
M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Volurne 1 No. 1

A MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

1->u bli sher I s Introduction:

This issue rr1arks the first edition of 1975 and the beginning of a new monthly form
at for the ECS articles. From now on the publication will be on a monthly basis with
12 issues per year. Minimum issue size will be 20 pages printed photo-offset as in
t he pa s t. Th t~ e di tor i a 1 policy w i 11 c on tin u e to em p ha s i z e mater i a 1 s u s e f u 1 in the c r e -

atior. and programming of home brew computer systems. In this first issue of 1975
readers will find:

1. ECS-6 Serial I/0 Interface Conclusion: The last issue of the 1974 series
of articles described the theory of operation and subsystem design of the UAR/T
oriented 4-channel 1/0 interface unit. This issue contains additional materials
including logic diagrams, tables, notes on detailed logic, and notation of a test

program useful in de bugging the design.

2. Notes un Notations: Taking into account numerous inputs from subscribers
together with further arguments and rationalizations, a decision to use octal

notation and "I.ntelese" is described in this issue.

3. Memory Dump Program "ELDUMPO": The application of the serial I/ 0
interface device with a teletype is illustrated in the listing of this program 1 s
code. In true bootstrap practice, ELDUMPO is used to dump ELDUMPO!

(To say nothini-; of the other listings in this issue.)

4. Manual Bootstrap Program "STUFFER": "STUFFER" is a program used
111 conjunction with the ECS keyboard (see ECS- 5) and display lamps to load data
at arbitrary locations in memory. It can be loaded by hand in locations 100 to
1(;3 of page O using the ECS-3 program.'s bootstrap hardware method. Then,
this prograrr1 can be used to load in octal further programs such as ELDUMPO.

5. Programming Notes: Using Restarts. Both ELDUMPO and STUFFER make
use of re start instructions (RSTx) to ace es s utility routines. The n1 et hod is

described in this section of the issue.

G. Notes of Interest to Readers: Miscellaneous comments and a couple of

errata presentations.

Publisher

@ 1975 The M. P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 1 -2- January 1975

ECS-6 SERJAL I/0 INTERFACE CONCLUSION:

In the last jssue the general design and theory of operation of the UAR/T oriented
s er i a 1 1/ 0 int e r fa c e \Vas pr c s c n t e d. Th e n1 a j or t e ch n -i ca 1 topic of th i s i s sue i s the
detailed description of this h'-irdware as it is in1plemented in the ECS prototype system.
The drawings found en pag1.:~~ 4 and S show tL details of the circuit. In the text below
reference should be 1nade to the drawings and to the general description of the system
presented in the previous issue.

UAR/T and Bus Input:
Drawing #1 on page ➔ contains the logic of the UAR/T' chip and its interface to the

system data bus. The address bus input lines AO to A, are wired from the I/0 socket
#1 tu the UAR/T parallel inputs TDO to TD7 (the notation used by the rnanu:tacturer's
doc:un1entat1on is T Dl tu TDi3, but renurnbcring is d(me here for consistency with the
re.st of the systern.) The address lines are written into the l 7AR/T as da.ta to be sent
out the serial port whenever the foilowing conditions hold:

a. The rnode selected by the control word (IC-9-, dwg. 2) is 11 output. 11

b. The CPU 1/0 instruction decode logic of the ECS-5 design (or its
equivalent) generates an OUT OZ clock which is inverted by - 7c- and en
abled through gate -8a- to the "TDS (transmitter data strobe) line of the

UAR/T.

The net:ative going dock pulse which reaches the UAR/T chip from -8a- automatic
ally starts the stored proµran1 of the UAR/T chip which transfers data to the output
buffer sh ft register and begins generation of the serial data forrnat. The serial
data generated hy the UAR/T appears unpin 25, Transmitter Serial Output (TSO).

The latest received data of the UAR/Tis present at all times on the RDO to
RD7 line~~ (mfgr 's designations RDl to RD8 - see above.) The output is always
enabled due to wiring the receiver data enable line of the UAR/T to ground (pin
4). The actual control of this data enable is provided in fact by the INOZ signal
provided by the ECS- 5 I/ 0 decode logic - going to the 8T09 gates which interface
the CPU bus. Note tha the INOZ i·-,::::truction is one of the cornbined input/output

instructions of the 800b - the corresponding output of the accun1ulator is sent to
the UAR/T if the controlword indicates output rather than input. But when input
is exercised, the 0UT02 clock tirne is also used - this pulse is used to reset the
RDA flag of the UAR/T after input, to acknowledge that the CPU has processed
the data. The acknowledgement from a CPU I/0 handling prograrn must come
within one character period of the 11 RDA 11 signal's transition to the logical "l"

state if the "receiver overrun" error is to be avoided. Note that just as the
1/0 transfer of data out to the UAR/Tis ignored when input is involved, the output
of data to the UAR/T also reads the UAR/T inforrnation into the accumulator, but

this inf urmation is in general meaningless"

Note that the bus interface gates invert the sense of the data being read out
of the UAR/T. In order to guarantee that the sense of the data being input to the
computer is the same as that written out (ie: 111 11 is logical 1, 11 0 11 is logical 0)
a level of inversion is required between the UAR/T and the bus interface buffer.

Also note that an improvement in the design would be to use the data out strobes

(pin 4 and 16 for data and status, respectively) to implement a local 3- state bus
sharing a single set of inverters/bus interface gates to the CPU world.

ECS Vol un1 e 1 No. 1 - 3- January 1 <n 5

The status bit outputs of the COM 2502 UAR/T arc read into the CPU with the
input operation IN3 (son1etimcs noted IN03). As with all the input operations of the

8008, there is a paired output of accun1ulator contents - in this case defining the
c on t r o 1 w or d c on t en t fr mn the a c c urn u 1 at o r • Th c IN 3 n e g at i v e cl o ck i s us e d t o
enable cuntrol inforn1ation unto the bus during the input operation, and is generated
by the ECS-S hardware or its equivalent frorn basic Intel 8008 signals. The status
bit outputs arc always enabled due to wiring of the titatus word enable pin (pin 16) to
grouncL As noted on the previous page, this output of the UAR/T can be rnulti-
p l c x e <l tu a s i n g 1 e s et of in v e rt er s / 8 TO 9 ' s in an imp rove n1 e n t o v c r th c de s i g n u s e d in
Uw prototype.

As is the ca:::;e with the data word output of the UAR/T, a series of inverters is
s h own i n <l raw i n g # 1, one p e r stat u s w or d 1i n e , p 1 a c e d in t he d c s i g n in o r de r to n1 a k e
the program operating the UAR/T be programrnable based on bit definitions identical
to the definitions produced by the UAR/T. If prograrnrning based on a single level

of inversion (con1plements of the definitions) is tolerable, the inverters n1ay be omitted,
An alternative which retains the proper bit definitions without inversion twice is to use
a non-inverting bus buffer instead of the 8T09.

Control and Multiplexing Logic:

Drawing #2 on page -5- contains the ren1ainder of the logic associated with this
Tiesign. It includes the clock oscillator, control word register, input n1ultiplexing

and output selection logic.

The !Jasic clock of the systen1 1s generated by a 555 circuit wired as an astable
configuration acting as an oscillator. The clock rate is adjusted by R3 to the nominal
frequencies required by the system. The logic of this design requires a clock setting
of 56. 32 Khz for a nominal 110 KBaud rate with the low frequency clock programming

value set in the control word. The UAR/T logic requires a clock at 16 times the
b a s i c b it rate, th u s with th e divide by I 6 n:1 od c of th e clock rat e c o un t er s et by a
binary value of "1111" in the control word rate bits, a total division of 256 will be in

effect. 110 x 256 is 28.16 Khz. The extra division by 2 is found in the flip flop used
to turn the extremely short (ie: 50 ns or so) clock reset pulse into a square wave
which is within tolerance limits of the UAR/T (eg: greater than 1 microsecond in
length.)

The clock outputs are the Q and Q pins of the 7473 section used to produce the
s qua r c w a vc . One of th c s e output s { Q, pin 12) i s us e d to drive th c UAR / T clock
pins for both transmitter and receiver sections (pins 1-17 and 1-40) The other output

1s routed tu the 1/0 socket for use by the rnodcms connected to the controller.

IC -9- is a 74100 used as a control word. This IC will store 8 bits of data when
its clnck lines are strobed with a positive logic pulse, derived in this case from an

(" inversion of the negative logic OUT0 3 signal produced by the ECS- 5 type contro11er
"-- or its equivalent. The four rate selection bits are wired to the 74192 counter used

E.C~-c;, 5ER..1AL I/O INTCR'FA(e:

"ol Ca., l T. He\ w.t~, Jr.

.b ll.lHu INC:, if i. U A R.. / T &.. Bu 5 l NP \.l i

1N0'Z.: REAO/WC.1,E OAT~ (ol)rQ'1.)

lM0l = REAi SUTU'f>/ Wll1TE C.Or•.n~oL WO"-D (o\)T..-S3)

U'4i./T
euFHR.S

I14P\Jl" 5Tq,1~<> ·20
11.·'1 SDI -----------------t RSI

so
-7-

+-~J I OUTPUT Sllq~G, 25
TSO

ib 5 ClO(J(

'7·'6

A.
(.

I'

1',5-
(u:)(.i(

N
I)

e
1,

l't-'f TTy

1~ 1~ I! I! I~ l~ 1~ i2~
T T T T T T ' T
D p t) b II 0 I) 0

7 (, • lj, l 2 1 ,Zl

-1- COM 2.502 VAR/T
FOR tlE:1=\H,TICt-J':> ~Uc T\:XT

T T
(8 E 'l ~ I;:

I"{ II. ~ R A. ~ fl ll
P "t o o r " D r> C b b p ti f>
ATCR,[E 1 (. S + 3 2. 1. •

1r TTY TMt t.i Lt~~T~ ,. 7; tL~c L~~c;.;11 • s:,'"'

m1l1t

M!l.,"U

B ,., 3
nsl I I --CJI

A'7

A'- "- t>tiR€SS

>,.,; e.us
A't
113 OUTPIJT

AZ 0/'.lTA
Ai (ro~ P1wS
At SH l)<.U..,~z.)

iiufFz :xJol, f''1-

'He

i ~ q-5

'

~

mT 5
\ 5 + 3 I

'-ONLY Wft. IT!

l.f O\JT?UT MOtiE

2. 7 ·1-

• ~ 01..1.T0?_

:tO ·')
1

P 1

il.-~
~EAb\;t

~ ---
I.Jo-3 > Pl~

I/0 ~ATA
1. BUS .,...i,
' b? ., LH,

" b5
s D't-
'I- DJ
3 fl'2
l H
1 •21

-~-

·1

TIMING~ ~e:LArlVE

fN0~ --u---
OV'r0l"

f,,an ..
oin-1il.

t.,

r--~ OLl·,;~-.i I
+ ,.,, 1. I I

, .Ll !

© 1.41'15)l:P P\JB~\S~I~ Co.

~ I/0-3, ~'J

... S 8T09 '.S

won:! COM2.SCH ..

COl.l~ECTION& FO~ LO~lt

{25 ARE. Pll-lS 4-, I•, l'S &.. 'l,.
LOCr\C.. l W i~E.D TO f> INS

3-+-
1
3'- l.t 39-. LOC.IC. 0

\~ C,ROU~I) / I.O~IC. i IS

t){trl~E~ ~U.')'. 0+5V
~t.

LO(,. i •-"vi\/

i.Coo.n.
., ... w

M
(")

U"l

< ,,..,,
,_.
>='.
::; ,._,
~

z
~

,_.

I
,+:..

y
c.,;
,_; ,...
...,
'""I

'<"'.

~
-l
J~

~) ·~

·•---·-----------------------
2

T~O ·- -··---·-·7 I ---···--------- .,. C' 7-1.

'.1/0·1. ,-,KS
l.

-i.- r__~-~ 7·+ I i ___ "H
To "'"Bi l-33 ~~l I j ! r . ..J./ c,:,) >--H~ 6

, I I - ... i. ___ ..,;__ _____ _
,'77 I , · '; --------~--- -·-:

1
------ ..,

c· J, d ~-------- si-'ELT -:: ,.,,,{\TU_~r,"I::_:.~-,.--... 1.-,,.1 C " --- \ I II \.tl . -.... :__________ ~ j
'f qe,

19 Ai
3

11. l?
lt

u "3
1.~

0 ~
1.S

1'+ As iii,

u A(. 1t

~ I ((: - t" --- •• --~

14:: ----------~-+-~:- ,,.~· '.>\11'-l'-!E~ 1· i

::. •.o. c"'""~l ·
5

I 'rl 7't·100 (:3

Colo.). 0

R

wor.i.~ Rt n

- q- R:! 1.~

>-"1"i'(~~1 I
!N ~~-~ ! 't Pt I

i;ib:t Pi+
_, __ ➔ >~7·

. Lt:.b

f (TY
--➔ >-J ~~~:~~

A_•~

I 10~

I 1.1

ii. A', 21

no, $.
z.o

Q.3

2.11 11

103-(. '74-3'7 ! e .I\

., SD~
s;

Pf>,--.......:..,__..~ St-1
lOt, ~ _ + &tl'2
l "'l.. ,~ ;-~ 'l

r-f
L~u r9-.·t

I/O·l, I''
1/0-z.

➔ Pl ~
j) f'~ OUlf"l.lT.S

--u· _,_ I
2 .

't t¢ t

'T'O I..CI'-- i.

Ri, ~t-~---iTI
,lo+ 2. J

t) C. &
i~ I

&,e.741.9 3

i-1.?,1-i,.o lbi 12 i.il CUI- I(u

\.S

A vr

". ·--~.!.t,1 -\ ~ V 101, P,o ~ '

5

4

I i
I I

'7'+153

-• "._ 1;;..

''~'-'- I !O !I I t' "3)-~ fi.. 1H ~ - q
In,P1t>---- '. ~i ltt)"

:tou,>----,;--- 1
' fvi

I Ii ---
t01, P1t}----;-;---; lt:1'\tA.II.E

1.

7

PII

't-iH.55'
.., • ~ ,. ,. .. a, • ,.

-n,-
1SSJ

f17 I/O·?.. ,,
I I

i. I TSO •~1

T"H. '1-

➔ P1.
~£Q.1,n.

P,5 tll\TA

p' ou,fuT!. L::J , 11.1-i-·lf. I
C \.O(.l{\ -l 4- -.,. , 1. ~ j

I) - I •
'IOl/13 ----... Ci ,~13 l<tlTE CCUNT'E2. ,' ~5 -"r J·'

j_
' I ♦ S

-~< i Rs HOA 1'°'

R.3

j+-sv

t,;j
OHH.i."-TQA.

18
,.,

i K ltlt 1555] '- -H- t O:TUf.-T ~') ~OR

'2 111 l!> _froo5 •i
C1 Ci.

J
-

() 1,7s M, P. 'V6 L.15~1N(. co.

' Ut'>I •

\.J.WE.
,U1,,~UP

2.·,<

',a., te ll1l~'

s~, no Ht
E.CS-1<>~

\,il

I I ~•1. !-to

G,..,

Se1"'~cJ l·O I Y1.te...,.fo.ce.
Cu...-\ -r. He..\w'ter~ i S<".

'74-~·; ~~ ~ ,;,.,,,.

rr '< 4)---o HI.
c.vQ.ai~T' ., Try

LOOP)---o LO
OP.\\JE

I.JO·~,,?..

Mt Alo..\\'-,& -t;: ?_ ~ (l)f-lT!l.OL i.(_ MULT HLEX i~G \..OG-'I.C.

I

M
n
Cfl

<

2

I

.n

c.....
p
::,
,-

p.; ..,
'<

"'° -J
Ul

ECS Volume 1 No. 1 -6- January l ln 5

to prog ran-, the different data rates pos si bl e with t hi;:; design. The two c hanncl s elec
tion bits are ,,,ired tu the rnultiplexor of the input data and ready ::oignalt->, and tu the
output data and ;'selt'Ct 11 selectors.

The In/Out bit, bit 1, is 1-,sed to enable the output write function fur the UAR/T
with the OUT02 clock, and is also routed to the output plugs for use by the 1noderns

in setting up their operation. The select bit i::-, nn1ltiplexed to one of the four channels

of output via the 74FlS, IC -13-. The select outputs are in pusitive logic forn1. The
teletype device, channel 0, has its select st1own in the drawing as driving an inverter

(-,f-) which in turn drives an LED indicator shown remote by the connector symbuls.

The purpose of this louic is tu provide a visual indicator at the teletype tellin~ the

operator (ie: you) that the CPU is addressinc. that rnachine. This indicator is entirely
optional and rnay be un1jtted if dP~ired.

Ready Logic is prO\'ided bv one sel'tion uf the nn1ltiplexor 741 3, -12-. This c1r

c ui t 1 s us t d to s e 1 e ct th " s our c e o f the 1 1 r ea d y 1
' s i g n a 1 w hi ch w i 11 b e p 1 a c e d on t h c Liu s

as a status bit (pos iticn !~) \vhcn the lN3 operation -interrogates status. For the channel
0 case (teletype) the ready function

rna y be driven tJy a r C la \r Connected
in parallel with the "on]ine:' side

of the teletypev.'ritcr ts front panel

switch. The relay shotilu be an SPDT

contact variety w1th a llOVAC coil.

The norrnally open c:unt;.1ct is closed

when the cuil is ener :izt·d bv the
~,"\vitch, thus groundu: t·;t ready

lirie input . For the ta.pn recorder

int c r L1 c e 1 nod c rn s , th " r h'l d y l in e

is driven l)y a I1 t1Jrn U!1 delay I1

one shot which is cued !Jy the

falling edi-'.c of the edµr-- of the select
signal tu the device in question from

TTY READY SENSOR

110 VAC

~E.\.A~ AODE~

TT> iTY

the 7415S selector. The second section of the 74153 is used to n1.ultiplex the serial

inputs of the device, fron1 one of the four possible sources - TTY nr tape channels

1 to 3.

Serial Data Input is routed via the 14153 IC -12-. One section of this IC is used

to select the source of the serial data input to the UAR/T . This input is taken fron1

the teletype switch contacts for channel 0, and is the serial output of the tape recor
der storage device's receiver section for the other 3 channels. The teletype data
is generated by a carbon brush mechanical switch controlled by the n1.echanisn1. of

the keyboard button pressed. When using input from the teletype, the operation

of the rnechanical switch produces a contact closure for the current loop 11mark 11

state (idle) and breaks the loop for the opposite (11 spac e 11
) state. This means that

to make the proper sense to the UAR/T, the re must be one level of inversion prior

to the selector if the preferable "pull up" TTL input form is used.

0

0

ECS Volume 1 No. 1 -7- January 197 5

Serial Data Output of the UAR/T emmanates from pin 25 of IC -1-, and is first
inverted by -7b- before being routed to the output data selector, 74155 -13-. Sirice
the section of the 74155 used for the serial output data has one net level of logical
inversion (unlike the other section of the san1e chip) the invc rter is required if the
signal sent to the modem or teletype is to be identical to the signal derived frorn the
UAR/T.

The channel O serial data output is wired to the 7437 high power NAND gate sec-
tion to generate a TTY current loop signal for driving the print n1echanism. Since the
"true" or 11logical l" state of the current loop is current flowing in the loop, this state
must be generated by a logical zero output for the driver tied through the TTY electronics
to the high level voltage. This single level of inversion provided by the driver suf-
fices to create the proper signal - true data output of the multiplexing logic of the
74155 is the 11n1ark 11 state which inverted generates a current loop 11on" state when
the UAR/ T is idle.

The serial outputs of the other three channels are wired to I/O socket #2 along
with the other signals necessary to drive the rnodems.

Select Output Logic is also provided by the 74155. As mentioned earlier,
the select for channel O is wired to an indicator lan1p. The source of the signal
for all channels is the select bit of the control word. For the tape drive n1odems,

the select signal for channels 1 to 3 is used to control the "motor on" state of the
tape recorder. In the logic of the tape interface units, the rising edge of the select
line for the channel in question should trigger a one shot 11motor start 1

' delay, as

well as turn on the tape recorder's motor for the beginning of operations. The
"motor start" delay one shot has sufficient delay involved to allow the motor
to g et up to s p e e d and r c 1 at iv e 1 y s tab 1 e ope ration . For c h ea p tape ca s s c tt e

devices this tin1e may be as much as 5 to 10 seconrl.s - if the n1otor and drive
ever stabilize. For the more expensive forms of cassette recorders, a shorter
delay rnay suffice. Given a cassette recorder, tbe characteristics of nrntor speed
versus tin1e fron1 turn on should be examined to detern1ine the minin1tm1 delay
required for reliable operation. In the previously published ECS-2 design, one
method of turning on the tape drive n1otor was detailed - a "tape drivebox" with

a power supply and transistor
switch to drive the motor via the
11 external power supply" jacks
often found on battery operated
c as s et t e r e co r de r s . Th e di a g r a n1
at the right shows an alternate and
n1 u c h s imp 1 er me ch an is n1 to con -
trol the motor via a 1 'dictation" con
trol input norrnally connected to a
switch in the rnicrophonev The relay
used is a n1icro-rced design, in this
case a 11Grigsby-Barton #GB31C-G2150 11

ren1oved frorn surplus equipment.

"" 2000n. CO\L

REE.I> ~ELA~
(l•S" "'A f'ULL-na)

,, ... ~; o~o
TAPE t>llTATI~ ~N_t _____ :_

\NPUT MOTOR _ _

(O~TROL TO

ECS Volume 1 No. 1 -8- January 197 5

The relay used in the prototype of this circuit had a coil resistance of 2000 ohms
(approximately) which gives a current of 6 milliamperes with a 12 volt drop when
the open collector 7406 energizes the coiL The 7406 can drive up to 25-30 milli
amperes with no difficulties, which n1.eans that using this particular IC as a driver,
relays with resistances as low as 400 ohms could be used, provided a 12 volt drop
gives sufficient current to pull the switch contacts. To see whether a given "unknown"
relay will work in this application, its pull in current should be measured using a
variable voltage power supply with a current meter. Hook an ohmeterto the sw,tc..'-'
contacts of the relay and observe the current and voltage at which transitions in
the switch contact state occur. If the current at which the contacts "pull in"
does not exceed about 25-30 ma at supply voltages of up to 12 volts, then the
coil can be wired into the circuit shown on page 7.

Wiring and testing the Serial I/0 Interface:
The prototype of this design was built using wrapped wire construction techniques

as described in M. P. Publishing Co. publications 73-1 and 74- 5. As in any complex
circuit, whatever your method of construction, use care in wiring and checking the
wiring. The following steps are a suggested set of testing stages for this circuit.

1. Verify all wiring and check the circuit's power supply connections by
applying power (with no IC's yet in sockets) and checking the proper pins

as listed in the table on page 9.

2. Check out the oscillator and clock generation logic first. Plug in the
entire complement of integrated circuits with the exception of the UAR/ T
chip for preliminary checkout. Check the oscillator output after applying
power to the circuit. Adjust the frequency using an oscilliscope or a fre-
quency meter. The frequency should be 5 6. 32 Khz, which corresponds
to a period of 17. 7 6 JlS for those who use scopes for calibration.

3. Set up the following simple program in the CPU using the bootstrap

mode of data entry:

000 010 INB next rate 011 020 select code

001 301 LAB rate to accum 012 111-::- IN3 write cw, read

002 002 RLC move rate to 013 177-::- OUT30 display stat.

003 002 RLC to the 014 113-::- IN2 read UAR/T

004 002 RLC high order 015 175-::- OUT31 display data

005 002 RLC of accum. 016 006 LAI define the

006 044 NDI purge the 017 003 003 reset code

007 360 360 garbage bits 020 117 INO reset inter.

010 064 ORI or in the select 021 377 HALT

~:-1/0 codes of ECS-5 altered for extraneous inverters

This program responds to interrupts by calculating the next rate code for
the serial I/0 controller and outputting it to the controller. Look at the
frequency on the clock line of the UAR/T socket - and observe changes as
an interrupt is raised on the keyboard. Note that the instructions marked
with an 11 ;:~ 11 use codes consistent with ECS-5 1 s drawing #1 - see the errata
section of the last issue for comn1.ents regarding the inverters in that

desi Q'n I s drawings and their effect on codes.

stat.

ECS Volurne 1 No. 1 - 9- January 1975

The following experirnent can now be performed - with the UAR/T still out of the socket

connect the clock pins of its socket to a "ln1fd condenser to the input of a stereo ampli
fier channel. Listen to the clock generator output as the progran1 is cycled and note
aurally the different rates.

4. Now turn off the system power and plug in the UAR/T, taking into account the pre
cautions listed below. Re-apply power to the systen1, and load the following sinlple
program to test data transmission. Look at the UAR/T output at the pin of IC -13-
\vhich is selected by the channel code bits sent to the Control Word via IN3.

000 () LAl set cw pattern oos 175-::- OUT JJ_ d isplc:,.y data
O'V '3 62 11 1 lOb, chO, :3el, out'' 006 006 LAI set int. enab. l; 1-

002 ()06 fji,_I define (J07 003 003 enable
OnJ \{) '('? ~) 9 ':> test data CHO 117-::- IN0 code
001+ l ! l ::- I IJ? writo/rc:2d UAH/r 011 377 HALT wai~ next cycle

" ::ee note in last example re instr. codes

So Test the input operation of the UAR/T by applying a TTL square wave at 27c 5
CPS to t1H~ in put uf channel L Using the alwve prog rarn, change word 001 to the
octal code "] (J 7" (llO baud, ch. 1, select, inpuL) The data pattern of the 2 7. 5 her z

square wave will he interpreted by the UAR/T as four bit-periods per cycle of the
·-..vave forrn, as follows;

-start parity

\ ~-- data ------1~ /7 slop

0 01100110 0110011

The teletype bit length was 7 - in this exan1ple, changing to channel 1 increases the
data bit length to 8 bits. The UAR/T interpretation of the above square wave should
be displayed in the data lamps by the OUT31 as ''01100110"

CAUTIONS RE MOS L Co 'S
When you purchase an Intel CPU or a complex MOS device such as the

lJ A E / T c hi p o u sh o u 1 d find it c om e pack c d i n a s p e c i a 1 b 1 o c k of con cl u c ti v e

foan1 pla~tjc shnrti!1L~ all pins with respect to high voltage static chart2cs. In

insPrtion anri handling uf the IC 1 s, be sure to di::-:charge body capacitance to

ground. Do the sarne before appruaching the \virinµ, to ff1akc chan~:cs and

altt~rati(Jns. In n1y own }ab I have a rug - and in it~; typical low }ntrnidity

winter state, I draw 1/---1" Eparks to ,L'r<Hmd after \,,alking any d1stance! This

not(•\\ a:-.o SUL'.,l~csted by Gordon French in phone cunversation recently.

AL-;o, observe the following prct'2Utiun \\:hen handling and ins('rting the
--HJ-pin IC parts such as the lTAR/T: it is qnitc easy to n1cchanically

st r <" s s t h c pa c k a g e t n t h c poi n t \V he r c it b r ea k ~; in two - n n t .'::i o ba d w it h a

$13 SO UAR/T hut if yuu buy a $360 CPU chip of the cadillac vziridy, it

could be l:eartbrcaking. Be sure to apply pressure evenly at all points and

avoid lettin,l: one corner 11 l'.ct ahead 11 of the rest by too l'.rcat a n-1argi11.

ECS Volume 1 No. 1 January 197 5

Tables & summaries of the ECS-6 Design:

Package Summary List for the Serial I/0 Controller:

IC No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Pins Description

COM2502 UAR/T - Std. Mier.Systems
8T09 Bus Interface - status

fl

fl

fl

"
Tl

II

II

fl

"

- status
- data
- data

7404 inverters, misc.
7404 inverters, misc.
7437 NAND, high power
74100 Control word register
74193 Rate Counter
NE555 Oscillator
74153 Input/Ready switches
74155 Output/Select switches
7473 JK Flipflops (div by 2)
7404 Inverters
7402 nor's

Miscellaneous parts:

+5V

1
14
14
14
14
14
14
14

fi
8, 4

16
16
4
14
14

GND

3
7
7
7
7
7
7
7
7
8
1
8
8

11
7
7

-12v

2

R 1, R2, R6 to Rl3 = 1000 ohm ¼w 3 - 16 pin component sockets
I/0 sockets R3 = 25K, trimmer potentiometer 3 16 pin

R4 = 200 ohms 1 40 pin socket
R5 = 120 ohms, 2 watt 1 24 pin socket
Cl = .005 mfd 1 8 pin socket
C2 = .005 mfd LED = 10 ma LED indicator
Board, terminals, etc.

Also required: a total of approximately lOmfd of electrolytic capac
itance locally on the power supplies, to ground plus several ceramic
(eg: .ol) bypasses to ground from po~er supplies.

I/0-1 List I/0-2 List I/0-3 List

1 to 8 = bus 0 to 7 1 = TS0-1 1 = TrrY-HI
9 to 16 = addr 0 to 7 2 = TSI-1 2 = TTY-LO current loop

3 = SELECT-1 3 = TTY-RDY
4 = RDY-1 4 = TTY-SELECT

I/0-2 List 5 = TS0-2 5 = +5V
6 = TSI-2 6 = TTY-TSI

14 = IN/OUT 7 = SELECT-2 7 = OUT02
15 = Master Reset 8 = RDY-2 8 = OUT03

9 = TS0-3 9 = IN02
10 = TSI-3 10 = IN03
11 = SELECT-3 14 = GND
12 = RDY-3 15 = -12 V

13 = 16-f CLOCK 16 = +5 V

~

ECS Vohm1 e 1 No. 1 - 11 - January 1975

NOTES ON NOTATION:

S < nn e fur th er i n put s fro rn re a de r s and o th er s our c c s , p 1 us s o rn e thinking on th c
subject have led to a conclusion to use octal notation of programs in the ECS rnaga

zinc for the 8008 computer and its 8-bit microcon1puter successors/competitors.
The basic arguments for and against hex have not changed - it still is a more con1-
pact notation which fits the word size exactly. However I have sorne new inputs ac
cumulated on the pro-octal side, sumn1arized here . 0.

1. A reader, Ward Christensen of Dolton Illinois, points out an argument in
favor of octal based on character coding schemes. In both IBM's EBCDIC and

ASCII, the letters and nurnbers occupy separate groups of number codes in
the set of integers representable in "n" bits. Thus to convert a combined
numeric/al?ha field (as in HEX data entry) requires special case program
logic whereas octal conversion, such as illustrated in STUFFER in this issue

(bytes 120 to 1368), can be done "in line" with no conditional execution by
sirnply masking the low order bits of the character entered. The original
hex input routine was not nearly so compact due to special case detection of
the A through F case and subtracting off the appropriate bias.

2. Gordon French (more inputs fron1 him in "Miscellaneous Notes" below)
points out that hex coding can be justified for long word length machines with
byte-multiple word widths because it is a more compact representation of the
data than octal. However the short length of the 8008 word ("byte") means
only one extra digit is required.

3. I got the Digital Equipment Corporation's rationalizations for using Octal
at a recent meeting of the IEEE Computer Society in the Boston areao The meeting
topic was the design and architecture of the PDP-11 computer, discussed by two
individuals largely responsible for the machine's architecture. Strangely enough,
the topic of notation of programs came up in their talk - with the following reasons
being used to justify octal: a. Conservatism - its the way minicomputer pro
grams have always been done. b. internal field structure - instructions on
the PDP-11 (as with the 8008) have effectively been designed with a 3-bit inter-
nal field structure which is symbolically respected if octal is used, but ignored

if hex were to be used.

4. I coded up several programs for my system using the hex notation for op

codes (figuring the codes as I went along until receiving the latest copy of the
8008 manual fron1 Intel - which lists codes in hex). I found that while hex is
fine for r ca ding IBM 360 machine code and dumps, adding and subtracting addresses

occasionally to locate origins, etc. - it is not so convenient when hand asscn1bly
of code for the 8008 is concerned. This effectively provided the last straw in a

reluctant decision to live with Intelese address notation and 8 bit octal data"

Accordingly, I rewrote a rnemory durnp program I had originally written for hexa
/~, decimal oriented outputs and have listed all prograrns in this issue in absolute octal

forn1at. The program listings consist of three octal 3-digit colmnns" The first two

c olunm s contain the page (H) and byte (L) address locations, s cparated by a reverse

ECS Volurne 1 No. 1 - 12 ·- January 197 5

slash. The 11 cqual 11 s1:...:n following the address fields separates the address fron1

data at that address - cit her the octal furn1 uf sorne pr ug ran1 data, or an 8 008 oper

ation code in octal. In tl1e listings, cornrnents have been typed to the right of the

durnped inforrnation, and labels have been indicated on the left.

MEMORY DUMP PROGRAM Tl ELD UMP O 11
:

11 ELDUl\1PO 11 is an application progra1n \vhich will prove useful tu anyone

desiring an octal display of infonnation on 1he teletype, or alternatively, on any

other suitable output device if you substitute a different routine for the 11 TYPE 11

routine ,_1.cce:-;sed via the RST3 instruction noted with n1nEn1.onjc TYPE. The pro~ran1

begins execution with entry fron1 location 0, or fron1 the 1 'IMP 11 interactive n1anip-

ulat or ;)r u gr an1. (Tu he 1 is ted and de scribed in the nt:.:xt is s uc.) The absolute rnac hine

addresses used in this progran1 as written and durnped are locations 011/000 to 011/235
w h i ch a r c part of a 1 - k i 1 ob y t e RAM cl e s i .L! n w h i d1 wi 11 be de s c rib c d i n t h e n c x t i s sue

along with IMP. The ELDUMPO prograrn was entered into itf~ n1enwry locations

using the 11STUFFER' 1 progran1 described on page lt> and 1'~ below. The listin~s of

ELDUMPO and STUFFER

were ac hievcd using the ECS- 5, ECS-b, ECS--1 and

E CS - 3 de s i f," n s t o d riv e a t e 1 et y p e i .:1 t c r fa c e d a s de s c r i be d on pa ~ e I of th i s is s 1.1 e .
Used teletyl)eS (mine is a mode] 33) can be picked up at prices in the $250 to $500
ra::ige depending upon cu11dition and n10del. At a recent auction sale, I saw teletypes

v:;,,·ith pin feed platens .sr1ld ty"p1cally for $350 {includinL:, card reader/punch attach111ents.

In lieu uf a teletype, it \ViJl~ld be quite reasonable to forn1at the dun1p e;:;sentially as

it is perforn1t·d here, iH:t stuff the data ont onto a TV Tvpe\\·riter of one of the

st'v:·ral kit forrn~ cu::--rently available - or unto an u~clllisc(-,pc character generat()r.

The n1ainr lalJels f l<1caf1c,ns \vithin thP progran1 are listed and described below:

START: 011/000 - thic: is the progran1 ent:ry point. Corne herv tu start off the pro-

µ ran1 by turning off t hr' interrupts \,•.: hile the ch:n1p is 1 n cpc ration. (Ignore the key

tJ u z1. rd ex c e pt when t c s ti n ~- for end c f .i ob cue at th c end u f a line of du rn pin !2 •)

ELD UMP O: 011 / 0 0 3 - Un s add r es s i s the rn a in d un-1 p 1 o op en t r y point, and i s reach c d

once for each line printed.

END: 011/110 - this address is the place execution transfers to when the data count

is exhausted or the keyboard is found to have a non-null character at the end of

a line of printin_i!.

STRING: 011/126 - this is a character string data text area containing the end of

job message as a length count (17
10

) followed by bytes of 7-bit ASCII characters

for the teletype.

TBYTEOCTAL: 011/150 - this address is a subroutine which prints 3 octal digits

accessing the 11 OCTOUT 11 routine via an "RST4" instruction.

TSTRlNG: 011/166 - this address is a subroutine which 1s entered with H/ L pointing

to a character string such as STRING, and which types out the string.

(

ECS Volurne 1 No. 1 - 13 - January 1Y75

S PACES: 011 /177 - TY PE 1 'e II s pa c e s and return

'' T Y P El T : 011 / 2 0 7 - ju rn p here from T Y PE (RS T 3) to do the work of µ r inti n g

Tl1e dun1p 1n octal of the ELDU1'1PO prograrn 1s listed below wilh. con1n1entary

START: 011 \000 - 006
U l 1 \U O l ;:;; U O 2

Ull\002;:;; 11'/

ELDCMPO: U 11 \OUJ = U :>6
011\004 = oou
U 1 1 \U U ::> :: 0 b 6
U l l \00 6 = 0 2 ~
011,007 = J,n
U 1 l \0 l O = 0 2 1
0 1 1 \U l 1 = J '/ 2
U 1 1 \U 1 2 == l ::>U

U 1 1 \U l J - l l 0
U 1 l \U 1 4 = 0 1 l
Ull\Ul':J = JOU
Ull\016 ·- 300
0 l 1 \U 1 '/ = 3 0 0
U 1 l \0 20 = 0 6 6
011,021 : 006

011\022 = Jl'/
0 l 1 \U 2 J = U 60
0 1 l '· O 2 4 = 3 ~~ -,
0 1 l \() 2 ':J = 0 20
0 l l \U ~ 6 = j '/ 2
U l l \u 2 ·1 = 1 l U
U l l \0 JO == 0 J J
0 l 1 \U J l = U 1 l
U 1 l \0 J 2 = U 1 0

COTHOK: 011\033 = 061
011 \034 = 3'/1
U 1 l \U 3 ~ = 0 U 6
0 1 1 \0 3 6 = 0 1 S
0 1 1 \U 3 7 ::: 0 3 5
011\040 = 006
U 1 1 \0 4 1 = 0 l 2
0 1 l \0 4 2 = 0 3 ':J
U 1 1 \043 = 0 46
0 l 1 \U 44 = U 1 2
U 1 l \U 4 5 = 1 U 6
0 l 1 \0 4 6 = 1 '/ '/
U 1 1 \0 4 ,, = U 1 1

0 1 1 \0 ':JO = JU l
U l 1 \U ~ 1 = 1 U 6
U l l \0 :J 2 = 1 50
U l 1 \0 ~ 3 = 0 l l
0 1 1 \U ':J4 = 00 6
Ull\05:> = 134
0 1 1 \U :> 6 = 0 3 5
Ull\057 = 302

LAI

interrupt disable code
OUT0 (INO) - sec ECS-6 p 14
LIU '\

LLI point to current count of data data RAMr .

J(COlJNT)

LCM }-
DCC dee rement c_ount t_o zero
LMC once per 1terat1on
JTZ ENDy- 1f count reaches zero, then
L all 11

11 11 locations have been
H durnped so go end it.
NOP' t-these three NOP 1 s leave space toput in an ~g~) extra line feed when TT y· acting up!

LRM -- point to memory address in t~_ _:MADDRj}

I:'JL RAM c1nd load it into B/C
LCM
INC -..}-
LMC

i n c r e rn e n t and s a v e 1 ow u r de r ad c: r e s s

JFZ GOT HOK J- if no low order overflow, tht:~n

L high order 1s OK as i::; ...
H
Il'-JB - increment high order if require<l ...

DC L l _ · h · , <l 1 t d . t LMBF point to 1 gt1 or er JY e an save 1 •••

~~ ' 1
} type out a carriage return

TYPE

11 LF" type out a line feed
LAI }

TYPE
LEI L~
10 0

J s et up n urn be r of spa c e s for ca 11. ••

zl'.L SPACES(_S and blank out (literally)

H J
LAB
CAL
L
H

T-R Y¥t3~+7fjt argument to print octal byte

print high order address,
(don't byte off more than

you can choo however)

print separator between H/ L LAI } "back slash ' 1

TYPE
LAC fetch low order address for printing

ECS Volume 1 No. 1 January 1Y75

The listinµ nf ELDUl\1PO continues below after an aside: RAM locations 000/00b

and 000/001 arc assurned to contain the current address in the dun1p, initialized
to one less than the first address to be printed, upon entry to the prograrnc RAM
location 000/025 is assun1cd to contain a count up tu 25510 giving the nurnber of bytes
to print initially, and the number rernaining thereafter.

END:

STRING:

0 1 1 \0 60 :;: 106
011\061 = 150
0 1 l \0 62 = 0 1 1
0 1 1 \0 6 3 = 0 0 6
011 \064 = 040
011\065 = Qj:,

0 1 l \0 66 = 00 6
0 1 l \0 6 '/ = 0 '/ 5
0 1 1 \0 70 = 0 3 5
0 1 1 \0 7 l = U O 6

040
03!:>
3 ~ 1

0 11 \0 72 =
011\07 3 =
0 1 1\074 =
01l\075 362

= 30 7 0 1 1 \0 rl 6

011\077 =
011\100 =
011\101::

106
1 50
0 1 1

011\102 == 115
011 \103 = 074
o 1 1 , 1 o 4 = 3 r,
0 1 1 \ 1 0 !:> = 1 50
011\106 = 003
011\107 = 011
011\110 = US6
011\111 = 011
011\112 = 066
011\113 = 126
011\114 = 106
011\115 = 166
011\116 = 011
011\117 = 056
011\120 = uou
011\121 = 066
011\122 = 003
0 1 1 \ 1 2 J = 0 'I b

011\124 = U02
o 1 1 \ 12 5 = OZ::>
011 \126 = 021
0 l l \ 1 2 ·1 = U 1 ::,
011 \130 = 012
Ull\lJl = 012
011\132 = lU:>
011\133 = 116
011\134 = 104
U 1 1 \ 1 3 S = 0 40
0 1 1 \ 1 3 b = U U ·1

U 1 1 \ 1 3 ·, = 0 0 U

CAL
L

TBYTEOCTAL\
~ go print low order address

H -
~~ L
TYPES

print a blank, followed by ...

~M} print equal sign
TYPE

~~ l - print a blank
TYPBJ-

LLC - define data byte address LHB} and fetch

LAM it fron1. rnemory
CAL TBYTEOCTAL}-
L print data
H
INl t read the keyboard at end of line
CPI to test for a null code
"null 11 and
JTZ ELDUMPO continue if null. ..
L
H

otherwise fall thru to END

LIU
h(STRING)

LLI
l(STRING)
CAL TSTRING

L
H
LHI
0
LLI
3
LMI
2

C

KEYWAIT (RST2.)
1710 length

"CR 1
'

rrLF''
r,LFrr
IIEII

"N"
,1 D"
11 blank 11

r'bellr'
11 null"

go type string after defining
the argun1ents as H/ L

these instructions are put in
to reset the keyboard scan

state and r cturn to t}1 e IMP

progran1 operation. For
use without IMP, the sc can

be replaced by a HALT or a
return to a calling routine.

7-bit ASCII for TTY end of
data 1n cs s aµ. e

EC~ V ul un1e 1 No. 1 -1 5 - January 1975

The listing of ELDUMPO continues, with another aside - The data definition of
"STRJNG" is an example of a general forn1 called the "character string. 11 Suppose

you want to edit a 1rnok, or a magazine for that matter - or a letter to a friend. One
great way to do su is to use a string oriented program to store and n1aintain text as
character strings. This basic form will recur in nun1erous ECS applications.

0 1 l \ l 40 = 0 0 0
011\141 = OU'/

0 l l \ 14 2 = 000
011\143 = 00'1
011\144 = 000
011\145 = 000
011\146 == 00'/
011\147 = 007

TRYTE- ~011\l:>O::: 340
OCTAL:---=1 011\l:>l = 002

0ll\l:j2 = 002
0ll\l:>3 = 044

T~;TfUNC:
TSLOOP:

:-;PACES:

TYPEIT:

TYPEWAIT:

Oll\1~4 = UU3
0ll\l~~ = 04:>
011\1~6 = 304
011\157: Ole
0 1 l \ l 60 - 0 1 2
011 \161 = 012
011'162 • 045
011\163::: 304
0 1 l \ l 64 = 0 4 ~
011 \lb5 = UO'/
011 \166 = J4'/
011\167 = Q:,'.)

0 l 1 \ l rl O JU , /

011\l'/l = U3~
0 l 1 , l 72 = 0 4 l
011\173 = 110
U l l \ 1 -, 4 - l 6 ·;

011\17:> = 011
011\176 = uor,
011\177 = 006
011\200 = 040
0 l 1 \20 1 = 0 3 ~
0 1 l \ 20 2 = 0 4 l
011\203 • llU
011\204 = 177
Ull\205 = 011
0 l 1 \ 2 0 6 = 0 0 'I
0 l l \20 7 = 3 30
0 l 1 \2 1 0 = 0 0 6
011\211 = 362
011\212 = 111
011\213 = 303
011 \214 = 113
011\215 = 036
011 \216 = 07'/
011\217 = 006

11nu1111

11 bell 11

11 nul1 11

"bell"
"bel
'

1null"
"bell"
11 bel1 11

a few bells and nullsles always
help annunciate the end of
a progran1 1 s execution .•.

LEA save data 1n E work register

~t~ _}---- shift high order two bits to low

NDI } "OOOOOOllr,- and mask for 0/1/2/3 digit

OCT OUT----~ go OCT OUT your fantasies

LAE)

~~~ j fetch saved data and shift middle 
RRC octal Lits to low order 
OCTOUT and print thern 
LAE fetch saved data 
OCTOUT and print the low order data digit 
RET 
LEM-------,-hcre 1 s the text string typing routir:.e -
NEXT A ---gd next addrcs s after saving length cc,de. 

LAM fetch the next byte of string 
TY PE and go type it on TTY 
l)CE: decrement 1ength count i.n E 
JFZ TSLOOP -i,,,- if any count remains, contuiue 

r; ,_J printing the strin!-! 

RET return, if count exhausted •.. 
LAl come here to print spaces 
!I ll 

TYPE 
DCE tFZY 
H 
RET 
LOA 
LAI 

print the space 
dccren1ent the space count 
if not zeru have at it again 

con1e here to print a character 

110 baud, ch 0, select, output 
IN3 ~ go write the TTY output control word 
LAD~ save status read 
IN2 ~ restore data and go write 
LDI -----... make a wait loop to verify done- nes s 
63

1
0 63 times should suffice 

LAI ~ beginning of wait loop 



ECS Volume 1 No. 1 -16- January 1975 

The final segment of ELDUMPO code is printed here... in order to run the pro
gram, be sure to reference the section on restart instruction usage located later 
in this issue. The restart routines TYPE, KEYWAIT, OCTOUT, and NEXTA 
are all defined in that section and referenced at various locations in ELDUMPO. 

011\220 :: 362 
011\221 = 111 

llO baud, ch O, select, output 
IN3 
NDI 
mask for TBMT and TEOC bits 
CPI 

011\222:: 044 
011\223 = 030 
011\224 :: 074 
0 1 1 \2 2 ~ = 0 30 
011\226 = 110 
0 1 1 \ 2 2 rl = 2 1 rl 
011\230 = 011 
011\231 = 031 
011 \232 :: 1 10 
011\233 = 217 
011\234:: 011 
011\23:, = 007 

both bits on and it might be time to try again. 
JFZ TYPEWAIT 
L 
H 
DCD 
JFZ 
L 

either bit off indicates 
definite try again 

decrement loop count 
TYPEWAIT 

H 
RET 

- try again "n" times, to rrbe sure" 
a bout fhe status bits - see below ••• 

return after really done ••• 

Note that a WAIT loop was inserted in this routine as a part of testing the UAR/To 
An experiment you may wish to perform is to minimize the number of times through 
the extra wait loop iterations used to be "really sure" the UAR/T is done. Ncte 
also that throughout t}:is code, the input and output instruction operations used are 
those required for ECS-S's decoder as printed in that article. 

MANUAL BOOTSTRAP PROGRAM "STUFFER" 

The listing of "STUFFER" is found on page 17 of this issue. The basic idea is 
to make a program which essentially delivers the minimal subset of an editor pro-

gram such as IMP needed to stuff data into locations 
in the n1emory of the CPU. This routine takes a 
total of 5210 bytes of memory, and is amenable 
to loading via toggle switches - after which use of 
keyboard and octal coding will make for n1ore effi
cient loading. The command keystrokes are as 

follows: 

!IN 11 
- ECS 5 code 316s is used to corn.pute the 
next address and display the content at 
that address. 

111 11 ECS- 5 code 311 8 is used to insert the 
last entry at the current, address, increment 
address and display data at the next location. 

All Else - treat the low order 3 bits as an octal 
dig it shifted into the 8 bit entry register C 

CAUTlo~: 

STUF~£R AT WOi.K 

To initialize the pros.:ram'::; H/L address to n1en10ry, put the CPU in single step 

mode, interrupt and go to location zero, define the Hand L constants at locations 
140 and 142, single step past location 101 of STUFFER, then go into execution. 



ECS Volume 1 No. 1 

~;TUFFEH: 
000\100 = 11~* 
0 00 \ 10 1 = 0 ,, 4 

000\102 = 316 
000\103 = l~O 
000\104 = l~U 
000\10~ = 000 
000\106 = 074 
000\107 = 311 
000\110 = l!:>O 
000 \ 1 11 = 160 
000\112 = 000 
0 0 0 \ 1 1 3 = 0 ·, 4 
000\114 = 377 
000\115 = 150 
000\116 = 137 
000 \ 1 1 7 = 000 

OCTAL: 000\120 = 044 
000\121 = 007 
000\122 = 310 
000\123 = 302 
000\124 = 002 
000\125 = 002 
000\126 = 002 
000\127 = 044 
000\130 = 370 
000\131 = 261 
000\132 = 320 
000\133 = 177·:} 
000\134 = 306 
000\13!:> = 175* 
000\136 = 025 

I NIT : 0 0 0 \ 1 3 ·, = 0 5 6 
000 \l 40 = 000 
000\141 = 066 
000\142 = 200 

LOOK: 000 \ 14 3 = 30 7 
000\144 = 177* 
000\145 = 306 
000\146 = 175* 
000\147 = 025 

NEXT: 000\150 = 060 
000\151 = 110 
000\152 = 143 
000\153 = 000 
000\154 = 050 
000\155 = 104 
000\156 = 143 
000\157 = 000 

INSERT:000\160 = 372 
000\161 = 104 
000\162 = 150 
000\163 = 000 

END NOTES: 

-17 - January 1975 

IN2 - read keyboard data after an interrupt. 
~~~} test for an ''N" code on keyboard. 

JTZ NEXT - if the "N" is found, jump to the
routine which increments H/L and displays
the data at the next address ...

~i~} test for an "I" code on keyboard.

JTZ INSERT - if the "I" is found, jump to the
data insertion routine to define memory at
H/L from last entry ...

CPI } "null" test for null character code ...

JTZ INIT - to initialize Hand Luse single
step mode, start with a momentary keyboard
key stroke

NDI Assume octal, and throw away the
"00000111 11 .5 high order bits with AND ...
LBA - temporarily save digit in B .. .
LAC - fetch previous entry from C .. .

RLC} RLC make room for new digit, saving old high order
RLC order information ...
lIDI) _ Delete previous bi ts hanging
"1111111000" r- around in low order digit ...
ORB - merge in new octal digit from B save ..•
LCA - save new entry in C for next time or use ...
OUTJO - entry displayed on the right ...
LAL - fetch low order address ...
OUTJl - current L displayed on the left ...
KEYWAIT 8 Wait for next key stroke ...
LHI n Come here to define initial value
??? of the address registers Hand L
LLI for loading data. Define 140 and
??? 142 manually via bootstrap mode of ECSJ
LAM - fetch the currently addressed byte
OUTJO - and display it in the right display
LAL - fetch the current low order address
OUTJl - and display it in the left display
KEYWAIT8 Wait for next key stroke .. .
INL - increment low oreer address .. .
JFZ LOOK - go look if not overflow .. .

INH - increment high order if required
JMP LOOK - and always go look thereafter

LMC - insert the data entry in M(H,L)
JMP NEXT - go calculate next address and

then display info with LOOK ...

* Output instruction codes are illustrated for the
wiring of the prototype system - see note, p. 14 ECS-6.

@ KEYW"AIT is mnemonic for HST 2, used to access the
keyboard interrupt wait routine. See page 20 .

ECS Volume 1 No. 1 -18 - January 1975

PROGRAMMING NOTES: Using Restarts:

This is the first in a series of program
ming notes on the use of the Intel 8008 instruc
tion set in the context of an ECS system or its
equivalent. ••

The restart instructions of the 8008 are effectively one byte CAL instruc-
tions with an implied target address given by the operation code. The implied sub
routine address of the instruction is one of the octal locations 000, 010, 020, 030,
040, 050, 060 or 070 in page 0 of memory address space, specified by the middle
digit 11 ?" in the operation code "0? 5 11

• The fact that only a single octal digit is avail-
able for this use immediately lirnits the application to a rn.aximmn of 8 critical
(ie: nmch used) subroutines in a given software load. In a design such as that which
was published in ECS-3 and ECS-5 during 1974, one of the restarts is attached to the
I/ 0 interrupt structure by using it as the 11 single instruction jan1' 1 which occurs when
the CPU is to be interrupted. For the ECS series software, the interrupt structure 1s
at present only used for keyboard interrupts which occur when a key is pressed on
the typewriter keyboard of ECS-5. Alternatives to interrupting include use of a
priority encoder to pick a restart routine in cases where fast vectoring is required.
However, the fact that it is impossible to save the program state of an 8008 at inter
rupt time (without hardware augmentation that is) leads to the conclusion that the
8008 is best programmed as a "one process" machine at the hardware level - with
software polling of interrupt status for most of the fairly slow peripherals likely
to he used in a home br cw computer context.

With one of the restarts thus taken up by the keyboard interrupt, there are seven
instructions RSTl to RST7 which can be used for 11 son1ething else." What is that
"something else. 11 Basically an analysis of your programn1ing of a problem will often
show a set of instructions which are used over and over again - a criterion which of
itself defines a potential subroutine. Of the set of all possible subroutines a program
might use, certain of these tiubroutines will be executed most often in the static sense -
they occur repeatedly throughout the code and occupy a lot of memory space with 3 byte
CAL instructions. These frequently coded (but not necessarily frequently executed
however) invocations are likely candidates for use of the RST call n1echanism
in place of the CAL instruction. In making a routine accessible by RST, the arn.ount
of n1en1ory occupied by the linkages to the routines in question will be de-
creased, but as is always the case, there is a price in execution time. Instead of

taking one 11-state CAL instruction, the time required now includes RST - for a total
of 16 C PU st ate s, or G 4 n1 i c r o s e co nd s .

The basic use of the RST instruction for a subroutine invocation (where the sub
routine is longer than 8 bytes) is illustrated by the following:

In place of CAL XX, use RSTn (where n is an available restart)

At location 000/0n0, code a JMP XX instruction to cause transfer of
control to the routine as if CAL had invoked it.

No other changes arc required in the subroutine in question, since its execution
does not care how it got there

ECS Vulun1e 1 No. 1 January 1975

As can be seen in this use of Uw RST instruction, you will be trading an RST

followed by a JMP fur a direct CAL - to achieve the same functional effect in a pro

gran-11s operation. Adding up the overhead, two CAL's require 6 bytes, and the

total n1en1ory required for the san1e two CAL's implen1ented via RST is two

RST's plus the one JMP at the RST target location. Thus for two or rnore CAL's

tu a ruutine, a net savings tending assymptotically to 2 bytes per CAL will be

realized. (Using this n1echanisn1 in the degenerate case of a single CAL to a
routine will incur a one byte men1ory overhead penalty!)

In order tu suc:1:esdully use the RST operations it is imperitive to structure the

fir ::-o t / 00 8 byte s () f n1 em or y add res s spa c e (w h i ch I a s s urn e w i 11 be RAM) to take adv an -

tage of the rnethod. The software supplied in the current and future articles of ECS

as~un1es Sllch a structuring is being used, as described below. The text which fol

lows prescr~ts the definitions of presently used RST routines which have been refer-

enced in the lisbngs of ELDUMPO and STUFFER given earlier. Note that most of

the restart routines de; not occupy a full 8 bytes (the maximum allowable without in

terfering with tr:ce next RST zone of rr1emory.) Thus there is plenty of room for
a llocatiun of permanent or temporary RAM usage in the spare bytes left over following

the RST routines proper and preceding the next RST location. Of these nominally

'
1spare 11 locations, several are given permanent systen1-level allocations in the

text Leluw, in particular locations 3 to 7 and 15 to 17 8 .

t' INTERRUPT RESTART:

The· f:_rst 1 csL1rt zon of n1emory is that from a,ddresses 000/000 8 to 000/007 8 ,

whicL arc accessed whenever an intcrupt occurs in the ECS serie:s designs or their

equivalents. Tht~ ' 1restart 11 routine for this case is the sin1plest - a branch

tu the prinw entry roint of the currently executed program. For instance, to run

ELDUJ\.UJQ in this issue, the address of ELDUMPO's START location should be

patclwd in as the target of a Jl\1P instruction 1 s operation, at locations 000/000 to

000/002.. The patching is done n1anually in the bootstrap mode of an ECS style

C PU. Ma nu a 11 y patching in the add re s s of ST U FF ER instead w i 11 ch an g e th e key -

board interrupt response to reference that prograrn instead. The design of the

Hv1P prouram which will be listed and explained in the next issue of this n1agazine

will assurne trat it is the 11 primary'' progran1 of the system and will he the target

of this branch. It wi 11 proceed frorn there to identify the source of the interrupt

and return to the appropriate routine with the character it reads. (An elen1ent

of the return from ELDUMPO to IMP is included in the current listing of ELDUMPO

at locations 011/117 to 011/125.) The remainder of the RSTO zone of the 8008 address

space is allocated to usages fur systen1 parameters as follows:

000/003 - IM ... =>STATE - this is an integer value which

contains the current operating state code of the IMP

program.

000/004 - IMPENTRY - this 8-bit byte contains the last

entry interpreted by IMP from keystrokes representing

octal digits.

000/005 - unassigned

000/006 - MEMADDRH - this is the high order of a system
level men10ry pointer used by IMP as well as ELDUMPO

ECS Volmne 1 No. 1 -20- January 1975

000 /007 - MEMADDRL - this is the low order portion of
the memory address pointer •

BYTE EXCI-:IANGE RESTART: XCHG

The second restart zone is reserved for prime use as a routine to exchange
the two 4- bit halves of a byte of data. The purpose for this routine (which is net
accessed by the software listed in this issue) is to provide a sirnple n1eans of
m.anipulating BCD digits when writing routines for BCD arithmetic. The code
of XCHG is as follows:

XCHG: 000/010 002 RLC

000 /011 002 RLC
000/012 002 RLC
000/013 002 RLC
000/014 007 RET

The location 015 in this restart zone is reserved for a JMP instruction op code
(104s) followed by two variable bytes set whenever an indirect form of branching
is required. This location (015, symbollically "GPJMP") is used by IMP for exam
ple to branch to an appropriate routine in response to keyboard comm.ands stored
in a table.

KEYBOARD WAIT RESTART: KEYWAIT
The third restart zone of address space extends from 000/020 to 000/027 8 and is

accessed by the RSTZ instruction code. The definition of this restart is assumed by
both the IMP and ELDUMPO programs to be a routine which sets up the keyboard
interrupt hardware then halts pending an interrupt. The routine occupies four of
the 8 available bytes in the RST2 zone - the balance from 000/024 to 000/027
are available for use as temporary RAM locations at present, as for exa1nple
ELDUMPO' s use of location 25 to hold the number of lines remaining to be printed.

KEY WAIT: 000/020 006 LAI load the

000/021 003 003 interrupt enable code

000/022 117 IN0 write - resets interrupts

000/023 377 HALT - wait for interrupt

PRINT A CHARACTER: TYPE
The fourth restart, RST3, has the purpose of ilnplementing a single character

TYPE function via RST rncchanisms - where the character to be typed is assumed
to be in the A register prior to entry. Its implementation as a RST routine is via
the JM P mechanism - the invocation causes a jump to a location within the ELDUMPO

routine which perfornlS the actual typing:

TYPE: 000/030
000/031
000/032

104
207
011

JMP TYPEIT
L
H

The remainder of this restart zone, addresses 033 to 037, are unallocated to software
use at present, and n1ight he used for temporary RAM storage or other purposes which

do not conflict with the RST functions.

ECS Volur11c 1 No. 1 - Z 1- January 1 l}75

OCTAL OUTPUT ROUTINE: OCTOUT

The fifth restart, RST4 , is used at present only by the ELDUMPO prograrn, and

rni ght in fact he redefined for a rnor e important application at s mn e future tin-1 e. It
C(Jnsists of the code needed to form a single octal digit in 7-bit ASCII code fur the

teldype, followed by a TYPE instruction (RST3) to print the octal digit in question.

OCT OUT: 000/040 044 ND!
000/041 007 n1ask off low order - scrap high
000/042 0(>4 ORI
000/043 060 or in the fir st nurneric code
000/044 035 TYPE and go type result
000/045 007 RET

As in the previous case, the remajnder of this zone is unused at present and n-1ig:ht

be ernploycd by a.n application requireing ternporary storage in RAM.

NEXT ADDRESS ROUTINE NEXTA

Tl 1 c s i xt h r e .:; i a rt , R ST , i s the fin a 1 one pr e s e n t e d in t 11 i s s et of d cf i nit ion s .

Lt i s <l r u u h n e t <) p e r f o ri n a do u b 1 e pr e c i sic n i n c r e rn e n ta ti o n c f t h t:> a d d r c s s

!'-,tOY(:d in tl,(, H nd L reµister . lt is currently used, for cxan1plc, in the strinf

t y p 1 n i-' r r) 11 ti n c o f E L D l.Hv1 PO f o u n d at 1 u ca tj o n s HJ C tu l 7 6 1 n pa g e O 1 l.

000/U U

(!00/IJ l

''0(1/0Sl

000/0C::,3

(){0

0 l 3

050

007

The rcn1ait1111!-'. purtHJl1 of this zune is left

lo pcrn1c-Lr1 ent r; r tern po rary use.

NOTES OF INTEREST

C <> n c e r n i n g Ci r c u i t B o a r d s :

INL

RFZ
INH

RET

lncrPn1ent L

Return if no ovE' r fl l•\\'

Increrncnt H

Return alwayti.

u n d Pf in e d at pre sent, for fut ,ir P a. l lc, (at ion

TO READERS

For the tinH~ beinµ l arn ren1oving the circuit board products previously announced

fron1 this n1arket place. The ECS-Z board is functional but represents an overly

con1plex approach to an audio frequency tape recorder moden1 and I will shortly be

replacing rny own versions with sin1pler designs. For exan1ples of a simpler rnodem

see the current issue of Radio Electronics (February 1975) page 53 for use of the

EXAR modcn1 chips. The n1en1ory board which I previously announced

works fine - in fact it was used to store the program ELDUMPO in this

issue - but I have added some options which make the original board obsolete. The

details of the lK rnen10ry design wi 11 still appear in the next is sue as announced.

ECS Volun1e 1 No. 1 -22- January 1975

In view uf the fact that I a111 no longer pruvidinl-'. the ECS-2 board, I will agree
to r e fun cl p u r ch a s e pr i l' e tu th c: h and f u 1 o £ s u b s c r i b e r s w 1i u have p u r ch a s e d th i s it e 111
u po 11 r cc e i pt u f a r e q u e s t f u r t h e r c fund.

Con c er n in g Errata ~: Pro gr a 111 Pat ch es :

Since the previu,~;::, is::uc, ECS-t>, some further errata in previously published
designs have conic to 1ny attention. First, two itcrns received fron1 Herrnan Den1ons-
toy of Painted Post, Nl Ye:

- The output pins of the 2501 rnemories shown in drawing #5 of ECS-3 arc
incorrectly identified, Pin 14 (indicated as the D output) should be U1e D

output - and vice versa. To fix the drav,ring, write 1114 11 wherever you see "13"
on a 2S01 output, and write 11 13" whf'rever you sec 11 14 11 printed nex'i to
a 2501 output. The functional in1pact of this error is a logical inversion of
the data stored in n1en10ry and read back out.

- Th e s e n s e of th e c on t r o 1 1 in es n un1 be r c d 13 4 and 1 3 G on d r aw i n g # t> of EC S - 3
is incorrect. The correct wiring can be obtained by either adding an inversion

with a 7404 section or equivalent, or in the case of line 136, by eli1ninating the
inverter shown in dra\vign #8 of ECS- 3.

Mr. Demonstoy receives a subscription extension of his subscription by one issue
for his identification c,f these errors and detection of an error in the MEMZAP

progran1 which had been previously noted by n1y brother Peter.

The MEMZAP progran1 listing has an error in it, page 6 5 of ECS- 3. Word
6 of the pro.uran1 should read 11 371 11 and not 11 307 11 as printed. This error was first
identified by Peter Hcln1ers.

The ADD8 subroutine uf the extended pree1s10n addition routine has several

errors. Peter Heln1ers relays the following routine which works, created by his

associate Loren Woody at the University of Rochester:

ADD~: 00,-~/L 00 046 LEI ;3et E to () (new carry)
uuo/101 000
ooo/:c2 361 l_Jl_Jf) Get AVAH
000/103 307 LAM
OOD/ l Ol~ 362 LLC roint to BVAE
000/lOS 207 ADM Add BVAR
000/~_06 100 ,JFC ADDCAHRY
0 C O / l 1

:, -:, 112
00(;; , : 1 Ci 000
000/l~l 040 IIJE Set E to 1

ADDCAPRY: oco/ 112 203 ADD Add old carry
OOO/ll3 100 JFC SETCARRY
000/114 117
000/~15' 000
ooo/ ::__ (-;i Ol+O IIJE et E to 1

2ETCARRY: ooo/~ ~ 7 J3L+ LDE ~~ave Carry
000/120 370 LMA :_;ave hp~) l_; ~ t in BVAH
000/12 (J07 RET and retu~n.

ECS Volun1e 1 No. 1 - 2 3 - January 1975

Concerning Where To Get Parts (ie ~ 8008 1 s)

Peter I-Ielrners has just recently con1pleted his version of an 8008 systern (at
least the initial stages.) As part of his shoestring approach, he did a survey of the
various vendors advertising in the Radio Electronics,_ '73, and Popular Electronics.
n1agazines. I will not repeat the vendor addresses here, since all of thern advertise
regularly in the above magazines. What follows is Peter's sun1n1ary:

a) Godbuut Electronics wa.c..; the fastest to replyo They also seemed the
most open - especially considering their offer to talk via phone and an ex
plicitly stated guaranteeo

b) Electronic Discount Sales - second be st source - reminds me of an oper
ation like yours is in publishing Had as a good a price as Godbout. Did offer
guarantee in post card replyo

c) RGS Electronics - ''stuffy"., Gave an in1pressive reply, but are obviously
trying to sell their kit rather than chip itself since they are way over the "market
price" (eg: $50) of the 80080 My only dislike I guess is their price since on re
reading their reply I would not hesitate to purchase from them.

d) M&-R Enterprises -· I wouldn't purchase from them. I am not sure that I
believe their story about 11 savings to the custon1er 11 since quantity prices of
the 8008 are $60 leaving them no profito Also, considering that the Micro System
International unit is offered (surplus) from Electrcnic Discount Sales, I wouldn't
be surprised if these two companies bought fron1 the same sources. Also, this
company is the only one that did not rnention any sort of guarantee.

Peter ended up buying his CPU for $50 frorn Godbout and shipped immediately to
me in late December., I ran it in 1.ny systcn1 in place of my regular CPU for about one
week and could detect no differences executing a typical set of progran1s. His latest
report is that the CPU is up in and running in his version of the 8008 type system,
and operating at a clock rate of about 717Khz with no sweat (my $120 CPU purchased
from Cramer new in 1974 (March) craps out at 500 Khz - sigh!)

Concerning The 8080, ALTAIR and Better Systems ..

Since the last issue was mailed, I read of the Altair computer in Popular Elec
tronics" It is a welcome addition to the home microcomputer market place, since
tr.e fact that the entrepenuers at MITS are willing to speculate on market acceptance
of such an advanced (and expensive) product is an indication of the growth of the field
of avocational computing.. First, a note about the PE article -it was fairly obviously
prepared by an individual with the following characteristics: little knowledge of
computers, a package of materials handed to him with correct data on the device
and its capabilities, and boundless enthusiasm. The net vector sum of all these
inputs is a set of fairly outrageous staten1entsu From what I have seen of the 8080, and
a comparison v.rith products such as the Motorola 6800, I tend to prefer the latter due
to its much better documented and designed instruction architecture from a programming
and systems stand po into

ECS Vulun1.e No. -24- January

On U 1 t.> :; a 111 c th ern e, a l c n µ I e tt er fr c rn Go rd on Fr P n ch a r r i v L' d u n n 1 v desk u 11 •

the 10th o f J an u a r y o r t h c r t' ab u 11 L s (1 n c id f: n t ::i 11 y , corn po s e d a n d pr i n t e d u, sing an 8 O O 8

b a s c d t ext edit o r r u n n i nu tu :i t c 1 et y p e .) Se v e r a 1 poi n ts a r e worth not i n ~• for r e a de r s :
First, 1'v1r. French lives in ML~nlo Park California, whicL is rt:lativelv close to the

Intel facilities. The following excerpt fron1 his letter concern:::-; a visi-t he rnade to the
Intel people:

11
I spent 2 hours talking ahuut the Altair 080 with Intel enginec.•rs

in the Intel Lobby. Gist of many ,subjects discussed is the folluwing.

Intel dues not nuw nor will they ever, surplus out of spec parts to the

n1arket. Intel does not desire to cater to the Amateur Con1.puter User
to an extent that would mean product design intended for the ACU.

They welcon1.c the MITS effort, because it gives then1. a single source

for a large volume sale (with no hassles). They say that the big prob-
len-1 is in instructing the engineer user on how to program the machine
(no wonder, since they push hex as the source code!) Most of the

people they train have had high level language schooling and find the

assembly language tedious, difficult, or utterly impossible. They
said there is definitely a market for tutorial texts 011 assembly language
techniques. As for the 8008 or Altair 880 users - they advise the

serious user to purchase their Intellec 8080 ($3840) otherwise they are

not interested. The feeling I came away with was that their whole mar
keting philosophy (understandably) is that they will go after the 100000

piece order. As for future products that they think rr,ight gPt into amateur
machines (when I asked about future RAM costs and new easier to

use RAM) they say that they sell all the product that they can produce

and that this is going to keep the price of RAM up until that situation

changes. They also say that they will continue to produce products

that are specifically high volun1e productions. Draw y-<HH own con

conclusions. ''

With the current going price of the Intel 8008 at $SO, he draws some fairly obvious

conclusions regarding an1ateur computing systems - it will remain extremely eco

non1ic_al for some time to orient a system around the 8008 - with the newer 8080

or sirnilar technology processors remaining fairly expensive for son1e time. Ulti

mately, the 8080 or other CPU products such as the Motorola 6800 will be con1ing

down in price as production expands - at which point the 8008 will be relegated to

the same place in amateu1 computing as the one tube triode transmitter occupies
1n amateur radio ... a cheap and fairly low power introductory 11 rig 11

•

Regarding RAM prices, the latest issues of Electronic News and other trade pub
lications are running advertisements indicating a lK static (2102 or 2602) price of

$4. 95 in 1000 quantities. The current small quantity price according to Peter
Helmers who just acquired 2K bytes worth is $7 - new from a regular distributor.

Conclusion: if you see a surplus house advertising these devices above the new price,

•

it is suggested you talk 1 en1 down to a reasonable level if possible. The basic systems

prices are coming down - the market can only expand as more and more individuals "'
can afford the technology. The parts in question are made by Advanced Micro

Devices, whose distributors are Hamilton/ Avnet, Cramer and Schweber.

M. Po Publishing Coo Box 378 Belrrwnt, Mass. 02110 Volun1e 1 No. 2

ECS A MONTHLY MAGAZINE OF IDEAS
FOR THE :tvUCROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This issue of ECS is the second for FJ75. It is somewhat different fron1 previous
offerings in this series of publications in that it is the first issue to be almost exclu
sively devoted to software - two fairly large programs for an 8008 con1puter archi
tecture are listed with com1nentary,, The roster for this issue is ...

1. The Interactive 1v1anipulator Program (IMP-1): How can you rnake your
task of loading and changingmemory content easier? One way is to use an
interactive editing algorithrn such as IMP-1. In this section you will find
the functional description, annotated listing and exarnples of the usage of
IMP in conjunction with keyboard input, binary (or octal) display outputs -
and if you have a character output device such as TTY or TV-Typewriter,
- optional links to ELDUMPO (see last issue) are included.

2. Memory Module ECS- 7 Hardware Description: As noted, the main then1e
of this issue is software - but software generally requires mernory, so the
1024 byte memory page design is included with this is sue. The writeup in
cludes the logic diagram, tables, and notes on expansion to more 1024-byte
banks and a very useful feature called "hardware write protect. 11

3a Memory Test Program (BITCHASER): What distinguishes good bits from
bad bits? Hmn1! Maybe the good ones are white and the bad ones ... ? ? ? Not
likely! But BITCHASER knows - in the form of a write/read verify of all the
words in a selected segn1ent of memory. You can put BITCHASER to work
seeking out and counting bad bits - pursuing them relentlessly through the
ins and outs of memory address space within a specified set of limits.

4o Progran1n1ing Notes: Symbol Tables: How can you use the cone ept of
a symbol table - in elementary forn1 - to aid in the writing and debugging of
programs in absolute binary? A hint was provided in last year's ECS-5
article. This is sue illustrates with IMP and BIT CHASER, as explained

in this section of the rr1agazine.

The next issue is scheduled for mailing on March 10 1975. The technical content will
consist prin1arily o.i. d. new tape interface design along lines suggested in a Radio
Electronics article using the XR-210 Modem chip. The article is to include the tech
nical description of the hardware plus software extensions of IMP for the purposes

of dumping and resturing data to/frorn the tape

Publisher

@ 1975 M., P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 2 -2- February 1975

THE INTERACTIVE MANIPULATOR PROGRAM IMP - 1

Functional Description of IMP-1:

IMP is designed to be utilized from. a keyboard such as the interface design of
ECS-5 previously published, or any suitable typewriter keyboard with appropriate
coding changes for the keystrokes. The purpose of the program is to manipulate
and examine the content of memory as well as to invoke - and return from - various
system utility routines and applications programs. These goals are accomplished
using a set of internal RAM data areas sandwiched in among the restart routines
described last issue , and a set of definitions for the keyboard buttons used by the
program. The basic user data areas of concern are:

IMPENTR Y (location 000 / 004). This byte contains the last data byte defined
in octal notation by the keystrokes 11 0 11 to "7" (as well as the low order
3 bits of all unused keyboard codes.)

MEMADDR (locations 000/006 and 000/007). These two bytes contain the
H {location 6) and L(location 7) portions of a complete memory address.
They always maintain the current pointer to any memory location in the
computer's memory address space, and are defined using the "H" and
"L11 keyboard commands.

Memory (arbitrary locations.) The entire memory address space (all
16, 38410 bytes) is potentially accessible to IMP through MEMADDR.
Please note however, that while you can address any location with
MEMADDR this does not necessarily make the operation meaningful!
If you do not have an ECS-7 memory page (or other design hardware) at
a given location, writing sends data to the "bit bucket II and reading will
result in a null code of 3778 •

Displays. Left and right 8-bit binary displays are used with IMP for purposes
of examining data 16-bits at a time. Although the original program devel
opment was done using binary lamps for 16 bits, an easier-to-use display
can be made by decoding 6 octal digits with BCD to 7 - segment integrated
circuits driving LED display digits.

The current set of IMP commands used for manipulation of data is listed
beginning on this page. At the end of the program listing/writeup several examples
of the use of the commands are included.

IMP COMMAND LIST

"D" - link to ELDUMPO to print data on TTY or send character format octal data
to an alternate display device. Use the last MEMADDR to define the starting
address (minus one) and use the content of IMPENTR Y as
the number of bytes to dump.

"E" - examine the content of the two bytes at MEMADDR and MEMADDR + 1.

ECS VulunH_• 1 >Ju" 2 -)-

"H" - set the H po rtiu n of MEMADDR £ron1 the last content uf I!vlPENTR Y,

"I" - insert the last content of UvlPENTR Y in n1emory at ME!v1ADDR and then incre
ment MEMADDR and display the hvo bytes at the new MEMADDR am MEMADDR+l

"J" - replace the byte at MEMADDR with the last content of IMPENTR Y - but do
not incr en1ent !v1EMADDR or display the results.

"K" - clear the value of Hv1PENTR Y to 000
8

o

"L" - set the L portion of MEMADDR from the last content of IMPENTRY.

"M" - exan1ine the current content of MEMADDR in the display.

"N" - increment MEMADDR and display the two bytes at the new MEMADDR and
the new MEMADDR + L

"Shift X 11
- requires two keys to be depressed for safety - cause I!v1P to transfer

execution to the location in MEMADDR after changing IMPSTATE to inhibit

all keyboard decoding until return to IMP is desired"

Further connnands will be added to this list in the future as IMP is extended in scope
to cover such functions as tape interface manipulation, invocation of applications
programs and cornpilers, eteo The basic design of IMP is a sin1ple one - its comn1and
interpreter uses single key strokes as the fundamental "token" or particle of its
s en1ant ic s ,, I3y looking at the code as 1 is ted and explained in this issue, readers
will be able to extend the above list for their own purposes by adding to the command
table (see belov..') and supplying appropriate routines,

COMMAND TAB LE: IMP is a 11 tahle driven" prograrn. This means that the list
of con1rnands (keystroke codes) is contained in a table, along \vith a pointer to
the appropriate software routine ..•

IMPCMDS: 000\J~'-' = JU 4 (._ .. ___ "D" and L address of "DUMPER 11

OUU\):):J = 240 j

UUU\J::,6 = JO::>->

0 0 0 \ 3 ~>I = 1 ~ 6 -~ 11 E" and L add r e s s of II E XA MINE 1 1

UOtJ \J6U

U00\361
UOO\J62
UUU\J6J

= JlJ -(__

= 22 l ~
= J l 4 -)
= U 16 ;--~

= Jll UOO\J64
uuu \j6j =
UUO\J66 =
OOU\J6'/ =
000 \j '/U
UUO\J'/1
UUU\J'lc

UUU\J'/J
ouo \j ,~

l :) 2

Jl2

UUU\J'/'..J = 1U6

U U U \ J 1 b = J l ~ ~-
U U U \ J 'l 'I = l l 2 ',

!IK' 1 and L address of ''CLEARENTRY"

11 LI! and L address of "SETL"

11 I 11 and L address of 1 'INN EXT 1 '

1 'J 11 and L address of ' 1INSER T 11

11 N 11 and L address of "NEXT"

"Shift X" and L address of ':GOBLO"

11 H 11 and L address of 1 'SETH 1
'

1 '!v1" an cl L a cl cl re s s of " DIS P !vl 11

NOTE: The character codes in thi~ table are taken from ECS-5, page 13J

ECS Volume l N(). 2 February 1Y75

The c1ctual listin2, uf llv1 be at page address 013 8 byte address 000 8 with the
entry point and the beginning of conunar:.d decoding ..•

IMPSTRT: ~ ! l ~~~~~ : ~~ ~ ~?,--•,j"--- How do you deal with noisy lay outs? By a soft-
0

13
, 002 ::i: 11 -,J ware failsafe to turn off interrupt hardware!

013\003 ::1 JOO-,

013
,
004

=
300

~----""""'." These 11 NOP 11 instructions allow room for a future

0 13 \00:, = 300) call to high priority interrupt handlers.

0 13 ,oo ·1 :: 002 8 (IMP.STA TE) define address of IMPS TA TE
0 13 \006 =- 006 LAI }-

O 13 \0 1 O za o ·1:, SYM in H/ L using SYM table.
0 l J\O 11 = J l ·1 LBM fetch l'.MPSTATE to B
013\012::: 115 INl read keyboard
013\013 =- 011 DCB y-·-ifIMPSTATEwasl, Bnowzero
013\014 = l :,0 JtTZ EXEC so return to application prograrn.
013\015 = 2JO
0 l 3 \0 1 6 = 0 1 3
013\017 = 011 DCB J) ifIMPSTATEwas2, Bnowzero
O 13 \020 = l :,0 JT Z IMPGO - so return to IMP operation.

013\021 = 0~6 L
013\022 • 013 H
013\023 = 300 NOP }- ·
O 13 \024 :a 300 NOP - allow for expansion patch to addi-
013 \02:> = 025 KEYWAIT tional checks of IMPSTATE.

Wben IMP has figured out that it would be a neat thing to do to decode what the key

stroke meant, execution flows to IMPGO to begin a loop through the table.

IMPGO:

IMPDECO:

013\026 = 310
0 13\02 7 = 0 56
Ol:J\030 = 000
0 l 3 \0 3 l • 0 6 6
013\032 m 354
0 13\033 = 2 7 7
013 \0 34 = l jU
0 13 \0 3 ~ -= l 20
Ol3\0J6 = 013
0 l 3 \0 ~n = 0 60
013\040 = 060
013\041 = 306
0 l 3 \0 4 2 :c: 0 7 4
013\043 :z: 000
013\044 = 301
0 13 \04 5 = 1 l O
013\046 = OJ3

OlJ 013'\047 =
013 \0 50 =
0 l J \0:, l =

106
054

= 013
0 13\053 =

~?rlPCMDS) r-:::: ::: :::::t::el:u:~·;1
LLI mechanisn1s - this is the
l(IMPCMDS) only place the command table
CPM -" is ever used
JTZ GOTFUNC ~---· compare and go branch to function
L j if match is found ...
H i~t }-----·-------point to next entry in table

LAL L -- n-10ve to accumulator
CPI) ----- to test last tin1e through
000

8
one plus last table address •..

LAB}- c:----- restore character input. ..
J FZ ____) and recycle if more in table .••

L
H
CAL OCTINTRPyotherwise no match so fall thru
L and pretend input is an octal
H bit pattern in low order ...
KEYWAIT ~-----then go to sleep till woken up again

~~•z-,_?: by user .•.

Note how all keystrokes
by calling OCTINTRP to

which do not n1atch the table are treated as octal dig its
stuff the low order 3 bits into IMPENTR Y •..

r

ECS Volun1c 1 :\o. 2.. - s -

The octal interpreter routine OCTINTRP is a sin1ple-n1inded affair which reaches
out like an 11 uctalpus" and grabs every keystroke that isn't tied clown to a well defined

meaning ..•

OCTINTRP: 0 l J\U~4 = 044
UlJ\U:)'.::> = OU-,

0 l J \U ::> b = 310

NDI 1---:J _ discard high order keystroke data
octal mask j L..,,,.----
LBA then save the data

0 l J \0 '.-:> ·1 = UU6

OlJ\060 = 004
U 1 J \U 61 = O'h
Ul3\062 = 30 ,,

UlJ\ObJ = 002

0 l J \0 64 = 002

013\06~ = 002

013\066 = 044
U l 3 \0 67 = J'/0
0 l J \0 ·rn = 861
0 l J \U ·1 l = J ·,u
0 1 J \U ·12 = 1 7 ·,

U l J \0 ·1 J z::: 2~U
U 1 3 \0 ., 4 = l ·1 ~

~(~PENTR Y) L use SYM mechanism to address the
SYM J c- old IMPENTR Y value .•.
LAM then fetch that value •.•
RLC ~ 5-- shift left 3 drops 3 bits into a
RLC I logical bit bucket - preparing
RLC \-- for the AND which erases the

NDI j bits with a mask for the new
h. o. n1 ask high order po s i ti on s •
ORB > ~not a planet in the sky but a logir:al
LMA ~-------------- "OR" of B followed by saving.
OUT30 ECS-5 blooper for OUT30 device.
XRA clear accumulator
OUT31 ECS-5 blooper for OUT31 device code.

0 1 3 \U ·1 ~ = 00 ,, RE~ return after displaying entry .••

_ ~~OCOALP~S

Two particular keystrokes which escape the octalpus are the H and L corr1mands,
which are serviced by the routines SETL and SETH. These two routines share a
common set of code beginning at DISPM with the !vi command used to simply display
the content of MEMADDR.

SETL:

SETH:

DIS PM:

UlJ\U'/6 = 006
0 l 3 \0 ·1 ·1 = 00 6
013\100 = 0'/5
0 1 3 \ 1 0 l = 0 60
OlJ\102 = :nl
OlJ\103 = 104
UlJ\104;:;: 112
013\10~ = OlJ
013\106 = 006
0 1 J \ l 0 ·, = U 0 6
013\110 = 07~
013,111 = :n1
OlJ\112 = 006
OlJ\llJ = 006
0 l J \ l l 4 = 0 ·1 '.-:>

013\11'.-:> = lU4
OlJ\116 = l~b
U l J \ 1 1 '/ = 0 l J

~(~EMADDR)l-, _,_ point to MEMADDR with H/L
SYM _j ~ via SYM mechanisrn

INL increment to point to low order
LMB) F"':>-got here with IMPENTR Y value i MP DIS PM r in B via "SYSSETUP" rtn.

H

~(~EMADDR)L point to MEMADDR here too ..•
SYM j ,
LMB load the H value ...
LAI -'\
s(MEMADDR) t,~ looks redundant, but takes care
SYM J.. of all cases - define H/L to display

JMP EXAMINE current MEMADDR value.
L
H

Note the continued use of the SYM restart (dc-scribed later in this issue) to define
address pointers fr<lIT'i ttH' syrnbol table. This stretch of code references the address

of ME!v1A DOR fron:1. th rec places independently - dcnwnstrating S Y!v1 thr ic c.

ECS Volume 1 No. 2 February l \)7 S

When the little IMP has gotten around to figuring out which function key was picked,
the next task is to call the appropriate routine. This is accomplished by setting up
an indirect jump through location 000/015 using the address found in the conu1:1and
table at the next address after the conunand code matched by the IMPDECO t->canner.

GOTFUNC: 0 l J \ l 20 = U6U
013\121 :: 34 ,,

013\122 = 036
013\123 :;c 013
013\124 = 106
013\125 = 212
013\126 :c 013
013\127 = 106
013\130 = 135
013\131 :: 013
013\132 = 104
013\133 = 015
013\134 = 000

INL ~point to next entry in table after key code
LEM J to define the low order branch address~~
LDI)~all branches are assumed to be in page 013 8
page 013 may have to branch elsewhere if full. ..
CAL SET JMP -)
L ~------go define GPJMP address for
H J indirect jump to desired routine.

H

CLAL SYSSETUP~
go define system parameters prior

to the indirect jump
JtMP GPJMPJ indirect jump to selected routine.

squeezed in following XCHG restart.
.inpage0

The next stretch of code consists of the SYSSETUP subroutine followed by the func-
tion routines for memory insertion and examination. The EXAMINE routine is
reached as a result of the E, H, L and M commands as well as the more obvious
fall thru from the N or I command routines.

SYSSETUP:

INSERT:

INNEXT:
NEXT:

EXAMINE:

013\135 =
013\136 =
013\137 =
013\140 =
013\141 =
013\142 :II

013\143 =
013\144 ::::

013\145 =
013\146 =
013\147 -

0 l 3 \ 1 ~O -
013\151 ::s

013\152 =
OlJ\153 =
013\1~4 =
013\155 =
013\156 =
013\157 :

013\160 =
013\161 =
013\162 =
013\163 =

066
007
347
061
33 ,,

061
061
317
364
353
007

3-11
02:,
3'11
106
164
OlJ
30 ,,

175
0 :>~
30 7
1 ,, 7

025

LLI 1
l(MEMADDR+ l)~ did not use SYM here
LEM.----- ---define L parameter
DCL
LDM ----- - define H parameter

g~t 1--- ----point to IMPENTRY

LBM define last IMPENTR Y
LLE L
LHD 5 -~-point to memory at MEMADDR

RET · end of setups

LMB L
KEYW AIT S ···----•-insert entry and go to sleep!

LMB ---- _,,,_ insert entry with NO-DOZ
CAL INCMA yfall thru to in_crementaddress
L and store back into
H MEMADDR
LAM ---·-·--~EXAMINE is indiscriminate!
OUT31 it will display any data

NEXTA
LAM
OUT30
KEYWAIT

<----~get a second byte
S and out it too (sic)

and go to sleep after displaying

,f'

l

tr

r---
#"

ECS Volun1c 1 -7- February 1q7s

Now in the context uf the IMP progran1, the sin1plc H/L increrncntatiun provided by
the NEXT A restart function will not suffice - the new addrest:i obtained by incremen
tation should be saved in MEMADDR. INCMA calls NEXT A then savet:; the H/ L address
in MEMADDR and returns with H/L pointing to the computed address ...

INCMA: OlJ\164 = 0:):)
OlJ\16::, = J46
OlJ\166 = JJ:)
0 1 J \ 1 6 rl = 0 0 6
OlJ\l'/0 = 006
U l J \ l ·1 l = 0 -, ~
0 l 3 \ 1 7 2 = J -, J

0 1 J \ 1 '/J = 060
0 1 J \ 1 -, 4 = J ., 4

0 1 3 \ l '/ :> = J 5 J
0 l J \ l ·, 6 = 3 6 4
0 1 3 \ 1 ,, -, = 0 U -,

NEXT A - -~ RST con1putc of next H/ L

L
LEDHL t ____ _ J - - ---~Save the a cl clr e s s

~(~EMADDR~ Computed address to MEMADDR
SYM -~ '- would be nice - keeps it around
LMD ------
INL
LME-----

LHD r LLE --
RET

-- - --- -- Save high order
point to next address

--- - Save low order
__ ----- Re dfine the

pointer in H/ L sarn.e
MEMADDR & return

as

When it is de sired to bomb out by attempting to execute an unproven new routine,
hold your breath, set the new routine's address in MEMADDR with H/L commands,
press "shift" and 11 X 11 simultaneously and watch your program go blow up ...

GOBLO: 013\200 = 106 CAL SET JMP y Come here to go ?
013\201 = 212 L First define ? address
013\202 = 013 H via subroutine ...
013\203 = 066 LLI y Define IMPSTATE
OlJ\204 = OOJ l(IMPSTATE)
UlJ\205 = 0 '/6 LMI y Reset IMPS TA TE to 1 for ?

013\206 = 001 1
0 l J \20 rl = 104 JMP GPJMP y And go to ? defined by MEMADDR
OlJ\210 = OlS 015 via indirect
013\211 = 000 000 at location 000/015

Actually, the damage of faulty programming can be minimized somewhat when you
first atten1pt to run a program. The mechanism is the ''write protect" option on the
ECS- 7 RAM module design in this issue - simply put the switch in its "protect"
position and then execute the routine with knowledge that it can't destroy the software
carefully loaded into the RAM module via IMP or STUFFER. However you get to
the program, one useful thing is to set up jumps. The routine SETJMP creates the
indirect jump address in GPJMPL using the content of D and E for Hand L respec
tively .•.

SETJMP: UlJ\212 =
UlJ\213 =
OlJ\214 =
Olj\215 =
OlJ\216 =
U l J \ 21 ·1 =
UlJ\220 =

006
UlU
u -, ~
J '/4

060
:nJ
OU I

!-'(f PJMPL) ~ point to general purpose jump
SY M J via the SYM n1echanisrn
LME --- - --------E argument to L of jlllnp address
INL
LMD---- ----------D argument to H of jurnp address
RET

ECS Volun1e l

GarbagE· in - garba~c out 1:::; pure curr1putenv0rld clicbe. However \vhat do you do

if you get garbage rn tu I1'.-1PE~TR Y? Why of course get the garbage out by pressing

the "K 1
' key cornmand to activate ...

CLEARENTR Y:

OlJ\221 = U06
013\2~~ ::: 0l)4
OlJ\:22j = O'/':J

013\224 = 37::>
OlJ\22:> = 104
Ul3\c26 = l:,6
013\22'/ = OlJ

LAI L
s (IMPENTR Y) \ L point to n.1PENTRY via SYM
SYM _,

LMH r H known to be O so use it to
JMP EXAMINE zap entry and go examine ...
L
H

The following is a routine used norrnally to intercept interrupts from an application

program reached from location 013/014 if IMPSTATE is "l". It is designed fur a

norrnal transfer to the start of the application program via G PJMP as set by the

original "Shift X" execution initiation or a subsequent setting of the application pro-

gram. As shown, however, it needs a patch at location 013/232 to supply a JFZ
and at 013/231 to insert an appropriate interrupt-producing character key code. You

could use the "J" command to change it after loading and setting the proptc>r address!

EXEC: 01J\2JO = 074 CPI On re surnption of :::1pplication prog-
013\231 :: JOO II Shft & Ctr 1" ran1 check for escape rnechaDisn1
Ol3\c32 = 104 JMP GPJMP ,,,.--- Ignore escape until JFZ i used ! !
013\c!JJ = Ul~ L _,.

I ·- change
013\234 -= 000 H) 013/232 to JFZ if needed.
UlJ\23:J :::: U '16 LMI ') Reset IMPSTATE un escape ... I

UlJ\c36 = Ou 2 2 ',-
to normal interprett:r 1110 Jp ••. \ UlJ\2J7 = 02~ KEYWAIT _) Then wait for user acti,,r..

The final routine inserted in pci.ge 013 for thP prelin1inary release uf Tl'v1P a Uv1 P- l
i~ DUMPER - a short routine to define the data count for ELDUMF)O (:.-:.ee last i~:sue.

Vuhune l No 1) then branch tu the entrv point of ELDU1'v1PO. Thi:',-i n1cchani'.-·rn '-Va:-:;

U::ied to activate ELDUMPO for the li:-;;tings of code foun<l in this i~:::uc - the iHidrcsc;

(minus one) was defined, in MEMADDR, and the data count was left i:·, IMPE~TR :·.

Then the 11 D 11 key is pressed thus startir1g uff this sequence •..

DUMPER: UlJ\24lJ = U6t LT T \ Define addr es•; of ELDUMPO_,1

013'\cltl 02'.) l(COU~\fT)
I

data count word =
~✓

...
UlJ\24:::! ·- OS6 LHI via the old fashioned n11:._,chanism
OlJ\c4J = uou h(COUNT)) without SYM - used on,_·e hr,re.
OlJ\244 = UlU INB

,,,
Increment of ENTRY for J copy

013\245 = 371 LMB r- ELDUMPO and save it. .. J
013\246 ::s 104 JMP

I'
Then go jump to ELDUMPO

013\247 = ouu L with r et urn vi a the code at
0 1 3 \ c SO = 0 l 1 H locations 011/117 - 011/125 of

the last issue

-'

ECS Volume 1 No. 2 -9- February 1975

In order to illustrate the usage of the IMP program, several worked examples
(are provided below. The program should be loaded using the STUFFER program

found in the last issue, after which the new restart routine SYM described on page
must be loaded in locations 70 to 1018 of page O (overlaying two bytes of .STUFFER
locations 100 and lOlg). The branch address in locations 000/001 and 000/002 should
be setup to point to IMP (013/000) and the value 002

8
should be loaded in location

3, IMPSTATE, to initialize IMP in its editor mode. It is strongly suggested that
when you first try out the IMP program as loaded, you put the memory modules of
ECS- 7 design in the "write protect" mode - this will prevent inadvertent errors in
loading from destroying the information in memory loaded by STUFFER.

Beginning checking out IMP by demonstrating the octal data entry. Press any
digit code on the keyboard - "7 "- will do. Note that the rightmost 3 lamps of the
right hand binary display will go on with 11 7 11

- or if you have octal readouts -
a 7 will appear in the low order. Press another digit - IMP will shift the previous
content left 3 bits or one octal digit, putting the new digit in the low order. The
display is filled by pressing a third. In this mode of operation (pressing only octal
digit keys on the keyboard) IMP displays only the current IMPENTR Y value in the
right display and keeps the left display cleared to zeros.

Now, suppose you want to define a full 14-bit address within memory address
space. The key sequence is as follows for the address 012/372 ("Intelese'' notation.)

✓- 0 1 2 H 3 7 2 L

r
\

T f '---'[, l_--transfer IMPENTR Y to L of MEMADDR
~ ~---------after 11 2 11 , IMPENTR Y 1s complete in display as 3723

"'--transfer IMPENTR Y to Hof MEMADDR
_ __ after the 11 2n here, IMPENTR Y is complete in display as 0123

Following the last 11 L 11 key stroke, the current memory address of MEMADDR will
be displayed in the di splay, with the H portion at the left, the L portion at right.

Having just defined the address of some byte, suppose you are in the
process of loading the BITCHASER program illustrated in this issue. You want
to place the code 103

8
in that location. To simply load the addressed location,

takes 4 key strokes:

1 0 3 J
'~ ~ transfer IMPENTRY to addressed location with J

"-------- complete definition of IMPENTR Y for this location

If you want to verify the transfer, the current location can be examined by typing "E"

at this point.

Now, suppose you want to define the next three locations following this
current location 012/372 fron1 the BITCHASER program code. The following series
of keystrokes will point to 012/37 3 and load consecutive locations ...

N 1 1 7 I 1 2 5 I 1 1 6 I

'--------,-----' ~ _____;... ~ define and insert at 012/ 3 7 5
\ __ ------------- define and insert at 012 / 3 7--!-
~--------·-·-- --- define and insert at 012/373

ECS Volurne l No. 2 -10-

The: ' 1N 11 keystroke uf the t~xan1ple dt the botl:nn of page 9 1s required to incren1cnt

the MEMADDR v.:-_ilue to p(Jint tu the ne.>:t location, 012/ 373. The series of operations

can be continued indefinitely -- 3 uctal digits followed by 11 111 - to load as rnany locations

as desired. If, along the way, 'fOU lose your place 1n the progrant, you can display

the current memory location bv transferrin~ MEMADDR to the display with the "M 11

con1n1and of the Hv1P progran1. Sin1ilarly, if you find you made a n1istake in entering

data for a given word before pressing 111", the entrv can be cleared tu O with 11 K 11 or
you c an s i n1 p 1 y r e - en t e r 3 n1 o r e di _git s .

Aft e r < • om p 1 ct e 1 y 1 u ad i n 1-: ..1 n a pp Ii cation pro gr a n1 with IM P, you w i 11 of c our .::'i e want

to execute the prograrr1. The prograrn can be invoked from IMP - with automatic

return - provided the following conventions are used:

i. To invoke the program, enter its starting address into H/ L via the

appropriate conunands. Then press the "Shift" and 11 X 11 key::; sin1ultaneously

to cause IMP to change state and gu to the progran1.

2. When the invoked program is finished, return to IMP by loading location

3, IMPSTATE with the value 11 2 11
, then issuing the KEYWAIT restart. An example

of this return is illustrated at locations 117 011/117 to 011 /125 of the ELDUMP 0
program published last issue. ELDUMPO was constructed without the SY!v1 n1echan

ism - and this return could be performed with one less byte of explicit code by

using SY M to reference IMPSTATE via the symbol table.

If the application program must wait for keyboard interrupt input, issuing KEYWAIT

will cause it to halt until a keywstroke occurs - after which control will transfer tu

the location last loaded into GPJMP 1 s address.

MEMORY MODULE EC S - 7 HARDWARE DESCRIPTION

The center pages of this rr10nth 1 s 1ssue (pages 12 and 13) contain the logic diagram of

the ECS-7 menwry rnodule design. This nwclule is basically a static 102---l-bytc
1 'bank 11 of menw r y locations in1plemented with the 2602 or 2102 type of nwrno ry chip.

(These two nun1ben, are pin-cornpatible - and subject to various differ enc cs in the

ar::ccss tirne of alternative versions - are also electrically cornpatible.) The array

is interfaced to the bus with the standard ECS series design technology: P.TOCJ bus

drivers for mernory outputs, and inverting inputs via 7404 sections to keep the

sense of data consistent in this case. Note that there are alternatives to the bus inter

faces used throu~;hout this series of designs. One comrnonly used alternative is to

n1ake an r 'open co 11 ec:tor 11 bus using 7 4 01 (low fanout) or 7438 (high fanout, or drive

capability.) Similarly, a non-inverting (but lower power) tristate interface ~·unnnonly

available is the 74125 circuit.

ADDRESS LINES:
One interface socket of the design is used for the 16 address lines used for cycle

decode and address selection. The low order 10 bits of addressing are wired directly

ECS Vol urne l No. 2 -11- February 1975

to the 10 address input pins (AO to Ar}) of the n1en1ory IC 1 s. The diagram for

clarity does not ilh1 strate a direct connection - see the note provided. The "IN 11

lines of the 3 rnemory IC's in the ba!!k are wired tu the outputs of corresponding 740--1

inverter sect10ns of .IC-11- and IC -12-. The 11 OUT 11 lines are wired to the data inputs

of the 8T09 bus buffer es. Since this system ernploys an interface for each bank,

the chip select lines are shown wired permanently to ground. If desired, it is possible

to create a local "bus extension" for the n1emory outputs using their tri-state capability
and the chip- sele:...:t inpub:; to enz.1ble one bank of men1ory at a time with a conrmon 8T09

interface to the CPC Lus. To do this, the appropriate bank selection output of the

74154 bank selector ,vould he used to cuntrol which set of 8 2102's (2602 1 s) is enabled
at a given tin1e.

BANK SELECTION LOGIC:

In its self-• contained fo rn1 as a single lK hy 8 RAM design, the circuit illustrated

has all the parts needed to interface to the con:putcr independently. However, if it

is desired, the bank selection logic is designed to ac con1odate sharing of the decode

provided by a single 74154. Here 1s how bank selection worrl works: the high order

addrL·ss bits of Al0 to AB provide an address of 1 oJ 16 1024-byte segments of the

total 16, 384 men1ory locations of an 8008 processor. The 74154 1s always n1onitoring

the address lines and selecting one of 16 banks in the memory address space, whether

or not you provide the actual harch"·are (durin~ I/0 the PCW input to one 74154
gate prevents decode, and during interrt~pt the n-1aster enable input to the other 74154
gate also disables decode.) The output of the 74154 appropriate for the RA.1-1 bank address

-is selected by tJ1e choice of wiring from the select line to the appropriate bank select

pin of the 7,1154. WIL:,n the bank is selected, one of the uses of the select signal is to

enable write pulses tu pa'-3s through gate ~l":l- and inverter section -12£-
to the n-i.emory chip , ri hardware write protect is off. The other use of the

select s:gnal of a given r:1.:.Tnory bank is to enable the CPU-Input signal to control the

output interface g~1te for the ba11k. Without sharing the bus output buffers of the memory
circui,, it 1s thus pos~:ible t;, share the 74154 logic beh,.•een several banks simply by

urnittmg a repeat oi the 74F) for the additiunal banks and wirinµ the select line of the

additional banks to the appropriate pin of the 74154 in the first bank.

WRITE PROTECT HARDWARE:
The use of a hardware write protection concept in con1puters has been around for

some tirne. In s orne corn put(-r .s, it is in1plc1T1ented as a software-controlled bit in

the actual harchvarc of 1T1e~n1ory, protecting various segn1ents of rne1nory frorn access

and/or n1odifi ahem by progranu, operati;'tg in other segn1c~nts. In such a context, n1emory

protect features dre used tu provide a n1e2·, of minin1izin~~ interference between

rnultiple us f;r s. Another handy use occurs in the 1nicroproc e ss or context - two very

useful goals can be a.ccon1plished for your systen1:
1. ,You can turn a RAM module into a 1tpseudo-ROM 11 by flicking a switch.

2. With the RA:tv1 n10dulc in protected n1ode, and with a separate power supply

for n1er.1ory, you <>:ln safely disconnect the n1emory fronl the computer n1ain frame

and maintain your sofhvarc v.ihile changing various aspects of CPC hardware and/or

peripherals.

ECS Vu l urn. t· l Nu. ,l
{_ - l 2 -

EXP E f(IM'-~TER'.S COMPUTER. SYSTEM

0 13

(\ cs
f\o ' -0

Q\1' '7 ~1 4
&rr '- Al

A2
,

it

Al " Al

Alf
, -t.-

A't
-1-

Al t 2.{..0 (AS a.,01. ., t. ~ ~ Ol
A7 2.\.~'2. 1(1 2102
Al 15 ..
NI t~

Ill
%M w wr l''-1 \.J OIAT

it. u .. l i1..

3

1 2

3

-,r

Fcbr1.1arv 19,=i

~CS-'t

n

C'S

6\T s
5

' ~ -3-

?. 2,'1Qf2
1 (r,-

1(., 2.1.'3 2.
t.S

1'1-

1~ w

5

lllttTE·CLOCk

X/0 ·2. PIN il

Ao
Ai

At
Al

A-.

AS

A'-

It? ~-M
Oll,T

11..

1.'2S2..'i- BYn:. Mc.~0~'{

13

cs
~ Ao I

4 en·· 41
q.

'+
5 t.z s

' Al ' 7 -4- ?
A'4

2 Z.~0'2 AS
2

i OQ A, 1

1, 2,,102- 41 1'.

1S 5
f,I

h
A't

tlf

J.:"-.1 our
1.l 11...

9

L0 13 Ii_

II

ECS V(Jl i.!Ll i (i. L. - l) -

eANK & t)£C.ODE. b1~ ~,r\ T. \..\ e. \ \N\ e .-$ J ::r~.

13 u i3 i3

C.£ c.s cs cs
Ao Ao ' NJ -a

~

l S\T
't 4- 4- 41 '3 Al 8\T l Al

61T 1
.,.,

B\T ,0
5 5 s

A2. I A1 A~ At

' ~1 " Ai ~ A1 Co ,0
- 5- ? -&- '1- -7- ? -f(-

4Jt, ~' A\ Alf-

c.~ Jc AS 2. 2J,02 AS
t 2.'1</5'2 M 1. 2.'7~? A.5

OR_, A, ~ A'-
i j~

~
i OR ~

i11;Z\'2_ A1
1, 2-1~"2- 4'?

H, c..\CZ,c.. ,.., 1.'- c.. I e, 2. A7

!tf is Al .{5 .At iS
..4f

/fl i'f A1 1lf .\, fl+ A1
~ll w ou.r l:N w our :t.~ ';N OUT J;'IJ w rur

n u 3 11. 12.. 3, 1 2.

i.3 i 3

3

···•.•. ,.. ~ BAWi(ADl>RESS JUMPER
.......... ·····•·".. .-~-> (ADD~E~SE.5 O31f./O0o TO

:

t z.. 13 '+ ~ b -, i , •fl! 11 13 14 1s ,, lr1

-.
5

~

r

1.

i

i,

i5

H

WOTE;

Go To

Fl·Lruiin l l"7~

I./O-i ~
Ao 1.
Ai '2

Ac. 3

A3 4
4'+ 5

A'i (.

A'9 'l
A1 g

h ,
A9 10

AIH~!>S \J~'E.5

AU 8 l&OZ..'S

Powfl2.. .I/o-2.~
1b==-+5v
q =- Gt-.JD

\J5E 0~fASS

C A PA (l i"Ot.~ ~

('6Te5C-f
1

S
~

I/o·?

b1r1A SUS
Pl~

,o 1 ., ~

•1.. I
1>'3 .,.

~'+ s
l>S " bb b7'

.,
I

03~/!Jr:,? S .. OlOl>J)

,j o l. l. l 'I- s ~ 'T ll 'l 10 il 11. U j~ ~~ ~ ...,;.o.;...._ _________ _

-x.tio-i
cJJS

f\10 (I

?413'4 8At--Jk SE\.E.C.TOR
8 'Z.Z.

2\. ca--.;__ _________ _
All l'?,

4\, ,-3
- l 3-

GH.
I) 20 All l't

11 l~
f'CW=i• l>IS'\B,L~ 5

Jll't 15

1/J -l
MASH.IZ ~ s

f'lt..l i'2 £.._jA;~L~
-l 2. - 4

Ats ,,

ECS Vulwne l No. 2 -14 ~ February PJ75

The advantage of the 11 p~eudo-RO:tv1" usage of the protecbon switch is that you can try
out prograrns initially in a mode v..,·hich prever1ts alteration of the program itself - just
as if it were an ROM program - yet the ability is retained to switch off the write
protection feature and load or alter the prograrn with IMP--1 or its equivalent. The idea

for this feature was obtained from the documentation of the Motorola lv16800
11 EXORciser 11 program development system's n1err10ry module. The idea of independent

power supplies for volatile memories I have seen in several sources, such as the power
fail logic of the TI minicmnputers, HP21MX rnin.icon1puter, to mention one or two. (A

note of interest - the only reason such a supply is needed is the volatility of semi
conductors. Core memory designs can be n1ade non-volatile, and you will often find
a mini with core memory coming out of the factory with son1.e bootstrap software
pre-loaded \ria that technique.) In the logic of ECS-7 as shown, the men10ry is protected
whenever the switch input to IC -14- pin ?_ is logical "1 11 (switch Sl is open.) When the
switch is closed, the input to that pin is logical 11 0 11

, thus enabling the gate \.vhenever
select enables it.

MEMORY PRESERVATION PROCEDURES:

Whenever it is desired to maintain programs in the RAM rnodule vi.a a separate power
supply, the following procedure is suggested: when powering down the CPU for work:

1. Put the RAM bank in "protect 11 rnode (Sl is open.} Halt the CPU!

2. Unplug the data bus connector, I/O--2 of the ECS- 7 design.

3. Unplug the address bus connector.
4. Power down the CPU or the rest of the ::c:ystern frn ma~ntenance

or other hardware work.
5. When finished, power up the CPU, put it in a HALT state.

6. Connect the address bus to the RAM module.
7. Connect the data bus connector to the RAM module.
8. If modification of the memory is required, it can now be safe taken

out of "protect" rnode and use<l as a normal RAM n10dule.
"Safely" in this case means with respect to hardware boc1bing of data

This procedure was used to great advantage when preparing the hardware and soft"\\'are
of the previous issue - IMP was maintained in n1e1nory whjle the CPU was

powered down for modifications and tests of the ECS-6 hardware.

EC S- 7 PACKAGE SUMMARY

Socket Pins Part/ Descrietion 5 volts Ground

1 '
to (16 2602 or 2102 1024- bit RAM 10 0

~

sJ
14

. ..,

9' 10 14 8 T09 Tri State Bus Interfaces I

11 ' 12 14 7404 Inverters 14 7

13 24 74154 Bank Decode 24 12

14 14 7427 3-input NOR 14 7

7400 (1 section used) 14 '7

15 14 I

16 16 l I 0-1, address AO to Al5

17 16 I/ 0-2, data bus, power, misc. 16 9

ECS Volume 1 No. 2 -15 - February 1975

MEMORY TEST PROGRAM (BITCHASER):

Once you have constructed the basic RAM module of ECS- 7, you can test the
rnemory in a random and un-systematic manner by using STUFFER to load IMP, then
using IMP to write in and read the content of various locations (hopefully outside of
IMP itself!) The purpose of BITCHASER is to provide a systematic method of testing
all the memory locations within a specified address range - in this initial version by
reading and writing a fixed pattern set prior to starting the program. The program is
set up to periodically look at the ECS-5 keyboard and respond to any key by typing
a summary mes sage on the teletype:

~ Note: mes sage obtained by looking at
EHHUHS=OOOOOJJlJO ~ non-existent (always bad) memory!

CUUNf=000003JlJ0

or a suitable substitute for the teletype such as a CRT terminal or TV Typewriter -
in which case the Type routine of ELDUMPO would have to be modified. The program
takes advantage of the restart routines used with ELDUMPO and IMP. BITCHASER also
employs the SYM restart mechanism for table lookups, as is described later in this
issue. BITCHASER is shown loaded in page 012 8 of memory, and all address constants
for jumps reflect this location. The program begins execution by a short loop to clear
out the ECOUNT and TCOUNT data (error count and total cycle count respectively) which
are located in RAM page 0 at locations 200 to 207 ...

BITCHASER:

012 \000 = 006 LAI }-
012\UOl = 012 s(ECOUNT) point to ECOUNT/TCOUNT
012\002 = 075 SYM address via SYM lookup
0 12 \00 3 = 2:,0. XRA~ clear accumulator
012 \004 = 016 LBI }--~ load loop count
012\00:> = 010 0,10

MILOOP: 012\006 = 370 LMA clear a word from accum.
0 12 \00 ·, = 060 INL point to next address
0 12 \U l 0 = 0 l l DCB }decrement count - this loop could
0 12\01 1 = 1 10 JTZ MILOOP be made more efficient - see
0 12\01 2 = 006 L if you can figure out how!
U l 2 \0 l J = 012 H

Following the initialization of counts, the actual work of BITCHASE begins
with the start of the major memory test loop at BIGMLOOP ...

BIGMLOOP: 0 1 ~ \U 14 = OOb LAI ~------ software failsafe to turn off
U 12\01:, :::;: 002 2 interrupts repeatedly when
0 12 \U l 6 = 1 1 ·, IN0 haywire prototype is victimized
0 12\01 '/ = 006 LAI ~ by TTL noise immunity problems.
012\020 = 032 s (STR T ADDR) use SYM to point to STR T ADDR
012\021 = 07':J SYM of tested region.
012\022 = J 1 ·, LBM }- -------- fetch H of STR TAD DR
U 12\02J = 060 INL ------- then point to L
012\024 = 32 ·, LCM fetch L of STR T ADDR
012\02~ = 006

LAI ~ 012\026 = UJ4 s(CURRENTADR) point to current CURRENT ADR
U 1 2 \(J 2 -, = u -, ~ SYM

ECS Volume 1 No. 2

012\030:: 371
0 l 2 \0 3 l = 0 60
012\03~ :: 3'/G

0lG\033 ::: 11:>
012\034 = 074
0 l G \0 3 S = 3 ~17
012\036 ~ 112
0 l 2 \0 3 7 = 1 6 5
012\040 • 012

LMB
lNL
LMC
INl
CPI
null
CFZ
L
H

February 1975

~) ____ define Hof CURRENT ADR

~--------/ then point to L
.J and define L of CURRENT ADR r read keyboard

one e per eye le
and test for not null

REPORTycalling the report typer if so

Now, if one had a high order language (such as PL/1, FOR TRAN, etc.) for
the 8008, the code shown above at locations 012/017 to 012/040 is what the compiler
would generate for a statement of the following form (ala PL/1):

STRTADDR= CURRENTADR;

The reason for such languages for computers of course is to economize prograrrrmer
time in generating programs - as you can see by comparison to the dump form.
The program continues with an inner loop - LITTLOOP ... - to test and increment
the current addresses with a test for end of range conditions.

LITTLOOP: 012\041 • 006
012\042 • 040
0 l 2 \0 4 J • 0 7 5
012\044 • 317
012\045 • 006
012\046 = 034
012\047 • 075
0 l 2 \0 5 0 • 3 2 7
012\051 • 060
012 \0 52 • 36 7
012\053 • 3S2
012\054 • 371
012\055 • 301
0 1 2 \0 5 6 • 2 7 7
0 12 \0 5 7 • 112
0 1 2 \0 60 • 1 2 7
0 1 2 \0 61 :m O 1 2
012 \0 62 • 10 6
012\063 • 134
012 \0 64 a O 12

~ATTERN)l_ get address of test pattern
SYM) ,.,__ via SYM mechanism
LBM --and get the pattern to ''b" reg

~URRENTADR)(then point to current address va.lue.
SYM J also via SYM

1ttM ~ point to current address in H/L
LLM
LHC
LMB ~ test write to memory
LAB
CPM -------'-followed by cmnpare to check it kFZ POSTERR r record the error for POSTERRity

CAL TALLY rand keep track of number of
L cycles for comparison to
H error count ...

The inner loop continues on the next page, with a short section of code which is the ,,,
equivalent (at addresses 012/065 to 012/102) to what a

11

high order language
for computers would specify as:

CURRENTADR = CURRENTADR + 1;

Again, note the amount of code which can be implied by a short an succinct functional
notation - in this case the concept "add one to current address" denoted above is imple
mented at a low level by the detail of 1410 8008 machine instructions ...

\

ECS Volume 1 No. 2 -17 - February 1975

01 c\06S = 006
LAI } 012\066 = 034 s(CURRENTADR) set up current address pointer

0 l 2 \0 6 7 = 0 ,, :> SYM
0 12 \0 r/0 = 3 l rt LBM r----------fetch Hof current address
0 l 2\0 '/1 = 060 !NL
012 \0 72 = Jen LCM fetch L of current address
012 \0 7 3 = OcO INC increment low order
012\074 = 1 l U JFZ NOHJ~ and test overflow ...
0 l 2 \U 75 = 100 L with skip of high order
0 12 \0 '/6 = 012 H increment possibly
0 1 2 \0 '/ rl = 010 lNB increment high order of address

NOHO: 012\100 = 372 LMC r---------------c save new low order address
012\lUl = 061 DCL

(then save new high order address 012\102 = J ·1 l LMB

After incrementing the current address of a location under test, the next task for
BITCHASER's inner loop is to check for end of address range ...

012\103 = 006
012\104 = 036
0 l 2 \ l O 5 = 0 '/ '::J

0 1 2 \ l O 6 = 3 0 rl

012\107 = 271
012\110 = 110
012\lll = 041
012\112 = 012
0 l 2 \ 1 1 3 = 0 60
012\114 = 307
0 1 2 \ l 1 5 = 2 ·, 2
012\116 = 110
012\117 = 041
012\120 = 012
012\121 = 300
012\122 = 300
012\123 = JOO
012\124 = 104
012\125 = 3J2
012\126 = 012

~(fNDADDR0 point to end address value
SYM ~ L--- via SYM for comparison

LAM --z, ___ fetch Hof end address
C PB S and compare to current address
JFZ LITTLOOP1
L keep going if not equal in H
H
IN L ~ if H portions equal, check L
LAM get L part of end address value
CFC and compare to L of current tFZ LITTLOOP_J- keep going if not equal

NOP~These NOP' s are inserted to allow for a
NOP future change - a CAL instruction to invoke
NOP a routine to change the test pattern ...
JMP CHECKEND)
L ~the end of execution check could

H J have been put in line without
this jump ...

The above code completes the main routine of BITCHASER (with the exception of the
short 1'CHECKEND'' routine at 332 to 345 in page 012.) Now the next object of atten-
tion is the set of subroutines called from this main routine. The code starts with
the multiple-entry-point POSTERR/TALLY routine. The "entry point" of a sub-
routine is a pla..ce where it can potentially begin. This routine has entry points to
define the SYM pointer of the data to be incremented as a 32-bit number, called
as TALLY and POSTERR - then with the symbol defined, common code is used to do
the work.

POSTERR: 0 1 2 \ 1 2 ,, = 006
0 l 2 \ 1 JU = 012
012\131 = 104
012\132 = 136
012\133 = Ole

LAI L
s(ECOUNT) S L- point to error count 32 bit number

JMP 14B (~ t 5 ---then jump around alternate entry

ECS Vulun1e 1 Nu. 2 -18- Febrl1ary ltJ,7

TALLY: Ulc\134 = 006
Ulc\lJ'::J = LJ14

LAI (.____
s(TCOUNT)) ~ point to total count 32-bit number

14B: Olc:!\lJb = 0 ., :> SYM - and here the cornn10n 32 bit inc ren1ent code starts
0 l ~ \ 1 J '/ = U60
012\140 = 060
Olc\141 = 060
012\142 = J l ·,
012\143 = 010
012\144 ::z J '11
012\14'::J ::z OlJ

INLr~ INL in order to start fron1 low order with
I N L a pointer to high order , must ch an g e add r.
LBM ~ ____ __.-->,,- fetch low order byte
INB -~---- increment it
LMB and of course, save it ..•
RFZ and return if no overflow ...

012\146 ::z 061 DCL ok - overflow, so point to next higher
012\147 :: j 1 ,, LBM byte, fetch it
012\l~O = 010 DCB and decrement it,
012\151 = J'll LMB and save it too,
012\152 = OlJ RFZ and also return if no overflow .••
012\l'::JJ = 061
0 12 \ l ~4 = 31'/
Olc!\l'::JS = 010
012\1~6 = r11
012\l'::J7 :: OlJ

DCL y~this count is getting large! go to
LBM next higher order byte, fetch it,
DCB decrement it,
LMB and save it too ...
RFZ and return if no overflow ...

0 1 2 \ l 60 = 061 DCL last resort - the highorder byte
012\161 = 317 LBM is fetched,
012\162 ::I 010 INB is incremented,
012\163 = 371 LMB is saved,
012 \ 164 - 007 RET and youre 1 out of luck if you over flow

4. 2 9 billion! ! ! ! !

The next subroutine listed is a REPORT generator which prints the two counts shown on
page 15 as 10-digit octal munbers. The routine has a branch in the rn.iddle of it to a
patch due to a faulty memory location - ultimately caused by purchase the author made
from a fly-by-night distributor called "Electronic Component Sales" perpetrated by a
character named "Pete Kay" last September.

REPORT: 012\16'::J = 006
012\166 = 022
012\167 ::: 0 rl '::J

LAI r- point to the address of a character
s (STRING 1) st r in g mes sage text vi a SY M
SYM

012\170 = 104
0 1 2 \ l '/ 1 = 36'::J

JMP FLYBY NITE - when you tiu.3 memories fron1 a
L flybynight distributor who flies, you some-

012''172 = OlJ H times have to branch around bad locations.

FLYB YNIT~ O 13 \J6~ = 106 CAL TSTRING }!call the character string type
013\366 = 166 L routine found in ELDUMPO of
013\367 = 0 1 1 H last is sue ...
013\370 = 006

LAI r U l J \3 7 1 = 012 s(ECOUNT) establish address of error count
0 1 3 \J rl 2 = 106 CAL TOCTlO by defining symbol and then
U l J \ J ·, J = 214 L calling routine to print it as
0 1J\j74 = Ul~ H 10 octal digits (igno1' 2 high order
OlJ\J7S = 104 JMP FLYBACK bits ...)
0 l J \J ·16 = 200 L
UlJ\J'/'/ = 012 H

ECS Vu l lm 1 c -;'\J (J.
7

·- -1 q - Fel)rttary !'),:~

FLY BACK: Ul2\2UU = UUt1 LAl ,>

0 l 2 \2U l ::;;

Ulc::\GU2 =
Olc'\2UJ =
Ulc\cU4 =
Ol2\2U~ =
Ol2\cU6 =
Olc\20'/ :;::

0 1 2 \2 l U =
012\cll =
0 1 2 \21 2 =
0lc\213 =

U:24

u 'f:1

l U 6
lbb
U l l
006
014
106
214
Ole
007

s(STRJNGZ) \-~\._..- point to second DH'ssage string as
SYM J address in H/ L
CAI_, TS TRING Ir Call the character string type routine
L 7 found in ELDU1v1PO
H)
LAl)

s(TCOUNT.) r1

--

CAL TOCTl0
L
H
RET

point to symbol of totol count(sic)
and call the 10-dig it octal printer

finally, return from report. ...

The next subroutine is called 11 TOCT10'' and is rE:sponsible for the output of a 10-digit

octal integer representation of the low order 30 bits of the 32 bit count passed as a

symbol in the accurnulator. The first thing this routine does is to lookup the argum.ent

symbol and copy its data (all four bytes) to a working copy used for shifting the infor

mation 3 bits at a tirr1e to generate octal quanta.

TOCTl0: 0 l 2 \ 2 1 4 = 0 rl ~
Ol2\2lj = 317
012\216 = 060
0 l 2 \ 2 1 7 = 3 2 rl

012\220 = 060
012\221 = 33'/
012\222 = 060
012\223 = 347
012\224 = 006
012\22:> = 026
012\226 = 07:>
012\227 = 371 _
0 1 2 \2 30 = 0 60
012\231 = 372
012\232 ::;: ObU
012\233 = 373
0 12\234 = 0 60
0 12\23 j = 3 ., 4

012\236 = 006
0 l 2 \23 '/ = 0 l 6
012\240 = O'/':J
012\241 = 0'/6
012\242 = 002
012\243 = 006
012\244 = 020
0 1 2 \ 2 4 :> = 0 .,, ~
0 12\~46 = 0 rt b
012\24'/ = 036

s11M-1ok up argument symbol left in A

LCM~ ~~MJ cor::tgument into registers

LEM

1;~KOUT)h point to work output area
SYM j ~
LMB
INL
LMC
INL
LMD
INL
LME

)
~ then copy argument to the work

area ...

LAl }-~ s(I) point to loop index "1 11

SYM used for octal digit location
LMI J purp?~es, th~n ~efinition
2 of imt1al 2-bit discard.

LAl l
s(J) >--------____-~ point to loop index "J" used

SYM j' to count bits, and load its
LMI initial value
3010 for 10 octal digits of shifting.

At the start, WKOUT a has the following for the two counts typed on page 15.

0 0 0 0 0 3 3 1 3 0 octal

binary ~ 000 000 000 000 000 Oll Oll 001 0ll 000

~high order bits discarded .• ~......-s,r su.ci.<e.r

F1~ST 1:,'{H. \JIB fOVll.Tll B'(lE.

After initialization, TOCTl0 enters the loop on the next page, shifting left (see above)

three bits at a ti.me, printing octal digits from high order to low order left to right.

The two high order bits are discarded without printing due to the in it ia 1 i z at i o n .

ECS Vulun1e 1 No. 2 --20- February 197S

The print loop shifts WKOUT left one bit at a time, and every third bit will look at the

current high order of WKOUT and print an octal digit. ..

TOCTl0L: Ul2\2':)U = 006
Ul2\2':)l = U26
012\2::>2 = 106
012\2:>J = 312
012\2~4: 012
012\2':)5 = 006
012\2:>6 = 016
012\2:,7 = 0'/'::J
U l 2 \ 2 60 = J 1 '/
012\261 = 011
012\262 = 371
012\263 ::: 110
012\264 = JOO
012\26:> = 012
012\266 = 076
012\267 = 00J
012\270 = 006
012\271 = 026
012\272 = 075
012\273 = 30'1
012\274: 002

012\275 = 002
012\276 = 002
0 l 2 \c. 7 7 = 0 4 ~

LAI h
s(WKOUT))Cpoint to work register again ...
CAL SHL4B; c;- shift. it left four byt.es
L 1r--- with the subroutine ...
H)

LAI
s (I)
SYM
LBM
DCB
LMB
JFZ
L

)

\------ - -~ point to I for print test
_)

l-- _________ __ .::r- f et c h I
.(and decrement I
J and save it again ...

TEND - if zero, is untrue, go .!_est end

H
L1-1III
3

}---~------ set I to 3 for next minor cycle

;~KfuT}.-point to work register again ...

LAM fl-in order to fit fetch high order after shifts

RLC~
RLC ... and rotate high order bits to low
RLC order position .•.
OCTOUT then go OCTOUT as was done in

ELDUMPO ...

When it is time to encl, this is indicated by exhaustion of the count stored in the var-
iable "J" (do not confuse with the keystroke designation in IMP).

fEND: 012\JOO = 006 LAIS
O 12\30 l = 020 s(J) point to variable "J" (not the command code)
012\J0c. ::: O'/S SYM
012\J0J = 31'/ LBM~fetch J,
0l2\J04 = 011 DCB ~ decrement J
012\30~ = Jr/1 LMB ~and store J value back in J ...
012\306 = 110 JFZ TOCTlOL
012\301 = 2:,0 L
Ul2\JlU = 012 H

keep going with print loop till done

012\Jll = OU'/ RET and of course back to caller when done ...

Then the 32-bit multiple precision shift routine, left shifting 4 bytes one position ...

SH L4 B: 0 l 2 \J l 2 :z O '15 SYM go look up the argument of shift
012\JlJ = UbO INL~
O 12 \314 = OOU INL gcJt to point to low order before sl1ifts ...
0 l 2 \ J 1 ::> = 0 60 IN L .,,
O l 2 \J l 6 = 2 :,0 XRA clear accumulator and flags
012\Jl'I = 026 LCl ~

4
define loop count

012\320 = 004 ·
SHL4BL: U 12 \J2 l = 30 ,, LAM fetch current byte,

0l2\J~2 i:: 022 RAL rotate old carry in, bit 7 to carry
L) l 2\J2J = j'/0 LMA and ss a save the shifted bytes ...
0l2\J24 = 061 DCL decrement the index ...
Ul2\J2~ = 021 DCC decrement the loop count. ..
0 1 c \ J 2 6 = l l O J F Z SH L4 BL:
012\32'/ = 321 L and continue till count is exhausted ...
012\JJ0 = 012 H
012\JJl = 00'/ RET then return to caller .•.

ECS Volun1e 1 Nu. 2 - 21- February 1975

This shift routine (p 20) a sun1es tbat tht: argurnent is a -±-byte string pointed to via
a t::ymbol passed in the accunwla.tur, lcoked up imrncdiatcly on entry. Taking into account
the syn1bol table lookup tin1e and the :sequence of instructiuns executed by this routine,
a.ta S00Khz clock rate, it takes 262 cycles x 4 us - l. 048 rn.illiseconds per single bit shift.
For individuals w th cleh1sions of grandeur, note that to accon1plish what an IBM 360
does in one 11 SLL' 1 instructicJn - an 11 n" bit shift - the would-be emulator will require
1. 048 n n1illiseconcls ! (Only aliout 3 orders of rr1agnitude slower - depending on your
choice of con1parison model.)

The actual code of BITCHASER completes with the CHECKEND routine, added as an
afterthought to cause the prograrn to return to IMP with an 11 E" key on tl~ keyboard.

CHECKEND: 0 l 2\.JJ2 =
012\J3] =
012\JJ4 =
012\Jj~ :;:

012\336 =
012\Jj'/ =
012\340 =
012\341 =
012\342 =
012\343 =
012\344 =
012\J!.j:, =

l 1 ~
0 '/4

JOS
l l U
014
012
006
002
0 '/ S
076
002
025

INl ,..-...__"-. __ _,..read di splay {modified ECS- 5 code)
CPI }
11 .E' 1 ~~check for end of memory test .•.
JFZ BIGMLOOP
L and continue until done ...
H

~(~PST ATE)~ point to IMPST ATE
SYM j ~
~Ml~set IMPSTATE to Z

KEYWluT and wait for IMP actions ...

The remainder of page 012 ie filled up with the data definitions of the two text strings
pr i rited by BIT CHASER (see illustration on page 15 of the results .)

STRINGl: 012\346 = 0 l :> 11 ler.gth 1
i STRING2: 0 l 2,364 = OlJ 11 length' 1

012\34'/ :::I 001 "bellll 012\J6S ::: 015 'ic r"

012\3~0 = 012 "lf" 012\366 = 007 11bel1 11

012\J~l = 00 '/ tibell'' 012\367 = 012 I 'lfl!

012\]:>2 = 012 r I lf11 01 2 \3 ~IO = 040 II !I

012\J5j = tJl 5 11c r H 0 1 2 \j '/ 1 = 040 II II

012\3:)4 ::: 040 't " 012\J'/2 :::: lOJ ,:c,;
Ul2\3=,~ = 1 0 !:I !l E" 012\J73 ::: 1 l '/ 11011

012\356 = 122 1iRI! 012\374 = 125 ,1U''

012\J:>7 = 122 "R'l 012\J'/5 = l l 6 l!Nll
012\3'/6 = 124 l!T!I

012\360 = l 1 7 11011 012 \3 Tl :::;; 075 l!:: II

012\361 = 122 llR. ll
012\362 :::: 12J 115 It

012\363 :: o·,~ 11:;;:! l

The RAM locations 200 to 225 in page Oare used to store the data values of BIT-
CHASER, pointed to by syn1bo~s stored at locations 312 to 341 in the symbol table of
the RAM page 0. These work areas are as follows:

200 203 ECOUNT 215 216 CURRENTADR
20·± - 207 TCOUNT 217 - 220 ENDADDR
210 I 221 PATTERN
211 J 222 - 22S WKOUT
213 - 214 STRTADR

STR T ADR and ENDADDR should be loaded with IMP prior to starting BIT CHASER.

in order to define the lirnits of the test.

ECS Volun1e 1 Noo 2 -22- February 1975

PROGRAMMING NOTES: Syml.Jol Tables

This is the second in a series of progran1-
ming notes on the use of the Intel 8008 instruc
tion set in the context of an ECS systen1 or its
equivalent •••

The programs IMP and BITCHASER which are listed and explained in this issue of
ECS make use of a rudin1entary forn1 of symbol table rnechanism implemented via an
RST7 instruction (octal 075, noted mnemonically as SYM)o The purpose of the symbol
table - used at run tirne - is to rnake up for a lack of an asserr1bler or high order
language compiler's "address resolution 1

' functions. It achieves this purpose by con
centrating detailed address determinations as much as possible in a single run tirr1e
mechanism. "Address resolution" in this context n1eans the definition of the content
of the n1ernory address pointer registers Hand L of an 8008 CPU. Because
the symbol table mechanisn1 uses a run time lookup to compute addresses of data, its
speed of access to the data will be lower than directly defined references. For ex-
tens iv e 1 y u s e d v a r i ab 1 e s , the r e w i 11 b e an imp r o v em en t i n n1 em or y u ti li z a ti on e ff i c -

iency approaching one byte per usage when compared against direct definition of Hand

L with the LHI and LLI instructions. Thus the usual speed versus n1ernory tradeoff in
this case becomes the 57 cycles (. 228 ms) versus 16 cycles (. 064 ms) of SYM cornpared
to direct definition - with the average savings of one byte in four for the S YM usage
applied to a large number of frequently used variables.

But the considerations are not quite as sin1ple as the comparison of speed and n1en1-
ory utilization requirements. The real advantage of the syrnbol table approach cornes in
when you consider the problern of compiling and changing code for a prugrarn in absolute
machine language using paper and pencil. (If you have a compiler or assen1bler with
hardware to support it, the symbol table concept is still used - but the lookups are usually
done once at compile tin1e to generate the fastest possible run time code.) As noted in
ECS-5, if it is desired to relocate the n1emory allocation of a widely used variable -
say MEMADDR of IMP for exan1ple - you (or a suitable utility progran1) would have t()
adjust every instance where the address in question was defined and used. For the 8008
instruction set, this is further complicated by the fact that you have to consider thf'
definition of two independent registers , Hand L, required for addressing. (A better
computer design such as the Motorola M6800 can use a single instruction
16-bit immediate operation for this purpose in loading index addresses.) For an exten
sive hand - compiled application program of 1000 bytes or more in the typical home

brew microprocessor system, such adjustments and relocations could be quite time con
suming.

If the addressing is concentrated in one known place - the symbol table - then you
only have to change the pointers in the symbol table in order to automatically change all
references to the data made throughout the program. The mechanism gives you a form
of "leverage" in control of your program design which can be quite powerfully used as
the designs evolve. In the example of IMP, if I wanted to change the MEMADDR loca
tion from address 000/006 to some other place, it would only be necessary for rne to

c hang e the s ym b o 1 ' 1 6 ' ' en t r y of the s ym b o 1 tab 1 e at 1 o c at i on s 3 0 6 and 3 0 7 (s e e be 1 ow •)
To achieve this power, however, the SYM mechanism has to be used 100% for all var i -
ables potentially subject to such relocation.

ECS Volume 1 No. 2 -23- February 1975

The diagram below depicts the basic idea of the symbol table as used in the IMP
and BITCHASER software of this issue - and as will be used for the most part in sub

sequent ECS software designs. for the 8008.

SYMBOL TABLE

2. □··::
='··1>£Sr

[EJ (!] ..---3__....---
8

CPU M,L ltE&15TER.S

THE IDEA OF A SYMBOL TABLE LOOKUP

In use in a program design, all symbolic references to data are made 1n three steps
corresponding to the three numbered arrows of the diagram:

1. Define the symbol as a value in the accumulator, eg.with an LAI in
struction - as for example at locations 221 and 222 of page 13 in IMPo

2. Call the symbol table lookup function with an RST7 instruction, noted
mnemonically as SYM m the listings of ECS software. This invokes the 1010 byte

SYM routine:
000/ 070 056 LHI

h-define symbol table page 000/ 071 000 h(SYMBOLS)

000/ 072 004 ADI ~add starting address to the
000/ 073 300 l(SYMBOLS) symbol giving table address

000/ 074 360 LL.A ~which is moved to L pointer

000/ 075 307 LAM ----------~ get H part of symbol address

000/ 076 060 INL ~----------------~point to L part of address

000/ 077 367 LLM ~redefine L as symbol's content

ooo I 100 350 LHA ·----------~and move H part to H

000/ 101 007 RET finally return with H/ L pointing.

3. On return from the SYM function, use the H/ L pointers of the CPU to ad
dress the data which is to be manipulated by the program you are writing.

In creating symbols, rernember that every even numbered address offset is a potentially
legal symbol - but that if the start of the symbol table is in the middle of a page of memory
space as in this case, there will be a rnaximum size to the table less than a potential
128 table entries 111 a full page table. The notation "s(x) 11 is used to represent the
value of the symbol associated with rr1nen1onic "x".

ECS Volun1e 1 Nu. 2

rhe syndrnl table required by the Hv1P and BIT CHASER softv.·are in this issue is

printed below, and is loaded in locations 300 to 341 of page 0. The particular loca-

tion of the syrnbol table is arbitrary subj el t to the following constraint: since the

SYM routine uses an 8-bit addition to con1pute addresses, and n1akes no data validity

checks, the syrnbol table rnust be so located as to avoid crossing a page boundary
in the 8008 n1ernory address space. This rneans that the n1axinnirn number of syrnbols

possible with a given symbol table is one page full or 128 symbols. (Two bytes are re
quired for each symbol definition.) By altering the constants at locations 071 and 073

in page O (the SYM routine) the origin of the symbol table can be placed at any point

rn rnemory - and such alteration if done carefully rnight be done under program
control.

SYMBOLS: OUO\Jl)O = oooy Just for kicks, the symbol table can po int to its elf

000\Jul = JUU as well as anywhere else .••

OU.J\302 = ouu t 11 002 11 is IMPSTATE
U00\303 = UOJ .) -Symbol

000 \304 ; ouur
000\30~ = 004 Symbol "004" is IMPENTRY

OOU\306 = ooor
006

Symbol 11 006 11 is MEMADDR
OUO\JO'/ :::::i:

000\310 = 000 1 "010" is GPJMPAL
000 ,-~ \ 1 = ll l 6 ~-----Symbol

The following are additional symbol definitions used by BIT CHASER •..

000\312 = 000~
OOO'dlJ = 200 ..,· Symbol 11 012 11 is ECOUNT

000\314 = uoo}'-
000\31:, = c0 4 Symbol "014" is TCOUNT

OUO\Jl6 ::: ooo}--
000 \J l ·, 210 . Symbol 11 016 11 is I =
000\320 = 000)
000\321 = 211 ~ Symbol 1102011 IS J

000\322 = 0121
oou \J23 = 346 ~-Symbol 11 022' 1 points to STRlNGl

000 \J24 = Ulc~h_
000\32:, = 36 4) Symbol 1102411 points to STRJNG2

OU0\326 = 000)
000 \32 '/ = 222 :0- Symbol 1102611 points to WKOUT

000\JJO :lll 000>
000\331 ::: 212)'"' This symbol unused at present. ..

000\332 = 0003'-
000\JJJ ::: 21 J Symbol 11 032 11 points to STRTADDR

000\334 = 000~
000\JJS = 2 1 :, Symbol 1103411 points to CURRENTADR

000\336 = 000 S'-
000\jj'/ = 21 ,, Symbol "036 11 points to ENDADDR

OOO\J4U = 000 '>

000 \J4 l = 221)" Symbol 11 040 11 points to PATTERN

•
M. P. Publishing Co. Box 3 7 8 Belmont, Mass. 0217 8 Volume 1 No. 3

ECS THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher I s Introduction:

This March 1975 issue of ECS provides a new modem design to replace the ECS-2

design published in 1974. This modem, given the hardware designation 11 ECS-8 11 as the
next in a series of plans, will provide the typical Experimenter's Computer System
with the logical equivalent of a paper tape input/output facility - but implemented on re-
usable magnetic tape media (eg: cassettes) with data rates up to 1210 baud. The March
issue is exclusively devoted to this hardware design and its software implications,

including ...

1. BiDirectional FSK Modem Design ECS-8 - Hardware Description: infor
mation including system components, notes on the design theory of operation,
interconnect summary, tuning procedures and 'the question of "standards'".

(Turn to page 2.)

2. Retuning the ECS-6 UAR/T Clock Rates describes a logical error rn January's
issue and a new set of frequencies calculated based upon the requirement that the

highest data rate selectable should be 1210 baud.
(Turn to page 10)

3. Logical Testing of the CPU/UART/Modem/Tape System is a section concer
ning the listing and use of two short test programs useful in the initial verification

of the tape interface by writing and reading an integer sequential test pattern.
(Turn to page 11.)

4. Errata: Two short notes. (Turn to page 17)

5. IMP Extensions for Tape Interface Control: What does it take to perform the
utility operations of data dumps to tape, reading from tape, and comparison of tape
data to core? This section begins the description of IMP (Interactive Manipulator
Program) extensions with the new command codes, modifications of old program
code and the major portion of new routines. The information is not complete,

and will be continued in the April issue.
(Turn to page 17).

The complete description of the ECS-8 Modem design required more space 1n this issue
than originally intended. As a result several items have been deferred until the April
1975 issue of ECS: the conclusion of the IMP tape utility extensions, further notes on
programming techniques for small microcomputer systems, a new column entitled
"Navigation in the Vicinity of C(-Aquila" concerning the Intel 8080 instruction archi-

&, tecture in an Experimenter's Computer System programming context, etc. I hate to
•.1pull a "perils of aPauline" ending on the IMP extensions but there is a definite

economic limitation on issue size. I am presently looking into methods of compactifying

program notational formats - probably along lines of a more syn1bolic notation supported

by uncommented absolute binary listings. ~ ~ _ '7~
1
L _

Pub l i s he r <J' Ma re h 1 2 1 9 7 5 . @ 1 en 5 M. P. Pub h shing Co.

ECS Volume 1 No. 3 - 2- March 1w,5

BIDIRECTIONAL FSK MODEM DESIGN ECS-8 Hardware Description . .,

The hardware portion of this article concerns a new tape interface n1.odem design to
replace the earlier ECS-2 design. The result of applying Occam's razor to a complicated
design is a design of simpler concept, not "multiplying redundancies beyond logical ne

cessity" to paraphrase the philosopher. The new ECS-8 design is printed as the detailed
circuit diagran1 in this issue's centerfold, and is described in the text.

A modem, by definition, is a "rnodulator-demodulator." In the llmodulate" rnode of
operation, the device accepts time-varying serial logic level data from the serial 1/0
interface (eg: ECS-6 as described in January's issue) and converts it into the "modulated"

- in this case FSK - output signal which is sent to the audio memory device for recording.

In the 1'demodulate 11 mode of operation, the device accepts the modulated FSK signal on
an audio recording as read by the audio device, and converts the FSK back into a time
varying strean1 of logic level data for interpretation by the serial interface device. The

net result is a facility to store digital data on magnetic tape, potentially to transfer that
data to other individuals I systen1s, and to recover such data at a later tin1e.

The ECS-8 design accomplishes the audio mass storage function in conjunction with a

suitable cassette tape recorder. During the course of development of this device in proto
type form, three different cassette recorders were tried. The following is a sun1mary of
the results of this trial, giving the suitability of the recorders in question:

1. Realistic CTR-104: This Radio Shack product when tested with a con-
tinuous 11 mark 11 tone exhibits quite audible "wow and flutter 11 variations in fre-

quency. vVhen recording and reading data at 1210 baud, this $35 recorder will

o cc as ion ally exhibit an input parity error but gives good data in general.

2. Panasonic This recorder costs approximately $40, and the extra

$5 over the Radio Shack product gives a more than proportional increase in the

quality of workmanship. Using the test programs in this issue, it was found

capable of recording and reproduction at speeds up to 1210 baud with no observed
parity error flashes with the INTEREAD program found in this issue.

3. Super scope C-104: This $99 recorder is one which will be useful in the home

computer context for several reasons: it has a tape position counter which can be

used to index block locations on tape for large blocks of data, it has a pitch variation

control of 20% which can be used to con1pensate for differences in tape speed
when exchanging tapes with other individuals, and it has son1e nice ttcue' 1 and

' 'r e vi e w II c on t r o 1 s w hi c h po s it i on the tape with heads a c ti v e , pot en ti a 11 y a 11 owing

a fast "block count" tape position search with manual intervention, con1.puter con
trol of the motor. This one also reproduced data at 121 0 baud with no observed

e r r o r s u s in g th e t e st pro g r am s in th i s i s s u e .

The test results here are a heuristic first look at the suitability of various recorders wi~
actual data. Later forn1al testing using programs to evaluate the units and other factor ·

such as tape brand and quality will be reported in subsequent issues. If you want to se-

lect a recorder for use in your own systern, this first inspection would seern to indicate

ECS V<Jl1irne I - 3 -

,-. t hat L h e c ho i c c o f a r c c o rd e r i s fa i r 1 y b r o a d. Th e r e 1 s u n e (-o n ti i cl e r a t i () n w h i (h \Vi 11 h a v c

, tu be checked out if you want to take advantage of software which M. P. Publishing Cu.

rr

w i 11 h e s u pp 1 y i n g i n r e c o rd e d for n1. T h at con s i d er a ti o n i s th e n1 a nu fa c t u r e r ' s to 1 er an c e s

on tape speed. For the typical Panasonic, Superscope or Sony cassette recorders in the
$SO to $100 range with AC adapters, this will probably be close enough to the nominal

1. 87S IPS to ,f.2,et con1patibility with other recorders. I have my doubts about that atipclt
when th c Radio Sha ck or other inexpensive r ccor de rs are consider ed.

THE FSK RECORDING SYSTEM:

In the diagram of the ECS-8 design, the central ele1nent is a Phase Lock Loop, the

XR-210 circuit made by EXAR Integrated Systems, Box 4455, Irvine Ca. 92664. This

chip is widely available and will cost from $5 to $6 in plastic packages, depending upon

your source of supply. I have seen at least one advertisement in Popular Electronics
classifieds for this chip, and there is the Radio Electronics inforn1ation cited in a pre-

vious issue of ECS. The IC serves the following functions, as progran1med by the IN/OUT
1 in e of th e s e r i a 1 int e r fa c e de vi c e (EC S - 6 or equiv a 1 en t.)

OUTPUT: For output operation, only the VCO section of the PLL is used. The
control logic of the design in this mode programs a 1 'mark 11 frequency when the

data line is 11 111 and programs a "space 11 frequency when the data line is "0 11
• Thus

the time sequence of information on the TSO bit line of the serial inter-
face will be directly mapped into a time sequence of frequencies in the VCO. The

VCO output is tapped and run through a 741 buffer amplifier to the tape recorder
which is assumed to be in the 1 'record" mode for output.

INPUT: For input operation, the PLL is used to decode the information coming in
from the audio information source, turning the FSK modulations into a time sequence
of information on the serial data line TSI at the interface. The control logic of this

design programs the VCO to the 11 f
0

11 frequency so that the loop will idle in lieu

of a signal half way between the mark and space frequencies.

The phase lock loop itself is an example of the feedback principle in action. When an in

put signal is received, the signal is compared against the VCO signal frequency. The out

put of the phase detector is an error signal with a sign appropriate to cause the integrated
control signal (the voltage into the VCO) to move thus causing the VCO to move in the

necessary direction to make the two signals equal in frequency. The PLL thus 11 locks' 1

onto the signal frequency, causing the VCO to track it. In FSK applications, the control
voltage exhibits two 11 steady 11 states - and transitions between these states. The con1para
tor section of the XR-210 loop circuit is used to translate the rough VCO voltage into a logic
level signal which can be interpreted by the serial interface port. When you have built your

first Moden1, use of a dual trace scope with chopped input will illustrate a pair of signals

like this: ~ ,, TP l"
Filtered VCO Control

TTL Level Input Data 7 ~ SI (,-NAL

Th c a n1 p 1 it u de s a r c n ot to s c a 1 e , a n d th i s di a g r an: i .'-3 t y pi c zd \) f a 12 l O b a u d s i g -
nal v-:ith the filter coff1ponents of this is_c-:ue's circuit draw1n~.

ECS Volun1e 1 No. 3 - 4- March l q75

In addition to the XR-210 Phase Lock Loop circuit, several auxiliary ele
n1ent s arc found in the ECS-8 design to build a moden1 syst ern.

An output buffer an1plifier provided by the 741 operaticnal amplifier IC ---t-
1s used with capacitive feedback to integrate the VCO square wave, amplify it
to several volts, and to isolate the VCO terminal of the XR-210 from the tape

recorder connection. A voltage divider in the form of potentiometer RZ0 is used

to set a suitable input level for the tape recorder being interfaced. Note that

the input to the tape recorder is shorted to ground when data is to be read from

tape. This prevents an unwanted coupling between the tape input and tape output

which was observed to occur with all three of the tape recorders mentioned on

page Z. A similar feature switches the output of the tape.

An input clipping amplifier is provided by the 741 operational amplifier IC -5-

to provide isolation of the PLL input from variations in tape recorder output am

plitude. The dual diode feedback around the operational amplifier restricts the

amplitude range to essentially the diode forward voltage drop (po siti vc and negative)

thus clipping the signal to approximately twice this drop peak to peak. This output

of the clipping amplifier is applied to potentiometer RZ3 which sets the

actual PLL input level. During output operations, switch S4a grounds the input to
the PLL to prevent coupling of the tape recorder signal via the tape drive electronics.

The motor start delay oneshot is used to give the computer progran1 a I 'time out 11

at the beginning of tape read or write O}.fl"ations. When the 11SELECT 11 line goes low(·"

indicating the start of an 1/0 to the modem, this cues the oneshot through the

differentiator provided by Cl3 and R22. The RDY output to the interface logic

then goes low for a tin1e period - set by potentiometer RZl. At the end of the time

period, nominally 2 seconds, the tape drive motor is assumed to have 11 settled down"
to a steady state condition after the initial startup transients, thus the data trans-

fer is not liable to errors caused by transport variations.

The n1otor control relay is used to turn on the tape recorder's motor under

computer control whenever the "SELECT interface line is in the low state. Due

to the inverting driver of the 7426 section, the selected condition is the 11 off' 1

state of current in the relay coil - hence the 11 NC 11 contacts of the relay
(term i na 1 connections 3 and 4) should be us e d to nia k e / break the 1 1 r e n1 o t e 1

' input

to the tape recorder.

Control Logic is provided by the two 7426 open collector NAND gate sections,

a TEST /CPU n1ude switch Sl, and two TEST control switches SZ and S3.

When the n1ode of Sl 1s CPU, the control logic is connected to the con1puter's

serial interface for control by a suitable program. \\Then the n10de of Sl is TEST,
the control functions of TEST DATA (SZ) and TEST IN/OUT (S3) govern the con

trol of VCO frequency settings.

The purpose of includinL'. the test switches 1s to provjde a rneans of initially tuning the

device and/or of re-tuninl(jt to a different set of standards at a later tirne.

ECS Volume 1 No. 3 - 5- March 1975

FREQUENCY SELECTION CONTROL:

The truth table of the control inputs (whether Sl is in CPU or TEST mode) is noted
in the centerfold diagram of the ECS-8 design. The A and B columns of the table in
dicate the logic level on the lines at the points marked II A" and "B" in the diagram. As
is usual for such tables, the 11 X 11 indicates a "don't care" input. The output of the logic
is listed in the third column as "fvco" - the XR-210 VCO frequency which will result
for the given combination of bits.

The XR-210 has two inputs for frequency setting. One is the "k_eying" input of pin
10 which is normally used to generate FSK in an output-only application according to the
EXAR application notes on this device. The second is the "fine tune" input which is
supposed to be used to set the center frequency (free running frequency) of the loop in
receiving situations. In this design, the same XR-210 is used for both input and output
by programming both of these inputs digitally, so that a total of three frequencies is
obtained - mark, space, and free running frequency "f0 ". Two potentiometers RIO and
R8 are used to set the "mark" and "space" frequencies using a procedure described be
low. Optionally, a third potentiometer can be used in this section for the fine tuning of
the free running frequency - in place of the fixed l00K resistor R9, illustrated by the
"dotted" arrow in the drawing.

OPEN COLLECTOR LOGIC:

Note that all of the "NAND" logic in this circuit design is provided by 7426 high vol
tage open collector NAND driver gates. For the control logic applications, this means
that "pull up" resistors must be provided to the 5 volt logic supply level. The pull
up resistors for this use are R4 and RS. For the relay drive application, the "pull up"
is provided by the relay coil acting as a load instead of the resistor used in logic
applications. The high voltage gate was chosen so that a large (ie: 12 volt) voltage could
be applied to the relay coil to guarantee operation with a current greater than the 3 ma
required for it to change state. The relay is used as described on page 7 of the Jan-
uary ECS issue. The remaining section of the 7426 circuit can be used as noted in
the drawing to drive a relay with DPDT contacts if it is desired to automate the function
of switch S4. Open collector logic is also used for the XR-210's output stage, so you
will note R3 is used to define the output logic level voltage for the PLL •

NOTES ON CONSTRUCTION OF THIS CIRCUIT:

The ECS- 8 design prototype was built with wire wrap construction techniques as docu-
mented in M. P. Publishing Co. publications 73-1 and 74-5. With only 5 integrated cir-
cuits, a very small board might be used, or a very roomy 4" by 6 11 board could be used
as was used in the prototype. Other interconnection techniques can be used if desired,
however for convenient and permanent one-of-a-kind construction wire wrap is really the
"only way to go".

A PC board version of this design is in the process of layout as this article goes to
press. An announcement of price and availability is expected to be included in the next
issue of ECS. The board will be labelled with the component designations in the ECS-8

ECS Volume 1 No. 3 - 6- Mard1 1975

centerfold of this issue, and very little additional docun1entation is ex1)ectcd to be re- ,•~

quired beyond that supplied in this issue of ECS. With whatever technique you employ

- wire wrap, point to point solder, PC - it is highly recommended that you use sockets
for all integrated circuits. This prevents heating of the IC's if soldering is employed,
and provides a convenient means of removing and replacing the chips if you should make
a damaging mistake. Three 8-pin "minidip" sockets are required; one fourteen pin DIP
and one sixteen pin DIP socket are required.

INTERCONNECTIONS:

The RDY, SEL, TSI, TSO and IN /OUT lines of the modem should be routed to the
c or r e s ponding line s of one of the s er i a 1 int er fa c e unit port s (e g : EC S - 6 I / 0 - 2
lines for one of the channels of tape interface.) If an alternate UAR/T control inter
face design is used, these lines will have to be run to the equivalent definitions in the

controller. To summarize, the lines are:

RDY - this line goes to the RDY input of the channel chosen for the modem
rn an ECS- 6 type multi-channel serial interface.

SEL - this line goes to the SELect output of the channel chosen for the modem.

TSI - this is the serial input line from the den1odulator to the TSI line of the

serial interface controller for the channel in question.

TSO - this is the serial output line from the appropriate serial interface channel

to the moden1 modulator.

IN/OUT - this line 1s logic 11 111 for input, logic 11 0" for output, and 1s used to

program the frequency control logic of the XR-210.

In addition, the connections for ground, positive 12 volts, positive 5 volts, and negative

12 volts mu::::;t be made.

The interconnections to the tape recorder are made via the three jacks Jl, J2 and
J 3 (the latter is not drawn explicitly in the diagram.) The jacks can be on1itted if you
do not mind "pigtails II wired to the modem board with appropriate plugs for the tape
recorder. The following connections must be rnade: a phono-plug to miniature phone

plug patch cord is required to go from Jl to the tape recorder's audio output jack -
typically rr1arked 11 Aux Speaker" or 11 8-ohm Earphone; 11 A phono-plug to miniature
phone plug patch cord is required to go from J2 to the tape recorder's audio input jack,
typically rr1arked "Auxiliary Input" or "Microphone''; A phono-plug to sub - miniature
phone plug patch cord is required to go frorn J3 (relay contacts NC and COM) to the
motor control input of the tape recorder, typically marked "Ren1ote

11
or

11
Dictation.

11

The moderr1 1na y be physically rnonnted along with the I"t' st uf the s ysterr1 in a com
mon car<l rack or "breadhoard 11 layout, or it might be reasonable tu put the n1odem in

a separate box associated with the tape recorder .

ECS Volume 1 No. 3 -7- March 197 5

TUNING PROCEDURES: USING THE TEST CONTROLS

Having made the interconnections, verified proper wiring and power voltages, and
inserted the integrated circuits, the tuning of the modem frequencies is the last step
prior to testing the unit under computer control. In order to identify points in the cir
cuit for purposes of tuning and under standing the circuit, a new feature has been added
to the ECS-8 circuit diagram - notation of several test points as "TPn" where "n" is
replaced by an appropriate arbitrary number starting at unity. The basic test point for
use in tuning the circuit is test point #1 (TPl) - the amplified VCO signal. The basic
test instrumentation can be as simple as an oscilliscope or frequency meter - or both
can be used. With the components shown in the circuit diagram, turning on the modem
power, independent of any switch settings of Sl to S4 , will produce a waveform looking
approximately as follows:

What the test switches do is set up data conditions which affect the period of this
waveform logically, and enable the corresponding frequency settings to be
obtained by trimming resistors.

Trimming the Free Running Frequency f0 :

Set the TEST /CPU mode switch Sl to the TEST mode and set the test IN/OUT switch
S3 to the IN position (S3 open so that line B is logic "1"). This will program the phase
lock loop's VCO to the free running frequency logic inputs - and the TPl signal will be
f 0 assuming no interloping frequencies are coming in the Jl connection. The free run
ning frequency can be trirnrned by two methods in this mode:

1. By trimming the capacitor CO by adding extra low value capacitance
lumps in parallel with the main CO with its nominal • 03 mf value.

2. By trimming the resistance of R9. However, to keep a reasonable
control range for the other adjustments, R9 should not be made much lower
than the l00K ohms shown in the diagram.

In the prototype, with a 5% tolerance l00K fixed resistor for R9 and a 10% tolerance
c0 of . 03mfd without trimming, the oscillator was found to be at 5. 555 Khz when power
was first applied. The final value of 5. 50 Khz (see "Standards" section below.) was
achieved by trimming with small silver mica capacitors on a "cut and try'' basis. The
circuit diagram shows two such "phantom capacitors" as dotted lines in parallel to the
main CO. In the PC board version now being prepared, space is left for two such trim
ming capacitors~

Trimming the 11 Mark" and "Space" frequencies.

Once the f
0

frequency setting has been trimmed, the following procedure may be

used to set the "mark" and "space" frequencies of the FSK modulation. First, set the

ECS Volume 1 No. 3 -8- March 1975

the test IN/OUT switch S3 to the "OUT" position (S3 closed so that the B signal line is ,
now logic "0" in the test n1ode.) This logically programs the VCO control lines to either ,
the "mark" or "space" frequencies depending upon the state of the A signal line. The
two FSK frequencies are set according to the "Standards" section below using the following
iterative procedure to converge on the final settings. An iterative procedure is required
in order to overcome the interaction between the two controls RS and Rl0 •

1. Set the test data to "space" - the logic 11 orr level which occurs on line A
when SZ is closed. Adjust RS until the desired "space" {lower than £

0
) frequen

cy has been obtained.

2. Set the test data to "niark" - the logic 11111 level which occurs on line A
when SZ is open in the test mode with S3 closed. Then set the observed
frequency at TPl to the nominal "mark" frequency.

3. Repeat steps 1 and 2 in sequence until both settings are within the nominal
1% tolerance discussed below in the "standards" section.

Note that this procedure of adjusting the 1nark and space frequencies should have little if
any effect on the £0 setting. But, if you want to check and "be sure" you might look at
f 0 again after these adjustments have been completed.

THE QUESTION OF "STANDARDS:''

Several individuals and representatives of groups of amateur computer enthusiasts
have written concerning the subject of standards for data interchange between multiple
systems, enabling the distribution of coded software rather than listings which must
only be re-entered by hand. With the definition of an audio tape interface scheme comes
the question of a standard for data interchange via that method. There are several
comments which can be made regarding such standards:

L Within broad limits, the physical parameters of the recording or inter
change rr1ethod are essentially arbitrary. Thus for example in tape recordings,
it is fairly arbitrary whether one uses a series of octave-related tape speeds
starting at 2 IPS, 1. 875 IPS or even 1. 75 IPS. The idea of the standard is to
arbitrarily pi ck one such value of the range and stick to it in a given context of
application.

2. Given the san1e general method of reproduction or interchange, the most
useful standard is that which gains the largest market acceptance. Thus all the
sour grapes in the world will not change the fact that in certain areas of the com
puter markets that which IBM designs de-facto becomes industry standard. IBM's
arbitrary choice of design and interchange standards is as good as anyone else's
choice given the same physical concepts of recording or interchange so its wide
n1a!'4ket acceptance makes such a standard attractive to other instances.

So, what are the physical parameters affecting the FSK recording method, the general
ranges of interest, and the n1arket factors shaping a choice of recording para1neters?
Answers to these questions - at whatever level of detail required - are in1plicit in any

ECS Volume 1 No. 3 -9- March 1975

selection of a set of standards. In the list here, you will find a summary of the physi
cal para.ni.eters and value I have chosen as a "first cut" at the problem. Some notes con
e erning the choices follow the list.

1.

2.

3 .

4.

5.

ECS-8: FSK RECORDING
PARAMETERS •.

Center Frequency: f 5. 5 0 Khz
0

Mark Fr e g: fmark

Space Fr e g: fspace

Data Rate of UAR / T :

As synchronous format parameters:

Stop Bits:
Data Bits:
Parity:

1 0 7. 5 %

92. 5%

fo

f
0

2
8

odd

=

1%

5. 9 3 Khz

5. 0 9 Khz

1210 baud

The basic specification of the FSK signal is its center frequency and deviation. The
above set of parameters reflects a choice of 5. 50 Khz center and deviation of
7. 5% in either direction to produce the two data frequencies. The choice of these par-
ticular numbers reflect the following general considerations:

1. The frequency should be kept as high as possible relative to the data rate
of the interchange, to provide a large number of cycles (between 4 and 5 in this
case) at the space frequency for the PLL to lock on.

2. The frequency of transmission should not be higher than about 6Khz when
the typical l0Khz band limit of the usual inexpensive recorder is considered -
this guarantees that the wide band signal of the FSK will be recorded with suf
ficient accuracy to recover the data later. The information theory prediction
that at least the second harmonic information would be required was veri-
fied in the prototype by attempting interchange at approximately 8 Khz £0 with
other parameters identical. Result: errors in subsequent read operations.
(At 6 Khz, there is still sufficient reproduction at the harmonic 12 Khz to
ensure accuracy, but the drop off with increasing frequency puts a 16Khz signal
outside the range of reproduction.)

3. The deviation of 7. 5% (relative to center frequency) was chosen to make
the basic frequency shifts large compared to possible erroneous shifts such as
tape recorder "wow" and "flutter" or steady state differences in tape speed.
With the prototype circuit, deviations as large as 12% were found possible, but
were at the limits of control ranges and less stable than the 7. 5% figure. Smaller
deviations were also tried . The final 7. 5% choice is a good balance between

the small deviation consideration and the limits of this circuit.

4. The baud rate and format considerations are taken from the ECS-6
design - subject to the considerations stated on the next page of this issue.

ECS Volume 1 No. 3 -10-

With these physical parameter considerations for an FSK moden1 taken care of, what
are the market considerations - considerations of more than one user? A standard is

only a standard when ii is useful to the individuals employing it. For your own in-house
use, you could potentially use any set of parameters within the capability of the basic
design. My purpose in publishing this list of parameters is one and only one:

to provide a definition of the FSK param.eter s which I will use in recording programs
for distribution to subscribers, whether generated by myself or by other individuals

now in the process of creating articles for this publication. If a design such as the ECS-8
modem is used, there is roorr1 for a fairly broad variation in these parameters to allow
retuning for other sets which may or may not be used by other sources of
software. I make no claim to special knowledge or universal acceptance of this particu
lar set of parameters - and the flexibility of the basic modem design allows later re
specification should there be widespread dissatisfaction among subscribers with the par
ticular choices in this set.

A final note on the standards subject: this discussion has only concerned the physi-
cal (low level) details of recording standards. There is another whole "can of worms"
involved in the programmed format of data which is conveyed by tapes using this method.
To keep the size of this issue within the bounds of sensibility I am deferring discussion on
that topic for now.

RETUNING THE ECS- 6 UAR/ T CLOCK RATES

The following frequency settings are achieved as a result of retuning the ECS-6
oscillator to 38. 720 Khz (25. 83 µs for those who set frequencies via oscilliscopes) and
taking into account a logical error in the writeup of the ECS-6 design as published. The
logical error in question was the assumption that a 16 division ratio is possible with
the 4-bit 74193 counter used to establish clock frequencies, when in fact the maximum
is division by 15 and two of the 4-bit codes are identical. The retuning is done so that
the highest bit rate will be approximately 1200 baud (1210 baud is . 83% off the typical
corrnnercial rate of 1200 baud) and the 110 baud rate "\\<'1.ll be retained at one point in the
series for use with the teletype. The complete list of frequencies and codes is thus:

Code Iden. Baud Rate Code !dent. Baud Rate

0000 0 1210 (tape) 1000 n 1s1.2s u

0001. l 1210 (tape) 1001 9 134.44
0010 2 605 1010 10 121.00
OOll 3 403.33 1011 11 110.00 (

1I1TY)
0100 II 302.s 1100 12 100.83
01 01

L:!
242. 1101 13 93.08

_j

0110 6 201.66 1110 14 86.43
0111 '? 172.26 1111 15 80.67

I

With this retuning, the control word for the channel O teletype output becomes octal 262
instead of 362, and word 011/220, word 011/211 of the previously published ELDUMPO

routine must be changed to reflect the new TTY rate code"

ECS Volume 1 No. 3 -11- March 1975

LOGICAL TESTING OF THE CPU/UART/MODEM/TAPE SYSTEM:

Once the modem has been checked out at the level of tuning described on pages 7 to
9 of this issue, the next step is to check out the ability of the system to record data gener
ated by a program and later read that data. Two self-contained programs are provided in
this issue for the purpose of testing the interface by a very simple method: An integer
nillTiber sequence displayed in the binary lamps has a very characteristic visual pattern
when the rate of generation is lower than the eye's characteristic "flicker" limit. By
writing then reading the sequence of binary numbers 0003 to 3778 repetitively, this sequence
will be put on a test tape for corroboration visually in the display when reading. The other
8-bit display can be used to flash any parity errors and to continuously monitor the difference
between one word and the next when reading data. The first program of interest is the
data generation routine INTEGEN:

Note: Starting with this issue, I will be mnemonically referencing
the 8008 1/0 commands of the system I actually wired by their proper
symbols. No changes are made in the actual codes printed in previous
issues of the magazine - which differ from the published and corrected
ECS-5 codes by a level of inversion in the 3- bit selection of device within
an 80081/0 channel. It is not a major point, since an individual system
of hardware can potentially use any one of the 8008 1/0 codes (with the
proper characteristics) for a given function.

J.NTEGEN: 004\000 = 006 LAI First turn off interrupts as usual
004 \00 l = 002 00 000 0010
004\002 ::I l l 7 IN7 I/ 0 Interrupt control code

INTGLOOP: 004 \003 = 006
004 \004 = 026

LAI } 000l 0l 10 1210 baud, ch. 1, select, output

004\005 = l l l IN4--Tape unit control word code (formerly called
004 \006 = 310 LBA "IN3" due to ECS-5 error)
004 \00 7 = l rl ~ OUT36 Write status to left display.
004\010 IC 301 LAB Recover status
004\011 :: 044
004\012 = 030

ND! 1
00011000 J Mask with TEOC/TBMT positions

004\013 = 074
004\014 = 030

CPI 7
000ll000 J And test for valid TEOC & TBMT

004\01~ = llU
004\016 = 003
004 \0 l rl I: 01.)4

JFZ INTGLOOP~~ Keep looping around until
L the UAR/T is ready for more.
H

004 \020 = J02
004 \02 l = l 1 3

iN~C ~ then give the Uar/T some more stuff.

004 \022 = J02
004 \0 23 = 1 n ~t;

37
}~ and display the sarrie stuff on right lights

004\024 = 020 INC Increment the data for next output word
UU4\U2~ = 104 JMP INTGLOOP And reiterate the whole cycle ad
004\026 = 003 L infinitum ... you stop this program
ou4 ,o~n = 004 H manually with the single step

control.

This programlet can be entered into memory at the absolute addresses shown by using
the lMP program previously published. Then the "Shift X" operation with appropriate
address setup can be used to enter execution at location 004/000.

ECS Volume 1 No. 3 -12- March 1975

Once the INTEGEN program has been entered and execution initiated from IMP,
a first check of the system can be done aurally by connecting a high fidelity amplifier
and speaker to test point TPl. The characteristic FSK signal should be heard, which
in this case (going gung-ho at 1210 baud) sounds somewhat like a multi-engine prop-
eller driven aircraft during takeoff - especially when the volume is turned up through
a good set of speakers! To make the test tape, the following rnanual procedure is
suggested:

1. Temporarily suspend prograrn execution by flipping the CPU panel controls
to the single step n10de. After this is done, the steady state ''mark" tone of
5. 93 Khz should be heard in the speaker if you use the setup suggested above.

2. Put the recorder into its recording mode and start it up. Leave the remote
control input temporarily empty so that the controls are active independent of
computer motor control operation.

3. After 10 to 20 seconds of mark tone recording, turn the CPU back to the run
rnode so that the actual data will be recorde - an integer sequence of nuniliers
generated by INTEGEN at the maximum data rate of the systen1, 100 CPS (Charac
ters per second.) \Vhen the program is running, observe the integer pattern in

the display.

4. After a coffee break or suitable 5 to 15 n1inute period of time, come back,
turn off the recorder, put the CPU in single step, use the bootstrap mode to change
location 3 (IMPSTATE) back to 0028 , interrupt the CPU and re-enter IMP. You
now have a test tape with an integer sequence of numbers on it at 1210 baud.

With this process of making the tape completed, rewind the cassette (or reel
if you use reel-to-reel) and enter the INTEREAD program code as found on the next page.
The INTEREAD prograni is designed to set up for read operations at 1210 baud, and read
any characters detected by the UAR/ T with display on the binary lamps. The program

also does a rudimentary error check as follows!

- The difference between one character and the next is continuously calcu-
lated and displayed as the lefthand bit of the OUT37 display lamps. If this lamp
ever flickers, it indicates that an invalid sequence of integers was read - it should

be solidly ''on" during input operations.

- The three receiver status bits - OVERRUN, FRAMING ERROR and PARITY ER
ROR - are displayed in the righthand section of the OUT37 display lamps. If bits
2, 1 or O of this lamp array ever flash, then one of the error conditions was detected.
In practice, except when the phase lock loop is free running, these lamps were usually
always "off11 indicating a lack of errors. At rates higher than 1210 baud, all three
recorders tested would occasionally produce read parity errors. At the 1210 baud rate,
the Radio Shack recorder would occasionally (once in several minutes) flash a parity

error.

Once entered, set MEMADDR of IMP to 005/000 and start

IMP 11 shift X" operation.

INTEREAD with the

ECS Volume 1 No. 3

INTEREAD:

INTRLOOP:

OU::> \UOU = 006
00:>\0Ul = OUc
U U '.) \0 0 c = l l ·,
00:>\003 = OOb
005\004 = 027
OU:> \OU'.) = l l l
UU::>\006 = :HO
00:>\0U'/ = 044
00'.)\010 = 040
U O ':J \0 l l = 0 ·14

00!:>\012 = 040
005\013 = 110
005\014 = OOJ
OOS\015 = 00':J
0 0 :> \0 l 6 = l l J
00~\0l 7 = J20
OOS\020 = l '/':J
OU':J\021 = J02
00 !:>\022 = 22J
00 5 \U 23 = 012
00:>\024 = 340
005\025 = 301
OUS\026 :c 044
005\02'/ = oor,
005\030 = 264
0 0 5 \0 3 l = l 7 7
OUS\032 = 332
005\033 = 104
005\034 :: 003
00 ':J \0 3 5 = 00 5

-13- March 1975

LAI 1....-- Turn off interrupts code
00 000 010J ,,.--
IN7 -----"'!~• is sent out to interrupt control port

LAI 0-0001 01 11 1200 baud, channel 1, select, input
IN4 is set up in ECS-6 control
LBA----- save status just read
NDI~
00 100 000

mask off RDA bit

~5Ioo 000}-- and test RDA for data available

JMP INTRLOOP loop around if not available
L
H
IN5 read code for ECS-6 channel
LCA save data in C-register
OUT36 - write data just read in the left binary display
LAC - restore saved data
SUD - subtract previous data left in D-register
RRC rotate difference into high order
LEA - and temporarily save it in E
LAB - restore status from B
NDI { _
00 000 111_) and mask off the error indicators

ORE - and merge the result with high order difference
OUT37 - and display inthe right hand display lamps
LDC - and create the new "old" data value.
JMP INTRLOOP and back to gobble up some more bits
L from the tape •..
H

When INTEREAD has been initiated in operation, with a blank tape noise signal,
display outputs should "run wild". The reason is that when the PLL oscillator is free
running without locking to either the mark or space frequencies, the control voltage is
at the center of its range, "hunting" around for the proper lock. If you examine test
point 2 at this point, you should find a "random" waveform with an amplitude of several
100 1 s of millivolts with the recorder playing back a blank tape.

When the first "mark" tone appears on the tape, the loop should quickly lock solidly
onto a fixed level at T PZ. Then, when the data begins to appear, you will be able to
set up the chopped dual trace scope display illustrated on page 3 - if you have or can bor-
row the use of a dual trace display. With an oscilliscope as a tool, you can adjust the
input level to get the cleanest waveform at TP2 - or, using only your CPU and program
INTEREAD as a tool, you can adjust the level while watching the error lamps - with
too little level, errors occur - and the same goes if you over drive with a combination
of high tape recorder amplitude and high input level setting.

COMPUTERS IN SCIENCE FICTION? Imaginative applications of technology are often
anticipated years ahead of realization by fiction writers - thus Jules Verne's
well known anticipations of TV and fast powerful submarines. Good and well known
science fiction writers like Robert Heinlein and Poul Anderson have often come out with
neat computer applications. I am interested in readers 1 contributions to a bibleography
in this area including short descriptions of the computer-related theme of the story being

referenced.

ECS Volurnc l ~~(J. - 1--l -

ECS-8: BIDIRECTIONAL

J2

Jt

•
OUT

l~?UT
CLIPPIN~

AMP 1>2,

+1'2.

'f-

~ -12.
(7Lf-i

MINI -· bl P

0- I\J u t e : S 4 n1 a y op ti on a 11 y -=
: b c r eplac: ed by DPDT re lay
j J :n ven from IN/ OUT line

_./ buffered by IC 2 section d

TP3

TP1
.\ """!

Cil.allMr;

0U1'1..(T
LEVEL

. c. 10

. .i rvi5

I 2

54b
.3

RZ-3

112.'lK

Ci4-

.1. fv'\ s

4

5

b

+

.Itb 3VY1~

RI~

I. 'i K

cg

. i ""'-5-

OUTPUT
BUFFER

AMP

b ~ Co..~ I T. H e l YV\ e v- ~ J

f
16

5ETTl~

c~ .0:5 Mf Ri
c0 Ci

/ OPT\ONA\..
~- TRIN\Jw\l~

......... ; :- +11 .oo,z
Mt

.... ~ '

f \\
Rts

B.1
K

13 14 " ll 1t 3 2 1.

T tM 11-JC, vco v+ _..,..-.-1 COM~-
INi C G.Q lt...l P\-\, pf:T. II-JP.

0\/'f

~,As - 1.- XR- 2 1,0
VCD V CC> 0. C.

~INE. "'EYtt-.lC. LOb1c IA>l
vco v- TU~€. lt...\l'\,T 0\11

iS 10

R.H

Z.,7K Rio
"35 K
M~li,c
~ D.1.

vco
OUT"PUi

Rq R8

i00'(5.-(
,.~; .. : ...

S,-ACE.
5 iiM AbT.

0

'---

ECS Vulume l No. 3 March 1975

FSK MOJ>EM +5 MOT'OR START

(4- 3 0 M -5-
~ H. 500K

._ _____ l\..l"IJt---~-----+-t (-_-~-----

TP2. b 9

FlLTE.R

+5

C3

~s
1K

PIN iq ~ +5
Ptt-J '1 : G'lb

3

TI.\T

A

+5

2

-'3-

NE555' 3 .JZJl ..._-5 m.
ECU,

!EL I

US(. 2
I
I

COM~

MC!
3

'+
!
I

I
I

NO I • 5

MOTOR. CO~TR.OL

lt..ELAV

TSI.

' E(~"

7

7
TEiil

n...---1~--u 5 "5 _l

F It. EQUl:JJC ~

SE LEC. T I09'l

CPU

LO~_A_

X
0

1

B
1
0

0

CPU .IN /0\)T

.Jvco
Sa

~S .. AC.&

)~-I(

TAPf.

M

•
T
0

(

C
1'

I!
l

11.lNt
:r3

ECS Volume l No. 3 -16- March 197 5

EC S - 8 MODEM DESIGN PARTS LIST ...

CO= .OJ mfd b3~e plus optional
trimminG as required.

Cl,C2, CJ= .0062 mfd (10% tol.)

c4 = JO mfd 10 volt electrolytic

c5,Cll = .01 mfd (20% tol.)

C6,C9 = 3 mfd, 25 volt electrolytic

C7,CB,Cl0,Cl2,Cl4 = .1 mfd SO volt

ClJ = .001 mfd 50 volt

Dl,D2,DJ,D4,D5 = silicon switching
diode, ln914 or equivalent

Jl,J2,JJ = RCA style phono jacks
for interconnect to tape recorder
via patch cords (optional.)

fl= DIP plug interface to ECS-6
I/0 sockets from modem terminals

Integrated Circuit Listing:

IC -1- XR-210 Phase Lock Loop
Modem Circuit

IC -2- 7426 Open Collector High
Voltage NAND Driver

IC -3- NE555 Ready De lay Timer

IC -4- 741 11 minid ip" op amp

IC -5- 741 "minidip 11 op amp

RO= 8.2K VCO gain

R 1 , R 11 , R 1 9 ~ l OK

R2,RJ,R17,Rl8 = 4.7K

R4,R5 ,R6 ,R 7 = LOK

RB SK space adjust pot

R9 = lOOK

RlO = JSK mark adjust pot

R12 = 2.7K

RlJ = 1.5K

Rl4, Rl6 = J.9K

Rl,S = 2.0K

R20 = 10 K output level pot

R21 = ,SOOK ready delay pot

R22 = 27K

R23 = lOK input level pot

S 1 = DPDT Test/CPU mode switch

S2 = SPST Test Data Switch

SJ= SPST Test Switch

s4 -- DPDT Tape Signal Routing

Kl=--= SPDT Miniature Peed Relay Tape The four test points in-
motor control. The prototype uses dicated in the diagram may be
a surplus Grigsby-Barton #GBJ1C-G2150 implemented with teflon feed
But any relay which will operate with thru insulated standoffs, or
a 6 to 10 volt potential and less than appropriate test prod jacks.
16 ma can be u3ed with the 7426 driver.

E CS C Volume 1 No. 3 -17 - March 1975

ERRATA CORRECTIONS FOR PREVIOUS ISSUES:

The following er rat a have been detected in the referenced is sues, and are noted
here for the record:

January 1975, page 4: The "NDBl" pin of the COM2502 UAR/Tis pin 38. The
TTY line's source is 16-4 not 14-4.

February 1975, page 13: The reference to 11 PCW" as the output of IC 14 pin 6
should have read "FCC". This error is also found in the text of the BANK
SELECTION LOGIC description on page 11.

----- - --

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL:

The IMP program is extended , as docUinented in this section, to handle an added
capability - the dumping of absolute binary data onto the tape interface for long term stor
age, followed by later recovery of that data. A co1nparison function is also incorpor
ated to allow the data written on tape to be checked against core data so that one will be

'~rtain of the veracity of the tape copies. The new functions added to the IMP program
are the following:

11 T 11
- this function is used to set IMPSTATE to a value of 3 so that a second letter

can be decoded as a two letter tape control sub-command. The two letter tape
control command sub-command combinations are Ii sted later on page \ 8.

"Shift W" - this conm1.and requires two keys to be depressed for safety, and is used
to invoke the data write utility. Pressing this key assUines that the program par
ameters of data count and a starting MEMADDR value been set up using the H, L,
TL and TH control commands of IMP. It also assumes that the tape recorder
has been set up in the "record" mode to receive data from the appropriate modem.
The channel/rate selections are also assumed, as defined by the TR and TU commands
to be described.

"Shift C" - this conunand requires two keys to be depressed for safety, and is used to
invoke the data comparison utility routine. It as sum es the same program setup as
the corresponding "Shift W" write operation which produced the block, and assUines
that the physical setup of the tape recorder is for a read operation.

"Shift R" - this command also requires two keys to prevent accidental activation. It
is used to invoke the data read utility, which is identical to the data comparison
utility with the exception that data is stored in appropriate memory addresses rather
than compared against the addresses.

ln addition to these direct extensions to the IMP command facility, the subconunands of
the 11 T 11 operation include the functions described on the next page.

ECS Volume 1 No. 3 -18- March 1975

The tape control subcommands are used to define the content of several RAM data
areas, display the content of these data areas, and to perform tape utility control actions.

"TB
11

- this command/ subcommand combination is used to display the current
content of the 16-bit tape block length count.

"TD" - this command/subcommand combination is used to display the current
con tent of the tape control word used for determining tape unit and rate.

''TF" - this command/subcommand combination is used to display the current
form.atting error count - errors in the three UAR/T status bits detected
during read and comparison operations.

"TH" - this command/ subcommand is used to transfer the current IMPENTR Y
value to the H portion of the block length count.

"TI" - this command/ subcommand is used to initialize the tape control parameters
of block count, error counts (format and comparison data), and control word.
All the control data is zeroed out.

"TL" this command/subcommand is used to transfer the current IMPENTRY value
to the L portion of the 16 bit block length count.

'
1TR" - this command/ subcommand is used to define the UAR/T rate portion of the

control word from the low order content of IMPENTR Y.

"TS" - this command/subcommand is the tape leader spacing command, and is
used to turn on the tape motor for a period of time (ten seconds) sufficient to
move the cassette position past the leader after a rewind. It invokes a routine
which us es timing loops to count approximately 2. 5 million 8008 CPU states
in terms of the structure of the counting subroutines and data used to call them.

"TU" - This command/ subcommand is used to define the control word unit as the
current two low order bits of IMPENTR Y.

"TX" - this command/subcommand is used after a comparison operation to display
the count of words read which differed from internal memory data (the count is
valid assuming a previous 11 TI" initialized the count data areas.

The decoding of these subcommands is done in a manner which is identical to that used for
the main set of IMP commands - the software extensions for the tape facility include a gen
eralization of the "IMPDECO" routine given in last month's issue to allow symbolic specif
ication of the command table address and the command branch target taken when a match
page address taken when a match is found.

One other change has been made in the previously published IMP program - the syinbol
table has been moved out of page O (bootstrap page in ECS systems) to reside at address
012/260 in the protected memory of the system software. This minimizes restart activ-

ity to the initialization of the first 1028 bytes of page O after the CPU has been powered down
for additional interfacing or other activities.

ECS VolunH.: 1 No. 3 -19 - March 1975

The first items to present in the course of redefining the sofhvare load to include exten
sions for tape interface functions are the changes in the IMP decoding algorithm. Basic
ally, the IMPDECO algorithm is made to begin with a SYM function call to define the
command table address. In current software, there are now two command tables - for
the IMPSTATE value of 2, the same codes are defined as in the previous case, but the
table is extended by four entries for the four new regular IMP commands. The second
command table is used for the IMPSTATE value of 3 (ie: following the "T" command)
to decode the second character of the two character tape control commands. In this
second corn1nand decode application, a different page for the command branch is also
required, thus the IMP "GOTFUNC'' routine must also be modified to provide this new
generality.

Because the decode routine has been generalized, it is now necessary to use a setup
procedure to define the parameters for IMPDECO. In this patched version of the IMP
software, a branch is made to "IMPSETUP" with a return to "IM PRESUME" when the
slate 2 decode is used. IMPSETUP is used to define the high order portion of the GOT-
FUNC branch address in DECOGO, and to setup the symbol for the state 2 command
table, IMPCMDS. IMPRESUME is the normal entry point to the decoding routine in
this new version. Note that a jump to Hv1PSETUP could also have been made from the
jump at location 020. Note also that the NOP' s and KEYW AIT at location 013 /02 3
have been replaced by a jump to location 010/000, the place where the setup for
an IMPST ATE value of 3 is executed, defining the 11 T 11 subcommand table instead of
the normal IMP table.

OlJ\023 = 104 JMP TSETUP IMPSETUP:
013\0:24 = 000 L 013\120 = 310 LBA
0 1 3 \0 :2:, = 010 H OlJ\121 ::I 006 LAl

013\122 = UJU s(DECOGO)
IMPGO: 013\123 ::: u ·,:, SYM

013\026 = 1U4 JMP IMPSETUP 013\124 :: 0 '/ 6 LMI
013 \027 = uw L 013\12:, ::: 013 h(IMP)
OlJ\030 = 013 H OlJ\126 :z UUo LAl

IMPRESUME:
013\1',n = OJ2 s(IMPCMDS)
013 \130 :a 10~ JMP IMPRESUME

013\031 :s 0 ., :, SYM lookup addr 013\131 • OJ 1 L
013\032 = 301 LAB restore chr. 013\132 a 013 H

Note that the IMPSETUP routine is located in a region of memory address space which
had formerly been occupied by the ''GOTFUNC'' routine (see last issue.) The GOTFUNC
routine has been moved to location 013/251 and modified to define the high order target
address from the data stored in the variable DECOGO, rather than the default page 013
in the original version. The address located at 013/035 must accordingly be changed
to 251 so that the new location of GOTFUNC will be reached from IMPDECO. The new
version of GOT FUNG is listed on the next page at the top.

Also at the top of page 20, right hand side, is a listing of the jump instructions which
are located in page 013 so that the new tape commands can be reached outside of page 013.

When the normal IMP decode occurs, it references a page 013 address - one of these
jmnps if one of the new corr1n1ands is detected.

Volume 1 No. 3 -20- March 1975

GOTFUNC:

013\251 = ObU INL
Here are the four jumps used to

013\2!:>2 = J4 ,, LEM reach outside page 013 when normal

013\2SJ = UU6 LAI point IMP decode finds read, write, compare
OlJ\~!:)4 :: UJU s(DECOGO) to DECOGO or "T" command characters ...
OlJ\2!:>!:) = 0'/5 SYM
UlJ\c~6 = 33 ·, LDM ((was LDI) WRITEJ: 013\JlU = 104 JMP WRITE

0 l 3 \2 !:) ·, = 106 CAL SETJMP 013\311 = L) 1 !:> L

UlJ\260 = 212 L OL.i\312 = 010 H
OlJ\261 = 013 H READJ: UlJ\dlJ = 104 JMP READ
OlJ\262 = 1 U6 CAL SYSSETUP 013\314 = 123 L
013\263 = 1 JS L OlJ\Jl!:) = 010 H
013\264 = 013 H COMPJ: 013\316 = 104 JMP COMPARE

OlJ\2b!:> = 104 JMP GPJMP 0 1 J \J l ·1 = l l 6 L

013\266 = U l !:> L 013\320 = 010 H

0 l 3 \26 ·, = ouo H TJ: 013\321 = 104 JMP TSETUP
013 \322 = 32!:> L
013\323 = 012 H

And here is the new command table at location 013/344, including the four new command
codes as well as all the old commands ...

IMPCMDS: 013 \344 = 227 "Shift W" 1---._ _ .
013\345 = 310 l(WRITEJ) J ~write comrnand (to tape)

013 , 34 7 = 316 l(COMPJ) compare tape to memory 013\346 = 203 "ShiftC" t==
O 13 \3!:>0 = 222 "Shift R" .
013 , 3 s 1 = 313 l(READJ) readtaperntomemory

013\352 = 324 l"(TT'J')} .__ _____________ initiate tape control state
013\353 = 321
013 \3!:>4 = 304 II D"

013\J!:>!:> = 240
013\3!:>6 = 305 ff£''
013\357 = l !:>6
013\360 = 313 "K"
013\361 = 221
013\362 = 314 tt L"
013\363 : 0 '/6
013\364 = 311 "I" this section of table is

013\36!:> = l!:>2 identical to the pre-

013\366 = 312 II J II viously printed version
013\Jb'I = l !JU but in page 013 instead.
0 1 J \j W = 316 11N 11

0 1 3 \3 ,, 1 = l !:>J
U 1 J \3 ,, 2 = G30 "Shift X"
0 1 3 \j ,, J = 200
013\:J'/4 = 310 ''H"
013\J'/!:> = 10 o
UlJ\J/6 = Jl'.:> l!MII

U l 3 \3 n = l l 2

There is one final modification of the old code which must be noted: the symbol table
has been n1oved from page O to page 012, location 260, for the same reason that the
regular IMP command table was moved. Thus word 000/071 of the SYM has to be changP-..J,
to 0128 and word O 00 / 07 3 of S YM must be changed to 26 0 8 to complete modifications.

ECS Volume 1 No. 3 - 21- March 1975

With the preliminaries completed, the next item of interest is the beginning of the list
of routines required to implement the new IMP functions. The first routine in address
sequence is the TSETUP routine used to fool IMPDECO into decoding via the "T" subcom
mand table T APECMDS for the fir st character following a "T". This occurs when
IMPST ATE is 3 following the "T" command ...

TSETUP: 010\00U = 310
UlU\OUl ;:; OOb
010\UOG = UUG
010\003 = O'/~
0 l U \004 = U '/6
OlU\005 = 002

t!t save thye character just read

s (IMPST ATE) change state for the next
SYM input character _by: referencing
LMI and redefining IM PST ATE
2 for normal code interpret after

010\006 = 006
010\UU'/ = 012

0 10 \0 l 0 = 0 ,, :,

LAI ~state 3 special
s (T APECMDS)
SYM point to tape command table

U l O \U 1 1 = JU l LAB ~ recover tape subcommand character
U 10 \0 12 = 104 JMP IMPDECO and jump to the new generalized
0 10 \0 l J = 033 L IMPDECO as if normal entry
0 l O \0 1 ~ ;:: UlJ H but with alternate comJTland table

If you look at this routine carefully - and observe its coordination with IMPDECO - see if
you can find a way to elin1inate 2 bytes and thus compactify the software ... such an im
provement is possible.

When the IMPDECO routine was entered in the normal "2" IMPST ATE, a write command
!IShift W 11 might have been decoded. If so, the WRITE thing to do is to branch to WRITEJ
in page 013, and thence to this little wroutine ...

WRITE: 0 l U \U l :> = 006 LAI V fir st thing in writing - to tape, not
0 l O \0 1 6 = 014 s(T APECTRL) nee es sarily for publication - is
U 1 U \U l ·1 = 075 SYM to reference the command word
0 l O \0 20 = 30 ·, LAM set up by TR/TU commands,
0 10\021 :: 044 NDI ~ then extract the rate /unit bits,
010\022 = 3'/4 11 111 100
0 l O \0G3 = Ob4 ORI ~and superimpose output select ..•
U 10 \024 = 00;2 00 000 010
U l O \U2!:> = 3W LMA the new corrunand code is good for
010\026 = l l 1 IN4 this I/O to control logic & later •.
010\02'/ = lOb CAL W AITOUT r go wait for the proper TBMT /TEOC
010 \0 JO = 14 ·, L and RDY flags to indicate that the

U l U \0 31 = U 1 i2 H motor start is done ..•

010\032 :z lOb CAL OUTCOUNTrgo wait "x" milliseconds more and
0 l O \OJJ = 200 L th en write out a 16- bit data count

010 \034 = Ole H
010\03:> = 006 LAI ~define a temporary copy of the

0 l O \0 36 = 016 s(TCOUNT) block data count by referencing
0 l U \0 J'/ = u ,, !:> SYM its location then copying data

01 U \040 = J '/1 LMB prepared by OUTCOUNT from

0 l U \0 41 = U6U INL CPU registers B and C to
U 10 \042 = j ., 2 LMC storage reserved for TCOUNT

0 l O \04J = Ulb LBI ~ then define a 10 centisecond wait
010 \.044 = 012 1010
0 l U \U4 ~ = 106 CAL WAITCS yinterval, then wait it out before
UlU\U4b = l lb L commencing the main data

0 1 U \04 ., = 01:2 H block.

ECS Volume i\"o. 3 -22- March 19,5

The writing of data onto the tape inunediately brings to mind tht' question of the data
fonndt. The basic data format in1plied for this proi:rarn can be stated explicitly: a block/-'
of data consists of (on output) a leader of (nominal) 2 seconds while the n1otor gets up

to speed, followed by an additional delay for output of 1 'x" seconds to allow "slopt1 in
tape positioning on input, followed by two characters containing the block count, then a
delay of . 1 seconds then the actual data bytes, followed by another "x" second delay and
a repeat of the block count for verification. The block is closed out n1echanically by
turning off the motor after a final delay of 2 seconds. As a tentative value of "x" for
this software, I have used. 1 seconds - although I it is not yet obvious that this is the
best value. I chose a delay between the count words and the actual data block for the

following reason: when listening by ear to the data, a characteristic rhythm pattern is
heard at the start of the block - a single blip of data followed by the actual block. This
gives an indication - roughly - that the data is likely to be in the right format. A further
reason is to allow easy detection of the block start and end when scanning the tape fast
using a tape recorder with "cue" and "review" controls such as the Superscope model

mentioned.

The code of page 21 has gotten the output operation down to a point where the start of
a block has completed and the program is now ready to output the main sequence of data

of interest. ..

OUT LOOP: 0 10 \0 ~CJ =
0 10 \U ~ 1 =
0 10 \U :>2 =
010\0~3 =
010\0:>4 =
010\0~:) =
010 \0 j6 =
0 1 U \U ~ ·1 =
0 l O \U 60 =
0 1 0 \0 bl =
010 \U 62 =
01 U \U63 =
010\064 =
0 10\06 :> =
010\066 =
0 l O \0 6 ·1 =
0 l O \0 ·rn =
U 1 U \0 ·, 1 =
010,0·,2 =
U l U \U ·1 J =
0 l O \0 ·14 =
0 10 \0 ·1 ~ =
U l O \U 16 =
U l O \U I ·1 =
UlU\100 =
UlU\lUl =
UlO\lU2 =

l 06
l LU

012
106
uuo
012
JO'/
1 l J
106
164
013
307
l ·1 ~
060
30 .,
1 •, r/

006
016
106
1J2
012
14U
1 U J

UlO
104
u~o
010

CAL W AITOUTjdo not procede any further until the
L flags have been cleared by UAR/T
H and it is ready for output. ..
CAL ATMEMA to find out what the current MEMADDR
L is by loading it in H/ L {")
H

LAM ~go fetch the current byte
IN5 (true code)j so that it can be sent to tape
CAL lNCMAr- not an ancient andean indian, but
L the routine in-crements the
H value of MEMADDR

LAM] - fetch the next byte
OUT36 and display it ...
INL }- ---- and increment address LO
LAM and fetch next 1 byte
OUT37 ~and display it too ...
LAI L
s(TCOUNT) J ~point to data count

CAL D2B rthen decrement the count
L temporary TCOUNT
H
JTC ENDOUTr zresult of zcountdown determines
L what will happen ...
H
JMP OUTLOOP
L
H

if the carry was false, underflow
ha s not o c c u r r ed, so the b 1 o c k
is not ::ione - reiterate it!

Now in every instance except the last, the jump true carry at 010/075 will fail, causing

routine tu loop back for the next byte of the block being dun1ped. Finally, the carry wilL~
;-;ct to 1 by D2B, ca11sing execution to flow to ENDOUT, listed at the top of page 23.

ECS Volume l No. 3 -23- March 197 5

ENDOUT: 010\lOJ :::: l U 6
010\104 = cUO
UlU\lU:, :;: 012
OlU\106 = 016
0 l O \ 10 ·1 = .J l U
UlU\110 = lOb
010\111 = 1 l 6
010\l lc = 012

CAL OUTCOUNT} at end of block, write the count
L again for confirmation ...
H

2~~to ythen set up for
CAL WAITCS a 200 centisecond (2 sec)
L
H block trailer interval. ..

010\llJ = 2:>U XRA ~clear accumulator
OlU\l 11➔ = 1 l 1 1N4 and output null code to tape units.
UlU\ll:> = 0 2:, KEY WAIT ..,. having completed the output, back to

IMP command interpreter ...

The following routine is accessed by the tape control comn1and "TS" and is used to

::.,pace the tape a fixed interval after rewinding and setting up for forward rr1otion.

LEADER: U l0\2ri2 =
010\2'/J =
010\2'/4 :c

010\2'/:, =
010\2'/6 =
o 1 o \c'/'7 =
010\300 =
010\301 =
010\302 =
010\303 =
010\304 =

2:>0
1 1 1
006
014
0 ·,:,

JO I
064
002
l 1 1
0:>6
012

XRA ')__.._..clear the accumulator so that
IN4 5 a momentary null code can be output to
Llu -~he tape controller ...
s (T APECTRL) then point to the tape control
SYM - word via SYM mechanisms ...
LAM ~load the accumulator with the selection
ORl -----.-then force "output select" onto whatever
00 000 010 rate/channel had been selected ...
IN4 -~ then output the command code, turning on
LHI (__ the motor ...
1010 ~set up for 10 second leader delay (adjust this

constant to suit your tastes ...)

The H register is thus used as a temporary count for the number of seconds of delay 1n
the leader, serving to cycle the following leader delay loop ...

LDELAY: 010\30:, = 016 LBI ythe inner loop of leader delay is a 1 second
010\306 = 144 10010 delay programmed by the W AITCS routine ...
0 l O \30 ·, :c; 106 CAL WAITCS called to delay a total of
010\JlO = l l 6 L 100 centiseconds as programmed
010\Jll = 012 H by the value in B on entry
Ol0\3lc = 0 ::> 1 DCH ---...after the inner loop delay, decrement the
OlU\Jl3 = l 10 JFZ LDELAY ~ the seconds counter (H register)
010\314 = JO':> L and branch back if needed ...
010 \31 5 == 010 H -
010\Jlb = 2~0 XRA?~clear the accumulator ...
U l U \ 3 1 ~, = 1 l 1 IN4 -----then output the turn off (null) code ...
UlU\J20 = 02':) KEYWAJT -~ and back to keyboard interpreter ...

The next routine to be listed is a service routine which is activate by "TH" and is

used by IMP to set the H portion of the tape block count working storage ...

COUNTH: UlO\Jcl = 006
LAl ~ OlU\32c = 022 s (COUNT) point to block count via SYM

010\jc;j = u ., ':) SYM _

UlU\Jc/4 = 3 ·1 l LMB ~then define H portion fron1 last entry, 1 e ft in
OllJ\Jc~ = l U 4 JMP EXAMINE ~the B register by GOTFUNC ...
UlU\J26 = l ~6 L then go to EXAlvtlNE in IMP proper
OlU\JG'/ = OlJ H in order to output the count. ..

ECS Volume 1 No. 3 - 24- March 197 5

A similar routine is used to perform the same function for the L portion of the block count
when invoked by the "TL" command to transfer IMPENTR Y to the count' s low order.

COUNTL: 010 \JJO = 006
LAI }--010\JJl = 022 s (COUNT) point to block count (length}

010\JJ2 = 0 ·, ~ SYM
010\JJJ = U6U INL -----.increment to look at low order ...
Ul0\334 = 3'/1 LMB ----...._and load the low order from entry
010\J.35 = 061 DCL ~and look again at start of COUNT
010\336 = 104 JMP EXAMINE~
010 \jj'/ = 1 :> 6 L and jump to EXAMINE it
010\340 = 013 H via the IMP routine ...

The next section of code consists of two utility functions for display of tape control
data, "DSPLYCTRL" invoked by the "TD" command and "DSPLYBLK" invoked by the

"TB II command ...

DSPLYCTRL: UlU\341 = 006
010\342 = 014
010\343 = U ,, 5

;(~ APECTRL)}-- first point to tape control
SYM word via SYM mechanism ...

010\344 = JO ·1 LAM------+ then fetch T APECTRL ...
Ol0\J4j = 1 ,, S

010\346 = 250
Ol0\34r/ = 1 ,, ,,

OUT36 ~ and output to display
XRA} . OUT

37
clear the other display to all zeros ...

010\JjO = 025 KEY WAIT ~and back to IMP as usual. ..

The following routine displays the block count in the two display lamp sets ...

DSPLYBLK: 010\351 = 006
010\352 = 022

LAI
s(COUNT)

This label identifies shared code to execuite(sic) SYM and go to EXAMINE of IMP ...

GOEXAM: 010\353 =
010\J:,4 =
010\355 =
010\356 =

0 ·, j
104
lj6
013

SYM
JMP EXAMINE
L
H

The next set of code is a utility routine "ATMEMA" which is called at several places
in the tape control extensions (and later software to be published soon) in order to place

the current content of MEMADDR into the Land H registers - pointing AT MEMA. • •

ATMEMA: 012\000 = OU6
LAI ~ 012'\001 = 006 s (MEMADDR) point to MEMADDR

0 l 2 \002 = U ., 5 SYM
0 12 \003 = JU ·1 LAM-----put H part of MEMADDR into A temporarily
012\004 = 060 INL to point to the L part of MEMADDR
0 1 2 \U O :> = 36 ·, LLM -.which enables the L result to be defined ...
012'\006 = 35U LHA~after which the H result can be loaded from A
0 1 2 \OU·, = OU·, RET ~ and it is now safe to return to caller.

The tape utility cornmands "TR" and "TU" are used to set the "rate" and "channel"
sections of the ECS-6 tape interface control word respectively. The next page lists the
service routines for these commands. ''RATE" is reached when the alternate commanc.
table decodes an t1R 11 following the "T" . "CHANNEL" is reached similarly when the
character 1ru1r follows a irT". In either (,._-e, the current IMPENTRY low order

data is used to define the corresponding field' f TAPECTRL.

ECS v() l ttnH· Nu. 3 -2S- March lW,5

RATE: Ulc\.UlU UUt>

U l c:: \U l l Ul4
U l c \.U l 2 = u ·,:,

;(jAPECTRL)L - point to the T APECTRL word
SYM) --

U 12\01 j = ju·, LAM-----.... and fetch the old control value first. ...
U l c \0 l 4 ;::: 044
U 1 c \U l '.J = U 1 ·,

NDI ~save all excPpt old rate by
0000 1111) "anding" with a mask ...

U 1 c \U lb = J ·,u LMA~and temporarily save back in T APECTRL
U l c \0 l ·1 = JU l
Ulc\U2U ;::: Ul~

LAB ~so that IMPENTR Y copy. can be fetched to A
XCHG J and exchanged to high order (see ECS

Ulc\Ucl = U44
u l G \Ucc J6U

NDI ~ Vl#l p. 20)
llll 0000 j ~ clear extraneous lMPENTR Y stuff. ..

Thit:; label identifies corr1mon code of RATE and CHANNEL used for recon1binations ...

NEWCTRL: U l c\Oc::J = cb ·1 ORM ~ move saved portion of T APECTRL into aligned
Ulc\Uc4 == j ,, 0 LMA set of new bits and save it again ...
o 1 c\Ucj = 104 JMP DSPLYCTRf
U l c \U 26 = J4l L and go show off the results of this
0 1 c \0 c ,, = 010 H shifty n1an eu vcr ...

The channel routine is analogous to RATE, but zaps new stuff into different bits.

CHANNEL: Ulc\UJU = 006
LAI >}--0 l c \U J l = 014 s(TAPECTRL) _,,_ point to TAPECTRL word

0 1 2 \U Jc = 0 ,, :> SYM
U 1 c \0 J J = JU-, LAM and fetch the old content. ..
Ulc\UJ4 = 044 NDI as with RATE, save all bits except channel bits
0 1 c \0 J '.J = J6J 1111 00 1 1 by "anding" with mask ...
U 1 c \0 J6 = J ·,u LMA then stuff it back into men10ry temporarily
U 12\0J'/ Jul LAB and turn attention to IMPENTRY copy
U l c\U40 = U 44 NDI (-'(which must be first
Olc\U4l == OOJ 0000 0011 __, masked to get rid of high order junmk
0 l 2\04c = OUc RAL ~ then shifted left into the right position
0 l 2\04J = 002 RAL within the word. . .
0 1 2 \044 = 104 JMPrafter which the same cornbinin[(maneuver
0 12 \U4 j = 02J L is used as for the RATE case ...
012\046 = Ole H

The software control structure used to define the tape block format references the fol-
lowing routine several times. WAlTCS accepts a parameter in the B register whi:h
specifies the number of non1.inal 10 millisecond wait intervals (centiseconds) required ...

WAITCS: OlG\l 16
U 1 2 \ 1 l ·, =

The tin1i ng loop here is not

WCSLOOP: Ul2\l2U
012\lcl
Ul2\l2c

Ul2\lcJ =
Ulc'.\124 =
012\L:;:)
Ulc\lc::6
U l c \ l c ·1

Ul2\lJO =
Ulc\lJl

026
14 '/

quite

Ll 2 l
JU ·1

l 1 U

lc::U
Ulc

U 1 l
1 1 0

l 1 b

Ul2
uu ,,

oa an inner oop (:ount which LCI \ 1 d . 1 .
10310 approximates a 10 millisecond delay ...

10 n1.illiseconds with the above constant!

DCC decrement the delay count
LAM - this is a long (8 state) NOP ...

JFZ WCSLOOJ
L the inner loop rcitPratcs for a total of
H 24 states per cycle (except last one)

DCB decrcn1ent preloaded outer loop count
JFZ WAlTCSr-nd if any ccntil·scconds rcrnain to be
L counted, go back to wait son1e mo; c.
H

RE T o th c r w i s c r ct u r n a ft c r a n a ppr o xi n1 at e 1 y c o r r e ct

WAJT interval. .. ins1c·rt curnpensat1on here if
want di,uital <..'lock ac, ur:i, y .

ECS V<> 11 ln1c 1

Another WAIT flmL·tiun r{·quired for c'oordination 1 s the WAI TOUT routine. Here the
obied is tu c·cntralizc the instr11cti()ns required for tl·sting the status bits v.-hc11 output is
\Jcinc dune tu unc of the ECS-ti controller 1 s channels. Nute thcJ.t this routine it:i general,

only requirct:i that TAPECTRL be initialized prior to entry. The analogous routine in the
previously published ELDUMPO prograrn is at locations 011/217 to 011/235 and could be
potentially consolidated by a CAL WAITOUT if ELDUMPO is re-written to use the SYM
rnechanit:im. A characteristic of software written without auton1ated assen1bly and com-

pilation aids is the price in tin1e paid to modify routines - thus the point is acaden1ic at
the present time.

WAI TOUT: Ul2\.l4/ =
U 1 2 \. l :>U =
Ul2\.l:>l =
012\l:>c =
012\.l::d =
012\.l'.::>4
012\1:,:, =
Ulc\.1:,6 =
Ulc\l'::d =
012\.160 =
Ul2\lbl ==
012\lb2 =
Ul2\l63 =

006
014
u ·, '.:)
j(.)'/

1 1 l
044
130
0·14

lJU
1 1 0
14 ,,

012
0 1 .,

~(~ APECTRL) -h point to control word
SYM j ~
LAM and fetch it to A ...
IN4 and peruse the status bitz ...
NDI 7_
0l 0ll 000j and isolate RDY, TBMT and TEOC

CPI ~ and test for all in proper state ...
01 0ll 0000 of readyness ...
JF Z W AITOUTrand loop around ad infinitun1 if
L not ready to return ...
H
RET (middle digit is a mistake, but the RET instruc-

t
''c!.o.,t CllY"e ''

tion spec sez "don't care" - so why bother to
change it at this point?

The next routine to be listed in this issue is the 11OUTCOUNT 1
' routine used to dun1p

the 16-bit block data count onto the tape after waiting 11 x 11 centiseconds, where ' 1x 11

is here con1piled as 10. This effectively allows a 1/10 second error in the positioning
of a tape block relative to the end of the la st previous block - sine e reading operations
will wait 2. 0 seconds from motor startup and writing will wait 2. 1 seconds. In order to
avoid missing data, the read 11 listening" must begin prior to the commencing of actual

data bytes .

OUTCOUNT: Ul2\cUL =
Ul2\2Ul =
Ulc\202 =
Ul2\2LJJ ==
Ul2\2U4
Ulc\~U:> =
012,2uti
U 1 c \cU ·, =
Ul2\21U ==
Ulc\211 =
Ul2\U2 =
Ulc\2lj

0 1 2 \ c l '• =
Ulc\21:> =
Ul2\c~l6 =
U l c \ 2 l '/ =

Ul6
Ulc
106

1 l 6
Ulc
OU6
U22
0 ,, ~

JU'
JlU

1 1 J
U bU
jl) I

J~U
l l J

uu'

LBI {,,?"""'"setup the ' 1x" second wait with
1010) "x" equal to . 100 second (10 centiseconds)
CAL WAITCS~ t _J with the setup, go waitonit

LAI }---
s(COUNT) setup for I/O by pointing to COUNT
SYM
LAM ---------fetch high ordc r of count to A
LB A ~s av c it for 1 ate r us e in B
IN5~and then send it out as the first byte of data ...
INL~point to low order
LAM and fetch it to A
LCA
INS
RET

but save it in C
before zapping A with the output side

of IN5 and returning.

="Jote that this routine al:-;o has a hidden extra function 1n its definition of the

content of B and C as the hiuh and low order block count for later usf'.

ECS Volume No. 3 -27 - March 1Y75

Th e n c xt s c gm en t of th c IMP ext en s i on s i s t h c r o u ti n c a c c e s s e d by th e II TI II c o n1 n1 and
of the extended prograrr1. ..

INITIAL: Olc\2c0 =
012,221 =
012,2cc =
u12,2cJ =
Olc\224 =

I NI LOOP: Olc\G2'::J =
012\226 =
012\22'/ =
012\230 =
012\cJl =
Ul2\2Jc =
Ol2\2JJ
012\2J4 =
Ul2\2J'::J =
012\236 =
012\23'/ =

006
014
u ·, '::J

Ul6
Ul2
0 '/6
000
060
0 l l
l l 0
22'::J
012
006
000
l 1 l
02~

~t~ APECTRL) L ~ point to first data byte ...
SYM s ~
LBI 1_....data count for initialization by crude method of
10 J zapping 10 bytes in a row ...
LMit _ by immediate n1ovement of
0 _J zero to the memory location ...
INL increment the memory address pointer

DCB and deer ement the count. ..
&FZ INILOOP} back for more until done

LAI} three brownie points .and a pat on the back if
0 the reader can figure out a better way to
IN4 clear A for the 1/0 control word reset. ..
KEYWAIT

This initialization takes advantage of the fact that all the tape spe1._·ific data is located in
addresses 200 to 211 8 and can thus be zapped as a block ... without separate syrnbolic ref
erences.

Then comes a bunch of miscellaneous jumps from page 012 to page 010 for the new
~ ubcommands. . . due to IMPDECO' s single-page orientation ...

JLEADER: 012\240 = 104 JMP LEADER - this jump is used to get out of page
012\241 = 2 ., 2 L 0123 after 11 TS" c o mma n d i s de c oded by the
012\242 = 010 H IMPDECO routine as modified ...

J DSPLYBLK: 012\243 = 104 JMP DSPLYBLK - same here for II TB" con1mand ...
012\244 = J ~ l rr~- - if 8008 were decent would be correct
012\24~ = 010

oops

J DSPLYC TRL: O 12\246 = 104 JMP DSPLYCTRL - same here for "TD" ...
0 l 2 \24 '/ = 341 L
012\2'::JO = 010 H

JCOUNTL: 012\2'::Jl = 104 JMP COUNTL - same comment for "TL" ...
Ol2\2'::J2 = 330 L
Ol2\2~J = 010 H

JCOUNTH: 0 l 2\2'::J4 = 104 JMP COUNTH - same for "TH"
012\2~'::J = 321 L
012\2~6 = 010 H

The following lS inserted out of sequence for editorial reasons ... it fits.

TSETUP: 012\32~ = UU6
Ulc\Jcb = uu~
012\32'/ = u·, j

012\JJO = 0 ., 6
Ul2\JJ1 = uo j

LAl 11 In order to setup IMP for a second
s(IMPST ATE) character to follow the "T 11 command,
SYM the IM PST ATE value must be set to 3
LMI to force the alternate decoding of the
3 _ next character in the strf'am.

Ul2\JJ2 = UUb
Ul2\JJj UJO
Ulc\JJ~ = 0 / '.)

012\jj~ U '/b

LAI r~ Must also point to the word which
s(DECOGO) holds the "GOTFUNC" high order
SYM address and load that word with the
LMI (non symbolic) H address of the tape

Ulc\JJ6 Ulc h(TAPECMDS) subcommand table ...
U 1 c: \ J J -, lJ c :> KEYWAIT Then return - as always to the

IMP keyboard wait routine ...

ECS Volwne l No. 3 - 28 -

This issue condudes with the new syrnbol table for IMP and tlw I M p t a I> c c o n:1 n 1 a n d ta b 1 e o f th c
e x t t' n s it> n s . . .

SYMBOLS: Ulc\c:bU Ulc~

TAPECMDS:

Ulc:\c:bl
Ulc:\262

Ul2\26J

U l 2 \264

Ulc\26:)

Ul2\266
Ul2\c(d

U 1 c \2'/lJ

U 1 2 \ c '/ l
012\2/c.
U 1 2 \2 rl J
Ul2\c'/4
012\2'/:)
Olc\2'/6
o 1 2 \c ·, ·,
012\300
012\301
012\302
012\j(JJ

Ul2\3U4
012\JOj
Olc\306
U 1 2 \JO·,
Ul2\31U
Ul2\3l 1
Ul2\312
U 1 2 \j 1 J
012\314
012\Jl:)

=
=
=
=
=
=

=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=

2bU

uuu
UUJ
uuu
UU4

uuu
OUb
000
016
012
Jj4

000
2UO
uuo
2U 1
000
203

uoo
204

000
206
000
21U
uuu
212
UlJ
344
012
j :)4

012\3:)4 = JJU

012\j:J:) = 0:)4

012\3:::>6 = 306
012\jj'/ = 04'/

- "00" is syn1bol table self-pointer

- 11 02" is IMPSTATE

- "04" is IMPENTRY

- "0() 11 is MEMADDR

- "10 1
' is GPJMPMA

- "12" is TCMDS

- "14" is TCTRL

- "16" is TCOlNT

- "20" is INOPS

- 11 22 1
' is COUNT

- "24" is BADDATA

- "26" is BADFORM

- r13011 is DECOGO 1
- "32" is IMPCMDS

113411 is TAPECMDS

l(EDATAD)
-Input errors in data display ...

"F"
l(EFORMATD) - Input errors in format display ...

1(I NI TI AL) Tap e d at a in it i a li z a ti on r O u ti n e . . .

I! S"
l(JLEADER) Tape leader routine

!I B"
1 (J DS p Ly B LK) - Tape h 1 o ck s i z c di s p 1 a y.

II D!I

1(JDSPLYCTRL) -
Tape control word display ...

II L"
l(JCOUNTL) - Low order block length setter ...

"H II

Ulc\360 = 311
012\361 = 22U

012\362 = 323
012\363 = 240
012\364 = JU2
012\36:> = 243
Ul2\J66 = JU4

012\.Jb'/ = 246
U l 2 \ 3 ·; 0 = J 1 4

012\3'/l = 2~1
0 1 2 \ 3 rl 2 = 3 1 0
012\j'/j = 2:)4

Ul2\Jt4 = 3cc.
U 1 2 \ j ·; :::i = U l U

l(JCOUNTH) - High order block length setter ...

II R II
l(RATE) - Rate setter (not n10nopoly bureaucrat)

Ul2\Jt6 Jc:~
U 1 c: \ J ·1 ·1 = (J .Ju

ff U II

l(CHANNEL)
- Channel setter

As notc·d in the introduction, the tape cuntrol softwc1rc is unh· partialh·

1 i st (·cl i n th i :-; i s s \l c du c to s pa c c ,. -on ::; 1 d c r :,. t i u n Th c r, ;-n a i n d t, r "': i 11 b t • , ·on w

a rnai()r portion (jf the April ~ss11e 'Jf FCS ...

·01

EC: S - The Month1y Magazine of Ideas 1,H the MICROCOMPUTER EXPERIMENTER

:\lvws I<: Notes to accornpany Volurne 1, No. 3 - March 1975.

written on curnplet1on of the µresent issue ...

Some nri dni ght madness

THE DEMISE OF MICROSYSTEMS INTERNATIONAL: Current issues of eh·ctronic trade

publications report the demise of Intel's 8008 and t3080 second source, Microsysten1s

I n t l, r n a ti u n a 1 . Th i s Can ad i an f i r n1 i. s w i th d r awing fr o rn a 11 IC bu s in e s s d 11 e to a 1 a ck of

profits -- a necessary ir_put to any durable enterprise.

RISE OJ, .t\ 0JE\V CPU'? General Instrun1entation and Honeywell have corr1e up with a new

'
1 CP-lt)on· 1 lt,-hit single chip corr!puter reportedly 5 tirr1es faster than another recent lo

hit annott1H·cnH•11t by ".\Jabonal. The EE Tin1es note had a price rep()rted as $2.~,0 for just

01w, with nu inforrnation on when the part wonld be available.

v\A'.\fl' TO SEE \.VHAT TEXAS INSTRUMENTS has to say about microprocessors'_) April

1 to lK, nationwide, Tl is sponsoring 4 half-hour TV lectures on the suLjcct earl:,· 1n

Uw n1orni n_~. I can't print the entire schedule of stations, but intcreste<l rea<lers mi~ht

l u u k up a 1 o c a l TI o r di s t r i hut o r rn nn b e r i n th e Y e 11 ow pa g e s an cl in qui r e - i f you don I t a l r ea d v
have the info rn1ation frorn trade publi('ations.

REGARDING FLOPPY DISKS: Don Whitehead (980 New Haven Avenue, Milford. Conncc

ti,ut) \.vill Lt· running the floppy disk pooled purchase prevjously announced. Write hirn for

cc1n1p1(~te details. A surnn1ary is as follows: Drives will be the new l\!len1orex

rn:.Jdel (C>ri:~inal 1nechanic:a1 desi~n with late user-oriented electronics). Price for the

drive \t.:ill he $57S assuming 11 orders total by the appropriate deadline, $100 if less than

11 units art· purchased. A $150 deposit will be required pending the 11-unit order deadline

- or if V(J\t can not wait, tht:' single unit price can be used to get the fastest possible turn

anrnnd fur the order. The price will include shipping to continental USA. A n1anufac

turcr1 s do, un1cntation package of -1 books is $12 extra, and a recornn1ended package is

th c rna nufac tu re r 1 s support kit: including 10 disk cartridges, the doc Ufftenta tion package,

a test cartridge, and cleaning kit for a pr-ice in the $150-170 range, above the drive cost

alone. As previously announced, if the drive deal goes through, M. P. Publishing Co.

v,,ill provide an interface article. One final point - once 11 orders are reached, the

offering will be extended indefinitely - but it requires serious individuals to act very

soon to as sure the first order needed to begin the 1'OEM 11 pricing operation.

SOFTWARE FOR SALE: With the availability of the ECS-8 PC card (layout and price to

be in April's issue) tapes of ECS 8008 soft\\,are will be made available beginning with the

IMP prograrn. Price for a BASF C15 Cassette & Mailer with IMP recorded redundantly

1 ~ $ 1 . 5 0. Lat c r v c r s ion s i n c o r po rating improvement s in th e pro g r a n1 w i 11 be av a i 1 ab 1 e

tu p re v i o u s p u r ch a s e r s on a c a s s e tt e - r e c y c ling b a s i s for $ 2 . 5 0 . Fi r s t 1__' 1 a s s ma i 1

is part of the price - with extra postage required for airmail or overseas purchasers.

Tapes Vv'ill be recorded in binary image format using the ECS-8 type of rr1odem, fron1

the workrn1-2 software in the ECS K008 prototype systen1.

WA~T TO BLOW YOUR OV/N HORN? As a new feature, subscribers' descriptions of

their own Experimenter 1 s Computer SystefflS (not necessarily the M. P. <lesigns,

lntPl CPU's or other fixed restraints on hardware) are solicited. Write it up rn a few

paL:c-; , covering the systerr, design, unique features, problems you have encountered,

t~ t c· • 0 h ye s , w h i 1 e it w on ' t ma k e y o u r j ch , th er e i s a r o ya 1t y o f 1 0 er~ o n o f s a 1 e s pr o -

r at c d b y th e fr a c t ion of s pa c e de v o t e d to th e a rt i c 1 e in each i s s u c , pay ab 1 e in an i nit i al

lump basf'd on current circula.tion with residuals thereafter ...

CTH March 13 1975

M. P. Publishing Co. Box 378

ECS
Publisher's Introduction:

Belmont, Mass. 02178 Vol. 1 No. 4 April '75

THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERJMENTER

Here you have the April 1975 issue of ECS, complete and unexpurgated. The main
theme of this issue is the introduction of the "SIRIUS-MP" la~guage as a notational form
for expressing programs. The idea of SIRIUS-MP is to slightly generalize the low
level code approach to program notation so that it will be fairly expedient for subscribers
to hand "cross compile" programs on whatever variation of the "home brew computer"
concept they have irnpletnented. The variations on this theme include •••

1. The SIRIUS-MP Language... This article, beginning on page 2, is a first
statement in these pages of some of the concepts involved in the language.
It also provides information useful in understanding the several SIRIUS examples
found in this is sue.

2. BOOTER: An "Emergency" Bootstrap Loader. • • It is conunon knowledge
what to "do when the lights go out. " But what do you do after the lights go out
when your computer and volatile software were on the same power source as
the lights? Turn to page 11 for a description of an emergency bootstrap loader
concocted one weekend to combat electron deficiency anemia.

3. IMP Extensions For Tape Interface Control (Continued •••) In the last issue,
I did not quite fit all I intended to print within the confines of 28 pages. The re
mam1ng segments of the tape interface are presented in a SIRIUS fashion along
with the equivalent 8008 code, beginning on page 14.

4. Comments on the ECS-8 Design: Turn to page 19 for a short note on one
aspect of the ECS-8 design which I should have pointed out in the March article,
and was the source of a complaint from my brother Peter Helmers.

5. Notes on NAVIGATION IN THE VICINITY OF (X-AQUILA ... #1. So, you
went out and got your self an Altair computer? Now what? Turn to page 20 for
the fir st in a continuing series of articles on the use and abuse of the Intel 8080
instruction set in an ECS context - with occasional intermingled information on
hardware interfaces to be supplied from time to time (but not this time however.)

6. Erratum: Turn to page 24 for a sh::>rt note about an ECS-7 diagram error.

7. A Note Concerning The Motorola 6800 MPU: Also on page 24 is a short note
concerning the use of the M6800 in an ECS context, now possible to contemplate
on a practical basis in the near future.

This is sue is going to press April 21 1975. The next issue is fairly well defined as of
this date, and will include: an article by subscriber James Hogenson concerning the
design of a unique oscilliscope graphics interface featuring a 4096 point (64 x 64 grid)
matrix of spot locations; a continuation of the software discussions begun in this issue;
and possibly a review of one or two tools which will be of interest to readers.

~'J,1~,t.
Carl T. Helmers, ifir.
Publisher April 20 1975

@ 197 5 M. P. Publishing Co. All Rights Reserved.

ECS Volume 1 No. 4 2 April 1975

The SIRIUS-MP Language ...

an approach to machine independent low level code.

This issue begins a subject which will continue in the pages
of EC Sfor some time to come: the subject of expressing pro
grams in a fairly well defined low level "language" which is in
principle independent of any particular microprocessor or other
small computer you might have. This will facilitate your use
of published programs written for an 8080 if you own an IMP-16,
or programs written for 8008 if you own an M6800, etc. - pro
vided the programs in question are expressed in the SIRlUS way.

The name I have chosen for this language is 11SIR1US-MP".
The SIRIUS is a combination of an April pun and the following
input: if Altair is the brightest star (visual magnitude) in the
constellation Aquila, then let me modestly name this mode of
program expression after the brightest star in the sky, the
star 0(-Canis Major or SIRIUS. So, if you are SIRIUS about
Altair (or other computers available inexpensively both now and
in the near future) you will find this series of articles illumin
ating. So much for the advertisement now to turn to some
information content ..•.

WHAT IS A COMPUTER LANGUAGE?

The answer to this question (as is always the case with complicated subjects) can
range from the superficial to the formal mathematical intricacies of compiler-writing
and language design. Since this publication is not a technical journal on software eng
ineering, it must necessarily leave out a lot of the detailed information on the subject,
to concentrate on the application of the concept. (Upon sufficient interest - one inquiry
I'll spend an evening sometime and compile a bibleography on the subject of compilers
and computer languages.) With this disclaimer I'll proceed to the subject of computer
languages in the context of a home brew microcomputer system.

Starting from first principles, what is a 11 language 11 (eg: English, German, Pidgin,
integral calculus, set theory) in general? I'll confine the subject arbitrarily to the
concept of "written languages'' and put forth the following formulation:

A LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE OF
EXPRESSING THOUGHTS.

This definition is filled with implications: language is an invented technology (probably
the first) of humans (or other critters.) language is utilized in communicating thoughts
between individuals. Language is appropriate to thinking beings. Now what could
this possibly have to do with your urge to program and use a microcomputer ?

ECS Volwne 1 No. 4. 3 April 1975

A fair amount of course! The specific application of the language concept to the
problem of programming a co1nputer is the concept of a "programming language."
The s peci fie part of this application is the limiting of computer languages to certain
c lasses of thoughts •••

A COMPUTER LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE
OF EXPRESSING COMPUTER PROGRAMS.

Just as there are nUillerous variations on the "natural language" concept (Eg: ENGLISH),
the diversity of human thought has lead to a wide range of computer languages from the
most general to the specific and application oriented. In each such language, the
author(s) have selected a set of elements needed to solve the pa'rticular problem and
combined these in a (more or less) self consistent manner and come up with a solution
to the problem of expressing programs of a particular class.

The creation of a programming language for the particular case of a microprocessor
system in the "homebrew" (ie: limited hardware) environment is the object of this
series of articles in ECS. When you design and or build a hardware system, your first
problem is solved - a computer that "works". To get beyond this first phase the problem
becomes developing the programs enabling your system to do interesting things. A
language can be used for ~3 purposes in the process of programming your computer:

a. An appropriate language enables you to abstractly specify a program in
a £i rst iteration of de sign without worrying "too much II about details. Get
the control flow figured out first, then worry about low level subroutines!

b. An appropriate language will enable you to hand compile programs ex
pressed in that language for use on your own computer, even if the program
was developed and debugged on another computer. You know the "algorithm"
works even though you have not yet translated it to your own use.

c. A language appropriate for the home microprocessor will be of sufficient
simplicity to allow hand compilation or compilation by a very simple compiler.

These considerations - the definition of a "home brew computer" context - are a major
input into the design of the SIRIUS -MP method of program expression.

SETTING THE PROJECT IN CONTEXT:
HOW WILL SIRIUS-MP COMPARE TO EXISTING LANGUAGES?

The approach taken in the choice of elements for the SIRIUS-MP language is that of
a "pseudo assembly language." An assembler is the simplest of all software developme1
aids to write, so this choice tends to satisfy criterion "c" above. But what about "a"
and "b 11 ? This is where the "pseudo" part enters the description: it is a language

,.... \ one step removed from the detailed instruction level in many of its operations. SIRIUS
is an assembly-type language for a class of similar machine architectures - with opera
tions found in general on such machines forming its "primitives." The subject of addres
resolution is left intentionally non- specific and symbolic so that variations in the way

ECS Volume 1 No. 4 4 April 1975

data is accessed can be left to the hand or machine-aided process of generating code
for your own system. Many of the statements written in this form will generate only
a single instruction on the "object" machine - but others will require a series of sever
al instructions to specify required actions on a given machine. It is my intention to
include within this "pseudo assembly language 11 concept several programming constructs
borrowed fron1 high order languages in current usage - but stripped of the complex syn
tax of a true high level language and specified in the simplified form of the SIRIUS-MP
2yntax, such as it is. This adaptation of a language to a specific purpose and class of
users is a widespread practice in the compiler/language design business. Several ex
amples come to n1ind of specific languages for specific usage contexts:

XP L - this language is the compiler -writer I s language to a gr eat extent. It
is a specific and limited subset of PL/1 by McKeeman, Worbnan and
Horning which isdocumented in a book entitled 11 A Compiler Generator. 11

The adaptation here is to concentrate on those features necessary for the
writing of compilers and exclude all else. (Intel PL/Mis very close to XPL)

HAL/S - this language was developed for guidance, navigation and control appli
cations of NASA by Intermetrics Inc., the author's employer of several years.
HAL/S is specialized to include the vector and matrix data forms used in space
craft navigation - and to provide highly visible "self-documented" code which was
not possible in the assembly language style approach used in the Apollo program.

SNOBOL - here is a language which is primarily oriented to "string handling"
programs - a very broad range of applications, in some sense including
the writing of compilers as well.

ALGOL - this language is the antecedent of many currently used languages ,
whose original intent was a specialization in generality - the ways in which
algorithms could be best specified, in the abstract form.

These languages are all examples of much more extensive and complex methods of
program expression from a compiler writer's standpoint - although from the user's
standpoint they are orders of magnitude easier to program with than doing the equivalent
in a low level 11 pseudo assembly language" or formal assembly language for a specific
machine. It is the problem of generating code by hand or with minimal prograrn aids
which limits the possibilities of SIRIUS program specifications to the low level approach.

WHAT ARE THE COMPONENTS OF A COMPUTER LANGUAGE?

For those readers with a software or computer-science background, this dis
cussion is in the nature of a review. For readers with little programming background
this will present new information.

When you build a computer from a kit or from scratch, your problem is to put together
a set of hardware components according to a certain system design (usually inherent in
the microcomputer chip design) such that all the components play together as a working

system. At a level of abstraction far removed from - yet still within the context of -
the detailed hardware, a language for computers is also a construction of component parts
which must "play together" according to a particular design if the language is to be

ECS Volume 1 No. 4 5 April 1975

,.....,useful as a means of expressing programs. At the most abstract level of discussion, a
· language consists of two major component parts designed to provide an interface between
a human being's thoughts and the requirements of computing automata. These are:

SYNTAX: - this component of the language is the set of rules concerning the
correct formulation of basic "statements" or "expressions" in the lang~age
in quest ion.

SEMANTICS: - this component of the language is the set of rules governing the
intelligible combinations of syntax elements - the combinations which produce
a well defined and translatable meaning which can be used in turn to generate
machine code for soml=." "~bject" or "target" machine of a compiler.

·fhe syntax and semantics of a programming language can be chosen with a somewhat
ill-defined border: one of the major trade-offs to be done in designing a language and
associated compiler is deciding how much of the work is to be performed by the syntac
tical analysis and how much is to be left to semantic interpretation. At one extreme there
is the complex syntax of a high order language in which much of the sem.antic intent of
a statement is inherent in the syntax used; at the other extreme there is the case of the
simple "assembly language" style of syntax in which very little function is inherent in
the syntax - which merely distinguishes labels, operators and operands.

SIRIUS-MP is at the "assembly language" end of the trade - its syntax is kept simple,
,,-., so that a minimal compiler (or hand compilation) will be used to translate it to machine

codes, and the semantic interpretations are largely look-ups based on the specific content
of the statements coded in a program, with very little variation on certain basic forms
for operands and operators.

SPECIFICATION OF SIRIUS-MP:

The specification of a language can be a very formal and very dry process. A languagE
specification is ultimately required in order to clearly convey the meaning of statements
coded in the language, the legal variations on such statements, etc. etc. A certain level
of consistency in specification is required, for instance, if. I want to write a compiler
for a given language. At the present time, however, my reasons for formulating SIRlUS
are much less demanding than the formal specification of a language: I am interested
in creating a method of describing programs which will be heavily commented and used
principally for publication in ECS (and possibly other publications.) Thus the specifica
tion is left in a fairly "soft" form for the time being within a general framework described
in this is sue. The time for a formal specification will be the day I sit down and write
an appropriate compiler - or a reader decides to do so through impatience and the desire
to write one for publication (with the usual royalty of course.)

In lieu of a really formal specification of the SIRIUS-MP language, the next few pages
contain an informal description of several notational devices employed in the examples of

,,.... SIRIUS-MP programs in this issue, and comments on why the forms are used. The areas
covered are: STATEMENTS, ADDRESSING & REFERENCE, DAT A REPRESENTATIONS,
and OPERATIONS. Omitted in the present discussion are several languages forms to
be described at a later time, including certain "structured programming" concepts and
details of argument/parameter linkage conventions for subroutine calls in SIRIUS-MP.

ECS Volume 1 No. 4 6 April 1975

ST A TEMENTS :

The basic notational unit of a program which is written in SIRIUS-MP is the "state-
ment." The statement concept embraces the others mentioned on page 5, as can be
illustrated by the following prototype format:

LABEL:
TARGET OP SOURCE * COMMENTS •

'
As in most decent assemblers, the intent is to make the statement "free form" and
thus requirin~ no fixed column or line boundaries. Hence the following devices are
used as a part of the syntax:

The end of a statement is indicated by a
PL/1-like languages.*

11. ft , (semicolon) as in a host of

A label, if present, is distinguished from the first (TARGET) operand or
the operation mnemonic (OP) by a ":" (colon). With this choice of trailer,
labels must not duplicate any operation codes (OP) which can have sim.ilar endings.

An asterisk (*) is shown as a separator between the main part of the state-
ment and the comments field at the right.

For examples of the use of this format, see the several program listings included with
this is sue below. The fields in this prototype statement are as follows:

LABEL - this field (and its 11
: 11 separator) is optional and is used to define a symbolic

program label. A label is ultimately required to define all symbols used in a pro
gram with the exception of certain implicitly defined symbols such as CPU registers
and flags.

TARGET - this field (optional) specifies a symbolic reference or absolute address for
the memory location (s) or I/0 devices which will receive data as a result of an op
eration. Certain operations will not require a target field for proper notation.

OP - this field is required in order to specify an "operation" to be performed at some
time. Certain operations will correspond to executable code in the translation. Others
will be used to reserve storage and indicate aspects of the program generation pro

cess.

SOURCE - this field is required to specify a minimum of one operand for each opera
tion. Its format will vary depending upon the type of operation intended - variations
will include various forms of symbolic reference as well as compound forms used
to control functions such as "FOR" loop constructs or "IF" statements.

COMMENTS - here the field intent and use is fairly obvious - to explain what is going
on it is useful to make notations.

* Note: The alternate form of statement boundary indication to the "; 11 is to start
a new statement on a new line. The examples in this issue all omit the ";" specified
above - a detail to be corrected in future issues.

..

ECS Volume 1 No. 4 7 April 1975

~--, ADDRESSING AND REFERENCE:

For those individuals who have experience with high level languages (eg: FOR TRAN,
COBOL, PL/1, ALGOL, BASIC etc.) the common experience is to blithly go ahead and
program an application with the various "variables" declared within a program by impli
cit or explicit means. This approach is appropriate for a high order language in most
instances because the problem of addressing and refereucing.data in the computer has
been solved in a fairly general and quite reliable manner by the compiler writers. When
the time comes to drop down one level of abstraction to the assembly level, the problem
of addressing has to be again considered in a more explicit manner since many more
details of machine architecture are inherent in such programming. In deciding what
forms of addressing and data reference to include in SIRIUS-MP, the low level approach
is augmented by several methods of more abstract reference. The following are some
key referencing concepts:

ABSOLUTE ADDRESS: The concept here is of a fixed location in the memory address
space of the computer or a given 1/0 instruction channel designation. In a system
built around a Motorola 6800 for example, most 1/0 operations will be carried out
with reference to absolute addresses for the l/0 interface memory locations - at
least in simple programs this will be the case. In the INTEL or National IMP-16
architectures explicit choices of I/O channel require designation of numbers, often
in an absolute form.

EXAMPLE: The Octal expression 020023 could represent

an absolute address.

SYMBOLIC ADDRESS: The concept here is to reference the name of a data item in an
instruction rather than its actual address. In principal all such names map into a
fixed and unique address at execution, either through the operation of a compiler's
address resolution or through a run time lookup mechanism such as the SYM routine
used in the previously published ECS 8008 software. In SIRIUS notation, a symbol
is defined by its appearance as a LABEL of a statement, or its existence as a pre
defined entity such as a register designation •

EXAMPLE: Given label ANYSYM, a reference in some other (eg: assignment)

statement might be:
ANYSYM =: 0 (as the TARGET operand.)

INDEXED SYMBOLIC ADDRESS: The concept here is to reference the starting loca-
tion of a block of memory by the first symbol involved, and to indicate an offset
(from zero up) in bytes by a second symbol or literal in parentheses following the

fir st. Thus:

or

ANYSYM(OFFSET) is a reference to the location ANYSYM
plus the current value of OFFSET when the statement is

executed.

ANYSYM(23) is a reference to address ANYSYM plus 23.

An alternate form of expression for this would be to show an addition (+) operator
rather than use a FORTRAN or PL/1- like subscript reference with parenthesis.

ECS Volume 1 No. 4 8 April 1975

SPECIAL SYMBOLIC ADDRESSES: Here the concept is the notation of certain symbols
with a fixed meaning, which in an assembler would effectively become "reserved"
syinbols not subject to redefinition. The forms used in the listings in SIRIUS in this
issue are the following :

W(ANYSYM) means "the ~hereabouts of ANYSYM" and is the notation used
to indicate a reference to the absolute address of the symbol.

M(ANYSYM) means "memory reference to the location found in the value of
ANYS YM. 11 This is the basic "pointer'' form used, and will as sun1e that

the v.alue in ANYSYM is a full address (eg: 16 bits for most machines.)

T{ANY JMP) means "the address portion of a jump instruction at ANYJMP".
This notation was introduced to allow the equivalent of a FORTRAN
assigned GO TO to be used by altering a jump instruction.

A, B, C, D, E, H, L are syn1bols used freely to represent registers on the Intel
8008 and 8080 type of machine architectures. In translating this reference
to a Motorola 6800 or National IMP-16, or other computer architecture,
an appropriate software equivalent would be used if registers
are not available.

L(ADDRESS), H(ADDRESS) are used to reference the Low and High order portions
of a full address (eg: 14 or 16 bits) on typical microcomputers when it is desir,
to examine only one byte. This is especially useful as a notation for the Intel
architectures, but the same functional meaning goes on other machines.

The various forms of addressing and reference described can be used to specify the
"operands 11

- SOURCE and TARGET - of a statement. The concept of a "SYMBOL"
is the generalized idea of one of these forms of reference (excluding absolute references.)
A "symbol table" for a program is a list of such symbols, usually including some
additional information about the item. In a future article on the hand generation of code
this concept will be explored in more detail.

DATA REPRESENTATIONS:

A "data representation" is a method of conc.eptually treating a group of data bits in
the storage of a machine, and is usually fairly dependent upon hardware features of a
given machine. The basic data representation of all the extant 8-bit microcomputers is
the 8-bit binary integer (two's complement is the rule.) This is augmented in certain
machines such as the 8080 and the 6800 by a limited set of 16-bit operations implemented
to handle address calculations. For the 16-bit microcomputers and minicomputers, the
word length as a rule sets the basic representation as a 16-bit integer, although smaller
8 bit quanta can usually be employed. This immediately suggests that the basic assump-

tion to be built into SIRIUS-MP is that data ought to be operated upon in 8 and 16 bit

ECS Volume 1 No. 4 9 April 1975

quanta. This will prove a useful decision for most processors likely to be in common
use by readers of this publication (if there is enough interest, I '11 make some comments
at a future time on adaptation to 12-bit machines such as the DEC PDP-8 and its imita
tors.) The two representations are thus (pictorially) .••

I
...... M:&alls"'-'IIB""-------=LS::=;..;B=-- .,.;;;.M~s;;;..;;;B;;....__ ________ ---=LS==B-
..... _J__._ _ _J.....___.......__l...._.a...-...____.___.l I I I I I I I I
7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7. 6 5 4 3 2 1 0

8- bit integer 16-bit integer

The fact that there are two possible ways to reference integers built into the hardware
operations of the typical 8 and 16 bit microcomputer formats, (8008 excluded) leads
to a desire to specify a notation for the length of data involved. I could choose among
two basic alternatives in this area:

a. Specify data type in some form of declaratory way. This would be analogous
to an XPL statement such as "DECLARE X FIXED; 11 or a FORTRAN state
ment such as "INTEGER X".

b. Specify data type(length) as a part of the cmice of operands used. Here the
information on length of operations is specified when the data is used - thus the
program has a bit of extra redundancy in its notation (the extra characters needed
to specify this type information) but the operations performed are much more
visible at the local level.

The choice I made was for the second alternative, primarily to reduce the need for a
symbol table to the barest minimum of information - consistent with the simplifications
needed for a compact assembler or hand compilation. A secondary reason is the one ·
stated in "b" - local type indications give a better documented program. In the integer
operations used by prograins in SIRIUS, a single colon (as in "AND:") is used to indicate
where ai 8-bit operation is involved, and a double colon (as in "AND::") is used to
indicate the 16-bit form of an operation. A final comment on integers: where a signed
integer representation is required in two's complement notation, the sign of the number
is represented by the most significant bit (bit 7 of length 8 words, bit 15 of length 16
words.) This is the bit tested by the "S" flag on the various microcomputers.

Byte String Data: One additional data type will be required for programming the
various microcomputers using SIRIUS-MP. This data type is the generalized concept
of a "byte string." The representation is
designed for manipulation of blocks of data in
memory, in a form consisting of a length byte
at the "anchor" (starting address) of the string,
followed by from O to 255 data bytes at consec
utive addresses. This is a format which is iden
tical to that used in many byte oriented compilers
(eg: XPL) and is a virtual necessity for handling
character texts. Applications will not be restric
ted to character texts, however, for one partic -

ular use could include variable length decimal
arithmetic using packed BCD byte strings.

ECS Volume 1 No. 4 10 April 1975

Byte strings are most conveniently handled on computers which have byte addressability
of memory locations - eg: the IBM 360/370 series as well as the smaller (8080, 8008,
6800) microcomputers. For 16 bit minicomputers and microcomputers, the concept is
still useful, but requires explicit address calculations as a part of unpacking and manip
ulating two bytes per word. Operations on byte strings will use the notation of a number
sign 11 # 11 to indicate the variable number of bytes involved.

OPERATIONS:

With the above introduction regarding data representations, it is now possible to
consider the basic operations possible. The list here represents those used in the nota
tion of the programs in this issue. In a later issue I'll expand the explanations of some
of these operations and corresponding machine code for typical machines. There
are also several operations which I have not used in the notation of the current set of
programs, but which will be the subject of future notes in this area. The following
is a list of the operations used with program notation in this issue, omitting the type
indicators

AND GOTO INPUT
Assigmnent(=) HALT IOEXCH
CALL IF KEYWAIT
CLEAR IFNOT OR
DECR !NCR OUTPUT

The operations AND, OR, GOTO, HALT, INPUT and OUTPUT all have direct ana
logs in the CPU operations when 8-bit quantities are used with machines such as the
8008, 8080 or 6800. The examples' 8008 generated code versions illustrate one such
representation. Some further notes will help illuminate the code generation process for
the other operations.

For all operations which have direct analogs in the machine architecture, the code
used for the machine level version must consist primarily of establishing the address
ability of operands (source and target) and then execution of the operation. This process
is illustrated in the several examples. For 8 bit machines with 16 bit operations, the
code generated must be generalized to 16 bits - for the 8008 this is done in the illustrated
programs by appropriate subroutines for increment, decrement and comparison, so code
generation consists of writi_ng down machine codes for a subroutine call and argument
linkage.

Assignment always will map into a sequence of operations needed to move data from
the source to the target. The 8008 generated code of these exampies is an extension of
the previous! y described symbol table mechanism for address lookup (see February 1975
ECS.) For 16 bit quanta this process can often be done using a CPU register pair for
the 8 bit machines, but will invariably require a subroutine when byte strings are involved.

The IF statement form used in the examples is found in both a negative and positive
sense. In either case the TARGET (lefthand) operand is the place where execution will
go if the condition tests true. Two forms of the condition (SOURCE) operand are used:

r
l

(

r

ECS Volume 1 No. 4 1 1 April 1975

a. Flag Reference: Here the intent is to use a mnemonic key word,
for example ''ZERO" to reference one of the CPU flags of a typical micro
after an instruction which might alter such flags.

h. Tests: Here the intent is to specify two operands symbolically which
are to be compared. I have grouped such references in parenthesis to sim
plify mechanical interpretation by a compiler, and have used the assignment
symbol "= 11 with its length code with the usual duplicity to indicate the compar
ison test operation.

A disclaimer is appropriate at this point - I am not satisfied with the IF condition test
format illustrated in these examples of several programs, and will be experimenting with
some alternatives.

GENERATION OF CODE:

The semantic intent of the language forms used to represent the several progra:ms in
this issue can be deduced from the comments in the listings and the general descriptive
information in the previous pages. One remaining problem is the generation of code.
For the time being, I am limiting information on this (very large) subject to the exain
ples illustrated below for an 8008 case and the notes accompanying the examples. I
think there is sufficient information content to facilitate interpretation and generation
of corresponding machine code for processors such as the 8080 (very close) or the
6800.

BOOTER: AN "EMERGENCY" BOOTSTRAP LOADER

The first example of a SIRIUS-MP program is a short and self-contained program
called "BOOTER. " All programs ultimately solve problems. This particular program
solved a problem which I had one weekend, and served as an "acid test" of the utility
of the ECS-8 tape interface. As soon as I had the interface software up and running (the
dmnp portion presented in March ECS' s pages) I began dumping the entire CPU software
load to cassettes at regular intervals as a "failsafe" against Boston Edison's next power
failure. The planning for that contingency - which by the way did happen in an ice storm
in January to my consternation - paid off in a different way: I made the foolish mistake
of turning off the power via a switch on my bench, now taped over solidly. Since I was
working on SIRIUS-MP as a program. writing tool, I took the opportunity to test out the
expression it provides by writing the BOOTER source program appearing at the top of
the next page. I won't claim perfection, however the original form of the program was
essentially the same as the listing illustrated.

Loading is accomplished as follows: in the tape format described in the last issue,
the first legitimate data is the length code (two bytes which I knew had 11 007 11 and "377"
values for my tapes.) Since none of the tape spacing and preparation routines of the IMP
program would be available in the blank computer memory being bootstrapped, the only
way to synchronize tape data with the program was to listen continuously for the "007"
character (state 1, LOOKFIRST tests for "007"), then check for a succeeding "377"
byte (state 2, WELLMAYBE tests for "377"), then commence loading bytes starting at

ECS Volume 1 No. 4 12 April 1975

The BOOTER program, listed in SIRIUS-MP •••
HOOTER:

1 B =:
2 X =::
3 36 OUTPUT
4 CLEAR
5 A IOEXCH

BLOOP:
6 A -.
7 A IOEXCH
8 A AND:
9 BLOOP IFNOT

GETCHAR:
10 M(X) INPUT
11 DECH:
12 LOOKFIRST IF
13 DECH:
14 WELLMAYRE IF
15 DECH:
16 F'ORSURE IF
17 IHL'l'

FORSURE:
18 36 OUTPUT
19 37 OUTPUT
20 INCR::
21 B -.
22 GOTO

L OOYJ"I RS T :
23 B
2!i BLOOP IFNOT
25 B =:
;;,6 GOTO

WELLMAYBE:
27 D
28 BLOOP IFNOT
29 B =:
30 GOTO

1
2000
377
A
4
27
4
140
(A=: 140)

2
B
ZERO
B
ZERO
B
ZERO

M(X)
L(X)
X
3
BLOOP

1
(A=:007)
2
BLOOP

1
(A=: 377)
3
BLOOP

* INI'II AL STATE IS 1
-::- (INTELESE 004/000) START ADDR
* TURN ON A DISPLAY

* * RESET THE IO UNI'l'

* 11 0001 01 1 1 11 UNIT CONTROL
* CHECK STATUS OF TAPE
* MASK OFF RDY & RDA BITS
-::- LOOP BACK UNTIL READY

* READ THE DATA (no EXCHANGE)

* * HAVE STATE 1 DETECTED

* HAVE STATE 2 DETECTED

* HAVE STATE 3 DETFCTED
* (OOPS! SHOULDN'T GET HERE)

~ WRITE TO DISPLAY
* LOW ORDER ADDH TO DISPLAY
* POillT TO NEXT BYTE I!1 MEMORY
* RESET STATE 3 INDICATION
-11- BACK FOR MORE INDEFINITELY

* DEFAULT STATE 1 CONTINUE
-1:- LOOK FOR OCTAL "007 11

)

* IF FOUND, STATr, SET TO 2
* AND GO BACK 'l'O FIND "377")

* DEFAULT BACK TO STATE 1
* LOOK FOR OCTAL "377"
* MAIN LOAD LOOP IF FOUND NOW

Variables

A CPU register for I/0
B CPU register or mem.
X Address pointer (CPU)
ZERO : CPU flag for zero result

Notations

M(X) : memory at location in
pointer variable X.

L(X) : low order 8 bytes of X

And the equivalent 8008 version of this algorithm .•..

Label 8008 Code Bytes

BOOTER: 00 \ I 10 .. 016
00 ''111 .. 001
00 \112 . 056
00 \l I 3 004
00 \l 14 = 06(,
00 \11 ':> = 000
00 \I I 6 .. 006
00 \I l 'I .. 3·1 ·,

00 ,120 .. I 't':>

00 \121 .. ~50
00 ,122 a 111

BLOOP: 00 ,123 .. 006
00 '124 "' 02·,
00 ,12s .. Ill
00 ,126 C 044
00 ,1;n .. 140
00 \130 . 0·14
00 ,1Jl . 140
00 ,132 .. 110
00 ,133 . 123
00 \134 a 000
00 \135 - 113
00 ,136 .. 3·,o
00 ,13·, ,s 0 ! I
00 ,t40 "' 150
00 \141 .. 166
00 \142 = 000
00 ,143 .. 011
00 ,1411 .. 150
00 ,1 Lj':, "' 202
00 ,1i.6 .. 000
00 ,147 = 011
00 \150 "' l SO
00 '\I ':,I C 154
00 ,1s2 000
00 '\l SJ C 31'1

FORSURE:
00 '\l 54 C Jo·,
00 \155 l'/5
00 '\ I 56 306
00 \157 .. 177
00 \ I e,o 055
00 \161 016
00 \l L<' UOJ
00 \163 .. 104
00 \164 I c:J
00 \l 6::i 000

SIRIUS-MP
Statcrncnt

LBI s l.
I
LHI s 2.
h(LOAD POINT)
LLI
!(LOAD POINT)
LAI s 3.
377
OUT3l,
XRA s 4.
IN4 s 5.
LAI s 6.
"0001 01 11"
IN4 s 7.
NDI s 8.
"01 100 000"
CPI 6 9.
"01 100 000"
J:FZ BLOOP
L
H
INS IRc,id Tape) s 10.
LMA
DCB s 11.
JT Z LOOKFIRST s 12.

L
H
DCB 0 13.
JTZ WELLMAYBE s 14.
L
H
DCB s 15.
JTZ FORSURE s 16.
L
H
HALT s 17.

LAM s 18.
OUT3L
LAL s 19.
OUT37
NEXTA s 20.

LRI s 21.
3
JMl0 BLOOP s 22.
L
H

Label 8008 Code Bytes

LOOK FIRST:
00
00
00
00
00
00
00
00
00
00
00
00

WELLMAYI3E:

HOW iO

~,\Al=-F

M£1V\Oi<!Y

BY
''BOOT

00
00
00
00
00
00
00
00
00
00
00
00

,166
,16·1
,1 ·,o
,1 ·, 1
,112
\I ·1J
,1 ·11,1
,11s
,1 ·16
,1 ·,1
,200
,201

,202
,203
\204
,20s
,206
,201
,210
,211
,212
,213
,214
,215

C 016 .. 001
o·,4 .. 007 .. 110

C 123
,JOO

C (J}(:,

002
IC 104 .. 12.J .. 000

= 016
c 001 .. 0·14 .. ;s·,·, .. 110 .. 123 .. 000
= 016

003
104 .. 12J

= 000

SIRlUS-MP
Staten1cnt

LBI 8 23.
1
CPI • 24.
7
JFZ BLOOP
L
H
LBI • 25.
2
JMP BLOOP II 26.
L
H

LB! II 27.
1
CPI II 28.
377
JFZ BLOOP
L
H
LBI II 29.
3
JMP II 30.
L
H

)
I

ECS Volume 1 No. 4 13 April 1975

the known load point (location 20008 = intelese 004 /000) as initialized at the beginning
of the program.

The program is a "state driven" algorithm which has 3 states of execution set by
the content of the variable "B" (which maps into a register in the generated code for
a microcomputer such as the 8008 code illustrated.) The sequence of states during
execution of the main loop "BLOOP" during normal execution is as follows:

Start: 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 • • • • • 3 3 3 3 3 3 End

Scan for 11007 11 ~ ~ '- s .,
Found it, look for 11 377 11

Found it, transfer any further bytes to memory

The program is set up so that if a false synchronization pattern is detected ("007 11

followed by any byte other than "377") the "WELLMAYBE" branch of the loop
concludes "maybe not" and goes back to scanning the input. The reason for
scanning in this manner is to enable _the program to be started via an interrupt, after
which you can turn on the manual controls of the tape drive confident that the invalid
data produced by the MODEM/UART combination during the leader and start up periods
will not be falsely interpreted as good data - the specific 16- bit pattern of two bytes in
volved is not likely to occur due to random noise.

The 8008 code corresponding to the BOOT ER program's SIRIUS-MP notation is shown
at the bottom of page 12. with symbolic notations of labels, mnemonic op codes and refer
ence numbers to the SIRIUS-MP statements in the listing at the top of the page. The
specific hardware asswnptions used for this code are docwnented in previous ECS
issues and are not repeated in detail here. For this simple program, the "X" data
quantity (a memory pointer) is translated as the content of the Hand L register pointer
of the 8008. One of the restart routines defined in January ECS is utilized by the gener
ated code - "NEXT A" calculates the next address in H and L. On an 8080 this could be
performed without a subroutine using the INX instruction with H and L selected. On a
6800 the corresponding function would be performed using its INX instruction, with the
variable X assumed to signify the index register "X".

BOOTER uses output instructions directed at a binary display to illustrate the prog
ress of the program. At initialization, the display left half (OUT36) is loaded with 8
11 on" bits. (SIRIUS statement 3). Then, following the synchronization detection, the
data transfer branch FORSURE displays the current byte at left (OUT36, statement 18)
and the current low order address at right (OUT37 generated by statement 19).

The small loop from statements 6 to 9 is used to cause the program to wait until the
flags of the UAR/T subsystem (see article ECS-6 and January 1975 ECS) indi<;:ate that
a character has been received. The tape unit control code 11 0278

11 defined at statement
6 is used to signify the data rate (110001' 1 for 1210 baud), channel (11 01 11) and selection
for input (the last two bits.)

If you use BOOTER to load IMP from one of the cassettes supplied by M. P. Publish
ing Co. ($7. 50 each post paid) you will have to additionally load by hand the content of the
other restart instructions routines before changing the interrupt branch to point to the IMl
entry point at location 013/000 (Intelese.)

ECS Volume 1 No. 4 14 April 1975

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL (Continued •.•)

In the March issue of ECS, I started a presentation of
extensions to the Interactive Manipulator Program for tape
block write, compare and read operations. This article
contains the remainder of the listings. With the exception
of the three routines on this page, the additional 8008 code
is given in its SIRIUS-MP form and in absolute octal with
mnemonics decoded.

One aspect of the SIRIUS-MP language which I have not dealt with explicitly in this
issue's discussion is that of argument/parameter linkage for subroutine calls. Because
a machine-dependent argUinent/parameter linkage is used for the 8008 versions of the
three routines on this page, I present them here in the same commented listing form used
for previous issues of ECS. The
routines are utility functions for the
two-byte increment/decrement func
tions and comparison. The parameter
linkages to these routines are formed
by passing symbols (see Feb. 1 75 ECS)
in registers for lookup.

D2B is the two byte decrement
operation, which is entered with the
symbol of the operand contained in
the 8008' s A-register. The operand
is decremented by subtraction due
to the properties of a zero underflow
(the Zero flag detects this state one
munber too early at 0, not -1.) On
return, the carry flag indicates a
16-bit underflow if any

~ is the corresponding two byte
increment operation, which is also
entered with the symbol of the oper
and in the 8008's A register. The
8008' s increment instructions are
used, since the zero state is a reli-
able overflow indicator. On return,
the zero flag indicates a 16-bit over-
flow if any.

C2B is a two byte comparison op
eration, with a more complicated link
age. The two operands are passed as
symbols in the B and C registers. The
result is passed back as the content of
the 11 E 11 register : 1 if not equal, 2 if

DZB:

IZB:

CZB:

equal. This can be tested by a decrement
instruction followed by a jump on zero •

012'132., 075 SYM
0 1 2 \ 1 3 3 ,. 0 60 IN L
012\134 • 30'/ LAM
012\l3t> 024 SUI
012\136 • 001 1
012\137" 3/0 LMA
012\140 ,. UOJ RFC
0 1 2 \ l 4 l o (., l DC L
012\142 c 30·, LAM
012\143 ,. 02;i SUI
012\144 "'Olll l
012\145 :: 3·,o LMA
012\146 007 RET

Routine t!o increrrH·nt two bytes -
011\313 -= 0·1~ SYM

060 lNL
JI"/ LBM
01 U INB
371 LMB
0 I 3 RFZ
061 DCL
31'/ LBM

011 \314
011 \315 "'
01 l \316
011 \3 l 7 •
011\320
011 \3~1
011 \322
011 \323
011\324
Oll\32t>

-= 010 !NB
371 LMB

" 00·1 RET

Go pick up argument address
Point ahead (as sumc not at page bound)
Fetch the low order byte.

Subtract 1 - decrernent will not do!

Save result
Return on no borrow condition.
Point to high order byte
Fetch it
Also decrement with subtract

so that borrow (C) tndy be set •..
Save result "'; '
With carry indicating r.et underfluw.

enter with symbol parameter in A

Look up the parameter address
Point to,

load from memory,
increment and

save the low order byte.
Return direct if no overflow
Point to,

load from memory,
increment,

and save the high order byte.
Then return always.

Routine to compare bytes - in two's. Enter with symbol parameters in
010\234 046 LEI registers B and C.
Ol0\2J:, = 001 1 Returndefaultl{notequal.)
010\236 301 LAB
010,231 11 o·,~ SYM
010\240 • 3J'/ LDM
010\241 " 302 LAC
010\242 • 0·15 SYM
010\243 • 303 LAD
010\244 .. 2'/7 CPM
0 I O \ 24 5 0 1 3 RF Z
010\246 .. 055 NEXTA
010\2'47 "' 337 LDM
010\250 .. 301 LAB
010\2t>l = 075 SYM
010\252 O~~ NEXTA
010\253 .. 303 LAD
010\2~4 = 277 CPM
010\255 = 013 RFZ
010\256 = 046 LU
010\257 002 2
010\260 11 Ou7 RET

Fetch first parameter address
and fetch the parameter.

Fetch second parameter address
and comp:,_re agai:-ist

first parameter value •••
Return (E: 1) if unequal.
Point to next address of second parm.
Fetch second parm second byte

Point to first parm again
look NEXT A him too! I I

Compare first parm, second byte"'
And again return (E=ll if unequal. ,
Otherwise both bytes of both

two sets are equal and can
return with equality result.

r

ECS Volume 1 No. 4 15 April 1975

The notational power of a more abstract method of progra.Inming is illustrated by com
paring the expression of the new IMP extension segments on page 16 with the correspon
ding "generated code" for the 8008 printed later. The routines· listed in SIRIUS-MP

form for the tape extension begin with the main portion of the program ••.

READ/COMPARE main routine isat the left hand side of page 16 held sideways. This
33- statement SIRJUS - MP program is in\Oked when the IMP command decoder detects a
"shift R" for read or "shift C" for compare. The difference in the two routines is deter-
mined by the entry point - line 1 for READ, line 28 for COMPARE. The logic at the
entry points sets up a jump address in the ''GPJMP" indirect branch location (this over
writes the previous use of GPJMP to get to READ or COMPARE from IMP.) This
switch (the choice of branch paths) is required so that the same general control flow can
be use for both the READ and COMPARE operations - the difference being in what is
done with the information read from t&pe. The switch point in the flow occurs at state-
ment 14, and can be illustrated in
flow chart terms by the diagram at
the right.

The common portion of the pro
gram provides the over all structure
of a read operation: initialize the
UAR/T, read a dununy character
at the first RDA time, read the
two length code bytes written by
the OUTCNT routine (see below) when
the tape is prepared, then enter a
loop which continues until the data
count is exhausted.

When the READl branch of the
flow is taken during a read opera
tion, the current memory location
pointed to by !BUFF receives the
input character found in a variable
called "B'' (a CPU register for the
8008 version of the program.)

When the COMP! branch of the
flow is taken during a compare oper -
ation, the current byte pointed to by
!BUFF is compared to the input
byte in the variable "B" - and an
error count is incremented in the
variable "BADDAT A" (16 bits worth)
to keep a tally of the badnesses.

•c:

tOMMR-.:

sn COM'1
QPJMP

~OTO 6P1MP
...

as.bl COMU.

YES 1110
The data count is kept in the var -

iable "ICNT" which starts out at -1
and is counted up until it equals the

/' block count stored in "NCNT" after

VES

ENtlllL:

it is read from the tape. The test for

end of transfer is found at statement
20, a SIRIUS 11IFNOT" operation.

tttAI> at.
M~P\.A"

"'""~ , "f

1

2
3
4

5
6
7

8

9
10

11
12

13
14

15

16
n
18
19
20

21
22
23
24
25
26

27

28
29
30

31
32
33

READ:

RC:
T(GPJMP)

TAPEC'l'IlL

A
INITIALIZE:

11-
IBUFF
IC.NT

DUMMYIH:

HIGHU!G'l'H:

NCNT
LOWLNG'l'H:

NCNT(l)
FORALL:

READl:
M(IBUFF)

GOTCHA:
37
36

FORALL
ENDALL:

36

37
TAPECTRL
4

COMPARE:
T(GPJMP)
BADDATA

COMPl:
GOTCHA

=::

OR:
CLF.AH
IOEXC!I

OU'rl'U'l'

=::

CALL

CALL

CALL
=:

CALL
GOTO

=:

OUTPUT
OUTPUT
INCR::
INCR::
IFNOT

CALL
OUTPUT
CALL
OUTPUT
AND:
OUTPUT

KEYWAIT

=::
=::
GOTO

IF
INCH::
GOTO

W(READl) ,:- SET READ J1JMP SWITCH

"0000 00 l l" -ii- FORCE I Nl'UT SELECT
A
4 u RESET THE IO UNIT

TAFEC'l'HL -::- SET SELECTED CONTROL STUf'F
MEMADDH -::- S'rART INl'U'l' AT MEMADDR
-1 ,; INITIAL COUNT 'l'O MATCH OUTrUT

INPUT2

INPUT2
B

INPUT2
B

INPUT2
GPJMP

B

.;:- GO FETCH BYTE (WAIT LOOP)

-:i- GET HIGH OIIDEH LENGTH
,, SAVE B INPU'f IN NCNT H.O.

-ii- GET LOW ORDEH LENGTH
.;:- STORE AT NCNT+l

-i:- NORMAL DATA BYTE FETCH
-::- SELECT COMPAHE OR READ VIA
-i:- VARIABLE JUMP TARGET

* IF READ THEN STO!lE IT

B -ii- DISPLAY INl'UT DATA
0 -::- CLEAR OTfrER DI.:_:PLAY TO ZERO
IBUFF -1:- Ponrr TO NEXT IHI'UT ADDRESS
ICNT -::- INCREMENT WORKING COUNT
(IC.NT=:: NGNT) -:i- TEST END OF BLOCK

INPUT2
B
INPUT2
B
"1111 11
TAPECTRL

'-'J(COMPl)
0
RC

,:- READ FINAL LENGTH BYTE
-:i- AND DISPLAY
-:, READ SECOND FINAL LENGTH BYTE
,:- AND DISPLAY IT TOO

0 O" -::- TURN OFF INPUT SELECT
-::- TURN OFF THE DRIVE ••• PATCH
,:- IN A 2 SECOIID WAIT HERE
* IF NEEDED - SEE TEXT •••
* SLEEP PERCHANCE TO DREAM

-::- SET COMPARE JUMP SWITCH
* ZERO OUT BAD DATA ••• COUNT
,:- ENTER NORMAL FLOW

(M(IBUFF)=:B) {:- TEST TAPE AGAINST MEMORY
BADDATA -::- MISSED sor-m BITS! ! !
GOTCHA {, BA.CK FOR MOR.E, ••

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3

~
6
7
8
9
10
11

1
2
3

4
5

6

7
8
9
10
11
12

IUPUT2:
A =:
A IOEXCH
B =:
A AND:
INPUT2 IFNOT
A =:
A AND:
INPUTI'r IF

INCR::
INPUTIT:

A INPUT
B -.

RETURN

NEWOUTCNT:
B =:

CALL
A =:
B =:
5 OUTPUT

CALL
A =:
C =:
5 OU':'PUT

CALL
RETURN

ONOFP:
A -.
A AND:
TON IF

TOPF:
B =:

GOTO
TON:

B =:
EITHER:

A =:
A AND:
A on:
TAPECTRL =:
4 OUTPUT

KEYWAIT

Note: Reference numbers to SIRIUS statements are Notations: T(GPJMP)
W(READl)
NAfv1E(n)

provided at the local level for each block of functional
code illustrated here. They correlate to the 8008 examples
of executable machine codes, within each block.

_j(

..
\

TArECTTTL
4
A
"Ol 100
(A=: "Ol
B
"OO 000
(A=: "OO
BADFORM

5
A

1510
WA TCS
COUNT
A
A
WAITOUT
COUNT(1)
A
A
WAITOUT

;:- FETCH IO CON'rfWL WORD
.;:. EXCHANGE FOTI STATUS
-1:- SAVE STA'l'US IN B

000" -::- MASK Dl-..SlRED BITS
100 000") -:~ WAlT TILL HEADY

,1 RESTORE STATUS FROM t3
111" -::- MASY. I::!:HOR BITS
000 111 11

) -::- 1 NVEHTED NO ERR ORS
-::- INC:lEMl--:.NT DA'l'A FOHMAT ERRORS

,, Rl--.::AD THE I.A'rESTCP.ARACTER
;:- PASS BACK VIA B HEGISTER
* BACK TO CALLER

;:- MAKE IT 1. 5 SEC DELAY
-a• VIA CEiffISECOND DELAYER
-;, SF.ND OUT THE FIRST

"" COUNT BYTE
{} AND SAVE IN B
,:- WAIT UNTIL NOT BUSY
;:- GET SECOIJD BYTE AT COU!;T+l
ic SAVE IT IN C
* AND OUTPUT TO TAPE
-;'" WAIT UrrTIL NOT BUSY
{:- THEN BACK

TAPECTRL -::- FETCH OLD TAPE CONTROL
"OO 000 010" -;:, CHECK OLD STATE OF SELECT
ZERO * CHANGE TO ON IF OFF

2
EITHER

~.i- CHANGE TO OFF IF ON
,i- THEN DO THE CHANGE

.,.. CHANGE TO ON IF OFP

H

~
f-(j

~ .,
0

(J'Q .,
p.,

s
n--
p.,
~
ro
C',)

~
n--
C',)

~
Cf)

I-'•

0
~
Cf)

C',)

~
~ .,
ro
Cf)

Cf)

(l)
p..
I-"•

~

p.,

(/)
H

~ 0

TAPECTRL
374

.;:- FETCH OLD CONTnOL AGAIN ~
,c MASK AND SA VE HIGH ORDER 6 BITS
{c COMBINE WITH NEW CONTROL B

A
A

,w, SA VE NEW CONTROL
* TURN" TAPE MOTOR OFF OR ON
* BACK TO SLEEP YOU IMP?!!!

address part of jump
mem. address of READl
n th byte of N Al-v1E

a.

~
p.,
Cf)

~
I-"•

0

?

M
()
(/)

<!
0

@
ro
t,-1

z
0

~

...
0)

► ~ .,
I-'•
........
........

'° -J
Ul

ECS Volume 1 No. 4 17 April 1975

8 0 0 8 G e n e r a t e d C o d e f o r R E A D / C O M P AR E r o u t i n e 6 (16 1 ft) P· , e

Label

READ:

RC:

8008 Code Bytes

004"\0UO • 006 LAI
004"\0Ul .. 010 s(GPJMPAL)
004\002 "' u·,:, SYM
0011\UUJ IC UH, LMl
004\004 • 10·1 L(READl)
004 \00!) .. 06\.) INL
004"\006 a OH, LMI
0011 \00 ·1 • OU4 H(READl)

004\010 a 006 LAI
004\Ul 1 c Ul4 s(TAPECTRL)
004\012 ,. O'/!) SYM
004\013 a:: Jo·, LAM
004 \0 I 4 • U 64 ORI
004\01!) • OUJ "00000011"
004\016 ,. 3·10 LMA
004\017 "' 2!:>0 XRA
004\0::!0 • 11 l 1N4

SIRIUS-MP
Statement

' • 1.

8 2.

• 3.
• .c.

INITIAl.JZE:

DUMMYIN:

004\021 .. 006 LAI
004\022 • 014 s(TAPECTRL)
004\023 • 0·1!) SYM
004 \024 • JU 'I LAM
004\025 • Ill IN4
004\026 006 LAI

004\027 "'006
004\030 • 0·15
004\031 = 317
OG4\0J2 Ou\J
004\033 c Jc:7
001, \034 006
004\0J!:> • Oc:!O
004\036 ,. o·,ti
0 0 4 \0 J 7 "' J -, l
0011\040 • 060
004\041 • 372
004\042 • 006
004\043 c 016
004\044 • 0·15
004 \04:> = 006
004\046 a 377
004\0117 • 3·10
004\0!:>0 "' 060
004\051 m 3'/0

s(MEMADDR)
SYM
LBM
INL
LCM
LAI

s(IBUFF)
SYM
LMI3
INL
LMC
LAI
s(ICNT)
SYM
LAI
"llllllll"
LMA
INL
LMA

004\052 • 106 CAL INPUT2
004\0!)J -= Ot.,l L
004\0:>4 • 012 H

• s.

• 6.

8 7.

• 8.

HIGHLNGTH:
004 \U55 • lOti CAL IN PUTZ
004\U~,6 "' 061 L
004\0:>'f = Ul?. H
004\060 a OUt., LAI
004\061 ,. 022 s(NCNT)
004\062 "' 07:> SYM
004\063 "'371 LMB

• 9.

• 10.

LOWLNGTH:

FORALL:

004\064 = 106 CAL INPUTZ
004\065 • 061 L
004\066 s: 012 H
004 \06'/ • 006 LAI
004\0'IO • 02c:! s(NCNT)
004\0'/l ., 0·1'::> SYM
004\072 ,. O!)!) NEXTA
004\073 • 371 UtB

• 11.

• 12.

004\074 ,. 106 CALL INPUTZ s 13.
004 ,0·15 • 061 L
004"\0'/6 • 012 H
004 \0 .,-, oo 6 LAI ¥, Globally
004\IUO .,_ o~o s(IBUFF) optimized:code
004\101 "' 106 CALL MEMSYM moved ilhead
00.14\102 "' 002 L vf the GPJMP
004\1U3 • Olr. II
004\104 IUli JMP GPJMP • 14.
004\IO!) ., Olt> L
00,1\106 OUU H

Label

READl:

GOTCHA:

END/\LL:

COMPARE:

COMPl:

8008 Code Bytu

004\107 ,. 3·11 LMB

004\ll0 • 301 LAB
004\111 • 177 OUT37
004\112 " 2~0 XRA
004\113 ■ 17~ OUT36
004\l I 4 ■ 006 LAI
004\115. • 020 1(1BUFF)
004\116 • 106 CALIZB
004 \ I I 7 • J 1 3 L
0014 \l 20 • 0 I 1 H
004\121 • 006 LAI
004\122 • 016 s(ICNT)
004\123 • 1U6 CAL 12B
004 \ l 24 • 3 I J L
004 \I 25 ., 011 H
004 \l ~<, • o 1 t, LBI
0011\l~·, "' Ul(, s(ICNT)
004\IJU • 026 LCI
00"4\lJl • 022 1(NCNT)
004\132 • 106 CALCZB
004\133 "' 2J'-I J.,
004 \ I 3'-1 • 0 l O H
004\135 • 041 DCE
004\I 36 • I 50 JTZ FORALL
004\137 • 0·14 L
004\140 • 004 H

004\141 • 106 CALL INPUT2
004\142 • 061 L
004\l4J • 012 H
004\144 • JOI LAB
004\145 • 17!) OUT36
004\146 ■ 106 CALL INPUT2
004\147 • 061 L
004\ISO ■ 012 H
004\151 • JUI LAB
004\152 • 1 71 OUT37
004 \l SJ • 0Ot> LAI
004\154 • 014 a(TAPECTRL)
004\I SS • 075 SYM
004\156 • 307 LAM
004\157 • 0"44 NOi
004\I 60 • 374 "ll 111100"
004\161 • 370 LMA
004\162 • 111 1N4
004\163 • 025 KEYWAIT

004\164 • 006 LAI
004\165 • 010 a(GPJMPAL)
004\166 • O'f!) SYM
00-4\167 • 0'/6 LM1
0011\170 • 206 L(COMPl)
004\171 • 0t>0 !NL
004\172 ■ 0·16 LM1
0011\173 • 004 H(COMPl)
004\174 • 006 LAI
004\17!) • 024 a(BADDATA)
004\176 • o·,s SYM
004\l 77 • 250 XRA
004 \200 ■ 3 ·10 LMA
004\20 I • 060 INL
004\202 • 370 LMA
004\203 • 104 JMP RC
004\204 • 010 L
004\205 • 004 H

004\206 ■ 301 LAB
004\c'07 • 271- CPM
004\210 • l :,o JTZ GOTCHA
OU4\211 • ll0 L
004\212 • 004 H
004\213 • 006 LAI
004\214 • 024 e(BADDATA)
004\:.:!IS • 106 CAL12B
004 \2 l 6 • J 1 J L
004 \21 7 • 0 I 1 H
004\:.!20 L 104 JMP GOTCHA
004\221 • 110 L
004\222 • 004 H

SIRIUS-MP
Staterent

• IS.

• 16.

a 17.

• 18.

• 19.

• zo.

• 21.

• 22.

• 23.

• 24.

• ZS.

• 26.
• 27.

• 28.

• 29.

• 30.

• 31.

• 32.

■ 33.

ECS Volume 1 No. 4 18 April 1975

8008 Gener ate d Code for MISC ELL AN E OU S routines (p 16, right)

Label 8008 Code Bytes

1NPUT2:
012\061 " 006
012\0(,2 = ·o 14
012\053 "' u·15
012'\Q(,4 C 30'/
012\065 111
0l2\Q66 310
012\06"/ "' 044
0 I 2\Q 7U C 140
012\U 71 0'/lj
0 I 2\0 72 lll•,
012,0·13 110
012,0-:_11 06 l
012,0·1:, "' 012
0 l 2 \() '/b 30 I
0 I c.\U'/ / 044
012\IUU ou·,
012\10 l = 074
0l2\lU2 uo·,

012'\IOJ l 50
0 l r'. \104 i l J
012\105 012
0l2\lll6 fJUG
Ol2\101 Oen
012\11 U l U (,
C\ l I:, \I 11 J(;J

0 I'"' l 12 iJ I 0

INPUTIT:
Cl I 2\11 3 11 J
0 I 2\I I 4 :JlC
CI 2 \.l l:, C'ci "/

OU1COUNT:
Ql;:\2UIJ 104
0 L! \cO l 11 t,
0l?\c!U2 OIU

NE\\OUTCNT:
Ol'J\IJC. 016
UlO\ll'/ "'017
010,120 ,. 10(,

010\121 116
010'\l22 012
Ol0\l2J 006
GIO\l24 U,c2
0 I O \ 1 2 :> U ·1:,
OlU\12(: J07
0 lU, 12·1 " 310
010\IJQ 113
0IU\IJI c 106
010\132 I'd
Olll\iJJ Ul2
Ol(J\IJ4 c 0U6
010,135 0?.2
0 1 0 \ I 3 6 0 ·, 5
010\I J'I

0 lll \I 40
010\141
OlU\142
010\143
0 IO \I 1-111

010\14:,
0 lU \l 46

06U
30 .,

C J21J
I 1 3
106
l/J /
Jl2
007

SIRIUS-MP Label
Statement

ONOFF:

LAl 6 l.
s(T APECTRL)
SYM
LAf.1
IN4 s 2.
LUA s 3.
NDI & 4.
"01 100 GOO"
CP: s 5. TOFF:
"OJ l(;O 000"
JTZ INPL:TZ
L
H
LAB s 6.
Nl.Jl 5 7. TON:
"00 OOu lil''
CPI !' 8.
"00 000 11 l" EITHEH:
JTZ lNP'JTlT
L
E
LAI 5 9.
c (f'.ADFO!Z1f)J__
CALL 12B

Il

I:\' 6 10.
LBA s 1 i.
RL:TCRN

JMP NEWOUTCNT llcrc 1s a p;.1tch to µct to the
L new vc.:rsion o;' OUTCOUN'f.
li

LEI B }.

I 510
CALL\\ AlTCS s 2.
L
H
LAI s 3.
.s (COL:r,T)
SY~ ... 1
LAtvi
LBA 6 4.
I"-15 6 5.
CAL W.\1TOUT s &.
L
H
LAl s 7.
s(COUNT)
SYM
I~L
LAM
LCA (; 8.
INS s 9.
CAL.L ',','AITOUT s 11.

L
II
RETURN s 12.

Patches to Previous Code

TAPECMDS:
012\J:,2 31 ·, "0"
012\3:,J 321 L(JONOFF)

012,2·;2 Ul2 "34" is T APECMDS (new va1'.1c:)
012\213 J:,2

JONOFF:
IMP entr;- lo the Olc'\J2I IU4 JMP O~OFF

012\J;.>2 2b4 L ONOf F ro,1linc sand-
Olc\J2J 011 H wiched in spare uyt•sb,

REP.DJ:
OlJ\JIJ !C4 H.iP READ Nt.w IMP HF:AD
0 I:, \j J l; c.;0u L entry addre~~ 1n

0 I J \:;I:, IJ')l.j H this jump.

COMPJ:
JMP CO~f PARE ~;ew J1'dP COMPARf: UIJ\jlt., IU4

U I J\.J I ·1 !liq L r ouL n e c i1 try ctddrest>

OIJ\J2;J UU'-1 H nov. in tlii~ JIHnp.

8008 Code Bytes SIRIUS - MP
Stateinent

011\264 C OU6 LAl
011 \:.::65 .. 014 s(TAPECTRL)
011 \266 " 0·15 SYM
011\867 "' 307 L,-\M
011 \270 .. 044 ;-,.;rn
011 \271 = 002 11 00 000 010"
O! 1 \2'12 .. l ':>U JTZ TON
011 ,2·13 "' J02 L
011 \274 " 011 H

011\275 0 l 6 LBI
011 \276 C 000 O
011 \27"/ C 104 JMP EITIIER
011 \300 .. 3U4 L
011 \301 .. 01 I H

011 \302 C 016 LnI
Ul l \303 .. 002 2

011 \J0 1l .. 307 LAM
011 \3'.,5 "' 0114 NDI
011\306 = 3'/4 "11 111 l 00"
011,30 ., ,. 261 OHB "xx xxx xBo"
0 l l \31 U : 3 '/U LMA
U 11 \31 l C !11 IN4
Ol l \J 12 02'.J hEY\\' AlT

Tape Extension
VARIABLES

*
8 l.

s 2.

8 3.

8 4.

8 5.

s 6.

8 7.
II 8.

b 9.
6 10.
F. 11.

(in order of appearance)

GPJMP, symbol 10

TAPECTRL, symbol 14

A, CPU register

MEMADDR, symbol 06, input
to tape transfers.

IBUFF, symbol 020

ICNT, symbol 016

NCNT, symbol 022

B, CPU register

BADDAT A, symbol 24

BADFORM, symbol 26

COUNT, symbol 22

ZERO, CPU flag

Note: NCNT, COUNT are
equivalent; ICNT and
TCOUNT (see March ECS)
are equivalent.

ECS Volume 1 No. 4 19 April 1975

The INPUT2 subroutine is at the top right hand side of page 16 held sideways. This
12-statement SIRIUS-MP subprogram is invoked by·a subroutine CALL whenever another
program wants to "read" a byte from the tape unit according to the content of TAPECTRL.
The reading method incorporated in the software of IMP to date is a "polling" technique
in which a loop tests status bits of the 1/0 device (UAR/T "RDA" and a motor turn-on
oneshot "ready" signal.) The loop consists of SIRIUS-MP statements 1 to 5 of INPUT2.
The routine breaks out of the loop, reads the data and returns with the data byte in the
variable "B" (a register in the 8008 generated code). The three UAR/T reception
status bits (parity error /framing error /overrun error) are checked and an error count
in BADFORM is incremented if no errors are detected.

The OUTCOUNT routine of the March issue of ECS was modified to improve performanc
in the course of rewriting the comparison software in SIRIUS for this issue. The prob
lem with the original version was the fact that an explicit output wait is required for
reliable reading of the data. Thus a patch is placed at location 012/200 to jump to the
new version of the program, loaded in some spare memory address space at 010/116.
The NEWOUTCNT has two changes: a) I increased the time delay before output to
1. 5 seconds (SIRlUS statements 1 and 2) ; b) I have inserted calls to W AITOUT after
each output of a byte (SIRIUS statements 5 and 9 of NEWOUTCNT.)

The ONOFF routine is a new routine added to support a new tape control command,
"TO" entered from the keyboard device. .The idea here is to have a way to turn on the
motor for purposes of listening to data with the ear, for rewinds of long duration, or

r for recording non-digital comments with the cassette recorder's built-in microphone.
The ONOFF routine itself is very simple, comprising a set of 12 SIRIUS statements
which map into 23 8008 bytes in the sample generated code. The "TO" function comple
ments the current state of the motor control bit in TAPECTRL and outputs the r.esult to
currently selected tape drive via the "1N4" instruction connected to the tape controller.

In setting up to run IMP with the new extensions, the patches to TAPECMDS, JONOFF,
and READJ / COMPJ locations of IMP must be made as indicated in the detail listing
of page 18. The T APECMDS table is extended for the new "0" subcommand by starting
it one byte earlier; the symbol table symbol 11 34" for T APECMDS is adjusted to reflect
this addition. The new execution jump JONOFF is added to get the program into the
ONOFF routine, and the READJ/COMPJ jumps are changed to reflect altered placement
of these routines from the original layout. One other change is required to the symbol
table published previously: the address of symbol "20 11 should be changed to "220 11 in
byte 012/ 301 of the 8008 code. This symbol has been changed from its original use
and now becomes the memory pointer "IB UFF" with two bytes instead of the original
1 byte of reserved space.

COMMENTS ON THE ECS-8 DESIGN:

The output of the TSI (serial data to the computer interface) line is not suitable for
an interrupt driven UAR/T software interface without use of some masking logic. The
problem is this: the FSK input decode is done by the phase lock loop of the XR-210.
When null inputs (eg: tape leader period, or any time without a mark signal) occur, the
phase lock loop hunts around for a lock - thus causing the comparator to have its input
switch back and forth with the result being a digital noise signal on the TSI line. If
the UART is listening, it will decode erroneous characters in this mode. The software
of this article ignores the problem by not listening unless good data is coming.

ECS Volume 1 No. 4 20 April 1975

Notes on NAVIGATION IN THE VICINITY OF 0(- AQUILA ...

This article begins a regular series of information and
commentary on the use of the Intel 8080 in an ECS context,
with occasional specific reference to packaged systems such
as the MlTS Altair product. In addition to the MlTS product,
there is at least one other source of the 8080 chips and boards
advertising in the pages of Radio Electronics/ Popular Elec
tronics. This first installment concerns some general com
ments on the 8080 instruction set and specific suggestions con-

. cerning 16-bit arithmetic operations (addition/ subtraction) m
applications other than address calculations.

AO -1. 1: Addressing Modes.

#1

One of the most basic questions to be asked whenever you ponder the use of a new
computer instruction architecture is "what are its addressing modes? 11 The answers all
lie in the hardware designer's backyard .. ~~v11enever a specific existing machine such as the
3080 is considered. How do I~::.!. at the data in memory when I want to perform some oper
ation in the machine? Are there different wavs 0f reaching the same data item? And so
on. The effects of addressing and data reference will color the whole process of gen-
erating programs for the architecture of the machine in question. For instance, if the
n1achine is a "stack rnachine" (not a machine with a stack, but one designed for opera- ~·
tions between stack elements) then the addressing can almost exclusively be implied by
the way operations are done. On such a machine, the only bits needed for an instruction
are the data bits which specify an operation. But in the real world of existing and
implemented machines available to the ECS type of application, the coloring of coding is
much more conventional - addressing is performed as part of the instruction or as
part of an implied setup in a CPU register under program control. In the Intel 8080
(as in the 8008) the design of addressing modes is a fairly arbitrary pot-pouri of methods
fraught with special cases not ammenable to concise summary without losing information.
In order to write programs these addressing modes must be known and understood so that
the best of alternatives (if any) can be evaluated and used in a given programming situa
tion. In the comments below, a few of the conventional addressing concepts in
computer designs are isolated and illustrated with regard to the 8080.

AQ-1. 2: Immediate Addressing.

Immediate data addressing exists in some form in most contemporary computers,
with the ,:sual definition being a constant bit pattern of one word length, following the
operation code in a program. The 8080 includes this form of addressing with all the
immediate operatiuns which exist on its antecedent the 8008, plus some extensions which
make the architecture more useful as a general purpose computing element. The primary
extension of immediate addressing is to the inclusion of a long (16-bit) form of the con
cept in certain limited classes of move (load/ store) operations with respect to GPU reg-
isters. The 8080 partitions 6 of the 7 CPU registrs into three pairs ''index registers'~
which may be loaded with 16-bit numbers using immediate addressing. The primary in-

tention of such operations is the loading of an address, but programmers can and

I

(

ECS Volume 1 No. 4 21 April 1975

do use operations for whatever purpose is required to solve a problem - so whenever
one needs a 16- bit ''literal" data item this form of double byte immediate operation can
be used to load CPU registers.

One particular use of the two-word irrunediate form in its intended application is
the initialization of the stack pointer as a part of setting up execution of a prog
ram. In large scale systems the equivalent of a stack poii:iter (ie: system defined
addressing parameters) is usually determined by the ''operating system" prior to
the call which invokes a user-program. But in your use of a microcomputer of
the 808 0 (or Motorola 6800) design, with minimal software, you can make no as
sllillptions about the initialization. To be used, the stack must exist in random
access read /write memory so that the temporary linkage data associated with
the CALL operation and its arguments can be stored. In order for this linkage
to occur, the stack pointer (SP) must point to the RAM area. One way to initial
ize the stack pointer following the start of execution is contained in the following
SIRIUS-MP notation and its 8080 translation:

SIRIUS: 8080:
SP - : : location LXI SP, location

In both instances, the "location" is the 16-bit integer number which is the address
of the stack area.

AO-1. 3: Absolute Addressing.

The design of a computer instruction set involves many trade-offs, the evaluation of
options with inputs ranging from the preferences of programming individuals to the phys
ical constraints of the LSI chip. In the best of all possible programming worlds, one
would like to see a consistent set of addressing modes applicable in principle to any of the
basic operations possible. In particular, a more extended use of an absolute (in-instruc
tion stream) form would be desirable than has been implemented with the 8080. There
are two basic operations available in the 8080 instruction set which reference memory
from within the instruction stream. These are the load (LOA, LHLD) and store (ST A,
SHLD) operc:.tions in 8 and 16 bit variations. For program code which involves fixed
data areas at locations allocated by hand or by an assembler /compiler, these operations
will be used extensively to prepare data for the execution of actual 11work 11 -since the
actual work cannot reference memory directly. The use of load and store for this pur
pose is highly conventional in many minicomputers, although usually at least one of the
algebraic /logic operation operands can be acquired by a direct or indirect memory ref
erence in the instruction stream. (As a point of contrast, the Motorola 6800 microcom
puter can perform most of its arithmetic/logical operations with one in-instruction address

reference to memory.)

AQ-1. 4: Pointer Addressing.

One area where the 8080 has some excellence is in the number of CPU registers it

has and the fact that three different pairs can be used as "index registers" for fetching

ECS Volume 1 No. 4 22 April 197 5

data to an accumulator (all pairs) or referencing memory operands (H/ L only) of the
aritlunetic operations. It is thus fairly easy to keep pointers around locally in the
CPU without the need to transfer them to another location when making a reference
based upon the indexe The pointers are, however, only good for one operation in
general - referencing data in load/store situations, and thus not as useful
as they might otherwise have been. The memory reference mod~s of all the 8-bit
arithmetic and logical instructions use one of these pointers., the H/L register pair.,
to addre5s the one memory operand (the implied second operand is the accumulator
register A.) All the procedures and tricks applicable to setting up H/ L pointer addresses
in the earlier 8008 microcomputer design apply as well to the equivalent H/L forms of
the 808 O.

One particular programming trick which will prove useful in manipulating blocks
of data involves the use of one pointer pair - D/E - to point to one operand block
and a second pointer pair - H/L to reference the second block. Suppose the
problem is to "AND11 al 1 the bytes of one block with the bytes of another and to
store the result in the second. The basic set of inst ructions used to set up the
loop would be:

LXID
LXIH

address 1
address 2 set up addresses

With this setup., the heart of a loop to transfer the data with an AND condition as
required by the problem statement would be:

MOV, A, M
XCHG

ANA M
MOY M.,A
INXH
XCHG
INXH

Fetch first operand byte
Establish second operand address, but

save fir st operand address
AND with second byte

Save in secorrl operand byte
Increment address
Move back in exchange
Increment address

This code does not include the instructions needed to establish a loop - to trans
fer a block with this operation would require a loop count and loop count decre
ment followed by conditional test for continuation.

This sarrie general scheme of switching the D/E with H/L registers can be used
quite widely your program must step simultaneously through two regions of mem
ory. The technique only works with D/ E & H/ L unless you want to take a calcu
lated risk and exchange with the stack pointer instead of D/ E.

AQ-1. 5: 16-Bit Operations & 16-Bit Addition/Subtraction.

The 8080 has a specific and limited set of 16-bit operations which can be used to some
advantage both for the intended purpose (address calculation and setup) and in more gen
eral problems. The 16-bit operations are

16-bit Load and Store between reg~ster pairs and memory or immediate
(Load only) data.

16-bit Addition intended for address calculation.
16-bit Increment/Decrement useful in loop counting & address changing.

ECS Volume 1 No. 4 23 April 1975

For the more general usage of the 16-bit addition operation in programs reqmnng
the extended precision addition / subtraction, the H/L register pair can be treated as
if it were a 16-bit accwnulator for the purposes of calculation with the actual results
being stored ultimately in memory operands. The boxes below illustrate two calculations
in 16 bit precision, under the following assumptions:

a. Variable P is a two- byte operand at locations P and P + 1.
b. Variable Q is a two-byte operand at locations O and- O + 1.
c. The content of A, H and L registers is irrelevant prior to and

following the calculation.
d. Absolute addressing will be used with the result stored back in P, as if

P were a "software accumulator."

Note the differences in the size of the little routines involved - for the addition case,
the setup and execution is fairly compact. For subtraction the need to form the two's
complement negative of the Q operand complicates the picture .•.

The SIRIUS-MP statement:
generates ...

LHLD
XCHG
LHLD
DADD
SHLD

The SIRIUS-MP
generates ..•

LDA
CMA
MOV
LDA
CMA
MOV
INX
LHLD
DADD
SHLD

Q

p

p

statement:

Q

D,A
O+l

E,A
D
p

p

p +:: Q * 16-BIT ADD

Get fir st operand bytes to C
Move first op to D/E
Get second operand (soft. accum.
Add C to P giving P
Store result back into new P value

P - .. Q * 16-BIT SUBTRACT

Get first byte, negative operand.
Complement it
Move it to D of D/E pair.
Get second byte, negative operand.
Complement it.
Move it to E of D/E pair.
Increment complement giving -Q value
Get software accumulator value
Value of P - O now in H/L
Save back in software accumulator.

After either of these operations, the carry flag can be tested to find out if an overflow
occurred, thus in principal allowing extended precision of greater precision than 16 bits.

One particular 16-bit operation may prove of use in certain contexts. This is the
16-bit addition of the H/ L register pair to itself by means of the DADH instruction •
There are two instances where this variation of 16-bit addition stands out for potential

utility:
a. Suppose I want to address an extended array of data kept in 2, 4, 8 or 2n
byte quanta. The shift properties of this addition (it multiplies H/ L by 2) can
be used "n" times to modify an integer array index ala FOR TRAN or PL/1 into
a useful address offs et.

b. This left shift operation can form the basis of an integer multiply operation.

ECS Volume 1 No. 4 24 April 197 5

AO-1. 6 A Ceremonial "Nit'':

It serves no good end to act the part of a contentious critic, but... at the risk of
being in the position of a pot calling the kettle black I do protest MITS' use of the
Anguish Languish (technical dialect) in the Altair 8800 manual I examined recently:

Implement: This verbalized noun is conventionally used in technical con
texts such as 11to implement a system." {le: to create the system.) A
computer designer implements an LDA or ST A instruction; the programmer
codes said implern.ented instruction (ie: selects it) as part of his own pro
cess of implementing a software system. Programmers never use unimple
mented instructions as a matter of course. (If you take Webster literally
one might come out with the MITS definition of the term implement.)

Variance: A variance exists and is defined in the legalese terminology of
11 obtaining a variance (exception)rr to some law by bootlicking and bribing
the appropriate petty bureaucrats. It is also the square of the standard
deviation in the terminology of statistics. A variance is not a variation on
an instruction I s operation, that is unless one wished to redefine conventional

usage.

I have been collecting reports from several subscribers on the Altair product and with
the exception of what appear to be relatively minor technical problems, most purchasers
of the system indicate satisfaction with the product and service on it. ~•

ERRATUM:

Charles S. Lovett receives a one issue subscription eA-tension for being the first sub
scriber to report an error in the ECS-7 design article of February 1975 ECS. The line
from pin 2 of IC -14- which is shown connected toground should instead have been a
• 01 mfd capacitor to ground. (Switch Sl would have no effect if wired as drawn.)

A NOTE CONCERNING THE MOTOROLA 6800 MPU •••

With this is sue, I have started to make references to the M6800 MPU system, pri
marily because I expect it to be available to the Experimenter 1 s Computer System market
in the near future. I have been in fairly close contact with the local Motorola sales office
in connection with some hardware/software design work I am currently doing, and I have
indications that supplies of this product will soon be fairly widely distributed.

If you want to find out about the M6800 in detail, I wholeheartedly recommend purchase
of the M6800 Microprocessor Applications Manual (approximately 700 pages 8. 5 x 11 @
$25. 00) and the M6800 Microprocessor Programming Manual (approximately 250 pages
@ $10. 00). The applications manual includes lots of useful information including inter
faces (hardware and software) to floppy discs, cassette tape drives, teletype, Burroughs
self-scan di splays, adding machine tape printers, etc. etc. I have verbal assuranc,..~,
from the local Motorola sales office that these books will be sold to private individuah h

request. If you are interested I suggest that you look up the telephone nun1ber of the near
est office and inquire. If you have any problems, let me know and IH try to make formal
arrangements to distribute copies. These documents will set the standard for some time
to come, and would easily serve as the basis of a "software engineering 11 course in appli
cations.

M. P. Publishing Co.

ECS
Publisher's Introduction:

Box 378 Belmont, Mass. 02178 Vol. 1 No. 5 May '75

THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

For every process there is an initialization segment - a starting point in time,
during which time the program for the process sets up data values and begins its oper
ation. In a sense, this issue represents such an initialization - it is the first issue to
contain a subscriber-written article, the Digital Graphic Display Oscilliscope Inter
face design and writeup prepared by James Hogenson. The graphics device was con-
e eived by Jim as a neat idea to add to his own computer system which he was building
for a high school science fair. He first mentioned it to me in a letter late last year.
I suggested to him (or was it the other way around?) that it might be appropriate to
turn it into an article for ECS. After a fair amount of tune spent researching the var
ious options •· plus one lengthy phone conversation with me - Jim settled on the design
shown in this issue. He constructed the prototype using wire wrap techniques, and
interfaced it with his 8008 built using the RGS kit. The interface is very simple, and
can be adapted to virtually any computer with a parallel 8-bit output and a clock pulse
arriving to the interface during periods of stable data. The device is programmed using
a simple two-bit op code field and six-bit data/ control field within the 8-bit interface.

I have a PC board version of the design completed as of the date of publication of
this issue (so I can get one myself) - with artwork by Andy Hay using Jim's layout. I

I "" expect to have the board debugged and ready to offer to customers with the June issue
of ECSo The roster for this issue is equal in size to the base of that number system
which all computer "nuts" know and love •••

1. Digital Graphic Display Oscilliscope Interface, by James Hogenson. Turn
to page 2 for the details which turn your scope into a LIFE matrix, a checker
board, a ping-pong game or whatever your imagination, a 64x64 bit-matrix and
appropriate software can represent.

2. Concerning the Hand Assen1bly of Programs, by yours truly, in which the
"assenibly" of programs by hand is discussed at some length, along with several
more comments on SlRIUS matters and an example in the form of CONCATTER -

a routine to concatenate byte strings.

This issue is going to press May 12 1975. The limits of space precluded the next in
stahnent of "Notes on Navigation in the Vicinity of o<..- Aquila. 11 In the next issue, the
8080 machine architecture will again be visited in the form of further "notes." Also
in the next issue, a SIRIUS-MP specified bootstrap sequence will be presented, along
with the 8008 code for same. In this case, I mean a "real" planned-in-advance boot-
strap load method with all the bells and whistles. Up and coming designs for
the near future include an electronic music peripheral (not necessa~ily as good as
Peter Helmers' "Metapiana 11) as well as an article with a small amount of hardware and
a lot of software concerning the programming of interesting digital clocks ..

~ (!.wJ '5-1~1~,
Carl T., Helmers, Jr.
Publisher May 11 1975

0 1975 M .. P. Publishing Co.. All Rights Reserved.

ECS Volurnc 1

INTRODUCTION

No. 5 2

DIGITAL GRAPHIC DISPLAY OSCILLOSCOPE INTERFACE
de-6~gne_ci a.nd t•Yr.i,,tten by la.me,~ Hogeru,on

If you want your computer to cough up alpha-numeric information,
chances are, you won't have too much problem finding a suitable output
device. But if you want your computer to draw pictures, you may find
yourself facing a dead end. You could use one of those fancy commercially
available graphic CRT t0rminals, but the IBM you 1 d need to run the thing
might not fit on your workbench. If you do have a spare IBM collecting
dust on your closet shelf, fine, but if you're like the rest of us, you
need something inexpensive, uncomplicated, and within the scope of the
average 8008 or similar system. Thus we have the ECS Digital Graphic
Display Oscilloscope Interface. For $50 worth in semiconductors, your
computer can have under its own completely progranmed control a fJll
raster on the screen of your oscilloscope.

The digital graphic display oscilloscope interface (DGDOI) i5
prograrrrned and operated through an 8-bit TTL compatible input. The
picture is produced by a pattern of dots. These dots are set in patterns
according to the computer 1 s instructions, resulting in a computer gen
erated drawing. The entir~ pattern of dots is stored within the DGDOI's
own internal memory. Once the pattern has been generated and loaded
into the DGDOI, the computer no longer needs to retain any related data.
This also means the pattern may be generated and loaded in small parts,
one part at a time. During the scan cycle, the digital infonnation is
converted to analog wavefonns and displayed on the oscilloscope.

PRINCIPLE OF OPERATION

The raster begins its scan in the upper left-hand corner, scanning
left to right and down. The full raster contains 4096 dots; 64 rows of
64 dots each. The horizontal ~~an is produced by a stepping analog ramp
wave. Each step of the ramp produces one dot. There are 64 steps in
the wave. The vertical scan is similar. It is a stepping ramp wave
consisting of 64 steps. However, there is only one step in the vertical
wave for each complete horizontal wave. The result is 64 vertical steps
with 64 horizonta·1 steps per vertical step. This produces 64 rows of
64 dots.

The ramp waves originate at a 12-bit binary counter, the center of
the entire circuit. The six lower (least significant) bits of the
counter are connected to a digital-to-anaiog converter (DAC), which con
verts the digital binary input to a voltage level output. The output of
the DAC is the horizontal ramp wave. The six upper (most significant)
bits are co~nccted to a second DAC. This DAC produces the vertical ramp
wave. Incrementiriq the 12-bit c·ounter at high frequenr:ies results ·;n a
raster o~ the scre2n cf the oscilloscope.

The control G~ th pattern 0f dots needed to represent a picture is
depende:·1t ~,ipon the i tensi:_,i cf' e;:ch dot fn};r, th·is puirt, we ,s.-l11 a'.)s~me
a dJt can be e·iU:f~- on or Ff An aot hl1l sh0w up on the screen as
a dct of 1 ighL "~·.c 11 nff!• de -..;in tie a d m sp:1t or blank on the screen,

I ,

ECS Volume 1 No. 5 3 May 1975

When a particular dot is selected for progra1T1T1ing, it is prograrmied
as either on or off. The on-off control can be represented by a single
bit. It is this bit which is stored in the internal memory of the DGDOI.
There is one bit in the memory for each of the possible 4096 dots on the
screen. When selecting a dot for prograrrrning, you are actually addressing
the memory location of that particular dot. You then set the dot for on
or off. When displaying the image, the 12-bit counter which produces the
raster addresses each dot in the memory as it is displayed on the screen.
The on-off bit taken from the memory is converted to a Z-axis signal which
controls the intensity of the dot. The Z-axis signal is fed into the
Z-axis input on the scope.

Much of the circuitry is taken up in the 12-bit counter, the DAC's,
and the memory. Figure 1 shows a block diagram of the DGDOI. The re
maining circuitry is the control circuitry which decodes the 8-bit input
word and allows for completely prograrrmed operation.

PROGRA""1ING

Oe_ Code.
Table. 1

"Oct.al BlnaJty Mnemonic. E x.pla.nat.lc n

00DDDDDD Ono STX Se;t X

OlDDDDDD lDD STY Se,t y

lOxxxOOO 2x0 CNO Contlwl - No Op

10xxx001 2xl TSF Contlwl - TUIUt 066 ~c.an

10xxx010 2x2 ZON Con-tlr.ol - Se,t Z on

10xxx011 2x3 ZOF Contlwl - Se,t Z 066

lOxxxlOO 2x4 ZNI ContJwl - Se,t Z on with .uielleme.nt

10xxxl01 2x5 ZFI Co ntJw l - S e.:t Z o 6 6 with in ell em e.nt

lOxxxllO 2x6 TSN Con.tltol - TUJLn on ~c.a.n

lOxxxlll 2x7 CNO ContJwl - No Op

llxxxxxx 3xx CNO No Op

D = DATA X = NULL

The progranming instruction format is shown in Table 1. Bits 7 and 6
of the input word are the high-order instruction code. We will assume that
the addressing of dots is done on the basis of X and Y coordinates. The X
coordinate is the 6 bits in the lower half or horizontal section of the 12-bit
counter. The Y coordinate is the 6 upper bits or vertical half of the counter.
In prograrrming from an 8-bit input source, all 12 bits of the counter cannot
be set at once. The counter is set one half or 6 bits at a time. It is for
this reason we assume an X and Y coordinate for progranming. When the instruc
tion code (bits 7 & 6) is set at 00, the data in bits O through 5 of the in
put word is loaded into the lower half of th2 counter as the X coordinate.

ECS Vol urne 1 4 May l q7c:;

When the instruction code is set at 01, the data in bits O through 5 is
loaded into the upper half of the counter as the Y coordinate. In effect,
the Y coordinate will select a row and the X coordinate will select a dot in
that selected row. The coordinates loaded into the counter will address the
memory and select the dot location we want to program.

After loading the coordinates of the dot for prograITJTiing, we set the
dot itself. Setting the instruction code at 10 directs the control cir
cuitry to decode the three lower bits of the data word for further instruc
tion. We will call the lower three bits the low order control code.

The first low order control is a No Op instruction. The eighth control
and the fourth high order instruction are also No Op's.

The second control will turn off the scan. The seventh control will
turn the scan on. When the scan is on, the counter is incremented at a high
frequency and the programmed image is displayed on the scope. The scan must
be turned off before a dot can be programmed.

The third control, set Z on, will program a dot to appear at the dot
location presently loaded into the counter. The fourth control, set Z off,
will program a blank to appear at the dot location presently loaded into the
counter.

The fifth and sixth control instructions set Zin the same manner as
controls three and four. However, after setting Z, these instructions will
also increment the counter by one. This will allow the entire 4096 dots to
be prograrm1ed using only a repeated "set Z11 instruction. The counter will
naturally follow the regular scan pattern of the raster. This is especially
useful in clearing the contents of the DGDOI memory so that a new image can
be prograrm1ed. It can also be used in making horizontal lines or other
patterns in the image.

CIRCUIT OPERATION

Once the data word on the input is stable, only one clock pulse is
needed to execute the instruction. The high order instruction is decoded by
the 7410 triple three-input NANO gate and two inverters. The clock pulse is
enabled by the NANO gate to the appropriate counter section, or to the strobe
input of the low order control decoder. The clock pulse is enabled according
to the instruction of bits 7 and 6.

The 12-bit counter consists of two 6-bit counting sections. Each sec
tion consists of two cascaded TTL 74193 presettable binary counters. Bits
0 through 5 of the data input are common to both sections of the counter.
The set X instruction will pulse the load input of the lower or X section of
the counter. The pulse on the load input will cause the data on bits 0
through 5 to be loaded into the counter section.

The Y instruction, similar to the X instruction, will pulse the load
input of the upper or Y section of the counter.

The two sections are cascaded by connecting the upper data B output of
the X counter section, pin 2, IC 8, through inverter 1 a 1 of IC 2 to the count
up input, pin 5, IC 9, of the Y counter section.

The low order control code is decoded by a 74155 decoder connected for
3 to 8 line decoding. Bits O through 2 are decoded by the 74155. The con
trol code is enabled by the pulse coming from the 7410 high order instruction
decoder. The low order control is enabled only when the high order code is
set at 10 on bits 7 and 6.

Decoder lines 1 and 6 are connected to an R/S flip flop which provides
the scan on/off control. The R/S flip flop enables a high frequency square
wave to increment the 12-bit countPr.

ECS Volume 1 No. 5 5 May 1975

Control instructions 2 through 5 are 'set Z' instructions, therefore
involving a data write operation. Decoder lines 2,3,4, and 5 are connected
to a group of AND gates (IC 5a,b,c) functioning as a negative logic OR gate.
The output of the gate is the Read/Write control line for the memory. When
this line is in the low state, the data present on the data input line of
the memory will be written into the memory location presently being addressed
by the 12-bit counter.

The data input of the memory is connected directly to bit O of the
8-bit input word. A bit will be stored in the memory only when a 1 set Z'
instruction is executed. The Z-axis circuitry requires a high state pulse
for a blank. As shown in the binary fonnat, Table 1, bit zero will be a
binary zero for 'set Z on' instructions and binary one for 'set Z off' in
structions. The backward appearance of this binary format will be overlooked
when prograITTTiing in octal notation.

The high frequency square wave controlled by the R/S flip flop and
decoder lines 4 and 5 are negative logic ORed. The resulting pulse increments
the counter according to the control instruction.

The same clock pulse is used to write data into the menory and incre
ment the counter in control instructions 4 and 5. The data is written into
the memory on the leading edge of the pulse. The counter is incremented on
the trailing edge. Figure 2 shows this wavefonn.

Output bits O through 9 of the 12-bit counter are connected to the ad
dress inputs of the memory. The memory uses four MM2102 1024 x 1 bit MOS
RAM's (Random Access Memories). Bits 10 and 11 of the counter output are con
nected ta the chip select circuitry which enables one chip at a time for ad
dressing and data input/output operations. The chip select circuitry uses 2

, inverters and a TTL 7400 Quad two-input NANO gate.
The data outputs of the RAM's are OR-tied and connected to an AND gate.

The data output is synchronized with the high frequency clock for better
blanking performance. The output of this gate is connected to the Z-axis
blanking circuitry. This circuitry converts the TTL level signal to a scope
compatible signal.

Bits O through 5 of the 12 bit counter are ccnnected to the X coordinate
DAC. Bits 6 through 11 of the counter are connected to the Y coordinate DAC.
The DAC's are Motorola MC1406 IC 1 s. They operate on voltages of +5 and -9.
A current output is produced by the DAC's. The current output is converted
to a voltage output and amplified by the 741 Op Amps. The output from the
X coordinate circuitry is connected to the horizontal input of the scope.
(The scope should be set for external horizontal sweep.) The output from the
Y coordinate circuitry is connected to the vertical input of the scope.

CONSTRUCT! ON

A printed circuit board is being planned for this project, but for the
time being, the method of construction is left for the reader to decide upon
tor himself.

Remember that the memory IC' s are MOS devices and should be handled as
such. Static electricity will not do them any good.

Remember to use bypass capacitors. A 100 mfd electrolytic and several
.01 mfd disc capacitors are usually recorrmended. An acceptable "rule of
thumb" is one d'isc capacitor for every two to three TTL ::.hips and one electro
lytic per p.c. board.

The parts list is shown on the next page. The schematic diagram is
also included in one cf the following pages.

ECS Volurne 1 No. 5

Cl,C2
CJ
C4
cs
Bypass
Bypass

Ol-O3

IC 1
IC 2
IC 3, IC 4
IC 5
IC 6
IC 7-IC 10
IC 11-IC 14
IC 15, IC 16
IC 17, IC 18
IC 19

Ql, Q2

Rl, R2
R3, R4
RS, R9
R6
R7
RS
Rl0
Rll, Rl2

20pf
.0lmf
.0015mf
330pf
l00mf
.0lmf

6

PARTS LIST

disc capacitor
disc capacitor
disc capacitor
disc capacitor
electrolytic capacitor
disc capacitors

silicon rectifier (1N914 or similar)

7410
7404
7400
7408

74155
74193

2102
MC1406

741
NESSS

TTL Triple 3-Input NANO Gate
TTL Hex Inverter
TTL Quad 2-Input NANO Gate
TTL Quad 2-Input AND Gate
TTL Dual 2-to-4-line Decoder
TTL Presettable 4-bit Binary Counter
MOS 1024-bit Static RAM
Motorola 6-bit DAC
Op Amp
Oscillator

2N5139 Transistor

3.3k ohm resistor
5.6k ohm resistor
2.2k ohm resistor all resistors
1. Bk ohm resistor ¼ watt, 10%

18k ohm resistor
100 ohm resistor
7.Sk ohm miniature potentiometer
l0k ohm miniature potentiometer

SET-UP, TESTING, AND OPERATION

Supply voltages needed are +5 VDC at 400 mA, +15 and -15 voe at 10 mA.
The TTL and memory Ie's operate on +5 voe. The DAC's use +5 and -15 voe.
The Op Amps use +15 and -15 voe. The DAC's and Op Amps will also operate
with voltages of 9 or 12 instead of 15. This will allow you to use your ex
isting computer's power supply for the DGDOI as well.

When you are satisfied that your DGDOI is ready for operation, do not
i0111ediately connect it to an I/0 channel on your computer. For initial test
ing, use the test circuit shown in Figure 5 (Included in following pages).
The only requirement is that the test rig be able to provide an 8-bit binary
input word and a clock pulse. If a computer is used for initial testing, it
is difficult to pinpoint a problem as being in the circuit. A problem can
often be found in the software used with the DGDOI.

The clock pulse should be active in the high state as shown in Figure
Three. If your computer operates with an active-low pulse, an inverter is
needed for inverting the clock pulse.

When you are ready to test, turn on the power and load a 'turn on scan 1

instruction. The turn on scan instruction should produce a raster. If a
distorted concentration of dots appears, adjust the DAC voltage reference pots.

ECS Volume 1 No. 5 7 May 1975

The high frequency square wave is provided by~ 555 timer JC connected
as an astable mubtivibrator. Adjusting the frequency may be necessary to
obtain a stable appearing raster. (Note: you don't need a fancy scope for
this project. A cheap 250kHz scope was used with the proto-type.)

The next step is to check the blanking. You should get a mixture of
on and off dots simply by turning on the power. The frequency of the scan
and voltage supplied to the Z-axis circuitry both affect blanking performance.
The Z-axis amplifier may be disconnected from the -15 volt supply and con
nected to up to -25 volts. The frequency may be adjusted with the 7.5k pot.
It should be noted however, that raising either of these too high will have
adverse effects. Keep in mind that the Z-axis is connected through a cap
acitor (in most cases) within the scope. Charging the capacitor with too
much voltage at a given frequency will cause the blank to carry over into the
next dot. Thus one blank pulse blanks out two dots. Avoid this situation.

Perfonnance varies, depending upon each particular scope. The best way
to find the best contrast and blanking perfonnance is by experimenting. If
you are unable to obtain any blanking, connect the Z-axis output to the ver
tical input of your scope. If no pulses are present, your trouble is back
in the DGDOI circuit.

After you have obtained a satisfactory raster, execute each instruction
manually to verify its operation. Clear the memory by setting the input at
205 {octal) and connecting a lOkHz square wave to the clock pulse input.
{Remember: Scan must be turned off before prograJT1T1ing any dots) Execute a
set X, set Y, a number of set Z on with increment's, and turn on scan. Your
programned dots should now appear.

If all operations seem good, connect your computer. You may write
programs to your hearts content, but just in case, there is a test pattern
program included in this article. If your DGDOI doesn't operate correctly
after connecting your computer, check all software first. This is usually
the cause of most problems.

The data output of the DGDOI memory may be connected as a computer in
put, but this is optional. To read the status of a dot, you would load the
coordinate of the selected dot, then read the single bit data output.

TEST PATTERN PROGRAM

The program listed on the following page{s) will program the DGDOI for
a test pattern. The pattern will be a checkerboard pattern of 16 alternating
light and dark squares.

The program counts off 4 sections of 16 dots per section. Each section
is alternated to get a pattern of light-dark-light-dark or dark-light-dark
light. Rows are also counted off in groups of 16. Each row in the same
group is set with the same pattern, but each group is set with an alternate
pattern.

The set Z with increment instructions are used. The least significant
bit of the E register is used in DECLOOP to alternate between set Z on and
set Z off.

The various loops in the program are briefly described in the following
paragraphs.

OOTLOOP counts off each section of 16 dots and programs the section of
, 12

l dots according to DECLOOP.
XSECLOOP counts off 4 sections per row and jumps back to DECLOOP to

alternate the set Z instructions between sections.

ECS Vul un1c 1 Noc 8 May IC}75

ROWLOOP counts groups of 16 rows and increments the E register an extra
time to reverse the order in DECLOOP between each group of rows.

YSECLOOP counts off 4 groups of 16 rows to halt computer when checker-
board has been loaded into DGDOI.

To invert the pattern on the screen, load E with 001 instead of 000 in
location 00 220. This will have the effect of inverting the parity register.
The result would produce a pattern of the opposite light and dark arrangement.

START 00/200 = 006 LAI 00/255 = 302 LAC
00/201 = 201 (TSF) 00/256 = 024 SUI
00/202 = 121 OUT 10 00/257 = 003
00/203 = 006 LAI 00/260 = 150 JTZ
00/204 = 000 (STX) 00/261 = 267
00/205 = 121 OUT 10 00/262 = 000
00/206 = 006 LAI 00/263 = 020 INC
00/207 = 100 (STY) 00/264 = 104 JMP
00/210 = 121 OUT 10 00/265 = 221

CLEAR 00i211 = 016 LBI 00/266 = 000
REGISTERS 00/212 = 000 ROWLOOP 00/267 = 026 LCI

00/213 = 321 LCB 00/270 = 000
00/214 = 331 LOB 00/271 = 303 LAD
00/215 = 351 LHB 00/272 = 044 NDI
00/216 = 361 LLB 00/273 = 037
00/217 = 046 LEI 00/274 = 024 SUI

PARITY REG 00/220 = 000 00/275 = 017
DECLOOP 00/221 = 040 INE 00/276 = 150 JTZ

00/222 = 304 LAE 00/277 = 305
00/223 = 044 NOi 00/300 = 000
00/224 = 001 00/301 = 030 IND
00/225 = 150 JTZ 00/302 = 104 JMP
00/226 = 246 00/303 = 221
00/227 = 000 00/304 = 000
00/230 = 066 LLI YSECL00P 00/305 = 303 LAD
00/231 = 332 00/306 = 044 NDI

D0TL00P 00/232 = 301 LAB 00/307 = 340
00/233 = 024 SUI 00/310 = 330 LOA
00/234 = 020 00/311 = 024 SUI
00/235 = 150 JTZ 00/312 = 140
00/236 = 253 00/313 = 150 JTZ
00/237 = 000 00/314 = 326
00/240 = 010 INB 00/315 = 000
00/241 = 307 LAM 00/316 = 303 LAD
00/242 = 121 OUT 10 00/317 = 004 ADI
00/243 = 104 JMP 00/320 = 040
00/244 = 232 00/321 = 330 LOA
00/245 = 000 00/322 = 040 INE

DECL00PJMP 00/246 = 066 LLI 00/323 = 104 JMP
00/247 = 333 00/324 = 221
00/250 = 104 JMP 00/325 = 000
00/251 = 232 END 00/326 = 006 LAI
00/252 = 000 00/327 = 206 (TSN)

XSECL00P 00/253 = 016 LBI 00/330 = 121 OUT 10
00/254 = 000 00/331 = 377 HLT

OU/33~ = 204 (ZNI)
OU/333 = 205 (ZFI)

;.l)-6.

ECS Volume 1 No. 5

CONTROL
CIRCUITRY

MEMORY

el.ANK
CKTY

Z OUTPUT

INPUT

CHIP
------tc~LECT

CKTV.

9

y
DAC

X
DAC

COUNTER

VE TIC.AL ~IZONTAL.
OUTPUT OUTPUT

FIGURE t.
DGDOI BLOCK DIAGRAM

May 1975

..---PULSE WIDTH DETERMINED --.&,---
BY EXTERNAL CLOCK PULc:.e: SOURCE

MINIMUM 750 NS.

DATA STORED COUNTER INCREMENTED
FIGURE 2.

•5 V n--------INSTRUCTION IS EXECUTED
DURING THIS PULSE.

MINIMUM 750 NS.

O SIGNAL ON CLOCK PULSE INPUT FIGURE 3.

IC POWER AND N/C PIN CONNECTION CHART

IC +5 GND +9 -9 N/C

1,2,3,4,5 14 i ---

6 16 8 9,4
7 9 4 16 8, 14
8, 10 16 8, 14 ___ _ 6 , 1 , g-:-fo , 12 , 13
11,12,13,14 10 9
15,16 11 2

_3 _____ 1 ___

17,18 7 4---7-53-
----~~--

19 4,8 1 - - -- -·-

2102 MEMORY ADDRESS PIN CONNECTIONS

A-0 p1n 8 A-1 pin 4 : A-2 p,n 5 A-3 pin 6
A-4 -- pin 7 : A-5 pin 2 : A-6 pin 1 A-7 pin 16

A-8 pin 15: A-9 pin 14

ECS Volun1c 1 No. J

CLOCK PULSE INPUT

CONTROL

4 8
+5V

3
IC 19

NE555
5

C3
.01 mf

H

CIRCLED LETTERS INDICATE CONNECTIONS
WITHIN CiRCUIT-

10 May l'--}75

18-BIT DATA INPUT ~
87 B

--+--+--+-~ r
-----G

I I 3 13

C BA
IC 6

74155
5 4 3 2 1

COUNTER INCREMENT ---------------'F
DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE

CIRCUIT DIAGRAM
FIGURE 6a.

TO 8-BIT DATA INPUT

•5V

PUSH MOMENTARY SWrTCH TO
EXECUTE INSTRUCTION SET ON
TOGGLE SWITCHES.

MANUAL TEST CIRCUIT

SPOT
TOGGLE

FIGURE 5.

TO
CLOCt< PULSE

INPUT

l/2 7400 TTL
NANO

I'

I

ECS Vol 1 No. 5

IC 8
74193

5

•5V
II

+5V

II

1 1

IC 16 13

May 1'175

R3-5,6k

DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE

CIRCUIT DIAGRAM
FIGURE 6b.

......,. ____ e MC 1406 .,_
14
C

2
_-
20

,,,-
9

R4-5.6k

3

IC 10
74193 II

D ..,_ ____ __

I Al
__,_.....,.

3 2
-9V -=r

4

ALL 2102 PIN CONNECTIONS ALIKE, EXCEPT CHP ENABLE

3 11--.....--..,._--+--------+--....-----

IC 14
2102

H

IC II
2102

----------..... --gv

02 03

Z AXIS OUTPUT

R9
2.2k

ECS Volw·ne 1 No. s 1 2

CLEAR DGDOI PROGRAM

This program is used to clear the memory of the DGDOI. It simply sends
out a 'set Z off with increment 1 instruction 4096 times. It uses the Band
C registers to keep track of the 4096. The register contents are decremented
once for each I/0 instruction,

The program turns the scan off before clearing, but does not turn scan
back on. The DGDOI will then remain ready for progra!TTiiing.

START 00/344 = 006 LAI 00/357 = 150 JTZ
00/345 = 201 (TSF) 00/360 - 365
00/346 = 121 OUT 10 00/361 = 000
00/347 = 006 LAI 00/362 = 104 JMP
00/350 = 205 00/363 = 355
00/351 = 016 LBI 00/364 = 000
00/352 = 377 00/365 = 021 DCC
00/353 = 026 LCI 00/366 = 110 JFZ
00/354 = 021 00/367 = 355
00/355 = 121 OUT 10 00/370 = 000
00/356 = 011 DCB 00/371 = 377 HLT

These two programs are just to get you started. Although uncertain of
the medium, we expect to have further programs available in the future. Carl
Helmers has plans for a 1 Life 1 game and possibly a jSpace War' game using the
DGDOI. The author of this article is planning a Tic-Tac-Toe game and a pro
gram which would use an octal keyboard for rapid construction of images. (It
will be the closest we can reasonably come to an electronic per..)

These programs, of course, will be in addition to your own. There are
many applications of a DGDOI. Outside of games, it could be used to graph
solution sets of mathematical problems. It could be used to graph results of
data aquisition programs. It could plot results in a digitally controlled
analog computer syst~1. It could ... well, who knows how many things it
could be used for? The exciting point is that such applications are finally
within the economical range of the 8008 system.

PRINTED CIRCUIT BOARD FOR THE 11 DGDOI 11 DESIGN:

As this issue of ECS goes to press, the first layout of a two-layer PC board with
plated-thru holes has been completed. A first printing of the board will be executed
prior to the next issue of ECS, at which time I expect to have details of pricing. OD the
board.

SOME LAST MINUTE IMPROVEMENTS:

In cassette conversation with Jim Hogenson, the following iterr1s were pointed out
regarding updates of the article as it stands: l) by connecting the 11 0 11 output of IC 6 (6-9)
to IC 9 "decrement input" (9-4) the 11 Zx0 11 (octal) opcode becomes decrement Y. 2)
by connecting the "7" output of IC 6 (6-4) to IC 7 1'decrement 11

(7-4) the "2x7" (octal)
op code becomes decrernent X. 3) The DAC chips niay exh.ibit non-linearities due
to manufacturing v-ariations -· sometimes observable in particular cases.

- CTH

l
I

6
\Iv

ECS Volume l No. 5 13 May 1975

CONCERNING THE HAND ASSEMBLY OF PROGRAMS

by Carl T. Helrners, Jr.

ThP purpose of computing is to solve problerr1s. Problems are
solved by analysis followed by generation of a method - an algorithm -
for accomplishing the desired ends. The computing approach to prob
lem solution consists of automating the steps of such methods by pre
paring a "progran1 11 for the computer to execute. This article concerns
the process of preparing programs for execution on the assumption
that you have previously generated a detailed symbolic specification of
your problem's algorithm in the SIRl US-MP language (or any other
method of program specification for that matter.) The remaining task
of prograrr1 preparation is the translation of the symbolic form into a
detailed set of machine codes (numbers).

In April 1975 ECS, an introduction to the SIRlUS-MP language was
presented as a means of expressing programs for inexpensive "home
brew'' computer systems. The present article continues this SIRIUS
inforrnation by discus sing the process of hand assembly of machine code
from the symbolic representation. Hand assembly is a process which
the serious student of computing should perform as an exercise at some
point in time - wh~ther or not the computer under study has an
assembler available. The tutorial value of "walking through" the assem
bly process is well worth the effort - whether or not the hardware lirnits
of you system rnake it mandatory.

The 11 hand assernbly" process is in some respects a retrograde motion in compu
ter science - a step "against the normal direction 11 of progress towards more and
more automated prograrrnning aids and methods of expression." It is a process which
is the translation of existing assembler algorithms (no partict1lar assembler among
a myriad of assemblers is singled out as a model here) back into the realm of a
manually ex~~cuted process - just as the first programmable machines had to be
prograrnmed before the invention of software developrnent tools. As an adaptation
of the "typical" assernbler algorithm to manual operations, the manual assembly

process to be described is useful in several areas ...

- it illurrlinates the process of assembly as performed automatically,
so that the reader will be less tempted to blame all rnanner of programming
problems on the poor sirnple-minded assembler programs.

- it provides the microcmnputer enthusiast with a method of software
development {albeit cUJnbersome) to be used until hi.:; or her personal
con1puter is integrated to the point needed for a real assern.bler.

- it highiights the problems of code generation fr01n svmbolic notation.

- it can serve as a model for the implen1entation of an asse1nbler

system by the reader for his own variation on the rnicrocornput t:r concept.

ECS Volurr1c 1 14

AN ASSEMBLER SYSTEM

The cone cpt of an as sen1bl er system is illustrated at its highest level by the func -
tional diagran1. .. a "black box" of processing which accepts some input and produces
some output:

The input at the left of the
diagram is the "sour c e pro -
gram' 1

- a generalized and sym-
bolic representation of your
program. The output at the
right (the principal output of

the assembler) is the 11object program" equivalent of the source program - a set of
binary (octal or hex) numbers which potentially can be loaded into appropriate memory
locations and executed. (I am leaving out the concepts of linkage editors, relocatable
loaders and other post-assembly tricks for the time being.)

What is this assembler "black box? 11 In an automated conventional assembler system
the black box is computer program used to translate a text file (eg: ASCII characters as
input fr om a teletype or other keyboard) of the source program into its equivalent binary
object file representation. The term 11 file'' here means a set of many (eg: 11 n") computer
words containing some form of information - often used to signify such data sets as
stored on magnetic tape or disc. The usual assembler prograrn is implemented and
runs on computer "X", producing an object program for computer 11 X1t (self assembly)
or for computer "Y" (cross assembly.) In the corresponding hand assembly conception
the assembler "black box" is defined as you - the reader - performing a variation
of the steps required to translate the symbolic representation into its machine code
form.

THE SOURCE PROGRAM

The source program for the assembly is usually written in the appropriate "Basic
Assembly Language 11 for the computer in question - each computer manufacturer comes
up with its own version of the type of progra.In involved, usually running on one of
the manufacturer's own machines. For the microcomputer case, this is not usually
possible, since the number of variables in individual CPU implementations using the
same cmp is immense. For the purposes of this publication and the generality of
notation, the article assumes a source program written in the SIRIUS -MP formulation
which is to a large extent independent of any particular chip design. If you were to
substitute ' 1 Language X" for SIRIUS-MP in the ensuing pages, you can do so and apply
the same process - although your translation function will technically be that of a
compiler or interpreter if any language other than an assembly language is used. This
article I s methodology could in particular be applied to the translation of some of the
immense number of published computer "games" in BASIC for instance, if you want to
get such programs up and running - however tackling a high order language translation
will tend to get yo1.: bogged down in detail and in routines you have to write to get
anything done, so it is only recorrunended in the simplest of cases when performed by

hand.

I

ECS Volume l No. 5 15 May 1975

THE OBJECT PROGRAM

The output of the assembly process is an "object program" - a potentially execu
table set of codes for the con1puter. The form in which an object program is specified
should be chosen according to the needs of the assembly process and the intended use
of the results. In a "real" assembler (ie: a computer program running on some com
puter) two major class es of output come to mind:

1. Absolute Machine Code. Here the object module output consists of
information needed to define the specific content of each memory location
in the program, tied directly to a specific range of memory address space
in the computero In this variation of output, all the work is done at the
time of assembly, and loading the program then becomes a task of copying
this "memory image" (archaic term: core image) into the computer.

2. Relocatable Machine Code. Here the object module is built by the assein-
bler progran1 relative to an arbitrarily chosen starting address (often "0"),
with the final resolution of addresses for syYnbolic references, jumps, etc.
left to an appropriate "relocating" loader. The object module in this form
is more complicated for in addition to the binary image of the program, in
formation on the address references inside the program must be retained
so that the loader can alter them during the load process.

In addition to the specific form of the modules, there is the question of linking multiple
progran1 segments - which can open up a whole "can of worms" best ignored at this
stageo For the purpose of hand compilation, the "KISS" rule applies - "keep it sin1ple,
stupid." The assurnption will be that linkages between modules are made by commonly
addressed absolute address regions (for example, the first 256 bytes or base page of
a Motorola 6800, the first 256 bytes of an 8008 designed according to my plans pub
lished earlier, or an arbitrary region if no particular location is suggested by the
characteristics of hardware or software.)

In order to keep the process simple, the Hand Assembly method as described here
is limited to the production of absolute machine codes (type 1 object modules as listed
above.) The actual form will be a list of hardware addresses in memory address space
and the corresponding machine code for that address. I have written the article under
the assumption that the M. P. Publishing Co. Kluge-I Assembler coding sheets are
used for the final output, but this is by no means to be interpreted as an absolute "re
quirement" of the method. They are available at Sf each plus postage, and were cre
ated primarily to satisfy my own purposes after I got tired of writing the same low order
address sequences over and over and over again. An alternate source of paper
for the process is used computer paper recycled from a handy local computer center,
or if you are in position to make arrangements for time - you could whip off a quick
FORTRAN or PL/1 (or ?) progran-1 to write the address sequences onto blank paper in
a manner similar to the Kluge-I sheets but on a line printer ins tea do

The process of assembling and generating the code for a program has two major
(conceptual) steps which must be performed, assuming that a suitable symbolic nota
tion for the algorithm exists.

ECS Volun1e 1 No, 5 16

Step 1: Translate the syn1bolic notations into equivalent sequences of the
n1achine's operations . Pay attention to any address calculations which n1ay
be required, but leave "open" the question of addresses of operands for
which no address is yet assigned. The purpose of this step is primarily to
allocate the memory address space requirements of the program by deter
mining the number of bytes of code required for each elementary statement
of the program which is translated.

Step 2: With all the required program and data locations allocated (typically
in a sequence of consecutive memory locations starting at a chosen "origin" or
first address) "fix up" all the unresolved references hanging around in the
code prototypes created in step 1.

This set of steps is a universal one, and is performed by every code generation pro
cess - whether it is an assembler, a compiler's code generation phase, or even an
interpr~tively executed progra.Inming language such as BASIC. The variations (and
there are many) in particular approaches to compiler and assembler code generation
strategies concern ways of implementing these conceptual processes of allocation
and reference resolution (the "fix ups"). In a classical two-pass assembler and/or
compiler, there is an explicit separation into these two steps - pass one is the allo
cation phase (also syntax checking), followed by pass two which fixes things up. If
one restricts the types of references possible at any given point in the program source,
it is possible to achieve a "one pass" compiler - the restriction being the rule that no
"forward 11 references be rnade to portions of a program yet to be referenced, or that
such forward references be made through a special mechanism in the generated code
such as a run time syrribol table lookup/calculation. In the hand assembly version of
the process described here, a classic two-pass approach is taken, but the first pass
is further broken down into two operations which might be conceptually considered
"passes" through the data. The text continues following a short aside •••

WHY ARE TWO PASSES NECESSARY IN THE UNRESTRICTED CASE
AS A MINIMUM NUMBER OF SCANS THROUGH THE DA TA?

The necessity of the second 11fixup 11 pass becomes obvious when you con
sider the problem of forward references. (References to previously allocated
syinbols are no problem - I already have their addresses figured out.) The
assembly process can only sequentially process the statements of the program,
starting with the fir st. A "forward reference 11 to some sym- ~•ttsT StAll'l:M«-IT

bol in the program is a syinbolic reference made prior to
·"lit

the definition of the symbol in question - relative to the order R.~ 1

I

of scanning the source. Pictorially, a forward reference is _ OC ~
illustrated by the assen1bler (an "imp") finding the statement
"X =: Y" closer to the beginning of the scan than the defini
tion of the syrribol Y. At 0(the little imp says ''where's Y? 11

and files it as an open question. A bit later in the first pass Yi}
he can say "aha - I know where Y is" but - he has already gone '

h~._,,,v. '< bEFINEJ)
past the point where Y was referenced. Then on the second R~. ~
time around, the little imp can use this information to fix up
the incomplete information in the staten1ent witl1 the forward
reference. Either the minimum two passes through the data, \.."'1 ~
or a logicallv eau~valent 11+--ricl..: 11 ~ -, -Pr,•)~:r'"'rl .._.,... ?c, ~'." 1 •r"." ~1

- ,~ -'.'.",-~,-::i ~ -...,=,f~-:•£>: 11:

f

ECS Volume 1 No. S 17 May 1975

The hand assernbly process is outlined rn the paragraphs follo\ving irruned
iately below. The process is broken down into three sequential steps which
I have found to be components of a useful procedure: generate skeleton
code, allocate addresses, then fill in the final code of the program repla
cing mnen1onic notations and syn1bolic address references. Of these steps
the first two correspond roughly to the allocation pass of a two pass assem
bler, and the last corresponds roughly to the reference resolution (fix up)
pass. Following this descriptive summary of the process, a detailed exam
ple is presented for the case of a subroutine used to "concatenate" bytes
strings of the form described on page 9 of April 1975 ECS.

SKELETON CODE GENERATION:

The first pass of the hand assembly process begins with a "skeleton code genera
tion" operation. The purpose of this operation is to figure out the mnemonic opera
tion codes required for the corresponding operations of the source program. If you
program exclusively in the mnemonic assembly language appropriate to a given machine
you have already performed this operation by writing your progran1 on paper. If you
use a "higher level" specification such as SIRIUS-MP (or FORTRAN, PL/1, BASIC,
and any other language you might care to use) this step is required in order to turn the
basic operations of the source program into sequences of operation appropriate for your
corr1P'_1ter' s instruction set. For the SIRIUS-MP language, this corresponds to a table
lookup (in your head) of an appropriate method of carrying out the functions of each
statement, and in many cases will result in a fairly one-to-one correspondence of oper
ations in the source program and in the rr1achine code. If you automate this process,
it becomes roughly equivalent to a 11n1acro expansion" process tacked on the front end
of many assemblers. I have found scrap con1puter listings to be most effective in this
stage since it involves no address allocation, merely listing the symbolic equivalents
of the program bytes on paper.

ADDRESS ALLOCATION:

The hand assembly process as conceived here is oriented to the generation of the
absolute, executable machine code for specific locations in the computer's memory
address space. This bypasses the question of generating relocatable code and keeps
the process simple. Error possibilities increase with cornplexity, especially when
a program is assembled by biological computing machinery with all its foibleso This
address allocation stage consists of taking the skeleton code sequences for the program
and as signing a memory address for each byte in turn. One way to do this is to re
cord the byte addresses on the paper used to write the original skeleton sequences o

Another method is to use the M. P. Publishing Coo Kluge-I Assembler coding sheets
with pre-printed low order addresses in octal to provide the allocation function - if
you write an operation code at some place on the sheet, it I s address is "used up" and
no longer available for allocation. The skeleton code generation and allocation pro
cess can be done simultaneously on the Kluge-I sheets provided you are fairly sure of
the code being generated (or don't mind erasing a bit if you make a mistake.) The prob
lem of the combined skeleton/allocation approach is that whenever you write down the

use of a specific address, it commits the location to a specific utilization, which may

ECS Volun1e 1 No. S 18 May 1975

be "premature. 11 I like to get a progran1 done con1pletely in the skeleton forn1 prior to
allocation of any addresses, so a review of its operation can be done. Then after the
review, I proceed to do the allocation by copying to the Kluge-I sheets" (Even so, I
make many mistakes and change things when I see a better way - one of the things which
guarantees an incentive on writing an assernbler for SIRJUS and at a later stage some
form of compiler for a decent programming language.)

An Aside:

It may be possible for you to gain access to a n1inicornputer facility
and/or large computer facility. (Particularly for the readers of ECS who
are still in school and can wangle computer time.) One way to implement
an assembler for a language such as SIRlUS-MP is to use an existing as
seinbler with a macro facility - eg: the IBM 360 Assembler, or a DEC
PDP-10 assembler or a host of others - and write a special set of macros
to implement the pri1nitive operations as expansions based on the skeletons
of octal(hex) codes required for your target computero Then all the syinbol
table lookup and management of the original assembler can be used as is.
The troubles with this approach are several: n1ost macro expansion opera
tions of assemblers tend to be inefficient; it is a lot of work to write a com
plete set of generalized macros and debug them as well; and so ono

FILLING IN THE CODE:

Once the addresses have been allocated to the skeleton, the final step is to fill in
the octal (or hex if you prefer) codes of each byte in the prograni by looking up the
mnemonics of the operation codes as noted on the Kluge-I sheets prepared during the
allocation stage. This step in the hand assembly corresponds to the "second pass' 1 of
the classic two-pass code generation process, but with the added provision that the
mnemonic op codes which would be translated in the first pass of an ordinary assembler
prograni are left until th.is last pass for translation. When the process reaches this
stage, all address references are known (as allocated in the allocation step) so that
all references can be made in the code resultingo Each byte of the allocated code has
one of the following possibilities:

it has a portion of a literal value which must be translated into its
machine code equivalento

it has a reference to an address-related value, which for an 8-bit
micro means either half of a 16(or 14 for 8008) bit address.

it has a mnemonic operation code which must be looked up in a table
of equivalent octal or hex operation codes.

it represents a byte of data which is not to receive any initialization,
which is siinply reserved for use as a run time data storage areao

Whatever the intent, the result for each byte is 3 digits octal (or two digits hex) repre
senting the machine coding for that piece of the program. In the "don't care" cases

of reserved data areas (the last option listed above) no explicit action is required to

generate the loaded codes of the prograrno

ECS Volurne 1 No. 5

HAND ASSEMBLY BY EXAMPLE:

THE BYTE STRING CONCATENATION
SUBROUTINE "CONCATT ER 0 "

1 9

An example always helps to illustrate a new process
or method. To illustrate a hand assembly operation,
I have selected a simple little subroutine to perform a
string operation called "concatenation". In words, the
operation of concatenation is the building of a new
string (for example "Z ") composed of a left half input
(for example "X") and a right half input (for example,
''Y"). In symbols, the following diagram illustrates
the operation. o • o

Example: Byte String Concatenation Subroutine CONCATTER

X: m I THIS IS I Y: I n I A BIG STRING I

"
Z: I k I THIS BIG STRING I

k =: m + n

If you are familiar with arithmetic and algebra, you
of course know there exists a set of operations which
are in some sense "fundamental", such as addition,
subtraction, etc. Similarly, in boolean algebra, there
is a set of fundamental operations - AND, OR, NOTo
The same holds when byte string operations are con
sidered as well: the manipulation of "text" is best done
using a few fundamental operations, including concat
enation, ''substring" extraction (the opposite of con
catenation), comparisons, etc. The concateration oper
ation is one of the most useful.

The concatenation operation is shown in its most
abstract fonn by the flow chart running down the
right margin of this page. This flow chart describes
the steps of concatenation - test the result length for
an error, move the left half to the result, then move
the right half to the result.. The numbers on the dia-
gram correspond to the statement numbers of the

equivalent SIRIUS-MP program listed on the next page
of this article.

May 1975

C G!lCA 7':'FR:

1 - 2.

Z ==: Y +: X

3.
Yea

MO'IEX: '•

5.

Z(I) •: X(I)

6. ~- - - - -
7.

MOVEY: -----4----.

8.

9.

10.

11.

K •: .iC +: l

FOR: I =
l TOY

K =: .K. +: l

Z(K) ==: Y(I)

Chee~ length

Ll-;RRS:

Z ==: 0
Hull it

F.ETURK; ------

ECS VolunH' 1 20 May 1G7S

The flow chart iJlu.strated on tbe previous page 1s ctn afterthought - the original
written form of the SHUUS-MP progra1n shown in tJ1e box Lel..:Jw was created without
using a flow chart as a tcoL This SIRIUS form of the CONCATTER is assumed as an
input to the assembly process for the purpose of the example.

1
2
3

4
5
6

7
8
9

10
11
12

u

CONCATTER:
z =: y * FORM SUM OF LENGTHS
z y * AND TEST f'OR OVE:HFLCM
LERRS IF GAH.RY * OF 8-PlT MAX VALUE

MOI/E.X:
1 FOR: 1 X * TRANSFER LOOP CONTROLLED
Z{I) X(I) * ffY X LENGTH BYTt

END: * END OP LAST PREV. FOB
MOVEY:

JC X * z INDEX FOR Y TRANSFER
I FOR: 1 y , - * y TRANSFEH LOOP CCJNTRLD

INCH: K * BY Y LENGTH BYTE
Z(K) =: Y(I) * TRANSFERS EACH Y

END: * UN'rIL DONE
RETURN * WITH Z CONTAINING RF..SUI.T

LERRs:
z =: 0 * NULL STRING WITH ZFIRST

RE"l'URN * BY'l'E LENGTH=O

New SIRIUS-MP operations in CONCATTER:

+· AddU.;ion, with 8-bit length indicator, replaces
the target operand (eg: Z or statement 2) with the sum
of the old target's value and the nov~ce operand value.

FOR: --- Inoremental "FOR" loop header. This sets up the
start of a FOR loop with an assumed integer 8-bit index
{":" length code), a starting valuo given by the 1'1rst
source operand sub!'ield (3ee note #1 below), and an ending
value Fiven by the second source O?erand subfield. The
t•r.get operand is optional - 1.f om!tted, the generated code
will keep its internal count which is then not available to
program segments within the loop. A third source operand
subfield will be kept available (optional) separated by
a comna and used ror the increment value if other than one.

FJID: --- Incremental "FOR" loop trailer. All the statements
Crom the FOR to the END are considered part of the loop. An
implicit (ie: "structured"} branch back. to the last previou5
FOR occurs if the iteration count is not exceeded. Ae with
the FOR statement, the END has a type modirier to indicate
the loop index precision.

Jlote 1: In order to provide for complex operations such as the FOB 1oop
operation, multiple "source" pare.meters are sometimes required, The
idea or an operand subfield accomplishes the necesaary inputs to the
FOO loop operation. Thia concept will recur wrien the va1•ious byte manip
ulation operations are introduced in lat6r disoussiona of byte stringft.

lote 2: The FOR/END corurtruct is a "natural" for code generation using the
CPU stack temporary data concept as it exists on machines such as the
PDP-11, K6800 or 8080. When the "FOR" ie enoounter•d, a loop return
addreas is pushed onto the stack, followed by the initial count value and
the tin.al count value. Then when the "END" is encountered during execution
the stack is ref~renced (of~set from stack pointer) to inoreaaent the loop
count and comp"lre it to the rinal count. 11' the tinal oount is not
exceeded, execution jumps indirectly through the loop return addrEiss ,alao
referenced orr the otnck pointer) back to the first executable st2teaent
or the body of the loop. If the branch back is not taken, tho "END" clearu,
up the stack by adjusting the stack pointer to its original value prior to
the FOR atateinent exec,.1tion. The stack ,;,.utomatically cao handle "nested"
FOO loops to as many levels 1u1 t.h-,re is temporar1 RAM memor7 to store the
stacked data. More on thie subject in a later iseue •.•

As in the e:::an1ples of SIRIUS pr0gra.ms published in April ECS, I have not included
a generalized treatrnent of argurnent linkages in this ex.a1nple. The example of a
subro11tine uses specific R.A.\.1 string areas - X, Y ,1.nd Z - a .. ;3 its argLments, so thJ.t
any progr:im utilizinl, th.) version would have to first cn 1)y X ;:.rid Y 1 s values frc,rn sorne

other place then call COT':CATTF.R - and copy the Z result afte1 getting back. With

thi::. forn1ulation, X, Y (,-..nd Z rriight be considered the software equivalent of the a(:curn
ulators (ie: CPU registers) of sorne hypothetical 3 register 11 str-ing machine.' For
large scale text processing applications, son1eone will sooner or later rr~icrocode a
processor with the string operaticns.

ECS Vulurne 1 No. S 21 May 1q75

Given the starting point of the previous page, the first hand assembly step 1s begun
with the expansion of the SIRIUS code as a skeleton of the final code. I have illustrated
a sm.:ill portion of the skeleton listing of CONCATTER at the left in the following
illustration:

~1 <~4Tn:lt: 200

201

202

203

ALLO C.ATIO~

LAI:

- - s(~t __ _
S~fY\

- - ----------LB"-1
., 2~ LA~

------- --- - - - ----------
------- ~~~ - - - ~~~2 ___ _

206 S~w, ------- --- - - - ----------
207 LAn'I ------- --- - - - ----------
210 A I>~

~ 211 .J"T'C. l ~ ------- --- - - - ----------? 212 L ------- --- - - - ----------. ? 213 H

- 214 L8A ------- --- - - - ----------
215 LAI:

_______ ~:~ ___ S(2) ___ _

211 S~"-1

The code illustrated here is for an 8008 processor (my own 11 ECS11 system) and uses
the software conventions (eg: SYM table lookup) described in earlier issues. The
Kluge-I allocation of address es for the Skeleton code is illustrated at the right . In
the allocation step, numbers are used to reference SIRIUS statements of the source
program, and the question marks ("? ") serve to denote address references prior to
definition. The LERRS example here is a "forward reference" to later code which
resolves (after allocation of the whole routine) to be location 007 / 334.

The code generated for the remainder of CONCATTER (8008 mnemonics from the
original Intel docun1entation) is printed on the next page. This listing contains the
results of the third hand assembly pass (filling in code and allocated address refer
ences) along with mnemonics and statement number references back to the original
SIRlUS-MP code.

The subroutine named 110FSET" was coded to perforrn the index calculation of the
type implied by the SIRIUS notation NAME(INDEX) • It adds (16 bit calculation) the
current 8-bit loop count maintained in B (CPU register) to the address found in the H/L
pointer pair. For 8080 n1achines, this subroutine would not be necessary since there
is the l 6-bit address calculation possibility for the H / L pair o

The FOR/END group code is generated in a form using an index variable I which

happens to be redW1dant in this example.. TI1e actual loop indices in this simplest case
are maintained in the CPU B register (moving index) and CPU(~ register (end irdcx).

ECS Vol un1e 1 Nu. s 2 2 May 1Q7S

CONCATTER: 8008 Code Equivalent
#1 007\~00 = U06 L.Al #8 00 'l \c '/0 = 006 LAl \fdt ,

S(Y) 00 '/ \20 1 = 040 S(Y) 007\271 = 040 8 C

007\202 = 0 7 !J SYM 007\272 = 0 7 !J SYM
00 '/\20 3 = 317 LBM 007\273 :: 3c7 LCM

#2 007\204 = 006 LAI #BB 007\274 = 006 LAI
007\20:, = 036 S(X) 007\27:> = 044 S(I)

007\206 = 0 '/ :> SYM 007\276 = 075 SYM

007\207 = 30 ,, LAM 00 7 \2 7 ., = 371 LMB
007\210 = 201 ADB #9 007\300 = 040 !NE

#3 007\211 = 140 JTC #13 #10 007\301 = 006 LAI
007\212 = 334 L 007\302 = 040 S(Y)
007\213 ::: 007 H 007\303 = 075 SYM

#2 007\214 = 310 LBA 007\304 = 106 CAL OFSET

007\215 = 006 LAI 007\305 = 367 L

007\216 s:: 042 S(Z) 007\306 a 007 H
007\217 a 075 SYM 007\307 = 337 LDM
007\220 = 371 LMB 007\310 = 351 LHB

#4 007\221 • 016 LBI 007\311 = 314 LBE
007\222 • 001 1 007\312 • 345 LEH
007\223 • 006 LAI 007\313 • 006 LAI

007\224 -= 036 S(X) 007\314 • 042 S(Z)

007\225 • 075 SYM 007\315 • 075 SYM
007\226 • 327 LCM 007\316 • 106 CAL OFSET

#4B 007\227 • 006 LAI 007\317 • 367 L
007\230 • 044 S(I) 007\320 II 007 H
007\231 a 075 SYM 007\321 D 373 LMD
007\232 :s 371 LMB 007\322 = 351 LHB .. ~~.,

#5 007\233 • 006 LAI 007\323 = 314 LBE
007\234 s:: 036 S(X) 007\324 = 345 LEH
007\235 s: 0 75 SYM #11 007\325 • 301 LAB

007\236 = 106 CAL OFSET 007\326 a: 272 CPC
007\237 = 367 L #12 007\327 • 053 RTZ
007\240 = 001 H #11 007\330 • 010 INB
00 7\241 :s 337 LDM 007\331 • 104 JMP #BB
007\242 • 006 LAI 007\332 -= 274 L
007\243 • 042 S(Z) 007\333 • 007 H

007\244 = 075 SYM #13 007\334 • 006 LAI
007\245 = 106 CAL OFSET 007\335 • 042 S(Z)

007\246 • 367 L 007\336 • 075 SYM
007\847 • 007 H 007\337 • 076 LMI
007\250 • 373 LMD 007\340 • 000 0

#6 00 7\251 :s 301 LAB 007\341 • 007 RET

007\252 = 272 CPC
007\253 • 150 JTZ #4E
007\254 = 262 L
007\255 = 007 H
007\256 = 010 INB OFSET:

007\257 = 104 JMP #4B 007\367 = 306 LAL
007\260 = 227 L 007\370 =- 201 ADB
007\261 = 007 H 007\371 a 360 LLA

#4E/7 007\262 C 006 LAI 007\372 D 003 RFC.
007\263 = 036 S(X) 007\373 • 305 LAH
007\264 = 075 SYM 007\374 • 004 ADI

\)

007\265 = 347 LEM 007\375 • 001 1
#8 007\266 = 016 LBI 007\376 • 350 LHA

007\267 = 001 1 007\377 • 007 RET

ECS Volume 1 No. 5 23 May 1975

In cases where it is desired to call one or more levels of subroutines within a loop
mechanization such as the two FOR loops of CONCATTER, it will be necessary to
save the content of the B and C registers whenever a conflicting use is encountered.

In the FOR/ END loop mechanization, note that there is a "generated" label for
the branch back. The staten1ent nUillber of the for statement itself does not suffice
since there is some "initialization" (set up B and C) prior to entrance into the first
loop cycle. The assignment into the symbolic loop index "I" implied by the left
operand (target) of the FOR statements is done at the beginning of each cycle and
serves to mark the branch back pointso The branch back points are noted in the 8008
code generation by the statement number followed by the letter "B".

In the FOR/END group shown, the test for end of execution is made after a cycle
is completed and before the calculation of the next value of the indexo In the first
case, statements #4/#6 of CONCATTER, a statement nwnber is required for the
exit case - indicated as "#4E" or (in this example) #7 of the original statements. In
the second FOR loop of the example, I moved the return statement (#12) ahead to fol
low the comparison, rather than placing a branch forward at that point. In so doing
I was acting as an noptimizing" con1.piler of the SIRlUS language - using as input the
global knowledge of the prograzn in order to figure out a "special case" allowing the
rnovement of code. A similar special case was recognized at statements #2/3 where
the jump on condition of #3 is placed ahead of the data storage portion of #2 in order
to avoid insertion of a mechanism to save the carry flag across the SYM lookup.

On the following page is one additional set of SIRIUS coding and equivalent 8008
generated code. The routine is a "DRIVER" to call the CONCATTER routine with
test data in X and Y (printed separately as two lines), followed by printing of the
results of CONCATTER as a single line. The SIRIUS c cxie is extremely simple -
virtually a series of calls. A routine called TSTRlNG is used to do the typing of
byte strings, as found within the "ELDUMPO" program of January 1975 ECS.. If
you employ any form of hard copy or CRT output, an equivalent routine would of
course be employed to transfer byte strings to the appropriate external unit. In
the driver, the term "HL" is used to denote the H/L pointer pair of an 8008, which
would be the H/L pair if you generate for an 8080, or the "X" register of
a Motorola 68000 This use of the pointer for argument passage is a workable one

but only a tempor:1.ry "kluge" at present.

What good is concatenation you ask? The idea is illustrated by the diagram given
previously. Its use is its justification. The primary application is in the process of
"building" a cha.racter string, as often occurs when you want to forinat the output of
a programo The CONCATTER routine only handles hvo strings, but by feeding the
output of one concatenation into the next, strings of arbitrary length (to 255 with CON
CATTER) can be built frorn nun1.erous cornponents. As an exan1ple, suppose that a
,:,:Jn.,.u-~rsion rot1tinc has provided a prograrn with the btrings 11 X 11 and 11 Y 1

' ;.:ts a::.1swers
tu a prohlerr,? and that the text "FIVE GLEEPS AT l?? X? LI WERE SIGHTED NEX-l'
TO [J"'"TY?':1 G LO()I--·S~ 11 is t.o be printed.. Sta rt ~:ith Z:: nFTV E ,r:a., EE Pb AT : 1 ; c or:,- <.:d -

r:-~~ . 7- . II 1 V E'. "F c1c·~·rr;•p NEXT TO 11
-:..natc IL+AL1J 0!1 t:l1e right giving a DtcW .; oncatenate • _,1.i: _., c_, it.~ ~'..dj l' --'·• - .: . .

on th e r i gh t giving a new Z ; c on cater, at c l? __ ·1 Y_l. 'cl c, n th e r i g ht i _i ~ n ~: a n e v.: I. : then

concater-;{tfO' "GLOOPS .. 11 on the right givrng a nf'W Z which is pr::si.ted.

ECS Volume 1 No. 5 24 May 1975

!HIS IS A</ - - (

A 81U :OlhlNU• .:.. ===--- X value ... :r~ Output of Driver Program)
. . ------ Y value. . . --------------

f H I s I !;; A B I (j s r H l 1\J (j • ~ z = X C at y _:;

CONCATTER Test Driver (8008) SIRIUS Code of D , ----------=-=--=:.......--=-=--=r1ver_._._. ___ _
#1 00 ,, \000 = l 06 CAL DRIVER:

#2

#3

#4

#5

#6

#7

#8

#9

#10

#ll

NEWLINE:
#1

#2

#3

NL TEXT:

UU'/\001 = j~4 L 1
2

CALL NEWLINE
00/\002
00'/\UOJ
007\004
007\00:i
00'/\006
007\007
u o 7 --~u 1 o
007,011
OU'/ \0 1 2
00 '/ \U 1 J
007\014
OUj\01~
OU '/\01 6
007\017
007\020
00'/\021
007\022
00'/\023
007\024
007\02~
00'/\026
00'/\02'/
007\030
007\031
007\032
007\033
00 ., \034
007\035
007\036
007\037
00 7 \040
007\041
007\042
00 7 \043

007\354
007\355
007\356
00 7 \3 j'/
007\.360
007\361
007\362
007\J6j

007\342
007\343
007\344
007\34S
007\346
00 '/ \34 7
007\350

= 00 'I H
= 006 LAI
= OJb S(X)
= 0·1~ SYM
= 106 CAL
= l 66 L
= O 11 H
= 106 CAL
= 354 L
= 007 H
= 006 LAI
= 040 S(Y)
= O 7~ SYM
= 106 CAL
= 166 L
= o 11 H
= 106 CAL
= 200 L
= 00 '/ H
= 106 CAL
= 354 L
= 007 H
= 006 LAI

3
L+
5
6
7
8
9
10
11

l
2
3

HL - W(X)
CALL TSTRING
CALL NEWLINE

HL ==: : W(Y)
CALL TSTRING
CALL CONCATTER
CALL NEWLINE

HL - .. W(Z)
CALL TSTRING
EXIT

NEWLINE:
HL - W(NLTEXT)

CALL TS 1rRING
RETURN

NL'rEXT:
"006,ooo,012,000,015,000,007"

New SIRIUS-MP Operations in DRIVER:

CALL - this translates to the simple sub
routine linkage of the target computer.
(No SIRIUS argument linkage assumed.)

= 042, S(Z)
= 075 SYM
= 106 CAL
= 166 L
=

011
H EXIT - this translates to the set of in-

=
006

LAI structions needed to return to the
11 0 ·t " 11 t· ff = 002 S(IMPSTATE) m ni or or execu 1.ve of your soft-

= 07:> SYM ware systems - if the ECS software is
= o 7 6 LMI used, the return is to the "IMP"
= 002 2 or its equivalent code on non-8008
: 025 KEYWAIT computers.

= 0 :,6
= 007
= 066
= 342

= 106
= 166
= 0 1 1
= 007

= 006
::::: 000
:: 012
::; 000
= 015
= 000
:; 007

LHI The notation "<series of octal numbers>"
h(NLTEXT) P:eceded by a label is used to denote
LLl literal data to be loaded with program.

l(NLTEXT)
CAL
L
H
RET

Length
NULL
LF
NULL

)

)

~

IMP Symbol Table Extensions for Use
With CONCATTER (temporarv).

012\316
012\317

::: 006}- "36" . , X
= 000

18

012\320
012\321

• 006]-::: 011 "40"is Y

012\30~
CR
NULL ~ BELL

012\323
012\324
012\325

= 006 1- "42" 1·s Z
= 100 J
= 000} "44" is I = 230

