending sequence, and restart
any successor commitment unit.

The general commit phase (3) propagates the ultimate end ‘instant’ by messages

ICL TECHNICAL JOURNAL NOVEMBER 197B 81

to all participants. The flow is the same as in Fig. 5. Because rollback is no longer
needed (continuity by restore and roll-forward instead), the collapse of allocations
and locks can be dispersed and of variable duration, but without violating the
principles behind the general model in Fig. 3.

time

commitment
unit

rollback OKa

0 1 2 3

f
v.

then roll forward OK

- I
roll forward

assured

Fig. 4 Progressive ending of a commitment unit and its integration with recovery
The phases are:
0 = processing 2 = master commit
1 = securing 3 = general commit

ultimate
initiator
of this
commitment
unit

Fig. 5 Propagation of commitment unit ending phase messages in all dependant sessions to
all custodians involved and complete confirmation of the actions of all

As each custodian becomes individually aware of the end ‘instant’
(receives message), it automatically takes the necessary actions within its domain
on behalf of the ended commitment unit: •

• passes on the news to any relevant dependent process/session
• commits its (the commitment unit’s) uncommitted outputs
• frees its automatic data locks (or equivalent transient assignments)
• actions any deferred release of its assignments
• frees related local-integrity-joumal space
• makes the immediate successor commitment unit (if any) locally fully

current. This generalises to a universal means of notifying the beginning

82 ICL TECHNICAL JOURNAL NOVEMBER 1978

of a commitment unit (if no actual predecessor, end of null one)
• prepares local-integrity-journal entry to confirm all this (actual write can

be later to assist performance)
• responds affirmative to message sender after this has been done and any

dependent processes/sessions have all responded affirmative.

Any user-defined data structures can contain local/global commitment-unit
identifiers. By cross reference to a local table of locally current commitment-
unit identifiers, such data structures can achieve an ‘instantaneous’ change of
state, synchronised indivisibly to commitment-unit boundaries. This also gives
a self-tidying effect after commitment-unit failure, and is the recommended
technique for all data structures used to implement the above automatic systems
functions (Fig. 6).

commitment unit
identifiers
listed os
current in
the locality

data structures

A
/ current

/

x
y
p
q

t_n

«.y

current

current

not
current

^garbage

Fig. 6 Data structures with currency synchronised indivisibly to commitment-unit boundaries
by quoting commitment-unit identifiers

It is apparent that this one kind of synchronising ‘instant’ (commitment-unit
end) can provide general co-ordination and all the intra- and interprocess synchroni
sation needed for integrity control.

In a centralised hierarchic control system, universal perception of ‘instants’ is
intrinsic (e.g. CPU interrupt, central table update). Such readily contrived ‘instants4
tend to proliferate, with complex integrity-control ramifications, and inbuilt de
pendence on centrality. The new model carefully avoids this. Moreover, in a loosely
coupled system, synchronising ‘instants’ involves considerable overheads, and must
be contrived with particular care if race conditions and other reliability hazards are
to be avoided.

3.6 Recursion

The concept of recursion here is simply that the software and data structures used
to implement integrity control should themselves be subject to its own provisions.
This is technically easy to arrange if the need is properly forseen.

ICL TECHNICAL JOURNAL NOVEMBER 1978 83

This has the immediate benefits of simple resolution of the intricate interrela
tionships of the various aspects of integrity control, and of making its coverage
complete. Proper integrity control should be universally effective: nothing should
be exempt. Because the proposed techniques can be implemented entirely in soft
ware, this completeness of integrity is attainable by recursion.

Recursion also means that the implementation can be enriched by using some of
the more advanced facilities which are implemented. Two such are:

• coherent distributed processing of distributed data
• multicopy data consistency.

In this way the integrity-control implementation can itself be made fully distribu
ted and highly resilient.

We can generalise from this that control and operating systems (as well as
applications systems) could also be distributed and highly resilient. ‘Meta data’
such as catalogues, directories, schedules, journals and DBMS schemas and their
associated functions could be distributed, subject only to performance constraints
(which can be minimised by careful placement and suitable intercommunication
bandwidth).

4 Implementation characteristics

4.1 Concurrent-access integrity

The general structure and its implementation have already been described. Excep
tions and deadlock are now considered.

Locks are automatically formed by a custodian when objects in its
custody are accessed. In general the scope of each individual access implicitly
defines the object to be locked (e.g. address, data record, block, set, predicate).
In principle, all objects accessed are locked, and in ways implicit in the mode of
access (read, write, etc.). However, in practice, some relaxation is necessary for
flexibility and efficiency. Allocations limit the permissible ways in which accesses
may qualify their locking effects, and can also frequently obviate the need for
locking (e.g. exclusive or protected allocation automatically inhibits locking).

The exceptions considered here are:

• unlocked inputs
• write without prior locking
• uncommitted input
• immediately committed output
• orthogonal sanctions.

There are many applications that can legitimately dispense with the automatic (not
overwrite) locking of most if not all of their inputs. This reduces overheads and the
likelihood of unnecessary collisions between processes sharing the same data. Also
there are some inputs that are dynamic and inherently unlockable (e.g. sensors and
time inputs).

If unlocked data are subsequently updated, it is then necessary for the commit
ment unit to prove to the custodian process that it knows the current value that its

84 ICL TECHNICAL JOURNAL NOVEMBER 1978

update would overwrite (to avoid double/lost updates). This can be implemented
by quoting either the existing value in full, or perhaps a more compact checksum,
or by a version-number convention. If mismatch, then the update is rejected, and
the commitment unit must recover to a point where it can reread and then
resubmit an alternative update. Such rejection is generally likely to be infrequent,
and should not be disruptive or onerous when proper recovery facilities are provi
ded. This technique also avoids failures caused by locks attributed to delayed or
failed/sleepy processes.

Occasionally, systems functions (and more rarely user applications) have a
legitimate need to read uncommitted outputs of current commitment units. Such a
‘dirty-read’ facility could compromise integrity control, so should be highly excep
tional. The preferred alternative is to rationalise the situation by having used an
immediately committed write mode. Some examples of outputs which must be
immediately committed and visible, and impossible to roll back are: outputs to
recovery journals, and certain mechanical and electrical outputs.

Sometimes locking effects are required which are not implicit in the actual
accesses or the enfolding assignments. An example is the subtle locking of
nonexistent ‘phantoms’ in Reference 6. All such exceptions can be covered in the
general model by a facility which we have called orthogonal sanctions. A commit
ment unit utters a sanction to a custodian. This sanction is an indirect
reference to an implementation-defined data structure somewhere which somehow
specifies the constraint. The custodian need only ensure that all other commitment
units accessing the object concerned are aware of the most recent sanction refer
ence. The user-data structure specifying sanctions should be synchronised to
commitment-unit boundaries, using the general technique already illustrated in
Fig. 6.

Moving on to another topic, deadlock is readily handled. The orderliness and
completeness of commitment-unit structure facilitates deadlock detection (all
allocations, locks and events are attributable to commitment units, for which there
is some kind of unambiguous identification scheme). Any commitment unit
blocked by another should check for deadlock. This is implemented by dialogue
among (or on behalf of) waiting commitment units, to discover if any of their
interdependencies are circular.

If there is deadlock, then rollback by any one of the commitment units involved
provides a simple, safe and certain escape route. Complex deadlock-avoidance
strategies are unlikely to be necessary or worthwhile, but preclaiming of resources
early in a commitment unit maybe a useful tactic for applications to use selectively.
This should minimise the frequency of deadlock/rollback and associated over
head costs, because deadlock can only occur while the domain of assignments
and locks is expanding. Fig. 7 is further idealisation of the profile in Fig. 3.

4.2 Recovery

Some refinements of recovery structure and implementation are now described.
Each custodian is responsible for rollback and restart of current commit

ment-unit effects within its domain. Convenient implementation involves a local
integrity journal, stored within the locality, and shared by all processes in that
locality. This could be implemented as a cyclically re-used direct-access nonvolatile
file space (disc or magnetic bubble).

ICL TECHNICAL JOURNAL NOVEMBER 1978

Therefore each locality has autonomous ability to secure (i.e. check-point) the
local end/beginning conditions of all commitment units known to it, and to roll
back selectively their local effects. This local autonomy improves the efficiency of
recovery provisions, and enhances general resilience. Collectively, these local
recovery provisions, synchronised to commitment-unit boundaries, can provide
complete global rollback/restart coverage. Recovery from various failure situations
is now considered.

i/ i

Fig. 7 Profile further idealised from Fig. 3 so that deadlock can only occur in brief periods X

Commitment-unit failure: The commitment-unit originator tells all localities/
custodians concerned to rollback that particular commitment unit, then ends and
restarts it. Alternatively, this is initiated by some watchdog activity which dis
covers that a commitment unit has failed.

Locality failure: All commitment units current in the locality are spontaneously
broken and rolled back when the locality recovers. The survival of the local-integrity-
joumal information makes this possible. Even if more direct provisions are absent,
the automatic commitment-unit end sequence necessarily discovers locality failure
or its consequent spontaneous roll back. Therefore roll back, ending and restart of
the affected commitment units is ultimately global.

Concurrent-access integrity is automatically assured during recovery, because
within each custodian, the allocations and locks of a rolled-back commitment
unit remain current until it is ended in the usual way. Alternatively, if failure
destroys the lock lists (or equivalent) in a locality, then all commitment units in
that locality with shared data access will be spontaneously rolled back. Their roll
back effects are naturally distinct, and afterwards the lock list is legitimately null,
and access to shared objects can resume.

General failure: As for individual locality failure, all affected localities recover
and roll back the locally current (and therefore broken) commitment units. Further
necessary roll back will be triggered by surviving/already recovered localities. All
broken commitment units are therefore automatically recovered and restarted,
while those not affected continue normally. It would be recommended practice to

86 ICL TECHNICAL JOURNAL NOVEMBER 1978

implement start-of-day initial load using this same general recovery mechanism.
Catastrophic failure: The above cases assume that localities survive failure and

are able to recover, and that data is not lost, damaged or otherwise unavailable. In
the alternative situation of catastrophic failure, data must be reconstructed by
resort to duplicates, or dumps and after-looks. These should be maintained in
localities with independent failure modes. Therefore the general model need not
assume high resilience within a locality. This is an important simplification.

Data written to dumps and after-look journals will retain commitment-unit
identities, and include relevant commitment-unit end/begin entries. These pro
vide synchronisation, with the main benefit that at the end of roll-forward, any
unfinished commitment units are automatically identifiable. Normal short-term
automatic before-looks, taken dynamically during roll-forward by custodians,
can be used to roll back and end the effect of these incomplete /broken commit
ment units. In this way, the restored data can be re-aligned to any chosen consistent
state. There is no need for extra predefined special global ‘sync, points’ or in
convenient global quiescence points during normal running (generally necessary
for state-of-the-art recovery systems, and actually impracticable in a widely dist
ributed or truly open systems). Also the overhead of long-term storage o f before
looks is avoided.

Multicopy data: If any copy of a multicopy redundant file fails, then the simplest
recovery action is for all commitment units accessing any copies to be broken and
rolled back to restore consistency. If the failed file is immediately recovered, then
processing restarts using all copies as before. If a copy has failed catastrophically,
then processing can resume normally using the surviving copy (or copies). At the
earliest possible opportunity, full redundancy should be restored by copying a
survivor. For this to be convenient, small (subdivided) files are preferable.

Finer-grained recovery: Finally there is the topic of finer-grained recovery to
provide partial rollback within commitment units. In principle, it would be possible
to define arbitrary mini-recovery blocks within a commitment unit, nestaMe to
arbitrary depth. An example of how useful this would be is implementation of a
DML statement (data manipulation language) within such a mini-recovery block.
If a part-executed statement (possibly involying many data accesses) is discovered
to be erroneous, then these effects could be undone by mini-recovery, before
rejecting the DML statement at its ultimate user interface.

In practice there are serious snags. First correct implementation would probably
involve elaborate global synchronisation at these minirecovery block boundaries,
similar to that for commitment units. This means high overheads. Secondly, this
might be technically difficult or even impossible because of conflicts with the
basic profile concepts in Fig. 3. Thirdly, the associated major increase of com
plexity within the integrity-control implementation might impair its intrinsic
reliability and dependability.

A compromise solution which escapes from this dilemma is described later.
Normal re-try mechanisms and related transport-service features (e.g. quarantine
units) present no special difficulties. In general because efficient global commit
ment-unit recovery is provided, the best and simplest response to any failure is
always to break, then roll back and restart.

This structure also provides a basic framework on which to implement ultra
reliable software redundancy: dual-coded distinct software,7’ 8 and recovery
blocks^. It is now being used for high-reliability database systems. 10

ICL TECHNICAL JOURNAL NOVEMBER 1978 87

4.3 Protocol language

We assume a layered inter-process communications protocol structure, of the
general form illustrated in Fig. 8. This is actually per the ISO TC97/SC16 pro
visional model for open-system interconnection. (For intercommunication within
a locality, the lower four layers would collapse to zero functions).

7 — — — process control------— — 7

6 — — — presen ta t ion control— —“ 6

5 — --------s e s s io n control------------- — 5

4 —“ — transport control------------- 4

3 — network control- 3

2 link control 2

1 — — — physical control--------------- 1

Fig. 8 Seven protocol layers of the provisional model for open system interconnection
ISO/TC97/SC16 March 1978

Integrity control is driven from the highest level. Here the nature of the work
defines where commitment-unit boundaries should be. Most of the automatic
implementation of interprocess integrity control would be the responsibility of
session control (level 5 in the ISO model).

All that the end-user need essentially do for integrity control is to identify
begin/end boundaries, and to be able to utter restart requests. The units to be
specified are: sessions, successive commitment units within a session, perhaps
mini-recovery blocks within commitment units, and quarantine units for trans
port.

A block structure is clearly appropriate. For example:

Begin session
Begin commitment unit
End commitment unit
Begin commitment unit
End commitment unit

End session

There is some redundancy in this example. The items bracketed together are
indivisible. A condensed utterance may be preferable. At lower levels, not nec
essarily visible to end users these utterances would result in automatic sequences of
dialogue, e.g. ‘begin session’ (dialogue = initiate and accept), ‘end commitment
unit’ (dialogue = secure, confirm secured, write to journal, confirm, end, con
firm).

To avoid the difficulties referred to earlier, it is suggested that minirecovery-
block implementation (if any) should be exclusively within the highest level.

88 ICL TECHNICAL JOURNAL NOVEMBER 1978

process control. It could then be an applications feature, completely decoupled
from the general integrity-control model. The ultimate simplification would be
for this structure only to yield finer-grained diagnostics (which might then steer
user restart), while still using full commitment unit rollback and restart.

5 Conclusion

The deep structure for integrity control in computer systems has been introduced.
This comprises a few simple concepts, of which the main one is the commitment
unit.

Techniques for automatic concurrent-access control and recovery based upon
this have been described here in sufficient detail to demonstrate the possibility
of fully comprehensive distributed integrity control. This is generally applic
able, and suitable for distributed systems and open-system inter
connection. This integrity control provides some of the previously missing basic
technology needed to implement distributed databases, and for reliability en
hancement by systematic redundancy of hardware, software and data, and their
resilient distributed control and co-ordination. The spinoff may also benefit com
puter security.

This integrity-control structure provides a systematic basis for related standard
isation, in which context, knowledge of it is now being rapidly disseminated and
generally assimilated into systems architectures.

References

1 ICL Manual TP 644 TOMS Implementation’.
2 GRAY, J.N., LORIE, R.A., PUTZOLU, G.R., and TRAIGER, I.L.: ‘Granularity and

degrees of consistency in a shared database* in Modelling in database management
systems (North Holland, 1976)

3 TOZER, E.E.: ‘Preservation of consistency in Codasyl-type database’ in database
technology ISBNO 903 796074

4 HOARE, C.A.R.: ‘Monitors - an operating system structuring concept’, Common.
ACM, 1974,17, pp. 549-557

5 PARNAS, D.L.: ‘On the criteria to be used in decomposing systems into modules’,
ibid., 1972,15 pp. 1053-1058

6 ESWAREN, K.W., GRAY, J.N., LORIE, R.A., TRAIGER, I.L.: “The notion of con
sistency and predicate locks in a database system’ ibid., 1976,19, (11)

7 GILB, T.: ‘Distinct software; a redundancy technique for reliable software’. Infotech
State of the Art Report: Software Reliability, 1977.

8 FISCHER, FIRSCHEIN and DREW: ‘Distinct software: an approach to reliable com
puting’. Japan • USA Conference Procedings, 1975

9 RANDELL. B.: ‘Systems structure for software fault - tolerance’ IEEE Trans SE-11,
1975, pp. 220-232

10 GRAY, J.N.: ‘Notes on data base operating systems’ in BAYER, R., GRAHAM, R.M.,
and SEEGMULLER, G. (Eds.): Operating systems. An advanced course (Springer,
New York, 1978), pp. 393-481

ICL TECHNICAL JOURNAL NOVEMBER 1978

ICL Worldwide

The head office of International Computers limited is at
ICL House, Putney, London SW15 1SW, England

ICL is represented in most countries of the world by subsidiary companies,
branches, dealers or agents. The principal addresses are given below.

ARGENTINA ICL Dealer
Sistemas De Informacion, SA, Cerrito 844, Casilla de Coneo
No. 4305,1010 Buenos Aires

AUSTRALIA International Computers (Australia) Pty. Limited
100 Arthur Street, North Sydney, New South Wales 2060, P.O. Box
300, North Sydney, New South Wales 2060 (also in Brisbane,
Canberra, Melbourne, Perth and Tasmania)

AUSTRIA ICL International Computers GmbH
Meidlinger Hauptstrasse 51-53, 1120 Vienna (also in Feldkirch,
Graz, Linz and Salzburg)

BANGLADESH ICL Registered Agent
K Ahmed, 195 Motijheel,Dacca 2 ,POBox 309, Dacca 2

BELGIUM ICL Belgium S.A.
Avenue Lloyd George 7, B1050 Brussels (also in Antwerp, Ghent
and Liege)

BRAZIL ICL Do Brasil Intemacional Computadores Limitada
Rua Washington Luiz, 24-S/Loja, ZC 86, 20.000, Rio de Janeiro,
PO Box 3901/Z0-00, Rio de Janeiro (also in Sao Paulo)

BULGARIA Branch of International Computers Limited
Enquiries to: Bridge House North, Putney Bridge, London SW6 3JX

BURMA Branch of International Computers Limited
5 8A Windermere Road, Rangoon, PO Box 542, Rangoon

CANADA ICL Computers Canada Limited
ICL House, 1 Tippett Road, Downsview, Toronto, Ontario M3H
5T2, (also in Calgary, Montreal, Regina and Vancouver)

CARIBBEAN Branch of International Computers Limited
ICL House, 46 Park Street, Port of Spain, Trinidad, PO Box 195,
Ports o f Spain, Trinidad

and

34 Old Hope Road, Kingston 5, Jamaica W1, PO Box 83, Crossroads,
Kingston 5, Jamaica W1 (also in Barbados, Dominica and St.Vincent)

90 ICL TECHNICAL JOURNAL NOVEMBER 1978

CHILE ICL n Mw
Equipos de Oficina Ltda., Alonso Ovalle 778, OF 21, Casilla 276A,
Correo 21, Santiago

COLOMBIA ICL Dealer
Alvaro Fabre G., Friden de Colombia, Ave. Caracas 31-93, Apartado
Aereo 5642, Bogota, D.E.

CZECHOSLOVAKIA Branch of International Computers Limited
Ricanova 44,169 00 Praha 6

DENMARK International Computers Limited A/S
Bredgade 23,1260 Copenhagen K, (also in Horsens)

EGYPT, ARAB
REPUBLIC OF

Branch of International Computers Limited
1 Abu El Mahasen, El Shazly Street, New Dokki, Cairo, (also in
Alexandria)

FINLAND ICL Finland International Computers OY
Annankatu 12A, 00120 Helsinki 12

FRANCE ICL (France) International Computers
16 Cours Albert ler, Paris 75008 (also in Bordeaux, Clermond
Ferrand, Dijon, Lille, Lyons, Marseilles, Nancy, Nates Rennes,
Rouen, Strasbourg, Toulouse and Tours)

GERMANY, FEDERAL
REPUBLIC OF
(WEST)

ICL Deutschland International Computers GmbH
Marienstrasse 10, Postfach 2466. 8500 Numberg, (also offices in
Berlin, Bielefeld, Bremen, Dusseldorf, Frankfurt, Hamburg, Hanover
Mannheim, Munich and Stuttgart)

GHANA Branch of International Computers Limited
Mobil House, Accra, PO Box 117, Accra

GREECE ICL Dealers
Pan Solomos & Co. Ltd., 61 Syngrow Avenue, Athens 404

and
Eurodata Ltd., Singer Building, 63 Stadium Street, Athens 111.

HOLLAND International Computers Nederland BV
Zwaansvliet 20, 1081 AP Amsterdam, PO Box 7113, 1007 JC,
Amsterdam

HONG KONG International Computers Hong Kong Limited
Realty Building, DesVoeux Road Central, Hong Kong, PO Box 1912,

HUNGARY Branch of International Computers Limited
Regiposta Utca 13, V I17 Budapest

INDIA International Computers (India) Private Limited
Magnet House, Narottam Morarjee Marg, Ballard Estate, Bombay
400038, PO Box 526 Bombay—400001 (also in Armedabad,
Bangalore, Calcutta, Madras and New Delhi)

ICL TECHNICAL JOURNAL NOVEMBER 1978 91

INDONESIA ICL Dealers
P.T. Pansystems, Setiabudi Building, Jl. H. Rangkayo, Rasuna Said,
Kunigan, Jakarta-Sela tan

IRAQ Branch of International Computers Limited
8th Floor, Habboo Building, Abu Nawas Street, Baghdad, PO Box
640, Baghdad

IRELAND, REPUBLIC
OF

Branch of International Computers Limited
ICL House, Adeleide Road, Dublin 2 (also in Cork)

ITALY ICL Italia International Computers SpA
Via Spallanzani, 40, 20129 Milano (also offices in Bologna, Milan,
and Rome)

JAPAN ICL Dealer
Dodwell & Co, Limited, Central PO Box 297, Tokyo, Japan

KENYA International Computers (East Africa) Limited
8th Floor. Bruce House, Standard Street, Nairobi, PO Box 30293,
Nairobi,

KUWAIT Branch of International Computers Limited
PO Box 115 (Safat)

MALTA Branch of International Computers Limited
5 th Floor, Development House, Floriana

MALAYSIA International Computers (Malaysia) Sdn. Bhd.
9th Floor, Wisma Damansara, Jalan Semantan, Kuala Lumpur 23-03

MAURITIUS Branch of International Computers Limited
Anglo Mauritius House, 3rd Floor, Intendance Street, Port Louis

MEXICO ICL S.A.-Owned 49% by International Computers Limited
51% by Mexican Shareholders

Avenida Presidente Mazaryk 61, Piso 3RO, Mexico 5, D.F., PO Box
5095, Mexico 5, D.F. (also in Monterrey)

NEW ZEALAND International Computers (New Zealand) Limited
Securities House, The Terrace, Wellington, C l, PO Box 394,
Wellington (also in Auckland and Christchurch)

NIGERIA International Computers (Nigeria) Limited
3rd Floor, Wesley House, 21-2 Marina, Lagos, PO Box 2134, Lagos

NORWAY ICL Norge A/S
Oestensjoeveien 39, Oslo 6,PO Box 36, Bryn, Oslo 6 (also in Bergen)

PAKISTAN Branch of International Computers Limited
Grindlays Bank Building, 1.1 Chundrigar Road, Karachi 2, PO Box
5146, Karachi 2

PAPUA NEW GUINEA Branch of International Computers (Australia) Pty. Limited
8 Champion Parade, Port Moresby

92 ICL TECHNICAL JOURNAL NOVEMBER 1978

PHILIPPINES

POLAND

PORTUGAL

PUERTO RICO

ROMANIA

SAUDI ARABIA

SINGAPORE

SOUTH AFRICA

SOUTH KOREA

SOUTH WEST AFRICA

SPAIN

SRI LANKA

SUDAN

SWAZILAND

SWEDEN

ICL Dealer
Floro Enterprises Incorporated, 500 Carlos Palanca, Quiapo, Manila,
PO Box 7241, Manila International Airport

Branch of International Computers Limited
ICL Warsaw, UL Czarnieckiego 66,01-548 Warsaw

ICL Computadores Limitada
Av. Dos Estados Unidos Da, America, S7 A/B, Lisborn 5 (also
in Oporto)

ICL Dealer
Systronics Business Machines Inc., Calle 272, Lote 12, Urb.
Industrial Country Club, Carolina, 00630, PO Box 4096, Carolina
00630

Branch of International Computers Limited
Enquiries to: Bridge House North, Putney Bridge, London SW6 3JX

Branch of International Computers Limited
c/o A Rajab & A Silsilah.PO Box 2815, Riyadh

ICL Singapore Private Limited
5th Floor Bangkok Bank Building, Cecil Street, Singapore 1, PO
Box 484, Maxwell Road, Singapore 1

International Computers (South Africa) (Proprietary) Limited
ICL House, 5 Sturdee Avenue, Rosebank, Johannesburg 2196,
Private Bag 10, Saxonwold 2132, (also in Benoni, Cape Town,
Durban, Port Elizabeth and Pretoria)

ICL Dealer
Taiyang Business Machine Co., 60, 1-Ka, Myung-Dong, Chung Ku,
Seoul

ICL South West Africa (Proprietary) Limited
5 th Floor, Nictus Building, Kaiser Street, Windhoek, 9100, PO Box
23017, Windhoek, 9100

ICL Espana International Computers S.A.
Avenida Generalisimo 61, 6th Floor, Madrid 16 (also in Barcelona,
Seville and Valencia)

ICL Dealer
International Computers (Ceylon) Limited
20 Sir Chittampalam A Gardiner, Mawatha, Colombo 3, PO Box
305, Colombo

Branch of International Computers Limited
PO Box 2247, Khartoum

ICL Swaziland Limited
Independance House, West Street, Mbabane, PO Box 469, Mbabane

ICL Data A.B.
S-171 88 Soina, Sweden (also offices in Gottenburg, Mahno and
Vasteras)

ICL TECHNICAL JOURNAL NOVEMBER 1S78 93

SWITZERLAND ICL (Switzerland) International Computers AG
Buckhauserstrasse, 26, 8040 Zurich (also offices in Basel, Bern and
Geneva)

SYRIA

TAIWAN

TANZANIA

THAILAND

TURKEY

UGANDA

UNITED ARAB
EMIRATES

UNITED STATES OF
AMERICA

URUGUAY

USSR

VENEZUELA

YEMEN, PEOPLE’S
DEMOCRATIC
REPUBLIC OF (SOUTH)

YUGOSLAVIA

ZAMBIA

ICL Dealer
Orcent Computer Division, Shurbatley Buildings, Marjeh Square,
PO Box 771, Damascus

ICL Dealer
United Business Computers Limited, Pao-Tung Building, 12th Floor.
No. 325, Section 4 ,Chung-Shiao East Road, Taipei

International Computers (Tanzania) Limited
10th Floor, NIC Investment House, Independence Avenue, Dar-es-
Salaam, PO Box 2569, Dar-es-Salaam

ICL Dealer
Bangkok Data Centre Co. Limited, 183 Pitsanuloke Road, Nanleung
Bangkok

ICL Dealers
Biltek Ltd. Sti., Necatibey Cad 9/2, Ankara

and
Emak Tickaret Ve Sanyi Ltd., Sti., Halaskargazi Cad 34/4, Harbiye,
Istanbul

Branch of International Computers (East Africa) Limited
Amber House, Kampala Road, Kampala

Branch of International Computers Limited
c/o Mr. Y. Najibi, PO Box 2323, Dubai

ICL Inc.
Turnpike Plaza, 197 Highway 18, Third Floor, East Brunswick, New
Jersey 08816

ICL Dealer
Arnaldo C Castro, S.A., Casilla de Correo 108, Misiones 1460,
Montevideo

Branch of International Computers Limited
UL. Vavilova 83, Kv 4/5, Moscow (Telephone: 346003)

ICL Dealer
Datatec C.A., Apartado 60216, Caracas

ICL Representative
c/o Aden Refinery Company, PO Box 3003, Aden

Branch of International Computers Limited
ICL/Mladost, Ilica 28-30,41000 Zagreb

International Computers (Zambia) Limited
Provident House, Cairo Road, Lusaka, PO Box 2124, Lusaka

94 ICL TECHNICAL JOURNAL NOVEMBER 1978

Notes for authors
1 Content

The ICL Technical Journal publishes papers of a high technical standard intended
for those with a keen interest in and a good working knowledge of computers and
computing, but who nevertheless may not be informed on the aspect covered by a
given paper.

The content will have some relevance to ICL’s business and will be aimed at the
technical community and ICL’s users and customers. It follows that to be accept
able, papers on more specialised aspects of designs or applications must include
some suitable introductory material or references.

The Journal will usually not reprint papers already published, though this does
not necessarily exclude papers presented at conferences. It is not necessary for the
material to be completely new or original (but see 10,12 and 13 below). Papers will
not reveal matter related to unannounced ICL Products.

2 Authors
Anyone may submit a paper whether employed by ICL or not. The Editor will
judge papers on their merits irrespective of origin.

3 Length
Full papers may be of up to 10 000 words, but shorter papers are likely to be more
readily accepted. Letters to the Editor and reviews may also be published.

4 Typescript
Papers submitted should be typed in double spacing on one side of A4 paper with
full left-hand margin. Mathematical expressions are best written in by hand. Care
should be taken to form Greek letters or other unusual symbols clearly. Equations
referred to in the text should be numbered. Detailed mathematical treatments
should be placed in an Appendix, the results being referred to in the text.

At least two copies should be submitted, both carrying the author’s name, title
and date of submission.

5 Diagrams and tables
Line diagrams supplied will if necessary be redrawn before publication. Be
especially careful to label both axes of any graphs, and mark off the axes with
values of the variables where relevant.

All diagrams should be numbered and supplied with a caption. The captions
should be typed on a separate sheet forming part of the manuscript. Since diagrams
may have to be separated from their manuscript every diagram should have its
number, author’s name and brief title on the back.

All diagrams and Tables should be referred to in and explained by the text.
Tables as well as diagrams should be numbered and appear in the typed MS at the
approximate place, at which they are intended to be printed. Captions for Tables
are optional. Be careful to ensure the headings of all columns in Tables are clearly
labelled and that the units are quoted explicitly in all cases.

6 Abstract
All papers should have an abstract of not more than 200 words. This ought to be
suitable for the various abstracting journals to use without alterations.

ICL TECHNICAL JOURNAL 95

7 Submission

Before subm ission authors are strongly urged to have their MSS proof read carefully
by a colleague, to detect minor errors or om issions; experience shows that these can
be very hard for an author to detect. Two copies o f the MS should be sent to the
Editor.

8 Referees
The Editor may refer papers to independent referees for com m ent. If the referee
recom m ends revisions to the draft, the author will be called upon to make those
revisions. Minor editorial corrections, e.g. to conform to a house style o f spelling
or notation , w ill be made by the Editor. Referees are anonym ous.

9 Proofs
Authors w ill receive printed proofs for correction before publication date.

10 References
Prior work on the subject o f any paper should be acknow ledged, quoting selected
early references. It is an author’s reponsibility to ensure references are quoted; it
will be unusual for a paper to be com plete w ithout any references at all.

11 Style
Papers are often seen written in poor or obscure English. The follow ing guidelines
m ay be o f help in avoiding the com m oner difficulties.

• Be brief.
• Short sentences are better than long ones but on the other hand do not

write telegrams.
• Avoid nested relative clauses; preferably start new sentences.
• D efine the meaning o f ordinary words used in special senses. D efine acronym s

or sets o f initials by quoting the full m eaning the first tim e the initials are
m entioned.

• Include a glossary o f terms if necessary.
• Avoid words in brackets as m uch as possible.
• Avoid the frequent use o f the type o f construction know n as a ‘buzzw ord’.

This often takes the form o f a noun follow ed by a present or past participle
fo llow ed by another noun e.g. ‘system controlling parameters’.

• Take care in using the word ‘it ’ that the reader will easily understand what
‘i t ’ refers to . A n unambiguous rule, that cannot always be applied, is that
‘i t ’ refers to the nearest preceding noun in the singular.

• Several ‘its’ in one sentence each used in a different sense can cause consider
able confusion. Similar remarks apply to ‘th is’, ‘th at’ and other prepositions.

12 Copyright
Copyright in papers published by the ICL Technical Journal rests w ith ICL unless
specifically agreed otherwise before publication. Publications m ay be reproduced
w ith permission and w ith due acknowledgem ent.

13 Acknowledgements
It is customary to acknowledge the help or advice o f others at the end o f papers
when this is appropriate. If the work described is not that of the author alone it will
usually be appropriate to mention this also.

96 ICL TECHNICAL JOURNAL

