M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Volume | No. 1

E{@Q A MONTHLY MAGAZINE OF IDEAS
‘ FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This issue marks the first edition of 1975 and the beginning of a new monthly form-
at for the ECS articles. From now on the publication will be on a monthly basis with
12 issues per year. Minimum issue size will be 20 pages printed photo-offset as in
the past. The editorial policy will continue to emphasize materials useful in the cre-

ation and programming of home brew computer systems. In this first issue of 1975
readers will find:

. ECS-6 Serial I/O Interface Conclusion: The last issue of the 1974 series
of articles described the theory of operation and subsystem design of the UAR/T
oriented 4-channel I/0O interface unit. This issue contains additional materials
including logic diagrams, tables, notes on detailed logic, and notation of a test
program useful in de bugging the design.

2. Notes on Notations: Taking into account numerous inputs from subscribers
together with further arguments and rationalizations, a decision to use octal
notation and ''Intelese'' is described in this issue.

3. Memory Dump Program "ELDUMPO': The application of the serial I/O
interface device with a teletype is illustrated in the listing of this program's
code. In true bootstrap practice, ELDUMPO is used to dump ELDUMPO!
(To say nothing of the other listings in this issue.)

4. Manual Bootstrap Program "STUFFER'": "STUFFER' is a program used
in conjunction with the ECS keyboard (see ECS-5) and display lamps to load data
at arbitrary locations in memory. It can be loaded by hand in locations 100 to
163 of page 0 using the ECS-3 program's bootstrap hardware method. Then,
this program can be used to load in octal further programs such as ELDUMPO.

5. Programming Notes: Using Restarts. Both ELDUMPO and STUFFER make
use of restart instructions (RSTx) to access utility routines. The method is

described in this section of the issue.

6. Notes of Interest to Readers: Miscellaneous comments and a couple of

Cw‘i bt /)% 5 atts
T

Publisher

errata presentations.

© 1975 The M. P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 1 -2~ January 1975

ECS-6 SERIAL I/OINTERFACE CONCLUSION:

In the last issue the general design and theory of operation of the UAR/T oriented
serial I/O interface was presented. The major technical topic of this issue is the
detailed description of this hiurdware as it is implemented in the ECS prototype system.
The drawings found c¢n pages 4 and 5 show the details of the circuit., In the text below
reference should be made to the drawings and to the gencral description of the system
presentcd in the previous issue,

UAR/T and Bus Input:
Drawing #1 on page 4 contains the logic of the UAR/T chip and its interface to the

system data bus. The address bus input lines AO to A7 are wired from the I/O socket
#1 to the UAR/T parallel inputs TDO to TD7 (the notation used by the manufacturer's
documentation is TDl to TD&, but renumbering is done here for consistency with the
rest of the system,) The address lines are written into the UAR/T as data to be sent
out the serial port whenever the following conditions hold:

a. The mode selected by the control word {(IC-9-, dwg. 2) 1s "output. "
b. The CPU I/0O instruction decode logic of the ECS-5 design (or its
equivalent) generates an OUTO02 clock which is inverted by -7¢- and en-
abled through gate -8a- to the TDS (transmitter data strobe) line of the
UAR/T.

The negative going clock pulse which reaches the UAR/T chip from -8a- automatic-
ally starts the stored program of the UAR/T chip which transfers data to the output
buffer shift register and begins generation of the serial data format. The serial
data generated by the UAR/T appears on pin 25, Transmitter Serial Output (TSO).

The latest received data of the UAR/T is present at all times on the RDO to
RD7 lines (mfgr's designations RDl te RD8 - see above.) The output is always
enabled due to wiring the receiver data enable line of the UAR/T to ground (pin
4). The actual control of this data enable is provided in fact by the INOZ signal
provided by the ECS-5 1/0 decode logic - going to the 8T09 gates which interface
the CPU bus. Note that the IN0O2 instruction is one of the combined input/output
instructions of the 800% - the corresponding output of the accumulator is sent to
the UAR/T if the controlword indicates output rather than input. But when input
is exeércised, the OUTO02 clock time is also used - this pulse is used to reset the
RDA flag of the UAR/T after input, to acknowledge that the CPU has processed
the data. The acknowledgement from a CPU I/O handling program must come
within one character period of the "RDA' signal's transition to the logical "1"
state if the '"receiver overrun'' error is to be avoided. Note that just as the
1/0 transfer of data out to the UAR/T is ignored when input is involved, the output
of data to the UAR/T also reads the UAR/T information into the accumulator, but
this information is in general meaningless.

Note that the bus interface gates invert the sense of the data being read out

of the UAR/T. In order to guarantee that the sense of the data being input to the
computer is the same as that written out (ie: '1" is logical I, "0'" is logical 0)
a level of inversion is required between the UAR/T and the bus interface buffer.
Also note that an improvement in the design would be to use the data out strobes
(pin 4 and 16 for data and status, respectively) to implement a local 3-state bus
sharing a single set of inverters/bus interface gates to the CPU world.

ECS Volumel No. 1 -3~ January 1975

) The status bit outputs of the COM 2502 UAR/T are read into the CPU with the
input operation IN3 (sometimes noted IN0O3). As with all the input operations of the
8008, there is a paired output of accumulator contents - in this case defining the
control word content from the accumulator. The IN3 negative clock is used to
enable control information onto the bus during the input operation, and is generated
by the ECS-5 hardware or its equivalent from basic Intel 8008 signals. The status
bit outputs are always enabled due to wiring of the status word enable pin (pin 16) to
ground. As noted on the previous page, this output of the UAR/T can be multi-
plexed to a sinpgle set of inverters/8T09's in an improvement over the design used in
the prototype.

As is the case with the data word output of the UAR/T, a series of inverters is
shown in drawing #l, one per status word line, placed in the design in order to make
the program operating the UAR/T be programmable based on bit definitions identical
to the definitions produced by the UAR/T. If programming based on a single level
of inversion (complements of the definitions) is tolerable, the inverters may be omitted,
An alternative which retains the proper bit definitions without inversion twice is to use
a non-inverting bus buffer instead of the 8T09,

Control and Multiplexing Logic :
Drawing #2 on page -5- contains the remainder of the logic associated with this
(\iesign. It includes the clock oscillator, control word register, input multiplexing
and output selection logic.

The basic clock of the system is generated by a 555 circuit wired as an astable
configuration acting as an oscillator. The clock rate is adjusted by R3 to the nominal
frequencies required by the system, The logic of this design requires a clock setting
of 56. 32 Khz for a nominal 110 KBaud rate with the low frequency clock programming
value set in the control word. The UAR/T logic requires a clock at 16 times the
basic bit rate, thus with the divide by 16 mode of the clock rate counter set by a
binary value of '"l1111" in the control word rate bits, a total division of 256 will be in
effect. 110 x 256 is 28.16 Khz, The extra division by 2 is found in the flip flop used
to turn the extremely short (ie: 50 ns or so) clock reset pulse into a square wave
which is within tolerance limits of the UAR/T (eg: greater than 1 microsecond in

length.)

The c¢lock outputs are the Q and Q pins of the 7473 section used to produce the
square wave. One of these outputs (Q, pin 12) is used to drive the UAR/T clock
pins for both transmitter and receiver sections (pins 1-17 and 1-40) The other output
is routed to the 1I/O socket for use by the modems connected to the controller.

IC -9-1s a 74100 used as a control word. This IC will store 8 bits of data when

its clock lines are strobed with a positive logic pulse, derived in this case from an
(_inversion of the negative logic OUTO03 signal produced by the ECS-5 type controller
~ or its equivalent. The four rate selection bits are wired to the 74192 counter used

ECS-6 SeriAL

I/0 INTERFACE

L: Cavl T. Helwevg Jr,

DRAWING H 4

VAR/T & BuUS INPUT

IND2 = READ/WRITE DATA (ovre2)

IN®3 = READ STATUS/ WRITE ConTRoL WORD {ouTi3)

vaR [T
BUFFERS

12-7 sp1

INPYT STRING k)

7%
}
!
}asfy

[§¥. 14 ¢

17 j%0

-7~

— OUTPUT STRING
5o 4% 3 25

ﬁEAD!

~“ro-d

-

T

12-9

INg3

L/o-3,0\3

T/0 DBATA
BUS

1
ras

b?
bé

bs

4]

b2

1 39

e e T e
g

TIFY TTY THEN LENGTH 75 ELSE LENGTH # BT
AN
Ao ADORESS
A5 aus
Y
A3 oureur
A2 DATA
AL (PR Pinas
Ag SER MWL)
ouT®2 1/03 o9
o] &L :
ELECT
vz 2L > 7-i0
. 3 &t .
o5 PR2-L 8a -
: SONLY WRITE
& 1¥ OUTPUT MODBE

INGe2 I/o-3, P9

(14

TIMING: RELATIVE

fNesy INBR

ouTEy 8¢ oUTed

© 1375 WP PUBLISWING Co.

3T@%’s
S

NOTE: COM25@2
CONWECTIONS FOR LOGIC
& ARE PINS 4 16,35 & 39,
LOGIC { WIRED TO PiNS
3% 36 & 3%, LaGIC @

\S GRoumd / LoGgic L s
DEFINED TwWus: 45V
R

LOG. 4 «—AA
icoon
Yew

SON [2TUN(OA $DOF

1

¢!l Arenuep

s

~ e
o nDBY {-38 4 s " S T50
< < a ;] 7% — 1 e 7t
1
%x/om Pins 7 P - i i
! -7 ! e
y g ———>] i & \{ 2 o ’) . Rl > - IL/:.Z
5 N D , STUETT = MASTER REnEe 7 '
P AL 3] 3 f: {.0 4 ‘b}ﬁ BELE LT < MASTER Q-i_.Er;ln . — 171 R,
1L A2 i3 'JLHOOK;{ 3 f! l L0 TRENNES, - ii {‘j e Dy
1t A 1s SNy 3 . MO, JuawmElL J o 4y L:ZD
i) TROL i)) x
By B Ty 2] ! } TTY
W AS Sl wonrd %) i ‘r-——{j Se = i
& I v A3 0T j - SELELT
2} 9. 118 163-¢ neaz | t i ! 3 = >——— ubie.
15 AL R2 i {
§ Lo ry a | Y /0-% F§
A 2 2o L— $op '
@ i l 1/0-2
- ‘ ! Yoz, Pt 1m 56 L s (RN > P} SEEC
1,‘ 17 I ; oL, F&)-n-»—-—*—-—m--—-. Y T E peeeeee 3 P9 TRt
. 3 ¢ T
o | R e R 3 Py 1
ouTe 3 v
Lie-3,p8 ———'l‘ >°___l___z § ; e
} L =13~
To We. 1 . " 15-
RY | pu % it b ; ot
oy i _— Toi pa DERIAL
w12 |3 50 S 3 —-—-—-——>PS DATA
PELRE PALL IS RO 56y ouTtuTS
cLoces __*_‘. lhll‘&l
T02 P13 PEEEELE Fy LASEY LI}
{l\ /5 1208 2W
+5v 3bx “
IS b {- 20 n43E -3, r1
OSCiLiLATOR - — TTY y l.% }...__o HY
v 2-9 CURREWT
Loor
>-———O L
s 3 DOAVE °
o-3, P2
555 3
i 0 ﬂ ECS-G*+ Serial 1-O InterSace
-apJusT R3 FOR 56,320 Wi by (7. Helwerg | Se,
2 131_;, DRAWING ConTROL & MULTIPLEXING WLOGTIC
4 005 wE
c2 ' <4

:T[

© 1975 M.P. PUB

LISHING <oO.

G161 Arenuerp

pICH

Is

[owanjoaA G

TON

I

ECS Volumel No. 1 -6- January 1975

to program the different data rates possible with this design. The two channel selec-
tion bits are wired to the multiplexor of the input data and ready signals, and to the
output data and "'selcct't selectors,

The In/Out bit, bit 1, is used to enable the output write function for the UAR/T
with the OUTO02 clock, and is also routed to the ocutput plugs for use by the modems
In setting up their operation. The select bit is multiplexed to one of the four channels
of output via the 74155, IC -13-. The sclect outputs are in positive logic form. The
teletype device, channel 0, has its select shown in the drawing as driving an inverter
(-7f-) which in turn drives an LED indicator shown remote by the connector symbols,
The purpose of this logic 1s to provide a visual indicator at the teletype telling the
operator (ie: you) that the CPU is addressing that machine. This indicator is entirely
optional and may be omitted ii desired.

Feady Logic is provided by one section of the multiplexor 74153, -12-. This cir-

cuit 18 used to select the source of the "'ready'

signal which will be placed c¢n the bus

as a status bit (positicn &) when the IN3 operation interrogates status. For the channel

0 casc (teletype) the ready function

may be driven by a relav connected
7 : TTY READY SENSOR

in parallel with the "on line'' side

of the teletypewriter's front panel —dTry N\ ! COMMO‘;
switch, The relay shouid be an SPDT _M__ TTY Sw

contact variety with a 110VAC coil. ‘ \ o—3D L0CAL) o
The normally open contact is closed O ofFf

when the coil is enerc:ized by the _ 0 UME REWAYS
switch, thus groundin. the ready _ READY

line input . For the tape recorder oy - ‘L 110 VAC
interface modems, the ready line « RELAY ADDED
is driven by a "turn on delay! CONTROLLER T e—— o TTY

one shot which 1s cued by the GROUND

falling edge of the edpe of the select
signal to the device in question from
the 74135 selector. The second section of the 74153 is used tc multiplex the serial
inputs of the device, {rom one of the four possible sources - TTY or tape channels

1 to 3.

Serial Data Input is routed via the 74153 1C -12-. One section of this IC is used
to sclect the source of the serial data input to the UAR/T . This input is taken from
the teletype switch contacts for channel 0, and is the serial output of the tape recor-
der storage device's receiver section for the other 3 channels. The teletype data
is generated by a carbon brush mechanical switch controlled by the mechanism of
the keyboard button pressed. When using input from the teletype, the operation
of the mechanical switch produces a contact closure for the current loop ''mark"
state (idle) and breaks the loop for the opposite ("'space'’) state. This means that
to make the proper sense to the UAR/T, the re must be one level of inversion prior
to the selector if the preferable "pull up' TTL input form is used.

ECS Volumel No. 1 -7- January 1975

Serial Data Output of the UAR/T emmanates from pin 25 of IC -1-, and is first
inverted by -7b- before being routed to the output data selector, 74155 -13-. Sirce
the section of the 74155 used for the serial output data has one net level of logical
inversion (unlike the other section of the same chip) the inverter is required if the

signal sent to the modem or teletype is to be identical to the signal derived from the
UAR/T.

The channel 0 serial data output is wired to the 7437 high power NAND gate sec-
tion to generate a TTY current loop signal for driving the print mechanism. Since the
"true' or "logical 1" state of the current loop is current flowing in the loop, this state
must be generated by a logical zero output for the driver tied through the TTY electronics
to the high level voltage. This single level of inversion provided by the driver suf-
fices to create the proper signal - true data output of the multiplexing logic of the

74155 is the "mark' state which inverted generates a current loop ''on'" state when
the UAR/T is idle.

The serial outputs of the other three channels are wired to I/0O socket #2 along
with the other signals necessary to drive the modems.

Select Output Logic is also provided by the 74155, As mentioned earlier,
the select for channel 0 is wired to an indicator lamp. The source of the signal
for all channels is the select bit of the control word. For the tape drive modems,
the select signal for channels 1 to 3 is used to control the "motor on'' state of the
tape recorder. In the logic of the tape interface units, the rising edge of the select
line for the channel in question should trigger a one shot "motor start' delay, as
well as turn on the tape recorder's motor for the beginning of operations. The
"motor start' delay one shot has sufficient delay involved to allow the motor
to get up to speed and relatively stable operation. For cheap tape cassette
devices this time may be as much as 5 to 10 seconds - if the motor and drive
ever stabilize., For the more expensive forms of cassette recorders, a shorter
delay may suffice. Given a cassette recorder, the characteristics of motor speed
versus time from turn on should be examined to determine the minimum delay
required for reliable operation . In the previously published ECS-2 design, one
method of turning on the tape drive motor was detailed - a "tape drivebox'" with
a power supply and transistor
switch to drive the motor via the

"external power supply' jacks +iev
often found on battery operated y 20000 cowL
cassette recorders. The diagram ‘/‘ T+26 REED RELAY

at the right shows an alternate and (3-5 ma PULL-IN)

much simpler mechanism to con- i 2

trol the motor via a 'dictation' con- . oN®

trol input normally connected to a TAPE DICTATION . NC _
switch in the microphone. The relay INPUT MOTOR I—-O\-& :
used is a micro-reed design, in this CONTROL ' TO CONTROL JACK =

case a ""Grigsby-Barton #GB31C-G2150"

removed from surplus equipment.

ECS Volumel No. 1 -8- January 1975

The relay used in the prototype of this circuit had a coil resistance of 2000 ohms
(approximately) which gives a current of 6 milliamperes with a 12 volt drop when

the open collector 7406 energizes the coilc The 7406 can drive up to 25-30 milli-
amperes with no difficulties, which means that using this particular IC as a driver,
relays with resistances as low as 400 ohms could be used, provided a 12 volt drop
gives sufficient current to pull the switch contacts., To see whether a given "unknown"
relay will work in this application, its pull in current should be measured using a
variable voltage power supply with a current meter. Hook an ohmeterto the swlch
contacts of the relay and observe the current and voltage at which transitions in

the switch contact state occur. If the current at which the contacts "'pull in''
does not exceed about 25-30 ma at supply voltages of up to 12 volts, then the
coil can be wired into the circuit shown on page 7.

Wiring and testing the Serial 1/0O Interface:

The prototype of this design was built using wrapped wire construction techniques
as described in M, P. Publishing Co. publications 73-1 and 74-5. As in any complex
circuit, whatever your method of construction, use care in wiring and checking the
wiring. The following steps are a suggested set of testing stages for this circuit.

1. Verify all wiring and check the circuit's power supply connections by
applying power (with no IC's yet in sockets) and checking the proper pins
as listed in the table on page 9.

2. Check out the oscillator and clock generation logic first. Plug in the
entire complement of integrated circuits with the exception of the UAR/T
chip for preliminary checkout. Check the oscillator output after applying
power to the circuit. Adjust the frequency using an oscilliscope or a fre-
quency meter. The frequency should be 56, 32 Khz, which corresponds
to a period of 17.76 ps for those who use scopes for calibration.

3. Set up the following simple program in the CPU using the bootstrap
mode of data entry:

000 010 1INB next rate 011 020 select code

001 301 LAB rate to accum 012 1113 IN3 write CW, read stat.
002 002 RLC move rate to 013 177% OUT30 display stat.

003 002 RLC to the Ol 113 IN2 reaq UAR/T

0oL 002 RLC high order 015 175 0UT31 d?splay data

005 002 RLC of accum, 016 006 LAI define the

006 Oily NDI purge the 017 003 003 reset code

007 360 360 garbage bits 020 117 1INO reset inter.

010 06l ORI or in the select 021 377 HALT

#T/0 codes of ECS-5 altered for extraneous inverters

This program responds to interrupts by calculating the next rate code for
the serial I/O controller and outputting it to the controller. Look at the
frequency on the clock line of the UAR/T socket - and observe changes as
an interrupt is raised on the keyboard. Note that the instructions marked
with an "#'" use codes consistent with ECS-5's drawing #1 - see the errata
section of the last issue for comments regarding the inverters in that
design's drawings and their effect on codes.

ECS Volume 1 No. 1 -9- January 1975

The following experiment can now be performed - with the UAR/T still out of the socket
connect the clock pins of its socket to a . lmfd condenser to the input of a stereo ampli-
fier channel. Listen to the clock generator output as the program is cycled and note
aurally the different rates.

4. Now turn off the system power and plug in the UAR/T, taking into account the pre-
cautions listed below. Re-apply power to the system, and load the following simple
program to test data transmission. Look at the UAR/T output at the pin of IC -13-
which is selected by the channel code bits sent to the Control Word via IN3,

000 026 1Al set CW pattern 005 175:% OUT3. display data
001 1362 "110b,ch0,sel,out" 006 006 LAI set int. enab.
002 Oé ILAT define D07 003 003 enable

003 ?° 777 test dat:a 010 117 INO code

00k 1!3 N2 write/read UAR/T 011 377 HALT wai® next cycle

~ee note in last example re instr. codes

5, Test the input operation of the UAR/T by applying a TTL square wave at 27.5
CPS to the input of channel 1. Using the above program, change word 001 to the
octal code "367" (110 baud, ch. 1, select, input.) The data pattern of the 27.5 herz
square wave will be interpreted by the UAR/T as four bit-periods per cycle of the

wave form, as follows: .
istart parity

foe—— data —— | //‘, stop
6001100110011 0011
The teletype bit length was 7 - in this example, changing to channel | increases the

data bhit length to 8 bits. The UAR/T interpretation of the above square wave should
be displayed in the data lamps by the OUT3l as ''01100110"

CAUTIONS RE MOS I.C.,'S
When you purchase an Intel CPU or a complex MOS device such as the

UAR/T chip you should find it comes packed in a special block of conductive
foam plastic shorting all pins with respect to high voltage static charges. In
imsertion and handling of the 1C's, be sure to discharge body capacitance to
ground . Do the same before appreaching the wiring to make changes and
alterations. In my own lab I have a rug - and in i1ts typical low humidity
winter state, I draw 1/4'" ¢parks to ground after walking any distance! This

note was sugpgested by Gordon French in phone conversation recently.

Also, observe the following precaution when handling and inserting the
-pin IC parts such as the UAR/T: 1t 1s gquite easy to mechanically
stress the package to the point where it breaks in two - not so bad with a
$13.50 UAR/T but if you buy a $360 CPU chip of the cadillac variety, it
could be heartbreaking., Be sure to apply pressure evenly at all points and
avoid letting one corner ''get ahead' of the rest by too great a margin.

ECS

Volume 1 No. 1 -10-

Tables & summaries of the ECS-6 Design:

Package Summary List for the Serial I/0 Controller:

January 1975

IC No. Pins Description +5V GND -12v
1 10 COM2502 UAR/T - Std., Micr.Systems 1 3 2
2 1 8T09 Bus Interface - status 1l 7 -

1 1" 1" 1" - s -
)i lﬁ " i} " - g:i:u]l_ﬁ ; .
5 lh— " 1" n - data l)..‘. '7 -
6 1 74Ol inverters, misc. 1l 7 -
7 1 7L0lL inverters, misc. 1l 7 -
8 1l 7L37 NAND, high power 1l 7 -
9 2l 74100 Control word register 2 7 -
10 16 7,193 Rate Counter 1 8 -
11 8 NES55 Oscillator 8, L 1 -
12 16 74153 Input/Ready switches 16 8 -
13 16 74155 Output/Select switches 16 8 -
1 1l 7473 JK Flipflops (div by 2) n 11 -
15 1l 74 0L Inverters 1 7 -
16 1l 702 nor's 1y 7

Miscellaneous parts:

R1,R2, R6 to R13 = 1000 ohm zw 3
R3 = 25K, trimmer potentiometer 3
Rl = 200 ohms 1 -
R5 = 120 ohms, 2 watt 1
Cl = .005 mfad 1
c2 = .005 mfd I
Board, terminals, etc.

Also required:

itance locally on the power supplies,
(eg: .0l) bypasses to ground from power supplies,

- 16 pin component sockets
- 16 pin I/0 sockets

LO pin socket

- 2l pin socket

- 8 pin socket

ED = 10 ma LED indicator

a total of approximately 10Omfd of electrolytic capac-

to ground plus several ceramic

I1/0-1 List 1/0-2 List I/0-3 List
1 to 8 = bus 0 to 7 1 = TS0-1 1 = TTY-HT
9 to 16 = addr 0 to 7 2 = TSI-1 2 = Try-o current loop
3 = SELECT-1 3 = TTY-RDY
i = RDY-1 i = TTY-SELECT
I/0-2 List 5 = TS0-2 5 = +5V
6 = TSI-2 6 = TTY-TSI
1y = IN/OUT 7 = SELECT-2 7 = 0UTO2
15 = Master Reset 8 = RDY-2 8 = QUTO3
9 = TS0-3 9 = INO2
10 = TSI-3 10 = INO3
11 = SELECT-3 1, = GND
12 = RDY-3 15 = =12 v
13 = 16-f CLOCK 16 = +5 v

—

ECS Volumel No. 1 -11- January 1975

NOTES ON NOTATION:

Some further inputs from readers and other sources, plus some thinking on the
subject have led to a conclusion to use octal notation of programs in the ECS maga-
zine for the 8008 computer and its 8-bit microcomputer successors/competitors.
The basic arguments for and against hex have not changed - it still is a more com-
pact notation which fits the word size exactly. However I have some new inputs ac-
cumulated on the pro-octal side, summarized here ...

I. A reader, Ward Christensen of Dolton Illinois, points out an argument in
favor of octal based on character coding schemes. In both IBM's EBCDIC and
ASCII, the letters and numbers occupy separate groups of number codes in

the set of integers representable in '"'n'" bits. Thus to convert a combined
numeric/alpha field (as in HEX data entry) requires special case program
logic whereas octal conversion, such as illustrated in STUFFER in this issue
(bytes 120 to 1368), can be done "in line'" with no conditional execution by
simply masking the low order bits of the character entered. The original

hex input routine was not nearly so compact due to special case detection of
the A through F case and subtracting off the appropriate bias.

2. Gordon French (more inputs from him in ""Miscellaneous Notes'' below)
points out that hex coding can be justified for long word length machines with
byte-multiple word widths because it is a more compact representation of the
data than octal. However the short length of the 8008 word (''byte") means
only one extra digit is required.

3. I got the Digital Equipment Corporation's rationalizations for using Octal
at a recent meeting of the IEEE Computer Society in the Boston area. The meeting
topic was the design and architecture of the PDP-11 computer, discussed by two
individuals largely responsible for the machine's architecture. Strangely enough,
the topic of notation of programs came up in their talk - with the following reasons
being used to justify octal: a. Conservatism - its the way minicomputer pro-
grams have always been done. b. internal field structure - instructions on

the PDP-11 (as with the 8008) have effectively been designed with a 3-bit inter-

nal field structure which is symbolically respected if octal is used, but ignored

if hex were to be used.

4. I coded up several programs for my system using the hex notation for op
codes (figuring the codes as I went along until receiving the latest copy of the

8008 manual from Intel - which lists codes in hex). I found that while hex is

fine for reading IBM 360 machine code and dumps, adding and subtracting addresses

occasionally to locate origins, etc. - it is not so convenient when hand assembly
of code for the 8008 is concerned. This effectively provided the last straw in a
reluctant decision to live with Intelese address notation and 8 bit octal data.

Accordingly, I rewrote a memory dump program I had originally written for hexa-
decimal oriented outputs and have listed all programs in this issue in absolute octal
format. The program listings consist of three octal 3-digit columns. The first two

columns contain the page (H) and byte (L) address locations, separated by a reverse

ECS Volume 1 No. 1 -12- January 1975

slash,. The '"equal' sivn following the address fields separates the address from
data at that address - cither the octal form of some program data, or an 8008 oper-
ation code in octal. In the listings, comments have been typed to the right of the
dumped information, and labels have been indicated on the left.

MEMORY DUMP PROGRAM "ELDUMPO":

"ELDUMPOQO'" is an application program which will prove useful to anyone
desiring an octal display of information on the teletype, or alternatively, on any
other suitable output device if you substitute a different routine for the "TYPE"
routine accessed via the RST3 instruction noted with mnenonic TYPE. The program
begins execution with entry from location 0, or from the "IMP" interactive manip-
ulator nrogram. (To be listed and described in the next issue.) The absolute machine
addresses used in this program as written and dumped are locations 011/000 to 011/235

which are part of a I-kilobyte RAM design which will be described in the next issue
along with IMP, ‘he ELDUMPO program was entered into its memory locations
using the "STUFFER" program described on page iy, and i7 below. The listings of

ELDUMPO and STUFFER

were achieved using the ECS-5, ECS-6, ECS-4 and
ECS-3 designs to drive a teletype interfaced as described on page 7 of this issue,
Used teletypes (mine is a model 33) can be picked up at prices in the $250 to $500
range depending upen condition and model. At a recent auction sale, I saw teletypes
with pin feed platens sold typically for $350 (including card reader/punch attachments.)
In lieu of a teletype, it would be quite reasonable to format the dump essentially as

it is performed here, but stuff the data out onto a TV Tvpewriter of one of the
several kit forms currently available - or onto an oscilliscope character generator,
The major labels of lacations within the program are listed and described below:
START: 011/000 - this is the program entry point, Come here to start off the pro-

uram by turning off the interrupts while the dump is in cperation. (Ignore the key-
board except when testing for end of job cue at the end of a line of dumping.)

ELDUMPO: 011/003 - this address is the main dump loop entry point, and is reached
once for each line printed.

END: 011/110 - this address is the place execution transfers to when the data count
is exhausted or the keyboard is found to have a non-null character at the end of

a line of printing,

STRING: 011/126 - this is a character string data text area containing the end of
job message as a length count (1710) followed by bytes of 7-bit ASCII characters
for the teletype.

TBYTEOCTAL: 011/150 - this address is a subroutine which prints 3 octal digits
accessing the "OCTOUT" routine via an "RST4'' instruction.

TSTRING: 011/166 - this address is a subroutine which is entered with H/L pointing
to a character string such as STRING, and which types out the string.

ECS Volume 1 No. 1

-13- January 1975

SPACES: 011/177 - TYPE "e' spaces and return

TYPEIT: 011/207 - jump here from TYPE (RST3) to do the work of printing

The dump in octal of the

START: 011\00O
Ul1iINoGl

0liNoo2
ELDUMPQO: U11NOU3
011N\004
O11N0OS
011\006
011\007
011N010
011Nt
vrlNul2
UlLINUL3
Ol1NO14
OLINOES
UliNol6
Q1IN0 Y
Ul iN020
0liNo2l
Oilxuee
011N\023
0l1NG24
0L1N025
OliNu2e
SRR RNy
011\030
UliNO31L
ul1N032
GOTHOK: 011\033
011\034
011\035
011\036
011\037
011\040
Ol1\04l
0l1\o42
011\043
011\044
011\045
011N046
011N\04Y
011\050
Ul1N\051
ul1\052
011\053
011\U54
011\U55
0L1\US6
UL1NUS7

nou

[N N Y T A N (N { | Y N { N [S O A | S o

non iwon [LI T { B T B 1]

ou

nu

ELDUMPQ program is listed below with commentary

ooe6
ooe
117
056
00U
066
025
327
ozl
a1z
150
110
011
300
300
300
066
006
317
160
327
020
3ie
110
033
Uli
01U
061
311
006
ol15
0395
006
ule
035
046

= 0l

106
1t
ull
301
106
150
oll
0oe6
134
035
302

LAI
interrupt disable code
OQUTO (INO) - see ECS-6 pl4

LHI ~

data RAM point to current count of data
HHCOUNT)

LCM -

DCC }—‘ decrement count to zero
LMC once per iteration

L
H

. ‘
Nops—thcse three NOP's leave space to put in an

all '"'n'" locations have been
dumped so go end it.

JTZ ENDj/, if count reaches zero, then
NOP
NOP
LLI

IIMEMADDR _ ,
LBM ——~ point to memory address in

INL RAM and load it into B/C
LCZM”\
INC
LMC

JFZ GO”‘KJK}f if no low order overflow, then

extra line feed when TTY acting up!

increment and save low order address

L high order is OK as is...

H
INB -~ increment high order if required...
DCLY . hiel der 1 d s: "
LMBT‘ point to high order byte and save 1t...
LAl
"CR" type out a carriage return
TYPE
LAI
"LEFY type out a line feed ...
TY PE
{‘E)EI set up number of spaces for call...
0
CAL. SPACES and blank out (literally)
L
H
LAB - define input argument to print octal byte
CAL TBYTEOCTAL
L print high order address,
H (don't byte off more than

you can choo however)

LAI
"back slash" print separator between H/L
TYPE

LAC fetch low order address for printing

ECS Volumel No. 1 -1 - January 1975

The listing of ELDUMPO continues below after an aside: RAM locations 000/000
and 000/007 are assumed to contain the current address in the dump, initialized

to one less than the first address to be printed, upon entry to the program. RAM f"'\‘
location 000/025 is assumed to contain a count up to 2551y g¢iving the number of bytes
to print initially, and the number remaining thereafter.
011\060 = 106 CAL TBYTEOCTAL)
0O11N06l = 150 L ?go print low order address
griNcezg = Q11 H J
0l11N063 = Q06 LAT
011N064 = 040 e 2-— print a blank, followed by...
011N\065 = 035 TYPE)
O11N066 = 006 LAI
011\N067 = 075 B }» print equal sign
011\070 = 035 TYPE
Ol11INO71 = 006 LAT N
011\072 = 040 o J print a blank
011N\073 = 035 TYPE
011N074 = 351 ILLHB
011N\075 = 362 LLC —— define data byte address and fetch
0l11NO76 = 307 LAM it from memory
011N\O77 = 106 CAL TBYTEOCTAL
01INIOO0 = 150 L print data
011\N101 = 011 H
011N102 = 115 IN1 read the keyboard at end of line
OLl1IN103 = 074 CPI to test for a null code
OLINIO4 = 377 "Tnull" and \\%
011\105 = 150 JTZ ELDUMPO continue if null... N
81 i :183 : 8&)? II_'{' otherwise fall thru to END
END: O11N110 = Ub56 LHI
OtINI1l = 011 h(STRING)
OlINL1I2 = 066 LLI
OL1\113 = 126 1(STRING)
O11Nl14 = 106 CAL TSTRING go type string after defining
OLLINILS = 166 L the arguments as H/L
Ol1Nll6 = 011 H .
O1IN117 = (056 LHI N —— these instructions are put in
0“\1?0 = 000 0 to reset the keyboard scan
81 i' :;j; :_ 883 ?LI state and I‘C‘tul‘lll to th? IMP
011N123 = 076 LMI program operation. For
0l1\N124 = 002 2 use without IMP, these can
OliNl2s = 025 KEYWAIT (RST2) be replaced by a HALT or a
STRING: OliNize = 02l 1710 length return to a calling routine.
OlINL127 = 015 ""CR
OI'INI30 = Q12 TLE!
Ol1N131 = 0l2 "LE!
Ol1NI32 = 1lus TE"
Ol1IN133 = 116 TN 7-bit ASCII for TTY end of
UO11N134 = 104 "D data message
011\135 = 040 ""blank'' -
01IN136 = LU "hell" &
OlINLI37 = 00Uv "null"

ECS

The listing of ELDUMPO continues, with another aside -
"STRING' 1is an example of a general form called the ''character string."
you want to edit a book, or a magazine for that matter - or a letter to a friend.

Volume 1 No.

1

January 1975

The data definition of
Suppose
One

great way to do sou is to use a string oriented program to store and maintain text as

character strings.

TBYTE-

OCTAL:

TSTRING:

TSLOCEPE:

SPACES:

TYPEIT:

TYPEWAIT:

011N140
011\N141
0liNl42
O1iN143
01iNl4ay4
0l11\145
0l11N146
Ol1iNl47

—=011\150

O11IN1b5l
0111\N152
0111\153
OlINLb4
OlIN1b55
011N156
Ol1N157
011N160
OliNiel
O!ll\N]j62
011N163
01iNl64
011N165
01lN166
O11INLI67
011NL70
01i1N1 7}
0liNtve
O11INLI73
Q1IN T4
GLiNl75
0L1IN176
011N177
011\200
011\201
oriNaoe
011\203
011\204
011\205
011\206
011\207
0l1\210
0lingll
oliN2ie
011\213
OliN2l4
O11\215
011\2l16
011IN217

onou

[(I U 1]

no

o

[

o ouon o8l

i

L L A | A I (N | A { A [A 1

1]

000
ou7
000
007
000
000
007
007
340
002
002
044
003
045
304
012
012
ol12
045
304
045
007
3471
055
307
U35
041
110
167
011
007
006
040
035
04l
110
177
011
007
330
006
362
111
303
113
036
077
006

This basic form will recur in numerous ECS applications.

Hnullil

"bell" a few bells and nullsles always
"null" help annunciate the end of
"bell" a program's execution..
""bel

fnull' |

"bell

"bell"

LEA save data in E work register

RI.C . A . .
RLC }— shift high order two bits to low

E\'J(g)IOOOOII”_} and mask for 0/1/2/3 digit

OCTOUT ~—-==go OCTOUT vyour fantasies

LAE

RRC j

RRC fetch saved data and shift middle
RRC octal bits to low order

OCTOUT _ and print them

ILAE - fetch saved data

OCTOUT and print the low order data digit
RET

LEM—=here's the text string typing routine -
NEXTA -=get next address after saving length code.

LAM fetch the next byte of string
TYPE and go type it on TTY
DCE decrement length count in E

JFZ TSLOOP Lr— if any count remains, continue

L. printing the string
H J

RET return, if count exhausted...
LAI come here to print spaces

0ot

TYPE print the space

DCE decrement the space count
JFZ if not zero have at it again

L

H

RET

LDA come here to print a character
LAl

110 baud, ch 0, select, output

IN3 —= go write the TTY output control word

LAD —= save status read

IN2 —_= restore data and go write

LDI —» make a wait loop to verify done-ness
63 times should suffice

beginning of wait loop

6 310
LAl —s=

ECS Volume 1 No. 1 -16- January 1975

The final segment of ELDUMPO code is printed here... in order to run the pro-
gram, be sure to reference the section on restart instruction usage located later
in this issue. The restart routines TYPE, KEYWAIT, OCTOUT, and NEXTA

are all defined in that section and referenced at various locations in ELDUM PO.

011\N\220 = 362 110 baud, ch 0, select, output

oliNegzl = 111 IN3

0ll1\222 = 044 NDI

O11\223 = 030 mask for TBMT and TEOC bits

011N\N224 = 074 CPI

0l11\225 = 030 both bits on and it might be time to try again.
011\N226 = 110 JFZ TYPEWAIT

011N\227 = 217 L either bit off indicates
011N\230 = 011 H definite try again
011\N231 = 031 DCD decrement loop count

011\232 = 110 JFZ TYPEWAIT

011\N\233 = 217 L - try again ''n'" times, to ''be sure'
011N\234 = 011 H about the status bits - see below...
011\235 = Q07 RET return after really done...

Note that a WAIT loop was inserted in this routine as a part of testing the UAR/T.
An experiment you may wish to perform is to minimize the number of times through
the extra wait loop iterations used to be ''really sure' the UAR/T is done. Nate
also that throughout this code, the input and output instruction operations used are
those required for ECS-5's decoder as printed in that article.

MANUAL BOOTSTRAP PROGRAM "STUFFER!"

The listing of "STUFFER" is found on page 17 of this issue. The basic idea is
to make a program which essentially delivers the minimal subset of an editor pro-
gram such as IMP needed tc stuff data into locations
in the memory of the CPU., This routine takes a
total of 5210 bytes of memory, and is amenable
to loading via toggle switches - after which use of
keyboard and octal coding will make for more effi-
cient loading. The command keystrokes are as
follows:

"N'' - ECS 5 code 3log is used to compute the
next address and display the content at
that address.

"I'' - ECS-5 code 3llg is used to insert the
last entry at the current, address, increment
address and display data at the next location.

All Else - treat the low order 3 bits as an octal
digit shifted into the 8 bit entry register C

CAVTION
STUFKER AT WORK

To initialize the program's H/L address to memory, put the CPU in single step
mode, interrupt and go to location zero, define the H and L constants at locations
140 and 142, single step past location 101 of STUFFER, then go into execution.

ECS Volume 1 No. 1 -17- January 1975

STUFFER @
000N100 = ll5% TN2 - read keyboard data after an interrupt.
888::8; ; 3;2 9%% test for an "N'" code on keyboard.
000\N103 = 150 JTZ NEXT - if the "N" is found, jump to the
000\104 = 150 routine which increments H/L and displays
000N105 = 000 the data at the next address...

888::82 - gZ? 9?%}- test for an "I" code on keyboard.
000\110 = 150 JTZ INSERT - if the "I" is found, jump to the
000N111 = 160 data insertion routine to define memory at
000\112 = 000 H/L from last entry...

ggg:iii : g;g ?iillnjr test for null character code...
000\115 = 150 JTZ INIT - to initialize H and L use single
000\116 = 137 step mode, start with a momentary keyboard
000\117 = 000 key stroke

OCTAL: 000\120 = 044 NDI Assume octal, and throw away the
000\121 = 007 "00000111" S high order bits with AND...
oooN122 = 310 LBA - temporarily save digit in B...
000\N123 = 302 LAC - fetch previous entry from C...
000\N124 = 002 RLC
000\125 = 002 RLC}» make room for new digit, saving old high order
000N126 = Q02 RLC order information...
000N127 = 044 NDI Delete previous bits hanging
000\130 = 370 "1111111000" around in low order digit...
000\131 = 261l ORB - merge in new octal digit from B save...
000\132 = 320 LCA - save new entry in C for next time or use...
000\133 = 177% OUT30 - entry displayed on the right...
000\134 = 306 LAL - fetch low order address...

000\135 = 175% OQUT31 - current L displayed on the left...
000\136 = 025 KEYWAIT@® Wait for next key stroke...

INIT: O000\N137 = 056 LHI Come here to define initial value
000N140 = 000 27° of the address registers H and L
000\141 = 066 LLT for loading data. Define 140 and
000\142 = 200 2979 1142 manually via bootstrap mode of ECS3

LOOK: 000\143 = 307 LAM - fetch the currently addressed byte
000Nl44 = 177% OUT30 - and display it in the right display
000\145 = 306 LAL - fetch the current low order address
000\146 = 175% OUT31 - and display it in the left display
000\147 = 025 KEYWAIT@ Wait for next key stroke...

NEXT: 000\N150 = 060 INL - increment low crder address...

000\151 = 110 JFZ LOOK - go look if not overflow...
000\N152 = 143

000N153 = 000

000\154 = 050 INH - increment high order if required
000N1S55 = 104 JMP LOOK - and always go look thereafter
000\156 = 143

000\N157 = 000

INSERT:000\160 = 372 LMC - insert the data entry in M{H,L)

000\161 = 104 JMP NEXT - go calculate next address and
000\l162 = 150 then display info with LOOK...
000\N163 = Q00

END NOTES:

Output instruction codes are illustrated for the
wiring of the prototype system - see note, p. 1l ECS-6.

@ KEYWAIT is mnemonic for RSTc, used to access the
keyboard interrupt wait routine. See page 20 .

ECS Volumel No. 1 -18- January 1975

PROGRAMMING NOTES: Using Restarts:

This is the first in a series of program-
ming notes on the use of the Intel 8008 instruc-
tion set in the context of an ECS system or its
equivalent...

The restart instructions of the 8008 are effectively one byte CAL instruc-
tions with an implied target address given by the operation code. The implied sub-
routine address of the instruction is one of the octal locations 000, 010, 020, 030,

040, 050, 060 or 070 in page 0 of memory address space, specified by the middle
digit "? " in the operation code '"0?5'. The fact that only a single octal digit is avail-
able for this use immediately limits the application to @ maximum of 8 critical

(ie: much used) subroutines in a given software load. In a design such as that which
was published in ECS-3 and ECS-5 during 1974, one of the restarts is attached to the
1/0 interrupt structure by using it as the "'single instruction jam' which occurs when
the CPU is to be interrupted. For the ECS series software, the interrupt structure is
at present only used for keyboard interrupts which occur when a key is pressed on

the typewriter keyboard of ECS-5. Alternatives to interrupting include use of a
priority encoder to pick a restart routine in cases where fast vectoring is required.
However, the fact that it is impossible to save the program state of an 8008 at inter-
rupt time (without hardware augmentation that is) leads to the conclusion that the

8008 is best programmed as a ''one process' machine at the hardware level - with
software polling of interrupt status for most of the fairly slow peripherals likely

to be used in a home brew computer context.

With one of the restarts thus taken up by the keyboard interrupt, there are seven
instructions RSTI to RST7 which can be used for "something else.'" What is that
"something else.'" Basically an analysis of your programming of a problem will often
show a set of instructions which are used over and over again - a criterion which of
itself defines a potential subroutine. Of the set of all possible subroutines a program
might use, certain of these subroutines will be executed most often in the static sense -
they occur repeatedly throughout the code and occupy a lot of memory space with 3 byte
CAL instructions. These frequently coded (but not necessarily frequently executed

however) invocations are likely candidates for use of the RST call mechanism
in place of the CAL instruction. In making a routine accessible by RST, the amount
of memory occupied by the linkages to the routines in question will be de-

creased, but as is always the case, there is a price in execution time. Instead of
taking one ll-state CAL instruction, the time required now includes RST - for a total
of 16 CPU states, or ©4 microseconds.

The basic use of the RST instruction for a subroutine invocation (where the sub-
routine is longer than 8 bytes) is illustrated by the following:
In place of CAL XX, use RSTn (where n is an available restart)

At location 000/0n0, code a JMP XX instruction to cause transfer of
control to the routine as if CAL had invoked it.

No other changes are required in the subroutine in question, since its execution

does not care how it vot there

ECS Volume 1 No. 1 -19- January 1975

As can be seen in this use of the RST instruction, you will be trading an RST
followed by a JMP for a direct CAL - to achieve the same functional effect in a pro-
gram's operation. Adding up the overhead, two CAL's require 6 bytes, and the
total memory required for the same two CAL's implemented via RST is two
RST's plus the one JMP at the RST target location. Thus for two or more CAL's
to a routine, a net savings tending assymptotically to 2 bytes per CAL will be
realized. (Using this mechanism in the degenerate case of a single CAL to a
routine will incur a one byte memory overhead penalty!)

In order to successfully use the RST operations it is imperitive to structure the
first 100y bytes of memory address space (which I assume will be RAM) to take advan-
tage of the method. The software supplied in the current and future articles of ECS
assumes such a structuring is being used, as described below. The text which fol-
lows presents the definitions of presently used RST routines which have been refer-
enced in the listings of ELDUMPO and STUFFER given earlier. Note that most of
the restart routines do not occupy a full 8 bytes {the maximum allowable without in-
terfering with tne next RST zone of memory.) Thus there is plenty of room for
allocation of permanent or temporary RAM usage in the spare bytes left over following
the RST routines proper and preceding the next RST location. Of these nominally
"spare'' locations, several are given permanent system-level allocations in the
text below, In particular locations 3 to 7 and 15 to 178.

INTERRUPT RESTART:

The tirst restart zone of memory is that from addresses ()OO/OOC‘8 to 000/0078’
which are accessed whenever an interupt occurs in the ECS series designs or their
equivalents. The "'restart' routine for this case is the simplest - a branch
to the prime entry point of the currently executed program. For instance, tc run
ELDUMPO in this issue, the address of ELDUMPO's START location should be
patched in as the target of a JMP instruction's operation, at locations 000/000 to
000/002. The patching is done manually in the bootstrap mode of an ECS style
CPU. Manually patching in the address of STUFFER instead will change the key-
board interrupt response to reference that program instead. The design of the
IMP program which will be listed and explained in the next issue of this magazine
will assume tlat it is the "primary' program of the system and will be the target
of this branch. It will proceed from there to identify the source of the interrupt
and return to the appropriate routine with the character it reads. (An element
of the return from ELDUMPO to IMP is included in the current listing of ELDUMPO
at locations O011/117 to 011/125.) The remainder of the RSTO zone of the 8008 address
space 1is allocated to usages for system parameters as follows:

000/003 - IMPSTATE - this is an integer value which
contains the current operating state code of the IMP
program.

000/004 - IMPENTRY - this 8-bit byte contains the last
entry interpreted by IMP from keystrokes representing
octal digits.

000/005 - unassigned

000/006 - MEMADDRH - this is the high order of a system
level memory pointer used by IMP as well as ELDUMPO

ECS Volumel No. 1 -20- January 1975

000/007 - MEMADDRL - this is the low order portion of
the memory address pointer .

BYTE EXCHANGE RESTART: XCHG

The second restart zone is reserved for prime use as a routine to exchange
the two 4-bit halves of a byte of data. The purpose for this routine (which is nat
accessed by the software listed in this issue) is to provide a simple means of
manipulating BCD digits when writing routines for BCD arithmetic. The code
of XCHG is as follows:

XCHG: 000/010 002 RILC
000/011 002 RLC
000/012 002 RLC
000/013 002 RLC
000/014 007 RET

The location 015 in this restart zone is reserved for a JMP instruction op code

(1048) followed by two variable bytes set whenever an indirect form of branching
is required. This location (015, symbollically "GPIJMP'") is used by IMP for exam-
ple to branch to an appropriate routine in response to keyboard commands stored

in a table.

KEYBOARD WAIT RESTART: KEYWAIT

The third restart zone of address space extends from 000/020 to 000/0278 and is
accessed by the RST2 instruction code. The definition of this restart is assumed by
both the IMP and ELDUMPO programs to be a routine which sets up the keyboard
interrupt hardware then halts pending an interrupt. The routine occupies four of
the 38 available bytes in the RST2 zone - the balance from 000/024 to 000/027
are available for use as temporary RAM locations at present, as for example
ELDUMPO's use of location 25 to hold the number of lines remaining to be printed.

KEYWAIT: 000/020 006 LLAT load the
000/021 003 003 interrupt enable code
000/022 117 INO write - resets interrupts
000/023 377 HALT - wait for interrupt

PRINT A CHARACTER: TYPE

The fourth restart, RST3, has the purpose of implementing a single character
TYPE function via RST mechanisms - where the character to be typed is assumed
to be in the A register prior to entry., Its implementation as a RST routine is via
the JM P mechanism - the invocation causes a jump to a location within the ELDUMPO
routine which performs the actual typing:

TYPE: 000/030 104 JMP TYPEIT
000/031 207 L
000/032 0Ol H

The remainder of this restart zone, addresses 033 to 037, are unallocated to software
use at present, and might be used for temporary RAM storage or other purposes which
do not conflict with the RST functions.

ECS Volume 1 No. 1 _21- January 1975

OCTAL OUTPUT ROUTINE: OCTOUT

The fifth restart, RST4 , is used at present only by the ELDUMPO program, and
might in fact be redefined for a more important application at some future time. It
consists of the code needed to form a single octal digit in 7-bit ASCII code for the
teletype, followed by a TYPE instruction (RST3) to print the octal digit in question.

OCTOUT: 000/040 044 NDI

000/041 007 mask off low order - scrap high
0600/042 064 ORI
000/043 060 or in the first numeric code

000/044 035 TYPE and go type result
000/045 007 RET

As in the previous case, the remainder of this zone 1s unused at present and might
be empleyed by an application requireing temporary storage in RAM.

NEXT ADDRESS ROUTINE : NEXTA

The sixth restart, RSTS, 1s the final one presented in this set of definitions.
It is a routine to perforim a double precision incrementation of the address
stored in the H and L registers. It is currently usced, for example, in the siring
typing routine of ELDUMPO {ound at locations 166 to 176 1n page 011,

NEXTA: 0G0 /050 OF O INL Increment L
GO0 /051 013 RFZ Return if no overflow
cO0/052 050 INH Increment H
000/083 007 RET Return always.

The remaining portion of this zone is left undefined at present, for future allecation
to permanent or temporary use.

NOTES OF INTEREST TO READERS. ..

Concerning Circuit Boards:

For the time being I am removing the circuit board products previously announced
from this market place. The ECS-2 board is functional but represents an overly
complex approach to an audio frequency tape recorder modem and I will shortly be
replacing my own versions with simpler designs. For examples of a simpler modem
seec the current issue of Radio Electronics (February 1975) page 53 for use of the
EXAR modem chips. The memory board which I previously announced
works fine - in fact it was used to store the program ELDUMPO in this

issue - but I have added some options which make the original board obsolete. The
details of the 1K memory design will still appear in the next issue as announced.

ECS Volumel No. 1 -22- January 1975

In view of the fact that I am no longer providing the ECS-2 board, 1 will agree
to refund purchase price to the handful of subscribers who have purchased this item
upon receipt of a request for the refund.

Concerning Errata & Program Patches:

Since the previous ic:uc, ECS-6, some further errata in previously published
desipgns have come to my attention. First, two items received from Herman Demons-
toy of Painted Post, N. Y.

- The output pins of the 2501 memories shown in drawing #5 of ECS-3 are

incorrectly identified. Pin 14 (indicated as the D output) should be the D
output - and vice versa. To {fix the drawing, write ''14" wherever you see '"'13"
on a 2501 output, and write ""13" wherever you see "l4'" printed next to

a 2501 output., The functional impact of this error is a logical inversion of
the data stored in memory and read back out.
- The sense of the control lines numbered 134 and 136 on drawing #6 of ECS-3
is incorrect. The correct wiring can be obtained by either adding an inversion
with a 7404 section or equivalent, or in the case of line 136, by climinating the
inverter shown in drawign #8 of ECS- 3.
Mr. Demonstoy receives a subscription extension of his subscription by one issue
for his identification «f these errors and detection of an error in the MEMZAP

program which had been previously noted by my brother Peter.

The MEMZARP program listing has an error in it, page 65 of ECS-3. Word
6 of the program should read '"371" and not '""307'"" as printed. This error was first
identified by Peter Helmers.

The ADDS8 subroutine of the extended precision addition routine has several
errors. Peter Helmers relays the following routine which works, created by his
associate Loren Woody at the University of Rochester:

ADD%: 000/100 OL6 1ET Set E to O (new carry)
000/101 000
ooo/ o 361 LLE Get AVAR
000,103 307 LAM
00C /1)L 362 LLC Point to BVAR
owo/&ﬂﬁ 207 ADM Add BVAR

/

000/ 106 100 JFC ADDCARRY

0Cco/107 112

000,/ 110 000

000/1:1 o0 INE Set I to 1
ADDCAPRY: 0CO/112 203 ADD Add old carry

000/113 100 JFC SETCARRY

000/1il 1L7

ooo/115 000

000/116 oL0 INE cet B oto 1
CETCARRY: 000/117 33l LDE Cave Carry

000,/120 370 LMA Save Hesu.t in BVAR

000/121 007 RET and return...

ECS Volume 1 No. 1 -23- January 1975

Concerning Where To Get Parts (ie: 8008's)

Peter Helmers has just recently completed his version of an 8008 system (at
least the initial stages.) As part of his shoestring approach, he did a survey of the
various vendors advertising in the Radio Electronics, '73, and Popular Electronics.
magazines. I will not repeat the vendor addresses here, since all of them advertise
regularly in the above magazines. What follows is Peter's summary:

a) Godbout Electronics was the fastest to reply. They also seemed the
most open - especially considering their offer to talk via phone and an ex-
plicitly stated guarantee.

b) Electronic Discount Sales - second best source - reminds me of an oper-

ation like yours is in publishing... Had as a good a price as Godbout. Did offer
guarantee in post card reply.

c) RGS Electronics - "'stuffy', Gave an impressive reply, but are obviously
trying to sell their kit rather than chip itself since they are way over the "market
price' (eg: $50) of the 8008, My only dislike I guess is their price since on re-
reading their reply I would not hesitate to purchase from them.

d) M&R Enterprises - I wouldn't purchase from them. I am not sure that I
believe their story about ''savings to the customer'' since quantity prices of

the 8008 are $60 leaving them no profit. Also, considering that the Micro System
International unit is offered (surplus) from Electranic Discount Sales, I wouldn't
be surprised if these two companies bought from the same sources. Also, this
company is the only one that did not mention any sort of guarantee.

Peter ended up buying his CPU for $50 from Godbout and shipped immediately to
me in late December, I ran it in iy system in place of my regular CPU for about one
week and could detect no differences executing a typical set of programs. His latest
report is that the CPU is up in and running in his version of the 8008 type system,

and operating at a clock rate of about 717Khz with no sweat (my $120 CPU purchased
from Cramer new in 1974 (March) craps out at 500 Khz - sigh!)

Concerning The 8080, ALTAIR and Better Systems.

Since the last issue was mailed, I read of the Altair computer in Popular Elec-
tronics. It is a welcome addition to the home microcomputer market place, since
the fact that the entrepenuers at MITS are willing to speculate on market acceptance
of such an advanced (and expensive) product is an indication of the growth of the field
of avocational computing. First, a note about the PE article —it was fairly obviously
prepared by an individual with the following characteristics: little knowledge of
computers, a package of materials handed to him with correct data on the device
and its capabilities, and boundless enthusiasm. The net vector sum of all these
inputs is a set of fairly outrageous statements, From what I have seen of the 8080, and
a comparison with products such as the Motorola 6800, Itend to prefer the latter due
to its much better documented and designed instruction architecture from a programming
and systems standpoint.

ECS Volume 1 No. 1 - 24~ January 1975

On the same theme, a long letter from Gordon French arrived on my desk on '
the 10th of January or thereabouts fincidentally, composed and printed using an 8008
based text editor running to a teletype.) Several points are worth noting for readers:
First, Mr. French lives in Menlo Park California, whicli is relatively close to the
Intel facilities. The following excerpt from his letter concerns a visit he made to the
Intel people:

"

I spent 2 hours talking about the Altair 880 with Intel engineers
in the Intel Lobby. Gist of many subjects discussed is the foliuwing.
Intel duoes not now nor will they ever, surplus out of spec parts to the
market. Intel does not desire to cater to the Amateur Computer User
to an extent that would mean product design intended for the ACU.
They welcome the MITS effort, because it gives them a single source
for a large volume sale (with no hassles). They say that the big prob-
lem is in instructing the engineer user on how to program the machine
(no wonder, since they push hex as the source code!) Most of the
people they train have had high level language schooling and find the
assembly language tedious, difficult, or utterly impossible. They
sald there is definitely a market for tutorial texts on assembly language
techniques. As for the 8008 or Altair 880 users - they advise the
serious user to purchase their Intellec 8080 ($3840) otherwise they are
not interested. The feeling I came away with was that their whole mar-
keting philosophy (understandably) is that they will go after the 100000
piece order. As for future products that they think might get into amateur @
machines (when I asked about future RAM costs and new easier to
use RAM) they say that they sell all the product that they can produce
and that this is going to keep the price of RAM up until that situation
changes. They also say that they will continue to produce products
that are specifically high volume productions. Draw your own con-

3]

conclusions.

With the current going price of the Intel 8008 at $50, he draws some fairly obvious
conclusions regarding amateur computing systems - it will remain extremely eco-
nomical for some time to orient a system around the 8008 - with the newer 8080
or similar technology processors remaining fairly expensive for some time. Ulti-
mately, the 8080 or other CPU products such as the Motorola 6800 will be coming
down in price as production expands - at which point the 8008 will be relegated to
the same place in amateur computing as the one tube triode transmitter occupies
in amateur radio... a cheap and fairly low power introductory "rig'.

Regarding RAM prices, the latest issues of Electronic News and other trade pub-
lications are running advertisements indicating a 1K static (2102 or 2602) price of
$4. 95 1n 1000 guantities. The current small quantity price according to Peter
Helmers who just acquired 2K bytes worth is $7 - new from a regular distributor.
Conclusion: if you see a surplus house advertising these devices above the new price,
it is suggested you talk 'em down to a reasonable level if possible. The basic systems

prices are coming down - the market can only expand as more and more individuals
can afford the technology. The parts in question are made by Advanced Micro
Devices, whose distributors are Hamilton/Avnet, Cramer and Schweber,

(" =

o~

M. P, Publishing Co, Box 378 Belmont, Mass. 02178 Volume 1| No. 2

A MONTHLY MAGAZINE OF IDEAS
s FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

This issue of ECS is the second for 1975. It is somewhat different from previous
offerings in this series of publications in that it is the first issue to be almost exclu-
sively devoted to software - two fairly large programs for an 8008 computer archi-
tecture are listed with commentary. The roster for this issue is...

1. The Interactive Manipulator Program (IMP-1): How can you make your
task of loading and changingmemory content easier? One way is to use an
interactive editing algorithm such as IMP-1. In this section you will find
the functional description, annotated listing and examples of the usage of
IMP in conjunction with keyboard input, binary (or octal) display outputs -
and if you have a character output device such as TTY or TV-Typewriter,
- optional links to ELDUMPO (see last issue) are included.

2. Memory Module ECS-7 Hardware Description: As noted, the main theme
of this issue is software - but software generally requires memory, so the
1024 byte memory page design is included with this issue. The writeup in-
cludes the logic diagram, tables, and notes on expansion to more 1024-byte
banks and a very useful feature called "hardware write protect. "

3. Memory Test Program (BITCHASER): What distinguishes good bits from
bad bits? Hmm! Maybe the good ones are white and the bad ones...??? Not
likely ! But BITCHASER knows - in the form of a write/read verify of all the
words in a selected segment of memory. You can put BITCHASER to work
seeking out and counting bad bits -~ pursuing them relentlessly through the

ins and outs of memory address space within a specified set of limits,.

4. Programming Notes: Symbol Tables: How can you use the concept of

a symbol table - in elementary form - to aid in the writing and debugging of
programs in absolute binary? A hint was provided in last year's ECS-5
article, This issue illustrates with IMP and BITCHASER, as explained

in this section of the magazine.

The next issue is scheduled for mailing on March 10 1975, The technical content will
consist primarily o: 4 new tape interface design along lines suggested in a Radio
Electronics article using the XR-210 Modem chip. The article is to include the tech-
nical description of the hardware plus software extensions of IMP for the purposes

of dumping and restoring data to/from the tape interface,
/)"-LQMW D

Pubhbher o sy

© 1975 M. P. Publishing Co. All Rights Reserved

ECS Volume 1 No. 2 ~2- February 1975

THE INTERACTIVE MANIPULATOR PROGRAM IMP -1

Functional Description of IMP-1:

IMP is designed to be utilized from a keyboard such as the interface design of
ECS-5 previously published, or any suitable typewriter keyboard with appropriate
coding changes for the keystrokes., The purpose of the program is to manipulate
and examine the content of memory as well as to invoke - and return from - various
system utility routines and applications programs. These goals are accomplished
using a set of internal RAM data areas sandwiched in among the restart routines
described last issue , and a set of definitions for the keyboard buttons used by the
program. The basic user data areas of concern are:

IMPENTRY (location 000/004). This byte contains the last data byte defined
in octal notation by the keystrokes ''0'" to "7'" (as well as the low order
3 bits of all unused keyboard codes.)

MEMADDR (locations 000/006 and 000/007). These two bytes contain the
H (location 6) and L(location 7) portions of a complete memory address.
They always maintain the current pointer to any memory location in the
computer's memory address space, and are defined using the '""H'" and
"L'" keyboard commands.

Memory (arbitrary locations.) The entire memory address space (all
16,384, bytes) is potentially accessible to IMP through MEMADDR.
Please note however, that while you can address any location with
MEMADDR this does not necessarily make the operation meaningful!

If you do not have an ECS-7 memory page (or other design hardware) at
a given location, writing sends data to the 'bit bucket' and reading will
result in a null code of 377g.

Displays. Left and right 8-bit binary displays are used with IMP for purposes
of examining data 16-bits at a time. Although the original program devel-
opment was done using binary lamps for 16 bits, an easier-to-use display
can be made by decoding 6 octal digits with BCD to 7-segment integrated
circuits driving LED display digits.

The current getof IMP commands used for manipulation of data is listed
beginning on this page. At the end of the program listing/writeup several examples
of the use of the commands are included.

IMP COMMAND LIST

"D'" - link to ELDUMPO to print data on TTY or send character format octal data
to an alternate display device, Use the last MEMADDR to define the starting
address (minus one) and use the content of IMPENTRY as
the number of bytes to dump.

"E" - examine the content of the two bytes at MEMADDR and MEMADDR + 1.

ECS Volume 1 No. 2 -3- February 1975

"H'' - set the H portion of MEMADDR from the last content of IMPENTRY,

"I - insert the last content of IMPENTRY in memory at MEMADDR and then incre-
ment MEMADDR and display the two bytes at the new MEMADDR amt MEMADDR4L.

"J'" - replace the byte at MEMADDR with the last content of IMPENTRY - but do
not increment MEMADDR or display the results.

"K'" - clear the value of IMPENTRY to 0008 0

"L'" - set the L portion of MEMADDR from the last content of IMPENTRY.

"M'" - examine the current content of MEMADDR in the display.

"N'" - increment MEMADDR and display the two bytes at the new MEMADDR and

the new MEMADDR + 1.

"Shift X" - requires two keys to be depressed for safety - cause IMP to transfer
execution to the location in MEMADDR after changing IMPSTATE to inhibit
all keyboard decoding until return to IMP is desired,

Further commands will be added to this list in the future as IMP is extended in scope
to cover such functions as tape interface manipulation, invocation of applications
programs and compilers, etc. The basic design of IMP is a simple one - its command
interpreter uses single key strokes as the fundamental 'token'' or particle of its
semantics., By looking at the code as listed and explained in this issue, readers

will be able to extend the above list for their own purposes by adding to the command
table (see below) and supplying appropriate routines,

COMMAND TABLE: IMP is a "table driven' program. This means that the list
of commands (keystroke codes) is contained in a table, al ong with a pointer to

the appropriate software routine...

IMPCMDS: 000\354 = 304 . npn . X " TN O "
000NI5s = bao %, D'"" and L addre ss of "DUMPER
VUONZH6 = 305D
000N357 = 156 }'ﬂ.»- "E'" and L address of "EXAMINE"
VOUNJI6U = 3134° D . X .
D00N3el = pol % K'" and L address of "CLEARENTRY
VOOASeZ = AT L and L address of "SET L
VOON363 = 076 |
O00N364 = 311 Loy - DTN T "
DLUNS6S = 152 } I""and L address of "INNEXT
VUOUN3BEE = 412
00UNS6T = 150 }x— "J'" and L address of "INSERT"
QOON3TU = 3167
DOON371 = 1oy F—— "N"and L address of "NEXT"
VOORSTE = B0 iShift X' and L address of "GOBLO"
VOUN3T3 = 200 § + €8s o e
UUU\J,/L‘ = Siu v«— "H'" and L address of "SETH"
V0ONS7H = 1ue | ‘ N Y
JOUNS 76 = S15D

[' (AR NP, [At
VUUNSTT = 112] M'"" and L address of DISPM

NOTE: The character codes in this table are taken from ECS-5, page 13,

ECS Volume | No, 2 -4~ February 1975

The actual listing of IMP begias at pape address 013 byte address 000y with the
entry point and the beginning of command decoding. .

IMPSTRT: 81;:88(3 : 885)r’ -How do you deal with noisy layouts? By a soft-
013\002 = 1 lc;J ware failsafe to turn off interrupt hardware!
gig:gﬁj : 333 ?;,‘v_/ These "NOP' instructions allow room for a future
013\005 = 300) call to high priority interrupt handlers.

013\006 = 006 LAI _]
013\007 = 002 S(IMPS’I‘ATE)}‘ define address of IMPSTATE
013\010 = 075 SYM in H/L using SYM table.
013\011 = 317 LBM fetch IMPSTATE to B

013N\0l2 = 115 IN1 read keyboard

013\013 = 011 DCB —— if IMPSTATE was 1, B now zero
013N\0l4 = 150 JTZ EXEC so return to application program.
013\015 = 230 L

013\016 = 013 H

013\017 = 011 DCB r if IMPSTATE was 2, B now zero
013\020 = 150 JTZ IMPGO p— so return to IMP operation.
013\021 = 026 L

013\022 = 013 H

013N\023 = 300 NOP :

013\024 = 300 NOP —— allow for expansion patch to addi-
013N025 = 025 KEYWAIT tional checks of IMPSTATE,

When IMP has figured out that it would be a neat thing to do to decode what the key-
stroke meant, execution flows to IMPGO to begin a loop through the table.

IMPGO: 013026 = 310 LBA Save the character input...
013N027 = 056 LHI
Q13NC30 = 000 h(IMPCMDS) Note the lack of use of SYM
013N031 = 066 LII mechanisms - this is the
013N032 = 354 H{IMPCMDS) only place the command table

IMPDECO: 013\033 = 277 CPM ™ is ever used.
013\034 = 150 JTZ GOTFUNC ¢/ compare and go branch to function
013\035 = 120 L if match is found...
013N\0J36 = 013 H J
013\037 = 060 INL jﬁﬁ—vm———-‘__point to next entry in table
013\040 = 060 INL
013\041 = 306 LAL _———move to accumulator
013\042 = 074 CPFI ”“" to test last time through
013\043 = 000 000g one plus last table address...
013N044 = 301 LAB > — restore character mput
013\045 = 110 JFZ § and recycle if more in table -
013\046 = 033 L
013N\047 = 013 H
013N\050 = 106 CAL OCTINTRP ? otherwise no match so fall thru
013N\051 = 054 L } and pretend input is an octal
013\052 = 013 H bit pattern in low order...
013\053 = 025 KEYWAIT «———then go to sleep till woken up again

2@12222 by user...

Note how all keystrokes which do not match the table are treated as octal digits
by calling OCTINTRP to stuff the low order 3 bits into IMPENTRY...

ECS

Volume 1

NO.

>
L

February 1975

The octal interpreter routine OCTINTRP is a simple-minded affair which reaches

out like an "octalpus' and grabs every keystroke that isn't tied down to a well defined
meaning. ..

OCTINTRP: 013N054

Two particular keystrokes which escape the
which are serviced by the routines SETL and SETH.

013\N0U55
013\Uno
013N\057
013\060
Ugl3Nu6l
013\062
013N00b3
013N064
013\065
013\066
013\067
013\N0710
013\N071
0o13\N072
013N073
013\N074
013\075

[T T | A L

o

]

il

1]

V44
007
310
0V 6
004
075
307
0ue
voe
002
044
370
261
3710
177
250
175
007

gc%Ial mask %’“2/, discard high order keystroke data
LBA then save the data

LAI
s(IMPENTRY) use SYM mechanism to address the
SYM old IMPENTRY value...

LAM then fetch that value...

RLC 7 —= shift left 3 drops 3 bits into a

RLC) logical bit bucket - preparing
RLC g‘ for the AND which erases the
NDI bits with a mask for the new
h.o. mask high order positions.

ORB 7 — _——snota planetin the sky but a logi~cal
LMA § "OR'' of B followed by saving.
OouT30 ECS-5 blooper for OUT30 device.
XRA clear accumulator

QOUT3l1 ECS-5 blooper for OUT 31 device code.
RET return after displaying entry...

% —-€~—03TALPUS

octalpus are the H and L commands,

These two routines share a

common set of code beginning at DISPM with the M command used to simply display
the content of MEMADDR.

SETL:

SETH:

DISPM:

013N076
OL3NOTY
013\100
013N101
0l13\1o2
013N103
013\104
013N105
013\N106
O13\N107
013\110
0O13\111
O13\N112
0O13N113
013\114
O13\N11b
O13N116
Ul3NLlv

oo onouon Hn

o

HoH iR

fl

006
006
075
060
311
104
112
013
vue
uo6
075
371
006
0006
075
104
156
013

LAl
S(MEMADDR)?"I/; point to MEMADDR with H/L

SYM via SYM mechanism

INL increment to point to low order
LMB Mgot here with IMPENTRY value
iMP DISPM) in B via "SYSSETUP" rtn.

H

LAI

s(MEMADDR) point to MEMADDR here too...
SYM

LMB load the H value...

LAI D

S(MEMADDR)}D, looks redundant, but takes care
SYM - of all cases - define H/L to display
JMP EXAMINE current MEMADDR value.
L

H

Note the continued use of the SYM restart (described later in this issue) to define

address pointers {rom the symbol table.

This stretch of code references the address

of MEMADDR from threc places independently - demonstrating SYM thrice.

ECS

Volume 1

No.

2

February 1975

When the little IMP has gotten around to figuring out which function key was picked,

the next task 1s to call the appropriate routine.

This is accomplished by setting up

an indirect jump through location 000/015 using the address found in the command
table at the next address after the comunand code matched by the IMPDECO scanner.

GOTFUNC:

013\120
0l13\N121
Ol3\l122
013\123
013\124
013\125
013\126
013\N127
013\N130
013\131
013\132
013\133
013\134

il

How n H u 8

wowouou

060
347
036
013
106
21e
013
106
135
013
104
015
000

INL ; point to next entry in table after key code

LEM tc define the low order branch address
LDI *all branches are assumed to be in page 013
page 013 may have to branch elsewhere if full...
CAL SETIMP 2

L —~—go define GPIJMP address for

H B indirect jump to desired routine.
CAL SYSSETUP

L go define system parameters prior
H to the indirect jump

JMP GPIMP __ indirect jump to selected routine.
L j./ squeezed in following XCHG restart.
H .in page 0

The next stretch of code consists of the SYSSETUP subroutine followed by the func-

tion routines for memory insertion and examination.

The EXAMINE routine is

reached as a result of the E, H, L. and M commands as well as the more obvious
fall thru from the N or I command routines.

SYSSETUP:

INSERT:

INNEXT:
NEXT:

EXAMINE:

013\135
013\136
013\137
013\140
013\14l
013\142
013\143
013\144
013\145
013\146
013\147

013\150
013\151
013\152
013\153
013\154
013\155
013\156
013\157
013\160
013\161
U13N162
013\163

U ou % HouoH oun

[V]

{1

nwWwnonu

"non

066
007
347
061
337
061
061
317
364
353
007

371
02s
371
106
164
013
307
175
055
307
177
025

LII
I(IMEMADDR 4+ 1)}\-» did not use SYM here !

LEM —— ——define L parameter

DCL

LDM — ———— define H parameter

beL o int to IMPENTRY

DCL }’ T —————— poin o

LBM define last IMPENTRY

LLE E

LHD \L/)_point to memory at MEMADDR
RET end of setups

LMB .

KEYWAIT }~\,‘~1nsert entry and go to sleep!
LMB ———————>insert entry with NO-DOZ
CAL INCMA fall thru to incrementaddress
L and store back into

H MEMADDR

LAM —————=EXAMINE is indiscriminate!
OuT3l it will display any data

NEXTA

LAM 0 .. get a second byte

ouT30 ¢ and out it too (sic)
KEYWAIT and go to sleep after displaying

MY

ECS Volume 1 No. 2 -7~ February 1975

Now in the context of the IMP program, the simple H/L incrementation provided by
the NEXTA restart function will not suffice - the new address obtained by incremen-
tation should be saved in MEMADDR. INCMA calls NEXTA then saves the H/L address
in MEMADDR and returns with H/L pointing to the computed address...

INCMA:; 0l3\164 = 055 NEXTA — - —= RST compute of next H/L
013\165 = 346 LELY g
0U13\166 = 335 LDH _ ave the address
O13N167 = 006 LAI
013\170 = 006 s(MEMADDR}L Computed address to MEMADDR
013\171 = 075 SYM would be nice - keeps it around
013\172 = 373 LMD ——- - Save high order
O13N173 = 060 INL point to next address
Ol3NL74 = 374 LME — - Save low order
O13\175 = 353 LHD _...—— Redfine the
O13\176 = 364 LLE }”’ pointer in H/L same as
OL3N177T = 007 RET MEMADDR & return

When it is desired to bomb out by attempting to execute an unproven new routine,
hold your breath, set the new routine's address in MEMADDR with H/L commands,
press "shift" and "X' simultaneously and watch your program go blow up...

GOBLO: 013\200 = 106 CAL SETIMP j—Come here to go ?
013\201 = 21¢ L } First define ? address
013\202 = 013 H via subroutine. ..
013\203 = 066 LLI Define IMPSTATE
013\204 = 003 1(IMPSTATE) \i—f_
013\205 = 076 LMI Reset IMPSTATE to 1 for ?
013\206 = 001 1
U13\207 = 104 JMP GPIJMP And go to ? defined by MEMADDR
013\210 = 015 015 via indirect
0l13\e2ll = 0ouv 000 at location 000/015

Actually, the damage of faulty programming can be minimized somewhat when you
first attempt to run a program. The mechanism is the "write protect' option on the
ECS-7 RAM module design in this issue - simply put the switch in its "protect"
position and then execute the routine with knowledge that it can't destroy the software
carefully loaded into the RAM module via IMP or STUFFER., However you get to

the program, one useful thing is to set up jumps. The routine SETIJMP creates the
indirect jump address in GPITMPL using the content of D and E for H and L respec-
tively. ..

SETIMP: ol13\212

won

o6 LAI
ol s(GPIMPL) point to general purpose jump

013\213

013\214 = 075 SYM via the SYM mechanism
013\e2ldb = 374 LME ———— 7 7—E argument to L of jump address
013\216 = 060 INL

O13N217 = 373 IMD—m -D argument to H of jump address
013\220 = 0V RET

ECS Volume 1 No. 2 -8~ February 1975

Garbage in - garbage out is pure computerworld cliche. However what do you do
if you get garbage in to IMPENTRY? Why of course get the garbage out by pressing
the "K'' key command to activate. ..

CLEARENTRY:
0l3\2e2l = yoe6 LAl
Ol3Ng2z = 0U4 s(IMPENTRY) - point to IMPENTRY via SYM
013\223 = 075 SYM o
013\224 = 375 LMH ~H known to be 0 so use it to
013\225 = 104 JMP EXAI\/HLNE}/r zap entry and go examine...
0l3\2e26 = 156 L.
013\227 = 013 H -/

The following is a routine used normally to intercept interrupts from an application
program reached from location 013/014 if IMPSTATE is "1'. It is designed for a
normal transfer to the start of the application program via GPIJMP as set by the
original ""Shift X' execution initiation or a subsequent setting of the application pro-
gram. As shown, however, it needs a patch at location 013/232 to supply a JFZ

and at 013/231 to insert an appropriate interrupt-preducing character key code. You
could use the 'J" command to change it after loading and setting the proper address!

EXEC: Ol3N\N230 = 074 Chl1 - On resumption of application prog-
013xN231 = 300 "Shit & Ctrl' ram check for escape mechanism
G13\232 = 104 JMP GPIMP) —~Ignore escape untili JFZ is used !
013\233 = 015 L r -~ change
013\234 = 000 H) 013/232 to J¥Z if needed.
013\235 = 076 LMI 2 Reset IMPSTATE on escape. ..
U13\e36 = 0ue 2 \\’ to normal interpreter mode. ..
O13N\237 = 025 KEYWAIT - Then wait for user action,

1

The final routine inserted in page 013 for the preliminary release of IMP as IMP-|
is DIIMPER - a short routine to define the data count for ELDUMPO (see last issue,
Volume 1 No 1j then branch to the entry point of ELDUMPO. This mechanism was
used to activate ELDUMPO for the listings of code found in this issue - the oddress
{minus one) was defined, in MEMADDR, and the data count was left irnn IMPENTRY .
Then the "D'" key is pressed thus starting off this sequence...

DUMPER: 013N240 = 066 LLI) - Define address of ELDUMPO
013\24l = pUes H{COUNT)) data count word ...
D13\242 = 056 LHI - via the old fashioned mechanism
013\243 = 00O h(COUNT) without SYM - used once here.
Ol3\e44 = 01U INB 7 .- Increment copy of ENTRY for
013\245 = 371 LMB g ELDUMPO and save it...
013\246 = 104 JIMP 7 ... Then go jump to ELDUMPO
013N\247 = 000 L ? with return via the code at

013\250 = 011 H) locations O11/117 - 011/125 of
- the last 1ssue....

-~

ECS Volume 1 No. 2 -9- February 1975

In order to illustrate the usage of the IMP program, several worked examples
are provided below. The program should be loaded using the STUFFER program
found in the last issue, after which the new restart routine SYM described on page
must be loaded in locations 70 to 101y of page 0 (overlaying two bytes of STUFFER
locations 100 and 10lg). The branch address in locations 000/001 and 000/002 should
be setup to point to IMP (013/000) and the value 002_, should be loaded in location
3, IMPSTATE, to initialize IMP in its editor mode. It is strongly suggested that
when you first try out the IMP program as loaded, you put the memory modules of
ECS-7 design in the "write protect' mode - this will prevent inadvertent errors in
loading from destroying the information in memory loaded by STUFFER.

Beginning checking out IMP by demonstrating the octal data entry. Press any
digit code on the keyboard - "7 '"- will do. Note that the rightmost 3 lamps of the
right hand binary display will go on with "7" - or if you have octal readouts -

a 7 will appear in the low order. Press another digit - IMP will shift the previous
content left 3 bits or one octal digit, putting the new digit in the low order. The
display is filled by pressing a third., In this mode of operation (pressing only octal
digit keys on the keyboard) IMP displays only the current IMPENTRY value in the
right display and keeps the left display cleared to zeros.

Now, suppose you want to define a full 14-bit address within memory address
space. The key sequence is as follows for the address 012/372 ('Intelese' notation.)

612 H 372 L
T { ‘(" _transfer IMPENTRY to L of MEMADDR
T ——after '"2", IMPENTRY 1s complete in displayas 372g
“—transfer IMPENTRY to H of MEMADDR
\._/— after the '"2" here, IMPENTRY is complete in display as 0l2g
Following the last ""L'" key stroke, the current memory address of MEMADDR will
be displayed in the display, with the H portion at the left, the L portion at right.

Having just defined the address of some byte, suppose you are in the
process of loading the BITCHASER program illustrated in this issue. You want
to place the code 1038 in that location. To simply load the addressed location,

takes 4 key strokes:

1 0 3 J
-~ X_ transfer IMPENTRY to addressed location with J
“——— complete definition of IMPENTRY for this location

If you want to verify the transfer, the current location can be examined by typing "E"

at this point.

Now, suppose you want to define the next three locations following this
current location 012/372 from the BITCHASER program code. The following series
of keystrokes will point to 012/37 3 and load consecutive locations...

N 1 1 7 1 1 2 5 1 1 1 6 1
Sy ~——— X" define and insert at 012/375
\ .———— _ define and insert at 012/374
~— .- —— define and insert at 012/373

ECS Volume 1 No., 2 -10- February 1975

The "N'" keystroke of the example at the bottomn of page 9 1s required to increment

the MEMADDR value to point to the next location, 012/373. The series of operations
can be continued indefinitely - 3 octal digits followed by "I'' - to load as many locations
as desired. If, along the way, you lose your place in the program, you can display
the current memory location by transferring MEMADDR to the display with the "M"
command of the IMP program. Similarly, if you find you made a mistake in entering
data for a given word before pressing "I'"', the entry can be cleared to 0 with "K' or
you can simply re-enter 3 more digits.

After completely Toading an application program with IMP, you will of course want
to execute the program. The program can be invoked from IMP - with automatic
return - provided the following conventions are used:

i. To invoke the program, enter its starting address into H/L via the
appropriate cornmands. Then press the "Shift'" and "X'" keys simultaneously
to cause IMP to change state and go to the program.

2. When the invoked program is finished, return to IMP by loading location

3, IMPSTATE with the value "2'", then issuing the KEYWAIT restart. An example
of this return is illustrated at locations 117 011/117 to 011 /125 of the ELDUMPO
program published last issue. ELDUMPO was constructed without the SYM mechan-
ism - and this return could be performed with one less byte of explicit code by
using SYM to reference IMPSTATE via the symbol table.

If the application program must wait for keyboard interrupt input, issuing KEYWAIT
will cause it to halt until a keywstroke occurs - after which control will transfer to
the location last loaded into GPJMP's address.

MEMORY MODULE ECS-7 HARDWARE DESCRIPTION

The center pages of this month's 1ssue (pages 12 and 13) contain the logic diagram of
the ECS-7 memory module design. This module is basically a static 1024-byte
"bank' of memory locations implemented with the 2602 or 2102 type of memory chip.
{(These two numbers are pin-compatible - and subject to various differences in the
access time of alternative versions - are also electrically compatible.) The array
is interfaced to the bus with the standard ECS series design technology: 8T09 bus
drivers for memory outputs, and inverting inputs via 7404 sections to keep the
sense of data consistent in this case. Note that there are alternatives to the bus inter-
faces used throughout this series of designs. One commonly used alternative is to
make an ""open collector' bus using 7401 (low fanout) or 7438 (high fanout, or drive
capability.) Similarly, a non-inverting (but lower power) tristate interface commonly
available is the 74125 circuit.

ADDRESS LINES:
One interface socket of the design is used for the 16 address lines used for cycle

decode and address selection. The low order 10 bits of addressing are wired directly

ECS Volume I No. 2 -11- February 1975

to the 10 address input pins (AD to A9) of the memory IC's. The diagram for
clarity does not illustrate a direct « onnection - see the note provided. The "IN"
lines of the 8 memory IC's in the bank are wired to the outputs of corresponding 7404
Inverter sections of IC-11- and IC -12-, The "QUT" lines are wired to the data inputs
of the BT09 bus buffer gates. Since this system employs an interface for each bank,
the chip select lines are shown wired permanently to ground. If desired, it is possible
to create a local '"bus extension' for the memory outputs using their tri-state capability
and the chip-select inputs to enable one bank of memory at a time with a common 8T09
interface to the CPU bus. To do this, the appropriate bank selection output of the
74154 bank selector would be used to control which set of 8 2102's (2602's) is enabled
at a given time.

BANK SELECTION LOGIC:

In its self-contained form as a single 1K by 8 RAM design, the circuit illustrated
has all the parts needed to interface to the computer independently. However, if it
ts desired, the bank selection logic is designed to accomodate sharing of the decode
provided by a single 74154, Here 15 how bank selection word works: the high order
address bits of AlO to Al3 provide an address of 1 of 16 1024-byte segments of the
total 16, 384 memory locations of an 8008 processor. The 74154 is always monitoring
the address lines and selecting one of 16 banks in the memory address space, whether
or not you provide the actual hardware (during I/O the PCW input to one 74154
gate prevents decode, and during interrupt the master enable input to the other 74154
gate also disables decode.] The output of the 74154 appropriate for the RAM bank address
is selected by the choice of wiring from the select line to the appropriate bank select
pin of the 74i54., When the bank is selected, one of the uses of the Seloct signal is to
enable write pulses to pass through gate -14- and inverter section -121-
to the memory chips, provided hardware write protect is off. The other use of the
select signal of a given reemory bank is to enable the CPU-Input signal to control the
. Without sharing the bus output buifers of the memory
circuii, it is thus pessible to share the 74154 logic between several banks simply by
omitting a repeat of the 74154 for the additional banks and wiring the select line of the

output interface gate for the bank

additional banks tc the appropriate pin of the 74154 in the first bank.

WRITE PROTECT HARDWARE:

The usec of a hardware write protection concept in computers has been around for
In some computers, it is implemented as a software-controlled bit in
the actual hardware of memory, protecting various segments of memory from access
and/or modification by programs operating in other segments. In such a context, memory
features are used to provide a mea»- of minimizing interference between
Another handy use occurs in the microprocessor context - two very

some time.

protect
multiple users.
useful goals can be accomplished for your system:

I. You can turn a RAM module into a Y“pseudo-ROM' by flicking a switch.

2. With the RAM miodule in protected mode, and with a separate power supply

for memory, vou can safely disconnect the memory from the computer main frame

and maintain vour software while changing varicus aspects of CPU hardware and/or

peripherals.

ECS Volume | No. 2 -12- February 1975
EXPERIMENTER'S COMPUTER SYSTER ECS - ¢ L2 BYTE MEMORY
T - T s
ey Cs cs <) cs
' ao 2 ot — o — fo -2
QT 7 Ay ‘ gire MP— 1 gr 5 M . Bira MNP
AR —— nk— Yy vy
[A . 3 é
Al A3 Al A3
-~ -3~ o
1 Ay -2 a2 P P —
rep2 M t 2682 pshi 2682 A B2 2682 a5 B2
ot Yy oR wH or At o0 4 I
.
45
14
| N

© 1975 M.e, PUBLISHING CO.

X/0-2 PIN {3

L/0-2 Py 11

A M 1 N e
5 e 13 12
9% 94
© H
+5v
f\ /tuablt o 1
BANK PROTECT U n.j
N P
St 3 ||
O -15-
NC = WR.EN. 7]
NO = PROTECT Ttoo
~—y WRITE- Lotk cru- INPUT
S———— ——

February 1972

ECS Volumnmie (P
BANK & DECODE by Cav' T. Helmers, Jv.
- T T I
13 3 13
cs S [cs
Ao B — [y A vy A vy 8 R0 4
4 4 4 M
levr 3 wP—] vz er 1 M eT s M AL 2
i up aLfSs fry B A2 Az 3
"5 A e . Yy Ty B o Arfs LER
- As | ki Ab 3+ 7- A] Ay ¥ Ay 5
e s p— | 2687 as |2 2682 yry |a 26272 As |- as A
oR ae | ov Yy & oR A OR gy = AG 7
A7 azjie A3 8
15
AS Al As i
Attt Ao
NOTE: ADPRESS LINES
1z Go To ALL 8 24662'S
-—— 7404'5 Pow e IX/o-2°
6= +5v
q g (_,MD
USE B4IASS
M /1 g\ [\, A y CaPACITORS |
1 2 9 & 13 ik
~ %T&x92°S
10 10
a, IOC d I/D-Z
[SINY S
3 p DATA BuS bt
3
» 1
w2
s e
by s
e ps .
bz 3
,,,,,,,,,,,,,,,, »— BANK ADDRESS JUMPER
n 7 (ADDRESSES 034/000 TO 03%/3%7 SHDWN)
titc <
Lt je iy 5 708 (1| 3 e ¢ b7 T/o-4
| o o e O O O S A N L G,
O L 2 3 4 5 & 7 % 9 10iL 1243 M 45 pQRd PP
22
74154 BAMNMK SELECTOR 8 An 2
24
< AR 3
ctlg— G2 b 2 A3 (L4
] 19 -
PCuw=1= DISABLE > pg IS
b -2 MASTER 9 8
Pin 42 EMABLE E c Ais 16

_‘2“

ECS Volume 1 No. 2 ~14- February 1975

The advantage of the "pgeudo-ROM'" usage of the protection switch is that you can try

out programns initially in a mode which prevents alteration of the program itself - just

as if it were an ROM program - yet the ability is retained to switch off the write
protection feature and load or alter the program with IMP-1 or its equivalent. The idea
for this feature was obtained frorm the documentation of the Motorola M6800
"EXORciser'" program development system's memory module. The idea of independent
power supplies for volatile memories I have seen in several sources, such as the power
fail logic of the TI minicomputers, HP2IMX minicomputer, to mention one or two. (A

note of interest - the only reason such a suppiy 1is needed is the volatility of semi-
conductors. Core memeory designs can be made non-volatile, and you will often find
a mini with core memory coming out of the factory with some bootstrap software

pre-loaded via that technique.} In the logic of ECS-7 as shown, the memory is protected
whenever the switch input to IC -14- pin 2 1is logical "1'" (switch S1 is open.) When the
switch is closed, the input to that pin is logical '0", thus enabling the gate whenever

select enables it.

MEMORY PRESERVATION PROCEDURES:

Whenever it is desired to maintain programs in the RAM module via a separate power
supply, the following procedure is suggested: when powering down the CPU for work:
1. Put the RAM bank in "protect’ mode (Sl is open.} Halt the CPU!
Unplug the data bus connector, I/0-2 of the ECS-7 design.
Unplug the address bus connector.
. Power down the CPU or the rest of the systern for maintenance
or other hardware work.

N VA o8

5. When finished, power up the CPU, put it in a HALT state.

6. Connect the address bus to the RAM module.

7. Connect the data bus connector to the RAM module.

8. If modification of the memory is required, it can now be safely taken

out of ""protect’ mode and used as a normal RAM module.
"Safely' in this case means with respect to hardware bombing of data

This procedure was used to great advantage when preparing the hardware and soltware
of the previous issue - IMP was maintained in memory while the CPU was

powered down for modifications and tests of the ECS-6 hardware.

ECS-7 PACKAGE SUMMARY

Socket Pins Part/Description 5 volts Grouns
1\
to(p—-—» 16 2602 or 2102 1024-bit RAM 10 Q
8)
9, 10 14 8T09 Tri State Bus Interfaces 14 7
11, 12 14 7404 Inverters 14 7
13 24 74154 Bank Decode 24 12
14 14 7427 3-input NOR 14 7
15 14 7400 (1 section used) 14 7
16 16 1/0-1, address A0 to Al5 - -
9

17 16 1/0-2, data bus, power, misc. 16

ECS Volume 1 No. 2 -15- February 1975

MEMORY TEST PROGRAM (BITCHASER):

Once you have constructed the basic RAM module of ECS-7, you can test the
memory in a random and un-systematic manner by using STUFFER to load IMP, then
using IMP to write in and read the content of various locations (hopefully outside of
IMP itself!) The purpose of BITCHASER is to provide a systematic method of testing
all the memory locations within a specified address range - in this initial version by
reading and writing a fixed pattern set prior to starting the program. The program is
set up to periodically look at the ECS-5 keyboard and respond to any key by typing
a summary message on the teletype:

Note: message obtained by looking at
ERKHORS=0000033130 ‘/;:—em'stent (always bad) memory!
CUUNT=0000033130

or a suitable substitute for the teletype such as a CRT terminal or TV Typewriter -

in which case the Type routine of ELDUMPO would have to be modified. The program
takes advantage of the restart routines used with ELDUMPO and IMP. BITCHASER also
employs the SYM restart mechanism for table lookups, as is described later in this
issue. BITCHASER is shown loaded in page 0128 of memory, and all address constants
for jumps reflect this location. The program begins execution by a short loop to clear
out the ECOUNT and TCOUNT data (error count and total cycle count respectively) which
are located in RAM page O at locations 200 to 207...

BITCHASER:
012\000 = 006 LAIL
012\N001 = 012 s(ECOUNT) point to ECOUNT/TCOUNT
012\002 = 075 SYM address via SYM lookup
012\003 = 250. XRA——— . clear accumulator
012N04 = 016 LBI ___——==1oad loop count
012N\005 = 010 010

MILOOP: 012\006 = 370 LMA clear a word from accum.
012\007 = 060 INL point to next address
012\010 = 011 DCB decrement count - this loop could
ot2No1tl = 110 JTZ MILOOP: be made more efficient - see
oleNule = 006 L if you can figure out how!
012\013 = 012 H

Following the initialization of counts, the actual work of BITCHASE begins
with the start of the major memory test loop at BIGMLOOP. ..

BIGMLOOP: o012\014 = 006 LAI __——=software failsafe to turn off
012\0l5 = 002 2 interrupts repeatedly when
0lz2N0l6 = 117 INO haywire prototype is victimized
012\017 = 006 LAI by TTL noise immunity problems.
012\020 = 032 s(STRTADDR)}\)»use SYM to point to STRTADDR
glexozl = 075 SYM of tested region.
ol12xu22 = 317 LBM > fetch H of STRTADDR
0l2\023 = 060 INL — then point to L
oi2xpe4 = 321 LCM fetch L of STRTADDR
vl2\025 = 006 LAI ’

OleNuee = 034 s(CURRENTADR)} point to current CURRENTADR
012\027 = 075 SYM

ECS Volumel No. 2 -16 - February 1975

012N\030 = 371 LMB . _—.define H of CURRENTADR

012\031 = 060 INL / then point to L

012\032 = 312 LMC and define L of CURRENTADR

012\033 = 115 IN1 —read keyboard

012\034 = 074 CP1 E/ once per cycle

012\035 = 377 null and test for not null

012\036 = 112 CFZ REPORT? calling the report typer if so

012\037 = 165 L S'/

012\040 = 012 H
Now, if one had a high order language (such as PL/], FORTRAN, etc.) for
the 8008, the code shown above at locations 012/017 to 012/040 is what the compiler
would generate for a statement of the following form (ala PL/1):

STRTADDR = CURRENTADR;

The reason for such languages for computers of course is to economize programmer
time in generating programs - as you can see by comparison to the dump form.,

The program continues with an inner loop - LITTLOOP... - to test and increment
the current addresses with a test for end of range conditions.

LITTLOOP: 012\041

= 006 LAI
012\042 = 040 s(PATTERN) get address of test pattern
012\043 = 075 SYM via SYM mechanism
012\044 = 317 LBM —~——and get the pattern to 'b' reg
012\045 = 006 LAI
012\046 = 034 s(CURRENTADR)} then point to current address value
012N\047 = 075 SYM also via SYM
g12\050 = 327 LCM
012\051 = 060 INL point to current address in H/L
012\052 = 367 LILM
012\053 = 352 LHC
012\054 = 371 LMB —————> test write to memory
012\055 = 301 LAB
012\056 = 277 CPM ——————>followed by compare to check it
012N\057 = 112 CFZ POSTERR record the error for POSTERRIity
012\060 = 127 L
012\061 = 012 H
012\062 = 106 CAL TALLY and keep track of number of
012N\063 = 134 L cycles for comparison to
012\064 = 012 H error count...

The inner loop continues on the next page, with a short section of code which is the .
equivalent (at addresses 012/065 to 012/102) to what a hlgh order language
for computers would specify as:

CURRENTADR = CURRENTADR + 1;

Again, note the amount of code which can be implied by a short an succinct functional
notation - in this case the concept "add one to current address' denoted above is imple-
mented at a low level by the detail of 14,3 8008 machine instructions..

ECS Volume 1 No. 2 -17- February 1975

012\065 = 006 LAI }

0l12N\066 = 034 s(CURRENTADR) { set up current address pointer

gl12\067 = 075 SYM

012\070 = 317 LBM ___——fetch H of current address

012\071 = 060 INL

012\072 = 327 LCM fetch L of current address

012\073 = 020 INC ————————increment low order

01&N074 = 110 JFZ NOHO and test overflow...

012\075 = 100 L —~ with skip of high order

ola2\076 = 0Ql2 H increment possibly

ol1exor? = 010 INB ————————— increment high order of address
NOHO: 012N100 = 372 LMC save new low order address

012\101 = 061 DCL o

ol2\N102 = 371 LMB }_/) then save new high order address

After incrementing the current address of a location under test, the next task for
BITCHASER's inner loop is to check for end of address range...

012\103 = 006 LAI

012\104 = 036 s(ENDADDRB’?/ point to end address value
G12\105 = 075 SYM via SYM for comparison
012\106 = 307 LAM . fetch H of end address

012\107 = 271 CPB - and compare to current address
012\110 = 110 JFZ LITTLOOP

0l12\111 = 041 L keep going if not equal in H
gl2\ll1l2 = 012 H

012\113 = 060 INL ~—————>if H portions equal, check L
O0l2N\11l4 = 307 LAM get L part of end address value
012\115 = 272 CPC and compare to L of current
0l12\116 = 110 JFZ LITTLOOP keep going if not equal

0l12N\117 = 041 L

012\120 = 012 H

ol2\tz21 = 300 NOPrThese NOP's are inserted to allow for a
Oleaxliez = 300 NOP { future change - a CAL instruction to invoke
012\123 = 300 NOP. a routine to change the test pattern. .
ol2\124 = 104 JMP CHECKEND>

0le\125 = 332 L the end of execution check could
olaniee = 012 H have been put in line without

this jump. ..

The above code completes the main routine of BITCHASER (with the exception of the
short "CHECKEND'" routine at 332 to 345 in page 012.) Now the next object of atten-
tion is the set of subroutines called from this main routine. The code starts with
the multiple-entry-point POSTERR/TALLY routine. The "entry point'' of a sub-
routine is a place where it can potentially begin. This routine has entry points to
define the SYM pointer of the data to be incremented as a 32-bit number, called
as TALLY and POSTERR - then with the symbol defined, common code is used to do
the work.

POSTERR: (¢12\127 = QU6 LAI .
012\130 = 012 s(ECOUNT) point to error count 32 bit number
012\131 = 104 JMP 14B
012\132 = 136 L then jump around alternate entry
012\133 = 012 H

ECS Volume I No.

TALLY: 012\134
OleNlgb
I14B: oleN1l3e6
012Nt 37
0l12\140
oleNt4gl
012\142
012\143
0l2\1l44
0l2\145
012\146
ol12\147
0l12\150
0l12\151
ol2\l152
012\153
0l12\154
012\155
plea\lseée
012\157
012\160
0l2\161
ol2\162
012\163
0l12\164

Hoaonononon

nu

1]

L | N i T { S (N S T 1 '

2

[

go06
ulyg
075
060
060
0o6euv
317
(VRRV
371

013
61

317
010
371

013
06l

317
o10
371

013
061l

317
010
371

007

-18 - February 1975

LAI

s(TCOUNT)}S’* point to total count 32-bit number
SYM - and here the common 32 bit increment code starts

INL
INL in order to start from low order with
INL a pointer to high order, must change addr.

LBM ___——>fetch low order byte

INB " increment it

LMB and of course, save if...

RFZ and return if no overflow...

DCL ok - overflow, so point to next higher
LBM byte, fetch it

DCB and decrement it,

LMB and save it too,

RF¥Z and also return if no overflow. ..
DCL —»this count is getting large! go to
LBM next higher order byte, fetch it,
DCB decrement it,

LMB and save it too...

RFZ and return if no overflow...

DCL last resort - the highorder byte

LBM is fetched,

INB is incremented,

LMB is saved,

RET and youre' out of luck if you over flow

The next subroutine listed is a REPORT generator which prints the two counts shown on
page 15 as 10-digit octal numbers. The routine has a branch in the middle of it to a
patch due to a faulty memory location - ultimately caused by purchase the author made
from a fly-by-night distributor called ""Electronic Component Sales'' perpetrated by a
character named '""Pete Kay'' last September.

REPORT: 012\165
012\166
glaNiev
012\170
graNtil
ol12N172

FLYBYNITE:013\365
013\366
013\367
013\370
013N\371
013\372
013\373
013N\374
013\375
013\376
O13N\377

now oo

nouon

oveé
vee
075
104
365
013

106
166
011
006
12
106
214
ule
104
200
ole

LAI yspoint to the address of a character
s(STRINGI) str ng message text via SYM

SYM

JMP FLYBY NITE - when youbuy memories from a

L flybynight distributor who flies, you some-
H times have to branch around bad locations.

CAL TSTRINGEJ»call the character string type

L routine found in ELDUMPO of

H last issue...

LAI

s(ECOUNT) establish address of error count

CAL TOCTIO by defining symbol and then

L calling routine to print it as

H 10 octal digits (ignore 2 high order
JMP FLYBACK bits...)

L

H

ECS Volume I No. 2 -19- February 197%

FLYBACK: 0leN2uu = 0Ubs ILAI
leNz2dl = u24 s(STRING2)

—_—

_- point to second message string as

[N

gleNzue = 0o SYM 7 address in H/ L

olexzud = lub CAL TSTRING)ycall the character string type routine
gl2\2u4 = 166 L found in ELDUMPO

oleNa2us = 01l H ?

ole\z2u6 = 006 LAI D

OleN207 = 0t4 s(TCOUNT) (. point to symbol of totol count(sic)
olexzglu = 106 CAL TOCTIO and call the 10-digit octal printer
olegNell = 214 L

0leN2le = ole H

012\213 = 007 RET finally, return from report....

The next subroutine is called "TOCTI0" and is responsible for the output of a 10-digit
octal integer representation of the low order 30 bits of the 32 bit count passed as a
symbol in the accumulator. The first thing this routine does is to lookup the argument
symbol and copy its data (all four bytes) to a working copy used for shifting the infor-
mation 3 bits at a time to generate octal quanta.

TOCTIO0: gl1a2\2l4 = 075 SYM - look up argument symbol left in A
Olexgls = 317 LBM
0l12\e16 = 060 INL
012\217 = 327 LCM . .
012\220 = 060 INL copy argument into registers
o1exe21 = 337 LDM [first,
or2\ez22 = 060 INL
012\223 = 347 LEM
ol2\224 = 006 LAI
012\225 = 026 s(WKOUT)}’\»point to work output area
ol12\226 = 075 SYM
gl12N\ee7 = 371 LMB "~
012\230 = veu INL
012\231 = 372 LMC)
0laN232 = 060 INL _——==then copy argument to the work
012\233 = 373 LMD area. .
o12\e234 = ge6u INL
012\235 = 374 LME _
0l2\236 = 006 LAI
012\237 = 016 s(I) —~____»point to loop index i
012\240 = 075 SYM used for octal digit location
012\241 = 076 LMI purposes, then definition
gla2\z4z = (g0 2 of initial 2-bit discard.
0l2\243 = 006 LAI L
Olax244 = 020 s(J) ~—____» point to loop index "J' used
oleng24as = 075 SYM | to count bits, and load its
012\246 = 076 LMi l initial value o
0l12\247 = 036 3040 for 10 octal digits of shifting.

At the start, WKOUT a has the following for the two counts typed on page 15.

0 0 0 0 0 3 3 1 3 0 octal
00/ 000 000 00C 00G 000 011 011 001 Oll 000 binary

high order bits discarded..r—str Bucker
FIRST By TE ﬁ FOURTH BYTE

After initialization, TOCTI10 enters the loop on the next page, shifting left (see above)
three bits at a time, printing octal digits from high order to low order left to right.
The two high order bits are discarded without printing due to the initialization.

ECS Volume I No.

2

-20- February 1975

The print loop shifts WKOUT left one bit at a time, and every third bit will look at the
current high order of WKOUT and print an octal digit. ..

TOCTIOL:

O12N\250
Ole\egsbl
ole\ese
012\254
glenegsy
012\255
V12\256
012N\257
ule\260
ore\z6l
uola\26z
012\263
ola2\264
012\265
012\266
012\267
012\270
0l12\271
or2N\z272
012\2173
012\274
012\275
012\276
012\277

uwon

1l

o Hou

[I 7 T ¥ I | ¥ Y I N IO [B 1]

]

When it is time to end,

iable "J'" (do not confuse

FTEND:

012\300
012\301
012\30¢2
012\303
012\304
012\305
012\306
012\307
UuleNdto
012\311

Hon

nn

[T B

=

Then the 32-bit multiple

SH1A4B:

SHIA4BL:

012\312
012N\313
012N\314
012\315
012\316
012N\317
012\320
olangel
uleNisee
0laxges
012\324
0laNg2s
0l2\326
oraNizy
012\330
012\331

1}

i nouwou

nounou

s

o

gu6
26
106
Jie
vile
006
ole
0715
317
ull
371
110
300
ote
076
003
006
026
075
307
002
002
00e
045

LAI ,
s(WKOUT))Cpoint to work register again...
CAL SHL4B ™ - shift it left four bytes

L - with the subroutine. .
H

LAI 2

s(I) T\"‘*-—‘ “7 N point to I for print test
sYM)

LBM ? > Tfetch I

DCB e and decrement 1

LMB \ and save it again...

JEFZ TEND - if zero, is untrue, go test end

1

H

LMI (_———= setIto 3 for next minor cycle
3

LAI
s(WKOUT) point to work register again...

SYM
LAM in order to fit fetch high order after shifts

RLC
RLC %f_' .. and rotate high order bits to low
RLC . order position...

OCTOUT then go OCTOUT as was done in
ELDUMPO...

this is indicated by exhaustion of the count stored in the var-

with the keystroke designation in IMP).

006 LAI

020 s(J) point to variable '"J" (not the command code)
075 SYM

317 LBM — fetch J,

0l1l DCB K—» decrement J

371 LMB S—~and store J value back in J..

110 JFZ TOCTIOL

o0 L keep going with print loop till done

o1z H pe g with print loop one

007 RET and of course back to caller when done...

precision shift routine, left shifting 4 bytes one position...

Q75
060
o6V
060
250
26
004
307
oe2
370
o6l

vel

110
3el

ole
007

SYM - go look up the argument of shift

INL
INL?_A got to point to low order before shifts.

INL
XRA clear accumulator and flags

LCI }“\%deﬁne loop count

fetch current byte,

RAL rotate old carry in, bit 7 to carry
LMA and ss a save the shifted bytes.

DCL decrement the index.

DCC decrement the loop count. ..

JFZ SHL4BL:

L and continue till count is exhausted. ..

H

RET then return to caller...

ECS Volume | No. 2 -21- February 1975

This shift routine {p 20) assumes that the argument is a 4-byte string pointed to via

a symbol passed in the accumulator, lcoked up immediately on entry. Taking into account
the symbol table lookup time and the sequence of instructions executed by this routine,

at a 500Khz clock rate, it takes 262 cycles x 4 us - 1. 048 milliseconds per single bit shift.
For individuals w th delusions of grandeur, note that to accomplish what an IB M 360
does in one "SLL' instruction - an ''n' bit shift - the would-be emulator will require

1. 048 n milliseconds! (Only about 3 orders of magnitude slower - depending on your
choice of comparison model.)

The actual code of BITCHASER completes with the CHECKEND routine, added as an
afterthought to cause the program to return to IMP with an ""E' key on the keyboard.

CHECKEND: 012\332 1) IN1™.»>read display (modified ECS-5 code)

won

012\333 = 074 CPL)

012\334 = 305 HE" } “scheck for end of memory test...
012\335 = {10 JFZ BIGMLOOP

012\336 = 014 L and continue until done. ..
012\337 = Q12 H

012\340 = 006 LAI
012\341 0og2 s(IMPSTATE) point to IMPSTATE

012\342 = 075 SYM

012\343 = 076 LMI set IMPSTATE to 2

012\344 = (02 2

012\345 = (025 KEYWAIT and wait for IMP actions. ..

The remainder of page 012 is filled up with the data definitions of the two text strings
printed by BITCHASER (se¢e illustration on page 15 of the results .)

STRINGI: 0123346 = 015 ''length' STRING2: 0127364 = 013 '"length"
012\347 = 007 "hell 012\365 = 015 Uer!
012\350 = ¢iz2 Hip 0l12\366 = 007 “hell"
0leN3b1 = 007 "bell" 012\367 = 012 SN
D12\352 = 0l2 S AL 012\370 = 040 o
012N\3553 = 015 Hert 012\371 = 040 e
012N\354 = 0490 o 012\372 = 1043 neH
Uulen3ss = 105 R ON 012\373 = 117 "o
012\35% = (22 TR 012\374 = 125 aun

o\357 = 122 "R 012\375 = 116 "N

D1oN360 - 114 f\oﬂ Ol2rg76 = 124 1T

! 012\377 = 075 -
012\361 = 122 "R
012N\362 = 123 Hst

012\363 = 075 P=n

The RAM locations 200 to 225, in page 0 are used to store the data values of BIT-
CHASER, pointed to by syn?lbo%s stored at locations 312 to 34l in the symbol table of

the RAM page O. These work areas are as follows:
200 - 203 ECOUNT 215 - 216 CURRENTADR
204 - 207 TCOUNT 217 - 220 ENDADDR
210 I 221 PATTERN
211] 222 - 225 WKOUT

213 - 214 STRTADR

STRTADR and ENDADDR should be loaded with IMP prior to starting BITCHASER,
in order to define the limits of the test.

ECS Volume 1 No. 2 -22-~ February 1975

PROGRAMMING NOTES: Symbol Tables:

This is the second in a series of program-
ming notes on the use of the Intel 8008 instruc-
tion set in the context of an ECS system or its
equivalent, ..

The programs IMP and BITCHASER which are listed and explained in this issue of
ECS make use of a rudimentary form of symbol table mechanism implemented via an
RST7 instruction (octal 075, noted mnemonically as SYM). The purpose of the symbol
table - used at run time - is to make up for a lack of an assembler or high order
language compiler's "address resolution' functions. It achieves this purpose by con-
centrating detailed address determinations as much as possible in a single run time
mechanism. '""Address resolution' in this context means the definition of the content

of the memory address pointer registers H and L of an 8008 CPU. Because
the symbol table mechanism uses a run time lookup to compute addresses of data, its
speed of access to the data will be lower than directly defined references. For ex-

tensively used variables, there will be an improvement in memory utilization effic-
iency approaching one byte per usage when compared against direct definition of H and
L with the LHI and LLI instructions. Thus the usual speed versus memory tradeoff in
this case becomes the 57 cycles (. 228 ms) versus 16 cycles (. 064 ms) of SYM compared
to direct definition - with the average savings of one byte in four for the SYM usage
applied to a large number of frequently used variables.

But the considerations are not quite as simple as the comparison of speed and mem-
ory utilization requirements. The real advantage of the symbol table approach comes in
when you consider the problem of compiling and changing code for a program in absolute
machine language using paper and pencil. (If you have a compiler or assembler with
hardware to support it, the symbol table concept is still used - but the lookups are usually
done once at compile time to generate the fastest possible run time code.) As noted in
ECS-5, if it is desired to relocate the memory allocation of a widely used variable -
say MEMADDR of IMP for example - you (or a suitable utility program) would have to
adjust every instance where the address in question was defined and used. For the 8008
instruction set, this is further complicated by the fact that you have to consider the
definition of two independent registers , Hand L, required for addressing. (A better
computer design such as the Motorola Mé6800 can use a single instruction
16-bit immediate operation for this purpose in loading index addresses.) For an exten-
sive hand - compiled application program of 1000 bytes or more in the typical home-
brew microprocessor system, such adjustments and relocations could be quite time con-
suming .

If the addressing is concentrated in one known place - the symbol table - then you
only have to change the pointers in the symbol table in order to automatically change all
references to the data made throughout the program. The mechanism gives you a form
of '"leverage' in control of your program design which can be quite powerfully used as
the designs evolve. In the example of IMP, if I wanted to change the MEMADDR loca-
tion from address 000/006 to some other place, it would only be necessary for me to
change the symbol "6'" entry of the symbol table at locations 306 and 307 (see below.)
To achieve this power, however, the SYM mechanism has to be used 100% for all vari-
ables potentially subject to such relocation.

ECS Volumel No. 2 -23- February 1975

The diagram below depicts the basic idea of the symbol table as used in the IMP
and BITCHASER software of this issue - and as will be used for the most part in sub-
sequent ECS software designs. for the 8008.

TN PROGRAM:
s(x)
MEMORY
SYMaoL TABLE

1 ADDRESS SPACE
!.-DESIRED
BYTE (s)

CPU H,L REBGISTERS
i THE IDEA OF A SYMBOL TABLE LOOKUP

In use in a program design, all symbolic references to data are made in three steps
corresponding to the three numbered arrows of the diagram:

1. Define the symbol as a value in the accumulator, eg.with an LAl in-
struction - as for example at locations 221 and 222 of page 13 in IMP.

2. Call the symbol table lookup function with an RST7 instruction, noted
mnemonically as SYM in the listings of ECS software. This invokes the 10,4 byte
SYM routine:

000/ 070 056 LHI }j.»
000/ 071 600 h(SYMBOLS) define symbol table page

000/ 072 004 add starting address to the
000/ 073 300 1(5YMBOLS\)§J symbol giving table address
000/ 074 3560 LLA ——— "~ _=which is moved to L pointer
000/ 075 307 LAM — ———___ - get H part of symbol address
000/ 076 060 INL ——- —__y-point to L part of address

000/ 077 367 LLM ———___ - redefine L as symbol's content
000/ 100 350 LHA ——~_ _ xand move H part to H

000/ 101 007 RET finally return with H/L pointing.

3. On return from the SYM function, use the H/L pointers of the CPU to ad-
dress the data which is to be manipulated by the program you are writing.

In creating symbols, remember that every even numbered address offset is a potentially
legal symbol - but that if the start of the symbol table is in the middle of a page of memory
space as in this case, there will be a maximum size to the table less than a potential
128 table entries 1n a full page table. The notation "s(x)' is used to represent the
value of the symbol associated with mnemonic ''x'".

ECS Volume 1 No. 2 -2-4- February 1975

The symbol table required by the IMP and BITCHASER software in this issue is
printed below, and is loaded in locations 300 to 341 of page 0. The particular loca-
tion of the symbol table is arbitrary subject to the following constraint: since the
SYM routine uses an 8-bit addition to compute addresses, and makes no data validity
checks, the symbol table must be so located as to avoid crossing a page boundary
in the 8008 memory address space. This means that the maximuwn number of symbols
possible with a given symbol table is one page full or 128 symbols. (Two bytes are re-
quired for each symbol definition.) By altering the constants at locations 071 and 073
in page 0 (the SYM routine) the origin of the symbol table can be placed at any point
in memory - and such alteration if done carefully might be done under program
control.

SYMBOLS: (000\300 OUU‘V Just for kicks, the symbol table can point to itself

000N301 = 300 as well as anywhere else...
o Doy %~Syrnbol "002'" is IMPSTATE
388:38: : 882 Symbol 004" is IMPENTRY
oo o 882%"‘Sy1nb01 006" is MEMADDR
8883{? - oo)gwsymbol 010" is GPJMPAL

The following are additional symbol definitions used by BITCHASER...

509315 2 200 5 symbol "012" is ECOUNT

8883:: B 282?{‘Symbol 1014 is TCOUNT

838:\;1? : g?g%‘Synlbol "0l6" is I

ooosy - 2?(1)§\symbo1 020" is J

838:33? - gii}‘Symbol 022" points to STRINGI
888:3;2 : 3éi%\Symbol 024" points to STRING2
83833? - 223%\5ymb01 1026" points to WKOUT
gggigg? : g(l)g%\ This symbol unused at present. ..
88883? : gtl)g}\Symbol "032'" points to STRTADDR
ngjljj‘; Z 2‘1’2 Symbol 034" points to CURRENTADR
gggijj? : g??}k Symbol "036 " points to ENDADDR
8881j2? _=__ g‘i(l)%‘Symbol ""040" points to PATTERN

M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Volume 1 No. 3

(

Ecs THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

x
4

Publisher's Introduction:

This March 1975 issue of ECS provides a new modem design to replace the ECS-2
design published in 1974. This modem, given the hardware designation "ECS-8" as the
next in a series of plans, will provide the typical Experimenter's Computer System
with the logical equivalent of a paper tape input/output facility - but implemented on re-
usable magnetic tape media (eg: cassettes) with data rates up to 1210 baud. The March
issue is exclusively devoted to this hardware design and its software implications,
including. ..

1. BiDirectional FSK Modem Design ECS-8 - Hardware Description: infor-

mation including system components, notes on the design theory of operation,

interconnect summary, tuning procedures and 'the question of "'standards''.
(Turn to page 2.)

2. Retuning the ECS-6 UAR/T Clock Rates describes a logical error in January's
issue and a new set of frequencies calculated based upon the requirement that the
highest data rate selectable should be 1210 baud.

(Turn to page 10)

3. Logical Testing of the CPU/UART/Modem/Tape System is a section concer-

ning the listing and use of two short test programs useful in the initial verification

of the tape interface by writing and reading an integer sequential test pattern.
(Turn to page 11.)

4. Errata: Two short notes. (Turn to page 17)

5. IMP Extensions for Tape Interface Control: What does it take to perform the
utility operations of data dumps to tape, reading from tape, and comparison of tape
data to core? This section begins the description of IMP (Interactive Manipulator
Program) extensions with the new command codes, modifications of old program
code and the major portion of new routines. The information is not complete,

and will be continued in the April issue.
(Turn to page 17).

The complete description of the ECS-8 Modem design required more space in this issue
than originally intended. As a result several items have been deferred until the April
1975 issue of ECS: the conclusion of the IMP tape utility extensions, further notes on
programming techniques for small microcomputer systems, a new column entitled
"Navigation in the Vicinity of &Q(-Aquila" concerning the Intel 8080 instruction archi-
tecture in an Experimenter's Computer System programming context, etc. I hate to
pull a ""perils of aPauline' ending on the IMP extensions but there is a definite

economic limitation on issue size. I am presently looking into methods of compactifying
program notational formats - probably along lines of a more symbolic notation supported
by uncommented absolute binary listings. 'l 5 el _

Mpib?isher '%A March 12 1975,

© 1975 M.P. Publishing Co.

ECS Volumel No. 3 -2- March 1975

BIDIRECTIONAL FSK MODEM DESIGN ECS-8 - Hardware Description ‘

The hardware portion of this article concerns a new tape interface modem design to
replace the earlier ECS-2 design. The result of applying Occam's razor to a complicated
design is a design of simpler concept, not "multiplying redundancies beyond logical ne-
cessity' to paraphrase the philosopher. The new ECS-8 design is printed as the detailed
circuit diagram in this issue's centerfold, and is described in the text.

A modem, by definition, is a "modulator-demodulator." In the "modulate' mode of
operation, the device accepts time-varying serial logic level data from the serial I/O
interface (eg: ECS-6 as described in January's issue) and converts it into the ""modulated"
- in this case F'SK - output signal which is sent to the audio memory device for recording.
In the "demodulate'' mode of operation, the device accepts the modulated FSK signal on
an audio recording as read by the audio device, and converts the FSK back into a time
varying stream of logic level data for interpretation by the serial interface device. The
net result is a facility to store digital data on magnetic tape, potentially to transfer that
data to other individuals' systems, and to recover such data at a later time.

The ECS-8 design accomplishes the audio mass storage function in conjunction with a
suitable cassette tape recorder. During the course of development of this device in proto-
type form, three different cassette recorders were tried. The following is a summary of
the results of this trial, giving the suitability of the recorders in question:

l. Realistic CTR-104: This Radio Shack product when tested with a con-
tinuous ''mark' tone exhibits quite audible "‘wow and flutter' variations in {re-
guency. When recording and reading data at 1210 baud, this $35 recorder will
occasionally exhibit an input parity error but gives good data in general.

2. Panasonic : This recorder costs approximately $40, and the extra

$5 over the Radio Shack product gives a more than proportional increase in the
guality of workmanship. Using the test programs in this issue, it was found
capable of recording and reproduction at speeds up to 121 0 baud with no observed
parity error flashes with the INTEREAD program found in this issue,

3. Superscope C-104: This $99 recorder is one which will be useful in the home
computer context for several reasons: it has a tape position counter which can be
used to index block locations on tape for large blocks of data, it has a pitch variation
control of 20% which can be used to compensate for differences in tape speed

when exchanging tapes with other individuals, and it has some nice 'cue'' and
"review'' controls which position the tape with heads active, potentially allowing

a fast '""block count' tape position search with manual intervention, computer con-
trol of the motor. This one also reproduced data at 121 0 baud with no observed
errors using the test programs in this issue.

The test results here are a heuristic first look at the suitability of various recorders wij
actual data. Later formal testing using programs to evaluate the units and other factoz
such as tape brand and quality will he reported in subsequent issues. If you want to se-

lect a recorder for use in your own system, this first inspection would seem to indicate

ECS Volume | No. 3 - 3- March 1975

that the choice of a recorder is fairly broad. There is one consideration which will have

(\ to be checked out if you want to take advantage of software which M. P. Publishing Co.
will be supplying in recorded form. That consideration is the manufacturer's tolerances
on tape speed. For the typical Panasonic, Superscope or Sony cassette recorders in the
$50 to $100 range with AC adapters, this will probably be close enough to the nominal
L.875 TIPS to get compatibility with other recorders. I have my doubts about that aspect
when the Radio Shack or other inexpensive recorders are considered.

THE FSK RECORDING SYSTEM:

In the diagram of the ECS-8 design, the central element is a Phase Lock Loop, the
XR-210 circuit made by EXAR Integrated Systems, Box 4455, Irvine Ca. 92664, This
chip 1s widely available and will cost from $5 to $6 in plastic packages, depending upon
your source of supply. I have seen at least one advertisement in Popular Electronics

classifieds for this chip, and there is the Radio Electronics information cited in a pre-

vious issue of ECS. The IC serves the following functions, as programmed by the IN/OUT
line of the serial interface device (ECS-6 or equivalent.)

OUTPUT: For output operation, only the VCO section of the PLL is used. The
control logic of the design in this mode programs a "mark' frequency when the
data line is '"'1"" and programs a ''space' frequency when the data line 1s '""0'". Thus
the time sequence of information on the TSO bit line of the serial inter-

" face will be directly mapped into a time sequence of frequencies in the VCO. The
VCO output is tapped and run through a 741 buffer amplifier to the tape recorder
which is assumed to be in the ''record' mode for output.

INPUT: For input operation, the PLL is used to decode the information coming in
from the audio information source, turning the FSK modulations into a time sequence
of information on the serial data line TSI at the interface. The control logic of this
design programs the VCO to the "f " frequency so that the loop will idle in lieu
of a signal half way between the mark and space frequencies.

The phase lock loop itself is an example of the feedback principle in action. When an in-
put signal is received, the signal is compared against the VCO signal frequency. The out-
put of the phase detector is an error signal with a sign appropriate to cause the integrated
control signal (the voltage into the VCO) to move thus causing the VCO to move in the
necessary direction to make the two signals equal in frequency. The PLL thus "locks"
onto the signal frequency, causing the VCO to track it. In FSK applications, the control
voltage exhibits two ''steady'’ states - and transitions between these states. The compara-
tor section of the XR-210 loop circuit is used to translate the rough VCO voltage into a logic
level signal which can be interpreted by the serial interface port. When you have built your
first Modem, use of a dual trace scope with chopped input will illustrate a pair of signals

like this: m #“ Tp2” SIgNAL
Filtered VCO Control s BAVAWAVAR VAR
v] m —U-U-U-——U— “Yea” SiGNAL
TTL Level Input Data <

The amplitudes are not to scale, and this diagram is tvpical of & 1210 baud sig-
nal with the filter components of this issue's circuit drawing.

ECS Volume 1 No. 3 -4- March 1975

In addition to the XR-210 Phase Lock Loop circuit, several auxiliary ele-
ments are found in the ECS-8 design to build a modem system.

An output buffer amplifier provided by the 741 operaticnal amplifier IC -4-
is used with capacitive feedback to integrate the VCO square wave, amplify it
to several volts, and to isolate the VCO terminal of the XR-210 from the tape
recorder connection. A voltage divider in the form of potentiometer R20 is used
to set a suitable input level for the tape recorder being interfaced. Note that
the input to the tape recorder is shorted to ground when data is to be read from
tape. This prevents an unwanted coupling between the tape input and tape output
which was observed to occur with all three of the tape recorders mentioned on
page 2. A similar feature switches the output of the tape.

An input clipping amplifier is provided by the 741 operational amplifier IC -5-
to provide isolation of the PLL input from variations in tape recorder output am-
plitude. The dual diode feedback around the operational amplifier restricts the
amplitude range to essentially the diode forward voltage drop (positive and negative)
thus clipping the signal to approximately twice this drop peak to peak. This output
of the clipping amplifier is applied to potentiometer R23 which sets the
actual PLL input level. During output operations, switch S4a grounds the input to
the PLL to prevent coupling of the tape recorder signal via the tape drive electronics.

The motor start delay oneshot is used to give the computer program a ''time out”
at the beginning of tape read or write operations. When the "SELECT'" line goes low
indicating the start of an I/O to the modem, this cues the oneshot through the
differentiator provided by C13 and R22. The RDY output to the interface logic
then goes low for a time period - set by potentiometer R2l. At the end of the time
period, nominally 2 seconds, the tape drive motor is assumed to have '"settled down"
to a steady state condition after the initial startup transients, thus the data trans-
fer is not liable to errors caused by transport variations.

The motor control relay is used to turn on the tape recorder's motor under
computer control whenever the SELECT interface line is in the low state. Due
to the inverting driver of the 7426 section, the selected condition is the "off"
state of current in the relay coil - hence the "NC'" contacts of the relay
(terminal connections 3 and 4)should be used to make / break the 'remote’ input

to the tape recorder.

Control Logic is provided by the two 7426 open collector NAND gate sections,
a TEST/CPU mode switch S1, and two TEST control switches S2and S3.
When the mode of Sl is CPU, the control logic is connected to the computer's
serial interface for control by a suitable program. When the mode of Sl 1s TEST,
the control functions of TEST DATA (S2) and TEST IN/OUT (S3) govern the con-
trol of VCO frequency settings.

The purpose of including the test switches is to provide a means of initially tuning the

device and/or of re-tuning it to a different set of standards at a later time.

ECS Volume 1| No. 3 -5- March 1975

FREQUENCY SELECTION CONTROL:

The truth table of the control inputs (whether Sl is in CPU or TEST mode) is noted
in the centerfold diagram of the ECS-8 design. The A and B columns of the table in-
dicate the logic level on the lines at the points marked "A' and ""B" in the diagram. As
is usual for such tables, the "X'" indicates a ''don't care' input. The output of the logic
is listed in the third column as "f .. " - the XR-210 VCO frequency which will result
for the given combination of bits.

The XR-210 has two inputs for frequency setting. One is the '"keying'' input of pin
10 which is normally used to generate FSK in an output-only application according to the
EXAR application notes on this device. The second is the ''fine tune' input which is
supposed to be used to set the center frequency (free running frequency) of the loop in
receiving situations. In this design, the same XR-210 is used for both input and output
by programming both of these inputs digitally, so that a total of threefrequencies is
obtained - mark, space, and free running frequency 'f;'. Two potentiometers R10 and
R8 are used to set the ""mark' and "'space'’ frequencies using a procedure described be-
low. Optionally, a third potentiometer can be used in this section for the fine tuning of
the free running frequency - in place of the fixed 100K resistor R9, illustrated by the
""dotted" arrow in the drawing.

OPEN COLLECTOR LOGIC:

Note that all of the "NAND" logic in this circuit design is provided by 7426 high vol-
tage open collector NAND driver gates. For the control logic applications, this means
that '"pull up'" resistors must be provided to the 5 volt logic supply level. The pull
up resistors for this use are R4 and R5. For the relay drive application, the ''pull up"
is provided by the relay coil acting as a load instead of the resistor used in logic
applications. The high voltage gate was chosen so that a large (ie: 12 volt) voltage could
be applied to the relay coil to guarantee operation with a current greater than the 3 ma
required for it to change state. The relay is used as described on page 7 of the Jan-
uary ECS issue. The remaining section of the 7426 circuit can be used as noted in
the drawing to drive a relay with DPDT contacts if it is desired to automate the function
of switch S4. Open collector logic is also used for the XR-210's output stage, so you
will note R3 is used to define the output logic level voltage for the PLL.

NOTES ON CONSTRUCTION OF THIS CIRCUIT:

The ECS-8 design prototype was built with wire wrap construction techniques as docu-
mented in M. P, Publishing Co. publications 73-1 and 74-5. With only 5 integrated cir-
cuits, a very small board might be used, or a very roomy 4' by 6" board could be used
as was used in the prototype. Other interconnection techniques can be used if desired,
however for convenient and permanent one-of-a-kind construction wire wrap is really the
""only way to go''.

A PC board version of this design is in the process of layout as this article goes to
press. An announcement of price and availability is expected to be included in the next
issue of ECS. The board will be labelled with the component designations in the ECS-8

ECS Volume 1 No. 3 -6- March 1975

centerfold of this issue, and very little additional documentation is expected to be re- -,
quired beyond that supplied in this issue of ECS. With whatever technique you employ
- wire wrap, point to point solder, PC - it is highly recommended that you use sockets
for all integrated circuits. This prevents heating of the IC's if soldering is employed,
and provides a convenient means of removing and replacing the chips if you should make
a damaging mistake. Three 8-pin "minidip" sockets are required one fourteen pin DIP
and one sixteen pin DIP socket are required.

INTERCONNECTIONS:

The RDY, SEL, TSI, TSO and IN/OUT lines of the modem should be routed to the
corresponding lines of one of the serial interface unit ports (eg: ECS-6 I1/0-2
lines for one of the channels of tape interface.) If an alternate UAR/T control inter-
face design is used, these lines will have to be run to the equivalent definitions in the
controller. To summarize, the lines are:

RDY - this line goes to the RDY input of the channel chosen for the modem
in an ECS-6 type multi-channel serial interface.

SEL - this line goes to the SELect output of the channel chosen for the modem.

TSI - this is the serial input line from the demodulator to the TSI line of the
serial interface controller for the channel in question,

TSO - this is the serial output line from the appropriate serial interface channel
to the modem modulator.

IN/OUT - this line is logic "1'" for input, logic ''0' for output, and is used to
program the frequency control logic of the XR-210.

In addition, the connections for ground, positive 12 volts, positive 5 volts, and negative
12 volts must be made.

The interconnections to the tape recorder are made via the three jacks J1, J2 and
J3 (the latter is not drawn explicitly in the diagram.) The jacks can be omitted if you
do not mind ''pigtails' wired to the modem board with appropriate plugs for the tape
recorder. The following connections must be made: 2a phono-plug to miniature phone
plug patch cord is required to go from Jl to the tape recorder's audio output jack -
typically marked '""Aux Speaker'' or "g-ohm Earphone; " A phono-plug to miniature
phone plug patch cord is required to go from J2 to the tape recorder's audio input jack,
typically marked '""Auxiliary Input' or ""Microphone' ; A phono-plug to sub - miniature
phone plug patch cord is required to go from J3 (relay contacts NC and COM) to the
motor control input of the tape recorder, typically marked ""Remote' or '"Dictation. '

The modem may be physically mounted along with the rest of the system in a com-
mon card rack or ''"breadboard! layout, or it might be reasonable to put the modem in

a separate box associated with the tape recorder .

ECS Volume 1 No. 3 -7- March 1975

TUNING PROCEDURES: USING THE TEST CONTROLS

Having made the interconnections, verified proper wiring and power voltages, and
inserted the integrated circuits, the tuning of the modem frequencies is the last step
prior to testing the unit under computer control. In order to identify points in the cir-
cuit for purposes of tuning and understanding the circuit, a new feature has been added
to the ECS-8 circuit diagram - notation of several test points as "TPn'" where ''n" is
replaced by an appropriate arbitrary number starting at unity. The basic test point for
use in tuning the circuit is test point #1 (TPl) - the amplified VCO signal. The basic
test instrumentation can be as simple as an oscilliscope or frequency meter - or both
can be used. With the components shown in the circuit diagram, turning on the modem
power, independent of any switch settings of Sl to S4 , will produce a waveform looking
approximately as follows:

VAVAVAVAN

What the test switches do is set up data conditions which affect the period of this
waveform logically, and enable the corresponding frequency settings to be
obtained by trimming resistors.

Trimming the Free Running Frequency f,:

Set the TEST /CPU mode switch Sl to the TEST mode and set the test IN/OUT switch
S3 to the IN position (S3 open so that line B is logic "1'"). This will program the phase
lock loop's VCO to the free running frequency logic inputs - and the TPl signal will be
fo assuming no interloping frequencies are coming in the Jl connection. The free run-
ning frequency can be trimmed by two methods in this mode:

1. By trimming the capacitor CO by adding extra low value capacitance
lumps in parallel with the main CO with its nominal . 03 mf value.

2. By trimming the resistance of R9. However, to keep a reasonable
control range for the other adjustments, R9 should not be made much lower
than the 100K ohms shown in the diagram.

In the prototype, with a 5% tolerance 100K fixed resistor for R9 and a 10% tolerance

c0 of .03mfd without trimming, the oscillator was found to be at 5. 555 Khz when power
was first applied. The final value of 5. 50 Khz (see '"Standards'' section below.) was
achieved by trimming with small silver mica capacitors on a ''cut and try'' basis. The
circuit diagram shows two such ''phantom capacitors' as dotted lines in parallel to the
main CO0. In the PC board version now being prepared, space is left for two such trim-
ming capacitors.

Trimming the "Mark' and ""Space'' frequencies.

Once the f frequency setting has been trimmed, the following procedure may be

used to set the "mark'' and ''space' frequencies of the FSK modulation. First, set the

ECS Volume 1 No. 3 -8- March 1975

the test IN/OUT switch S3 to the "OUT' position (S3 closed so that the B signal line is

now logic "0'" in the test mode.) This logically programs the VCO control lines to either
the "mark' or ''space' frequencies depending upon the state of the A signal line. The

two FSK frequencies are set according to the ""Standards'' section below using the following
iterative procedure to converge on the final settings. An iterative procedure is required
in order to overcome the interaction between the two controls R8 and R10 .

1. Set the test data to ''space' - the logic '0'' level which occurs on line A
when S2 is closed. Adjust R8 until the desired '"'space' (lower than fj) frequen-
cy has been obtained.

Z. Set the test data to "mark'' - the logic '"1'" level which occurs on line A
when S2 is open in the test mode with S3 closed. Then set the observed
frequency at TPl to the nominal "mark' frequency.

3. Repeat steps |1 and 2 in sequence until both settings are within the nominal
1% tolerance discussed below in the ''standards'' section.

Note that this procedure of adjusting the mark and space frequencies should have little if
any effect on the f, setting. But, if you want to check and '"be sure' you might look at
f, again after these adjustments have been completed.

THE QUESTION OF "STANDARDS:" “’

Several individuals and representatives of groups of amateur computer enthusiasts
have written concerning the subject of standards for data interchange between multiple
systems, enabling the distribution of coded software rather than listings which must
only be re-entered by hand., With the definition of an audio tape interface scheme comes
the question of a standard for data interchange via that method. There are several
comments which can be made regarding such standards:

1. Within broad limits, the physical parameters of the recording or inter-
change method are essentially arbitrary. Thus for example in tape recordings,
it is fairly arbitrary whether one uses a series of octave-related tape speeds
starting at 2 IPS, 1.875 IPS or even 1. 75 IPS. The idea of the standard is to
arbitrarily pick one such value of the range and stick to it in a given context of

application.

2. Given the same general method of reproduction or interchange, the most
useful standard is that which gains the largest market acceptance. Thus all the
sour grapes in the world will not change the fact that in certain areas of the com-
puter markets that which IBM designs de-facto becomes industry standard. IBM's
arbitrary choice of design and interchange standards is as good as anyone else's
choice given the same physical concepts of recording or interchange so its wide
market acceptance makes such a standard attractive to other instances.

So, what are the physical parameters affecting the FSK recording method, the general
ranges of interest, and the market factors shaping a choice of recording par_ame_ters?
Answers to these questions - at whatever level of detail required - are implicit in any

ECS Volume 1 No. 3 -9- March 1975

selection of a set of standards. In the list here, you will find a summary of the physi-
cal parameters and value I have chosen as a ''first cut' at the problem. Some notes con-
cerning the choices follow the list.

ECS-8: FSK RECORDING
PARAMETERS. ...

1. Center Frequency: f = 5.50 Khz 1%
o

2. Mark Fregq: frmark = 107.5% £, = 5.93 Khz 1%
3. Space Fregq: fspace = 92.5% £, = 5.09 Khz 1%
4. Data Rate of UAR/ T : 1210 baud 1%
5. Assynchronous format parameters:

Stop Bits: 2

Data Bits: 8

Parity: odd

The basic specification of the FSK signal is its center frequency and deviation. The

above set of parameters reflects a choice of 5. 50 Khz center and deviation of
7.5% in either direction to produce the two data frequencies. The choice of these par-
ticular numbers reflect the following general considerations:

1. The frequency should be kept as high as possible relative to the data rate
of the interchange, to provide a large number of cycles (between 4 and 5 in this
case) at the space frequency for the PLL to lock on.

2. The frequency of transmission should not be higher than about 6Khz when
the typical 10Khz band limit of the usual inexpensive recorder is considered -
this guarantees that the wide band signal of the FSK will be recorded with suf-
ficient accuracy to recover the data later. The information theory prediction
that at least the second harmonic information would be required was veri-
fied in the prototype by attempting interchange at approximately 8 Khz f, with
other parameters identical. Result: errors in subsequent read operations.
(At 6 Khz, there is still sufficient reproduction at the harmonic 12 Khz to
ensure accuracy, but the drop off with increasing frequency puts a 16Khz signal
outside the range of reproduction.)

3. The deviation of 7. 5% (relative to center frequency) was chosen to make

the basic frequency shifts large compared to possible erroneous shifts such as
tape recorder "wow'' and "'flutter' or steady state differences in tape speed.

With the prototype circuit, deviations as large as 12% were found possible, but
were at the limits of control ranges and less stable than the 7. 5% figure. Smaller
deviations were also tried . The final 7. 5% choice is a good balance between
the small deviation consideration and the limits of this circuit.

4. The baud rate and format considerations are taken from the ECS-6
design - subject to the considerations stated on the next page of this issue.

ECS Volume 1 No. 3 -10- March 1975

With these physical parameter considerations for an FSK modem taken care of, what
are the market considerations - considerations of more than one user? A standard is
only a standard when it is useful to the individuals employing it. For your own in-house
use, you could potentially use any set of parameters within the capability of the basic
design. My purpose in publishing this list of parameters is one and only one:
to provide a definition of the FSK parameters which I will use in recording programs
for distribution to subscribers, whether generated by myself or by other individuals
now in the process of creating articles for this publication. If a design such as the ECS-8
modem 1s used, there is room for a fairly broad variation in these parameters to allow
retuning for other sets which may or may not be used by other sources of
software. I make no claim to special knowledge or universal acceptance of this particu-
lar set of parameters - and the flexibility of the basic modem design allows later re-
specification should there be widespread dissatisfaction among subscribers with the par-
ticular choices in this set.

A final note on the standards subject: this discussion has only concerned the physi-
cal (low level) details of recording standards. There is another whole '"can of worms"
involved in the programmed format of data which is conveyed by tapes using this method.
To keep the size of this issue within the bounds of sensibility I am deferring discussion on
that topic for now.

RETUNING THE ECS- 6 UAR/T CLOCK RATES

The following frequency settings are achieved as a result of retuning the ECS-6
oscillator to 38.720 Khz (25.83 us for those who set frequencies via oscilliscopes) and
taking into account a logical error in the writeup of the ECS-6 design as published. The
logical error in question was the assumption that a 16 division ratio is possible with
the 4-bit 74193 counter used to establish clock frequencies, when in fact the maximum
is division by 15 and two of the 4-bit codes are identical. The retuning is done so that
the highest bit rate will be approximately 1200 baud (1210 baud is . 83% off the typical
commercial rate of 1200 baud) and the 110 baud rate will be retained at one point in the

series for use with the teletype. The complete list of frequencies and codes is thus:
Code Iden, Baud Rate Code Ident. Baud Rate
0000 0 1210 (tape) 1000 8 151.25
0001 1 1210 (tape) 1001 9 13440y
0010 2 605 1010 10 121.00
0011 3 403.33 1011 11 110.00 (TTY)
0100 L 302.5 1100 12 100.83
0101 = 22, 1101 13 93.08
0110 6 201.66 1110 14 86.43
0111 7 172.66 1111 15 80.67

With this retuning, the control word for the channel 0 teletype output becomes octal 262
instead of 362, and word 011/220, word 011/211 of the previously published ELDUMPO
routine must be changed to reflect the new TTY rate code.

ECS Volume 1 No. 3 -11- March 1975

LOGICAL TESTING OF THE CPU/UART/MODEM/TAPE SYSTEM:

Once the modem has been checked out at the level of tuning described on pages 7 to
9 of this issue, the next step is to check out the ability of the system to record data gener-
ated by a program and later read that data. Two self-contained programs are provided in
this issue for the purpose of testing the interface by a very simple method: An integer
number sequence displayed in the binary lamps has a very characteristic visual pattern
when the rate of generation is lower than the eye's characteristic "flicker' limit. By
writing then reading the sequence of binary numbers 000g to 377g repetitively, this sequence
will be put on a test tape for corroboration visually in the display when reading. The other
8-bit display can be used to flash any parity errors and to continuously monitor the difference
between one word and the next when reading data. The first program of interest is the
data generation routine INTEGEN:

Note: Starting with this issue, I will be mnemonically referencing
the 8008 I/O commands of the system I actually wired by their proper
symbols. No changes are made in the actual codes printed in previous
issues of the magazine - which differ from the published and corrected
ECS-5 codes by a level of inversion in the 3-bit selection of device within
an 8008 1/0O channel. It is not a major point, since an individual system
of hardware can potentially use any one of the 8008 1/O codes (with the
proper characteristics) for a given function.

{NTEGEN: 004N\000 = 006 LAI First turn off interrupts as usual
004\001 = 002 00 000 0010
004N002 = 117 IN7 I/0O Interrupt control code
INTGLOOP: 004\003 = U006 LAI }_
004\004 = 026 0001 Ol 10 1210 baud, ch. 1, select, output
004N005 = 111 IN4 ———=Tape unit control word code (formerly called
004N\006 = 310 LBA "IN3'" due to ECS-5 error)
004\007 = 175 OUT36 Write status to left display.
004N\010 = 301 LAB Recover status
004\011 = 044 NDI }_ . -
004N\012 = 030 00011000 Mask with TEOC/TBMT positions
004NU13 = 074 CPHI .
004\014 = 030 00011000}—— And test for valid TEOC & TBMT
004\015 = 110 JFZ INTGLOOP —~ Keep looping around until
0V04N\016 = 003 L the UAR/T is ready for more
004N\017 = 004 H
004N\020 = J40¢ LAC .
ff.

004\021 = 113 ING }_y- then give the Uar/T some more stu
ov4aNo22 = 302 LAC . . .

ht light
004N023 = 177 OUT37}~’ and display the same stuff on rig ights
004N\024 = 020 INC Increment the data for next output word
004aNU25 = 1u4g JMP INTGLOOP And reiterate the whole cycle ad
004Ng26 = 003 L infinitum. .. you stop this program
ov4N027 = 004 H manually with the single step

control.

This programlet .,; be entered into memory at the absolute addresses shown by ysing
the IMP program previously published. Then the ""Shift X' operation with appropriate
address setup can be used to enter execution at location 004/000,

ECS Volume 1 No. 3 -12- March 1975

Once the INTEGEN program has been entered and execution initiated from IMP,
a first check of the system can be done aurally by connecting a high fidelity amplifier
and speaker to test point TPl. The characteristic FSK signal should be heard, which
in this case (going gung-ho at 1210 baud) sounds somewhat like a multi-engine prop-
eller driven aircraft during takeoff - especially when the volume is turned up through
a good set of speakers! To make the test tape, the following manual procedure is
suggested:

1. Temporarily suspend program execution by flipping the CPU panel controls
to the single step mode. After this is done, the steady state "mark'' tone of
5.93 Khz should be heard in the speaker if you use the setup suggested above.

2. Put the recorder into its recording mode and start it up. I.eave the remote
control input temporarily empty so that the controls are active independent of
computer motor control operation.

3. After 10 to 20 seconds of mark tone recording, turn the CPU back to the run
mode so that the actual data will be recorde - an integer sequence of numbers
generated by INTEGEN at the maximum data rate of the system, 100 CPS (Charac-
ters per second.) When the program is running, observe the integer pattern in
the display.

4. After a coffee break or suitable 5 to 15 minute period of time, come back,
turn off the recorder, put the CPU in single step, use the bootstrap mode to change
location 3 {IMPSTATE) back to 002g , interrupt the CPU and re-enter IMP. You
now have a test tape with an integer sequence of numbers on it at 1210 baud.

With this process of making the tape completed, rewind the cassette (or reel
if you use reel-to-reel) and enter the INTEREAD program code as found on the next page.
The INTEREAD program is designed to set up for read operations at 1210 baud, and read
any characters detected by the UAR/T with display on the binary lamps. The program
also does a rudimentary error check as follows:

- The difference between one character and the next is continuously calcu-
lated and displayed as the lefthand bit of the OUT37 display lamps. If this lamp
ever flickers, it indicates that an invalid sequence of integers was read - it should

be solidly "on' during input operations.

- The three receiver status bits - OVERRUN, FRAMING ERROR and PARITY ER-
ROR - are displayed in the righthand section of the OUT37 display lamps. If bits

2,1 or O of this lamp array ever flash, then one of the error conditions was detected.
In practice, except when the phase lock loop is free running, these lamps were usually
always '"off' indicating a lack of errors. At rates higher than 1210 baud, all three
recorders tested would occasionally produce read parity errors. At the 1210 baud rate,
the Radio Shack recorder would occasionally (once in several minutes) flash a parity

error.

Once entered, set MEMADDR of IMP to 005/000 and start INTEREAD with the
IMP "shift X" operation.

ECS Volume 1 No.

INTEREAD: 00U 5\U0U
005SN\001

uub\ooe
INTRLOOP: 005\U03
005\004
005N\00>5
005N006
U05SN00 7
00SN\010
U05N\011
005\012
U05\013
005\014
005N\015
005\016
005SN017
G05\020
ooo\u2tl
00b5\Uee
005\ue3
005\024
005\025
005\026
005\027
005\030
005\031
005\032
005\033
005\034
005\035

3

1O I}

[TN L LN | | N | N N 1A 1A 1]

fon

(L LI S 1}

N n

006
oue

117
(VIO o)
027
111
310
Va4
040
0714
040
110
003
005
113
320
175
3d02
223
12
340
301
044
007
264
177
332
104
003
005

-13- March 1975
(I)J(‘)A%)OO 010 Turn off interrupts code
IN7 ————> is sent out to interrupt control port
LAI
0001 o1 1} 1200 baud, channel 1, select, input
IN4 1s set up in ECS-6 control
LBA save status just read
NDI ———= mask off RDA bit
00 100 000
CFI and test RDA for data available
00 100 000

JMP INTRLOOP loop around if not available
L

H

IN5 - read code for ECS-6 channel

LCA - save data in C-register

OUT36 - write data just read in the left binary display
LAC - restore saved data

SUD - subtract previous data left in D-register
RRC - rotate difference into high order

LEA - and temporarily save it in E

LAB - restore status from B

gOD{)OO 111 §——> and mask off the error indicators

ORE - and merge the result with high order difference
OUT37 - and display inthe right hand display lamps
L.DC - and create the new ''old'' data value.

JMP INTRLOOP and back to gobble up some more bits
L from the tape...

H

When INTEREAD has been initiated in operation, with a blank tape noise signal,

display outputs should "run wild'. The reason is that when the PLL oscillator is free-
running without locking to either the mark or space frequencies, the control voltage is
at the center of its range, 'hunting' around for the proper lock. If you examine test
point 2 at this point, you should find a '"random' waveform with an amplitude of several
100's of millivolts with the recorder playing back a blank tape.

When the first '"mark' tone appears on the tape, the loop should quickly lock solidly
Then, when the data begins to appear, you will be able to

set up the chopped dual trace scope display illustrated on page 3 - if you have or can bor-
r ow the use of a dual trace display. With an oscilliscope as a tool, you can adjust the
input level to get the cleanest waveform at TP2 - or, using only your CPU and program
INTEREAD as a tool, you can adjust the level while watching the error lamps - with

too little level, errors occur - and the same goes if you over drive with a combination
of high tape recorder amplitude and high input level setting.

onto a fixed level at TP2.

COMPUTERS IN SCIENCE FICTION? Imaginative applications of technology are often

anticipated years ahead of

realization by fiction writers - thus Jules Verne's

well known anticipations of TV and fast powerful submarines. Good and well known
science fiction writers like Robert Heinlein and Poul Anderson have often come out with

neat computer applications,

I am interested in readers' contributions to a bibleography

in this area including short descriptions of the computer-related theme of the story being

referenced.

ECS Volumel No. 3 14 March 1975
3 ECS-8: BIDIRECTIONAL
INPUT by Cavl T. Helmers 1
CLIPPING
AMP 14
J1L

‘o C12 A m§

S SETTING e e A
INPUT Ca .o3m¢ RL
Cg c1
~-12 LEVE,\' 1J= -~ OPTIONAL ne
(‘ R23 & TRIMM ING
—_— 744 o e +12 oos
ey : T MING - DIP A m$
C;f;—f\fut,e: S4 may optionally "= coy | T
‘be replaced by DPDT relay ey 1w
gdrlven from IN/OUT line : -
buffered by 1C 2 section d Re
' 8.2
12 eI [>—9)
3o Wi oz| 8 31 2] 2
T RIT U 9 Rie 3.9K 4 T MBIE V{0 Y+ e COomt
AN L2 ~AAN -2~ Nl C GA M PH, PET. NP
ovY
INPUT BiAs XR _ 2 1@
Vco v ¢ . C,
Rig =3k FINE »«E\ru:G Loeic
VAN v~ TUNE NeT OVt
O . k q '3 lﬁ_
2. - R
TFl 7K 35!3
Q MARK
ADJT.
: V(o 1 ¢
(R2Z 12w TRiMA oUTPUT
- A 4 {|H JL
OuUTPUT
LEVEL HoK
1@ Rq 1 rs8
- 100k) 5K
A ms R e &
S TR ADT.
S
J2 e OUTPUT o1
BUFFER
AMMP
M‘Ul = Dip —'11 T djmm— -":
— POWER REQUIRED:
- iz v a R
r 5 v 7z !m:ii}\;};(ﬁ

©

1975 M.P. PUBLISHING CO.

42V R
[EYN] s /

ECS

Volume 1

No., 3

March 1975

. FSK MODEM

Jr

+5 MOYOR START

DELAY OMESHOTYT

(% BIC ™S

R24 Se8oK

l=
READY DELAY
o ¥

TP2 .:'_'."
FILTER LS . i
C

) k22 % - - 5 1

NA e WA 23K _" oy :
10K R2 49K NE 5SS 381 m5 RbY ot

‘ €S

~ el AN C]

o2 T«.D”(‘J‘gd 3 Len !

Inezi M§ EE_L '
T, @ 2

—.:.. Com |

SLTER ED ;
+42 NC:Q 4

]

—M/ i

i |
ﬁ +5 : C\L NG_‘: .

v e) .
. TPY4: Jeee 5'[Ki moTor conTroL

. “ i

] E} RELAY

1
¢ g3 4Ry & RS TSI ;)

- K 1K 1K £ o 1

Y5 ce 1k X

|

b TEsT TEST DATA l

()—ﬂ |

b3 c s A sta st |

c . —_ X
bt # ‘ CPU DATA o

| / +5 |
742§)
TEST IN/6UT

Ta
Ic -2.- L
ER —
7426 Pou FREQUENCY
PIN 414y = +§ SELECTION
PIN 7 = GaND LOGIC :
k/’b A B _gvco
X i
o O Sseace
1 O Soaex

CPU IN/O0VT

WTYERFACE \)

"
n
[l

[

! SRR

o0

ECS Volume 1 No. 3 -16-

March 1975

ECS-8 MODEM DESIGN PARTS LIST

CO = .03 mfd base plus optional
ftrimming as required.

1,02, C3 = .00&2 mrd (10% tol.)

Ch = 30 mfd 10 volt electrolytic
C5,C11 = .01 mfd (20% tol.)

C6,C9 = 3 mfd, 25 volt electrolytic
¢7,06,010,012,C1 = .1 mfd 50 volt
€13 = .001 mfd 50 volt

D1,D2,D3,D4,DS = silicon switching
diode, 1n91L or equivalent

J1,J2,J3 = RCA style phono jacks
f'or interconnect to tape recorder
via patch cords (optional.)

Pl = DIP plug interface to ECS-6
I/0 sockets from modem terminals

Integrated Cilrcuit Listing:

IC -1- XR-210 Phase Lock Loop
Modem Circuit

IC -2- 7426 Open Collector High
Voltage NAND Driver

IC -3~ NES55 Ready Delay Timer

Ic -L- 741 "minidip" op amp

¢ -5- 741 "minidip" op amp

K1 = ZPDT Minilature Reed Relay Tape
motor control. The prototype uses
a surplus Grigsby-Barton #GB31C-G2150
But any relay which will operate with
a 6 to 10 volt potential and less than

16 ma can be used with the 7426 driver,

RO = 8.2K VCO gain
R1,R11,R19 = 10K
R2,R3,R17,R18 = .7K
Rl ,R5,R6,R7 = 1.0K

R8 = BK space adjust pot

R9 = 100K

R10 = 35K mark adjust pot
R12 = 2.7K

R13 = 1.5K

R1ll, R16 = 3.9K
R15 = 2.0K

R20 = 10 K output level pot

It

R21 COOK ready delay pot
R22 = 27K

R23 = 10K input level pot

S1 = DPDT Test/CPU mode switch
S2 = SPST Test Data Switch
S3 = SPST Test Switch

Slp = DPDT Tape Signal Routing

The four test points in-
dicated in the diagram may be
implemented with teflon feed
thru insulated standoffs, or
appropriate test prod jacks.

ECS C Volume 1 No. 3 -17- March 1975

ERRATA CORRECTIONS FOR PREVIOUS ISSUES:

The following errata have been detected in the referenced issues, and are noted
here for the record:

January 1975, page 4: The "NDBI1" pin of the COM2502 UAR/T is pin 38. The
TTY line's source is 16-4 not 14-4.

February 1975, page 13: The reference to "PCW!' as the output of IC 14 pin 6

should have read "PCC'. This error is also found in the text of the BANK
SELECTION LOGIC description on page 11 .

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL:

The IMP program is extended , as documented in this section, to handle an added
capability - the dumping of absolute binary data onto the tape interface for long term stor-

age, followed by later recovery of that data. A comparison function is also incorpor-

ated to allow the data written on tape to be checked against core data so that one will be

2rtain of the veracity of the tape copies. The new functions added to the IMP program
are the following:

"T'" - this function is used to set IMPSTATE to a value of 3 so that a second letter
can be decoded as a two letter tape control sub-command. The two letter tape
control command sub-command combinations are listed later on page 8.

"Shift W' - this command requires two keys to be depressed for safety, and is used
to invoke the data write utility. Pressing this key assumes that the program par-
ameters of data count and a starting MEMADDR value been set up using the H, L,
TL and TH control commands of IMP. It also assumes that the tape recorder
has been set up in the '"'record' mode to receive data from the appropriate modem.

The channel/rate selections are also assumed, as defined by the TR and TU commands
to be described.

"Shift C" - this command requires two keys to be depressed for safety, and is used to

invoke the data comparison utility routine. It assumes the same program setup as

the corresponding ''Shift W' write operation which produced the block, and assumes
that the physical setup of the tape recorder is for a read operation.

"Shift R" - this command also requires two keys to prevent accidental activation. It
is used to invoke the data read utility, which is identical to the data comparison

utility with the exception that data is stored in appropriate memory addresses rather
than compared against the addresses.

in addition to these direct extensions to the IMP command facility, the subcommands of
the "T' operation include the functions described on the next page.

ECS Volume 1 No. 3 -18- March 1975

The tape control subcommands are used to define the content of several RAM data
areas, display the content of these data areas, and to perform tape utility control actions.

"TB'" - this command/subcommand combination is used to display the current
content of the 16-bit tape block length count.

"TD'" - this command/subcommand combination is used to display the current
content of the tape control word used for determining tape unit and rate.

"TE" - this command/subcommand combination is used to display the current
formatting error count - errors in the three UAR/T status bits detected
during read and comparison operations.

""TH" - this command/subcommand is used to transfer the current IMPENTRY
value to the H portion of the block length count.

"TI" - this command/subcommand is used to initialize the tape control parameters
of block count, error counts (format and comparison data), and control word.
All the control data is zeroed out.

"TL" this command/subcommand is used to transfer the current IMPENTRY value
to the L portion of the 16 bit block length count.

""TR'" - this command/subcommand is used to define the UAR/T rate portion of the
control word from the low order content of IMPENTRY.

"TS" - this command/subcommand is the tape leader spacing command, and is
used to turn on the tape motor for a period of time (ten seconds) sufficient to
move the cassette position past the leader after a rewind. It invokes a routine
which uses timing loops to count approximately 2.5 million 8008 CPU states
in terms of the structure of the counting subroutines and data used to call them.

"TU'" - This command/subcommand is used to define the control word unit as the
current two low order bits of IMPENTRY.,.

"TX'" - this command/subcommand is used after a comparison operation to display
the count of words read which differed from internal memory data (the count is
valid assuming a previous "TI' initialized the count data areas.

The decoding of these subcommands is done in a manner which is identical to that used for
the main set of IMP commands - the software extensions for the tape facility include a gen-
eralization of the "IMPDECO" routine given in last month's issue to allow symbolic specif-
ication of the command table address and the command branch target taken when a match

page address taken when a match is found.

One other change has been made in the previously published IMP program - the symbol
table has been moved out of page 0 (bootstrap page in ECS systems) to reside at address
012/260 in the protected memory of the system software. This minimizes restart activ-
ity to the initialization of the first 102g bytes of page 0 after the CPU has been powered down

for additional interfacing or other activities.

ECS Volume 1 No. 3 -19- March 1975

The first items to present in the course of redefining the software load to include exten-
sions for tape interface functions are the changes in the IMP decoding algorithm. Basic-
ally, the IMPDECO algorithm is made to begin with a SYM function call to define the
command table address. In current software, there are now two command tables - for
the IMPSTATE value of 2, the same codes are defined as in the previous case, but the
table is extended by four entries for the four new regular IMP commands. The second
command table is used for the IMPSTATE value of 3 (ie: following the "T'" command)
to decode the second character of the two character tape control commands. In this
second command decode application, a different page for the command branch is also
required, thus the IMP "GOTFUNC" routine must also be modified to provide this new
generality.

Because the decode routine has been generalized, it is now necessary to use a setup
procedure to define the parameters for IMPDECO. In this patched version of the IMP
software, a branch is made to "IMPSETUP' with a return to "IMPRESUME'" when the
sltate 2 decode is used. IMPSETUP is used to define the high order portion of the GOT-
FUNC branch address in DECOGO, and to setup the symbol for the state 2 command
table, IMPCMDS, IMPRESUME is the normal entry point to the decoding routine in
this new version. Note that a jump to IMPSETUP could also have been made from the
jump at location 020. Note also that the NOP's and KEYWAIT at location 013/023
have been replaced by a jump to location 010/000, the place where the setup for
an IMPSTATE value of 3 is executed, defining the "T'" subcommand table instead of
the normal IMP table,

013\023 = 104 JMP TSETUP IMPSETUP:
Ul13N024 = 000 L 013\120 = 310 LBA
0l3NU25 = 010 H 013\121 = 0Que LAI
0l13\122 = 030 s(DECOGO
IMPGO: 013\123 = 075 SYM)
013\026 = lu4 JMP IMPSETUP 013\124 = 076 LMI
013\027 = 120 L 013\125 = 013 h(IMP)
013\030 = 013 H 013\126 = QU®b LAI
013\127 = Q032 s(IMPCMDS)
IMPRESUME: 013\130 = 104 JMP IMPRESUME
013N\031 = 05 SYM lookup addr 013\131 = 031 L
013\032 = 301 LAB restore chr. 013\132 = 013 H

Note that the IMPSETUP routine is located in a region of memory address space which
had formerly been occupied by the "GOTFUNC" routine (see last issue.) The GOTFUNC
routine has been moved to location 013/251 and modified to define the high order target
address from the data stored in the variable DECOGO, rather than the default page 013
in the original version. The address located at 013/035 must accordingly be changed

to 251 so that the new location of GOTFUNC will be reached from IMPDECO. The new
version of GOTFUNC is listed on the next page at the top.

Also at the top of page 20, right hand side, is a listing of the jump instructions which
are located in page 0I3 so that the new tape commands can be reached outside of page 013,

When the normal IMP decode occurs, it references a page 013 address - one of these
jumps if one of the new commands is detected.

S Volume 1 No. 3 -20- March 1975

GOTFUNC:
4 7 Here are the four jumps used to
\ =
gij\ggi = 322 ILNELM reach outside page 013 when normal
013\253 = QU6 LAI point IMP decode finds read, write, compare
013\254 = 030 s(DECOGO) to DECOGCO or ""T" command characters. ..
013\gb5 = 075 SYM
U13\256 = 337 LDM ((was LDI) WRITEJ: 013\310 = 104 iMP WRITE
013\257 = 106 CAL SETIMP gij:jii s o 0
Ul3\260 = 212 L N
013\261 = 013 H READJ: Ul‘LJ\VSIJ = 104 JMP READ
013\262 = 106 CAL SYSSETUP ol D e II{‘
O13\263 = 135 1, o -
013\264 = 013 H COMPJ: 013\316 = 104 JMP COMPARE
013\265 = 104 JMP GPJMP 8;;:;;6 = 3:8 ﬁ
013\266 = 015 L _
013\267 = 000 H TJ: gig:gi; = ;gg i}“? TSETUP
013\323 = 012 H

And here is the new command table at location 013/344, including the four new command
codes as well as all the old commands. ..

. - 0 1" :]
IMPCMDS: 813\345 2 380 (WriTEy) § = write command (to tape)
: = : t 3 1t
HENTTE T 1A compare tapn to mermors
“ = D¢ t 3 1t
8:3:;2? ; gfi 1(%]?23” read tape into memory
8:3:;2§ = jg‘; ;(TT':T) i——"—“—.initiate tape control state
013\35%4 = 304 '"D"
013\355 = 240
013\356 = J05 N A
013\357 = 156
013\360 = 313 "K'
013\361 = 221
013\362 = 314 "L
013\363 = 076 _ , ,
013\364 = 311 1y this section of table is
013\365 = 152 identical to the pre-
013\366 = 312 g viously printed version
013\367 = 150 but in page 013 instead.
013N\N370 = 316 N
O13\371 = 153
O13N\N372 = 230 1Shift X"
013\373 = 200
0l3N\374 = 310 HHM
O13\d75 = 10606 :
013\N3¢6 = 31> UM
O13N377 = ll2

There is one final modification of the old code which must be noted: the symbol table

has been moved from page 0 to page 012, location 260, for the same reason that the
regular IMP command table was moved. Thus word 000/071 of the SYM has to be change-\
to 012g and word 000/073 of SYM must be changed to 260g to complete modifications.

ECS Volume 1 No. 3 -21- March 1975

With the preliminaries completed, the next item of interest is the beginning of the list
of routines required to implement the new IMP functions. The first routine in address
sequence is the TSETUP routine used to fool IMPDECO into decoding via the "T'" subcom-
mand table TAPECMDS for the first character following a "T'"., This occurs when
IMPSTATE is 3 following the "T'' command. ..

TSETUP: 010N00U = 310 LBA save the character just read
uloONOUL = 006 LAI
010N002 = vue s(IMPSTATE) change state for the next
010N003 = 075 SYM input character by referencing
01UN004 = 06 LMI and redefining IMPSTATE
010N00S5 = 002 2 for normal code interpret after
010N006 = 006 LAI state 3 special ...
010N0UY = 012 s(TAPECMDS)
010\010 = 05 SYM point to tape command table
oloNo1l = 30! LAB > recover tape subcommand character
0loN012 = 104 JMPIMPDECO and jump to the new generalized
01uN0i3 = 033 L IMPDECO as if normal entry
g10N0Ol4 = 013 H but with alternate command table

If you look at this routine carefully - and observe its coordination with IMPDECO - see if
you can find a way to eliminate 2 bytes and thus compactify the software... such an im-
provement is possible.

When the IMPDECO routine was entered in the normal "2" IMPSTATE, a write command
"Shift W'' might have been decoded. If so, the WRITE thing to do is to branch to WRITEJ
in page 013, and thence to this little wroutine. ..

WRITE: 010NU1l5 = 006 LAI first thing in writing - to tape, not
010N\016 = 0l4a s(TAPECTRL) necessarily for publication - is
010N017 = 075 SYM to reference the command word
010N\020 = 307 LAM set up by TR/TU commands,
010\021 = 044 NDI then extract the rate/unit bits,
oioN022 = 374 11 111 100
010N023 = V64 ORI and superimpose output select. ..
010\024 = 002 00000 010 .
o1oNuU25 = 370 LMA the new command code is good for
010N026 = 111 IN4 this I/O to control logic & later..
01oN027 = 106 CAL WAITOUT go wait for the proper TBMT/TEOC
010N\030 = 147 L and RDY flags to indicate that the
010N031 = Ul2 H motor start is done. ..

010\032 = 106 CAL OUTCOUNT go wait "x'" milliseconds more and
010\033 = 200 L then write out a 16-bit data count
010\034 = 012 H

01UN035 = 006 LAl > define a temporary copy of the
010N036 = 016 s(TCOUNT) block data count by referencing
0l10N037 = 075 SYM its location then copying data
0l10N040 = 371 LMB prepared by OUTCOUNT from
0l0oN04l1 = 06U INL CPU registers B and C to
V10N042 = 372 LMC storage reserved for TCOUNT
010N\04s = Olo LBI }“—’/’-’then define a 10 centisecond wait
010\044 = ule 1010 o

glo\v4s = 106 CAL WAITCS interval, then wait it out before
010UNO46 = 116 L commencing the main data
0loNu4f = 012 H block.

ECS Volume 1 No. 3 -22- March 1975

The writing of data onto the tape immediately brings to mind the question of the data
format. The basic data format implied for this program can be stated explicitly: a block -
of data consists of (on output) a leader of (nominal) 2 seconds while the motor gets up g
to speed, followed by an additional delay for output of ''x'" seconds to allow '"'slop" in
tape positioning on input, followed by two characters containing the block count, then a
delay of .1 seconds then the actual data bytes, followed by another ''x'"' second delay and
a repeat of the block count for verification. The block is closed out mechanically by

turning off the motor after a final delay of 2 seconds. As a tentative value of "x'' for
this software, 1 have used .l seconds - although I it is not yet obvious that this is the
best value. I chose a delay between the count words and the actual data block for the

following reason: when listening by ear to the data, a characteristic rhythm pattern is
heard at the start of the block - a single blip of data followed by the actual block. This
gives an indication - roughly - that the data is likely to be in the right format. A further
reason is to allow easy detection of the block start and end when scanning the tape fast
using a tape recorder with '"cue'" and "review'' controls such as the Superscope model

mentioned.

The code of page 21 has gotten the output operation down to a point where the start of
a block has completed and the program is now ready to output the main sequence of data

of interest. .

OUTLOOP: 0l0NOS0 = 106 CAL WAITOUT do not procede any further until the
010NUS1 = 147 L flags have been cleared by UAR/T
0l10N0b52 = 012 H and it is ready for output..
010N0US3 = 106 CAL ATMEMA to find out what the current MEMADDR
010N054 = 000 L is by loading it in H/L &
010\N0Ub5 = 0l2 H
010N\056 = 307 LAM go fetch the current byte
0l10NUDY = 113 INS (true Code)\jL/9 so that it can be sent to tape
010NU60 = 106 CAL INCMA = not an ancient andean indian, but
010N\Q6]l = 164 L the routine in-crements the
010\062 = 013 H value of MEMADDR
0l10\U63 = 307 LAM }«——» fetch the next byte
0l10NO64 = 1Y OUT36 and display it ...
010N065 = 060 INL —— and increment address LO
010NU66 = 307 LAM and fetch next 1 byte

0l10N067 = 17117 OUT37 —————— s and display it too...

010N070 = 006 LAI .

01UNO7L = 016 s(TCOUNT)}_”pomt to data count

010N072 = 106 CAL D2B then decrement the count
V10NU73 = 132 L }/’ temporary TCOUNT

010NO74 = Q12 H

OlUONUYS = 140 JTC ENDOUT zresult of zcountdown determines
Ul0ONUY/6 = 103 L }/’ what will happen. ..

QIONVYY = Ul0 H

V10NI00 = 104 JMP OUTLOOP if the carry was false, underflow
OlOoNlul = 050 L has not occurred, so the block
UloNl02 = Ui H is not done - reiterate 1it!

Now in every instance except the last, the jump true carry at 010/075 will fail, causing
routine to loop back for the next byte of the block being dumped. Finally, the carry will;f-e\
sct to 1 by D2B, causing execution to flow to ENDOUT, listed at the top of page 23. '

ECS Volume 1 No.

ENDOUT:

010N103
0lONLU4
Ul0N10S
010N106
Ul10N107
Ul0ONL10
O1O0NI11]
0l0ONll2
Ol0ONLL3
OluNi 14
UluNllb

3

106
200
012
0leé
310
106
116
ol2
250
111

oes

o n

o

-23- March 1975

CAL OUTCOUNT(at end of block, write the count

L again for confirmation. ..

H

LBI

20010 then set up for

CAL WAITCS a 200 centisecond (2 sec)

gf block trailer interval. ..

XRA ———————=clear accumulator

IN4 and output null code to tape units.

KEYWAIT ————= having completed the output, back to
IMP command interpreter..

The following routine is accessed by the tape control command "TS'" and is used to

space the tape a fixed interval after rewinding and setting up for forward motion.

LEADER:

Ulo\e7e
010\273
010\274
0l10N275
010N\276
01oN\N277
010N300
010N301
0101N302
010\N303
010N\304

250
111
006
014
075
307
064
002
111
056
ole

nu

Wonwonosonon

non

XRA) —sclear the accumulator so that

IN4 a momentary null code can be output to
LAI -~Uthe tape controller...
s(TAPECTmy/J—-then point to the tape control
SYM — word via SYM mechanisms. ..

LAM —=load the accumulator with the selection

ORI —~——athen force '"output select' onto whatever
00 000 010 rate/channel had been selected...
IN4 —> then output the command code, turning on

LHI the motor. ..
104 set up for 10 second leader delay (adjust this

constant to suit your tastes...)

The H register is thus used as a temporary count for the number of seconds of delay in
the leader, serving to cycle the following leader delay loop...

LDELAY:

The next routine to be

010\305
010\306
010\307
0101N310
010N311
0l0N312
0luNgl13
010UN\314
010N315
0l0N31l6
O10N317
0luNg20

used by IMP to set the H

COUNTH:

Ulongsel
olouNdee
010N\323
V1I0N3de24
[SRRCANS¥=s]
V10NJ26
OruNge’

= 0leé LBI the inner loop of leader delay is a 1 second
= 144 100y }/’ delay programmed by the WAITCS routine. ..
= 106 CAL WAITCS called to delay a total of
= 116 L 100 centiseconds as programmed
= 012 H by the value in B on entry
= 05l DCH ~safter the inner loop delay, decrement the
= 110 JFZ LDELAY the seconds counter (H register)
= 305 L }- and branch back if needed. ..
= 010 H :
= 250 XRA ~>-clear the accumulator. ..
= 111 IN4 —~—_ w»then output the turn off (null) code. ..
0es KEYWAIT ——__ . and back to keyboard interpreter...
listed is a service routine which is activate by "TH'" and is

portion of the tape block count working storage...

006
oee
075
311
104
156
013

i

LAI
s(COUNT) point to block count via SYM
SYM

LMB —~_sthen define H portion from last entry, left in

JMP EXAMINE the B register by GOTFUNC. ..
L })then go to EXAMINE in IMP proper

H in order to output the count. ..

ECS Volume 1 No. 3 -24- March 1975

A similar routine is used to perform the same function for the I, portion of the block count
when invoked by the "TL" command to transfer IMPENTRY to the count's low order.

COUNTL: 010N\330 = 006 LAI
010N\331 = o0e2 s(COUNT)}\» point to block count (length)
010\332 = 075 SYM
010N333 = U6V INL ——sincrement to look at low order. .
010N\334 = 371 LMB —and load the low order from entry
010N\345 = 061 DCL ~>and look again at start of COUNT
010N\336 = 104 JMP EXAMINE
010N\337 = 156 L }\»and jump to EXAMINE it
010N340 = 013 H via the IMP routine. .

The next section of code consists of two utility functions for display of tape control
data, "DSPLYCTRL'" invoked by the "TD" command and '""DSPLYBLK'" invoked by the
"TB'" command. ..

DSPLYCTRL: 010U\341 = 006 LAI
010\342 = 014 s(TAPECTRL)}‘ first point to tape control
010N343 = 075 SYM word via SYM mechanism...
010N\344 = 307 LLAM —~>then fetch TAPECTRL. ..
010\345 = 175 OUT36 > and output to display
8:8:322 ; ff/’(j ﬁﬁ??ﬂ clear the other display to all zeros...
010N\350 = 025 KEYWAIT ~——~___>and back to IMP as usual...

The following routine displays the block count in the two display lamp sets. ..

DSPLYBLK: 010\351 006 LAI
010\352 oege s(COUNT)

This label identifies shared code to execuite(sic) SYM and go to EXAMINE of IMP..

GOEXAM: 010N353 = 075 SYM
010N\354 = 104 JMP EXAMINE
010\355 = 156 L
010\356 = 013 H

The next set of code is a utility routine "ATMEMA" which is called at several places
in the tape control extensions (and later software to be published soon) in order to place
the current content of MEMADDR into the L and H registers - pointing AT MEMA. ..

ATMEMA: 012\N000 = 006 LAI
viaNoul = 0u6 s(MEMADDR) point to MEMADDR
0l12N\002 = 075 SYM
012N\003 = 307 LAM—~-sput H part of MEMADDR into A temporarily
012\004 = 060 INL to point to the L part of MEMADDR
012\00% = 367 LLM —= which enables the L result to be defined. ..
012\0V6 = 35U LHA —~— after which the H result can be loaded from A
012\N007 = 007 RET ———= and it is now safe to return to caller.

The tape utility commands "TR' and "TU'" are used to set the "rate'' and '""channel"
sections of the EECS-6 tape interface control word respectively. The next page lists the

service routines for these commands. "RATE" is reached when the alternate commanc
table decodes an '"R'' following the "T' . '"CHANNEL'" is reached similarly when the
character ""U" follows a ""T'". In either cu=e, the current IMPENTRY low order

data is used to define the corresponding field -f TAPECTRL.

ECS Volume 1

RATE:

No. 3

uleNultu
vleNoull

ulza\ule
Ul2\014
vuleNoly
0Ol2\ulb
UleNule
oleNol?
Ole\gzu
uleNoel
Jgla\oee

Juo
uly
07>
307
044
ol
310
301
Uls
U444
360

-25- March 1975

LLAI

s(TAPECTRL) point to the TAPECTRL word
SYM

LAM ~» and fetch the old control value first....
NDI save all except old rate by

0000 1111 "anding' with a mask. ..
LMA > and temporarily save back in TAPECTRL
LAB so that IMPENTRY copy can be fetched to A
XCHG and e¢xchanged to high order (see ECS
NDI V1#l p. 20)

1111 0000 _ clear extraneous IMPENTRY stuff. ..

This label 1identifies common code of RATE and CHANNEL used for recombinations. ..

NEWCTRL:

Olz2\Nues
vle\ue4d
olzxues
Ol12\uU26
ulz2\o27

[}

26/
379
104
341
010

ORM —» move saved portion of TAPECTRL into aligned

LMA set of new bits and save it again...

JMP DSPLYCTRL

L and go show off the results of this
H shifty maneuver. .

The channel routine is analogous to RATE, but zaps new stuff into different bits. ..

CHANNEL:

Ul2\ugu
0l12\031
012\03¢2
ulaeNody
012\0u34
Ole\u3gb
0l1eN03e6
012\037
U1la2\040
Olaexu4gl
olexo4ae
0l2\043
0l12\044
Ola\u045
U12\046

mown unn

Won

0UU6
Ul4
075
307
Ou4
363
370
301
V44
003
0oz
002
104
SPR!
o1

LAI ’
s(TAPECTRL)Jz.‘,’ point to TAPECTRL word

SYM
LAM and fetch the old content. ..
NDI as with RATE, save all bits except channel bits

1111 00 11 by "anding' with mask. ..

LMA then stuff it back into memory temporarily
LAB and turn attention to IMPENTRY copy

NDI which must be first

0000 0011) masked to get rid of high order junmk
RAL then shifted left into the right position
RAL within the word. ..

JMP after which the same combining maneuver
L is used as for the RATE case. ..

H

The software control structure used to define the tape block format references the fol-
lowing routine several times.

WAITCS accepts a parameter in the B register which

specifies the number of nominal 10 millisecond wait intervals (centiseconds) required. ..

WAITCS:

The timing loop here is not

WCSLOOP:

Ol2\116
OlaeNlly

olteNlaeu
OleNlzl
ulaeNlze
OleNiz2y
Ol2N124
UlaNles
OlaNlee
OleNler
OleNl30
UlzNl gl

oo

W nn

1

02e
147

LCI . .
0 load an inner loop count which
103, approximates a 10 millisecond delay. ..

quite 10 milliseconds with the above constant!

Jel
JuY
11vu
120
vle
Oll
110
|)
Ole
Ju/

DCC decrement the delay count
LLAM - this is a long (8 state) NOP...
J¥Z WCSLOOP

L the inner loop reiterates for a total of
H 24 states per cycle (except last one)
DCB decrement preloaded outer loop count

L counted, ¢o back to wait some mo: e.

H

RET otherwise return after an approximately correct

J¥FZ WAJTCS}/a.nd if any centicseconds remain to be

WAIT interval... insert compensation here if
want digital clock accuracy

ECS Volume 1 No. 3 - 26 - March 1975

Another WAIT function required for coordination is the WAITOUT routine. Here the
object Is to centralize the instractions required for testing the status bits when output is
belne done to one of the ECS-0 controller's channels. Note that this routine is general,
only requires that TAPECTRL be initialized prior to entry. The analogous routine in the
previously published ELDUMPO program is at locations 011/217 to 011/235 and could be
potentially consolidated by a CAL WAITOUT if ELDUMPO is re-written to use the SYM
mechanism. A characteristic of software written without automated assembly and com-
pilation aids 1s the price in time paid to modify routines - thus the point is academic at
the present time.

WAITOUT: OleNl4ar = 006 LAI
UleNlso = 0l4 s(TAPECTRL) }\»point to control word
Ul2\1sl = 075 SYM
Ol2Nlsz = 30r LAM and fetch it to A. ..
012\153 = 111 IN4 and peruse the status bitz..
Dlovios o bae BP0 000 and isolate RDY, TBMT and TEOC

Ul2N\156 = 074 CPI —> and test for all in proper state..
OleNlbY = 130 01 011 0000 of readyness. ..
Ol2\160 = 110 JFZ \/VAITOUT}/and loop around ad infinitum if
olanlel = 147 L not ready to return...
Ol2Nlo2 = 012 H
Ul2\163 = 01Y RET {middle digit is a mistake, but the RET instruc-
A tion spec sez '""don't care' - so why bother to
“dort core” change it at this point?)

The next routine to be listed in this issue is the "OUTCOUNT" routine used to dump
the 16-bit block data count onto the tape after waiting ''x'' centiseconds, where ''x"
is here compiled as 10. This effectively allows a 1/10 second error in the positioning
of a tape block relative to the end of the last previous block - since reading operations
will wa it 2. 0 scconds from motor startup and writing will wait 2.1 seconds. In order to
avoid missing data, the read '"listeaing" must begin prior to the commencing of actual

data bytes.

OUTCOUNT: glzxetlt = 0le6 LBI set up the '"x" sccond wait with
uleN\egul = ule 1079 "x'" equal to .100 second (10 centiseconds)
gl2\egoe = 1o CAL WAITCS
oleNezus = 116 L —» with the setup, go waitonit
Ulexz2u4a = Ule H f
uleNz0s = o6 I1.AI
JleNzue = u2e s(COUNT) setup for I/0 by pointing to COUNT

ulteNz2uv = 0rs SYM
Ol2\21u = 3u7 LAM —~-~fetch high order of count to A

olexz2ll = 310 LBA ~_»save it for later use in B
UleNegla = 113 IN5-~_ ,and then send it out as the first byte of data. ..
Ulenz2ls = U6l INL—~_spoint to low order
uleNegla = 307 LAM and fetch it to A
UlzaNzls = sz I.CA but save it in C
Olexele = 113 INS before zapping A with the output side
ulaNzly = Juy RET of IN5 and returning. ...
Note that this routine also has a hidden extra function in its definition of the

content of B and C as the high and low order block count for later use.

ECS Volume 1 No. 3

-27 - March 1975

The next segment of the IMP extensions is the routine accessed by the "TI'" command

of the extended program. .

INITIAL: 0laN2eo
OleNzel
vlengee
OleN2ey
OlaNge4a

INILOOP: Ola\ees
Olenegee
oleNeev
012\230
012\e31
ol2N23e
0l2\eJ33
uleNesdy
uleNegsb
ol2\236
012\237

il

n

nou

006
uld4
V1>
ule
ule
ure
(V1910
veu
ull
110
2¢5
ole
oue6
000
111l
025

LAI
s(TAPECTRL) point to first data byte. ..
SYM

LBI data count for initialization by c¢rude method of
10 zapping 10 bytes in a row. ..

LMI by immediate movement of

0 } zero to the memay location. ..

INL increment the memory address pointer

DCB and decrement the count. ..

JF Z INILOOP}/baCk for more until done

L

H

LAI three brownie points and a pat on the back if
0 the reader can figure out a better way to
IN4 clear A for the I/O control word reset. ..
KEYWAIT

This initialization takes advantage of the fact that all the tape specific data is located in
addresses 200 to 2lly and can thus be zapped as a block. .. without separate symbolic ref-

erences.,

Then comes a bunch of miscellaneous jumps from page 012 to page 010 for the new
subcommands. .. due to IMPDECO's single-page orientation. ..

JLEADER: 0l12\240
olz2\e4al
0l2\24z2

JDSPLYBLK: 012\243
0l12\244
0la2\24b

JDSPL.YCTRL: Ul2\246
ol12\e247
Ol2\25U

JCOUNTL: Ola\esli
Ulae\egbe
012\253

JCOUNTH: Olanegb4a
gl2\ebs
0l2\ebe6

nounon

i n

[L { T A 1|

wou

i

104
212
oto
104
351
010
o4
341
010
104
330
010
104
321
010

The following is inserted out

TSETUP: Ol2\3eb
UlaNdeze
01aeNgagy
012\330
Ul2Ng31l
(VRS ANCIC P2,
(VRR-ANCION
012\334
0l12\335
ul2N336
ulaNgsy

0o

0o

uo6
voe
075
076
(VIVIN]
(G106}
030
(SN e}
ule
0le
ueb

JMP LEADER - this jump is used to get out of page
L 012g after "TS'" command is decoded by the
H IMPDECO routine as modified. ..

JMP DSPLYBLK - same here for "TB'" command. ..

CE) - oops - if 8008 were decent would be correct

JMP DSPLYCTRL - same here for "TD'"...

L

H

JMP COUNTL - same comment for "TL'". ..
L

H

JMP COUNTH - same for ""TH"

L
H

of sequence for editorial reasons. .. it fits.

LAI > 1In order to setup IMP for a second
s(IMPSTATE) character to follow the "T'" command,

SYM the IMPSTATE value must be set to 3
LMI to force the alternate decoding of the
3 - next character in the stream.

LAI Must also point to the word which
s(DECOGO) holds the "GOTFUNC" high order
SYM address and load that word with the
LMI (non symbolic) H address of the tape
h(TAPECMDS) subcommand table. ..

KEYWAIT Then return - as always - to the

IMP keyboard wait routine. ..

ECS Volume 1 No. 3

This 1ssuc concludes
IMP tape

SYMBOLS: OleNzou
Ule\zel
Ule\zgbe
UleN263
Ulenz2ed
ulzaNz26es
VleN2e6
UleNz2o’
uleNz21y
olaxetl
oleN2i2
0l12\273
Ola\er74 =
0laN\ers
Olae\276
OleNa77
012\300
012\301
uleNdoe
012\303
olae\3u4 =
012\305 =
01eN306 =
OleNgor =
Ql2N\31u =
O12\311 =
JgleN3le2 =
012\313 =
012\3l4 =
Ole\sly =

H

it

L] LI R PR 1|

Houw oo

1

012\354 =
012\38b>H =
D12\356 =
012\357 =
OleN3deu =
0l12\361
012\362
012\363
012\364
U1lz\365
uleNseb
oleNser
UleN370
Dl1eN371l
OlaNdve
OleNs 3
uleNdrg
OleNs o
ulaeNsr6 =
uleNsrt =

TAPECMDS:

it o n

1}

1

extensions...

Jle
206U
Juu
Ju s
vouu
004
Quo
Uub
000
0le6
ole
354
000
200
000
201
Ouu
203
000
204
000
206
000
210
1010
2le
013
344
Ule
354

330
Ub4g
306
o4
311
220
323
2440
302
243
Ju4d
246
314
251
310
254
Jee
uly
3o
U3y

-28 - March 19753

with the new symbol table for IMP and the command table of the

_ Qo

is symbol table self-pointer
- 102" is IMPSTATE
- "04" is IMPENTRY
- "06'" is MEMADDR
- '"0"i1s GPIMPMA
- "2"is TCMDS
- "4'"is TCTRL
- 16" is TCOUNT
- 20" is INOPS
- 1122" is COUNT
- "24" is BADDATA
- "26'"is BADFORM
- '"30" 1s DECOGO i
- 132" is IMPCMDS
- '"34'" i TAPECMDS
‘II(DEI})ATAD) -Input errors in data display...

1 tt
1(LI;JFORMATD) - Input errors in format display.

AR RE)
L - Tape data initialization routine...

I(INITIAL)

VlSI'
I{(JLEADER) - Tape leader routine

B - T block size display. ..
1(JDSPLYB LK) ape srec dispiay

VID” .
1(JDSPLYCTRL) poe control word display. ..
YlLI')]
(JCOUNTL) Loow order block length setter..

Tt t

H . High order block length setter. ..
1(JCOUNTH) ”

HR o .]) g .
1(RATE) - Rate setter (not monopoly burcauc rat)
tun) - Channel setter....

IH{CHANNEL)

As noted in the introduction, the tape control software is only partially
listed in this issue due to space considerations.

a maior portion of the April issne of ECS. .. CSTH

] "01
5
The remainder will become
|

T
L

ECS - The Monthly Magpazine of Ideas 1jor the MICROCOMPUTER EXPERIMENTER

News & Notes to accompany Volume 1, No. 3 - March 1975, Some midnight madness
written on completion of the presenti issue. ..

THE DEMISE OF MICROSYSTEMS INTERNATIONAL: Current issues of electronic trade
publications report the demise of Intel's 8008 and 8080 second source, Microsystems
International . This Canadian firm is withdrawing from all IC business due to a lack of
profits - a necessary ir.put to any durable enterprise.

RISE OF A NEW CPU?” General Instrumentation and Honeywell have come up with a new
TCP-1600" 1n-bit single chip computer reportedly 5 times faster than another recent lo
pit announcement by National. The EE Times note had a price reported as $250 for just

one, with no information on when the part would be available.

WANT TO SEE WHAT TEXAS INSTRUMENTS has to say about microprocessors? April

15 to 1%, nationwide, TI is sponsoring 4 half-hour TV lectures on the subject early in

the morning. I can't print the entire schedule of stations, but interested readers might
lookup a local TI or distributor number in the Yellowpages and inquire - if you don't already
have the information from trade publications,

REGARDING FLOPPY DISKS: Don Whitehead (980 New Haven Avenue, Milford, Connec-
ticut) will be running the floppy disk pooled purchase previously announced. Write him for
complete details, A summary is as {ollows: Drives will be the new Memorex
model (original mechanical design with late user-oriented electronics). Price for the
drive will be $575 assuming 11 orders total by the appropriate deadline, $700 if less than
Il units are purchased. A $150 deposit will be required pending the ll-unit order deadline
- or if vou can not wait, the single unit price can be used to get the fastest possible turn-
around for the order. The price will include shipping to continental USA. A manufac-
turer's documentation package of 4 books is $12 extra, and a recommended package is

the manufacturer's support kit including 10 disk cartridges, the documentation package,

a test cartridge, and cleaning kit for a price in the $150-170 range, above the drive cost
alone. As previously announced, if the drive deal goes through, M. P. Publishing Co.
will provide an interface article. One final point - once ll orders are reached, the
offering will be extended indefinitely - but it requires serious individuals to act very
soorn to assure the first order needed to begin the "OEM'" pricing operation.

SOFTWARE FOR SALE: With the availability of the ECS-8 PC card (layout and price to
be in April's issue) tapes of ECS 8008 software will be made available beginning with the
IMP program. Price for a BASF Ci5 Cassette & Mailer with IMP recorded redundantly
15 $7.50. Later versions incorporating improvements in the program will be available
to previous purchasers on a cassette-recycling basis for $2.50. First class mail

is part of the price - with extra postage required for airmail or overseas purchasers.
Tapes will be recorded in binary image format using the ECS-8 type of modem, from
the working software in the ECS 8008 prototype system.

WANT TO BLOW YOUR OWN HORN? As a new feature, subscribers' descriptions of
their own Experimenter's Computer Systems (not necessarily the M. P. designs,
Intel CPU's or other fixed restraints on hardware) are solicited. Write it up 1n a few
paves , covering the system design, unique features, problems you have encountered,
etc. Oh yes, while it won't make you rich, there is a royalty of 10% on of sales pro-
rated by the fraction of space devoted to the article in each issue, payable in an initial
lump based on current circulation with residuals thereafter. ..

CTH March 13 1975

M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Vol. 1 No.4 April '75
Ecs THE MONTHLY MAGAZINE OF IDEAS
FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

Here you have the April 1975 issue of ECS, complete and unexpurgated. The main
theme of this issue is the introduction of the ""SIRIUS-MP" lahguage as a notational form
for expressing programs. The idea of SIRIUS-MP is to slightly generalize the low
level code approach to program notation so that it will be fairly expedient for subscribers
to hand '"cross compile' programs on whatever variation of the ""home brew computer"
concept they have implemented. The variations on this themea include...

1. The SIRIUS-MP Language... This article, beginning on page 2, is a first
staternent in these pages of some of the concepts involved in the language.

It also provides information useful in understanding the several SIRIUS examples
found in this issue.

2. BOOTER: An "Emergency'' Bootstrap lLoader... Itis common knowledge
what to '"do when the lights go out.' But what do you do after the lights go out
when your computer and volatile software were on the same power source as
the lights? Turn to page 1l for a description of an emergency bootstrap loader
concocted one weekend to combat electron deficiency anemia.

3. IMP Extensions For Tape Interface Control (Continued...) In the last issue,
I did not quite fit all I intended to print within the confines of 28 pages. The re-
maining segments of the tape interface are presented in a SIRIUS fashion along
with the equivalent 8008 code, beginning on page 14. ‘

4. Comments on the ECS-8 Design: Turn to page 19 for a short note on one
aspect of the ECS-8 design which I should have pointed out in the March article,
and was the source of a complaint from my brother Peter Helmers.

5. Notes on NAVIGATION IN THE VICINITY OF ¢—AQUILA ... #l. So, you
went out and got yourself an Altair computer? Now what? Turn to page 20 for
the first in a continuing series of articles on the use and abuse of the Intel 8080
instruction set in an ECS context - with occasional intermingled information on
hardware interfaces to be supplied from time to time (but not this time however.)

6. Erratum: Turn to page 24 for a short note about an ECS-7 diagram error.

1. A Note Concerning The Motorola 6800 MPU: Also on page 24 is a short note
concerning the use of the M6800 in an ECS context, now possible to contemplate
on a practical basis in the near future.

This issue is going to press April 211975, The next issue is fairly well defined as of
this date, and will include: an article by subscriber James Hogenson concerning the
design of a unique oscilliscope graphics interface featuring a 4096 point (64x 64 grid)
matrix of spot locations; a continuation of the software discussions begun in this issue;
and possibly a review of one or two tools which will be of interest to readers.

AP L
Carl T. Helmers,%\‘]r.
Publisher April 20 1975

(© 1975 M. P. Publishing Co. All Rights Reserved.

ECS Volumel No. 4 2 April 1975

The SIRIUS-MP Language. ..

an approach to machine independent low level code.

This issue begins a subject which will continue in the pages
of EC Sfor some time to come: the subject of expressing pro-
grams in a fairly well defined low level '"language' which is in
principle independent of any particular microprocessor or other
small computer you might have. This will facilitate your use
of published programs written for an 8080 if you own an IMP-16,
or programs written for 8008 if you own an M6800, etc. - pro-
vided the programs in question are expressed in the SIRIUS way.

The name I have chosen for this language is "SIRIUS-MP".
The SIRIUS is a combination of an April pun and the following
input: if Altair is the brightest star (visual magnitude) in the
constellation Aquila, then let me modestly name this mode of
program expression after the brightest star in the sky, the
star (X-Canis Major or SIRIUS. So, if you are SIRIUS about
Altair (or other computers available inexpensively both now and
in the near future) you will find this series of articles illumin-
ating. So much for the advertisement now to turn to some
information content. ..

WHAT 1S A COMPUTER LANGUAGE?

The answer to this question (as is always the case with complicated subjects) can
range from the superficial to the formal mathematical intricacies of compiler-writing
and language design. Since this publication is not a technical journal on software eng-
ineering, it must necessarily leave out a lot of the detailed information on the subject,
to concentrate on the application of the concept. (Upon sufficient interest - one inquiry-
I'll spend an evening sometime and compile a bibleography on the subject of compilers
and computer languages.) With this disclaimer I'll proceed to the sub_]ect of computer
languages in the context of a home brew microcomputer system.

Starting from first principles, what is a 'language'’ (eg: English, German, Pidgin,
integral calculus, set theory) in general? 1'1l1 confine the subject arbitrarily to the
concept of "written languages'' and put forth the following formulation:

A LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE OF
EXPRESSING THOUGHTS.

This definition is filled with implications: language is an invented technology (probably
the first) of humans (or other critters.) language is utilized in communicating thoughts
between individuals. Language is appropriate to thinking beings. Now what could
this possibly have to do with your urge to program and use a microcomputer ?

ECS Volumel No. 4 3 April 1975

A fair amount of course! The specific application of the language concept to the
problem of programming a computer is the concept of a '"]programming language. '
The specific part of this application is the limiting of computer languages to certain
classes of thoughts...

A COMPUTER LANGUAGE IS A HUMAN INVENTION FOR THE PURPOSE
OF EXPRESSING COMPUTER PROGRAMS.

Just as there are numerous variations on the '"natural language' concept (Eg: ENGLISH),
the diversity of human thought has lead to a wide range of computer languages from the
most general to the specific and application oriented. In each such language, the
author(s) have selected a set of elements needed to solve the particular problem and
combined these in a (more or less) self consistent manner and come up with a solution
to the problem of expressing programs of a particular class.

The creation of a programming language for the particular case of a microprocessor
system in the "homebrew' (ie: limited hardware) environment is the object of this
series of articles in ECS. When you design and or build a hardware system, your first
problem is solved - a computer that "works''. To get beyond this first phase the problem
becomes developing the programs enabling your system to do interesting things. A
language can be used for23 purposes in the process of programming your computer:

a. An appropriate language enables you to abstractly specify a program in
a first iteration of design without worrying 'too much'' about details. Get
the control flow figured out first, then worry about low level subroutines!

b. An appropriate language will enable you to hand compile programs ex-
pressed in that language for use on your own computer, even if the program
was developed and debugged on another computer. You know the ''algorithm'
works even though you have not yet translated it to your own use.

c. A language appropriate for the home microprocessor will be of sufficient
simplicity to allow hand compilation or compilation by a very simple compiler.

These considerations - the definition of a '""home brew computer' context - are a major
input into the design of the SIRIUS -MP method of program expression.

SETTING THE PROJECT IN CONTEXT:
HOW WILL SIRIUS-MP COMPARE TO EXISTING LANGUAGES?

The approach taken in the choice of elements for the SIRIUS-MP language is that of
a ''pseudo assembly language. ' An assembler is the simplest of all software developme:
aids to write, so this choice tends to satisfy criterion 'c¢'" above. But what about "'a'
and "b"? This is where the "pseudo' part enters the description: it is a language
one step removed from the detailed instruction level in many of its operations. SIRIUS
is an assembly-type language for a class of similar machine architectures - with opera-
tions found in general on such machines forming its "primitives.'" The subject of addres
resolution is left intentionally non-specific and symbolic so that variations in the way

ECS Volumel No. 4 4 April 1975

data is accessed can be left to the hand or machine-aided process of generating code
for your own system. Many of the statements written in this form will generate only
a single instruction on the '"object" machine - but others will require a series of sever-
al instructions to specify required actions on a given machine. It is my intention to
include within this "pseudo assembiy language' concept several programming constructs
borrowed from high order languages in current usage - but stripped of the complex syn-
tax of a true high level language and specified in the simplified form of the SIRIUS-MP
syntax, such as it is. This adaptation of a language to a specific purpose and class of
users is a widespread practice in the compiler/language design business. Several ex-
amples come to mind of specific languages for specific usage contexts :
XPL - this language is the compiler-writer's language to a great extent. It

is a specific and limited subset of PL/1 by McKeeman, Wortman and

Horning which isdocumented in a book entitled '""A Compiler Generator. "

The adaptation here is to concentrate on those features necessary for the

writing of compilers and exclude all else. (Intel PL/M is very close to XPL)

HAL/S - this language was developed for guidance, navigation and control appli-
cations of NASA by Intermetrics Inc., the author's employer of several years.
HAL/S is specialized to include the vector and matrix data forms used in space-
craft navigation - and to provide highly visible '"self-documented'' code which was
not possible in the assembly language style approach used in the Apollo program.

SNOBOL - here is a language which is primarily oriented to ''string handling"
programs - a very broad range of applications, in some sense including
the writing of compilers as well.

ALGOL - this language is the antecedent of many currently used larnguages ,
whose original intent was a specialization in generality - the ways in which
algorithms could be best specified, in the abstract form.

These languages are all examples of much more extensive and complex methods of
program expression from a compiler writer's standpoint - although from the user's
standpoint they are orders of magnitude easier to program with than doing the equivalent
in a low level "pseudo assembly language' or formal assembly language for a specific
machine. Itis the problem of generating code by hand or with minimal program aids
which limits the possibilities of SIRIUS program specifications to the low level approach.

WHAT ARE THE COMPONENTS OF A COMPUTER LANGUAGE?

For those readers with a software or computer-science background, this dis-
cussion is in the nature of a review. For readers with litle programming background
this will present new information.

When you build a computer from a kit or from scratch, your problem is to put together
a set of hardware components according to a certain system design (usually inherent in
the microcomputer chip design) such that all the components play together as a working
system. At a level of abstraction far removed from - yet still within the context of -

the detailed hardware, a language for computers is also a construction of component parts
which must '"'play together' according to a particular design if the language is to be

ECS Volumel ©No. 4 5 April 1975

useful as a means of expressing programs. At the most abstract level of discussion, a
language consists of two major component parts designed to provide an interface between
a human being's thoughts and the requirements of computing automata. These are:

SYNTAX: - this component of the language is the set of rules concerning the
correct formulation of basic '"statements' or 'expressions'' in the language
in question.

SEMANTICS: - this component of the language is the set of rules governing the
intelligible combinations of syntax elements - the combinations which produce
a well defined and translatable meaning which can be used in turn to generate
machine code for some ''chject' or '"target'' machine of a compiler.

lhe syntax and semantics of a programming language can be chosen with a somewhat
ill-defined border: one of the major trade-offs to be done in designing a language and
associated compiler is deciding how much of the work is to be performed by the syntac-
tical analysis and how much is to be left to semantic interpretation. At one extreme there
is the complex syntax of a high order language in which much of the semantic intent of

a statement is inherent in the syntax used; at the other extreme there is the case of the
simple ""assembly language'' style of syntax in which very little function is inherent in

the syntax - which merely distinguishes labels, operators and operands.

SIRIUS-MP is at the '""assembly language' end of the trade - its syntax is kept simple,

" so that a minimal compiler (or hand compilation) will be used to translate it to machine

rx

codes, and the semantic interpretations are largely look-ups based on the specific content
of the statements coded in a program, with very little variation on certam basic forms
for operands and operators.

SPECIFICATION OF SIRIUS-MP:

The specification of a language can be a very formal and very dry process, A language
specification is ultimately required in order to clearly convey the meaning of statements
coded in the language, -the legal variations on such statements, etc. etc. A certain level
of consistency in specification is required, for instance, if . I want to write a compiler
for a given language. At the present time, however, my reasons for formulating SIRIUS
are much less demanding than the formal specification of a language: I am interested
in creating a method of describing programs which will be heavily commented and used
principally for publication in ECS (and possibly other publications.) Thus the specifica-
tion is left in a fairly "soft' form for the time being within a general framework described
in this issue. The time for a formal specification will be the day I sit down and write
an appropriate compiler - or a reader decides to do so through impatience and the desire
to write one for publication (with the usual royalty of course.)

In lieu of a really formal specification of the SIRIUS-MP language, the next few pages
contain an informal description of several notational devices employed in the examples of
SIRIUS-MP programs in this issue, and comments on why the forms are used. The areas
covered are: STATEMENTS, ADDRESSING & REFERENCE, DATA REPRESENTATIONS,
and OPERATIONS. Omitted in the present discussion are several languages forms to
be described at a later time, including certain "structured programming' concepts and
details of argument/parameter linkage conventions for subroutine calls in SIRIUS-MP.

ECS Volumel No. 4 6 April 1975

STATEMENTS :

The basic notational unit of a program which is written in SIRIUS-MP is the "state-
ment. " The statement concept embraces the others mentioned on page 5, as can be
illustrated by the following prototype format:

LABEL:
TARGET OP SOURCE * COMMENTS]

As in most decent assemblers, the intent is to make the statement '"free form" and
thus requiring no fixed column or line boundaries. Hence the following devices are
used as a part of the syntax:

The end of a statement is indicated by a '"';'" (semicolon) as in a host of
PL/1-like languages.*

A label, if present, is distinguished from the first (TARGET) operand or
the operation mnemonic (OP) by a 11, (colon). With this choice of trailer,
labels must not duplicate any operation codes (OP) which can have similar endings.

An asterisk (*) is shown as a separator between the main part of the state-
ment and the comments field at the right.

For examples of the use of this format, see the several program listings included with
this issue below. The fields in this prototype statement are as follows:

LABEL - this field (and its '":'' separator) is optional and is used to define a symbolic
program label. A label is ultimately required to define all symbols used in a pro-

gram with the exception of certain implicitly defined symbols such as CPU registers
and flags.

TARGET - this field (optional) specifies a symbolic reference or absolute address for
the memory location (s) or I/0O devices which will receive data as a result of an op-
eration. Certain operations will not require a target field for proper notation.

OP - this field is required in order to specify an "operation' to be performed at some
time. Certain operations will correspond to executable code in the translation. Others
will be used to reserve storage and indicate aspects of the program generation pro-
cess.

SOURCE - this field is required to specify a minimum of one operand for each opera-
tion. Its format will vary depending upon the type of operation intended - variations
will include various forms of symbolic reference as well as compound forms used
to control functions such as '""FOR" loop constructs or "IF' statements.

COMMENTS - here the field intent and use is fairly obvious - to explain what is going
on it is useful to make notations.

% Note: The alternate form of statement boundary indication to the ';'" is to start
a new statement on a new line. The examples in this issue all omit the ';' specified
above - a detail to be corrected in future issues.

ECS Volume 1 No. 4 7 April 1975

ADDRESSING AND REFERENCE:

For those individuals who have experience with high level languages (eg: FORTRAN,
COBOL, PL/l, ALGOL, BASIC etc.) the common experience is to blithly go ahead and
program an application with the various '"variables' declared within a program by impli-
cit or explicit means. This approach is appropriate for a high order language in most
instances because the problem of addressing and referencing data in the computer has
been solved in a fairly general and quite reliable manner by the compiler writers. When
the time comes to drop down one level of abstraction to the assembly level, the problem
of addressing has to be again considered in a more explicit manner since many more
details of machine architecture are inherent in such programming. In deciding what
forms of addressing and data reference to include in SIRIUS-MP, the low level approach

is augmented by several methods of more abstract reference. The following are some
key referencing concepts:

ABSOLUTE ADDRESS: The concept here is of a fixed location in the memory address
space of the computer or a given I/O instruction channel designation. In a system
built around a Motorola 6800 for example, most I/O operations will be carried out
with reference to absolute addresses for the 1/0 interface memory locations - at
least in simple programs this will be the case. In the INTEL or National IMP-16
architectures explicit choices of I/O channel require designation of numbers, often
in an absolute form.

EXAMPLE: The Octal expression 020023 could represent
an absolute address. ‘

SYMBOLIC ADDRESS: The concept here is to reference the name of a data item in an

instruction rather than its actual address. In principal all such names map into a
fixed and unique address at execution, either through the operation of a compiler's
address resoclution or through a run time lookup mechanism such as the SYM routine
used in the previously published ECS 8008 software. In SIRIUS notation, a symbol
is defined by its appearance as a LABEL of a statement, or its existence as a pre-
defined entity such as a register designation .

EXAMPLE: Given label ANYSYM, a reference in some other (eg: assignment)
statement might be:

ANYSYM =: 0 (as the TARGET operand.)

INDEXED SYMBOLIC ADDRESS: The concept here is to reference the starting loca-

tion of a block of memory by the first symbol involved, and to indicate an offset
(from zero up) in bytes by a second symbol or literal in parentheses following the
first. Thus:
ANYSYM(OFFSET) is a reference to the location ANYSYM
plus the current value of OFFSET when the statement is
executed.
or
ANYSYM(23) is a reference to address ANYSYM plus 23.

An alternate form of expression for this would be to show an addition (+) operator
rather than use a FORTRAN or PL/1- like subscript reference with parenthesis.

ECS Volumel No. 4 8 April 1975

SPECIAL SYMBOLIC ADDRESSES: Here the concept is the notation of certain symbols
with a fixed meaning, which in an assembler would effectively become '""reserved"
symbols not subject to redefinition. The forms used in the listings in SIRIUS in this
issue are the following :

W(ANYSYM) means ''the whereabouts of ANYSYM!' and is the notation used
to indicate a reference to the absolute address of the symbol.

M(ANYSYM) means '""memory reference to the location found in the value of
ANYSYM.'" This is the basic "pointer'" form used, and will assume that
the value in ANYSYM is a full address (eg: 16 bits for most machines.)

T(ANYJMP) means ''the address portion of a jump instruction at ANYJMP",
This notation was introduced to allow the equivalent of a FORTRAN
assigned GO TO to be used by altering a jump instruction.

A,B,C,D,E,H, L are symbols used freely to represent registers on the Intel
8008 and 8080 type of machine architectures. In translating this reference
to a Motorola 6800 or National IMP-16, or other computer architecture,
an appropriate software equivalent would be used if registers
are not available,

I{ADDRESS), H(ADDRESS) are used to reference the Low and High order portions
of a full address (eg: 14 or 16 bits) on typical microcomputers when it is desir¢
to examine only one byte. This is especially useful as a notation for the Intel
architectures, but the same functional meaning goes on other machines.

The various forms of addressing and reference described can be used to specify the
""operands'' - SOURCE and TARGET - of a statement. The concept of a "SYMBOL!"
is the generalized idea of one of these forms of reference (excluding absolute references.)
A '"symbol table'" for a program is a list of such symbols, usually including some
additional information about the item. In a future article on the hand generation of code
this concept will be explored in more detail.

DATA REPRESENTATIONS:

A '"data representation'' is a method of conceptually treating a group of data bits in
the storage of a machine, and is usually fairly dependent upon hardware features of a
given machine. The basic data representation of all the extant 8-bit microcomputers is
the 8-bit binary integer (two's complement is the rule.) This is augmented in certain
machines such as the 8080 and the 6800 by a limited set of 16-bit operations implemented
to handle address calculations. For the 16-bit microcomputers and minicomputers, the
word length as a rule sets the basic representation as a 16-bit integer, although smaller
8 bit quanta can usually be employed. This immediately suggests that the basic assump-

tion to be built into SIRIUS-MP is that data ought to be operated upon in 8 and 16 bit

3

ECS Volume 1 No. 4 9 April 1975

quanta. This will prove a useful decision for most processors likely to be in common

. use by readers of this publication (if there is enough interest, I'll make some comments

at a future time on adaptation to 12-bit machines such as the DEC PDP-8 and its imita-
tors.) The two representations are thus (pictorially) ...

B LSB MSB LSB
| S T T T B SN I N SO N T N O U N T I Y |
765 4 3210 151413121110 9 8 776 54 3 21 0

8-bit integer 16-bit integer

The fact that there are two possible ways to reference integers built into the hardware
operations of the typical 8 and 16 bit microcomputer formats, (8008 excluded) leads
to a desire to specify a notation for the length of data involved. I could choose among
two basic alternatives in this area:

a. Specify data type in some form of declaratory way. This would be analogous
to an XPL statement such as "DECLARE X FIXED;" or a FORTRAN state-
ment such as "INTEGER X",

b. Specify data type(length) as a part of the choice of operands used. Here the
information on length of operations is specified when the data is used - thus the
program has a bit of extra redundancy in its notation (the extra characters needed
to specify this type information) but the operations performed are much more
visible at the local level.

The choice I made was for the second alternative, primarily to reduce the need for a
symbol table to the barest minimum of information - consistent with the simplifications
needed for a compact assembler or hand compilation. A secondary reason is the one"
stated in '"b'' - local type indications give a better documented program. In the integer
operations used by programs in SIRIUS, a single colon (as in ""AND:") is used to indicate
where an 8-bit operation is involved, and a double colon (as in "AND::") is used to
indicate the 16-bit form of an operation. A final comment on integers: where a signed
integer representation is required in two's complement notation, the sign of the number
is represented by the most significant bit (bit 7 of length 8 words, bit 15 of length 16
words.) This is the bit tested by the '"'S'" flag on the various microcomputers.

Byte String Data: One additional data type will be required for programming the
various microcomputers using SIRIUS-MP. This data type is the generalized concept
of a ""byte string.' The representation is
designed for manipulation of blocks of data in
memory, in a form consisting of a length byte
at the ""anchor'" (starting address) of the string,
followed by from 0 to 255 data bytes at consec-
utive addresses. This is a format which is iden-
tical to that used in many byte oriented compilers
(eg: XPL) and is a virtual necessity for handling
character texts. Applications will not be restric-
ted to character texts, however, for one partic-

ular use could include variable length decimal
arithmetic using packed BCD byte strings.

ECS Volume 1 No. 4 10 April 1975

Byte strings are most conveniently handled on computers which have byte addressability
of memory locations - eg: the IBM 360/370 series as well as the smaller (8080, 8008,
6800) microcomputers. For 16 bit minicomputers and microcomputers, the concept is
still useful, but requires explicit address calculations as a part of unpacking and manip-
ulating two bytes per word. Operations on byte strings will use the notation of a number
sign "#" to indicate the variable number of bytes involved.

OPERATIONS:

With the above introduction regarding data representations, it is now possible to
consider the basic cperations possible. The list here represents those used in the nota-
tion of the programs in this issue. In a iater issue I'll expand the explanations of some
of these operations and corresponding machine code for typical machines. There
are also several operations which I have not used in the notation of the current set of
programs, but which will be the subject of future notes in this area. The following
is a list of the operations used with program notation in this issue, omitting the type
indicators

AND GOTO INPUT
Assignment(=) HALT IOEXCH
CALL 1F KEYWAIT
CLEAR IFNOT OR

DECR INCR OUTPUT

The operations AND, OR, GOTO, HALT, INPUT and OUTPUT all have direct ana-
logs in the CPU operations when 8-bit quantities are used with machines such as the
8008, 8080 or 6800. The examples' 8008 generated code versions illustrate one such
representation. Some further notes will help illuminate the code generation process for
the other operations.

For all operations which have direct analogs in the machine architecture, the code
used for the machine level version must consist primarily of establishing the address-
ability of operands (source and target) and then execution of the operation. This process
is illustrated in the several examples. For 8 bit machines with 16 bit operations, the
code generated must be generalized to 16 bits - for the 8008 this is done in the illustrated
programs by appropriate subroutines for increment, decrement and comparison, so code
generation consists of writing down machine codes for a subroutine call and argument
linkage.

Assignment always will map into a sequence of operations needed to move data from
the source to the target. The 8008 generated code of these examples is an extension of
the previously described symbol table mechanism for address lookup (see February 1975
ECS.) For 16 bit quanta this process can often be done using a CPU register pair for
the 8 bit mac hines, but will invariably require a subroutine when byte strings are involved.

The IF statement form used in the examples is found in both a negative and positive
sense. In either case the TARGET (lefthand) operand is the place where execution will
go if the condition tests true. Two forms of the condition (SOURCE) operand are used:

ECS Volumel No. 4 11 April 1975

a. Flag Reference: Here the intent is to use a mnemonic key word,
for example "ZERO'" to reference one of the CPU flags of a typical micro
after an instruction which might alter such flags.

b. Tests: Here the intent is to specify two operands symbolically which
are to be compared. I have grouped such references in parenthesis to sim-
plify mechanical interpretation by a compiler, and have used the assignment
symbol ''='" with its length code with the usual duplicity to indicate the compar-
ison test operation.

A disclaimer is appropriate at this point - I am not satisfied with the IF condition test

format illustrated in these examples of several programs, and will be experimenting with
some alternatives.

GENERATION OF CODE:

The semantic intent of the language forms used to represent the several programs in
this issue can be deduced from the comments in the listings and the general descriptive
information in the previous pages. One remaining problem is the generation of code.
For the time being, I am limiting information on this (very large) subject to the exam-
ples illustrated below for an 8008 case and the notes accompanying the examples. I
think there is sufficient information content to facilitate interpretation and generation
of corresponding machine code for processors such as the 8080 (very close) or the
6800.

BOOTER: AN "EMERGENCY'" BOOTSTRAP LOADER

The first example of a SIRIUS-MP program is a short and self-contained program
called "BOOTER. " All programs ultimately solve problems. This particular program
solved a problem which I had one weekend, and served as an '"acid test' of the utility
of the ECS-8 tape interface. As soon as I had the interface software up and running (the
dump portion presented in March ECS's pages) I began dumping the entire CPU software
load to cassettes at regular intervals as a '‘failsafe'' against Boston Edison's next power
failure. The planning for that contingency - which by the way did happen in an ice storm
in January to my consternation - paid off in a different way: I made the foolish mistake
of turning off the power via a switch on my bench, now taped over solidly. Since I was
working on SIRIUS-MP as a program writing tool, I took the opportunity to test out the
expression it provides by writing the BOOTER source program appearing at the top of
the next page. I won't claim perfection, however the original form of the program was
essentially the same as the listing illustrated.

loading is accomplished as follows: in the tape format described in the last issue,
the first legitimate data is the length code (two bytes which I knew had "007'" and "377"
values for my tapes.) Since none of the tape spacing and preparation routines of the IMP
program would be available in the blank computer memory being bootstrapped, the only
way to synchronize tape data with the program was to listen continuously for the '"007"
character (state 1, LOOKFIRST tests for '"007'"), then check for a succeeding '"'377"
byte (state 2, WELLMAYBE tests for ''377'"'), then commence loading bytes starting at

ECS Volumel No. 4 12 April 1975

The BOOTER program, listed in SIRIUS-MP...

BOOTER:
1 B =1 1 # INITL AL STATE IS 1 .
2 X =11 2000 # {INTELESE 004/000) START ADDR Variables
i 36 OUTPUT 377 % TURN ON A DISPLAY
CLEAR A # . .
5 A IOEXCH 4 # RESET THE 10 UNIT A : CPU register for 1/0
BLOOP: - .
6 A = 27 % 0001 01 1 1" UNIT CONTROL B : CPU register or mem.
7 A TOEXCH # CHECK STATUS OF TAPE . ;
8 A AND: 1,0 # MASK OFF RDY & RDA BITS X : Address pointer (CPU)
9 BLOOP IFNOT (A=:140) = LOOP BACK UNTIL READY ZERO : CPU flag for zero result
GETCHAR:
10 M(X) INPUT 2 % READ THE DATA (NG EXCHANGE)
11 DECR: B * .
12 LOOKFIRST IF ZERO # HAVE STATE 1 DETECTED Notations
13 DECR: B %
1L WELLMAYBE IF ZERO % HAVE STATE 2 DETECTED . . .
15 DECR: B " M(X) : memory at location in
16 FORSURE IF ZERO # HAVE STATE 3 DETECTED : :
17 HALT % (OOPS! SHOULDN'T GET HERE) pointer variable X.
FORSURE:
18 36 OUTPUT M(X) + WRITE TO DISPLAY L(X) : low order 8 bytes of X
19 37 OUTPUT LX) % LOW ORDER ADDR TO DISPLAY
20 INCR:: X # POINT TO NEXT BYTE IN MEMORY
21 B = 3 # RESET STATE 3 INDICATION
22 GOTO BLOOP # BACK FOR MORE INDEFINITELY
LOOKFIRST:
23 B = 1 # DEFAULT STATE 1 CONTINUE
20 BLOOP IFNOT (A=:007) + LOOK FOR OCTAL "007")
25 B =: 2 +# IF FOUND, STATE SET TO 2
26 GOTO BLOOP # AND GO BACK TO FIND "377")
WELLMAYBE:
27 B =3 1 # DEFAULT BACK TO STATE 1
28 BLOOP IFNOT (A=:377) =+ LOOK FOR OCTAL "377"
29 B = # MAIN LOAD LOOP IF FOUND NOW
30 GOTO BLOOP %

And the equivalent 8008 version of this algorithm....

Label 8008 Code Bytes SIRIUS-MP Label 8008 Code Bytes SIRIUS-MP
Statement . . Statement

BOOTER: 00 M10 = 016 LAl L LOOKFIRST:

00 N\l = 001] 00 \166 = 016 LBI s 23.

00 \1l2 = 056 LHi s 2. 00 \167 = GOt 1

00 \113 = 004 h(LOAD POINT) 00 \170 = 074 CPI s 24.

00 \il4a = 066 I,LI 00 \171 = 007 7

00 \115 = 000 1(LOAD POINT) 00 \172 = 110 JFZ BLOOP

00 \M16 = 006 1_,7A1 s 3. go N1YT3 = 125 L

00 \11v = 347 377 0 \174 = 00U H

00 M20 = 1v5 OUT36 . 00 \175 = 0l6 LBI s 25.

00 \l21 = 250 XRA s 4. 00 \176 = 002 2

00 \122 = 111 IN4 s 5. 00 \1v7 = 104 JMP BLOOP s 26.
BLOOP: 00 \123 = 0U6 LAl s 6. 00 \200 = 123 L

00 \l24 = 027 '0Q01 01 11" WELL 00 \201 = QU0 H

00 125 = 111 IN4 s 7. .LMAYBE: .

00 \126 = 044 NDI s 8. 00 \202 = 016 LBI s 27.

00 \I27 = 140 'Ol 100 000" 00 \203 = oul 1

00 \130 = 074 CPI 5 9. 00 \204 = 074 CPI s 28.

G0 \1J1 = 140 01 100 000" 00 \205 = 377 377

00 \132 = 110 JFZ BLOOP 00 \206 = 110 JFZ BLOOP

00 \133 = 123 L 00 \207 = 123 L

00 \134 = 000 H 00 \210 = 00U H

00 \135 = 113 IN5 (Read Tape) s 10, 00 \211 = ul16 LBI s 29.

00 \136 = 370 LMA 00 \212 = 003 3

00 \137 = 0t1 DCB) s 1L 00 \213 = 104 JMP s 30.

00 \140 = 150 JTZ LOOKFIRST s 12. 00 \214 = 123 L

00 N4l = 166 1, 00 \215 = 000 H

00 \142 = 00U H .

00 \143 = 011 DCB 513,

00 \la4 = 150 JTZ WELLMAYBE s 14.

00 \145 = 202 L

00 \146 = 000 H .

00 \147 = 011 DCB s 15.

00 \150 = 150 JTZ FORSURE s 16, CASSETTE

00 \151 = i54 L

00 \152 = go0 H

00 M58 = 3/7 HALT s 17,
FORSURE:

00 \154 = 307 LAM s 18. HOW 7O

00 \155 = 175 OUT3¢

00 \156 = 306 LAL s 19. STURF

00 \157 = 177 OUT37

00 \1¢0 = 055 NEXTA s 20. MEMORY

00 \l6l = 016 LBI s 21,

00 \lte = u0d 3 22 BY "

00 \163 = 104 JMF BLOOP . s 22. n ey

00 N4 = 123 L BOOT FORCE 2 C'-Y/H'

00 \165 = 000 H

ECS Volumel No. 4 13 April 1975

the known load point (location 2000g = intelese 004/000) as initialized at the beginning
of the program.

The program is a ''state driven'' algorithm which has 3 states of execution set by
the content of the variable ""B" (which maps into a register in the generated code for
a microcomputer such as the 8008 code illustrated.) The sequence of states during
execution of the main loop "BLOOP'" during normal execution is as follows:

Start: 111111111123333333333.....333333J End

Scan for '"007"
Found it, look for "377"
Found it, transfer any further bytes to memory

The program is set up so that if a false synchronization pattern is detected ("007"
followed by any byte other than '"377") the "WELLMAYBE" branch of the loop
concludes ''maybe not'" and goes back to scanning the input. The reason for

scanning in this manner is to enable the program to be started via an interrupt, after
which you can turn on the manual controls of the tape drive confident that the invalid
data produced by the MODEM/UART combination during the leader and start up periods
will not be falsely interpreted as good data - the specific 16-bit pattern of two bytes in-
volved is not likely to occur due to random noise.

The 8008 code corresponding to the BOOTER program's SIRIUS-MP notation is shown
at the bottom of page 12 with symbolic notations of labels, mnemonic op codes and refer-
ence numbers to the SIRIUS-MP statements in the listing at the top of the page. The
specific hardware assumptions used for this code are documented in previous ECS
issues and are not repeated in detail here. For this simple program, the "X" data
quantity (a memory pointer) is translated as the content of the H and L register pointer
of the 8008. One of the restart routines defined in January ECS is utilized by the gener-
ated code - "NEXTA' calculates the next address in H and L. On an 8080 this could be
performed without a subroutine using the INX instruction with H and L selected. On a
6800 the corresponding function would be performed using its INX instruction, with the
variable X assumed to signify the index register ""X'.

BOOTER uses output instructions directed at a binary display to illustrate the prog-
ress of the program. At initialization, the display left half (OUT36) is loaded with 8
"on'' bits. (SIRIUS statement 3). Then, following the synchronization detection, the
data transfer branch FORSURE displays the current byte at left (OUT36, statement 18)
and the current low order address at right (OUT37 generated by statement 19).

The small loop from statements 6 to 9 is used to cause the program to wait until the
flags of the UAR/T subsystem (see article ECS-6 and January 1975 ECS) indicate that
a character has been received. The tape unit control code '"027g'" defined at statement
6 is used to signify the data rate (''0001'* for 1210 baud), channel (''01") and selection
for input (the last two bits,)

If you use BOOTER to load IMP from one of the cassettes supplied by M, P. Publish-
ing Co. ($7.50 each post paid) you will have to additionally load by hand the content of the
other restart instructions routines before changing the interrupt branch to point to the IMl
entry point at location 013/000 (Intelese.)

ECS Volume 1 No. 4

14

April 1975

IMP EXTENSIONS FOR TAPE INTERFACE CONTROL (Continued...)

mnemonics decoded.

In the March issue of ECS, I started a presentation of
extensions to the Interactive Manipulator Program for tape
block write, compare and read operations.
contains the remainder of the listings.
of the three routines on this page, the additional 8008 code
is given in its SIRIUS-MP form and in absolute octal with

This article
With the exception

One aspect of the SIRIUS-MP language which I have not dealt with explicitly in this
issue's discussion is that of argument/parameter linkage for subroutine calls. Because
a machine-dependent argument/parameter linkage is used for the 8008 versions of the
three routines on this page, I present them here in the same commented listing form used

for previous issues of ECS, The

routines are utility functions for the D2B:
two-byte increment/decrement func-

tions and comparison. The parameter
linkages to these routines are formed

by passing symbols (see Feb. '75 ECS)

in registers for lookup.

D2B is the two byte decrement
operation, which is entered with the
symbol of the operand contained in
the 8008's A-register. The operand
is decremented by subtraction due 12B:
to the properties of a zero underflow
(the Zero flag detects this state one
number too early at 0, not -1,) On
return, the carry flag indicates a
16-bit underflow if any

12B is the corresponding two byte
increment operation, which is also
entered with the symbol of the oper-

and in the 8008's A register. The C28:

8008's increment instructions are
used, since the zero state is a reli-
able overflow indicator. On return,
the zero flag indicates a 16-bit over-
flow if any.

C2B is a two byte comparison op-
eration, with a more complicated link-
age. The two operands are passed as
symbols in the B and C registers. The
result is passed back as the content of
the "E'" register : 1if not equal, 2 if
equal. This can be tested by a decrement
instruction followed by a jump on zero .

012\132
012\133
G12\134
012\135
012\136
012\137
012\140
012\141
ol2\142
012\143
ot2\144
012\145
012\146

. ,o.
Routine to increment t

011N\313
011\3l4
011\315
011\3t16
011\317
011\320
011\321
011\322
011\323
011\324
011\325

Routine to compare bytes - in two's.

010N\234
010\235
010\236¢
010N\237
010\240
010\241
010\242
010\243
010\244
010\245
010\246
010\247
010\250
010\N251
010\252
010\253
010\254
010\255
010\256
010\257
010N\260

nenmE NN R R uoWNnN

NN MR RE e

B YA MR NN NN RN TN NN N DN

07s
060
307
024
001
310
uo3
ool
307
024
ool
370
007

015
060
317
010
371
ot3
061
317
010
371
el¢)

Q46
001
301
075
337
302
0175
303
277
013
055
337
301
075
055
303
277
013
046
oo2
ou7

SYM
INL
LAM
suUl

1
1LMA
RFC
DCL
LAM
SuUl

1
LMA
RET

wo bytes -

SYM
INL
LBM
INB
LMB
RFZ
DCL
LBM
INB
LMB
RET

LEI

1

LAB
SYM
LDM
LAC
SYM
LAD
CPM
RFZ
NEXTA
LDM
LAB
SYM
NEXTA
LAD
CPM
RFZ
LEI

2

RET

Go pick up argument address
Point ahead {assume not at page bound)

Fetch the low order byte.
Subtract 1 - decrement will not do!

Save result
Return on no borrow condition,
Point to high order byte
Fetch it
Also decrement with subtract
so that borrow {C) may be set. ..
Save result
With carry indicating net underflow.

enter with symbol parameter in A

Look up the parameter address
Point to,
load from memory,
increment and
save the low order byte.
Return direct if no gverflow
Point to,
load from memory,
increment,
and save the high order byte.
Then return always.

Enter with symbol parameters in
registers B and C.
Return default 1 (not equal.)

Fetch first parameter address
and fetch the parameter.

Fetch second parameter address
and compare against
first paramecter value...
Return (E= 1) if uncqual.
Point to next address of second parm,
Fetch second parm second byte

Point to first parm again
look NEXTA him too!!!

Compare first parm, second byte «
And again return (E-1) if unequal. ~
Otherwise both bytes of both

two sets are equal and can

return with equality result.

ECS Volumel No. 4 15 April 1975

The notational power of a more abstract method of programming is illustrated by com
paring the expression of the new IMP extension segments on page 16 with the correspon-
ding "generated code' for the 8008 printed later. The routines listed in SIRIUS-MP
form for the tape extension begin with the main portion of the program. ..

READ/COMPARE main routineisat the left hand side of page 16 held sideways. This
33-statement SIRIUS - MP program is inwked when the IMP command decoder detects a
"shift R" for read or ''shift C" for compare. The difference in the two routines is deter-
mined by the entry point - line l for READ, line 28 for COMPARE. The logic at the
entry points sets up a jump address in the "GPJMP" indirect branch location (this over-
writes the previous use of GPIMP to get to READ or COMPARE from IMP.) This
switch (the choice of branch paths) is required so that the same general control flow can
be use for both the READ and COMPARE operations - the difference being in what is
done with the information read from tape, The switch point in the flow occurs at state-
ment 14, and can be illustrated in
flow chart terms by the diagram at

the right. READ: COMPARE
The common portion of the pro- P SET Comey
gram provides the overall structure GPIN?P GPIMP
of a read operation: initialize the g T
UAR/T, read a dummy character Re: i
at the first RDA time, read the DAL
two length code bytes written by i ng{ o
the OUTCNT routine (see below) when :
the tape is prepared, then enter a l FORALLS
loop which continues until the data : ;
count is exhausted. —h———ﬂ R!2$T§A :
When the READI branch of the

flow is taken during a read opera-
tion, the current memory location
pointed to by IBUFF receives the

input character found in a variable

Goro GPIM?P

eGsasess s oone
.

called "B'" (a CPU register for the AEADL comed
8008 version of the program.)
COMPARE
When the COMPI branch of the s;u(;:um To M(uw;
flow is taken during a compare oper- .

ation, the current byte pointed to by
IBUFF is compared to the input
byte in the variable "B'" - and an
error count is incremented in the
variable "BADDATA' (16 bits worth)

GOTWNA S

| LT
1 LAWMPS
&cmc M.

to keep a tally of the badnesses. YES NO
The data count is kept in the var-
iable "ICNT" which starts out at -1 NONVTELINT
and is counted up until it equals the NCNT =TT ENDALL:
block count stored in "NCNT" after
it is read from the tape. The test for :EQ:‘:‘
end of transfer is found at statement FINAL colry

20, a SIRIUS "IFNOT'" operation. KEYWAIT — RETURN

[PWMioA SDAH

*ON

91

READ INPUT2:
1 T(GPJMP) =:: W/({READ1) +# SET READ JUMP SWITCH 1 A =2 TAPECTRL # FETCH I0 CONTROL WORD
RC: 2 A IO0EXCH N + EXCHANGE FOR STATUS
2 TAPECTRL CR: "0000 00 1 1" 3 FORCE INPUT SELECT 3 B =2 A # SAVE STATUS IN B
3 CLFAR A I A AND: "01 100 000" MASK DLSIRED BITS
L A TOEXCH I # RESET THE I0 UNIT 5 INPUT2 IFNOT (A=:"01 100 000") = WAIT TILL READY
INITIALIZE: 6 A =: B #f RESTORE STATUS FROM B
[I OUTPUT TAFPECTRL # SET SELECTED CONTROL STUFF 7 AND: "00 000 111" i MASK LERROR BIT3
6 IBUFF =12 MEMADDR # START INPUT AT MEMADDR 8 INPUTIT IF (A=:"00 000 111") INVERTED NO ERRORS
7 ICNT =13 -1 % INITIAL COUNT TO MATCH OUTIUT 9 INCR:: BADFORM + INCREMENT DATA FORMAT ERRORS
DUMMYIN: INPUTIT:
8 CALL INPUT2 % GO FETCH BYTE (WAIT LOOP) 10 A INPUT 5 s READ THE LATESTCHARACTER
HIGHI.NGTH: 11 B =: A % PASS BACK VIA B REGISTER
9 CALL INPUT2 s GET HIGH ORDER LENGTH 12 RETURN # BACK TO CALLER
10 NCNT =: B % SAVE B INPUT IN NCNT H.O.
LOWLNGTH:
11 CALL INPUT2 # GET LOW ORDER LENGTH
12 NCNT(1) =: B . # STORE AT NCNT+1
FORALL: NEWOUTCNT :
13 CALL INPUT2 i NORMAL DATA BYTE FETCH 1 B =: 1510 % MAKE IT 1.5 SEC DELAY
1l GOTO GPIMP # SELECT COMPARF OR READ VIA 2 CALL WAlSos * VIA CENTISECOND DELAYER
S VARIABLE JUMP TARGET 3 A =: COUNT # SEND OUT THE FIRST
READI.: L B =: A #* COUNT BYTE
15 M(IBUFF) =: B # IF READ THEN STORE IT 5 S OUTPUT A * AND SAVE IN B
GOTCHA : 6 CALL WAITOUT # WAIT UNTIL NOT BUSY
16 37 OUTPUT B # DISPLAY INPUT DATA 7 A = COUNT(1) #* GET SECOND BYTE AT COUNT+1
17 36 OUTPUT 0 # CLEAR OTHFER DISPLAY TO ZERO 8 c =: A # SAVE IT IN C
18 INCR:: IBUFF s POINT TO NEXT INPUT ADDRESS 9 5 OUTPUT A # AND OUTPUT TO TAPE
19 INCR:: ICNT + INCREMENT WORKING COUNT 10 CALL WAITOUT s WAIT UNTIL NOT BUSY
20 FORALL IFNOT (ICNT=::NONT) + TEST END OF BLOCK 11 RETURN # THEN BACK
ENDALL:
21 CALL INPUT2 s READ FINAL LENGTH BYTE
22 36 QUTPUT B *® AND DISPLAY
23 CALL INPUT2 % READ SECOND FINAL LENGTH BYTE ONOFF:
2l 37 OUTPUT - B * AND DISPLAY IT TOO 1 A =: TAPECTRL # FETCH OLD TAPE CONTROL
25 TAPECTRL AND: "1111 11 0 o" TURN OFF INPUT SELEGCT 2 A AND: "00 000 010" % CHECK OLD STATE OF SELECT
26 Iy OUTPUT TAPECTRL i TURN OFF THE DRIVE... PATCH 3 TON IF ZERO # CHANGE TO ON IF OFF
* IN A 2 SECOND WAIT HERE TOFF:
IF NEEDED ~ SEE TEXT... N B =3 2 # CHANGE TO OFF IF ON
27 KEYWAIT # SLEEP PERCHANCE TO DREAM S GOTO EITHER s THEN DO THE CHANGE
COMPARE: TON:
28 T(GPJMP) =:: W (cOMP1) s SET COMPARE JUMP SWITCH) B =3 0 % CHANGE TO ON IF OFF
29 BADDATA =:: 0 s ZERO OUT BAD DATA...COUNT EITHER:
30 GOTO RC #% ENTER NORMAL FLOW 7 A =: TAPECTRL + FETCH OLD GONTROL AGAIN
COMP1: 8 A AND: 374 % MASK AND SAVE HIGH ORDER 6 BITS
31 GOTCHA 1F (M(IBUFF)=:B) # TEST TAPE AGAINST MEMORY 9 A OR: B # COMBINE WITH NEW CONTRCL
32 INCR:: BADDATA + MISSED SOME BITS!!! 10 TAPECTRL =: A + SAVE NEW CONTROL
33 GOTO GOTCHA 2 BACK FOR MORE... 11 L OUTPUT A s+ TURN TAPE MOTOR OFF OR ON
12 KEYWAIT # BACK TO SLEEP YOU IMP!!!!
Note: Reference numbers to SIRIUS statements are Notations: T(GPJIMP) : address part of jump
provided at the local level for each block of functional W(READI) : mem. address of READI

code illustrated here. They correlate to the 8008 examples NAME(n) nth

of executable machine codes, within each block.

.o

byte of NAME

*+cuotysejy GOATYIS © Ul passaxdxa suoisuajxd ade) weidoaxd JINI

GL61 11ady

ECS

Volume 1

No. 4

17

April 1975

8008 Generated Code for READ/COMPARE routines (p. 16, left)

label

READ:

RC:

8008 Code Bytes

INITIALIZE:

DUMMYIN:

HIGHLNGTH:

LOWLNGTH ;

FORALL:

004NQOL = QU6
004\001 = 010
004N002 = yi1>
004\QUJ = QIC
004N\QC04 = 107
004N\00S = V6V
004\006 = 076
0V4aN0VT = OU4
004\010 = QU6
004NVl = Ul4
004\V12 = 075
004N\013 = 307
004N\0 14 = V64,
004aN0Ll5 = 003
004N016 = 370
004N017 = 250
0048020 = 111
004N021 = 006
004N022 = 014
004\023 = OS5
004MN024 = 307
004N\025 = 111}
004\026 = 006
004N\027 = 006
004\0O30 = 075
004N0O3L = 317
Q04aN032 = yeU
004N\G33 = 327
004N\034 = QU6
004N\035 = 020
004N\036 = 075
004N\037 = 371
004N040 = 060
004N\0C4l = 372
004N\042 = QU6
004N\043 = 0l6
004N\044 = QS
004N0O4&5 = (06
004\046 = 377
004\047 = 310
004\050 = 060
004\051 = 370
004N\0S52 = 106
004N\053 = 00}
004N\054 = 012
004\U55 = 106
004N0%6 = V61
004aN0ST = 012
004N\060 = 000
004\061 = 022
004N\062 = 075
004N\063 = 371
004\U64 = 106
004N\N06S5 = 06l
004\066 = Ul2
004N067 = QGO
004NQ70 = Q22
G04aNO7Y = Q7>
004N072 = 055
004N\073 = 371
004\074 = 106
004\075 = Q6!
004\076 = 012
004N\077 = 000
004\1U0 = 020
CO4\101! = 106
004\102 = Qu2
004NI03 = 012
004a\l04 = L4
004N105 = 01
004\106 = 000

LAI
s(GPIMPAL)
SYM

L(READI1)
INL
LMI
H(READI)

LAI
s(TAPECTRL)
SYM

LAM

ORI

*00000011"
LMA

XRA

IN4

LAI
s(TAPECTRL)
SYM

LAM

IN4

LAl

s(MEMADDR)
SYM
LBM
INL
LCM
LAI
s(IBUFF)
SYM
LMB
INL
LMC
LAI
s(ICNT)
SYM

LAIL
e
LMA
INL
LMA

EAL INPUT2

H
CAL INPUT2

CAL INPUT2
L

H

LAl
s(NCNT)
SYM
NEXTA
LMB

CALL INPUT2
L .
H

LAl

s(IBUFF)

L
H
JMP GPIMP
L
H

SIRIUS-MP
Stltiment

s 1.

s 7.

s 10,

s 11,

s 12,

s 13.

Globally
optimized: code
CALL MEMSYM| moved ahead
of the GPIMP

s 14,

Label

READI:
GOTCHA:

ENDALL:

COMPARE:

COMPL;

8008 Code Bytes

004N\107

00a\llo0
004a\il1
00an112
004a\11t3
Q0aNl 4

004\115

0U4Nll e
004\117
0041\120
004Nl 21
004Nl22
004N123
004\124
004aN12s
004Nt 2o
004Nt 2
004\130
[+ IR WIND)
004\132
004\133
004\134
004\135
004\136
004\ 37
004a\140

004\141l
004\142
004N\143
004\14aa
004\145
004\146
004aN147
004\150
004\15)
004\152
004\153
004\154
004\1 5%
0041156
004\157
004\160
004Nl 6l
004Nl 62
004aN163

004\164
004\165
004\166
004\167
004N170
004Nl 71
004\l 72
004N\173
004\174
004Nl Ty
004Nl 76
004&N1 77
004\200
004\N\201
004\202
004\N\203
004\204
004\205

004\206
004N\207
004\N210
0v4aN211
ovsN\212
ovanz213
004\214
004N215
004aN216
004N\217
0047N\220
0041\221
004N\222

S AR PR EAE AN PN R AN RN RN B R AN

LI R I I B B B B B B B]

371

301
177
250
174
006
020
106
313
o1l
oo
Ole
100
313
oLl
0l6
vleo
026
g2e
106
234
Oiv
041
150
014
004

106
oel
012
301
17
106
ool
o1z
3ol
179
006
014
075
307
044
374
370
(DY
oes

006
ol10
[s 23
016
206
0o0
076
004
006
024
075
250
310
060
370
104
010
004

301
2771
150
110
004
006
02a
106
313
otll
104
110
004

LMB

LAB
QuUT37
XRA
OUT36
LAl
s(IBUFF)
CAL I2B
L

H

LAl
s(ICNT)
CALI2B
L

H

LBI
s(ICNT)
LCl
6(NCNT)
CAL C2B
1.

H

DCE
JTZ FORALL
L

H
CALL INPUT2
L

H

LAB

OuUT36

CALL INPUT2
L

H
LAB
ouT37

LAI
s(TAPECTRL)
SYM

LAM

NDI

"1 111 100"
LMA

IN4
KEYWAIT

LAl
s (GPIMPAL)
SYM

LMI
L(COMPI)
INL

LMI
H(COMP1)
LAI
s(BADDATA)
SYM

XRA

LMA

INL

LMA
JMP RC
L

H

LAB

CPM

JTZ GOTCHA
L

H

LAI
s(BADDATA)
CAL 2B

L

H
JMP GOTCHA
L
H

SIRIUS-MP
Sulefnent

s 1S.
s 16.
s 17.

s 18,

s 19.

s 20.

. 20

s 22,
s 23.

s 24.

s 25,

s 26.
s 27,

s 28.

. 29.

s 30,

s 31,

‘ s 32.

s 33,

ECS Volume 1 No. 4 18 April 1975

8008 Generated Code for MISCELLANEOUS routines (pl6, right)

Label 8008 Code Bytes SIRIUS-MP Label 8008 Code Bytes SIRIUS - MP
Statement State:nent
. # ONOFF: #
INPUT2: 011\264 = 006 LAI sl
012N\001 = 006 1,Al s L. 011\26% = 014 s(TAPECTRL)
012 \062 =014 s(TAPECTRL) 011\266 = 075 SYM
012\053 = 075 SYM 011\267 = 307 LAM
012 064 = 307 LAM 011\270 = 044 NDI s 2.
012\065 = 111 IN4 s 2. 011\271 = 002 "0 000 010"
012N\0g66 = 310 LBA 5 3. 0tiN292 = 150 JTZ TON s 3.
012\067% = 044 NDI e 4. 011\273 = 302 L
012\C70 = 140 "0l]0O €GO" 011\274 = 01! H
01&2\071 = 074 CEF! s 5. TOFF:
012\072 = 14 "0} 160 500" 011\275 = 016 LBI s 4.
012\07%3 = 110 JTZ INPUT2 911\276 = 000 0
o1eNota = 061 L 011I\277 = 104 JMP EITHER s 5.
012\075 = 012 H 011N\300 = 304 L
0olz\ov6 = 361 LAB s 6. 011\301 = 011 H
012\0771 = Y44 NDI LI TON:
012\ICU = 0GY 00 00U L 0117302 = 016 LBI s 6.
oi12\19; = 074 CPI s 8. 01iN\303 = 002 2
Olz\IG2 = 007 00 000 il EITHER:
0Q12\103 = 150 JTZ INPUTIT 011\304 = 307 LAM s 7.
01&N104 = §13 L 011\3%55 = 044 NDI s 8.
012\135 = 012 K 011N\306 = 374 11 111 100"
012\106 = 006 LAl 5 9. 0113307 = 261 ORB ''xx xxx xBo'" s 9.
0i2\107 = 026 (DADFORMNY GlIN316 = 370 LMA s 10.
012N\110 = 106 CALLI2B U1IN311 = 111 IN4 e 11,
alentll o= 36n 1, 011N\d12 = 02Y% KEYWAIT
otzenilz = v1o H
INPUTIT:
012N113 = 113 INT s 10.
Olenila = 31¢c LBA s li.
cl2nlis = Cu/ RETURN
Tape Extension
OUTCOUNT:
01e\N2U0 = 104 JMP NEWOUTCNT lere is a patch to get to the VARIABL ES
0la\e0l = 116 1, new version of CUTCOUNT. : ~
oo = o1y i (in order of appearance)
NEWOUTCNT:
UlONI16 = Ule LBl 8 1.
CIONLET = UL? 159 GPIMP, symbol 10
010\120 = 106 CALL WAITCS s 2.
0l1UNl2) = 116 L
ol0N122 = 012 H P 5 4
010N123 = 006 LAl s 3. TAE ECTRL’ bymb(ﬂ 1
GloNlea = 922 s(COUNT)
010N1g> = 075 SYM .
0lUNIZE = 307 LAM A, CPU register
0luvia7 = 310 LBA s 4.
OlUNI30 = 113 INS 6 5. :
010\isl = 106 CAL WAITOQUT s 6. MEMADDR, symbol 06, input
010M132 = 147 L
NS to tape transfers.
010N134 = 0Out LAI s 7.
010135 = g22 s(COUNT) ym 020
010NI36 = 075 SYM. & IBUFF’ s bol
010N137 = 060 INL
Olovia = 307 LAM ICNT, symbol 016
010\141 = (320 LCA s 8.
010N142 = 113 INS s 9.
010\M143 = 106 CALL WAITOUT s 1L NCNT, symbol 022
010Nla4 = 147 1, .
010N\145 = V12 Hf B, CPU register
010N\146 = 007 RETURN s 12.
BADDATA, symbol 24
Patches to Previous Code BADFORM, symbol 26
TAPECMDS:)
0l2\352 = 317 "O" COUNT, symbol 22
0127353 = 321 L(JONOFY)
re - ol ZERO, CPU flag
B TE T ke 1347 is TAPECMDS (new valuc)
< = 2
JONOFF: , Note: NCNT, COUNT are
012\s2l = lua JMP ONOFF IMP entry to the .
012 \s22 = 264 L ONOE F routine sand- equivalent; ICNT and
0lz2\323 = 011 H wiched in spare bytes.
READJ: TCOUNT (see March ECS)
013\313 = 1C4 JMP READ New IMP READ .
013N\314 = ¢cou L entry address in are equlvalent.
0L3N\3ls = 024 H this jump.
COMPIJ:
U13\316 = 104 JMP COMPARE New IMP COMPARE
O13NslY = l6a L routine entry address
013\320 = yua H now in this jurmnp.

ECS Volumel No. 4 19 April 1975

The INPUT2 subroutine is at the top right hand side of page 16 held sideways. This
12-statement SIRIUS-MP subprogram is invoked by a subroutine CALL whenever another
program wants to ''read' a byte from the tape unit according to the content of TAPECTRL.
The reading method incorporated in the software of IMP to date is a ""polling'' technique
in which a loop tests status bits of the I/O device (UAR/T "RDA" and a motor turn-on
oneshot ''ready' signal.) The loop consists of SIRIUS-MP statements 1 to 5 of INPUT2.
The routine breaks out of the loop, reads the data and returns with the data byte in the
variable "B' (a register in the 8008 generated code). The three UAR/T reception
status bits (parity error/framing error/overrun error) are checked and an error count
in BADFORM is incremented if no errors are detected.

The OUTCOUNT routine of the March issue of ECS was modified to improve performanc
in the course of rewriting the comparison software in SIRIUS for this issue. The prob-
lem with the original version was the fact that an explicit output wait is required for
reliable reading of the data. Thus a patch is placed at lecation 012/200 to jump to the
new version of the program, loaded in some spare memory address space at 010/116.

The NEWOUTCNT has two changes: a)l increased the time delay before output to
1.5 seconds (SIRIUS statements 1 and 2); b) I have inserted calls to WAITOUT after
each output of a byte (SIRIUS statements 5 and 9 of NEWOUTCNT.)

The ONOFF routine is a new routine added to support a new tape control command,
"TO" entered from the keyboard device. The idea here is to have a way to turn on the
motor for purposes of listening to data with the ear, for rewinds of long duration, or
for recording non-digital comments with the cassette recorder's built-in microphone.
The ONOFF routine itself is very simple, comprising a set of 12 SIRIUS statements
which map into 23 8008 bytes in the sample generated code. The "TO'" function comple-
ments the current state of the motor control bit in TAPECTRL and outputs the result to
currently selected tape drive via the ''IN4'" instruction connected to the tape controller.

In setting up to run IMP with the new extensions, the patches to TAPECMDS, JONOFF,
and READJ/COMPJ locations of IMP must be made as indicated in the detail listing
of page 18. The TAPECMDS table is extended for the new ""O" subcommand by starting
it one byte earlier; the symbol table symbol ''34'" for TAPECMDS is adjusted to reflect
this addition. The new execution jump JONOFF is added to get the program into the
ONOFF routine, and the READJ/COMPJ jumps are changed to reflect altered placement
of these routines from the original layout. One other change is required to the symbol
table published previously: the address of symbol ""20" should be changed to ''220" in
byte 012/301 of the 8008 code. This symbol has been changed from its original use
and now becomes the memory pointer "IBUFF' with two bytes instead of the original
1 byte of reserved space.

COMMENTS ON THE ECS-8 DESIGN:

The output of the TSI (serial data to the computer interface) line is not suitable for
an interrupt driven UAR/T software interface without use of some masking logic. The
problem is this: the FSK input decode is done by the phase lock loop of the XR-210.
When null inputs (eg: tape leader period, or any time without a mark signal) occur, the
phase lock loop hunts around for a lock - thus causing the comparator to have its input

switch back and forth with the result being a digital noise signal on the TSI line. If
the UART is listening, it will decode erroneous characters in this mode. The software

of this article ignores the problem by not listening unless good data is coming.

ECS Volumel ©No. 4 20 April 1975

Notes on NAVIGATION IN THE VICINITY OF CX- AQUILA... #1

This article begins a regular series of information and
commentary on the use of the Intel 8080 in an ECS context,
with occasional specific reference to packaged systems such
as the MITS Altair product. In addition to the MITS product,
there is at least one other source of the 8080 chips and boards
advertising in the pages of Radio Electronics/Popular Elec-
tronics. This first installment concerns some general com-
ments on the 8080 instruction set and specific suggestions con-
cerning 16-bit arithmetic operations (addition/subtraction) in
applications other than address calculations.

AQC-1.1: Addressing Modes.

One of the most basic questions to be asked whenever you ponder the use of a new
computer instruction architecture is ""what are its addressing modes?' The answers all
lie in the hardware designer's backyard whenever a specific existing machine such as the
3080 is considered. How do I gci at the data in memory when I want to perform some oper-
ation in the machine? Are there different wavs of reaching the same data item? And so
on. The effects of addressing and data reference will color the whole process of gen-
erating programs for the architecture of the machine in question. For instance, if the
machine is a "'stack machine'" {not a machine with a stack, but one designed for opera- =
tions between stack elements) then the addressing can almost exclusively be implied by
the way operations are done. On such a machine, the only bits needed for an instruction
are the data bits which specify an operation. But in the real world of existing and
implemented machines available to the ECS type of application, the coloring of coding is
much more conventional - addressing is performed as part of the instruction or as
part of an implied setup in a CPU register under program control. In the Intel 8080
(as in the 8008) the design of addressing modes is a fairly arbitrary pot-pouri of methods
fraught with special cases not ammenable to concise summary without losing information.
In order to write programs these addressing modes must be known and understood so that
the best of alternatives (if any) can be evaluated and used in a given programming situa-
tion. In the comments below, a few of the conventional addressing concepts in
computer designs are isolated and illustrated with regard to the 8080,

AQ-1 2: Immediate Addressing.

Immediate data addressing exists in some form in most contemporary computers,
with the msual definition being a constant bit pattern of cne word length, following the
operation code in a program. The 8080 includes this form of addressing with all the
immediate operations which exist on its antecedent the 8008, plus some extensions which
make the architecture more useful as a general purpose computing element. The primary
extension of immediate addressing is to the inclusion of a long (16-bit) form of the con-
cept in certain limited classes of move (load/store) operations with respect to GPU reg-
isters. The 8080 partitions 6 of the 7 CPU registrs into three pairs “index registers"™®
which may be loaded with 16-bit numbers using immediate addressing. The primary in-
tention of such operations is the loading of an address, but programmers can and

ECS Volumel No. 4 21 April 1975

do use operations for whatever purpose is required to solve a problem - so whenever
one needs a 16-bit 'literal' data item this form of double byte immediate operation can
be used to load CPU registers.

One particular use of the two-word immediate form in its intended application is
the initialization of the stack pointer as a part of setting up execution of a prog-
ram. In large scale systems the equivalent of a stack pointer (ie: system defined
addressing parameters) is usually determined by the ""operating system!'' prior to
the call which invokes a user-program. But in your use of a microcomputer of
the 8080 (or Motorola 6800) design, with minimal software, you can make no as-
sumptions about the initialization. To be used, the stack must exist in random
access read/write memory so that the temporary linkage data associated with
the CALL operation and its arguments can be stored. In order for this linkage
to occur, the stack pointer (SP) must point to the RAM area. One way to initial-
ize the stack pointer following the start of execution is contained in the following
SIRIUS-MP notation and its 8080 translation:

SIRIUS: 8080:
SP =:: location LXI SP, location

In both instances, the ''location' is the 16-bit integer number which is the address
of the stack area.

AQ-1.3: Absolute Addressing.

The design of a computer instruction set involves many trade-offs, the evaluation of
options with inputs ranging from the preferences of programming individuals to the phys-
ical constraints of the LSI chip. In the best of all possible programming worlds, one
would like to see a consistent set of addressing modes applicable in principle to any of the
basic operations possible. In particular, a more extended use of an absolute (in-instruc-
tion stream) form would be desirable than has been implemented with the 8080. There
are two basic operations available in the 8080 instruction set which reference memory
from within the instruction streamn. These are the load (LDA, LHLD) and store (STA,
SHLD) operations in 8 and 16 bit variations. For program code which involves fixed
data areas at locations allocated by hand or by an assembler/compiler, these operations
will be used extensively to prepare data for the execution of actual "work'' -since the
actual work cannot reference memory directly. The use of load and store for this pur-
pose is highly conventional in many minicomputers, although usually at least one of the
algebraic/logic operation operands can be acquired by a direct or indirect memory ref-
erence in the instruction stream. (As a point of contrast, the Motorola 6800 microcom-
puter can perform most of its arithmetic/logical operations with one in-instruction addrese
reference to memory.)

AQ-1.4: Pointer Addressing.

One area where the 8080 has some excellence is in the number of CPU registers it

has and the fact that three different pairs can be used as 'index registers'' for fetching

ECS Volumel No. 4 22 April 1975

data to an accumulator (all pairs) or referencing memory operands (H/L only) of the A
arithmetic operations. It is thus fairly easy to keep pointers around locally in the

CPU without the need to transfer them to another location when making a reference

based upon the index. The pointers are, however, only good for one operation in
general - referencing data in load/store situations, and thus not as useful

as they might otherwise have been. The memory reference modes of all the 8-bit
arithmetic and logical instructions use one of these pointers, the H/L register pair,

to address the one memory operand (the implied second operand is the accumulator
register A.,) All the procedures and tricks applicable to setting up H/ L pointer addresses
in the earlier 8008 microcomputer design apply as well to the equivalent H/L forms of
the 8080.

I3

One particular programming trick which will prove useful in manipulating blocks
of data involves the use of one pointer pair - D/E - to point to one operand block
and a second pointer pair - H/L to reference the second block. Suppose the
problem is to "AND'" all the bytes of one block with the bytes of another and to
store the result in the second. The basic set of inst ructions used to set up the
loop would be: .
LXID address 1

LXIH address 2 set up addresses

With this setup, the heart of a loop to transfer the data with an AND condition as
required by the problem statement would be:

MOV, A, M Fetch first operand byte A
XCHG Establish second operand address, but
save first operand address
ANA M AND with second byte
MOV M,A Save in second operand byte
INXH Increment address
XCHG Move back in exchange
INXH Increment address

This code does not include the instructions needed to establish a loop - to trans-
fer a block with this operation would require a loop count and loop count decre-
ment followed by conditional test for continuation.

This same general scheme of switching the D/E with H/ L registers can be used
quite widely your program must step simultaneously through two regions of mem-
ory. The technique only works with D/E & H/L unless you want to take a calcu-
lated risk and exchange with the stack pointer instead of D/E.

AQ-1.5: 16-Bit Operations & 16-Bit Addition/Subtraction.

The 8080 has a specific and limited set of 16-bit operations which can be used to some
advantage both for the intended purpose (address calculation and setup) and in more gen-

eral problems. The 16-bit operations are ...

16 -bit Load and Store between register pairs and memory or immediate
(Load only) data.

16-bit Addition intended for address calculation.

16-bit Increment/Decrement useful in loop counting & address changing.

ECS Volumel No. 4 23 April 1975

For the more general usage of the 16-bit addition operation in programs requiring
the extended precision addition / subtraction, the H/L register pair can be treated as
if it were a 16-bit accumulator for the purposes of calculation with the actual results

being stored ultimately in memory operands. The boxes below illustrate two calculations
in 16 bit precision, under the following assumptions:

a. Variable Pis a two-byte operand at locations P and P + 1.

b. Variable Q is a two-byte operand at locations Q and Q + 1.

c. The content of A, H and L registers is irrelevant prior to and
following the calculation.

d. Absolute addressing will be used with the result stored back in P, as if
P were a "'software accumulator. "

Note the differences in the size of the little routines involved - for the addition case,
the setup and execution is fairly compact. For subtraction the need to form the two's
complement negative of the Q operand complicates the picture...

The SIRIUS-MP statement: P +:: Q *16-BIT ADD
generates. .
ILHLD Q Get first operand bytes to O
XCHG Move first op to D/E
LHLD P Get second operand (soft. accum.)
DADD Add C to P giving P
SHLD P Store result back into new P value
The SIRIUS-MP statement: P -:: Q *16-BIT SUBTRACT
generates. ..
LDA Q Get first byte, negative operand.
CMA Complement it.
MOV D,A Move it to D of D/E pair.
LDA O+1 Get second byte, negative operand.
CMA Complement it.
MOV E,A Move it to E of D/E pair.
INX D Increment complement giving -Q value
LHLD P Get software accumulator value
DADD Value of P - Q now in H/L
SHLD P Save back in software accumulator.

After either of these operations, the carry flag can be tested to find out if an overflow
occurred, thus in principal allowing extended precision of greater precision than 16 bits.

One particular 16-bit operation may prove of use in certain contexts. This is the
16-bit addition of the H/L register pair to itself by means of the DADH instruction .
There are two instances where this variation of 16-bit addition stands out for potential
utility:

a. Suppose I want to address an extended array of data kept in 2,4, 8 or 2"
byte quanta. The shift properties of this addition (it multiplies H/L by 2) can
be used ''n'" times to modify an integer array index ala FORTRAN or PL/1 into
a useful address offset.

b. This left shift operation can form the basis of an integer multiply operation.

ECS Volumel No. 4 24 April 1975

AQ-1.6 A Ceremonial "Nit!':

It serves no good end to act the part of a contentious critic, but... at the risk of
being in the position of a pot calling the kettle black I do protest MITS' use of the
Anquish Languish (technical dialect) in the Altair 8800 manual I examined recently:

Implement: This verbalized noun is conventionally used in technical con-
texts such as ''to implement a system.'" (le: to create the system.) A
computer designer implements an LDA or STA instruction; the programmer
codes said implemented instruction (ie: selects it) as part of his own pro-
cess of implementing a software system. Programmers never use unimple-
mented instructions as a matter of course. (If you take Webster literally
one might come out with the MITS definition of the term implement.)

Variance: A variance exists and is defined in the legalese terminology of
""obtaining a variance (exception)' to some law by bootlicking and bribing

the appropriate petty bureaucrats. It is also the square of the standard
deviation in the terminology of statistics. A variance is not a variation on
an instruction's operation, that is unless one wished to redefine conventional
usage.,

I have been collecting reports from several subscribers on the Altair product and with
the exception of what appear to be relatively minor technical problems, most purchasers
of the system indicate satisfaction with the product and service on it. “hn

ERRATUM:

Charles S. Lovett receives a one issue subscription extension fcr being the first sub-
scriber to report an error in the ECS-7 design article of February 1975 ECS. The line
from pin 2 of IC -14- which is shown connected toground should instead have been a
. 01 mfd capacitor to ground. (Switch Sl would have no effect if wired as drawn.)

A NOTE CONCERNING THE MOTOROLA 6800 MPU,..

With this issue, I have started to make references to the M6800 MPU system, pri-
marily because I expect it to be available to the Experimenter‘s Computer System market
in the near future. I have been in fairly close contact with the local Motorola sales office
in connection with some hardware/software design work I am currently doing, and I have
indications that supplies of this product will soon be fairly widely distributed.

If you want to find out about the M6800 in detail, I wholeheartedly recommend purchase
of the M6800 Microprocessor Applications Manual (approximately 700 pages 8.5x 11 @
$25.00) and the M6800 Microprocessor Programming Manual (approximately 250 pages
@ $10. 00). The applications manual includes lots of useful information including inter-
faces (hardware and software) to floppy discs, cassette tape drives, teletype, Burroughs
self-scan displays, adding machine tape printers, etc. etc. I have verbal assurancrs,
from the local Motorola sales office that these books will be sold to private individual. hn
request. If you are interested I suggest that you look up the telephone number of the near-
est office and inquire. If you have any problems, let me know and 111 try to make formal
arrangements to distribute copies. These documents will set the standard for some time
to come, and would easily serve as the basis of a ""'software engineering' course in appli- .
cations.

M. P. Publishing Co. Box 378 Belmont, Mass. 02178 Vol. 1 No. 5 May '75

THE MONTHLY MAGAZINE OF IDEAS
Ecs FOR THE MICROCOMPUTER EXPERIMENTER

Publisher's Introduction:

For every process there is an initialization segment - a starting point in time,
during which time the program for the process sets up data values and begins its oper-
ation. In a sense, this issue represents such an initialization - it is the first issue to
contain a subscriber-written article, the Digital Graphic Display Oscilliscope Inter-
face design and writeup prepared by James Hogenson. The graphics device was con-
ceived by Jim as a neat idea to add to his own computer system which he was building
for a high school science fair. He first mentioned it to me in a letter late last year.

1 suggested to him (or was it the other way around?) that it might be appropriate to

turn it into an article for ECS. After a fair amount of time spent researching the var-
ious options - plus one lengthy phone conversation with me - Jim settled on the design
shown in this issue. He constructed the prototype using wire wrap techniques, and
interfaced it with his 8008 built using the RGS kit. The interface is very simple, and
can be adapted to virtually any computer with a parallel 8-bit output and a clock pulse
arriving to the interface during periods of stable data. The device is programmed using
a simple two-bit op code field and six-bit data/control field within the 8-bit interface.

I have a PC board version of the design completed as of the date of publication of
this issue (so I can get one myself) - with artwork by Andy Hay using Jim's layout. 1
expect to have the board debugged and ready to offer to customers with the June issue
of ECS. The roster for this issue is equal in size to the base of that number system
which all computer "nuts'' know and love...

1. Digital Graphic Display Oscilliscope Interface, by James Hogenson. Turn
to page 2 for the details which turn your scope into 2 LIFE matrix, a checker-
board, a ping-pong game or whatever your imagination, a 64x64 bit-matrix and
appropriate software can represent.

2. Concerning the Hand Assembly of Programs, by yours truly,in which the
"aggembly'' of programs by hand is discussed at some length, along with several
more comments on SIRIUS matters and an example in the form of CONCATTER -
a routine to concatenate byte strings.

This issue is going to press May 12 1975, The limits of space precluded the next in-
stalment of '"Notes on Navigation in the Vicinity of K- Aquila.'" In the next issue, the
8080 machine architecture will again be visited in the form of further ''notes.' Also
in the next issue, a SIRIUS-MP specified bootstrap sequence will be presented, along
ith the 8008 code for same. In this case, I mean a 'real' planned-in-advance boot-
strap load method with all the bells and whistles. Up and coming designs for
the near future include an electronic music peripheral (not necessarily as good as
Peter Helmers' '"Metapiana'l) as well as an article with a small amount of hardware and
a lot of software concerning the programming of interesting digital clocks.
. 4%,5‘.
Carl T. Helmers, Jr.
Publisher May 11 1975

(© 1975 M. P. Publishing Co. All Rights Reserved.

ECS

Volume 1 No. 5 2 May 1975

DIGITAL GRAPHIC DISPLAY OSCILLOSCOPE INTERFACE
desigied and wiitten by James Hogenson

INTRODUCTION

If you want your computer to cough up alpha-numeric information,
chances are, you won't have too much problem finding a suitable output
device. But if you want your computer to draw pictures, you may find
yourself facing a dead end. You could use one of those fancy commercially
available graphic CRT terminals, but the IBM you'd need to run the thing
might not fit on your workbench. If you do have a spare IBM collecting
dust on your closet shelf, fine, but if you're like the rest of us, you
need something inexpensive, uncomplicated, and within the scope of the
average 8008 or similar system. Thus we have the ECS Digital Graphic
Display Oscilloscope Interface. For $50 worth in semiconductors, your
computer can have under its own completely programmed control a full
raster on the screen of your osciiloscope.

The digital graphic display oscilloscope interface (DGDOI) is
programmed and operated through an 8-bit TTL compatible input. The
picture is produced by a pattern of dots. These dots are set in patterns
according to the computer's instructions, resulting in a computer gen-
erated drawing. The entirs pattern of dots is stored within the DGDOI's
own internal memory. Once the pattern has been generated and loaded
into the DGDOI, the computer no longer needs to retain any related data.
This also means the pattern may be generated and loaded in small parts,
one part at a time. During the scan cycle, the digital information is
converted to analog waveforms and displayed on the oscilloscope.

PRINCIPLE OF OPERATION

The raster begins its scan in the upper left-hand corner, scanning
ieft to right and down. The full raster contains 4096 dots; 64 rows of
64 dots each. The horizontal scan is produced by a stepping analog ramp
wave. Each step of the ramp produces one dot. There are 64 steps in
the wave. The vertical scan is similar. It is a stepping ramp wave
consisting of 64 steps. However, there is only one step in the vertical
wave for each complete horizontal wave. The result is 64 vertical steps
with 64 horizonta! steps per verticai step. This produces 64 rows of
64 dots.

The ramp waves originate at a 12-bit binary counter, the center of
the entire circuit. The six lower (least sig nificant) bits of the
counter are connected to a digital-to-araiog converter (DAC), which con-
verts the digital binary input to a voltage level output. The output of
the DAC is the horizontal ramp wave. The six upper (most significant)
bits are cornected to a second DAC. This DAC produces the vertical ramp
wave. Incrementing the 12-bHit counter at high frequencies results in a
raster on the screan ¢f the oscilioscope.

The control of the pattern ¢f dots needed to represent a picture is
dependent upon the intensity of ecch dot. Frosn this poirt, we will assume
a dot can be eithes on or off. An Yon® doft will show up on the screen as
& dot of Tight. Ac "off" dot will e a dim <pot or blank on the screen,

ECS

Volume 1 No. 5 3 May 1975

When a particular dot is selected for programming, it is programmed
as either on or off. The on-off control can be represented by a single
bit. It is this bit which is stored in the internal memory of the DGDOI.
There is one bit in the memory for each of the possible 4096 dots on the
screen. When selecting a dot for programming, you are actually addressing
the memory location of that particular dot. You then set the dot for on
or off. When displaying the image, the 12-bit counter which produces the
raster addresses each dot in the memory as it is displayed on the screen.
The on-off bit taken from the memory is converted to a Z-axis signal which
controls the intensity of the dot. The Z-axis signal is fed into the
Z-axis input on the scope.

Much of the circuitry is taken up in the 12-bit counter, the DAC's,
and the memory. Figure 1 shows a block diagram of the DGDOI. The re-
maining circuitry is the control circuitry which decodes the 8-bit input
word and allows for completely programmed operation.

PROGRAMMING
Op Code M
Binany Jctal Mnemonic Explanation
00ppppDD Opp STX Set X
OlpbpppD 1pp STY Set ¥
10xxx000 2x0 CNO Control - No Op
10xxx001 2x1 TSF Control - Tuan off scan
10xxx010 2x2 ZON Control - Set Z on
10xxx011 2x3 ZOF Contnol - Set 7 off
10xxx100 2x4 ZN1 Control - Set I on with increment
10xxx101 2x5 ZF1 Control - Set I off with increment
10xxx110 2x6 TSN Contnot - Turn on scan
10xxx111 2x7 CNO Controt - No Op
1Ixxxxxx 3xx CNO No Op

D = DATA X = NULL

The programming instruction format is shown in Table 1. Bits 7 and 6

of the input word are the high-order instruction code. We will assume that
the addressing of dots is done on the basis of X and Y coordinates. The X
coordinate is the 6 bits in the lower half or horizontal section of the 12-bit
counter. The Y coordinate is the 6 upper bits or vertical half of the counter.
In programming from an 8-bit input source, all 12 bits of the counter cannot
be set at once. The counter is set one half or 6 bits at a time. It is for
this reason we assume an X and Y coordinate for programming. When the instruc-
tion code (bits 7 & 6) is set at 00, the data in bits 0 through 5 of the in-
put word is loaded into the lower half of the counter as the X coordinate.

ECS

Volume 1 No. 5 4 Mayv 1975

When the instruction code is set at 01, the data in bits O through 5 is
loaded into the upper half of the ccounter as the Y coordinate. In effect,
the Y coordinate will select a row and the X coordinate will select a dot in
that selected row. The coordinates loaded into the counter will address the
memory and select the dot location we want to program.

After loading the coordinates of the dot for programming, we set the
dot itself. Setting the instruction code at 10 directs the control cir-
cuitry to decode the three lower bits of the data word for further instruc-
tion. We will call the lower three bits the low order control code.

The first low order control is a No Op instruction. The eighth control
and the fourth high order instruction are also No Op's.

The second control will turn off the scan. The seventh control will
turn the scan on. When the scan is on, the counter is incremented at a high
frequency and the programmed image is displayed on the scope. The scan must
be turned off before a dot can be programmed.

The third control, set Z on, will program a dot to appear at the dot
location presently loaded into the counter. The fourth control, set Z off,
will program a blank to appear at the dot location presently loaded into the
counter,

The fifth and sixth control instructions set Z in the same manner as
controls three and four. However, after setting Z, these instructions will
also increment the counter by one. This will allow the entire 4096 dots to
be programmed using only a repeated "set Z" instruction. The counter will
naturally follow the regular scan pattern of the raster. This is especially
useful in clearing the contents of the DGDOI memory so that a new image can
be programmed. It can also be used in making horizontal T1ines or other
patterns in the image.

CIRCUIT OPERATION

Once the data word on the input is stable, only one clock pulse is
needed to execute the instruction. The hign order instruction is decoded by
the 7410 triple three-input NAND gate and two inverters. The clock pulse is
enabled by the NAND gate to the appropriate counter section, or to the strobe
input of the low order control decoder. The clock pulse is enabled according
to the instruction of bits 7 and 6.

The 12-bit counter consists of two 6-bit counting sections. Each sec-
tion consists of two cascaded TTL 74193 presettable binary counters. Bits
0 through 5 of the data input are common to both sections of the counter.

The set X instruction will pulse the load input of the lower or X section of
the counter. The pulse on the load input will cause the data on bits 0
through 5 to be loaded into the counter section.

The Y instruction, similar to the X instruction, will pulse the load
input of the upper or Y section of the counter.

The two sections are cascaded by connecting the upper data B output of
the X counter section, pin 2, IC 8, through inverter 'a' of IC 2 to the count
up input, pin 5, IC 9, of the Y counter section.

The low order control code is decoded by a 74155 decoder connected for
2 to 8 line decoding. Bits O through 2 are decoded by the 74155. The con-
trol code is enabled by the pulse coming from the 7410 high order instruction
decoder. The low order control is enabled only when the high order code is
set at 10 on bits 7 and 6.

Decoder lines 1 and € are conrnected to an R/S flip flop which provides
the scan on/off control. The R/S fiip flop enables a high frequency square
wave to increment the 12-bit counter,

"
1OR L
B2

Volume 1 No. 5 5 May 1975

Control instructions Z through 5 are 'set 7' instructions, therefore
involving a data write operation. Decoder Vines 2,3,4, and 5 are connected
to a group of AND gates (IC 5a,b,c) functioning as a negative logic OR gate.
The output of the gate is the Read/Write control line for the memory. When
this line is in the low state, the data present on the data input line of
the memory will be written into the memory location presently being addressed
by the 12-bit counter.

The data input of the memory is connected directly to bit 0 of the
8-bit input word. A bit will be stored in the memory only when a ‘set 7'
instruction is executed. The Z-axis circuitry requires a high state pulse
for a blank. As shown in the binary format, Table 1, bit zero will be a
binary zero for 'set Z on' instructions and binary one for 'set Z off' in-
structions. The backward appearance of this binary format will be overlooked
when programming in octai notation.

The high frequency square wave controlled by the R/S flip flop and
decoder lines 4 and 5 are negative logic ORed. The resulting pulse increments
the counter according to the control instruction.

The same clock pulse is used to write data into the memory and incre-
ment the counter in controi instructions 4 and 5. The data is written into
the memory on the leading edge of the pulse. The counter is incremented on
the trailing edge. Figure ? shows this waveform.

Qutput bits O through 9 of the 12-bit counter are connected to the ad-
dress inputs of the memory. The memory uses four MM2102 1024 x 1 bit MOS
RAM's (Random Access Memories). Bits 10 and 11 of the counter output are con-
nected to the chip select circuitry which enables one chip at a time for ad-
dressing and data input/output operations. The chip select circuitry uses 2
inverters and a TTL 7400 Quad two-input NAND gate.

The data outputs of the RAM's are OR-tied and connected tc an AND gate.
The data output is synchronized with the high frequency clock for better
blanking performance. The output of this gate is connected to the Z-axis

lanking circuitry. This circuitry converts the TTL level signal to a scope
compatible signal.

Bits 0 through 5 of the 12 bit counter are connected to the X coordinate
DAC. Bits 6 through 11 of the counter are connected to the Y coordinate DAC.
The DAC's are Motoroia MC1406 IC's. They operate on voltages of +5 and -9.

A current output is produced by the DAC's. The current output is converted
to a voltage output and amplified by the 741 Op Amps. The output from the

X coordinate circuitry is connected to the horizontal input of the scope.
{The scope should be set for external horizontal sweep.) The output from the
Y coordinate circuitry is connected to the vertical input of the scope.

CONSTRUCTION

A printed circuit board is being planned for this project, but for the
time being, the method of construction is left for the reader to decide upon
for himself.

Remember that the memory IC's are M0S devices and should be handled as
such. Static electricity will not do them any good.

Remember to use bypass capacitors. A 100 mfd electrolytic and several
.01 mfd disc capacitors are usually recommended. An acceptable "rule of
thumb" is one disc capacitor for every two to three TTL chips and one electro-
lytic per p.c. board.

The parts list is shown on the next page. The schematic diagram is
also included in one of the following pages.

ECS Volume 1 No. 5 6 May 1975

PARTS LIST

Cl,c2 20pf disc capacitor

C3 .01lmf disc capacitor

C4 .0015mf disc capacitor

C5 330pf disc capacitor

Bypass 100mf electrolytic capacitor
Bypass .01lmf disc capacitors

D1-D3 silicon rectifier (1N914 or similar)
IC 1 7410 TTL Triple 3-Input NAND Gate
IC 2 7404 TTL Hex Inverter

IC 3, IC 4 7400 TTL Quad 2-Input NAND Gate
IC 5 7408 TTL Quad 2-Input AND Gate

IC 6 74155 TTL Dual 2-to-4-line Decoder
IC 7-IC 10 74193 TTL Presettable 4-bit Binary Counter
IC 11-IC 14 2102 MOS 1024-bit Static RAM

IC 15, IC 16 MCl406 Motorola 6-bit DAC

IC 17, IC 18 741 Op Amp

IC 19 NES55 Oscillator

Ql, Q2 2N5139 Transistor

R1l, R2 3.3k ohm resistor

R3, R4 5.6k ohm resistor

R5, R9 2.2k ohm resistor all resistors
R6 1.8k ohm resistor % watt, 10%
R7 18k ohm resistor

R8 100 ohm resistor

R10 7.5k ohm miniature potentiometer
R11l, R12 10k ohm miniature potentiometer

SET-UP, TESTING, AND OPERATION

Supply voltages needed are +5 VDC at 400 mA, +15 and -15 VDC at 10 mA.
The TTL and memory IC's operate on +5 VDC. The DAC's use +5 and -15 VDC.

The Op Amps use +15 and -15 VDC. The DAC's and Op Amps will also operate
with voltages of 9 or 12 instead of 15. This will allow you to use your ex-
isting computer's power supply for the DGDOI as well.

When you are satisfied that your DGDOI is ready for operation, do not
immediately connect it to an I/0 channel on your computer. For initial test-
ing, use the test circuit shown in Figure 5 (Included in following pages).
The only requirement is that the test rig be able to provide an 8-bit binary
input word and a clock pulse. If a computer is used for initial testing, it
is difficult to pinpoint a problem as being in the circuit. A problem can
often be found in the software used with the DGDOI. '

The clock pulse should be active in the high state as shown in Figure
Three. If your computer operates with an active-low pulse, an inverter is
needed for inverting the clock pulse.

Wwhen you are ready to test, turn on the power and load a 'turn on scan’
ifnstruction. The turn on scan instruction should produce a raster. If a
distorted concentration of dots appears, adjust the DAC voltage reference pots.

Volume 1 No. 5 7 May 1975

The high frequency square wave is provided by a 555 timer JC connected
as an astable mubtivibrator. Adjusting the frequency may be necessary to
obtain a stable appearing raster. (Note: you don't need a fancy scope for
this project. A cheap 250kHz scope was used with the proto-type.)

The next step is to check the blanking. You should get a mixture of
on and off dots simply by turning on the power. The frequency of the scan
and voltage supplied to the Z-axis circuitry both affect blanking performance.
The Z-axis amplifier may be disconnected from the -15 volt supply and con-
nected to up to -25 volts. The frequency may be adjusted with the 7.5k pot.
It should be noted however, that raising either of these too high will have
adverse effects. Keep in mind that the Z-axis is connected through a cap-
acitor (in most cases) within the scope. Charging the capacitor with too
much voltage at a given frequency will cause the blank to carry over into the
next dot. Thus one blank pulse blanks out two dots. Avoid this situation.

Performance varies, depending upon each particular scope. The best way
to find the best contrast and blanking performance is by experimenting. If
you are unable to obtain any blanking, connect the Z-axis output to the ver-
tical input of your scope. If no pulses are present, your trouble is back
in the DGDOI circuit.

After you have obtained a satisfactory raster, execute each instruction
manually to verify its operation. Clear the memory by setting the input at
205 (octal) and connecting a 10kHz square wave to the clock pulse input.
(Remember: Scan must be turned off before programming any dots) Execute a
set X, set Y, a number of set Z on with increment's, and turn on scan. Your
programmed dots should now appear.

If all operations seem good, connect your computer. You may write
programs to your hearts content, but just in case, there is a test pattern
program included in this article. If your DGDOI doesn't operate correctly
after connecting your computer, check all software first. This is usually
the cause of most problems.

The data output of the DGDOI memory may be connected as a computer in-
put, but this is optional. To read the status of a dot, you would load the
coordinate of the selected dot, then read the single bit data output.

TEST PATTERN PROGRAM

The program listed on the following page(s) will program the DGDOI for
a test pattern. The pattern will be a checkerboard pattern of 16 alternating
light and dark squares.

The program counts off 4 sections of 16 dots per section. Each section
is alternated to get a pattern of light-dark-light-dark or dark-light-dark-
light. Rows are also counted off in groups of 16. Each row in the same
group is set with the same pattern, but each group is set with an alternate
pattern.

The set Z with increment instructions are used. The least significant
bit of the E register is used in DECLOOP to alternate between set Z on and
set Z off.

The various loops in the program are briefly described in the following
paragraphs.

DOTLOOP counts off each section of 16 dots and programs the section of
dots according to DECLOOP.

XSECLOOP counts off 4 sections per row and jumps back to DECLOOP to
alternate the set Z instructions between sections.

ECS Volume 1 No. 5 8 May 1975

ROWLOOP counts groups of 16 rows and increments the E register an extra
time to reverse the order in DECLOOP between each group of rows.

YSECLOOP counts off 4 groups of 16 rows to halt computer when checker-
board has been loaded into DGDOI.

To invert the pattern on the screen, load E with 001 instead of 000 in
location 00 220. This will have the effect of inverting the parity register.
The result would produce a pattern of the opposite light and dark arrangement.

START 00/200 = 006 LAI 00/255 = 302 LAC
00/201 = 201 (TSF) 00/256 = 024 SUI
00/202 = 121 QUT 10 00/257 = 003
00/203 = 006 LAI 00/260 = 150 J7Z
00/204 = 000 (STX) 00/261 = 267
00/205 = 121 OUT 10 00/262 = 000
00/206 = 006 LAI 00/263 = 020 INC
00/207 = 100 (STY) 00/264 = 104 JMP
00/210 = 121 OUT 10 00/265 = 221
CLEAR 00/211 = 016 iBI - 00/266 = 000
REGISTERS 00/21z = 000 ROWLCOP 00/267 = 026 LCI
00/213 = 321 LCB 00/270 = 000
00/214 = 331 LDB 00/271 = 303 LAD
00/215 = 351 LHB 00/272 = 044 NDI
00/2i6 = 361 LLB 00/273 = 037
00/217 = 046 LEI 00/274 = 024 SUI
PARITY REG 00/220 = 000 00/275 = 017
DECLOQP 00/221 = 040 INE 00/276 = 150 JTZ
00/222 = 304 LAE 00/277 = 305
00/223 = 044 NDI 006/30C = 003
00/224 = 001 00/301 = 030 IND
00/225 = 150 JTZ 00/302 = 104 JMP
00/226 = 246 00/303 = 221
00/227 = 000 00/304 = 000
00/230 = 066 LLI YSECLOOP 00/305 = 303 LAD
00/231 = 332 00/306 = 044 NDI
DGTLOOP 00/232 = 301 LAB 00/307 = 340
00/233 = 024 SUI 00/310 = 330 LDA
00/234 = 020 00/311 = 024 SUI
00/235 = 150 JTZ 00/312 = 140
00/236 = 253 00/313 = 150 JTZ
00/237 = 000 00/314 = 326
00/240 = 010 INB 00/315 = 000
00/241 = 307 LAM 00/316 = 303 LAD
00/242 = 121 OUT 10 00/317 = 004 ADI
00/243 = 104 JMP 00/320 = 040
00/244 = 232 00/321 = 330 LDA
00/245 = 000 00/322 = 040 INE
DECLOOPJMP 00/246 = 066 LLI 00/323 = 104 JMP
00/247 = 333 00/324 = 221
00/250 = 104 JMP 00/325 = 000
00/251 = 232 END 00/326 = 006 LAI
00/252 = 000 00/327 = 206 (TSN)
XSECLOOP 00/253 = 016 LBI 00/330 = 121 OUT 10
00/254 = 000 00/331 = 377 HLT
00/332 = 204 (INI)
00/333 = 205 (ZFI)

ECS

Volume 1

No. 5 9 May 1975

INPUT

CONTROL
CIRCUITRY T a[COUNTER
l + § 1
CHIP
ME MORY ISELECT
CKTY.
BLANK Y X
CKTY DAC DAC
Z OUTPUT vsé}mAL rﬁg¥0NWAL
OUTPUT OUTPUT
FIGURE {.
DGDO!I BLOCK DIAGRAM
PULSE WIDTH DETERMINED
BY EXTERNAL CLOCK PULSE
MINIMUM 750 NS.
DATA STORED COUNTER INCREMENTED
FIGURE 2.
SV 2 pe—m———————— INSTRUCTION IS EXECUTED
DURING THIS PULSE.
MINIMUM 750 NS.
° SIGNAL ON CLOCK PULSE INPUT FIGURE 3.

IC POWER AND N/C PIN CONNECTION CHART

IC +5 GND +9 -9 N/C
1,2,3,4,5 14 7 -

6 16 8 9,4

7,9 4,16 8,14 -

8,10 16 8,14 ~6,7,9,10,12,13
11,12,13,14_10 9 -
15,16 11 2 31—
17,18 7 41,58
19 4,8 1

2102 MEMORY ADDRESS PIN CONNECTIONS

A-0 -- pin 8 : A-
A-4 -- pin 7 :

1 --pind : A-2 -- pin 5 : A-3 -- pin 6
5 --pin2 : A-6 -- pin 1 : A-7 -~ pin 16
8

A-
A-8 -- pin 15: A-9 -- pin 14

May 1975

QIG,

TO
CLOCK PULSE
INPUT

ECS Volume 1 No. 5 10
y CLOCK PULSE INPUT %B-BlT DATA INPUT%
B B
7
ic)
K ®
B
S
{ o
2B
i3] 1313
1 1
AT d 3lalsl 10 e
iC IC IC G IC 6
1A 1C 1B 2 74155
654 321
12 8 5[6 7113 11} 10
LOAD LOAD CONTRCL.
X Y _
14
IC
.5y 5C
RS 4 14 _Je
22k 2 7 3
RO} & gl ICI9
7.5k ~*2 NE 5585
5 ! J
cal @ dea
00IS e T JE T .0l me
= L
®
O TER IN NT
CIRCLED LETTERS INDICATE CONNECTIONS COUNTE CREME
WITHIN CIiRCUIT.
DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE
CIRCUIT DIAGRAM
FIGURE ©a.
TO 8-BIT DATA INPUT
| Y
By Bo T
SPDT
TOGGLE
©o ¢o do o > 90
L o
NC
+5V NO ©
= SPDT
PUSH MOMENTARY SWITCH TO MOMENTARY
EXECUTE INSTRUCTION SET ON
TOGGLE SWITCHES.
FIGURE 5.

MANUAL TEST CIRCUIT

/2 7400 TTL
NAND

ECS Vol 1 No. 5 A 11 May 1975
Ao Ag 'jv
@®— - s 5 3[s L RII- 10k oy
+
BOT; ; 2 6| "® e RI-3.3k
0 6 1 s I3
—Hc c I = R3-56k
—2p ol 8|MC 1406 (147Ci-20,¢
i 71, 'z
4193 I Al
1 4 b e HORIZONTAL
3] 2 B QUTPUT
-9V ==
a4l s -
"? A AR
Bs—B Bf& DIGITAL GRAPHIC DISPLAY
OSCILLOSCOPE INTERFACE
| CIRCUIT DIAGRAM
Ic8 h _FIGURE 6b.
74193
2
©
(<] 2 S
_ 3 v
Bo ={A - +5
—B B
—2p oL 8 R4- 5.6k
9
Ic 9 10
I Al Laf>
74193 | vy s L‘VSSPPCUATL
3] 2 G ce I
4 -ov == pATAL
1 Y A3
Bs ! B B 2
ALL 2102 PIN CONNECTIONS ALIKE, EXCEPT CHP ENABLE
IC 10 [+ + + (]>
i - 1 1I—2F — —y
74183 R/W DI || -k @ E
@ ca HesHice Hen =
zio2 H 2102 H zio2 H 202 F—=
— -] — MEMORY
— — = — ADDRESS
_ r Ag - LINES
ICE DO .
512 3] <H 3
IC 2F
5 Sl s I i2
Ic 6 cis 4 4] a8 R A
4] 3 =
, 1.8k RS Ro
2 3C ol I oon 2.2k
Ic 3 crs3 . T <
1] 3a R7
] ‘ I8k
9 Ql
20 ic 8 cIs 2 DI
] ¥s | 3c az
10M2E "\ i c/s i b2 = 03
3D
3 :

|||%

b
Z AXIS OUTPUT

ECS Volume 1 No. 5 12 May 1975

CLEAR DGDOI PROGRAM

This program is used to clear the memory of the DGDOI. It simply sends
out a 'set Z off with increment’ instruction 4096 times. It uses the B andg
C registers to keep track of the 4096. The register contents are decremented
once for each I/0 instruction.

The program turns the scan off before clearing, but does not turn scan
back on. The DGDOI will then remain ready for programming.

START 00/344 = 006 LAI 00/357 = 150 J7Z
00/345 = 201 (TSF) 00/360 = 365
00/346 = 121 OUT 10 00/361 = 000
00/347 = 006 LAI 00/362 = 104 JMP
00/350 = 205 00/363 = 355
00/351 = 016 LBI 00/364 = 000
00/352 = 377 00/365 = 021 DCC
00/353 = 026 LCI 00/366 = 110 JFZ
00/354 = 021 00/367 = 355
00/355 = 121 OUT 10 00/370 = 000
00/35 = 011 DCB 00/371 = 377 HLT

These two programs are just to get you started. Although uncertain of
the medium, we expect to have further programs availabie in the future. Carl
Helmers has plans for a ‘Life'game and possibly a 'Space War' game using the
DGDOI. The author of this article is planning a Tic-Tac-Toe game and a pro-
gram which would use an octal keyboard for rapid construction of images. (it
will be the closest we can reasonably come to an electronic per.)

These programs, of course, will be in addition to your own. There are
many applications of a DGDOI. Outside of games, it could be used to graph
solution sets of mathematical problems. It could be used to graph results of
data aquisition programs. It could plot results in a digitally controlled
analog computer system. It could . . . well, who knows how many things it
could be used for? The exciting point is that such applications are finally
within the economical range of the 8008 system.

PRINTED CIRCUIT BOARD FOR THE "DGDOI'" DESIGN:

As this issue of ECS goes tu prees, the first layout of a two-layer PC board with
plated-thru holes has been completed., A first printing of the board will be executed
prior to the next issue of ECS, at which time I expect to have details of pricing on tire
board.

SCME LLAST MINUTE IMPROVEMENTS:

In cassette conversation with Jim Hogenson, the following items were pointed out
regarding updates of the article as it stands: 1) by connecting the ""0' output of IC 6 (6-9)
to IC 9 ""decrement input’’ (2-4) the "2x0" {octal) opcode becomes decrement Y, 2)
bv connecting the "7" output of IC 6 (6-4) to IC 7 ''"decrement'' (7-4) the "2x7" (octal)
op code becomes decrement X, 3) The DAC chips may exhibit non-linearities due
to manufacturing variations - sometimes observable in particular cases.

- CTH

iy, s

s

ECS Volumel No. 5 13 May 1975

CONCERNING THE HAND ASSEMBLY OF PROGRAMS

by Carl T. Helmers, Jr.

The purpose of computing is to solve problems. Problems are
solved by analysis followed by generation of a method - an algorithm -
for accomplishing the desired ends. The computing approach to prob-
lem solution consists of automating the steps of such methods by pre-
paring a ''program'' for the computer to execute. This article concerns
the process of preparing programs for executicn on the assumption
that you have previously generated a detailed symbolic specification of
your problem's algorithm in the SIRIUS-MP language (cr any other
method of program specification for that matter.) The remaining task
of program preparation is the translation of the symbolic form into a
detailed set of machine codes (numbers).

In April 1975 ECS, an introduction to the SIRIUS-MP language was
presented as a means of expressing programs for inexpensive '"home
brew'' computer systems. The present article continues this SIRIUS
infcrmation by discussing the process of hand assembly of machine code
from the symbolic representation. Hand assembly is a process which
the serious student of computing should perform as an exercise at some
point in time - whether or not the computer under study has an
assembler available. The tutorial value of ""walking through' the assem-
bly process is well worth the effort - whether or not the hardware limits
of you system make it mandatory.

The ""hand assembly'' process is in some respects a retrograde motion in compu-
ter science - a step "'against the normal direction' of progress towards more and
more automated programming aids and methods of expression. It is a process which
is the translation of existing assembler algorithms (no particular assembler among
a myriad of assemblers is singled out as a model here) back into the realm of a
manually executed process - just as the first programmable machines had to be
programmed before the invention of software development tools. As an adaptation
of the '"typical' assembler algorithm to manual operations, the manual assembly
process to be described is useful in several areas...

- it illuminates the process of assembly as performed automatically,
so that the reader will be less tempted to blame all manner of programming
problems on the poor simple-minded assembler programs.

- it provides the microcomputer enthusiast with a method of software
development {albeit cumbersome) to he used until his or her personal
computer is integrated to the point needed for a real assembler.

- it highlights the problems of code generation from symbolic notation.

- it can serve as a model for the implementation of an assembler
system by the reader for his own variation on the microcornputer concept.

ECS Volume 1 No. 3 14 May 1975

AN ASSEMBLER SYSTEM w

The concept of an assembler system is illustrated at its highest level by the func-
tional diagram... a 'black box'" of processing which accepts some input and produces
some output:

The input at the left of the
: diagram is the "source pro-

Source 4 gram'' - a generalized and sym-
Program bolic representation of your
program. The output at the
right (the principal output of
the assembler) is the ""object program' equivalent of the source program - a set of
binary (octal or hex) numbers which potentially can be loaded into appropriate memory
locations and executed. (I am leaving out the concepts of linkage editors, relocatable
loaders and other post-assembly tricks for the time being.)

What is this assembler '"black box?'" In an automated conventional assembler system
the black box is computer program used to translate a text file (eg: ASCII characters as
input from a teletype or other keyboard) of the source program into its equivalent binary
object file representation. The term ‘'file' here means a set of many (eg: ''n'') computer
words containing some form of information - often used to signify such data sets as
stored on magnetic tape or disc. The usual assembler program is implemented and
runs on computer "X", producing an object program for computer ""X' (self assembly)
or for computer "Y' (cross assembly.) In the corresponding hand assembly conception
the assembler ''black box'" is defined as you - the reader - performing a variation
of the steps required to translate the symbolic representation into its machine code
form.

THE SOURCE PROGRAM

The source program for the assembly is usually written in the appropriate '"Basic
Assembly Language' for the computer in question - each computer manufacturer comes
up with its own version of the type of program involved, usually running on one of
the manufacturer's own machines. For the microcomputer case, this is not usually
possible, since the number of variables in individual CPU implementations using the
same chip is immense. For the purposes of this publication and the generality of
notation, the article assumes a source program written in the SIRIUS -MP formulation
which is to a large extent independent of any particular chip design. If you were to
substitute '"Language X' for SIRIUS-MP in the ensuing pages, you can do so and apply
the same process - although your translation function will technically be that of a
compiler or interpreter if any language other than an assembly language is used. This
article's methodology could in particular be applied to the translation of some of the
immense number of published computer ''games'' in BASIC for instance, if you want to
get such programs up and running - however tackling a high order language translation
will tend to get you bogged down in detail and in routines you have to write to get
anything done, so it is only recommended in the simplest of cases when performed by

hand.

ECS Volumel No. 5 15 May 1975

THE OBJECT PROGRAM

The output of the assembly process is an '"object program' - a potentially execu-
table set of codes for the computer. The form in which an object program is specified
should be chosen according to the needs of the assembly process and the intended use
of the results. In a 'real' assembler (ie: a computer program running on some com-
puter) two major classes of output come to mind:

l. Absolute Machine Code. Here the object module output consists of
information needed to define the specific content of each memory location
in the program, tied directly to a specific range of memory address space
in the computer. In this variation of output, all the work is done at the
time of assembly, and loading the program then becomes a task of copying
this "memory image' (archaic term: core image) into the computer.

2. Relocatable Machine Code. Here the object module is built by the assem-
bler program relative to an arbitrarily chosen starting address (often ''0'"),
with the final resolution of addresses for symbolic references, jumps, etc.
left to an appropriate ''relocating' loader. The object module in this form
is more complicated for in addition to the binary image of the program, in-
formation on the address references inside the program must be retained

so that the loader can alter them during the load process.

In addition to the specific form of the modules, there is the question of linking multiple
program segments - which can open up a whole '"can of worms' best ignored at this
stage. For the purpose of hand compilation, the '""KISS" rule applies - "'keep it simple,
stupid.'" The assumption will be that linkages between modules are made by commonly
addressed absolute address regions (for example, the first 256 bytes or base page of

a Motorola 6830, the first 256 bytes of an 8008 designed according to my plans pub-
lished earlier, or an arbitrary region if no particular location is suggested by the
characteristics of hardware or software.)

In order to keep the process simple, the Hand Assembly method as described here
is limited to the production of absolute machine codes (type 1 object modules as listed
above.) The actual form will be a list of hardware addresses in memory address space
and the corresponding machine code for that address. I have written the article under
the assumption that the M.P, Publishing Co. Kluge-I Assembler coding sheets are
used for the final output, but this is by no means to be interpreted as an absolute ''re-
quirement'’' of the method. They are available at 5¢ each plus postage, and were cre-
ated primarily to satisfy my own purposes after I got tired of writing the same low order
address sequences over and over and over again. An alternate source of paper
for the process is used computer paper recycled from a handy local computer center,
or if you are in position to make arrangements for time - you could whip off a quick
FORTRAN or PL/1 (or ?) program to write the address sequences onto blank paper in
a manner similar to the Kluge-I sheets but on a line printer instead.

The process of assembling and generating the code for a program has two major
(conceptual) steps which must be performed, assuming that a suitable symbolic nota-
tion for the algorithm exists.

ECS Volumel No. 5 16 May 1975

Step 1: Translate the symbolic notations into equivalent sequences of the
machine's operations . Pay attention to any address calculations which may
be required, but leave '""open'' the question of addresses of operands for
which no address is yet assigned. The purpose of this step is primarily to
allocate the memory address space requirements of the program by deter-
mining the number of bytes of code required for each elementary statement
of the program which is translated.

Step 2: With all the required program and data locations allocated (typically
in a sequence of consecutive memory locations starting at a chosen "origin" or
first address) "fix up'' all the unresolved references hanging around in the
code prototypes created in step 1.

This set of steps is a universal one, and is performed by every code generation pro-
cess - whether it is an assembler, a compiler's code generation phase, or even an
interpretively executed programming language such as BASIC, The variations (and
there are many) in particular approaches to compiler and assembler code generation
strategies concern ways of implementing these conceptual processes of allocation

and reference resolution (the 'fix ups'). In a classical two-pass assembler and/or
compiler, there is an explicit separation into these two steps - pass one is the allo-
cation phase (also syntax checking), followed by pass two which fixes things up. If
one restricts the types of references possible at any given point in the program source,
it is possible to achieve a ''one pass'' compiler - the restriction being the rule that no
"forward'' references be made to portions of a program yet to be referenced, or that
such forward references be made through a special mechanism in the generated code
such as a run time symbol table lookup/calculation. In the hand assembly version of
the process described here, a classic two-pass approach is taken, but the first pass
is further broken down into two operations which might be conceptually considered
""passes' through the data. The text continues following a short aside. ..

WHY ARE TWO PASSES NECESSARY IN THE UNRESTRICTED CASE
AS A MINIMUM NUMBER OF SCANS THROUGH THE DATA?

The necessity of the second "'fixup'' pass becomes obvious when you con-
sider the problem of forward references. (References to previously allocated
symbols are no problem - I already have their addresses figured out.) The
assembly process can only sequentially process the statements of the program,
starting with the first. A '"forward reference'' to some sym- FIAST SUNEMENT
bol in the program is a symbolic reference made prior to ‘“‘"}ﬂ' X DEFIGED
the definition of the symbol in question - relative to the order rer,
of scanning the source. Pictorially, a forward reference is -OC A x=2vy
illustrated by the assembler (an "imp'") finding the statement "
"X =: Y" cleser to the beginning of the scan than the defini- [
tion of the symbol Y. At ©X the little imp says "‘where's Y? " !

Py .
and files it as an open question. A bit later in the first pass T wgﬁ,},
1" . AVAERapNy § | - N
he can say "aha - I know where Y is' but - he has already gone"h:‘ Y bEFINED
past the point where Y was referenced. Then on the second REE

time around, the little imp can use this information to fix up
the incomplete information in the statement with the forward
reference. Either the minimum two passes through the data, a»

Ta wammired o s sl rn f’" S /’."‘7"" qvf, wafar o

or a logicallv equivalent "*rick!!

ECS Volume 1 No. 5 17 May 1975

The hand assembly process is outlined i1n the paragraphs following immed-
iately below. The process is broken down into three sequential steps which
I have found to be components of a useful procedure: generate skeleton
code, allocate addresses, then fill in the final code of the program repla-
cing mnemonic notations and symbolic address references., Of these steps
the {irst two correspond roughly to the allocation pass of a two pass assem-
bler, and the last corresponds roughly to the reference resolution (fix up)
pass. Following this descriptive summary of the process, a detailed exam-
ple is presented for the case of a subroutine used to '"concatenate' bytes
strings of the form described on page 9 of April 1975 ECS.

SKELETON CODE GENERATION:

The first pass of the hand assembly process begins with a ''skeleton ccode genera-
tion' operation. The purpose of this operation is to figure out the mnemonic opera-
tion codes required for the corresponding operations of the source program. If you
program exclusively in the mnemonic assembly language appropriate to a given machine
you have already performed this operation by writing your program on paper, If you
use a '"higher level" specification such as SIRIUS-MP (or FORTRAN, PL/1, BASIC,
and any other language you might care to use) this step is required in order to turn the
basic operations of the source program into sequences of operation appropriate for your
computer’s instruction set. For the SIRIUS-MP language, this corresponds to a table
lookup (in your head) of an appropriate method of carrying out the functions of each
statement, and in many cases will result in a fairly one-to-one correspondence of oper-
ations in the source program and in the machine code. If you automate this process,
it becomes roughly equivalent to a '"macro expansion' process tacked on the front end
of many assemblers. I have found scrap computer listings to be most effective in this
stage since it involves no address allocation, merely listing the symbolic equivalents
of the program bytes on paper.

ADDRESS ALLOCATION:

The hand assembly process as conceived here is oriented to the generation of the
absolute, executable machine code for specific locations in the computer's memory
address space. This bypasses the question of generating relocatable code and keeps
the process simple. Error possibilities increase with cornplexity, especially when
a program is assembled by biological computing machinery with all its foibles. This
address allocation stage consists of taking the skeleton code sequences for the program
and assigning a memory address for each byte in turn. One way to do this is to re-
cord the byte addresses on the paper used to write the original skeleton sequences.
Another method is to use the M. P. Publishing Co., Kluge-I Assembler coding sheets
with pre-printed low order addresses in octal to provide the allocation function - if
you write an operation code at some place on the sheet, it's address is ''used up'' and
no longer available for allocation, The skeleton code generation and allocation pro-
cess can be done simultaneously on the Kluge-I sheets provided you are fairly sure of
the code being generated (or don't mind erasing a bit if you make a mistake.) The prob-
lem of the combined skeleton/allocation approach is that whenever you write down the
use of a specific address, it commits the location to a specific utilization, which may

ECS Volumel No. 5 18 May 1975

be ''premature.' I like to get a program done completely in the skeleton form prior to
allocation of any addresses, so a review of its operation can be done. Then after the
review, I proceed to do the allocation by copying to the Kluge-1 sheets. (Even so, I
make many mistakes and change things when I see a better way - one of the things which
guarantees an incentive on writing an assembler for SIRIUS and at a later stage some
form of compiler for a decent programming language.)

An Aside:

It may be possible for you to gain access to a minicomputer facility
and/or large computer facility. (Particularly for the readers of ECS who
are still in school and can wangle computer time.) One way to implement
an assembler for a language such as SIRIUS-MP is to use an existing as-
sembler with a macro facility - eg: the IBM 360 Assembler, or a DEC
PDP-10 assembler or a host of others - and write a special set of macros
to implement the primitive operations as expansions based on the skeletons
of octal(hex) codes required for your target computer. Then all the symbol
table lookup and management of the original assembler can be used as is.
The troubles with this approach are several: most macro expansion opera-
tions of assemblers tend to be inefficient; it is a lot of work to write a com-
plete set of generalized macros and debug them as well; and so on.

FILLING IN THE CODE:

Once the addresses have been allocated to the skeleton, the final step is to fill in
the octal (or hex if you prefer) codes of each byte in the program by looking up the
mnemonics of the operation codes as noted on the Kluge-I sheets prepared during the
allocation stage. This step in the hand assembly corresponds to the ""'second pass'' of
the classic two-pass code generation process, but with the added provision that the
mnemonic op codes which would be translated in the first pass of an ordinary assembler
program are left until this last pass for translation. When the process reaches this
stage, all address references are known (as allocated in the allocation step) so that
all references can be made in the code resulting. Each byte of the allocated code has
one of the following possibilities:

- it has a portion of a literal value which must be translated into its
machine code equivalent.

- it has a reference to an address-related value, which for an 8-bit
micro means either half of a 16{(or 14 for 8008) bit address.

- it has a mnemonic operation code which must be looked up in a table
of equivalent octal or hex operation codes.

- it represents a byte of data which is not to receive any initialization,
which is simply reserved for use as a run time data storage area.

Whatever the intent, the result for each byte is 3 digits octal {or two digits hex) repre-
senting the machine coding for that piece of the program. In the ''don't care' cases

of reserved data areas (the last option listed above) no explicit action is required to
generate the loaded codes of the program. '

ECS Volume 1 No. 5 19 May 1975
HAND ASSEMBLY BY EXAMPLE: (coucatTER:)

THE BYTE STRING CONCATENATION 1- 2.
SUBROUTINE "CONCATTER. "

Check length

An example always helps to illustrate a new process
or method. To illustrate a hand assembly operation,
I have selected a simple little subroutine to perform a

string operation called ''concatenation'. In words, the
operation of concatenation is the building of a new
string (for example ""Z") composed of a left half input

(for example "X'") and a right half input (for example,
"Y'"). In symbols, the following diagram illustrates
the operation....

Example: Byte String Concatenation Subroutine CONCATTER

x: [(@[THIE IS Y: [@[A BIG STRING]

concatenation
operation

MOVEY:

If you are familiar with arithmetic and algebra, you E
of course know there exists a set of operations which 1
are in some sense 'fundamental', such as addition, :
subtraction, etc. Similarly, in boolean algebra, there i
is a set of fundamental operations - AND, OR, NOT, :
The same holds when byte string operations are con- i
sidered as well: the manipulation of "text'" is best done : 10.
1
1
|
{
|
I
]
]

using a few fundamental operations, including concat-
enation, '"'substring'' extraction (the opposite of con-
catenation), comparisons, etc. The concateration oper-
ation is one of the most useful.

Z(K) =: Y(I)

The concatenation operation is shown in its most " “i
abstract form by the flow chart running down the —
right margin of this page. This flow chart describes
the steps of concatenation - test the result length for EE‘;UE"—.
an error, move the left half to the result, then move
the right half to the result. The numbers on the dia-
gram correspond to the statement numbers of the

equivalent SIRIUS-MP program listed on the next page
of this article.

ECS Volume 1 No. 5 20 May 1975

The flow chart illustrated on the previous page is an afterthought - the original
written form of the SIRIUS-MP program shown in the box below was created without
using a flow chart as a tcol. This SIRIUS form of the CONCATTER is assumed as an
input to the assembly process for the purpose of the example,

CONCATTER:
1 zZ =: b4 # FORM SUM OF LENGT :
2 4 +1 X # AND TEST FOR OVEKHFLOW ;
3 LERRS IF CAHRY # OF §-RIT MAX VALUE 3
HMOVEX:
I 1 FOR: 1,X # TRANSFFR LOOP CONTROLLED ;
[Z(1) =1 x{1) # BY X LENGTH DYTE ;
6 END: # END OF LAST PREV. FOR ;
MOVEY:
7 X =y X 3# Z INDEX FOR Y TRANSFER ;
8 1 FOR: 1,Y # Y TRANSFER LOOP CUNTRLD ;
9 INCR: X # BY Y LENGTH BYTE :
10 Z(K) =: Y{(1) # TRANSFFRS EACH Y ;
11 END: # UNTIL DONE ;
12 RETURN # WITH 2 CONTAINING RESULT ;
LERRS:
13 =3 0 # NULL. STRING WITH ZFIRST ;
1 RETURN # BYTE LENGTH=0 H

New SIRIUS-MP operations in CONCATTER:

+1 et Addicion, with 8-bit length indicator, replaces
the target operand (eg: Z of statement 2) with the sum
of the old target's value and the source operand value.

POR: --- Incremental "FOR"™ loop header. This sets up the
stert of a FOR loop with an sssumed integer 8-bit index
(":" length code), a starting value given by the first
source cperand subfileid {see note #1 below), and an ending
value glven by the second source operand subfield. The
target vperand is optional - if omltted, the generated ccde
will keep its internal count which 1s then not available to
program segments within the loop. A third source operand
subfleld will be kept available (optional) separated by
a comma and used for ths increment value if other than one.

END: --- Incremental "FOR" loop treiler, All the statemeuts
from the FOR to ths END are consldered part of the loop. &n
implicit (ie: "structured”) branch back to the last previocus
FOR ocours if the iteratiocn count 1Is not exceeded. As with
the POR statement, the END has a type modifier to indicate
the locp index precision.

fiote 1: In order %o provide for complex opsratiocns such &s the FOR loop
operation, multiple "sourcs" parsmeters are sometimes required. The
idea of an operand subfield accomplishes the necessary inputs to the
FOR loop operation. This concept will rscur when the varioua byte manip-
ulation operations are introduced in iater disoussions of byte atrings.

Rote 2: The FOR/END construct is a "natural" for ccde generation using the
CPU stack temporary dsta concept as it exists on machines such as the
PDP-11, ME800 or B080. When the "FOR" ie encountered, a loop return
addresa is pushed onto the stack, followed by the initial cocunt value and
the rinal count value. Then when the "END" is encountered during exscution
the stack is referenced (offset from stack pointer) to inorement the loop
ocount and compare it to the flnal count. If the final couant is not
oxceeded, exacution jumps indirectly through the loop return address (also
refsrenced off the stack pointer) back to the firast executable statement
of the body of the loop, If the branch back is not taken, tho "END" cleans
up thes stack by adjusting the stack pointer to its original value prior to
the FOR statement execution., The stack sutomatically ca#n handle "nested"
POR loops to as many levels sz thzre is temporary RAM memory to astore the
stacked date, More on this subject in & later issue...

As in the examples of SIRIUS programs published in April ¥.CS5, I have not included

a generalized treatment of aryument linkages in this exampie. The example of a
subroutine uses specific RAM string areas - X, Y and Z - its arguments, so that
any program ufilizing this version would have to first covy X and Y's values from some
other place then call CONCATTER - and copy the Z result after getting back. With
this formulation, X, VY and 7 might be considered the software equivalent of the accum-
ulators (ie: CPU registers! of some hypothetical 3-register "string machine.' For
large scale text processing applications, someone will socner or later microcode a
processor with the string operaticns.

ECS Volume | No. 5 21 May 1975

Given the starting point of the previous page, the first hand assembly step 1s begun
with the expansion of the SIRIUS code as a skeleton of the final code. I have illustrated
a small portion of the skeleton listing of CONCATTER at the left in the following
illustration:

SKELE TON KLUGEZ-I ALLOCATION
LAT #yeammfzoo | 1 e
5(9) I 201 5(52
Sem T o [[sum]
L&m “—¥emp 2168 preeeee- Dol B i O RERE T 4
LAT — e O O O L
s(x) #2 204 i LAX
S‘:;‘M T T T T‘--L- epopecaccncmna -
LAM <« Sedell w ke 4395._;-L-..S_S§)----1
ADR S g 1 O 1 L

#3 ITQ LERRS Outof Seq. yump .| 207 | 1 JLAM |

to aveid cav*wamas 210 ADP
Save mechanisl . I ST T T v voss]
LRA-..-}..:-l:r.(------ 4
LA 21212 i LL
3(2) “ TR T
S%M #zr ------- <5i!1>-L-h-.-l:B-—A- ----- -
tme M £ LBA -
S PRl LA
I 28l 1 {52
217 erM
N w/
-‘l'\._u

The code illustrated here is for an 8008 processor (my own "ECS'" system) and uses
the software conventions (eg: SYM table lookup) described in earlier issues. The

Kluge-I allocation of addresses for the Skeleton code is illustrated at the right . In
the allocation step, numbers are used to reference SIRIUS statements of the source
program, and the question marks (''? ') serve to denote address references prior to
definition, The LERRS example here is a '"forward reference'' to later code which
resolves (after allocation of the whole routine) to be location 007/334.

The code generated for the remainder of CONCATTER (8008 mnemonics from the
original Intel documentation) is printed on the next page. This listing contains the
results of the third hand assembly pass (filling in code and allocated address refer-
ences) along with mnemonics and statement number references back to the original
SIRIUS-MP code.

The subroutine named "OFSET" was coded to perform the index calculation of the
type implied by the SIRIUS notation NAME(INDEX) . 1t adds (16 bit calculation) the
current 8-bit loop count maintained in B (CPU register) to the address found in the H/L
pointer pair. For 8080 machines, this subroutine would not be necessary since there
is the 16-bit address calculation possibility for the H/L pair,

The FOR/END group code is generated in 2 form using an index variable I which

happens to be redundant in this example. The actual loop indices in this simplest case
are maintained in the CPU B register (moving index) and CPU C register (end irdexj,

ECS

Volume |

No.

CONCATTER:

#1

#2

#3

#2

#4

#4B

#5

#6

#4E/7

#8

00 7\200
007\201
007\20¢
007\203
007\204
007\205
007\206
007\207
007\210
007\211
oo7\212
007\213
a07\214
007\215
0o07\216
007\217
007\220
g07\221
007\222
007\223
007\224
007\225
007\226
007\227
007\230
007\231
007\232
007\233
007\234
007\235
007\236
007\237
007\240
007\241
007\242
007\243
007\244
007\245
007\246
007\247
007\250
007\251
007\252
007\253
007\254
007\255
007\256
007\257
007\260
007\261
00 7\262
007\263
007\264
007\265
007\266
007\267

9]

8008 Code Equivalent

= U06
040
075
317
006
036
075
307
201
140
334
007
310
006
042
075
371
016
001
006
036
075
327
006
044
075
371
006
036
075
106
367
007
337
006
042
075
106
367
007
373
301
272
150
262
007
010
104
2217
007
006
036
075
347
ole
001

" o onou

nennwn

R RN N g RN NR RN NRDN

Hoow a9 nn 0 o 0 Wt K "R AN

LAI
S(Y)
SYM
LBM
LAI
S(X)
SYM
LAM
ADB
JTC #13
L

H

LBA
LAI
S(Z)
SYM
LMB
LBI

1

LAI
S(X)
SYM
LCM
LAI

S(1)
SYM
LMB
LAI
S(X)
SYM
CAL OFSET
L

H

LDM
LAI
S(Z)
SYM
CAL OFSET
L

H

LMD
LAB
CPC
JTZ #4E
L

H

INB
IMP #4B
L

H

LAI
S(X)
SYM
LEM
LBI

1

22

#8 007\270
007\271
007\272
007\273
007\274
007\275
007\276
007\2771
007\300
007\30!
007\302
007\303
007\304
007\305
007\306
007\307
007\310
007\311
007\312
007\313
007\314
007\315
007\316
007\317
007\320
007\321
007\322
007\323
007\324
007\325
007\326
007\327
007\330
007\331
007\332
007\333
007\334
007\335
007\336
007\337
007\340
007\341

#8B

#9
#10

#11

#12
#11

#13

OFSET:

007\367
007\370
007\3171
007\272
007\373
007\374
007\375
007\376
007\3177

(U N T I T A A A I L I 1}

oo
040
075
327
006
044
075
371
040
006
040
075
106
367
007
337
351
314
345
006
042
075
106
367
007
373
351
314
345
301
2172
053
010
104
274
007
006
042
075
076
000
007

306
201
360
003
305
004
001
350
007

May

LAI
S(Y)
SYM
LCM
LAI
S(1)
SYM
LMB
INE
LAI
S(Y)
SYM

1975

CAL OFSET

L
H
LDM
LHB
LBE
LEH
LAI
5(2)
SYM

CAL OFSET

L

H
LMD
LHB
LBE
LEH
LAB
CPC
RTZ
INB
IMP
L

H
LAI
S(Z)
SYM
LMI
0
RET

LAL
ADB
LLA

RFC

LAH
ADI

LHA
RET

W g

#8B

ECS Volume 1 No. 5 23 May 1975

In cases where it is desired to call one or more levels of subroutines within a loop
mechanization such as the two FOR loops of CONCATTER, it will be necessary to
save the content of the B and C registers whenever a conflicting use is encountered.

In the FOR/END loop mechanization, note that there is a ''generated'' label for
the branch back. The statement number of the for statement itself does not suffice
since there is some 'initialization' (set up B and C) prior to entrance into the first
loop cycle. The assignment into the symbolic loop index ''I'" implied by the left
operand (target) of the FOR statements is done at the beginning of each cycle and
serves to mark the branch back points. The branch back points are noted in the 8008
code generation by the statement number followed by the letter "B''.

In the FOR/END group shown, the test for end of execution is made after a cycle
is completed and before the calculation of the next value of the index. In the first
case, statements #4/#6 of CONCATTER, a statement nurnber is required for the
exit case - indicated as "#4E' or (in this example) #7 of the original statements. In
the second FOR loop of the example, I moved the return statement (#12) ahead to fol-
low the comparison, rather than placing a branch forward at that point. In so doing
I was acting as an ""optimizing'" compiler of the SIRIUS language - using as input the
global knowledge of the program in order to figure out a ''special case'' allowing the
movement of code, A similar special case was recognized at statements #2/3 where
the jump on condition of #3 is placed ahead of the data storage portion of #2 in order
to avoid insertion of a mechanism to save the carry flag across the SYM lookup.

On the following page is one additional set of SIRIUS coding and equivalent 8008
generated code. The routine is a "DRIVER' to call the CONCAT TER routine with
test data in X and Y (printed separately as two lines), followed by printing of the
results of CONCATTER as a single line. The SIRIUS code is extremely simple -
virtually a series of calls. A routine called TSTRING is used to do the typing of
byte strings, as found within the "ELDUMPO" program of January 1975 ECS. If
you employ any form of hard copy or CRT output, an equivalent routine would of
course be employed to transfer byte strings to the appropriate external unit. In
the driver, the term ""HL" is used to denote the H/L pointer pair of an 8008, which
would be the H/L pair if you generate for an 8080, or the "X'" register of
a Motorola 6800, This use of the pointer for argument passage is a workable one
but only a temporary "kluge' at present.

What good is concatenation you ask? The idea is illustrated by the diagram given
previously., Its use is its justification. The primary application is in the process of
"huilding'' a character string, as often occurs when you want to format the output of
a program, The CONCATTER routine only handles two strings, but by feeding the
output of one concatenation intc the next, strings of arbitrary length (to 255 with CON-
CATTER} can be built froru numerous components. As an example, suppose that a
conversion routine bas provided a program with the strings "X'" and "Y' as answers
to a protlem, and that ihe text "FIVE GLEEPS AT P X277 WERE SIGHTED NEXT
TO B335 7 GLOOQFS.'is to be printed. Stert with Z="FIVE GLEEPS AT '; concat-
cnate D2 X7 on the right giving a new Z; concatenate "' WERE SIGHTED NgXT TO "

on the right giving a new Z; concatenate (22 Y72 7] on the right ¢iving a new Z; then

concaterate ' GLOOPS, " on the right giving a new Z which is priated,

ECS

IHIS IS5 -

CONCATTER Test Driver

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

NEWLINE:

#1

#2

#3
NLTEXT:

Volume 1

No.

00 71\000
007\001
00 7\002
007\00 3
007\004
007\005
007\006
007\007
007\010
007\011
007\012
007\0U13
007\014
007\015
007\016
007\017
007\020
00 7\021
007\022
007\023
007\024
007\025
007\026
007\027
007\030
007\031
007\032
007\033
007\034
007\035
007\036
007\037
007\040
007\041
007\042
007\043

007\354
007\355
007N\356
007\357
007\360
007\361
007\362
007\363

007\342
007N\343
007N\344
007\345
007\346
007\347
007\350

5

L L | L | O | O | | O | O (T T A T T I T I { RO AN [1}

LU N (TN | A O { O [T S T ' 1}

LU | I I | S £ B T I TR 1]

W % n un

i

— & X value. ..
A BIG STRING. =-———— o ¥V value. ..
THIS IS A BIG STRING. - 7 -

106
354
007
006
030
075
106
166
o1l
1006
354
007
goe
040
075
106
166
o1l
106
200
007
106
354
007
006
042,
075
106
166
Ol1
006
oo2
075
076
002
025

056
007
066
342
106
166
o1l
007

006
0G0
Ooie
000U
015
000
007

X cat

May 1975

)

24
},‘@utput of Driver Prog
Y

»
b4

(8008) SIRIUS Code of Driver. ..
EAL DRIVER:
u 1 CALL NEWLINE

2 HL =1 W(X)
LAl 3 CALL TSTRING
S(X) I CALL NEWLINE
f:XM 5 HL =1 W(Y)
¢ L 6 CALL TSTRING

7 CALL CONCATTER
I(‘:*AL 8 CALL NEWLINE

9 HL =1 W(Z);
zl{' 10 CALL TSTRING

11 EXIT
SL0) NEWLINE:
CAL 1 HL =:: W(NLTEXT)
L 2 CALL TSTRING
H 3 RETURN
cAL NI TEXT:
0 "006,000,012,000,015,000,007"
CAL
o New STRIUS-MP Operations in DRIVER:
LAI
S(Z) CALL - this translates to the simple sub-
SYM routine linkage of the target computer.
CAL (No SIRIUS argument linkage assumed.)
L .
H EXIT - this translates to the set of 1in-
LAI structions needed to return to the
S(IMPSTATE)"monitOP" or "executive" of your soft-
SYM ware systems - if the ECS software is
LML used, the return is to the "IMP"
> or its equivalent code on non-8008
KEYWAIT computers.
LHI The notation "{series of octal numbers>"
h(NLTEXT) preceded by a label is used to denote
LLI literal data to be loaded with prcgram.
I(INLTEXT)
CAL
II{J IMP Symbol Table Extensions for Use
RET ! With CONCATTER (temporary),.

: 012\316 = 0067 .
Length 012\317 = ooo}’ 1361 is X
NULL 012\320 = 0067 _
LF g c12\3e1 = 011}‘ 40t is Y
NULL 012\382 = 006 .
CR J 012\323 = 100 § ' 42'"is Z
NULL =) 012\324 = 0007 , . ., .
BELL S 012\325 = 230 44" is 1

NIM ?H

1

