
SPEAKING LISP

PRODUCT
EXPERT SYSTEMS, LISP,
PROLOG

Al PIONEfR

SOLVE PROGRAMMING PROBLEMS
THEWAYYOUTHINK.

PUREANDSYMBOL.

APL*PLUS®/PC
IS THE ANSWER.

The shortest distance between

two points is a straight line. But

unfortunately, that's not the case

in programming.

Most languages require you to go

through an enormous number of

steps before an idea becomes reality.

That's why the APL*PLUS/PC

System is such a dramatic and

exciting software tool for serious

PC programmers and application

developers.

Instead of requiring you to

learn—and write—long-winded

and complicated programs, APL is

based on your instinctive ability to

deal in symbols. And once you

begin using APL's quick notations,

you'll find it the ideal programming

environment for all your applica

tion needs.

The incredible shortcuts you'll

get with APL not only make you

more productive, but make pro

gramming enjoyable. Intricate

calculations and modeling on PC's

are a snap. You'll spend less time on

drudgery, and more time creating.

Only with APL* PLUS/PC, do

you get:

full-screen editing

a built-in terminal emulator

communications

graphics primitives

and report formatting.

Writing time-consuming

programs like sorting, ma

trix inversions, and string

searching is eliminated.

APL's concise notation

already provides these.. .and more.

No wonder a PC Magazine re

viewer enthusiastically reacted to our

APL*PLUS/PC System with

"awe and delight."

So will you. The complete pack

age price is $595 and major credit

cards are accepted.

Act now and we'll send you a free

Convincer Kit. Contact your local

dealer, or call 800-592-0050 (in

Maryland, call 301-984-5123) to

order your system, or for more in

formation about our other

APL PLUS*WARE™ products-

from our UNIX™ version

to our new streamlined

Pocket APL™

You'll see how symbol

they are to use, the very first

time you use them.

Problem-solvingat the speed of thought.

APL* PLUS/PC System requires 192K. A soft character set can be used for computers with IBM compatible graphics board. A character generator BOM or

software is included for the IBM PC or selected compatibles.

PLUS * WARE and POCKET APL are trademarks of STSC, Inc. APL * PLUS is a registered service mark and trademark of STSC, Inc. UNIX is a trademark ot
AT&T Bell Laboratories.

CIRCLE 121 ON READER SERVICE CARD

Software development isn't a
mountainous task once you
eliminate the high C errors.

When you can find and fix bugs at

tfie earliest possible moment, creating

softwarestops being such an uphill grind.

And the Smart/C Environment makes

it possible. It's a complete, fully-integrated

development environment for C that saves

you from the creativity-inhibiting cycle

of edit, compile, re-edit, re-compile, link.

load, test, re-edit, re-compile, etc., ad

infinitum. Smart/C puts the fun back in

programming, because you spend your

time creating... not waiting.

Here's why. Syntax errors are elimi

nated automatically as code is entered.

Smart/C's highly integrated editor and

interpreter allow you to interpret your pro

gram at any time in the creation process, so

logic errors can be ferreted out as soon as

the algorithm exists—long before any

compile, link, or load,

The complete integration of the edi

tor and interpreter means you can stop

anywhere in the interpret cycle, edit, and

then go right hack into the interpreter

exactly where you left off. Not only that.

the screen-oriented user interface lets you

see all operations, even interpretation,

right on the listing of the code.

And to make maintenance program

ming easier, Smart/C's Migrator allows

existing C code produced with any editor

to be modified and run within the Smart/C

Environment.

All of which makes Smart/C an excel

lent tool. It's flexible, non-restrictive, and

lets you create elegant, readable, error-

free programs that you can watch run with

a great feeling of satisfaction.

Smart/C

Free
Demo Disk!

To fully appreciate Smart/C, you have to see it in

action. For your free IBM PC MS-DOS demo disk, call

us. Or write us on your company letterhead.

AGS Computers, Inc., Advanced Products Division,

1139 Spruce Drive, Mountainside, NJ (TO92.

8OO-AGS-1313- In NJ. 201-654-4321.

Smart/C Features

The Smart/C Environment

n Fully Integrated editor and interpreter

n Only one load brings them both in

n One command set

o Move between one another at will

Syntax Directed Editor

□ vi-like command set

□ Automatically provides formats for blocks,/or,

case and (/statements

Interpreter

O Current module can call external modules during

inierpretation

□ Has Include capability

□ Totally precompilation—no incremental compile

□ Can interpret partially defined files allowing for

rapid prototyping

Q Variable speed of interpretation

C Multiple windows with user-defined sizes

The Smart/C Migrator

O Allows C code produced with any editor to be

interpreted by Smart/C

D Reformats for readability

Smart/C has been ported to UNIX™ System V Release 2,

Berkeley 4.2, Xenix,™ and MS-DOS. Versions run on

8086- and 68000-based machines, as well as proprie

tary architectures. Smart/C runs on PCs, micros,

supermkros, minis, and even mainframes.

Tridemirks—Sman/C: AGS Computers. Inc.: ISIX AT8T Bel! Uhs:

Xenix and MS-DOS: Microsoft Corp. IBM PC. IBM Corp.

DIT
COMPILE

AGS
CIRCLE 7 ON READER SERVICE CARD

TEST RE-EDIT
RE-COMPILE RE-TEST

. n RE-EDIT RE-COMPILE RE-
1 1EST RE-EDIT RE-COMPILE RE-

TEST RE-EDIT RE-COMPILE RE-TEST
E-EDIT RE-COMPILE RE-TEST RE-EDIT

RE-COMPILE RE-TEST RE-EDIT RE-COMPILE
IE-TEST RE-EDIT RE-COMPILE RE-TEST RE-EDIT
COMPILE RE-TEST RE-EDIT RE-COMPILE RE-TES
r RE-COMPILE RE-TEST RE-EDIT RE-COMPILE Rl

DETECT DC CrtlT DC_rAMDII E DC TC

I

COMPUTER

LANOK3E
ARTICLES

Speaking Lisp

by John R. Alien

Traditional languages, like FORTRAN or Pascal, are much less con

fusing to the human reader ... or so the claim goes. In this article, we

explore the deeper semantic issues that separate LISP from the pro

gramming language mainstream. By studying a specific example—how

to compute a sum given a finite sequence of numbers—we can observe

LISP's powerful style of computational notation.

Logic at a Glance, Part I

by Jim McCarthy

An electronic decision table provides many of the same qualitative

experiences to the user that electronic spreadsheets do: a visceral sense

of control, the feeling of instantaneity, rapid-fire accuracy, and the joy

of liberating latent programming skills. In this first installment of a three-

part series, Jim McCarthy examines the structure and value of basic

decision table programming. He will contribute the complete source

code to a prototype editor, interpreter, and compiler.

Natural Language Software
by Darryl Rubin

If you have ever written a compiler, you will recognize immediately that

natural language processing can be divided into three phases: lexical,

syntactic, and semantic analysis. In this article, we will study the particu

lar problems posed by implementing this new technology on micro

computers and look at two natural language data base programs on

the market which try to tackle these problems.

Learning about PROLOG

by Ramachandran Bbaratk and Margaret Sklar

A PROLOG program consists of declarations of relationships between

objects. During program execution, PROLOG draws logical deductions

from facts or relationships the user has supplied. The purpose of this

article is to give an indication, through simple examples in PROLOG, of

what is distinctive about the PROLOG programming style and to look at

why it is especially suitable for user-friendly applications.

27

35

43

49

DEPARTMENTS
Editor's Notes

Feedback

CrossThoughts

B+ trees, B+ + trees, and statistics in Al

ComputerVisions
Al innovator Terry Winograd

Public Domain Software Review—
Screen utilities and a gnu

Exotic Language of the Month Club
MRS: An experimental Al system

Product BINGO

Software Review,
Knowledge systems for the IBM PC, Part I

Software Review
Shopping for a LISP

Software Review
PC PROLOGS

Advertiser Index

4

7

11

19

57

61

69

71

85

95

112

SB
MightyMacro
Assembler.

The new Microsoft® Macro

Assembler package. A complete devel

opment environment that makes

you a more productive programmer.

Whether you re using Macro Assembler

or any Microsoft high level language.

A common calling convention lets

you easily call assembly language

routines from any high level Microsoft

language to add an extra burst of

blinding speed.

Better Debugging*

The new Symbolic Debug Utility

lets you stay close to the source. Now

you can step through your assembled

or compiled code by name rather than

by address. Source level display for

Microsoft Pascal, FORTRAN, and C

allows you to view both your original

source and the resulting code.

And we stuffed our package with a

full set of the most useful utilities

around. So that you can link, maintain

and organize your programs like

never before.

Who else but Microsoft could build

so much into one package for $150?

For the name of your nearest Micro

soft dealer call (800) 426-9400. In

Washington State, Alaska, Hawaii

and Canada, call (206) 828-8088. And

if you're already MICROSOFT
USing MlCrOSOft The High Performance Software"

or IBM"51 Macro Assembler, ask us how

you can upgrade to the mightiest Macro

of them all.

Microsoft Macro Assembler Package:

Macro Assembler

•For the 8086/8087/8088 and now the 186/286/287.
♦ Define macros.

♦Conditional Assembly.

♦Casesensitivity tor symbols.
New Interactive Symbolic Debug Utility

•Controlled testing environment for debugging.

• Source line display of Microsoft FORTRAN, Pascal and

C Programs.

• Set breakpoints on line numbers and symbols.
•Single step to follow program execution.

•Disassemble object code.

• Display values.

♦Make minor changes without reassembling.

New Program Maintenance Utility

♦ Rebuilds your applications after your source files have

been changed.
•Similar to UNIX™Make utility,

Library Manager
♦ Create, organize and maintain your object module

libraries created with Microsoft Languages.

• Set page size (default of 16 bytes).

Object Code Linker

♦Simple overlaying linker combines relocatable object

modules created using Microsoft Languages into a single

program.

♦Load Map generation.

♦Specify from 1 to 1024 segments.

Cross Reference Utility for the Macro Assembler

♦ Creates a cross-reference listing of the definitions and

locations ot all symbols used in an assembly language
program.

Microsoft is a registered trademark and The High

Performance Software is a trademark of Microsoft

Corporation IBM is a registered trademark of

International Business Machines UNIX El a trademark

of Bell Laboratories

COMPUTER

LANGUAGE
EDITOR

Craig LoGrow

MANAGING EDITOR

Regino Starr Ridley

TECHNICAL EDITOR

John Halamka

PRODUCT REVIEW EDITOR

Hugh Byrne

EDITORIALASSISTANT

Kalhy KIncade

CONTRIBUTING EDITORS

Nick Flann, Doug Millison, Tim Parker,
John 5echrest, Nomir Clement 5hammas

SPECIAL PROJECTS MANAGER
Jan Dente

OPERATIONS CONSULTANT
Beatrice C. Blatteis

CIRCULATION COORDINATOR
Renoto Sunico

ART DIRECTOR

JeanneSchacht

COVER PHOTO

Dow/Clement Photography

PRODUCTION ARTISTS
Anne Doering, Barbara Luck

PRODUCTION

Steve Campbell, Kyle Houbolt, Julie Oxberry

TECHNICAL CONSULTANT

Addison Sims

ACCOUNTING MANAGER
Lauren Kalkslein

WHOLESALE COORDINATOR
Nicola Sullivan

COMPUTER LANGUAGE (ISSN 0749-2B39) h pub

lished monthly by COMPUTER LANGUAGE Publishing

Ltd., 131 Towmend St., San Francisco, CA 94)07. (A15)

957-9353.

Advertising: for information an ad rales, deadlines, and

placement, contact Carl Landau al (415) 957-9353, or

write to: COMPUTER LANGUAGE, 131 TownsendSf., Son

Franciico, CA 94107.

Editorial: Please address all letters and inquiries to.- Craig

loGrow, Ed/lor, COMPUTER LANGUAGE, 131 To«vnsend

Sf., Son Francisco, CA 94107

Subscriptions: Contact COMPUTER LANGUAGE, Sub

scriptions Dept., 2443 Fillmore St., Suite 346, San Fran

cisco, CA 94115. Single copy price: 52 95. Subscription

prices: 524.95 per year (U.S); $30.95 per year (Canada

and Mexico). Subscription prices for outside the U.S.,

Canada, undMexico; S36.95 (surface mail), $54.95 fair

mail)— U.S. currency only. Pleose allow six weeks for new

subscriplion service lo begin

Postal information: Second-class postage is paid at Son

Francisco, CA and at additional mailing offices.

Reprinls: Copyright 1965 by COMPUTER LANGUAGE

Publishing (Id. All rights reserved. Reproduction of mate

rial appearing in COMPUTER LANGUAGE is forbidden

without written permission.

Change of address: Please allow six weeks far change of

address to lake effect. POSTMASTER: Send chonge of ad

dress (Form 3579) lo COMPUTER LANGUAGE, 131

Tawntend SI,, San froncisco, CA 94107.

COMPUTER LANGUAGE is a registered trademort

owned by Ihe magazine's parent company, O Publica

tions. All molerio/published in COMPUTER LANGUAGE

is copyrighted S 1985 by Q Publications, Inc. All rights

reserved.

Editor's
Notes

G
real news!

I have a special

announcement

that will interest all those readers who

have written in slating they think

COMPUTER LANGUAGE should print

alongside its articles any listings referred

to in the magazine, regardless of their

length. This announcement is for those

people who cither do not have modems or

who are not interested in making the long

distance telephone call to our remote bul

letin board computers to download the

code.

We've started the COMPUTER

LANGUAGE Users Group . . .

From now on, and for all the issues

we've published in the past, all the code

referred to in the magazine can be

acquired in any disk formal by sending

S6.50 for every 5l4-in. disk and S8.50 for

every SSSD8-in. disk to: COMPUTER

LANGUAGE Users Group, 131 Townscnd

St., San Francisco, Calif. 94107.

Just specify which disk format you

would like the code converted onto, and

depending on the amount of space your

disk will hold, determine how many disks

you will need to purchase. Include the

name and address where you would like

the disks to be mailed. Each month, on

this page of the magazine, you'll find a

reference to how many kilobytes of source

code the current issue's code consumes.

The following table should be used as a

guide:

6

7

8

9

10

11

12

13

Feb.'85

Mar. '85

Apr. '85

May '85

June "85

July "85

(notincl. ERGO

Logic Kit code)

July '85

(ERGO Logic Kit

code only)

All Code Swap

Shops

190K

230K

230K

150K

80K

100K

500K

350K

We see the COMPUTER LANGUAGE

Users Group as an ideal solution to solv

ing many problems at the same time: it

helps us free up more pages in the maga

zine to publish a greater number of infor

mative articles, it allows readers to pick

and choose the listings they need, and it

allows us to provide readers with

machine-readable listings on all floppy

disk formats so they can be used immedi

ately without the labor of rekeying. Hav

ing listings available on disks replaces our

previous policy of mailing out printed

listings.

In addition to our comprehensive prod

uct analyses of Expert Systems, LISPs,

and PROLOGS, this month features a spe

cial comparative review of the syntax and

semantics of the LISP language vs. other

mainstream languages, a massive source

code contribution by Jim McCarthy on

decision table software, an overview of

the field of natural language software, an

interview with AI innovator Terry Win-

ograd, and a lot more . . .

Many readers have expressed a desire

for COMPUTER LANGUAGE to cover the

AI field in greater intensity. Some have

written in asking us to devote a column to

artificial intelligence programming tech

niques and trends. What do you think?

Your comments and criticisms have

been extremely helpful to us in this, our

first year of publication. Our warmest

thanks! «O/~

Craig LaGrow

Editor

Telecommunicate to COMPUTER LANGUAGE

COMPUTER LANGUAGE has established two bulletin board systems for you to

upload and download text and binary programs, as well as to leave your own elec

tronic Letter to the Editor. All the program listings referred to in every issue of the

magazine will be available here.

In addition, COMPUTER LANGUAGE has its own Special Interest Group on Com

puServe's national data base. After calling into your local CompuServe node, simply

type "GOCLM" at any prompt and you'll be in ourSIG.

To access our bulletin board, set your computer or terminal to the following param

eters: 8 data bits, no parity, 1 stop bit. full duplex, and either 300 or 1200 baud. The

telephone number is (415) 957-9370. After your modem makes the connection, type

RETURN several times, and everything else is easy.

Both systems are open 24 hours per day, 7 days per week. Due to the heavy number

of callers, please do not log into the system more than one time per day. Messages left

on either system will be combined the following day.

Volume

I

2

3

4

5

Issue

Premier '84

Oct. '84

Nov. '84

Dec. '84

Jan.'85

Size

130K

42K

150K

140K

40K

PotentPascal*
Microsoft' Pascal may be the

most powerful software develop

ment environment available for

the MS-DOS system. It com

bines the programming advan

tages of a structured high-level
language with the fast execution

speed of native code compilation.

And it exceeds the proposed

ISO and ANSI standards with
logical extensions that make the

language more powerful and ver
satile. For example, programming

capabilities even allow you to

manipulate data at the system and

machine level.
It gives you single and double

MICROSOFT Precfision ¥
The High Performance Software tlOating pOlllt

arithmetic. Numeric'operations

take advantage of the 8087- Or
automatic software emulation is

provided if the coprocessor is not

installed.
Support for long heap alloca

tion and separate module compi

lation gives you the flexibility

to create large programs up to

one megabyte.

And the standard linking inter

face makes it easy to combine

Microsoft FORTRAN or assem

bly language subroutines.

Call 800426-9400 to order
the potent Pascal. $300?

In Washington State, call 206-

828-8088. Ask for operator K5,

who will rush you your order,

send you more information, or

give you the name of your nearest

dealer to see Microsoft Pascal in
action.

'Price exclusive of handling and Washington Siate sales rax.

Microsoft is a registered trademark and MS is a trademark of Microsoft Corporation

Turbo
With Turbo ASYNCH, you can be in constant

touch with the world without ever leaving

the console. Rapid transit at its best. Turbo ASYNCH is designed

to let you incorporate asynchronous communication capabilities

into your Turbo Pascal application programs, and it will drive any

asynchronous device via the RS232 ports, tike printers, plotters,

modems or even other computers. Turbo ASYNCH is fast, accurate

and lives up to its specs. Features include...

♦ Initialization of the COM ports allowing you to set all transmis

sion options. ♦ Interrupt processing. ♦ Data transfer between cir

cular queues and communications ports. ♦ Simultaneous buffered

input and output to both COM ports. ♦ Transmission speeds up

to 9600 Baud. ♦ Input and output queues as large as you wish.

♦ XON/XOFF protocol.

The underlying functions of Turbo ASYNCH are carefully crafted

in assembler for efficiency, and drive the UART and programmable

interrupt controller chips directly. These functions, installed as a

runtime resident system, require just 3.2K bytes. The interface to

the assembler routines is written in Turbo Pascal.

The Turbo Pascal PERFORMANCE PACKAGE"1 is for the serious

Turbo Pascal programmer who wants quality tools to develop appli

cations. Every system comes with a comprehensive User Reference

Manual, all source code and useful sample programs. They require

an IBM PC or compatible, utilizing'MS-DOS version 2.0 or later.

There are no royalties for incorporating PERFORMANCE PACKAGE

functions into your applications.

Turbo POWER TOOLS and Turbo ASYNCH sell for $99.95 each,

and they may be ordered directly from Blaise

Computing Inc. To order, call

(415) 540-5441.

Turbo
BflW£B Tfifil O
rUVwCil I UULO

Turbo POWER TOOLS is a

sleek new series of procedures

designed specifically to complement Turbo Pascal on IBM and com

patible computers. Every component in Turbo POWER TOOLS is

precision engineered to give you fluid and responsive handling, with

all the options you need packed into its clean lines. High perform

ance and full instrumentation, including...

♦ Extensive string handling to complement the powerful Turbo

Pascal functions. ♦ Screen support and window management, giv

ing you fast direct access to the screen without using BIOS calls.

♦ Access to BIOS and DOS services, including DOS 3.0 and the

IBM AT. ♦ Full program control by allowing you to execute any

other program from within your Turbo Pascal application. ♦ Inter

rupt service routines written entirely in Turbo Pascal. Assembly

code is not required even to service hardware interrupts like the

keyboard orclock.

Using Turbo POWER TOOLS, you can now "filter" the keyboard

or even DOS, and create your own __ _ _- — — "*"

"sidekickable" applications. — —'

cur-—— 7 ____-—

«s

mmWate' -j-U PjKP :G0lS Tjrso

ASYNCH irdPiRFW-AANSE-PACKAGE me
jarts of Btsi'c CovpXng 'n: Wiss ifglsteied

•i Ql totemaimnt Bosinns Mach:nn Corporate)

MS-DOS is a Hdtfora'* itlMwm Qpoomicn

BLAISE COMPUTING INC.

2034 BLAKE STREET

BERKELEY, GA 91704

(415) 540-5441

CIRCLE 3 ON READER SERVICE CARD

FEEDBACK

BASIC recursion

Dear Editor:

I am writing to comment on Hugh

Aguilur's "BASIC Recursive Tech

niques" (May 1984. pp. 43-46). I Feel

that several points need attention.

■ Figure 1 is referred to in the text as an

English algorithm for the puzzle's solu

tion, but the figure printed is a picture of

the disks and pegs. The cited algorithm

was left out entirely.

■ I don't know what Listing 2 is supposed

to be—a replacement for the A.I and A.3

sections of the missing Figure 1 per

haps?— but it is hard to decipher with the

= and + symbols not printed. (Alas, why

won't typewriter makers understand pro

grammers so we won't have to keep

remembering to draw in the =. + .

<, >.etc.?)

By the way. the author calls this a trick;

the wedge business and alteration o\'

BASIC'S internal variable storage in the

next section must be a veritable magic

show! (The portability of such a scheme

must be practically nil.)

■ The section beginning "'A wedge is a

method ..." rapidly descends into an

area which involves having access lo (and

being more than a little familiar with) the

source code to one's BASIC interpreter,

something that even COMPUTER

LANGUAGE'S elite readership might

find it hard to come upon.

■ Along those lines: If you arc going to

delve so deeply into the black box of the

language's system software as to name

specific interpreter source code labels

(CHARGOT) and describe the inter

preter's internal memory management

scheme, then we are definitely not talking

about most BASICs but rather about one

specific implementation. In this case you

really must state which BASIC it is to be

of more than minimal curiosity value to

anyone. (I suspect the author refers to one

of the 8086/8088 BASICs due to the lack

of a stack area in Figure 2. Those imple

mentations probably use the separate

stack segment for such purposes.)

■ Listing 3. line 2050. is a pretty obscure

way of saying the old standard:

2050 IF INKEY$ = ""THEN 2050

Or, if you dislike GOTOs (as I suspect is

the case here), then you could use:

2050 WHILE 1NKEYS = "": WEND

Not lo mention the fact that some lan

guage implementations (especially com

piled ones) don't recognize your alter

ation of a looping structure's control

variable from within the loop.

■ Most Microsoft BASICs (and several

others as well) will properly handle recur

sive GOSUBs due to their use of a stack

iniernally to manage the depth of nesting

and the RETURN addresses. The problem

is the need for dynamic local variables in

each rcinvokationof the routine (rather

than the static global variables BASIC

provides). This may be simulated by

means of arrays for each variable with a

global "nesting-depth" counter to be the

subscript for them all. thus providing a

sort of variable stack somewhat similar to

the internal handling of such things by

ALGOL-like languages.

An example of this in Microsoft

8-bit CP/M BASIC is available on the

COMPUTER LANGUAGE Bulletin Board

Service or CompuServe account. It runs

without change on TRS-80 Models I, III,

and IV, as well as PC-DOS and MS-DOS

versions of BASIC/BASICA/GWBASIC.

Also, you covered SNOBOL a few

issues back (Premier issue, pp. 65-68).

I saw in PC TECH Journal, and later pur

chased, a really nice implementation by

Viktors Berstis for the IBM PC for only

S39.95. plus postage and handling. (Min

nesota SNOBOL4, Berstis International.

P.O. Box 441. Millwood. New York,

N.Y. 10546)

let DISKS= DISKS-1: let A$= 0THER$: let 0THER$=

DESTINATIONS: let DESTINATI0N$= A$: gosub HANOI:

let DISKS= DISKS+1: let A$= DESTINATION:

let DESTINATIONS^ 0THER$: let 0THER$= A$

Listing 1.

1 really enjoy your efforts and appre

ciate a magazine which makes me think

instead of feeding me product reviews of

dozens of things I'll never need and begin

ners' guides to choosing a modem, and

the like. Keep up the good work.

Chuck Somerviile

Dayton. Ohio

Author Hugh Aguilar responds: I would

like to thank Mr. Somerviilefor reading my

article With such interest. He has pointed

out some valid typographical errorsfor

which I take full responsibility. The English

algorithm is submitted asfollows:

A. If DISKS is greater than zero, then

solve by:

A.I Moving DISKS-1 disks from

FROM to OTHER

A.2 Moving the DISKS numbered

disk from FROM to

DESTINATION

A.3 Moving DISKS-1 disks from

OTHER to DESTINATION

B. End.

Also see Listing 1 (to replace Listing 2 in

the article), complete with plus and equal

signs, and Figure I (to replace Figure 3).

If it makes youfeet any better, Mr. Somer

viile, I used the article moneyfor a word-

processor to replace my typewriter.

It is important to differentiate between

tricks and techniques. Techniques are por

table between languages. Structured writ

ing and the evolving design ofcompilers is

an effort to close the gap between the tech

nique in the mind and the source on the

screen. Because perfection in this effort

hasn 't been reached, application-specific

tricks are necessary.

In BASIC it is necessary to simulate such

things as WHILE . . . REPEAT, DO ...

UNTIL, and recursive procedures—

which are an integral part ofreal languages.

1 picked up a good trickfor simulating the

DO ... UNTIL loop in BYTE afew years

ago. It works something like this:

for 1 - 0 to - 1 step - 1

(block)

1 = (conditional expression): next 1

This works when Booleans are represented

as a negative one or a zero. I discourage

the use ofthe INKEYS. Functions

shouldn 't be affecting globals or I/O as it

BASIC , variables, arrays, old

program VS, AS

AE, SS

& EM

,VS ,AS,AE ,SS,EM

, input , garbage , output

values names

without without

names values

strings

Figure 1.

does. This can cause bugs when expres

sions are processed in parallel.

Procedures, complete with locals, are

harder to simulate. Mr. Somerville 's efforts

can be seen in his HANOI program. My

efforts are described in the article. An

example ofusing a BASIC interpreter

tricked in this way can be seen in my

HANOIprogram. Ifeel that my method has

several advantages.

■ Vie chore ofstack housekeeping is hid

den from the BASICprogrammer. Viis

makes his or herjob easier and simplifies

the porting ofthe application to another

language.

■ Vie stack housekeeping is done in

assembly and hence is much faster.

■ Only locals are played around with in

the block. Vie GOSUB sets up the refer

ence points to the globols. and the

RETURN puts the computed values into

the actual variables. This has an advan

tage over the Pascal or ALGOL method of

using the reference points (passed with

VARj like variables. In a multitasking

environment the RETURN can waitfor a

signalfrom the supervisor before changing

the actual global variables and relinquish

ing control.

PROLOGV
j*.c.ii2Bfl' interpreter,

sample Prolog prcjroma

122-page manual and

pftaW and euuoai-

designed binder and

shpcase

ONLY

$6995
Not Copy

Protected

The Language of

Artificial Intelligence

HARDWARE

REQUIREMENTS

a PC-DOS/MS-DOS

1.4 or later

a 128 K RAM

a One dslt drive

Selected by Japan's Fifth Generation 1COT Project to create

machine-based intelligence, Prolog is the most widely used

artificial intelligence language worldwide.

POWERFUL AND ELEGANT

With over 70 predefined predicates, PROLOG V complies

with the spirit and syntax of Edinburgh Prolog as described

in Clocksin and Mellish's classic Programming in Prolog,

the book that set the de facto standard for Prolog.

IDEAL FOR CREATING:

Q relational data bases a automated design

a expert systems a abstract problem solving

o natural language systems d mathematical logic

o biochemical analysis

THE CHOICE OF UNIVERSITIES
Generous University site licenses have made PROLOG V

the choice of Universities from New England to Southern

California. Send your inquiry on University stationery, or

call for details.

NO RISK OFFER

Examine the package and documentation at our risk for

30 days. Then if you aren't fully satisfied with the quality of the

product, return PROLOG V with the distribution diskette still

sealed, and we'll refund your money in full.

PAYMENT ENCLOSED $
CA residenla add 6% sales tai

□ CHABGE MY: D MasterCard D Visa

Card No.

Signature

Exp. Date

CHALCEDONY

SOFTWARE

5580 LA 1OLLA BLVD

SUITE 126C
LA JOLLA, CA
92037

Mr./Mrs./Ms.

Address

print lull name!

City/State/Zip

PHONE ORDERS:

(619) 483-8513

SHIPPING:

S 5.00 U.S

7.50 Conado

10.00 Combean.

Hawaii Atr

20.00 Overseas Air

Allow 15 business

days lor personal

and company checks

COD orders not

accepted

Cultural influence

Dear Editor:

I very much enjoyed your interviews

with Donald Knuth and Niklaus Wirth. It

is interesting that the differences between

them arc not very great. 1 find myself

more in sympathy with Knuth. probably

because I learned programming on the job

rather than in school. Very early on. how

ever, I learned the theory of structured

programming and it has served me in

good stead.

Now that I have learned Pascal I am far

more fond of it than my earlier languages,

mainly because it makes possible very

clear expression of structured algorithms,

as Wuth intended. One thing aggravates

me about Pascal, however—and this is

exactly to the point that Knuth raises, the

need to write for other people to read, not

just for the computer to execute—namely,

the need to look to the very end of the

written program to find the topmost level

of control structure. This may be due to

Wirth's design of a single-pass compiler,

or perhaps it is a cultural reflection of the

Germanic tendency at the very end of the

sentence the verb to put, but it sureiy does

not make for readable code!

I much prefer to put the main level of

control first in the text, then the major

subroutines, then the more detailed levels,

etc., followed by utility routines that are

called from lots of other places. I sure

wish Pascal would let me do this.

Thanks for a stimulating and interesting

pair of articles.

Bill Meacham

Parlez-vous Forth?

Dear Editor:

As a newcomer to both the Macintosh

and MacFORTH. I read with interest

"Hashing Out Forth with Charles

Moore" (Mar. 1984. pp. 19-24). Ken

Takara's question—"Do you have a lan

guage that you particularly like for its

expressive qualities, something beyond

the usual claims of efficiency or mere

maintainability?"— brought to mind Ihe

following possibilities for the Forth lan

guage that I think few other languages

could accommodate so easily.

Hive in apart of Canada where the

principal language is French. This means

that when I am scouring the local libraries

for books to help learn programming, I

8
CIRCLE 49 ON READER SERVICE CARD

often end up reading books published in

French. It has occurred to me that it must

be difficult for non-English speaking peo

ple to learn computer programming when

the key words of the major languages are

in English.

Given the compactness of Forth and the

fact that many of the words are just char

acter symbols (@, !. :. etc.), it would be a

relatively easy task to produce a Forth

equivalent in almost any language.

Synonyms can easily be created for

most words just by a simple redefinition

(Echangc swap or maybe Sortie exit).

This makes the word available in users'

native tongue bui leaves the original

English word available if they should care

to use it as they grow more familiar with

Forth (or for other users in a multiuser

environment).

The character words could just

be assigned a new pronunciation (for

example, @ might become Chercher in

French). The more complex words would

require some redefinitions within the

Forth kernel, but I don't think this poses

any problem.

Of course, in any application the higher

level words would be given descriptive

names in the user's native language, as

happens now.

Apple Computer has recognized the

need to make its products more adaptable

to people all over the world. The ability of

the Macintosh to be reconfigured to for

eign character sets and the availability of

the keyboard in many international ver

sions makes the personal computer a lot

more personal (o a lot more people.

MacForth is a very creative environ

ment for programming the Mac. With

Forth's adaptability and Apple's con

tinued interest in the educational use of

computers, perhaps for the first time stu

dents everywhere will learn to program in

their native tongue.

This language adaptability also has

some interesting prospects given the

development of voice-activated comput

ers. One problem with this type ofcom-

munication is that each of us speaks with a

slightly different accent or pronunciation.

A set of Forth synonyms might be created

by each individual as he or she speaks the

commands into a microphone. These syn

onyms would be phonetic profiles of an

individual's pronunciation of a word and

would be handled internally by the Forth

architecture in much the same way as

ordinary word definitions. Thus a user

could "teach" the computer to understand

an accent just as we humans are able to

adapt our hearing to comprehend a wide

range of accents.

I believe that this ability of Forth to

adapt to individual requirements, even to

evolve into different native languages,

gives it expressive qualities that arc

unique.

Gram Corriveau

Pierrefonds, Que.

How to go
from

UNIXtoDOS
without

compromising
your

standards.
Its easy. Just get an industry standard file access

method that works on both.

C-ISAM™ from RDS.

It's been the UNIX™ standard for years (used in

more UNIX languages and programs than any other

access method), and it's fast becoming the standard

for DOS. Why?

Because of the way it works. Its B+ Tree index

ing structure offers unlimited indexes. There's also

automatic or manual record locking and optional

transaction audit trails. Plus index compression to

save disk space and cut access times.

How can we be so sure C-ISAM works so well?

We use it ourselves. It's a part of INFORMIX?

INFORMIX-SQL and File-it!: our best selling data

base management programs.

For an information packet, call (415) 424-1300.

Or write RDS, 2471 East Bayshore Road, Palo Alto,

CA 94303.

You'll see why anything less than C-ISAM is just

a compromise.

RELATIONAL DATABASE SYSTEMS, INC.

D lww>. Relational UmhaseSysiems. inc. LN1X Is a trademark of AT&T &■]! Laboratories INFORMIX is

CIRCLE 77 ON READER SERVICE CARD

The universal, super-efficient Lisp

for PC-DOS, MS-DOS, CP/M-86 and CP/M-80 systems.

■■ -; j '■-;■

Waltz Lisp is a very powerful and complete implementation of Lisp- It is similar

to Franz (the Lisp running under Unix), and is substantially compatible with

MacLisp and other mainframe Lisps.

In independent tests. Waltz Lisp

was up to twsnty(!) times faster

than competing microcomputer Lisps.

Easy to use.
Built-in WS-compatible full

screen program editor. Full

debugging and error handling facilities are

available at all limes No debuggers to link or load.

Random file access, binary die

support, and extensive string

operations make Waltz Lisp suitable for general

programming A text-file difference program and

other utilities are included m the package.

Functions of type lambda (expr).

nlambda (fexpr). lexpr. macro

Splicing and non-splicing character macros. Full

suite of mappers, iterators, etc. Long integers (up

to 611 digits). Fast list sorting using user defined

comparison predicates. Built-in prettyprinting and

formatting facilities. Over 250 functions in all.

fjWJWJk I1 insparenl |yi I ; n gi immable)

VlBSUlm handling of undefined function
references allows large programs to reside partially

on disk at run time. Optional automatic loading of

initialization file. User control over all aspects ol

the system. Assembly language interface

.Each function is

described in detail

The 300+ page manual includes an exhaustive

index and hundreds of illustrative examples

Superbly documented.

Order Waltz Lisp now-and receive free our

PROLOG Interpreter
Clog Prolog is a tiny (but very complete) Prolog

implementation written entirely in Waltz Lisp. In

addition to the full source code, the package

includes a 50 page Clog Manual.

16-bit versions require DOS 2.x or CP/M-86 and 90K

RAM (more recommended)

Z-80 version requires CP/M

2 x or 3 x and 48K RAM

minimum Waltz Lisp runs on

hundreds of different com

puter models and is available

wauilisp \ 1 m all disk formats

$169
"Manual only $30 (refundable

with order). Foreign orders, add S5 for surface mail, S20

for airmail COD add S3. Apple CP/M. hard sector, and 3"

formats add S15 MC/Visa accepted.

For further information or to order call

£3! 1-800-LIP-4000 dept 30 3
In Oregon and outside USA call 1-503-684-3000

15930 SW Colony PI ,

Portland. OR 97224INTERNATIONAL

CIRCLE 73 ON READER SERVICE CARD

Csharp Realtime Toolkit

Realtime on MSDOS? Csharp can do it! Get the tools without operating system overhead. Cut development time with C source

code for realtime data acquisition and control. Csharp includes: graphics, event handling, procedure scheduling, state system

control, and interrupt handling. Processor, device, and operating system independent. Csharp runs standalone or with: MSDOS,

PCDOS, or RT11. Csharp runs on: PDP-11 and IBM PC. Csharp includes drivers for Hercules and IBM graphics boards. Data

Translation and Metrabyte IO boards, real time clock, and more. Inquire for Victor 9000, Unix, and other systems. Price: $600

SYSTEMS
Systems Guild, Inc., P.O. Box 1085, Cambridge, MA 02142

(617) 451-8479

CIRCLE 27 ON READER SERVICE CARD

10

CROSSJTTHOUGHTS

B+ trees, B+ + trees, and statistics in Al

n last month's col

umn, we began a

discussion on

searching techniques that employ tree

structures. We indicated that binary trees

were suitable for memory-based searches.

We also introduced the B-iree structure,

which is used to perform a disk-based

search. We ended our discussion by point

ing out that B-tree searching has its short

comings. While searching for single keys

is still efficient, it is somewhat clumsy to

read a number ofkeys in sequence.

This month I want to discuss the B-f-

iree and its improved search strategy. B +

trec structures arc used by a number of

popular software products, such as dBase

III. Borland's Turbo Toolbox, and many

data management utility software librar

ies. In addition, 1 will present an enhance

ment of the B + tree itself, which we will

name the B + + tree.

Modification of the B-trcc was the

result of a need to reinforce the ability to

more easily obtain a complete or parlially

sorted list, including locating a certain

sought key and then asking for the next or

previous keys. This procedure dictates

that the leaf pages heeome doubly linked

lists, allow ing their traversal lo either the

left or right. Simultaneously, we need to

have copies of all the keys inserted in the

tree's leaves. Keys that are located in node

pages will be duplicated in the leaves.

This is the first major distinction of the

B+ tree: doubly linked leaves containing

all entered keys.

The second distinction comes from

realizing that since node keys are dupli

cated in the leaves, we can strip the record

data pointers from the node pages. This

makes the data structure of node pages

different from that of the leaves. By con

trast, the B-tree has the same structure for

both page types.

Figure 1 shows the B-t- tree. Notice that

keys in higher nodes are duplicated in

each lower node. This duplication is nec

essary to locate the proper leaf containing

a sought key.

Searching through the B-t- tree begins

at the root page. The keys are read and

compared with the search key. The out

come of the comparison normally leads to

the next page node. There the same key

comparison is carried out to select yet

another page node. Eventually the

By Namir Clement Shammas

obtained pointer will lead to a leaf page. A

final search in the leaf will determine

whether or not the sought key exists.

Thus, every search in a B+ tree is equiv

alent to the worst case search in a B-lree.

However, this fact is not regarded as a

serious drawback. Some people even

praise the consistency of the real time

involved in searching!

Listing I shows the PPL code for

searching in a B4- tree. The main Search

procedure calls upon SearcflNode and

SearchLeafUt scan the two different types

of key pages.

Growth of a B + tree and a B-trec are

similar. Initially, there is one empty page.

Keys are added and fill out the page.

When an attempt is made to add a key to a

full page, the page keys read in memory

and the new key is inserted in the key list

so that a perfect sorted ordei is

maintained.

Next, the median key is selected,

dividing the list into two halves. The

lower half is written back to the old page,

while the upper half is written to a newly

created page. Pointers are used 10 estab

lish the double link between the leaves.

The median itself is stored as the last item

of the original page. A copy of the median

key (without the data record pointer) is

stored in a new. higher-level node page.

This makes the B + tree grow by one

level. The page containing the median key

becomes the new root page. A comparison

B + tree: A partial view

Nodes —

of the median keys will guide the search

toward either leaf page.

This scenario takes place during the

early growth stages of the B-tree. When

more keys are added, they are inserted in

the leaf pages. As each leaf page becomes

full, it is split into halves and the median

key inserted into the last location in the

leaf pointing to the parent node page. If

the parent node page becomes full, the

same operation is carried out. resulting in

two new half-full nodes. Their median is

inserted or used to create a new parent

node page.

Deleting from B+ trees is more com

plex than deleting from a B-trce. If the

key deleted occurs in a leaf page only,

then the operation is straightforward.

Otherwise, we have two choices to make

regarding the deletion of keys from node

pages:

■ Delete the key from the leaf page only.

Keep the keys in the node pages, but mark

their status. Marking can be done by alter

ing a status Hag during the search to locate

the key to be deleted. Decide on a criteria

for packing the B+ tree.

■ Delete all occurrences of the key. This

will involve some major rearranging in

the node pages.

owlet's tumour

attention to the

B-r + tree. Its

structure serves to limit the duplication of

Root

GX IP VA

AY DD GX

11

keys and make deleting keys more simple.

The B+ + tree is different from ihc B +

tree in the following respects:

■ Each key in the node pages has only

one duplicate, located in the leaf pages.

■ The last stored key in each leaf is dedi

cated to duplicating node keys.

■ Zoom pointers are attached to each

node key. They point directly to the leaf

page containing the key with its record

data pointer.

■ Nodes are doubly linked lists.

■ Searching in a B+ + tree is not neces

sarily equivalent to the worst B-trec

search. With a B+ + tree you need one

more disk access than with a comparable

B-tree search.

When dealing with leaf pages, we

declare their capacity. MAXKEY. in

terms of keys that are not duplicated in

nodes. We deliberately save the

(MAX KEY + 1) position to store the

duplicate of a node key.

Each node page is supplied with zoom

pointers. If a search key equals a node

key. then it is pointless to continue

traversing node pages at lower levels. The

zoom pointer has the address of the leaf

page containing full information about the

searched key. The latter is systematicall)

located at the last "hidden" position in the

leaf page. Figure 2 shows the B+ + tree.

B+ + tree and B-t- tree searching are

similar, with one exception: once the

search key matches a node key. we use the

zoom pointer to locate the sought leaf

page and recall the last element in the leaf.

Listing 2 shows the PPLcode for search

ing in a B+ + tree.

Growth of the B + + tree is very similar

to that of the B+ tree, with some differ

ences, such as additional zoom pointers in

node pages. Allowing duplicate keys

requires establishing double links

between all pages. This is the price lo pay

for incorporating zoom pointers.

When a leaf page is reached via a zoom

pointer, its parent is unknown. Knowing

B + + tree: A partial view

the parent is not required until (he leaf is

full and we need to split the page and

insert a copy of the median key into the

parent node. Thus each leaf page must, in

turn, know its parent. A similar argument

is used for node pages also. In case of

overflowing keys, each node page must be

able to point to its parent.

Deleting a B + + tree key involves

removing it from the leaf pages ami any

node page that duplicates it. This requires

less node rearrangement than a B+ tree.

incc this issue is

dedicated to arti

ficial

intelligence, a subject of fascination to

many of us. I want to discuss some simple

aspects of using statistics in heuristic

systems.

During the last decade, much of the

programming I've done has revolved

around the use of regression analysis in

R&D. The major purpose of this work

was to study the correlations between

observed variables in an attempt to obtain

mathematical models that allow for future

predictions.

Attempting to determine the best model

is much like detective work. Statisticians

have devised simple and limited methods

to select the best models. Complications

arise due to two factors: applying mathe

matical transformations lo observed data

and the varying number of terms in a

mathematical regression model. There is

a vast number of combinations for the

candidate models.

I will discuss the simplest ease for a

regression system that learns from experi

ence. This type of system stores the

results of regression calculations and

builds a performance history for com

peting regression models.

Listing 3 shows the PPLcode for the

system used. The program is designed lo

consider a simple linear regression

between two variables. For sim-

Root page

GX ID UV

Node page

AL CD FU

plification. only linearized models are

considered, each having a slope and inter

cept, but applying different mathematical

transformations.

The system is designed to contain a

fixed number of competing models. This

is another simplification. The coefficient

of determination is used to indicate the

goodness of fit. Its values range from zero

(meaning no correlation exists) to one

{meaning a perfect correlation is

obtained).

Every time the program runs, it rends

two data files. The first contains the per

formance history of the models. The sec

ond contains the observations to be pro

cessed. The program will process the data

for each regression model.

Al! models are used for the first few

sets of data, because it is too early to dis-

qualif) any model. The coefficient of cor

relation is obtained for each model and is

used to update the performance history. A

value close to unity signals good perfor

mance. For the first few sets of data (three

in our case) the program stops after all the

models are processed. It is loo early lo

start screening the models.

On the other hand, when enough data

sets have been processed, we begin model

screening. We pick the best model, one

with the highest average coefficient of

determination. We compare all other

models to the selected one. Using a simple

statistical test, we determine, at a certain

probability level, whether any other

model's coefficient of determination has a

statistically different value. If il does, that

model is disqualified ami barred from fur

ther consideration. This is done by alter

ing the MAPQ identifier. After this is

done, the loop that processes the data will

bypass all disqualified models.

This process will continue until a single

model is found to fit. How soon we obtain

the model that fits depends on many

factors:

■ The nature of the system studied. If

simple linearized models are not really

suitable, then the screening process may

lake much longer to produce a single,

reliable model. Failing to do so is also

meaningful. It tells us that there is a more

complex correlation between the observed

variables.

■ The amount of data in each sei

processed.

■ The accuracy of the processed data.

Poor data will throw the system (and any

human) off.

These factors reflect a simple heuristic

system thai learns by storing intermediate

results and uses statistical methods to

draw conclusions. Its limitations include

the inability to vary the number of terms

in the mathematical regression model and

to deduce what mathematical trans

formations should be used. This area will

be discussed in a future column. H

Leaf pages

Figure 2.

12 COMPUTER LANGUAGES JULY 1985

PPL code for searching in a B+ tree

3+ tree

— DATA TYPE DECLARATION, Pascal style

Leafjtec = RECORD

Leaf_Left, Leaf_Right, Count_Leaf_Key: INTEGER

LeafJCey : ARRAY[1..MAXJCEY+1] OF KeyJJata

Leaf_Ptr : ARRAY[1..MAXJCEY+1] OF INTEGER

END RECORD

Node_Rec = RECORD

Count_NodeJCey : INTEGER

NodeJCey : ARRAY[1..MAXJCEY+1] OF Key_Data

Node_Ptr : ARRAY[1..MAX_KEY+1] OF INTEGER

END RECORD

— VARIABLE DECLARATION

Leaf : LeafJRec

Node : Node_Rec

ROOT, HEIGHT, MAXJCEY, NUM_PAGE : INTEGER

PROCEDURE Search(Soughtkey : Key_Data

ROOT, HEIGHT : INTEGER

VAR Found : BOOLEAN

VAR SoughtLeaf, Sought_Loc : INTEGER

VAR Leaf : Leaf_Rec)

— Search procedure for B+ tree

Found = FALSE

IF HEIGHT > 0 THEN

INITIALIZE: None

LOOP

— loop will conduct gradual descent in B+ tree

BEGIN IF HEIGHT <= 1 THEN EXIT END IF

READ "B+TREEJCey_File",ROOT,Node
SearchNode(SoughtKey,Node,Found,SoughtJ.oc)

ROOT = Node.NodeJ>tr[Sought_Loc]

HEIGHT -= 1

END LOOP

TERMINATE: SoughtLeaf = ROOT

READ "B+TREEJCeyJile",SoughtLeaf,Leaf

SearchLeaf(SoughtKey,Leaf.Found,Sought Loc)
END IF

END Search

Listing 1. (Continued on following page)

13

PROCEDURE SearchNode(SoughtKey : Key__Data;

Node : Node_Rec;

VAR Found : BOOLEAN;

VAR Sought_Loc : INTEGER)

BEGIN

IF SoughtKey < Node.Node__Key[1]

THEN

Found = FALSE

Sought_Loc = 1

ELSE

INTIALIZE: Sought_Loc - Node.Count_Node_Key

LOOP

BEGIN IF (SoughtKey >= Node.Node_Key[Sought_Loc]) OR

(SoughtJ.oc <= 1) THEN EXIT END IF

3ought__Loc -= 1

END LOOP

TERMINATE: Found = (SoughtKey = Node.Node_Jey[Sought_Loc])

END IF

END SearchNode

Listing 1. (Continued from preceding page)

PPL code for searching in a B++ tree

TLl. i. t- ra&
jJTT Li CC

— DATA TYPE DECLARATION, Pascal style

Leafjtec = RECORD

Leaf_Left, Leaf_Right, Count__Leaf_Jey, Node_Above : INTEGER

LeafJCey : ARRAY[1..MAXJCEY+1] OF Key_Data ~
Leaf_Ptr : ARRAY[1..MAXJCEY+1] OF INTEGER

END RECORD

Node_Rec = RECORD

Count_NodeJCey, Parent_Node : INTEGER

NodeJCey : ARRAY[1..MAX_KEY+1] OF Key_Data

Node_Ptr, ZoomPtr : ARRAY[1..MAXJCEY+1] OF INTEGER

END RECORD

— VARIABLE DECLARATION

Leaf : Leaf_Rec

Node : Node__Rec

ROOT, HEIGHT, MAXJCEY, NUM_PAGE : INTEGER

PROCEDURE Search(Soughtkey : Key_Data

ROOT, HEIGHT : INTEGER

VAR Found : BOOLEAN

VAR SoughtLeaf, Sought_Loc : INTEGER

VAR Leaf : Leaf_Rec)

Listing 2. (Continued on following page}

14 COMPUTER LANGUAGE* JULY I9B5

Found = FALSE

IF HEIGHT > 0 THEN

INITIALIZE: None

LOOP

BEGIN IF HEIGHT <= 1 THEN EXIT END IF

READ #2,ROOT,Node

SearchNode(SoughtKey,Node,Found,Sought_Loc)

IF Found THEN HEIGHT = 1; ROOT = Node.Zoora_Ptr[Sought_Loc]

ELSE HEIGHT -= 1; ROOT = Node.Node_Ptr[Sought_Loc]

END LOOP

TERMINATE: SoughtLeaf = ROOT

READ #2,SoughtLeaf,Leaf

IF NOT Found THEN SearchLeaf(SoughtKey,Leaf,Found,Sought_Loc)

ELSE Sought__Loc = MAXJCEY + 1

END IF

END Search

— Procedures SearchNode and SearchLeaf are identical to those used

— with the B+ tree.

Listing 2. (Continued from preceding poge)

PPL code for a heuristic statistical system.

PROGRAM SMART_SYSTEM

— Program to study the best model to correlate observed

— variables X and Y. The models used are of the following

— general type:

f(Y) = intercept + slope g(X)

— where f(Y) is some function of variable Y.

— where g(X) is some function of variable X.

— Performance history file contains the following information

MAX_M0DEL : the maximum number of models compared

Reraaining_Models : The number of remaining models

MAP(): A string containing MAX_MODEL characters to map the status

of each model. If position i has "Y" then the model is

still considered. Otherwise it is disqualified.

Model records composed of the following:

Sum_R2 : Sum of the coefficient of determination values

Sum_Sqr_R2 : Sum of the squares of the coefficient of

determination values

Model_Name : A string containing the model name.

— N is the number of data sets processed

— X() and Y() are the arrays for the observations.

Listing 3. (Confinued on following page)

15

BEGIN

Read performance history file

IF Remaining_Models = 1 THEN DISPLAY "One model, program stopped"

Halt program

END IF

Read observed data file

N += 1

INITIALIZE: None

LOOP <Model>

BEGIN For Model = 1 TO MAX_MODEL

INITIALIZE: Set statistical summations to zero

i = 1

LOOP <Data>

BEGIN IF (i > Nura_Data) OR (MAP(Model) <> "Y")

THEN EXIT <Data> END IF

CASE i OF

WHEN 1 -> Xreg - X(i); Yreg = Y(i) — Linear model

WHEN 2 => Xreg = Ln(X(i)); Yreg = Y(i) — Exponential model

WHEN 3 => Xreg = X(i); Yreg = Ln(Y(i)) — Logarithmic model

WHEN 4 => Xreg = Ln(X(i); Yreg = Ln(Y(i)) — Power model

END CASE

Update summations with values of Xreg and Yreg

i +» 1

END LOOP <Data>

TERMINATE: None

Calculate Slope, intercept and coefficient of determination, R2

SumJ?2 += R2; Sum_Sqr_R2 += R2 * R2

END LOOP <Model>

IF N > 3 THEN

Best = index of model with highest average R2 value.

INITIALIZE: Display "Best model is";Model_Name(Best)

TableJT = "Tabulated" Student-t value calculated
at (N-2) degrees of freedom and

selected probability level.

LOOP <Compare>

BEGIN For Model = 1 to MAX__M0DEL

IF (Model <> Best) AND (MAP(Model) = "Y") THEN

— Calculate Student-t statistics

Terml = Sqrt(2/N)

Term2 - Sqrt((Sum_Sqr_R2(Best) + Sum_Sqr_R2(Model)

- Sqr(Sum_R2(Best))/N - Sqr(Sum_R2(Model))/N)

/ (2 * N - 2))
CalcT = (Sum_R2(Best) - Sum_R2(Model))/(N * Terml * Term2)

IF ABS(CalcT) > Table_T THEN MAP(Model) = "N"

Remaining__Models -= 1

END IF

END IF

END LOOP <Compare>

TERMINATE: Display all models still in competition

END IF

END SMART_SYSTEM

Listing 3. (Continued from preceding page)

16 COMPUTER LANGUAGE ■ JULY 1985

Slash Programming Time in Half!

With r+m rwy

FirsTime
• Fast program entry through single keystroke statement generators.

• Fast editing through syntax oriented cursor movements.

• Dramatically reduced debugging time through immediate syntax checking.

• Fast development through unique programmer oriented features.

• Automatic program formatter.

FirsTime is a true syntax directed editor.

FirsTime ensures the integrity of your programs by

performing all editing tasks like moves, inserts and

deletes along the syntactic elements of a program.

For example, when you move an IF statement,

FirsTime will move the corresponding THEN and

ELSE clauses with it.

Even FirsTime's cursor movements are by syntax

elements instead of characters. The cursor automati

cally skips over blank spaces and required keywords

and goes directly to the next editable position.

FirsTime is a Syntax Checker

FirsTime checks the syntax of your program

statements, and also:

• Semantics like undefined variables and

mismatched statement types.

• The contents of include files and macro

expansions.

• Statements for errors as they are entered

and warns you immediately.

FirsTime is a Program Formatter

FirsTime automatically indents statements as they

are entered, saving you from having to track indenta

tion levels and count spaces.

FirsTime has Unique Features

No other editor offer these features:

The Zoom commandgives you a top down view

of your program logic.

The View command displays the contents of

include files and macro expansions. This is

valuable to sophisticated programmers writing

complex code or to those updating unfamiliar

programs.

FirsTime's Transform command lets you change

a statement to another similar one with just two

keystrokes. For example, you can instantly trans

form a FOR statement into a WHILE statement.

The Move at Same Level command moves the

cursor up or down to the next statement at the

same indentation level. This is very useful. For

example, you can use it to locate the ELSE

clause that corresponds to a given THEN clause

or to traverse a program one procedure at a

time.

FirsTime is Unparalleled

FirsTime is the most advanced syntax directed

editor available. It makes programming faster, easier

and more fun.

TO ORDER CALL (201) 741-8188

or write:

Spruce Technology Corporation

189 E. Bergen Place

Red Bank, NJ 07701

In Germany, Austria and Switzerland contact:

Markt & Technik Software Verlag

Munchen, W. Germany

(089)4613-0

FirsTime is a trademark ol Spruce Technology Corporalion • MS-DOS is a trademark ol Microsoft Corpoialion

IBM is a trademark o! Iniernahonai Business Machines. Inc • Turbo Pascal is a trademark ol Borland International CIRCLE 26 ON READER SERVICE CARD

MorePowerThan You ThoughtPossible
Arity offers the first serious implementation of Prolog for IBM personal computers. Arity/Pro

log is a powerful, highly optimized, and extended version of the logic programming

language Prolog. Imagine building software applications with a language that solves prob

lems through deduction and logical inference. The task of creating complex programs is

much faster and easier, resulting in lower development costs'. Arity/Prolog is now in use in a

wide range of applications in industry, business, research, and education. The solution—

the Arity/Prolog Interpreter:

Source level debugger

Virtual databases, each

with a workspace of 16

megabytes

Floating-point

arithmetic

String support for

efficient text handling

interface to assembly

language and'C

Text screen

manipulation

Integrated program

ming shell to MSDOS

Comprehensive set of

evaluable predicates

Definite clause

grammar support

Arity/Prolog Interpreter $495.00
Arity also offers the Arity/Prolog Compiler and Interpreter, a sophisticated development envi

ronment for building Al applications. Essential for producing fast, serious production code.

Arity/Prolog Compiler and Interpreter $1950.00

The Arity/Prolog Demo Disk is available for $19.95. ■ Arity/Prolog products run on the IBM PC,

XT, AT, and all IBM compatibles. ■ To order, call (617) 371-2422 or use the order form below.

358 Baker Avenue, Concord, MA 01742

Organization

Quantity Product

AMylProlog

Compiler A Inlerarelo

Arity/Prolog

Inlcorelet

Unit Price

S 19.95

Enclosed is a check or

money order to Arily Corporation

Please bill my

I Mastercard Visa . I American Express

Account i

Valid J

Subtotal

MA residents add 5% sales tax

Total Amount

Total Price

Please send me more information about

Arity and Arity/Prolog

358 Baker Avenue, Concord, MA 01742 m-ao-:|

CIRCLE 48 ON READER SERVICE CARD

18 COMPUTER LANGUAGE ■ JULY 1985

COMPUTERVISIONS

Al innovator Terry Winogracl

rtificial intel

ligence pioneer

Terry Winograd

doesn't intend to put programmers out of

work by designing the next generation of

computer languages. "They'd just

laugh,1' he say.s. "Programmers know you

can't automate them out of existence."

But while they may be spared the irony of

being replaced by computers, program

mers can expect a scramble to keep up as

Winograd's research revolutionizes the

state of theart of software.

Sitting in his computer science depart

ment office at Stanford University in Palo

Alto. Calif., his desk overflowing with

galleys of his most recent book, piles of

newspaper clippings, and literature

related to his work against military fund

ing of university computer science

research, Terry Winograd speaks quickly,

hurrying to make his words keep up with

the flow of his ideas. It's a level of

excitement and enthusiasm he's main

tained since he laid eyes on his first com

puter back in 1965.

The whiz kid from Colorado has been

fascinated by numbers as long as he can

remember. His first encounter with a

computer came in college while he was

working on his B.A. in mathematics.

"There was a doctor at the local hospital

who moved to our town from a larger uni

versity and brought with him a Control

Data 160 with 4K of 12-bit memory, a

paper-tape reader, and a paper-tape

punch." he recalls. The doctor called Col

orado College to sec if they had any bright

students who might be interested in work

ing with the computer to help with his

research project on cancer radiation

therapy.

"I knew nothing about computers or

programming." he says. "What 1 got was

the machine and the instruction manual

for the machine. I learned to program the

thing by punching the console buttons. I

used io have (he repairman in every cou

ple of weeks to repair the buttons, and I

don't think he ever figured out what was

going on."

His Ph.D. dissertation, published in

By Doug Millison

1970 out of the Massachusetts Institute of

Technology. Cambridge. Mass., was a

pioneering effort in the field, demonstra

ting how successful AI programs could be

within a restricted domain. The dis

sertation centered on SHRDLU. a LISP

program to take English commands and

questions and give answers. Winograd

wanted to design a program that would

enable an imaginary robot hand and eye

system to recognize, locale, and manipu

late a universe of colored cubes and pyr

amids existing as a model within the com

puter itself. In SHRDLU, Winograd

addressed the task of designing a system

with which humans could communicate in

natural language.

Responding to a request to place one

block on top of another, SHRDLU would

assess the universe of blocks on the table,

develop a strategy, then execute it. The

program could answer questions about its

moves, carrying out the conversation in

simple sentences and appearing to under

stand questions put to it, then generating

appropriate responses. "SHRDLU was a

milestone for me," Winograd says, "and I

think it was for the lab and AI in general

because it pulled together a lot of the ideas

that had been floating around in AI into a

very visible, concrete program."

His choice of SHRDLU as a name for

the program reveals a subtle sense of

humor and a streak of irreverence.

SHRDLU happens to be the seventh

through 12th most frequently used letters

in the English alphabet, after E T A I O N.

In earlier days of Linotype machines and

hand-set type, keyboards were arranged

in that manner instead of the QWERTY

arrangement of today's typewriters and

terminal keyboards. Instead of tediously

going back to correct mistakes, type

setters would insert SHRDLU several

times to jumble the line of text, counting

on the proofreaders to throw out the line.

Occasionally the proofreader would miss

it. resulting in the absurd repetition of

SHRDLU SHRDLU SHRDLU

"I first saw it in Mad magazine. They

started using SHRDLU as a nonsense

name for some stupid character or some

thing. I wanted a name for my program

that wasn't an acronym, just a sequence of

letters with no intrinsic meaning." he

savs.

l MIT, Winograd

had found him

self working in

the most exciting arena in computer

research. Notorious in the annals of the

history of computing, the AI Lab at MIT

harbored a generation of researchers

whose work shaped the AI field we know

today.

The PDP-6 in the lab had become the

center of cult like devotion for those bit

ten by (he bug. Because there was only

one computer and a small number of ter

minals, competition became intense

among those who wanted access. In his

book Hackers, Heroes ofthe Computer

Revolution. Steven Levy describes two

opposing groups at the lab: the graduate

sludents—disciples of the IBM batch-

processing military research mentality,

interested only in their applications pro

grams and academics—and the hackers—

renegades dedicated to exploring the lim

its of the machine in an unrestricted

atmosphere of anarchistic freedom.

Winograd remembers straddling the

fence. He was a graduate student working

hard on his applications-oriented AI

research for his Ph.D. But his ability to

hack code gave him a grudging respect for

the hardcore hackers, and they found

19

SHRDLU. his pioneering Af program, an

■■interesting hack."

"There was definitely the sense of

'Let's see what we can come up with' that

led to everything from Space War to the

artificial intelligence research I was

involved in." he remembers.

Developments in the industry since

those early days at MIT have rendered

moot much of the hacker-vs.-computer-

establishment debate. Although Winograd

Ends the hackers vs. IBM dichotomy

far too simplistic to characterize what was

happening at the MIT AI Lab. he says that

real issues lurking behind that metaphor

still haunt decision making in computer

research policy today.

"The cost/benefit view says you take

your resources and figure out what's

going to be useful to somebody. On the

other side is the idea that you find the peo

ple who are best qualified to play with the

computers and tel! them. 'Do whatever

you can." Nobody but the most extreme

hackers would say the U.S. government

should set up a billion dollar fund to let

(he hackers play." he observes.

Winograd agrees that hackers repre

sented a useful reaction to the IBM men

tality of regarding the machines with awe

and deferring lo their keepers as if to high

priests of some arcane religious cult. But

he sees a downside to hacker anarchism in

its inability to meet society's needs for

computer research.

"I think the negative side of the hacker

thing is that it really doesn't connect with

what it is that people can do and want to

do with computers," says Winograd. "It's

purely technology-driven: what can you

make the machine do. whether or not it's

relevant to anybody. We need to drive the

technology from an understanding of the

social situation, not just pursue tech

nology for its own sake. Fortunately,

computing now is cheap, you have

anarchy by default. Anybody who can go

buy a Macintosh or PC or whatever can

start doing things, interesting things."

In those early days at the MIT AI Lab.

the possibilities for truly intelligent

machines seemed almost unlimited, if

only enough resources were applied. The

years since have seen changes in the field

of AI itself and in Winograd's

expectations for AI.

"Nobody can say, "It's been 10 years

and we now have this big wonderful AI

program that does all these wonderfully

intelligent things.' If you believe in AI.

things look good, and if you don't believe

in it, you sec stagnation." he says.

Winograd sees two distinct and funda

mental developments in AI. "First, there

has been a recognition that there arc a lol

of salable things you can do that don't

involve real intelligence," he observes.

"There's been a mass diversion of effort

away from the larger AI problem and into

expert systems, front ends, things which

are much more limited but which you can

sell."

The second development concerns the

atmosphere surrounding AI research. "I

think among the main people in the field

there is much more caution than 10 years

ago. Now people like [Marvin] Minsky

and [Roger] Schank say, "This is very

hard, it's going to take a long time, we

really aren't there yet.' where lOyears

ago they said "We're going great, we're

almost there." There's been a definite shift

of mood." Winograd says.

Winograd does not

apply for or accept any

Pentagon funding for

his research. His view

is that the military way

of doing businessand

looking at the world

has a negative impact

on researchers and on

society as a whole.

Many observers were deeply critical of

the early claims of AI researchers. They

challenged the belief that machines could

think or be considered intelligent. They

questioned the existence of any clear

understanding of "intelligence" or

"thinking" on which meaningful research

could be based. In his book What Comput

ers Can 't Do, philosopher Hubert Dreyfus

argued that the overoplimism about AI

and expert systems is based on a mis

understanding of whal it is that people do

when they are "intelligent" or "expert."

Winograd's colleague Joseph Wei-

zenbaum elaborated a moral argument in

Computer Power and Human Reason, con

tending that some tasks ought to be

attempted only by humans.

Winograd began exploring the potential

and limits of computers and how to dis

tinguish what computers do from human

thought. "I have really come much closer

to a way of looking at AI like Weizenbaum

or Dreyfus, as opposed to the gung-ho

MIT AI Lab spirit." Winograd says.

With a background in linguistics as well

as math and computers, Winograd was

acutely aware of how the words andcon-

cepis we use shape the way we think about

computers, how the metaphors we employ

tend to channel and circumscribe the pos

sibilities we envision for computers and

for the people who are supposed to use

and benefit from computers. He addresses

these and other questions in a new book to

be published this summer, Understanding

Computers and Cognition. Co-author

Fernando Flores. a former finance and

economics minister in the Chilean govern

ment of Salvador Allcndc. had been

instrumental in a large-scale project to

apply cybernetic theory to practical man

agement problems.

"To oversimplify, if I say, 'This

machine is making judgments' and you

want lo know what the machine is really

doing, I have to reply, "It's doing these

calculations.' Now. there's a pressure to

say that these calculations constitute mak

ing judgments. This pushes out of the pro

gram and out of our notion of what it is the

program should be doing, things which

can't be formulated in calculations. We

devalue the currency by saying "This

computer is teaching.' or 'This computer

is making judgments." This affects our

expectations of what people should do

when they do the same things." Winograd

explains.

Underlying AI research is the rede

finition of intelligence to include

machines. Winograd warns this could

change the way we deal with children and

education. "If intelligence is defined as

the ability to do problem solving, modeled

as a heuristic search in a problem space,

then education will focus on those things

that increase rational problem-solving

skills in areas where those skills are basic.

Writing a computer program is a very

good context for that." he explains.

The danger is that educators might shy

away from contexts where rational prob

lem solving does not work so well, which

includes most interpersonal skills. "It

turns out that rational problem solving is

usable, but it doesn't tell you the whole

story. It's like the old saying that if you

have a hammer, then everything in the

world looks like a nail," says Winograd.

ust as our under

standing of com

puters changes

our definition of intelligence, so our con

cept of the human mind itself has been

reformulated to follow the computer

model. Current brain research takes for

granted a view of the brain as a compli

cated network of information-processing

circuits.

Winograd has thought deeply about this

"mind as machine" metaphor. In it he

sees two different part-truths that have

been combined. The first is the belief that

the mind is mechanistic, with no soul or

vital force. Given the state of religion and

secular humanism in society today, this

mechanistic view of the brain is more or

less taken for granted. The second is that

digital computers operate in a way that

can be characterized elegantly as bytes,

bits, transmission, logical choice, rational

20 COMPUTER LANGUAGE ■ JULY 1985

Now Supports Microsoft 3.0

$14995

C
Windows that open, close, grow, shrink, move & scroll.
Input validation,formatting, editing & processing. Help

messages by field, by key word & fiom help file. Date &
time math, attribute control, pull down menus, and more!

Now even your simplest applications can easily include

features that you didn't used to have time or patience enough

to tackle. Vitamin C is more than a library full of building

blocks. It is a well planned, tightly woven set of high

level functions for quick results PLUS low level rou

tines for complete control. Complete source code,

no royalties. Great manual with tutorial and

call \ reference. Sample programs too! For

TODAY ! N. Microsoft 3.0, CI-C86, & Lattice C. / Programming
Or send 149.95+S. Call for other versions,: y< Box 112097

S3 shipping and \^SyStemS & prodllCtS.^-^ Carrollton, Tx 75011
handling. Texas add ^ -~~**^ (214)243-6197
sales tax. MasterCard and Visa accepted. Extended Technical support availab le.

CIRCLE 52 ON READER SERVICE CARD

"INSIGHT is essentially the equivalent or better than

any other tool available for the personal computer."

Paul Harmon auihor of EXpert Svsfems. Artificial Intelligence, m Business

Turn your PC into an expert.

Give it Insight, or give it Insight 2.

Both let you create knowledge base

systems using any PC-compatible

text editor.

Insight not only simplifies access

to lots of information, it analyzes

and offers solutions. For entry-level

operators it's a perfect procedural

training package to help build

and implement knowledge base

software.

Level .

Five

Research, Inc.

Insight 2 is more than just an

"expert." It's a knowledge base

engineering tool with application

capabilities. It can call up Pascal

programs, read and write dBASE 11s

files, and its decision-making pro

cess can tie in directly to your

existing databases. Run-only ver

sions also can be developed and

distributed.

Two unique packages from the

same expert idea.

Insight'" ($95) and Insight 2 m (S485)

run on the IBM 9pC. DEC Rainbow, and

Victor" 9000.

macintosh

Programmer's

Librarg

Affordable, Reliable

Tools for Programmers

From the author of Pascal/MT+

Tardia Software presents the

Mac Programmer's Library

A collection of tools lor the

serious Mac programmer. Tools

which, save you hours of work

written by an experienced

Macintosh programmer. Tardis

Software is committed to giving

you reliable tools at a good

price. Order 3 and save 10%,

order all 5 and save 20%!.

The Macintosh Programmer's

Library current contents:

■ FastFinder - command-line

oriented user-interface.

■ ToolPak 1 - diff, search, dump

ASM xref, librarian

■ ToolPak 2 - c beautifier, tool

subroutines (C source) and

Cxref

■ C-leaner - expert system

program, tells you where and

how to optimise existing code

■ MacMake - program, maint.

utility, simplifies re-builds

All are $49-95! and. are

AVAILABLE HOV

MC/Visa. COD's and POs add

$5 for handling. Price incl.

UPS ground, Blue Label add $5

Tardis

Software

2817 Sloat Road

Pebble Beach, CA

(408) 372-1722

CIRCLE 82 ON READER SERVICE CARD

4980 South A-l-A Melbourne Beach, Florida 32951 (305) 729-9046

CIRCLE 64 ON READER SERVICE CARD

21

problem-solving, and information flow.

Therefore, the equation goes, the mind

must be that kind ofmachine.

Winograd finds it plausible that there

might be a strictly mechanical explanation

for what the brain does. But that doesn't

automatically lead to the conclusion that

brain function corresponds to the way a

computer is structured into information-

processing elements. "You can't say,

"This element sent that message of so

many bits to that element, because the

brain isn't constructed using those prin

ciples." he explains.

Winograd feels the current vogue for

the left-brain/right-brain model is a par

tial retreat from the mind as machine

metaphor. Those who believe that the

mind is basically a computer now claim

only the logical left half of the brain is.

leaving the intuitive right brain for those

fuzzy-minded individuals who can't swal

low the whole machine.

Winograd sees a further danger accom

panying the implementation of expert sys

tems. Computers are increasingly seen to

be infallible, and people, especially

bureaucrats, find it easy to hide behind

the computer. Responsibility is shifted

away from the people who are responsible

for policy and onto the computer in which

decision-making power has been

embodied. Problems arising from inter

actions with expert systems could lead to

legal disputes, as in trying to ascertain

who is responsible for the mistakes made

by a medical AI program or the disasters

resulting from a doctor's decision not to

follow the expert system's advice.

The example of a medical expert sys-

iem is a good one to illustrate Winograd's

current thinking on AI. End-user percep-

CP/M-80 C Programmers ...

Save time
... with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Ultra-fast compilation, linkage and

execution trial produce directly

eieculabie 8C8&Z8C CPiM command

fites.

A comprehensive debugger that

traces program execution and

interactively displays Both focal ana

external vanaDies Dy name and

proper type

Dynamic overlays thai allow for run

time segmentation of programs 100

large to lit mlo memory.

• A 120-function library written in both

C and assemtiiy language with lull

source code.

Plus . ..
- A inorougn, easy-to-read, 181-oage

use's manual complete with

tutonais. hmis. error messages and

an easy-to-use inoe« — it's the

perfect manual lor ihe beginner and

trie seasoned professional.

An attractive selection ol samole

programs, including MODEM-

compattble lelecommunications.

CP/U system utilities, games and

more.

A nationwide BDS C User's Group

IS 10 membership lee — application

included with package; trial offers a

newsletter, BDS C updates and

access to public domain C utilities.

Reviewers everywhere have

praised BDS C lor its elegant

operation and optimal use ol

CP/M resources Above all. BDS C

has been hailed lor it's remarkable

speed.

BYTE Magazine placed BDS

C ahead ol all other 8080/Z80 C

compilers tested lor fastest

object-code execution with all

available speed-up options in use.

In addition, BDS C's speed ol

compilation was almost twice as

last as its closet competitor

(benchmark for this test was tile

Sieve ol Eratosthenes).

"1 recommend both ihe

language and the implementation

by BDS very highly."

Tim Pujjh. Jr.

in Infoi-orld

PcTfominncs: Excellent

Documentation: F.itrlient

East of Use: ExctUtnL M

In/nWortd

Software Iteport Card

". .. a Huperim buy ..."

Van Court Hare

in lifelines/The Software

M

Don't waste another minute on

a slow language processor. Order

your BDS C Compiler today!

Complete Package (two 8" 5SS0 disks.

181-page rnanual) S15°
Free shiooirrg on prepaid orders inside

USA.

V1SA/MC. COD's. rush orders accepted.

Call tor information on olher disk

formats.

BDS C is Oosrgnefl !o> uie wtti CP/M-SO

operating sysioms. version 2.2. or higher n is

not currency availaBle lor CPiM-86 o' MS-

DOS.

BD Software, Inc.

P.O. Box 2368

Cambridge, MA 02238

(617) 576-3828

tionof the system turns out to be just as

important as what the system actually

does.

The insights of many physicians could

contribute to a system called a "physician

expert system" or an "automated text

book." Winograd says people want to

believe in the myth of computer infal

libility, to believe computers are

becoming more intelligent than their cre

ators and that their speed and access to

memory banks can replace human deci

sion making in complex situations. Thus,

people will have a tendency to look to the

machine to replace the physician, invest

ing the machine with the confidence and

trust essential to the relationship we enjoy

with human physicians.

"If you ask, 'Would you like this auto

mated textbook, or would you rather have

this doctor-expert machine?" the intel

ligent machine is so much more glorious

sounding and has so much more sales

appeal that it is the thing people want. But

what you get can only be the opinions of

various doctors, not the knowledge of

medicine," Winograd says. "I think

expectations will bedashed. When people

say. "OK, I want a doctor," they will try the

machine and find out that it isn't a doctor

but that it does give them useful informa

tion. Then other companies will come in

behind and say, 'Look, here's a machine

which is organized much better to give

you what you really need.1 "

Winograd's current research buiids on

this more realistic appraisal of AI and on

his interest in natural language syntax and

semantics. He is acutely aware of the

technical complexities of natural language

processing and the subtle interpretations

people make which must somehow be

translated if we are to interact with com

puters using ordinary language. "The

main problem I am interested in is how

you can make a formal analysis of linguis

tic structure, both in terms of meaning

and grammar, which will give you the

necessary framework for computer lan

guages." he says.

This approach led to work that con

tinues the line of computer language evo

lution that Winograd traces from machine

language to assembly language, to lan

guages like FORTRAN, and onto fourth

generation languages such as MAPPER.

"What I'm doing I don'l like to call pro

gramming languages." he says. "I

haven't got a name I'm totally happy with,

but at the moment I'm calling them system

development languages.*"

He researches these new languages on a

Xerox LISP machine. "LISP is obviously

not a host for widespread applications on

today's machines, but I start at the highest

level of interactive facilities with it," he

explains.

CIRCLE 4 ON READER SERVICE CARD

22 COMPUTER LANGUAGE ■ JULY 1985

He begins by looking at the "layers of

thinking" in the process of going from a

task he wanis a computer to handle to a

piece of code running on the computer

system. "Starting from the outside, you

first decide which aspects of the situation

are going to be formalized and how. You

need an abstraction to be the basis ofthe

program before any details of the code or

data structures, or anything else. You map

the fuzzy, open-ended view of the world

onto a set of terms, measurements, and

values which then can be represented on a

computer," he says.

He wants to bridge the gap between the

person who specifies which functions and

tasks the computer needs to perform and

the translation of those requirements into

code.

"I'm interested in what a language or

set of languages would look like aimed

toward that outside end instead of in

toward machine execution," he says.

""They would allow you to state things at a

level of abstraction one step further from

machine execution into the conceptual

domain of what you're trying to do."

If the languages are successful. Win-

ograd says one result might be the devel

opment of automated programming. Once

the application is specified on the more

abstract level of his new languages, the

translation into code could proceed auto

matically or in a heavily machine-aided

way.

Short of completely automated pro

gramming, practical tools for checking

programs will result. "One of the most

useful features of structured program

ming is that it prevents you from making

certain kinds of mundane errors—the kind

caught by a syntax checker, for example.

At the level of my new languages, you

could check for certain kinds of concep

tual errors which wouldn't get caught by a

compiler,1' explains Winograd.

An enhanced ability to reuse code mod

ules is another important goal. Detail is

rendered idiosyncratic by the language

used to code the program, requiring a dif

ficult line-by-line translation to move

from one system to another. "By going up

to higher levels of abstraction you get

more "shareability."* Winograd says. "I

think you can build libraries of these

things."

Winograd is quick to point out that this

is not a new idea. "It's the same idea that

you had in FORTRAN, which is if you

start at the bottom and ask "What does the

machine do?" you can gradually work

your way up to things which are closer to

what the problem is and away from the

details of load register, store register,

multiply, and so on," he explains.

Automating the programming process

will shift the programmer's role. "I

believe there will always be crucial deci

sions for programmers to make. End

users will always need somebody to go in

and say, 'No. don't implement that feature

that way, do it this way." or 'We should

represent that feature with this sort of data

structure because another structure won't

be as efficient," and the systems program

mer will move to the conceptual level of

saying. 'OK, we need files, we need

directories, we need to deal with nodes,

with networks.' Programmers are already

doing that kind of thinking in an informal

way," Winograd says, "because if they

didn't, they wouldn't know where to start

with their code. What I'm trying to do

will make the process more systematic

and give them more help."

Winograd predicts that systems util

ities, compilers, and most of the other

programming tools currently in use will

be integrated into this new generation of

system development languages.

Depending on the requirements of a par

ticular situation, the fundamental algo

rithm that structures the program may or

may not need to be thought of by the pro

grammer. "There are certain aspects

where, given a declarative, nonprocedural

statement of relationships, the machine

could select the algorithm by itself; but

that's limited to certain aspects of pro

gramming, and within those aspects I

would like to sec that happen. In other

places what you would need to specify is

precisely the algorithm, only at a higher

level of abstraction." he observes.

The Ultimate Programmer's Editor

WENDIN'S
SUPER PROGRAMMERS edit in XTC to make software development

a snap! Just look at these powerful features:

MULTITASKING
XTC's built-in multitasking lets you run your macros in the

foreground or independently in the background while you

continue editing. A background process has lull access to

editor resources, and can be used to translate code from one language to another in REAL

TIME, print files in the background, or even scan syntax while you type in code. Best of all, you

can use XTC to edit source and documentation in any programming language!

COMPILE IN WINDOWS
All DOS compilers and utilities can be executed from

within XTC using a single keystroke. While it runs. XTC

captures your compiler's output and redirects it inlo your

text, so you can compare compiler messages with your source code ON THE SAME SCREEN.

And using XTC's macro language, Turbo Pascal is literally only a keystroke away. You can use

other compilers and utilities inside XTC too — like Lattice "C." Microsoft Pascal, and IBM's

Basic, to name a few.

MACRO LANGUAGE
XTC has the most powerful macro langague in the editing

world. XTC's macros aren't just keystrokes assigned lo

keys; they're real programs that can be used to automati

cally edit source code and data files. Like any real programming language, XTC has control

structures like IF THEN ELSE, WHILE DO, REPEAT UNTIL, FOR NEXT, DUPLICATE N TIMES.

INDEFINITE LOOP, EXIT, and BREAK LOOP. XTC also has INTEGER. BOOLEAN, and

STRiNG variables 10 hold numbers, conditions, and pieces ol text.

WINDOWS & BUFFERS
With XTC you can display up to 8 different files or parts of

the same file on the screen at once. XTC's windows are

programmable and can even be linked together to share

files. XTC also has 20 other buffers that you can use to hold files and blocks of text.

INCREDIBLE EXTRAS!
XTC comes with 7,000 lines of source code jam-packed

onto two DSDD disks. Includes 13 modules written in

Pascal, and 2 assembly libraries you can use to access

ihe PC's screen, intercept software interrupts (like INT 21H functions), allocate and deallocate

memory, and load and execute programs. It's all included FREE for your recreation and

enjoyment!

UNDO N TIMES

REMOVE WORDSTAR HIGH

BITS

EDIT GRAPHICS DISPLAYS

AUTOiNDENTING MODE

TAB EXPANSION/

COMPRESSION MODE

EXTRA LONG LINES

MACRO COMPILER

TELEPHONE SUPPORT

150 PAGES OF

DOCUMENTATION

RUNS ON IBM / PC, XT, AND

/AT COMPUTERS (AND

TRUE COMPATIBLES)

INCLUDED FREE!

• Macro Compiler with full source code in "C

To get your copy of XTC

now, order it over the phone

— we can ship it trie same

day you call! Or, send in an

order, just like this one:

XTC S99.00

Macro Compiler FREE

Shipping, Handling,

Insurance 3.50

Want it COD?

Add this 1.90

BOX 266

CHENEY, WA 99004

The people who make quality
software tools affordable

ORDER HOTLINE

509/235-8088
CREDIT CARDS WELCOME!

CIRCLE 43 ON READER SERVICE CARD

inograd's

research inter

est and his

exploration ofthe larger philosophical

and metaphysical implications of artificial

intelligence are deeply intertwined with a

finely developed sense of the social struc

tures within which computers exist.

Winograd docs not apply for or accept

any Pentagon funding for his research.

His view is that the military way of doing

business and looking at the world has a

negative impact on researchers and on

society as a whole. "In addition to the

world danger created by the weapons spi

ral, there is also a strong danger in the

increasing role for the military in the U.S.

in general. As an employer, a purchaser, a

lobbying group, a trainer of people, and

many other things, they have a negative

influence on attitudes and practices." he

said in a statement circulated among com

puter professionals in a newsletter put out

by Computer Professionals for Social

Responsibility, the Palo Alto,

Calif.-based organization where he serves

as a board member. "My Wcw is based on

wanting to decrease the overall mil

itarization of the country."

Winograd's concern is that U.S. Dept.

of Defense funding shifts the direction of

research away from constructive uses and

toward the development of nonproductive

resources. He sees military research as a

subtle legitimizationof the direction the

military is taking that goes far beyond the

particular project being worked on. "A

scientist working on parallel processing

algorithms using Lawrence Berkeley Lab

oratory |a center for advanced nuclear

weapons research based in Berkeley,

Calif.] computers might be less inclined

to protest what goes on there because of

the dependency fostered by the

relationship with DOD funding." he

explains.

Involving respected university

researchers in Pentagon programs enlists

public support for controversial programs

that otherwise might have no chance of

success. "If the supporters of such a pro

gram can point to a famous scientist at a

highly esteemed university working on

research, it adds legitimacy and authority

to the program. It also enlists support by

developing a feeling of everyone being a

part of the same team, working together in

the direction of a shared goal," says

Winograd.

He is also concerned with Pentagon

restrictions on the free flow of informa

tion, attendance of professional confer

ences, and the classification of research

findings. He worries about the next gener

ation of students being socialized by

working in programs related to military

research. A student who spends four years

studying high-speed electronic circuitry

in weapon systems research may find it

more difficult to find a job in nondefense-

related areas and will consequently be

channeled into working for military con

tractors after leaving the university. "The

balance of research and teaching, of sci

ence and humanities, of graduate and

undergraduate education arc all shifted to

suit the needs and tastes of the generals."

Winograd says.

Colleagues such as AI pioneer John

McCarthy challenge this view, believing

that the Soviet Union is a dangerous and

unpredictable adversary and thai AI

researchers have a patriotic duty to work

with the Pentagon to counter Soviet

research efforts. Winograd argues that

patriotism is not the act of building more

sophisticated weapons, because more

weapons will not make the world safer.

"If you proceed in building more and

better weapon systems, will you produce a

situation where we are alive and have pre

served our democratic values?" asks Win

ograd. "My answer is no. that this men

tality is going to lead us into situations

which have a greater probability of ending

up with everybody dead, both us and the

Soviets." he says.

Winograd advocates an evolutionary

process of raising public awareness to the

dangers of military funding and applica

tions of computer research. "If somebody

asked. 'Would you advocate next week

getting rid of the Defense Dept.?' it

wouldn't niake sense. But if you ask. 'Do

you think the ideal world, one that you

might want to work toward, is one in

which everybody agrees to abolish the

Defense Dept.?' I'd say. 'Sure,'" he

explains.

Winograd acknowledges the privileged

position that allows him the luxury of

refusing DOD money. "I'm at Stanford,

in Silicon Valley, with a lot of con

nections; as long as there is a certain

amount of money that is not military I

have as good a chance as anybody to get

that money. For somebody not situated as

centrally, it's more of a problem. If you

are the person doing research in some

small place, you're not likely to get other

funding, not likely to have many con

tacts." he says.

Each person has to decide how to han

dle military funding. "I don't think these

kinds of moral issues have one right

answer. The research can be removed far

from any actual killing. If you're asked to

pull the trigger, that's one thing. But if

you're asked to design a computer pro

gramming language which could be used

to write programs that could run in

machines that kill, you know your lan

guage could just as easily be used to pro

gram hospital applications." Winograd

says. "Every case is a hard case."

In evaluating the future of AI. Win

ograd notes that so far computer applica

tions have largely replicated tasks already

done manually, as in the replacement of

the typewriter with word processing or of

calculators with spreadsheet software.

This is to be expected following the intro

duction of new technology, he bel ieves.

He observes that the appearance of the

telephone did not magically produce

today's work places and activities. "But

revolutionary new possibilities like multi

national companies and other ways of

doing business that wouldn't be practical

without the telephone eventually changed

the nature of business," he says.

He expects a social transformation

made possible by computers to start in the

business sectors of our society. "The only

things which are really going to succeed

arc those which affect what people do.

Typically, that means what people do at-

work," he says. Using the computer to

make tasks easier and more efficient'is a

natural response, fitting the machine into

the existing network of practices and ways

of working.

Farther in the future are truly revolu

tionary ways of doing things made possi

ble by capabilities inherent in the com

puter. "I think the biggest potential for

computer application is in communica

tions." Winograd says. "Rather than

thinking of the machine as doing a calcu

lation or a computation. I think of it as one

part of a network connecting satellites and

telephones and data bases and so on. a net

work filtering things that one person

wants to put on and another person wants

to take off the system."

The simplest example is electronic

mail, but as machines become more soph

isticated, incorporating visual and other

kinds of information, he foresees substan

tial changes. As a consultant for Action

Technologies, a small San Krancisco,

Calif.-based software company, he is tar

geting just this kind of fundamental

advance. "One of the things I'm working

on is a program that tries to use the com

puter in interesting ways to restructure

interpersonal communications," he says.

Reflecting broad concerns about the

application of AI research. Winograd says

technology must complement human

activity, not replace it. "I'm skeptical of

any attempt to solve complex social, polit

ical, human problems by coming up with

the right technology." he says. "I'm

hoping people will become aware that

what computers are doing now is just one

useful part of intelligence. We need to

understand where, in the collection of the

various things we are and all the things we

do, computers can be best applied." H

24 COMPUTER LANGUAGE UUtY 1985

m

So before you make any decisions a

your software needs, talk to WATCOM—

the people major software users around

the world have trusted for years.

\X/ATCOM has the products you need to

get thejob done right Proven performers

like WATFOR*, WATFIV*, WATBOL*,

and SCRIPT Plus new leaders in soft

ware for PC workstations and micro-to-

mainframe communications. Networks,

language interpreters and compilers.

Text preparation and data management.

All WATCOM products are human

engineered to provide the optimum in

people efficiency and productivity And

the/re designed to run compatibly on

IBM mainframes and PC's, Digital main-

optimizing programmer productivity makes

WATFOR-77 the right choice.

WATFOR-77 significantly reduces the time required

for program development by compiling and executing

the program directly in the computer memory in

one step. Together with excellent debugging and error

diagnostics, WATFOR-77 optimizes programmer

efficiency and overall productivity.

WATFOR-77 is the newest member of the WATFOR

family of debugging FORTRAN compilers and is

ideal in business, educational, and scientific applica-

mes and micros, and Commodore

micros.

Whateveryou need is backed up by

WATCOM's innovative maintenance and

support services. You'll be kept up to

date with the latest in product enhance

ments and information. And our publica

tions and seminars will help you get the

most out ofyour software investment.

WATCOM. Quality products. Professional

service. And a reputation built on more

than 150,000 licensed mainframe and

micro software programs throughout

the world. So talk to us before you

decide. After all, choosing the right

software is serious business. For you.

And for WATCOM.

tions. Supporting the full FORTRAN 77 language,

WATFOR-77 is now available for the IBM PC* DOS

and 370 VM/SP CMS and MVS*.

Make the right choice. Call or write WATCOM today

and we'll tell you all about WATFOR-77 or any

of WATCOM's other people-efficient products.

The right choice in software.

Yesl I want to make the right choice in software. Send me more information on: □ WATFOR 77 C WATCOM Software Catalogue

Name: WATCOM PRODUCTS INC.

Company:.

Title:

Address:.

City: State:. .Zip:.

415 Phillip Street

Waterloo, Ontario, Canada

N2L 3X2

(519) 886-3700
Telex 06-955458

■ WATFOR, WATFtV and WATBOL are registered trademarks of ifie University of Waterloo.

■ IBM PC and I3M 370 VMISP CMS and MVS are registered trademarks of International

Business Macfilnes Corporation.

CIRCLE 36 ON READER SERVICE CARD

Speaking

long with the

growing inter

est in artificial

l intelligence

comes an increased curiosity about the

flagship language of the AI community—

LISP. In this article we hope to satisfy that

curiosity with a characterization of what it

means for a language to be LISP-like.

The major concern people raise about

LISP is its unique syntax—the parenthe

ses that decorate LISP expressions make

for hard reading. Traditional languages,

like FORTRAN or Pascal or even C, are

much less confusing to the human

reader—or so the claim goes.

We will show that LISP's syntax is only

a minor point in the class of issues that

distinguishes LISP from the traditional

languages. The deep issues that separate

LISP are semantic notions and an outlook

on the computational notations we call

computer languages.

To illuminate the LISP perspective, we

will make repeated use of the following

problem: given a finite sequence of num

bers, compute their sum.

A sequence is just that: a collection of

objects, ordered by the integers. We

would write a sequence as (el, . . . ,en)

where each ei is to be a number. Then, for

example, the sequence (1, 2, 3) would

have a sum of 6, and the sequence (3.1,

12, 8.3, 3, 22) would have a sum of48.4.

In a few moments, we should be able to

convince ourselves that we can compute

the sum of any sequence of numbers. And

so the next task would be to transform this

By John R.Allen

innocuous problem into a specific pro

gramming language.

First, the notion of sequence is usually

transformed into the concrete form of a

vector. Next we could transform our

informal notion of summation into a pre

cise piece of code. For example, it.could

be written in FORTRAN as:

X = 0

DO 400 I = 1,LEN
X = A(l) + X

400 CONTINUE

where LEN represents the length of the

vector. Or in Pascal we could write:

x:=0;

for i := 1 to len do

x := a [i] + x

Now, a LISP version need not be much

different:

(setq x 0)

(for (i 1 len) (setq x (+ (vref a i) x))

We can see that the assignment X = 0 or

x: = 0 is represented in LISP as:

(setqxO)

This example illustrates other points

about LISP.

■ The general form of an expression is a

list of elements, which is designated by

surrounding those elements with

parentheses.

■ The first element in a LISP expression

usually designates an operation. The

exception occurs in the control constructs

like for.

Looking at the LISP code, we see that

for, setq, +, and vre/represent LISP

operations. (LISP examples in this article

are from The LISP Co.'s TLC-LISP.)

Parentheses in LISP arc used to indi

cate the boundaries of an operation, much

like the do-continue, do-; or {-} construc

tions of FORTRAN, Pascal, or C,

respectively. So at least syntactically,

there's not much difference between LISP,

Pascal, and FORTRAN in this example.

Now we would like to describe a func

tion of one argument (which is a

sequence), whose body will compute the

sum of the elements and whose final value

is that sum. Thus, in a mathematical

notation we might write:

sum((l,2,3)} = 6

sum ((3.1, 12, 8.3, 3, 22)) = 48.4

It would seem that the definition ofsum

would be a simple wrapper around any of

our program fragments. That wrapper

would say:

■ Make the following code synonymous

with the name sum.

■ Here's a name (formal-parameter) to

use as a synonym for the specific vector

(actual parameter) you wish to sum.

Unfortunately there's a rub between the

wrapper and the program segments: how

do you determine the length of the vector?

Of course there are programming tricks—

where there's a will, there's a kludge:

■ Place some end-of-elements indicator

after the last "real" element in any vector

and then compute the running sum until

that indicator is encountered, as in:

27

100 LETX = 0

200 LET 1 - 1

300 IFA(I) =99999 GOTO 700

400 LETX - A(l) + X

500 LET 1 = 1 + 1

600 GOTO 300

700...

■ Or always make the first element in the

vector be an indication of the length of the

vector:

type vector = array [1 ... 34] of real;

function sumvec (a: vector): real

varx, len: real; unteger;

len:=a[l];
X : = 0;

for i := 2 to len do

X : = a[i] + X;

sumvec :- x

end

■ And of course there's the total

capitulation—always pass an explicit

parameter that represents the length of the

vector. Thus, in FORTRAN:

FUNCTION SUMVEC (A, LEN)

DIMENSION A(LEN}

X = 0

DO 100 I = 1,LEN

X=A(I) +X

100 CONTINUE

SUMVEC = X

RETURN

END

First-class objects

One might argue "That's not so bad.

Whenever we're asked to sum up some

numbers, we have to know how many

we've got. We need some way to tell when

we've seen the last one." But that misses

the point: we want to think of the

sequence as a single object. We want to

settle the issue of "how many" when the

sequence object is created, and we want to

create different sized sequences dynami

cally (while our computational con

versation is proceeding). After the object

is created, we want to manipulate the

sequence as an entity. What happens to

this simple sequence-idea when it gets tied

up in a programming language?

Mathematics treats sequences as

abstract entities, just like it treats numbers

as abstractions. There is no notion of a

largest integer in the language of mathe

matics. In contrast, computer languages

tend to constrain their numbers by the

(capricious) size of a machine word.

Similarly, computer languages tend to

impose implementation-dependent

restrictions on sequences when they are

transformed into vectors. These

restrictions are the software restrictions

rather than hardware constraints. Certain

care is required in the design and imple

mentation of computer languages to make

vectors (and numbers) behave like their

mathematical brethren.

In earlier days, we could afford to

ignore such elegance of notation because

elegance meant time and space, and

machines were of limited memory and

expensive. But the balance has shifted:

machines are speedy and cheap; program

mers' aspirations have grown along with

their salaries. We need languages that

make it easy to express the complex, and

that means elegance.

The most oft-quoted declaration of

elegance in computer languages comes

from Robin Poplestone, a British com

puter scientist, who expressed the idea of

"first-class items." A language that deals

with items—what we'd call objects—in a

first-class fashion is well on the road to

elegance.

The four main tenets of first-classness

are:

1. Any object may be passed as a

parameter to a function

2. Any object may be returned as a

value from a function

3. Any object may be assigned as a

value to an identifier

4. Any two objects may be tested for

equality.

Most traditional languages do an abys

mal job with objects as vanilla as vectors,

frequently prohibiting vectors as parame

ters and almost always disallowing vec

tors as return values. The major exception

is APL. In that language, arrays are

treated with respect. So too in LISP,

where we strive for the ideal of first-class

objects in a more general setting.

If we want vectors to be first-class

objects, then functions that receive vector

objects as arguments must be able to

determine the size of the vector.

So given a vector object we assume we

have a function named length that will

compute its size. Then we could even

write in pseudo FORTRAN:

FUNCTION SUM (A)

LEN = LENGTH (A)

X = 0

DO 400 I = 1,LEN

X = A(l) + X

400 CONTINUE

RETURN (X)

END

or inpsucdo C:

sum (a)

intaQ;

I int i;

intx = 0;

for (i —0; length (s); + +i)

x = a [ij + x;

return (x); }

or in LISP:

(de sum (v&aux (x 0))

(for (i 1 (length vj)
(setq x (add x (vref v i))))

x})

Even without a formal discussion of

syntax, it's reasonably easy to understand

each dialect of the summation program.

The important point here is the appear

ance of the return in C and FORTRAN

and its absence in the LISP code. The

issue is elegance again; this time the issue

involves the treatment of program mod

ules rather than data objects.

Functional languages

By way of background, most languages

(Pascal. FORTRAN. BASIC. C. and tra

ditional Logo, for example) are built on a

von Neumann model of computation. By

this we mean that the computational

engine is thought of as a collection of

cells, each able to contain one piece of

information. The actions of the machine

COMPUTER LANGUAGE ■ JULY 19B5

consist of selecting the contents of some

cells, performing an operation on those

contents, and replacing the contents of a

cell with the results.

The inherent characteristic is called a

side-effect, meaning that the intent of

computation is to change the contents of a

cell. In a higher level language (like C,

FORTRAN, and Pascal), we find this

model of computation represented by lin

guistic constructs called statements.

These traditional languages also include

constructs to collect and parameterize

computations. A collection of statements

is called a procedure. We therefore call

such languages procedural languages.

An alternative to the side-effect model

is the value model. Here a computation is

envisioned as producing a value as in "the

value of 3+4 is 7." Compare that with:

"to compute 3+4, place 3 in a cell, place

4 in a cell, operate on these two cells with

the plus operation, and then place the

result in another cell." In the value model,

one is more concerned with a description

of a computation rather than a specific

prescription of how to perform that com

putation.

Value-based languages have a construct

comparable to the statement in the pro

cedural languages. This construct, called

an expression, always produces a value.

This regularity of value-based languages

extends to the constructs that build new

computational units. These units arc

called functions and are based on the

mathematical notion of function. Asa

result, these languages are called func

tional languages. Sometimes they are

referred to as applicative languages,

because the general way to compute new

values is to apply functions to arguments.

Such languages include LISP. Scheme.

andTLC-Logo.

The problem here is again semantic as

well as syntactic. Namely, the require

ment that functions be notated to return

values spoils the elegance of the mathe

matical base, making functions second-

class to procedures. The benefits of a

functional language over a procedural one

are more than cosmetic. The flexibility of

computational models for a functional

language is comparable to its notational

flexibility. Specifically, in functional lan

guages complex computations are

expressed by functional composition as

f(g(x,y),h(z))

In mathematics, such an expression

simply denotes a value— there is no sense

of computation. In a functional program

ming language like (pure) LISP we'd

write:

{F(GXY)(HZ})

and would expect most LISP engines to

compute (GX Y), then (HZ). and finally

pass those two results to F. That's purely

a historical prejudice: if we had several

LISP engines, the /-"-engine could request

two other engines to begin the simulta

neous execution of (GXY) and (HZ),

respectively. We might expect that the

final computation would be completed

faster than its sequential cousin:

(SETQTl(GXY))

(SETQT2(HZ))

(FT1T2)

The functional expression of the problem

is much more elegant and understandable.

And isn't the point of notation to clarify a

situation?

A further benefit to the functional

approach is its clear and clean model of

computation. Two kinds of rules—

substitution and simplification—are all

that's required to characterize functional

computation. For example, given:

(de example (xy)

(if(gtxy)(+x4)

t-x3)))

we could compute (example 12 5) by sub

stituting 12 for.vand5 for v throughout

the definition of example:

(if (gt 12 5) (+ 124)

(-123)

We could simplify (gt 12 5) getting T.

reducing this expression to:

(if T (-h 124}

(-123)

Now we could invoke a rule

(tf!T <anything! > <anytking2 >)

reduces to <anyihingl > and

get (+ 12 4). and finally

simplify that to 16.

First-class functions

The appropriate definition and application

of such rules are at the heart of com

putation, and the accurate implementation

of these rules is the heart of computer sci

ence. For example, we don't usually make

explicit substitutions in the body of a

function; rather we simulate such oper

ations using a symbol table to contain the

associations between names and values.

Though the proper implementation of

such rules is difficult, the underlying

model is far more rational than that

offered by the state-change/side-effect

world of procedural languages. To a large

extent, computation is just applied logic;

the logic of functional languages is sub

stantially cleaner than the logic of pro

cedural ones.

Of course, these are arguments for and

against a purely functional and a purely

procedural language. Real languages are

never so pure; what we're after in our

characterization is intention. The intent of

a LISP-Hke language is functional. The

intent of a traditional language is

procedural.

So we've captured two characteristics

of a LISP-iike language: a treatment of

data objects in a first-class fashion and a

computational notation based on function.

Such a language is still pretty traditional:

objects are first-class but are just sanitized

versions of the data we've seen in other

languages, and the programming lan

guage is functional but is just a simplified

version of the functional portions of a

half-dozen extant languages.

But what happens if functions are

allowed to become objects of the language

and (of course) granted first-class status?

This question has two portions: what

practical benefit (notationally or com

putationally) does such a mixing of pro

gram and data give us. and assuming that

those benefits are substantial. what hap

pens to our model of implementation?

29

Let's go back to our vector example.

Let's assume that we want to build an

APL-like language inside our LISP-like

language. We'll need operations on vec

tors to create new vectors. Let's start easy.

Assume we wish to construct a new vector

each of whose elements is twice the origi

nal element. So if we call that function

double, then:

(double [1 2 3]) = = > [2 4 6]

or

(double [3.1 128.3322])

= = > [6.22416.6644]

and of course functional composition is

available to us:

(sum (double [1 23]))--> 12

The elegance of the result is apparent.

Its execution had better be equally

elegant in that double must put its result

somewhere and it cannot destroy the input

argument. What about the LISP code to

produce double! Behold Listing 1!

Three semantic points appear here:

1. The local creation of a vector object

using newvector

2. The naming of that object as vl

3. The return of vl as the value of

double.

The latter two points come from our

insistence on first-class objects. The first

point, the dynamic creation of new

objects, is a key ingredient to making

first-class objects a success and is indeed

LISP-ish. This ability to create new

objects out of the ether was championed

by LISP's cons operation. Its imple

mentation raises the specter of dynamic

storage management and garbage col

lection and raises the hackles of those who

still believe that computers are supposed

to get answers rather than help formulate

solutions.

So even before we get to the question of

first-class functions, an insistence on

first-class data pays handsome benefits.

Let's continue.

Assume that, instead of simply dou

bling the elements of our vector, we'd like

to perform some as yet undetermined

operation on each element of the vector

(Listing 2).

The general structure of the new func

tion is identical to double. One difference

appears in the calling sequence: op is a

parameter that represents a function

rather than data.

The other difference between map-op

and double is: op is applied to the vector

reference, where + appeared.

This is another of the first-class

tenets—naming a function. But what is

the difference between a functional object

and its name? For example, we might use

map-op to define double by:

(de double (v) (map-op twice v))

where

(de twice (x) (+ xx))

In this case, we have named a function

twice, but the real meat of the function is:

given a number, double it. We could

define the same function by:

(de time-of-day (x) (+ x x))

At least in this case, then, the name of

the function is irrelevant; we just need its

effect. We can do this in LISP by writing:

(lambda (x) { + xx))

(de double (v &aux (len (length v))

(vl (newvector len 0)))

(for (i ! 1) (store vl i (+ (vref v i)

(vref v i))))

vl))

(lambda (yl 23) (+yl 23 yl 23))

which says we also don't care what we

name the number either. Regardless, we

can use the lambda construct to name a

twice function and use it internally to

double:

(de double (v &aux (twice (lambda (x)

(+xx)))
(map-op twice v))

We can de even better since we don't

need the twice name:

(de double (v) (map-op (lambda (x)(+

xx))v)J

So the lambda expression (lambda . . .)

plays the role of a functional constant

just like 2 is a numeric constant. We are

used to writing:

2 + 2 + 3

rather than the more stilted:

for(x : = 2 y : = 3) compute x + x + y

Lambda expressions give us a similar

visual advantage with functional objects.

And to complete the analogy with assign

ments, it is appropriate to think of the

structure:

(de<name> <parameters>

<body>)

as an abbreviation for:

(setq <name> (lambda

<parameters> <body>))

So it appears that we can separate a

function from its name, and the question

becomes: what is a functional object? This

brings the question of scoping into play.

The term scope refers to the

relationship between names (like map-op,

x, and rm'ce)and their values (a globally

defined function, a formal parameter, and

a locally defined function, respectively).

The question of scope occurs because of

our decision to simulate the substitution

Listing 1.

30 COMPUTER LANGUAGE ■ JULY 1985

model by symbol tables rather than make

the explicit substitutions.

The appropriate model to understand

scope is to think of a symbol table as a dic

tionary. When someone writes a phrase,

they have specific meanings in mind—say

they use Webster's dictionary. A reader of

that passage who used Funk & Wagnalls '

might get a quite different meaning for the

passage. The issue of scoping is the main

tenance of dictionaries so thai the reader

is assured access to the writer's dictio

nary. As we will show, maintenance of

such dictionary associations requires

care.

To begin, assume we simply wish to

make a new vector, each of whose ele

ments is 1 greater than the elements of the

argument vector. We could do this by:

(map-op (lambda (x) (add 1 x))

[1 2 3])

= = >[234]

But suppose now that we wished to

exploit a general add-by-n operation on

vectors:

(de add-by-n (n v) (map-op

(lambda (x) (add n x)) v))

then we'd be able to increment each ele

ment of a vector by 3 with:

(add-by-n 3 [1 2 3]) = = > [4 5 6]

For example, our substitution model will

begin with:

(map-op (lambda (x) (add 3 x) [1 2 3])

and the rest is easy.

However, a slight syntactic change

destroys these pretty results in a tradi

tional LISP. If we change add-by-n to:

(de add-by-n (i v)

(map-op (lambda(add i x)) v)},

replacing every occurrence ofn by i,

then:

(add-by-n 3 [1 23])= = > [2 4 6]!!

The substitution model doesn't break

down, its simulation in traditional LISP is

at fault. To see this, consider the

expression:

(op (vref vi)) inside map-op.

When we try to evaluate (add-by-n 3 [I

2 3]) in LISP we'll find op to be associated

with (lambda (x) (addix)i. We'll want the

/ in (vrefvi) to be interpreted in the dictio

nary of map-op, but the / in {lambda

(.\)(add ix)) to be interpreted in the dictio

nary of add-by-n. Traditional LISP will

use the dictionary of the reader (map-op)

for both occurrences of/ and will get the

wrong answer.

The dictionary that is present when a

function is defined (or written) contains

the lexical or static binding of a symbol.

The dictionary employed by the reader of

a phrase contains the dynamic or latesc

binding. The distinction can be ignored

without peril until a language begins to

tinker with a functional object. Then it

makes a difference.

In situations like the preceding one.

dynamic binding is patently a bug. In

other situations—particularly in inter

active settings—the case is not thai clear

cut. For example, if we have a program

that contains expressions involving

output:

.... (print x}

we might decide that we'd rather direct the

output into a vector in memory. If the

name prim is dynamically bound, then we

could accomplish this by:

((lambda (print) ... (print x) ...)

< unary function to stuff vector>)

whereas ifprim were lexically scoped

then the name would have already been

bound to the system-level printer.

The issue of scoping is a reasonably

deep one: its pitfalls and initial resolution

in a fully functional setting were first dis

covered in LISP implementations. The

general solution is notationally

straightforward—substitution of actual

values for formal parameters.

However, such an implementation is

expensive and would ignore some power

ful computational models of state-

oriented computation. As a result, most

LISPs that address the problem use a

device called a closure to capture variable

bindings (like the illusive 3 associated

with ;). A closure object consists of a

piece of function text (the lambda

construct) coupled with a symbol table

(also called an environment or dictio

nary), and the table contains information

about bindings that should be installed

when a closure is applied. Thus in TLC-

LISP we write the code in Listing 3. and

the right thing will happen.

Interesting. We've gone through some

of the deepest areas that make LISP LISP,

and we've not even talked about list pro-

(de map-op (op v &aux (len (length v))

(vl (newvector len 0)))

(for (i 1 1) (store vl i (op (vref v i))

vl))

Listing 2.

(de add-by-n (i v)

(map-op (closure (lambda (x) (add i x)) (env ':

v))

Listing 3.

31

cessing. That was intentional: the issues

of functional languages and first-class

objects transcend any concern for spe

cific data objects—even LISP-like lists.

Lists and vectors are both imple

mentations of the notion of a finite

sequence. Traditionally, vectors have

been used to represent objects whose gen

eral structure is fixed so that the

successor/predecessor relationships

become 4-1 / - 1. Lists are more appropri

ate in applications that involve highly

variable structures; topological

relationships may change, grow, and

shrink in unpredictable fashions. In par

ticular, vectors usually come into exis

tence as a unit, while a list will be built up

in an element-by-clement fashion.

The issue of notation for abstract

objects in programming languages is not

just a theoretical diversion. As we've just

seen, our ability to determine character

istics of objects dynamically in LISP gives

freedom to our modes of expression.

LISP as a starting point

Rather than dwell on the different types of

data in a modern LISP, or trot out a suite

of LISP applications in expert systems,

we'd rather indicate a few directions that

can be explored from our new vantage

point.

■ Toward simplicity of notation

■ Toward generality of expression

■ Toward deep applications.

Toward simplicity: Logo. Though the

dominant characteristic of Logo is its tur

tle graphics. Logo's syntactic character

istics are a direct result of simplifying

LISP's syntax.

In the late 1960s a group at Bolt. Ber-

anek. and Neuman in Cambridge, Mass..

recognized that [he power and flexibility

of programming style enjoyed by the

LISP community was transferable to

domains other than artificial intelligence.

In particular. LISP was highly interactive

and encouraged an exploratory and

experimental style of program develop

ment.

Their challenge was to disentangle

LISP's power from the specifics of its

syntax. Since LISP expressions are writ

ten in prefix form, one could dispense

with the parentheses if the parity of each

function were known. Thus ifFwerea

function of three arguments, then (F123)

could be represented as F1 2 3.

Even functional composition could be

accommodated. So if G were a binary

function, then (F (G2 3) 4 5) could be rep

resented as,FG23 45.

But what about (FI 2 X)? We couldn't

write it as FI 2 X because that would rep

resent (FI 2 (X)). So an additional artifact

called dots (:) was invented to prefix

occurrences of symbols that were to rep

resent variables. (F1 2X) would be repre

sented as/71 2.X.

With a few other syntactic embellish

ments, the Logo group tamed LISP's syn

tax. Unfortunately, they also took liberties

with LISP's semantics, making the default

module a procedure and requiring addi

tional syntax to make a function—a pro

cedure that returns a value. This semantic

change makes it difficult to justify the

often heard comment that "Logo is a

LISP-like language." Regardless, to the

novice at least, traditional Logo looks like

a baby LISP without parentheses: data are

numbers, symbols, and lists, but it has no

vectors or functional objects.

But it is now 15 years later. People's

expectations and experience with lan

guages have increased. As a result we

believe it is important to return to the

LISP roots when designing Logo-like lan

guages.

Toward expressivity: logic

programming. We can move another

direction from the LISP base, gener-

Language type

Module

Component

Naming

Result

Procedural

procedure

statement

assignment

side-effect

Functional

function

expression

lambda binding

value

Relational

clause

relation

unification

constraint

alizing from the functional programming

base to the relational programming lan

guages.

The theoretical work that supports the

functional programming languages is a

product of research into the foundations

of mathematics. Specifically, a mathe

matical formalism called lambda calculus

was invented by Alonzo Church in the

1930-1940 time frame. That language

gave axioms and rules of inference that

characterized the mathematical notions of

function.

In that same time period, formal sys

tems were invented to give precision to

the notion of relation. A mathematical

relation is a generalization of the notion of

function. As such, programming lan

guages based on relations are potentially

more general than their functional cous

ins. The specific formal system that sup

ports these relational or logical languages

is called first-order predicate calculus.

We will not go into specifics of logic

programming here. The point to be made

is that the commonality of mathematical

pedigree distinguishes the functional and

relational languages from their procedural

cousins. The style of thinking, the atten

tion to abstraction, and the importance of

notation over specifics of implementa

tion—these are common features of the

functional and relational languages.

With the relational languages, we now

have the basis for a comparison of the

components in the currently available pro

gramming notations (Table 1).

To some extent the functional languages

represent a compromise: they are not as

general as the relational languages and not

as machine-oriented as the traditional

ones. With guidance, novices can map

their experience in mathematics into a

functional setting: they can impose a spe

cific process regime on their model of

function evaluation and functional com

position. From a practical perspective,

there has been a decade more experience

with functional languages than with their

relational compatriots. This experience

Table 1.

32 COMPUTER LANGUAGES JULY 1985

involves both the design of large systems

as well as the design of the languages

themselves.

Toward deep applications:

introspection. No paper on LISP would

be complete without a discussion of

LISP's ability to convert data into pro

grams and programs into data.

First, notice this notion is distinct from

allowing functional objects—even first-

class functional objects. Nothing we have

done prior allows us to do any more than

create functional constants, pass them as

parameters, give them names, or return

functions as values. We're asking for

something more here: the ability to dis

sect, modify, and rebuild components of

functions and expressions and then exe

cute the resulting structure.

The usual reaction to such shenanigans

is something akin to what Dr. Franken

stein must have heard. However, there is

nothing sacrilegious about programs that

can modify other programs. In a trivial

sense, text editors are used this way: in a

deep sense, machine-level debuggers do

this too. LISP simply dignifies and

cleanses the process a bit by moving the

idea up to the level of a functional

notation.

LISP's technique involves representing

program elements as data objects—lists,

in particular. As a result, programs look

like data and can be manipulated by

LISP's list operations. To complete the

circle, we need an operation to take a data

object and evaluate it; that operation is

named eval.

There is another piece of the LISP puz

zle that is related to, but not identical to,

the program-as-data issue: control-as-

data. The program portion of a com

putation represents the static

information—the text and data of the

process.

In the course of the computation the

execution device must maintain some

internal, dynamic, information—where to

return to after a computation is com

pleted, where to place values, and so on.

This kind of information is called control.

If we make such information explicit-

make control a first-class data object-

then new insights on computation become

possible. In particular, if the control

structures of the engine that is performing

a computation are made available to that

engine, that gives us the rudiments of

computational introspection, which is an

interesting topic of current research.

The LISP elephant

Well where are we? No useless "here's

CAR and here's CDR." No insulting

examples of ELIZA or ANIMAL dressed

up as expert systems. No tedious "here's

factorial and here's how to reverse a list."

I hope that our view of LlSPis suf

ficiently different from what you've seen

that you may be enticed to take another

look. If you look at LISP with the follow

ing five notions in mind:

■ First-class objects

■ Functional semantics

■ Functions as objects

■ Programs as data

■ Control as data

you'll sec that the world of LISP takes on

a whole new perspective. H

John Allen is president of The LISP Com

pany. He has been involved in LISP and AI

since 1965 and is author ofAnatomy of

LISP and co-author of Thinking about

TLC-Logo.

KDS gives you

a better way to

make powerful

Expert Systems!

Produces automatically up to

16,000 rules per Knowledge Module

which are induced from case

histories entered using plain English.

Up to 256,000 facts per Knowledge module, for instance 4096 cases/

answers and 64 attributes or 512 attributes and 512 cases/answers.

Knowledge Modules can be chained to give virtually unlimited capacity.

Can make an expert system using only plain English or/and use additional

programmable features to interface to other programs such as driving exter

nal modules, get real-time input from external sensors, interface with graph

ics, mainframes, databases, do run-time number crunching and more.

KDS sysiem itself written entirely in assembly language. Lightning fast!

End user can respond"?" if they don'l know an answer. Powerful inference

engine on playback can infer correct conclusions.

Requires only IBM-PC or compatible for development or playback. A full

expert sysiem in finished form can fit on a 5 '/•" floppy disk. Hard disk help

ful but not required for development. PC-DOS or MS-DOS.

Forward or reverse chaining selectable. Full "explain" feature shows user

how conclusions reached. Confidence factors and help screens.

Prices: Development System alone S795.00. We recommend also Playback

Utility with it at S150.00. Playback Module (not required for development If
you have a Playback Utility) $495.00. We welcome phone inquiries!

KDS Corporation
934 Hunter Road • Wilmette, IL 60091 • (312) 251-2621

— Immediate Delivery —

Zetalisp'-Iike capabilities PLUS 8087 support

Smalltalk"-like class system PLUS first class instances,
closures and environments

WordStar'-like display editor PLUS Lisp specific operations

ADDITIONAL FEATURES:

SOURCE FILES for Editor, Debugger and OS interface

included for user customization

COMPILER for best performance of user-defined functions

CP/M, MS-DOS, PC-DOS support, Software Interrupts, full

access to Memory and I/O Ports

DOCUMENTATION comprehensive Primer and Reference

Manual

TLC-Logos MULTI-TURTLE GRAPHICS for IBM PCs

O Complete System $250.

: Manual Only $20.

The LISP Company (T.(L.C))
430 Monterey Ave. #4

Los Gatos, California 95030

408/354-3668

Also Available: TLC"-Logo S100 . and our book Thinking About TLC'Logo S18

Zetalisp is a irademark of Symbolics. Inc , WordStar is a registered Irademark of MicroPro

International Corp., Smalltalk is a trademark of Xerox Corp

CIRCLE 62 ON READER SERVICE CARD CIRCLE 65 ON READER SERVICE CARD

33

POLYTRON TOOLS IN THE SOFTWARE DEVELOPMENT PROCESS

CONTROLLABLE BYPOLYMAKE

EXECUTABLE

Thousands ofProfessional Software
Developers with demanding

deadlines turn to high performance

MS-DOS/PC-DOS tools from
POLYTRON to boost their produc

tivity. All the tools shown above are

explained in derail in the
POLYTRON Programmer's

Catalog.

Network &. Site Licenses Available.

PolyWindows Desk

T/f Mtxhdar, Expandable Desktop Organizer

100% memory-resident desktop

organiier for professionals. Configurable

so you can have one or mure of the
following functions available instantly:

Hex/Decimal/Binary Calculator,

Standard Calculator, ASCII Table.

Multiple Document Text Editor, PolyKey

tor creating your own keyboard macros,

Rolodex-type tiles. Calendar, Alarm

Clock, Appointment Books, Autodialer,
Clubber for cut-and-paste between

applications. Copy-Protected S49.95,

Not Copy-Protected S84.95.

PolyWindmvs Debugger/
Performance Analyzer

A Professional, Memory-Res&feni Software
Development Tool

Instantly analyze and debug ANY

program running on your PC anytime.

Superior to the IBM Professional

Debugger and easier to use. Supports
multiple breakpoints, multiple display

formats, memory searches, single-step

execution, disassembly, hex arithmetic,

and block moves. Tells you where your
program is spending time and allows you

to optimize performance. You can specify

the memory ranges tor analysis. Results

are displayed graphically or in tables.

Includes PolyWindows Desk {Not

Copy-Protected) all for only $149.

(Present PolyWindows users can receive

trade-in discounts.)

POLYTRON Version Control

System (PVCS)

Efficiently maintains revision history of

source files for software project manage

ment. Maintains chronological, histori

cal records of changes as "edit scripts"
(reverse deltas) with full text of the latest

"checked in" revision. Reconstructs any

prior "revision" of any module, defines a

"version" as specified revisions of various

modules, supports branching from prior
revisions, optional password protection,

Friendly, unobtrusive user interface is
based on a unique-"syntax guide" con

cept with context-sensitive help. Designed
for single or multiple programmer

projects. A powerful tool with main

frame power. Single-user license: S395.

PolyXREF

T/if Mufli-Lingud/ Gms Reference System

Generates Cross Reference listings across

single or multiple source files of one or
more languages. Tells you exactly where

each variable and procedure is defined

and everywhere it is referenced.

POLYTRON TOOL KITS

Package includes PolyXREF engine

plus one source language module plus

.CRF module: S129, additional source

language modules [C, Pascal, Assem

bler or English]: S49 each. Complete

package including all four language

modules: S219.

PolyLibrarian

The Object Moduli? Library Manager

The premier library manager allows you

to create, examine and manage libraries.

Modules can be listed, added, replaced,

extracted, and deleted. You can search for

public orexternal names and even change
them. Three operating modes can be

intermixed for maximum flexibility.

PoIyLibrarian I for Microsoft format

libraries: S99, PoIyLibrarian II for

Microsoft and Intel format libraries: S149.

PolyMake

The Intelligent Program Builder

and Mumtenante Tool

Automates the software maintenance
process. Detemiincs which files (programs,

etc.) are out of date and invokes your
compiler, linker, librarian and does

whatever is necessary to bring your

entire system up to date. Frees you from

the need to remember which files

depend on others and which files have

been modified. Remembers the exact

sequence of operations necessary to
create a new revision. Completely auto

matic unlike competing products. Once

you use it, you can't live without it.

Only $99.'

POLYTRON C Library 1

Out 65 High Performance Routines Fur

Lattice C Compiler Users

These are routines for serious programmers

that need Executive and I/O functions.

Complete source code (mostly Assembler)

included. Only $99.

POLYTRON Virtual Memory File

Manager (PVMTM)

Provides efficient virtual file access and

buffering for both text and binary files

with automatic buffer-to-disk swapping.

Reduces program access time and handles
data structures larger than memory

allows. PVMFM is a library of user-

callable functions that may be linked

with your applications code to provide
virtual file management capability and

random access file buffering. Compati

ble with Assembler and high-level

languages. Only $199.

To Order Products Call

1-800-547-4000
AskforDept.Nn. 350

Foreign 6k Oregon orders call
<503)684-30CO

Send Checks, P.O.s To:
POLYTRON Corporation

P.O. Box 787 DS-350
Hillsboro, OR 97123

Add 55.00 Shipping To Total Order

To Order detailed Programmer's

Catalog, send requests to address

above for fast response (or circle reader

service card number).

34 COMPUTER LANGUAGE ■ JULY 1985

High Quality Software Since 1982

CIRCLE 34 ON READER SERVICE CARD

Logic
ata

Glance Part I: The ERGO

Logic Kit

With this article, COMPUTER

LANGUAGE launches a special three-part

series that will explore the relevance of

decision tables to interactive computing.

Tlie author will describe the requirements

for and the design ofan integrated soft

ware kit that includes a decision table edi

tor; interpreter, compiler, grid chart editor

and translator, and numerous other little

and large pieces that will be worth your

while.

Since seeing something is better than

reading about it, COMPUTER

LANGUAGE will also be distributing suf

ficient code to the ERGO Logic Kit so that

you may experiment with it. (For informa

tion on how to acquire yourfree version of

the ERGO Logic Kit, see Editor's Notes,

page 5.) You will then be able to gain

experience in using decision logic tables

for software design, prototyping and test

ing, knowledgeformulation and represen

tation, and expert systems design and

execution.

|hcrc is little real

doubt that com

puter programs

will be more

intelligent in the future. I do not mean our

programs will be more intelligently con

structed (although that is possible), but

that, once constructed, they will do tasks

that require more intelligence.

Today we are already seeing the first

commercial realizations of the advanced

programming techniques and languages

By Jim McCarthy

often referred to collectively as artificial

intelligence. The real issues arc how

quickly and to what extent this migration

of intelligence from humans to machines

will take place.

Both the rate at which intelligence finds

its way into our programs and the degree

of intelligence thereby proliferated are

governed by two major elements.

■ Translating natural intelligence into a

computer friendly format requires tal

ented programmers.

■ The natural intelligence we wish to

congeal in our software resides largely in

the minds and experience of diverse

experts who, devoting themselves to other

endeavors, have little computer savvy and

are probably not even fully conscious of

the very thought processes that make them

experts.

The computer shows no mercy toward

the imprecise and diffuse inielligence of

our expert. Our expert, while fully under

standing say, chickens or abnormal psy

chology, has neither use nor concern for

the niceties of computer dialectics. To

engender a symbiosis between computers

and experts, we must find them a common

ground.a language they can both

understand.

The more experts we have happily bang

ing away at computer keyboards-

exploring, encountering, expressing,

encoding and archiving their wisdom—

the more quickly and massively will we

all have common access to our collective

experience.

The real job. then, is not to tap experts

and laboriously codify their knowledge on

a casc-by-casc basis, with economics the

sole dictator ofprecedence! but to provide

the experts with the tools and the personal

incentive to do it themselves.

If our tools cannot attain a technologi

cal state wherein experts themselves pro

gram expert systems, large numbers of

such systems will not soon proliferate.

Just as spreadsheets were made into a sim

plified form of decision support, our

expectations of what artificial intelligence

means may have to be scaled down to sim

plify the programming process and

thereby greatly extend access to the

technology.

And just as we were surprised by the

inexhaustible creative lode that was

tapped with the medium of electronic

spreadsheets, we may be similarly sur

prised if we make available a comparably

friendly medium in the field of expert sys

tems. We won't realty know what's

wanted until the experts get started.

I mentioned earlier that the thought

processes that constitute expertise are

often obscure even to the person who has

them. It has been my experience that

when experts describe their methods, they

usually leave out myriad hidden assump

tions, exceptions to the general rule, and

essential refinements to the methods

described. The storage and management

of a large part of their wisdom has seem

ingly been delegated to long-term

memory and some sort of background

thought process.

With the greater experts, virtually the

entire matter belongs to the still more

impenetrable realm of the unconscious.

Intuition and something called judgement

are often the primary ingredients of

expertise. Lacking a straightforward

35

36

methodology and a simple format for the

exploration and codification of expertise,

the expert has only limited access to his or

her own judgmental powers.

I believe that the experts' urge to com

prehend themselves, express themselves,

and extend the reach in time and space of

their expertise will be the predominant

incentive behind the fabrication of expert

systems.

In those cases where the experts are not

the programmers of the expert systems to

which they are related, the ability of large

numbers of programmers and analysts to

fabricate logically complex software with

a greater degree of confidence than is now

the case is a prerequisite. The increasing

complexity and consequent unreliability

of software is (or soon will be) a major

(echnological issue. The virtual impos

sibility of testing software threatens to

swamp our productive capacity.

The purpose of this series of articles is

to show one way we might make progress

toward accomplishing these various ends

and to make a concrete contribution in the

form of a design and some source code

that may stir up some interest, fuel some

imaginations, or otherwise be fruitful.

I will describe a software kit' based

upon decision logic tables. Decision

tables do for certain kinds of logic what

spreadsheets do for certain kinds of num

bers. An electronic decision table pro

vides many of the same qualitative experi

ences to the user that electronic

spreadsheets do: a visceral sense of con

trol, even mastery; the feeling of instanta-

neity, of certain and rapid-fire accuracy;

the sheer pleasure and multiple communi

cative benefits of intense visual feedback;

and the joy of liberating latent program

ming skills.

Think back to the first time you saw

Visicalc, to the excitement it may have

generated for you. Perhaps you even

experienced a revolution in your way of

thinking about computers. The idea of

interactive decision tables is of a com

parable magnitude: something that abso

lutely fits both people and machines,

something that can bind the computer in

a most direct way to your imagination,

without a lot of folderol in between. Deci

sion logic tables, like spreadsheets and

COMPUTER LANGUAGE ■JUtY 1985

word processing, are the type of computer

application that seems perfectly obvious

after you've seen it.

Decision table structure

First we must cover some fundamentals,

and rather concisely at that. A decision

table is.a map. representing the relations

of combinations of conditions to combina

tions of actions. A single condition/action

relation might be something like:

If it's raining (condition),

wear your overcoat (action).

When multiple conditions and actions

are present, things get a little more

complicated:

If it's raining (condition 1),

and cold (condifion2),

and it's not expected to improve

(condition3),

then don't go out (actionl);

but if it's raining (condition!),

and not cold (condition2),

or cold (condirion2)

and not raining (conditionl),

then wear your overcoat (action2);

but if it's expected to get better

(condition3)

waif until it does (action3).

Let's use decision table techniques to

analyze this trivial problem. This is

accomplished by isolating the conditions

and the actions and mapping them into a

tabular format divided into four

quadrants:

condition

stub

action

stub

condition

entry

action

entry

Our three conditions are:

Raining (y/n)?

Cold (y/n)?

Expected to improve (y/n)?

Our three actions are:

Don't go out

Wear coat

Wait

therefore:

Raining?

Cold?

Improving?

Don't go out

Wear coat

Wait

Now we simply fill in the rules in the

condition and action entry stubs of the

table, like so:

Raining?

Cold?

Improving?

Don't go out

Wear coat

Wait

y y n

y n y

n y

A careful comparison of the tabular

and the textual descriptions of our little

condition/action matrix will reveal that

the table is merely the transcription of the

problem as described.

Of significant interest here is that you

likely understood the way the preceding

table was to be read. Note that 1 said noth

ing of the actual mechanics of communi

cation in the structure of a decision table;

rather, your intuition grasped (probably)

the meaning due to the orderly, graphical

layout of the information content of the

problem. If the only benefit of decision

tables were their communicative proper

ties, that would probably be sufficient

cause for their use. However, there is

much more value to the structure, as we

shall see.

Matrix, column counts, don't cares

In the preceding table, we had some blank

condition entries (for example, second

column, entry for Improving?). We will

fill these blanks in with dashes (—), and

we will understand ihesc dashes to mean

"don't care." Also, let's add a matrix col

umn (M) so we can do some useful arith

metic. Finally, let's add some labels to

columns {from now on called rules) and

rows so that we can refer to them con

veniently. Our table now looks like this:

Cl

C2

C3

Al

A2

A3

Raining?

Cold?

Improving?

Don't go out

Wear Coat

Wait

M

2

2

2

1

y

y

n

X

2

y

n

—

X

3

n

y

X

4

—

y

X

The M column designates the number

of values a condition can attain. In our

case, all the conditions are a simple Yes/

No, so 2 is our uniform entry in the matrix

column.

A decision table made up solely of con

ditions that have a binary (or y/n) matrix

is called a limited entry table. Tables hav

ing only conditions that have greater than

a binary matrix are called extended entry

tables. Finally, tables that have both

binary and greater than binary condition

matrices are called, logically enough,

mixed entry tables. We will give examples

of mixed tables later on.

The virtue of including the M column is

that now we can determine how many

rules should be in the table. If we have

three conditions, each of which can attain

two values, the total decision matrix

should be 2*2*2, or 2A3, or 8. Consider:

if condition Cl can attain two states, and

likewise with C2. we have four possible

combinations of condition values, like so:

Cl

C2

y y n

y n y

Factoring in C3, also having two potential

states, we now have eight unique possible

combinations of conditions:

Cl y y

C2 y y

C3 y n

n n n n

y y n n

y n y n

We know, then, by computing the com

plete decision matrix, the number of col

umns that must be in a table to cover all

possible contigcncics. Referring back to

our previous example, we see thai

although we have a total matrix of eight,

as we have described, we only have four

rules. To analyze this situation, we must

turn our attention to a method of account

ing for our "don't care" or dashed

entries.

Consider rule 2:

Cl

C2

C3

Al

A2

A3

2

y

n

—

X

What we arc really saying when we say

we "don't care" about C3's value is that

C3 can hold either of its values, and the

rule would still hold. In other words, we

can expand rule 2 into two columns.

Cl

C2

C3

Al

A2

A3

2o

y

n

y

X

2b

y

n

n

X

Rule 2, therefore, really contains two

logical columns. It is called a complex

rule. Rule I. containing no dashes, is a

simple rule. Applying the same tech

niques, rule 3 becomes:

3a 3b

n n

y y

y n

Cl

C2

C3

Al

A2

A3

And rule 4. having dashes in both C1

and C2, expands to four logical columns:

Cl

C2

C3

Al

A2

A3

4a

y

n

y

X

4b

y

y

y

X

4c

n

n

y

X

4d

n

y

y

X

Fully expanding the whole table in this

fashion, it becomes the table presented in

Table 1.

After having eliminated all the dashed

entries, we can count the rules and see

that in our example we have nine rules,

whereas our matrix arithmetic tells us we

should only have eight. Examining the

fully expanded table, we note that col

umns 4d and 3a have the same condition

entries. This is also true of columns 2a

and 4a.

Because the interpretation of the two

n

C2

C3

Al

A2

A3

Raining?

Cold?

Improving?

Don't go out

Wear coat

Wait

M

2

2

2

1

y

y

n

X

2a

y

n

y

X

2b

y

n

n

X

3a

n

y

y

X

3b

n

y

n

X

4a

y

n

y

X

4b

y

y

y

X

4c

n

n

y

X

4d

n

y

y

X

Table 1.

Cl

C2

C3

Al

A2

A3

A4

Raining?

Cold?

Improving?

Don't go out

Wear coat

Wait

Go out

M

2

2

2

1

y

y

n

X

2

y
n

n

X

3

n

y

n

X

4

y

X

5

n

n

n

X

Table 2.

37

sets of columns in question leads to differ

ent actions, this table is said to have con

tradictory rules. If 3a and 4d led to the

same action(s). or 2a and 4a did. the table

would be said to contain redundancies.

The problem is that if you were reading

the table, you could not determine which

rule applies, given that their condition

entries are identical.

Recall that we uncovered this problem

in our table by:

■ Computing the total decision matrix

■ Expanding each rule that had one or

more dashes

■ Counting the columns in the expanded

table

■ Examining the expanded table for con

tradiction or redundancy.

If"a table has as many rules as the

matrix computation (M1*M2*M3 . . .

Mn) says it should, and there is no con

tradiction or redundancy, the table is said

to be mechanically perfect. That is. all

possible combinations of condition values

arc accounted for. and none can lead to

contradictory or redundant action sets.

I should point out that it is possible for

the total (expanded) column count to pre

cisely match the total decision matrix, and

the table could still contain redundancies

or contradictions. That's why it is neces

sary to expand the dashed columns and

check each column against every other

column, making sure there is no overlap.

Often people include a special column

in a decision table, the ELSE column. If a

given set of condition values do not match

an explicitly stated rule, the ELSE column

is invoked and whatever actions are speci

fied underneath it are executed. A table

with an ELSE rule is necessarily

complete.

However, this simply begs the question.

To put an ELSE rule in a decision table is

like turning up the air conditioning so

you're cold enough to light a fire. If

you're not cold, you don't need a fire. If

you want a catch-all rule, you don't really

want the discipline and the benefits of a

decision table structure.

For completeness' sake, let's look at

our table again, perfected (Table 2). By

comparing the dash-expanded table

against the fully expanded matrix, we saw

that we were missing rule 5 (for which

action A4 was created). A systematic

check of the example table against the

fully expanded decision matrix to ascer

tain whether the example table contained

all possible rules revealed that it did not.

The other bug in our table related to the

dominance of rule 4, which specified that

any time the weather was improving, we

should wait for it to do so. and that no

other condition mattered. We realized that

the dashes in rules 2 and 3, C3. which

could be interpreted as "y," led to con

tradiction. Therefore, we simplified these

two rules, replacing the dashes with "n,"

as this was the only possibility that would

both maintain the integrity of the table and

give rules 2 and 3 a reason for being.

Perhaps all of this is a bit tedious. We

will, in a bit, rely on our computer to

relieve us of all the tedium associated with

decision tables, but the point of this dis

cussion is to introduce (for those who

need it) the basic structure, terms, and use

of a decision table. The important points

to keep in mind are:

■ The decision table is a superior com

munications device: the meaning is intu

itively grasped.

■ The attainment of mechanical per

fection is possible: all possible combina

tions of conditions and actions can be

accounted for in a systematic way.

■ Latent redundancy and contradiction

can be made manifest.

Applications

It should be obvious that decision tables

have a high degree of usefulness in com

puter software documentation applica

tions. Their communicative properties, in

cases where there arc complex condition/

action matrices, arc superior to flow

charting, pseudocode, and many of the

other conventional documentation

techniques.

In the case of system analysis, they are

likewise valuable. The imposition of an

orderly methodology to what is often a

disorderly process and the real possibility

of nonanalyst involvement indecision

table construction combine to make deci

sion tables especially applicable.

T.J. McCabe* has shown that the num

ber of bugs in a computer program is pro

portional to the complexity of that pro

gram. He suggests a complexity metric,

based on graph theory, that quantifies the

degree of complexity in a unit of soft

ware. This metric is related to the number

of branches in a software module. Asa

module increases in complexity (as the

number of if/then constructs climbs), bugs

proliferate.

This phenomenon, which I suspect we

have all experienced, is thought to be the

result of the extreme difficulty most peo

ple have in keeping in mind more than six

or seven things at the same time. McCabe

has shown that as the number of branches

in a module approaches 10. the module is

increasingly unfit for use due to its predis

position for "bugginess."

This means that although it is possible

for you to create a module with excessive

branching, you can't really understand it

because you can't fit it all into your mind

simultaneously. You are therefore forced

to forego the macroscopic view of your

module—the relationships of all the

pieces to the whole—in favor of a line-at-

a-time or microscopic perspective. Natu

rally, if you can't understand your pro

gram, its prospects diminish.

Electronic decision tables can enable

the programmer to construct vast net

works of if/then constructs with greatly

increased confidence. This is because

mechanical perfection is attainable and

measurable. The computer itself can

ascertain whether all possible combina

tions of conditions are accounted for (the

macroscopic view), and the program

mer's inescapably microscopic view is

entirely appropriate and all that is

required. Thus, the computer does what it

can and the programmer cannot, and vice

versa. Both intelligences play to their

strong suits.

This aspect of decision tables led me to

construct a decision table compiler, which

will be a subject addressed in Part II of

this scries on decision tables. Suffice it

to say for now that with modest effort it

can be made to compile into any high- or

38 COMPUTER LANGUAGE* JULY 1985

low-level language or output a graphical

depiction of the decision network.

If decision tables could call other deci

sion tables, proceed from one to another,

pass parameters back and forth, query

operators for condition values, evaluate

rules, report decision history, and do a

few other lesser things, they would be the

obvious medium of choice for most small

to medium expert systems. If a condition

stub could really be a call to a subtablc,

the results of which would be evaluated as

the condition entry for that stub, there

would be sufficient size, flexibility, and

generality to cover systems of say, 500 to

1,000 complex rules. If the construction

of tables were made simple and fun

enough, the experts themselves would

build the systems.

This notion led me to fabricate a deci

sion table interpreter with these and other

qualities. The interpreter will be

addressed in the final part of this series.

Problems

A reasonable question to pose at this junc

ture is: if decision tables are so useful,

why aren't they more universally applied?

There are, in my view, two closely

related reasons for this—one simple, the

other a bit more complicated.

The simple one first. Spreadsheets

were always used by accountant and man

agerial types even prior to their con

version to electronic media. They were

just hard to work with. When the use of

microcomputers eliminated the drudgery

from and intensified the usefulness (and

fun) of spreadsheets, millions of people

who had never done a manual spreadsheet

were drawn to the medium. My thesis is

that the same phenomenon is possible,

though probably on a smaller scale, with

respect to decision tables.

That brings us to the second problem.

What makes them so hard to use? Why

haven't decision tables become a popular

medium for the management of the myr

iad problems to which they are ideally

suited?

There's nothing new about decision

tables. Their history dates back to early

days of computer science. Their many

useful properties have been thoroughly

investigated, their applicability to

computer-related operations has been

identified, decision table symposia have

even been held, decision table books have

been published, and yet decision tables

remain something of an obscurity, their

use seemingly confined to a relatively

small group of devotees.

Anyone who has spent much time in

working with decision tables realizes that

while they are a wonderful way to com

municate information, both to humans and

computers, they are a difficult way to

express it. The mental steps it takes to cre

ate, edit, check, and perfect a decision

table are painful to most minds, alien to

others, and can be ultimately forbidding

in all but the most trivial of examples.

Rather than the simplemindcd example

above, picture six conditions, each with a

matrix of five values. That translates to

over 3,000 distinct possible simple rules.

And yet many real-life cases have at least

that much complexity.

The difficulty of resolving a problem of

this magnitude into a workable number of

interrelated conditions and actions, the

tedium of developing rules for all possible

combinations of conditions, and the com

plexity of checking for completeness.

redundancy, and contradiction apparently

overwhelm the perceived value of doing

so. Therefore, decision tables— which

really are a most powerful way of

encoding, communicating, and using

many types of intelligence—languish.

This, of course, was the main problem

that confronted me when I thought of all

the benefits that would accrue to me if

only I would consistently build decision

tables. The fact is, they are hard to make.

Table editor

So I decided to make it easier to work with

decision tables. The goals were various,

but of one thing I was sure: the problem

was in the creation and perfecting of

tables and not in their application. My

principal design focus was therefore on

the creation of an interactive decision

table editor with a high degree of tedium-

relief.

The first tedious task that was to be

eliminated was the fabrication and keying

in of condition entries. It is easier to

respond to or change something that

already exists than it is to create some-

EXSYS

A LOW COST

EXPERT SYSTEM

DEVELOPMENT TOOL

Create knowledge based, prob

abilistic IF-THEN rule expert

systems on an IBM PC, XT or

compatible

Provides the user with a list of

possible solutions to a problem

arranged in order of probability

Performs backward chaining and

can explain how conclusions were

reached and why information is

needed

External programs, including most

spread sheets and data base

managers, can be called with data

passed into EXSYS for analysis

ALL input is English text, algebraic

expression or menu selection

numeric variables are supported

and can be calculated and

displayed by the expert system

full available memory is used and

the programs are written in C for

fast, efficient code

700 rules per 64k of memory over

192k (almost 5000 rules in a

640k PC)

Trig, log, exp and sqrt functions

supported

Developed expert systems market

able WITHOUT ROYALTY

Requires IBM PC, XT, AT or

compatible with DOS 2.0 or higher

and 256k

DEMO DISK— Demo knowledge

bases, text of manual, automated

instruction on how to use the

program and ability to create and

run rules - $10 (refundable with

purchase)

FULL PROGRAM — $295 + $5

postage and handling

MACINTOSH VERSION

AVAILABLE SOON

EXSYS IMC, P.O. BOX 75158

COMTR. STA. 14, ALBUQUERQUE, KM 87194

(505) 836-6676

CIRCLE 54 ON READER SERVICE CARD

39

ft€F
a Cross-Reference and Lister

utility for Pascal source programs.

Ail options user-selectable.

Identifies line number for each

variable reference.

Can cross-reference constants.

indicates type of reference.

Will process a list of files.

will read include files.

Draws boxes for control structures

— example:

j£ PascalPrcgrammer then

begin —^—^^^^

CallGracon ;

repeat.

RunTurboRef ;

until Organized ;

end

Written in Turbo Pascal for the IBM PC.

PC-DOS 2.0 and 128K required.

Only $4995

mc, Visa, or company check.

C.O.D. orders add $4.00.

Michigan residents add $2.00 sales tax.

SERVICES, INC.

4632 Okemos Rd.

Okemos, Ml 48864

(517) 349-4900

IBM and PC-DOS, ana TurOo Pascal are registered

trademarks of international ausiness Macnines corp

and Borland international me . respectively

thing from nothing. This element of

human nature is a guiding principal in the

integration of user friendliness in com

puter software.4 My vision was that if I

could enable the computer to perform the

raw creative task and make it easy for the

user to tell the computer where it was

wrong, the creation and perfection of

decision tables would be an infinitely sim

pler (though not absolutely simple) task.

In the ERGO system's table editor, the

user need key in only the condition stubs

and matrix for each condition (if it is

greater than two) and the table editor will

generate a mechanically perfect set of

simple (no dashes) rules. The user then

need only edit this data and enter the

appropriate action stubs and entries.

The table editor will also kill redundant

or contradictory rules, so that the creation

of a table is really a process of editing a

computer-generated rule, usually by

adding dashes and then letting the table

editor eliminate the resulting superfluous

column(s).

This describes the bare rudiments of the

ERGO system's table editor operation.

Many more features and facilities will be

described later, along with some of the

associated code.

Grid chart editor

Sometimes it is convenient to create log

ical structures in a different way, namely,

with the action as the key element:

Wait for weather improvement when

it's forecasted to improve.

Wear your coat when its raining or

cold.

Don't go out when the forecast is bad.

Go out when its not raining or not cold

or not improving.

Notice how much simpler this expres

sion is than the lengthy description of our

earlier example. This is because when you

express logic keyed by action, you need

never have more clauses than actions.

This simple technique can be an appealing

way of describing condition/action

relations because of its inherently limited

boundaries. Where our condition-keyed

example had multiple clauses and was still

incomplete and redundant, the action-

keyed description of the same problem is

terse and complete.

The pertinent point here is that a prob

lem so expressed can be transcribed

directly into an entity called a decision

grid chart, which can itself be converted

into a mechanically perfect decision table.

This can give a user a tremendous leg up

on the creation of a logically perfect deci

sion table. Extending our commitment to

the principle that it is easier to edit than to

create, I wrote a grid chart editor that

works in tandem with the other pieces of

the kit.

By simply expressing the condition val

ues that imply the actions, paying no

attention to the combinations of condi

tions, a mechanically perfect and logically

close decision table, with both condition

and action entries, can be automatically

produced. From there we can edit, com

pile, interpret, or depict.

An interesting aspect of decision grid

charts is their close relation to common

English. Though I haven't done the pro

gramming, the translation of English lan

guage statements in a pre-grid chart for

mat to grid charts seems clearly possible.

Part II and III

In Part II of this series, we will be exam

ining the mixed entry table editor, for this

is the most fundamental piece of the deci

sion table system—the ERGO Logic Kit-

to which I have been alluding. We also

will examine the compiler, algorithms and

code for automatic condition entry, find

ing missing rules, eliminating redundancy

and contradiction, automatic table com

pression, sorting and optimizing tables,

and other interesting topics.

In Part III we will explore the decision

table interpreter as well as look into the

grid chart editor and translator and other

related topics such as a natural language

front-end and factoring probabilities into

decision tables.

See you next month! ¥§

References

1. Kay, Alan. "Computer Software." Scien

tificAmerican (S&pt, 1984).

2. McCabe. T.J. "A Complexity Measure."

IEEE Transactions on Software Engineering

SE-2 (1976): 308-320.

3. A great deal of literature is available on the

subject of decision tables. I would suggest

the following materials for an introduction:

Hurley. Richard B. Decision Tables in Soft

ware Engineering. New York: D. Van

NostrandCo. Inc., 1983.

Pooch, UdoW. "Translation of Decision

Tables." Vol. 3, No. 6, Computing Surveys

(June 1974).

4. Smith. David Canfield. Charles Irby. Ralph

Krimball, Bill Verplank. and Eric Harslem.

"'Designing the Star User Interface." BYTE

(Apr. 1982).

Jim McCarthy is a member ofthe technical

staff, research and development, AT&T-

Teletype, in Skokie, HI.

CIRCLE 56 ON READER SERVICE CARD

40

Introducing the MIX Editor
(with Split Screen - both horizontal and vertical)

A Powerful Addition To Any Programmer's Tool Box

Full Screen Editing

WordStar Key Layout

Custom Key Layouts

Terminal Configuration

Help Files

Backup Files

Introductory Offer
Only

2995
30 Day Money Back Guarantee

Programmable

Macro Commands

Custom Setup Files

Mnemonic Command Mode

Multiple File Editing

Split Screen Editing

For PCDOS/MSDOS (2.0 and above/128K) • IBMPC/Compatibles, PCjr., Tandy 1000/1200/2000, & others

For CPM80 2.2/3.0 (Z80 required/64K) • 8" SSSD, Kaypro 2/4, Osborne ISD/DD, Apple II, & odiers

Great For All Languages

A general purpose text

processor, the MIX Editor is

packed with features that make it

useful with any language. It has

auto indent for structured

languages like Pascal or C. It has

automatic line numbering for

BASIC (255 character lines). It

even has fill and justify for

English.

Terminal Configuration

A utility for defining terminal

features (smart features

included) allows the editor to

work with any terminal. Over 30

of the most popular terminals are

built-in.

Custom Key Layouts

Commands are mapped to keys

just like WordStar. If you don't

like the WordStar layout, simply

change it. Any key can be

mapped to any command. You

can also define a key to generate

a string of characters, great for

entering keywords.

Split Screen

You can split the screen

horizontally or vertically and edit

two files simultaneously.

Macro Commands

The MIX Editor allows a

sequence of commands to be

executed with a single keystroke.

You can define a complete

editing operation and perform it

at the touch of a key.

2H6E.Aiapoho

^uiic 363

Rkhanbon, Ti 7KM1

software

MSDOS is a trademark of Microsoft

PCDOS is a trademark of IBM

CPM80 is a trademark of Digital Research

WordStar is a trademark of MicroPro

Custom Setup Files

Custom keyboard layouts and

macro commands can be saved

in setup files. You can create a

different setup file for each

language you use. The editor

automatically configures itself

using a setup file.

Command Mode

Command mode allows any

editor command to be executed

by name. It is much easier to

remember a command name

versus a complicated key

sequence. Command mode

makes it easy to master the full

capability of the editor.

Frequently used commands can

be mapped to keys. Infrequent

commands can be executed by

name.

Editor Commands

The editor contains more than

100 commands. With so many

commands, you might think it

would be difficult to use. Not so,

it is actually extremely simple to

use. With command mode, the

power is there if you need it, but

it doesn't get in your way if you

don't. Following is a list of some

of the commands.

Cursor Commands

Left/Right/Up/Down

Tab Right/Tab Left

Forward Word/Backward Word

Beginning of Line/End of Line

Scroll Up/Scroll Down

Window Up/Window Down

Scroll Left/Scroll Right

Top of File/Bottom of File

Block Commands

Copy/Move/Delete

Read/Write

Lower Case/Upper Case

Fill/Justify

Print

File Commands

Directory (with wild cards)

Show File/Help File

Input/Output File

Delete File/Save File

Other Commands

Split Screen/Other Window

Find String/Replace String

Replace Global/Query Replace

Delete Line/Undelete Line

Delete Word/Undelete Word

Insert Mode/Overwrite Mode

Open Line/Join line

Duplicate line/Center line

Set Tab/Clear Tab

I To Order: Call Toll Free 1-800-523-9520, (Texas only 1-800-622-4070)

Mix Editor (2995 + shipping (*5 USA/110 Foreign) Texas residents add 6% sales tax

Visa MasterCard Card *

COD Check Money Order

Exp. Date

Disk Format.

Computer.

Name

Street

. Operating System: MSDOS PCDOS CPM80

City/State/Zip.

Country

Phone

MDC
21l6E.Arapabo

Suite #3
Ridunbcrfi.Ti-50Hl

software
Dealer Inquiries Welcome

Call (214) 783-6001
BT

CIRCLE 24 ON READER SERVICE CARD

We're getting hardnosed
at Softway.

From now on MATIS is only $4995I
(MATIS, the complete User Interface development tool has been selling for $150.)

Why the radical price cut?

We decided after looking over the compe

tition that MATIS had so many advan

tages it should be made available to more

programmers. We decided to compete

aggressively so you could easily afford to

have MATIS in your bag of tricks. We

hear from MATiS users in the USA and

France that it is a truly loveable product

Sooo...we're running this big ad to pro

mote our new low price.

MATIS windows are beautiful.

Display any portion of any screens you

create at any point in your program.

Scroll in any direction manually with cur

sor keys...or automatically.

And the screens are

HUMUNGEOUS!

MATiS screens can be just about as big as

you want...up to 65.534 rows by

65.534 columns! The number of screens

is only limited by available memory.

Print big MATIS screens directly.

One command sends your screens to your

printer with no need to program special

routines when your virtual screen is big

ger than your terminal screen.

User input fields are a snap.

Creating fields for data entry is easy with

no limit to size or number by screen.

Request for input

separately or

in blocks. «i

Denis Moran

President Softway. Inc.

Control your keyboard

with MATIS.

It keeps track of keys that are pressed

during the execution of your program

and lets you assign specific functions to

selected keys.

Control that screen too!

MATIS is extremely versatile and flexible

when it comes to controlling lines, col

umns, fields, and text They can be modi

fied, transferred, displayed or moved

with a single command. All video attri

butes are supported: color, reverse video,

blinking...you name it. you got it.

Want an interactive

screen builder?

You've got it with MATIS. It's called

"MATPAGE11:" and it lets you create

and modify any of your screens in an

interactive mode.

MATIS adds over 70 routines

to your program.

Written in Assembler. MATIS routines

are fast and powerful giving your pro

gram improved efficiency and enhanced

visual appeal, while they reduce its size

and maintenance worries. And MATIS

separates screen design from the core

of your program.

MATIS is unique.

We don't think there's a single program

that combines as many tools in one

package as completely or as well as

MATIS. It interfaces with Intepreted and

Compiled BASIC (Microsoft). C (Lattice,

Microsoft. Aztec), PASCAL (IBM. Micro

soft) and ASSEMBLER. All you need

is an IBM* PC/XT or true compatible

under DOS. 128k or RAM. monochrome

or color monitor.

You get an easy to follow no-frills

manual and a 30-Day Money Back

Guarantee.

Late News:

MATIS/T'V for TURBO-PASCAL**

only $29.95

An indispensable add-on at a dynamite

price. What more can we say?

V
i Denis Moran

"MATIS. MATIS/T. & MATPAGE are TraGemarKs of Softway. Inc.

•IBM is a Reg. Trademark of IBM Corp.

"Turbo Pascal is a Reg. Trademark of Borland International

Please ship the following at once. I

-Copies of MATIS at $49.95 plus

$3 shpg.

Copies of MATiSAT for TURBO

PASCAL at S29.95 plus $2 shpg.

Softway,Inc.
24-Hour Credit Card Orders By Phone:

1(800) 227-2400 EXT 989
understand there is a 30-day money back guarantee.

500 Sutter Street. Suite 222 CG

San Francisco. California 94102

(415) 397-4666

California: 1(800)772-2666 EXT989

California residents, add 6'A% sales tax

D I like to read specs, so
send me a folder.

Total $.

Name.

Address (please no P.O. Boxj.

City'5tate/ZIP

Phone I .Signature.

Make payment by money order, check, or charge card D visa □ master card

Number Exp

Distributed in Europe By: MICRO APPLICATION SOFTWARE • 147 Avenue Paul Doumer. 92500 RUEIL MALMA1S0N FRANCE. Tel (1) 732.92.54

CIRCLE 29 ON READER SERVICE CARD

42

Programming techniques

and products that put
English on your PC

. Natural
Language
Software

rou probably

remember the

movie "2001"

for its

artificially intelligent computer. HAL.

Not only was HAL a smooth talker, he

was a canny listener, able to understand

and obey spoken commands.

With the real 2001 just 16 years away,

are we much closer to building computers

that can communicate as naturally as

HAL? Might the sixth generation com

puter language be English? Let's

consider.

Computer scientists have made great

strides in natural language processing

(NLP) since "2001" was released. Pro

grams have been demonstrated that can

translate natural languages,' paraphrase

simple texts." even read and answer ques

tions about AP news stories.1 Natural lan

guage data base systems are especially

popular items, and not just in the lab. Try

your nearest mainframe computer, where

natural language query products like

Intellect4 have been available for years.

Or try your personal computer. You can

buy natural language data bases for your

PC or if you're ambitious, implement one

yourself.

In this article we'll look at the problems

NLP poses and discuss some techniques

for solving them. We'll explain a popular

method for parsing English sentences.

We'll also take a hands-on look at two nat

ural language data bases for PCs that

show just how far NLP has come and sug

gest how far it may yet go. The problem

ofimplementing HAL we'll leave as an

exercise for the reader.

By Darryl Rubin

Natural history

NLP research is older than you might

think. People were experimenting with

natural language software before HAL

was even a gleam in Stanley Kubrick's

camera lens.

The earliest efforts5 focused on the

problem of determining the grammatical

structure of English sentences, a process

you compiler writers will know as par

sing. These early programs did nothing

more than diagram input sentences, pro

ducing parse trees like the example in Fig

ure 1.

Recenl programs are much more

A parse tree

impressive because they attempt io under

stand and act on the actual meaning of the

input sentences. One program.

SHRDLU." could move objects about a

simulated world based on English

requests: the program could also under

stand and correctly answer questions

about the current state of its world.

Another program. SAM.1 could read sim

ple stories and answer questions about

them, in many cases inferring information

that wasn't explicitly stated.

The mean hacker crashed the system

43

Understanding natural language is no

small feat. Language is rich in ambiguity,

innuendo, and sometimes just plain

sloppy grammar. Indeed, human beings

often have trouble understanding it! The

first step then, is to simplify the NLP

problem by breaking it down into several

smaller problems, or phases.

If you've ever written a compiler,

you'll know right off that NLP can be

divided into three phases: lexical, syn

tactic, and semantic analysis. You start

wilh an input string of one or more

English sentences. Lexical analysis sepa

rates the string into individual words and

classifies them according to a dictionary.

Syntactic analysis groups the words into

phrases and phrases into sentences.

Semantic analysis figures out what the

sentences mean.

Some linguists will point out that true

NLP requires a fourth phase called prag

matics that deals with the overall commu

nicative intent of a dialog. For example,

the statement "That's wonderful" means

one thing on the surface but quite another

if it is a response to "Taxes just went up."

The difference is one of pragmatics.

As you can imagine, semantic and prag

matic analysis of natural language are

unsolved problems. Let's just get a feel

for them before moving on to the more

tractable lexical and syntactic phases.

Look at these two sentences:

Babe Rufh threw a ball.

Queen Victoria threw a ball.

Syntactically these sentences are identi

cal and unambiguous. But how different

the meaninssof the words "threw" and

"ball."

Ambiguity can, of course, be a prob

lem, as in "I saw Nero on the stage with

binoculars." Think carefully: Who has

the binoculars, me or Nero? For that

matter, which of us is on the stage? Also

ask yourself, would a computer under

stand that Nero must be a character in a

play, not the historical emperor of Rome?

Now consider this pair of sentences:

Nothing is better than complete hap

piness in life.

A ham sandwich is better than

nothing.

Unless a computer is awfully smart about

interpreting these sentences, just image

the conclusion it's likely to draw!

Lex education

Perhaps a HAL could deal with problems

like these, but practically speaking, you

can implement useful NLP programs just

by doing a good job at lexical and syn

tactic analysis. This is because most pro

grams are written to solve specific prob

lems, like data base inquiry, and in these

limited domains the range of possible

meanings is small. For example, database

query systems deal only with variations

on a single meaning: find information in

the data base.

Whereas HAL could understand spoken

inputs, most of today's NLP programs can

only deal with written input—text strings.

We said earlier that lexical analysis is the

first step in processing natural language.

The lexical analyzer breaks the input

string into its component words and

important punctuation marks, like sen

tence endings. It then looks up the words

in a dictionary to check whether they are

known and if so to attach important fea

tures to them, like parts of speech-

article, noun, adjective, verb, etc. (or

several of these for words with multiple

meanings). Words not found in the dictio

nary may be removed from the input or

spell correction may be attempted.

Identifying word and sentence endings

may sound simple enough until you real

ize how creatively the rules of punctuation

can be applied by some writers. Also con

sider the problem that abbreviations, con

tractions, and compound words can cre

ate. Abbreviations end in a period, which

may look like a sentence ending. Con

tractions use apostrophes, which arc also

used in quotations and possessives. Com

pound words use a hyphen, which can be

confused with a word break at a line

boundary. Try this sentence out on your

lexical analyzer: "Don't tell me the com

puter "eats' double-sided diskettes—that's

nonsense!" saidtheJr. Programmer's

boss.

The easiest way to handle difficulties

like these is with a good dictionary. For

example, the dictionary can be used to

expand abbreviations and contractions to

full words or to disambiguate the use of

hyphens by checking whether removing

the hyphen results in a valid word. The

dictionary is less useful fordis-

ambiguating the different uses of apostro

phes, so heuristics must be developed to

do this job.

Another tactic that works for some

applications is to simply ignore punc

tuation. Natural language query systems

typically do this, including the ones we'll

talk about later. But a general-purpose

understander can't take it quite that easy.

Try making sense of "Thai's what I meant

you thought." Confusing, yes? But add

just one little comma and a plausible

meaning emerges: "That's what 1 meant,

you thought."

The dictionary can be used to simplify

input text in more profound ways than

merely eliminating abbreviations and con

tractions. For example, certain entries

can be marked as "noise words" that are

to be removed from the input text; other

words or entire phrases can be marked for

replacement by predefined synonyms.

Combined with an algorithm for

removing suffixes and prefixes, the dic

tionary can also help transform words to

their root forms. Simplifications like

these remove unnecessary detail and make

the input text easier to analyze.

In some applications you can even

shrink sentences to a few key words that

convey all the needed information. Many

adventure games work this way, isolating

a single verb and object out of the player's

input. "Let's drop the shovel here"

becomes "Drop shovel."

Another program that uses such tech

niques is a full text retrieval system called

SIRE. Similar in concept to the Dialog

Information Service, SIRE lets you store

documents on disk and retrieve them

based on queries like "Show me articles

about natural language" or "Have you got

anything about cognition dated 1985?"

SIRE doesn't actually parse or under

stand natural language. But by clever

noise-word filtering, root-word extrac

tion, and synonym lookup, it reduces quc-

44 COMPUTER LANGUAGE* JULY 1985

ries like the two preceding ones to the

essential retrieval keys "natural lan

guage" and "thinking or cognition, date

1985."

Grammar school

The syntactic phase of NLP is the one you

probably learned the most about in

school. It's what 12 years of English class

were all about.

Syntactic analysis concerns itself with

the rules ofgrammar—that is, the rules

for combining the basic parts of speech

into phrases, clauses, and sentences. The

problem for NLP is to use these rules to

analyze an input sentence and produce a

parse tree representing the sentence's

structure. Figure 1 shows a parse tree for

the sentence "The mean hacker crashed

the system."

The hardest part of syntactic analysis is

to encode the grammatical rules that guide

the building of parse trees. Natural lan

guages have very complex grammars that

are context dependent, not context free

like those for computer languages. This

means that the role one word plays in a

sentence depends on other words in com

plex ways. Take this example:

Time flies like an arrow.

Fruit flies like a banana.

In the first sentence, "flies" is a verb and

"like" is a preposition. In the second,

"flies" is a noun and "like" is a verb.

How can a parser analyze sentences like

these? First, it must depend on the lexical

analyzer to mark each word with every

role the word can play. Second, the parser

may need to backtrack—that is. when

finding an ambiguous word, pick the most

likely meaning and proceed with the

parse. If the parse fails, back up and retry

with another of the possible meanings.

The more you think about complexities

like this, the more you realize that a natu

ral language parser is a kind of expert sys

tem whose knowledge base is a set of

grammar rules. How can these rules be

encoded? The most well-proven method is

to use augmented transition networks

(ATNs).N like the ones shown in Figure 2.

ATNs will look familiar if you've ever

seen the syntactic flow diagrams used to

specify computer languages like Pascal.

But there's more to ATNs than meets the

eye. Let's see how they work.

The ATN in Figure 2A says that a sen

tence (S) consists of a noun phrase (NP)

followed by a verb phrase (VP). This is

because crossing the NP arc followed by

the VP arc leads to a success node (indi

cated by double circles).

But what is a NP? It is another ATN

(Figure 2B), which says that a NP consists

of an optional determiner (DET) followed

by zero or more adjectives followed by

one or more nouns—for example, "The

(DET) lazy (ADJ) computer (N) operator

<N>."

Using an ATN is like finding a path

through a maze. If you can get to a success

node, the parse succeeds (the sentence

was grammatical), otherwise it fails (the

sentence was probably everyday

English!).

So far, ATNs sound just like syntactic

flow diagrams. What puts the A in ATN is

that each arc is augmented with a pro

cedure that must be executed to determine

whether the arc is currently available for

crossing. These arc procedures can

inspect the input string, modify it, even

maintain local and global state informa-

ATNs for a subset of English grammar

NEG

D.

Figure 2.

45

tion in registers that are totally separate

from the transition network itself.

Most importantly, the arc procedures

are responsible for building the parse tree

a node at a time as the network is

traversed. They use the registers to do

this. Registers are usually defined that

correspond to major sentence features like

the subject, object, verb, tense, and so on.

As the parser classifies words in the input

string it appends them to the appropriate

registers, then assembles the register con

tents into parse tree nodes when the neces

sary preconditions for doing so have been

satisfied (such as reaching a success node

oftheATN).

To move from one node to another, the

parser must evaluate (call the procedure

of) each outgoing arc to determine which

one is available for crossing. For exam

ple, the arcs labelled N in Figure 2B can

only be crossed when the current input

word is a noun. Likewise, the ADJ arc

requires an adjective. PP arcs require a

prepositional phrase. V requires a verb,

and soon. (Arcs labelled "*" are always

available for crossing—they provide a

way to make certain grammatical features

optional.)

Generalizing on this notion, an arc

labelled with the name of another ATN

requires that the specified ATN be

traversed successfully. In other words, the

named ATN is called as a (possibly recur

sive) procedure. Notice in Figure 2 how

the NP ATN calls PP which in turn calls

NP. This mutual recursion could con

ceivably occur for call after call after call

after call!

Of course, not all kinds of repetition

are legal in English. For instance, double

negatives are a no no (ahem). How can the

VP ATN (Figure 2C) detect them? Simply

by setting a Hag register in the NEG pro

cedure to bar that arc after the first time

through. The VP ATN must also check for

invalid verbs forms; it's OK to write

"have goofed" but not "have goof." The

V are from NP/AUX to VP/V tests for this

mistake —it blocks itself if "have" was

seen as an auxiliary verb (AUX), but the

current word is not a past participle.

When checking for available arcs, the

parser may find itself with several that can

be taken. The NP/N node in Figure 2B

presents one such dilemma: it has two N

arcs leaving it. When this happens, the

parser must backtrack as previously

explained, trying each of the alternatives

until one succeeds or all fail. This gets

slow in a hurry, s6 be sparing ofmultiple

choice nodes in your own ATNs.

A Savvy Retriever

With all the effort that's gone into refining

ATN parsers and other NLP algorithms, it

should corneas no .surprise that the tech

nology has begun appearing in micro

computer products. One of the first of

these is a natural language query system

called Savvy Retriever.

The surprising thing about Savvy is that

it uses none of the established NLP tech

niques. Savvy's approach is Savvy's own.

And there's a good reason for this.

Classical parsers are built lo process

grammatically correct sentences and to

reject incorrect ones. But how many of us

are grammatically correct all the time?

We use flaky syntax, fragmentary sen

tences, misspelled words, bad punc

tuation, you name it. The most convoluted

command language would probably be

easier to use than one that required perfect

English!

Savvy's unique approach is to dispense

with parsing almost entirely. Instead, this

program relies on a technique called adap

tive pattern recognition. Rather than ana

lyze your query's grammatical structure

(which may not exist), Savvy asks itself

"Of all the queries I've ever seen, which

one does this most resemble? Is there a

pattern here that I recognize?" If so.

Savvy assumes the new query is equiv

alent to the one it had seen before. The

program will optionally display the for

mal interpretation of your query so you

can verify it. To get an idea of how Savvy

works in practice, a complete, annotated

transcript of a Savvy work session is

available as SAVVY.LOG on the

COMPUTER LANGUAGE Bulletin Board

Service or account tin CompuServe.

Savvy's pattern recognition process is

fascinating. The program operates on

your query's representation as a string of

bits in computer memory—not sentences,

not words, bits. Through a series of math

ematical transformations that are anal

ogous lo hash coding. Savvy derives from

this bit string a set of numbers that repre

sents a coordinate in an abstract space of

200dimcnsions (!).

Savvy's pattern memory consists of

clusters in this space, each of which rep

resents a specific word, phrase, or query

that it understands. Pattern matching is

simply a matter of seeing if your query's

spatial coordinate lies within any of the

prestored clusters. (These clusters are

created at the factory in a training process

where Savvy is presented with sets of dif

ferent queries that mean the same thing.)

If Savvy can't match your query as a

whole, it splits the query into smaller

parts and pattern matches those, recur

sively to the word level if necessary.

The beauty of this approach is that

Savvy is incredibly tolerant of mis

spellings and excess verbiage. More often

than not, it focuses on the significant con

tent of your query and within limits

{you'll see later) produces the desired

information.

Like its strengths, Savvy's drawbacks

result from its pattern matching algo

rithm. Pattern matching is not the same

thing as understanding. Savvy cannot per

form calculations because it cannot parse

expressions; you can't ask it to average a

database field, for example. This lack of

expression handling also makes Savvy

weak at handling complex Boolean

retrieval conditions, as in "List all

employees who are under thirty five and

single or over forty and married." Worse,

the pattern matcher may misinterpret que

ries. For example, it may interpret "List

recently hired employees" as "List

recently fired employees."

Another weakness is that Savvy's pat

tern memory can only be trained at the

factory (the process involves massive

number crunching). To make up for this.

Savvy lets you define literal synonyms for

words it already understands: you may

define synonyms for any of Savvy's 85

built-in words or for any field label or

data value in your data base. Unfortu

nately, you cannot define synonyms for

phrases. For example, you can't define

"highly paid" to mean "salary greater

than40000"; Savvy will insist you pick

between defining a synonym for "salary"

46 COMPUTER LANGUAGES JULY 1985

(u field label) or "greater than" (a built-in

operator).

Queries with Clout

Savvy's holistic, pattern matching

approach to NLP contrasts sharply with

the analytical, logic-based technique used

by Clout, another natural language query

system for PCs. Much more than a parser,

Clout is an expert system that understands

how people ask questions. And it under

stands very well indeed. A complete,

annotated Clout session is also available

on the COMPUTER LANGUAGE BBS and

on CompuServe—look for the file name

CL0UT.LOG.

Like Savvy. Clout is tolerant of

ungrammatical. fragmentary, misspelled

queries. But there the similarity ends.

Clout analyzes your query to the /Vth

degree, testing it against a knowledge

base of if/then rules that encode expertise

about data base queries. For example, one

of Clout's rules says "If the word TOP is

present, the phrase following it is proba

bly a ranking criterion." So it understands

"What are the top 3 salaries'?"

Via such rules. Clout tries to assign

meaning to every word in your query. If it

runs into trouble, (he program uses ATNs

to provide additional information and may

even ask you to define unknown words.

Clout's parser understands mathematical

expressions as well as English grammar,

so Clout can perform calculations ("What

is Jones' salary * 1.10?").

Unlike Savvy, when Clout doesn't

understand something it immediately

gives you a list of guesses to choose from

or asks you to enter a synonym. This

makes it a snap to adapt Clout to your

question asking style. Clout is much more

trainable than Savvy because it has a

larger vocabulary (300 words) and a more

powerful synonym capability. What's

more, you can define synonyms for entire

phrases, and the definitions can take

parameters. This lets you define "works

for@X" as "supervisor = @X" so you

can ask "Who works for Bronson?"

Clout draws knowledge not just from its

dictionary and knowledge base but also

from your data base. Clout knows how to

use the data base schema to retrieve infor

mation from up to five files. The program

automatically performs whatever data

base operations are needed (select,

project, join) to retrieve the desired

information.

Unfortunately, Clout can't show you the

formal representation of your query as

Savvy can. This is because Clout trans

lates your query directly into data base

I/O operations. In fact, the data base I/O

interface that Clout uses is available sepa

rately from Microrim as a product called

PI (Program Interface). Clout itself is just

a big Fortran program (!) written on top of

the PI.

Natural selection

Clout and Savvy represent impressive

first steps toward NLP on personal com

puters. They also demonstrate that the

first two decades of natural language

research didn't exhaust all the good ideas.

Savvy's pattern recognition algorithm

works well for simple but imprecise que

ries against single files. Clout's expert

system approach makes short work of

complex, multifile queries and

calculations.

These two products and their succes

sors will surety evolve, not just in terms of

their ability to understand, but also in

terms of their ability to act. Will future

data bases perform natural language

updates as well as queries? Will future

word processors use NLP to rephrase

poorly written passages and summarize

documents for quick reading? Will your

future computer answer questions as

smoothly and intelligently as a HAL?

Perhaps.

If it doesn't start asking you questions

first. H
Mm

References

1. Wilks, Y. "The Stanford Machine Intelli

gence Project." In R. Ruslin (Ed.). Natural

Language Processing. Englewood Cliffs,

NJ.: Prentice-Hall, 1973.

2. Schank, R.. N. Goldman. C. Rieger.andC.

Riesbeck. "Inference and Paraphrase by

Computer."X4CM22(3)(1975): 309-28.

3. Schank R.. M. Lebowit/., and L.

Birnbaum. "An Integrated Underslundcr."

American Journal ofComputational Linguis

tics 6(1) (1980).

4. Harris L. "A High-Performance Natural

Language Processor for Data Base Query."

ACM Sigari Newsletter vol .61(1977).

5. Feigcnbaum E. and J. J-'ekiman (Eds.).

Computers ami Vwuglu. New York:

McGraw-Hill, 1964.

6. Winograd. T. Understanding Natural Lan

guage. New York: Academic Press, 1972.

7. Lehncrt, W. "Human and Computational

Question Answering." Cognitive Science

1(1)(1977): 47-73.

8. Johnson. R. "Parsing with Transition Net

works." In M. King (Ed.). Parsing Natural

Language. New York: Academic Press.

1983.

Darryl Rubin is section managerfor net

work products at ROLM Corp.

Natural language

products

Product: SIRE

Price: S600, demo disk S25 (IBM PC

version)

Availability: IBM PC, XT, AT, or

compatibles, DEC Rainbow, computers

running UNIX or RSX

Vendor: Cucumber Information

Systems, 5611 Krafi Dr., Rockville,

Md. 20852, (301)984-3539

Product: Sovvy/PC with Savvy

Retriever

Price: $395

Availability: IBM PC, XT, or AT

running PC-DOS 2.0 or higher

Vendor: The Savvy Corp., 800 Rio

Grande Blvd., N.W., Albuquerque,

N.M. 87104, (800) 551-5199

Product: Clout

Price: S25O. Options: Rbase 4000

($495), Program Interface ($395)

Availability: IBM PC, XT, AT, or

compatibles running PC-DOS or

MS-DOS 1.1 or higher
Vendor: Microrim Inc., 3380 146th

Place, S.E., Bellevue, Wash. 98007,

(206)641-6619

47

QUINTUS

Computer

Systems

Incorporated

The Logical Solution

for Advanced

Software Development

Quintus Prolog™ Release 1.0

Available on... VAX (UNIX 4.2 & VMS),

Sun Microsystems (UNIX 4.2)

.. .and more to come

Fastest commercial Prolog

Most efficient memory utilization

Incremental Compiler

Integrated full screen editor

Comprehensive debugger and style checker

On-line help and documentation

Interface to C, Fortran, Pascal & VMS

supported languages

Floatingpoint arithmetic

Complete documentation, technical support

and training available

Quintus™ FIRSTS!!!

First Prolog to exceed 20,000 LIPS on

a workstation

First available Prolog developed specifically

for commercial use

First Prolog to achieve 1 LIP per dollar

cost performance

First symbolic language with compatible

compiler/interpreter

The Company Foundation

Dr. David Warren Authored first Prolog compiler:

DEC 10. The "Warren" in Warren/Tick Machine.

Dr. William Kornfeld Expert in Prolog and Lisp

technology. Designed Quintus Prolog development

environment.

Lawrence Byrd Developed DEC 10 debugger and

Quintus Prolog language interface.

Dr. Fernando Pereira Authored C-Prolog. Natural

language expert.

Tom Hartnett President and CEO. 17 years of

industry and management experience including

compiler and programming tools for micros through

mainframes.

Dr. Cuthbert Hurd Instrumental in IBM's decisions

to develop their first computer, Fortran and

transistor-based computers.

Sample Quintus Prolog

Applications

CAD/CAM interface (Natural Language)

CAD/CAM research

Chip design verifier

Configurator/expert system

Database and software technology

research

Expert system prototype development

Expert systems and natural language

Machine learning and algebraic manipulation

Natural language front end to database

Teaching and research

O Technology Established Q Product Delivered ^ Satisfied Customers Q Sound Financial Status

QuintUS Is Actively Hiring: Software Engineering, Quality Assurance, Technical
Documentation, Sales, Technical Support, Finance and Accounting

Please Contact:

Quintus Computer Systems, Inc.

2345 Yale Street, Palo Alto, CA 94306

Telephone (415) 494-3612

Telex 9103805744 QUINTUS

European Distribution:

Artificial Intelligence Limited

Intelligence House, 62-78 Merton Rd.,
Watford, Hertfordshire, WDl 7BY

Telephone (0923) 47707
Telex 851933883 INTHSE G

48 CIRCLE 20 ON READER SERVICE CARD

Learning
about

PROLOG
n 1981 it was

announced that

Japan had chosen

the programming

language PROLOG as the basis for soft

ware to be developed in the Fifth Gener

ation Computer Project. One of the aims

of this project was to make software that

would be truly handy for users.

The choice of PROLOG caused a great

deal ofatterition to be focused on the lan

guage. Until then, it had been a research

language, first developed at Marseilles,

France, and later extended at Edinburgh.

Scotland, and other centers.

The purpose of this article is to give an

indication, through simple examples in

PROLOG, of what is distinctive about the

PROLOG programming style and why it

is especially suitable for user-friendly

applications.

A number ofversions of PROLOG are

available, with some differences in syn

tax. But generally, the accepted standard

seems to be the version given in the first

definitive textbook on PROLOG. Pro

gramming in PROLOGby W.F. Clocksin

and C.S. Mellish. This is essentially the

Edinburgh University version of

PROLOG.

The examples in this article will be

mostly in terms of the C & M standard

version, which, with some minor mod

ifications, is used by most mainframe and

micro versions of PROLOG. We will also

illustrate the Micro-PROLOG version of

PROLOG, which is put out by Logic Pro

gramming Associates for IBM PCs and

Apple computers using CP/M.

By Ramachandran Bharath and Margaret Sklar

A deductive data base

PROLOG is a portmanteau word derived

from PROgramming in LOGic. A PRO

LOG program consists of declarations of

relationships between objects. During

program execution. PROLOG draws log

ical deductions from facts or relationships

the user has supplied. This process makes

PROLOG distinctly different from other

programming languages.

The key characteristic of other pro

gramming languages is that the user has to

specify step-by-step procedures the com

puter must carry out to obtain the output

the user wants, using the input data.

It is true that the specification of these

procedures has been made easier and eas

ier through the years—assembly language

made the task easier than machine coding

by allowing the use of symbolic names

instead of numeric code. High-level lan

guages made the task even easier by

allowing almost-English instructions

instead of the almost-machine instructions

of assembly language. For example, to

add two numbers in assembly language,

you have to give instructions like:

■ Move first number from memory to

register

■ Move second number from memory to

register

■ Add !he two numbers

■ Move the result back to memory.

High-level languages allow the use of

instructions like Result := First + Sec

ond, which certainly has made the writing

of programs closer to human language.

But it is still necessary to keep in mind the

mode of operation of the machine and tai

lor the programs to these modes of

operation.

The goal of programming in logic is to

make the task of programming even eas

ier. The user only has to focus on the

relationships between the data available

and the results required, leaving It to the

PROLOG system to work out the pro

cedure or steps required to obtain the

results.

This characteristic of PROLOG can be

illustrated by looking at the important fac

ets of programming in PROLOG. The

first facet is that the user supplies the sys

tem with a data base of facts relevant to

the problem.

A fact in PROLOG is expressed as a

relationship coHnecting one or more

objects. Forcxamplc. a PROLOG data

base could consist of the following facts:

firstname(smith,john)

firstname(adams,abigail}

firstname(fonda,jane)

firstname (reagan,ronald)

firstname(vanburen,abigail)

firstname(kennedy,jorin)

The relationship is called the predicate

(all the facts given above havefirstname as

the predicate), and the objects related by

the predicate are the arguments. A predi

cate can have one or more arguments,

though when there is only one argument,

you tend to think of it more as a property

than a relationship— for example.

youngQim) or sleeps (bob). Micro-

PROLOG has a minor difference: com

mas arc not necessary between objects.

Also, with facts that involve one or two

49

objects, you are allowed to use alternative

versions, like (bob sleeps) or (reagan first-

name ronald).

The simplest use of PROLOG is to

make a straight search to see whether or

nol a particular fact is in the data base.

The various implementations of PROLOG

make this search in slightly different

ways. In the standard C & M versions,

you would ask a question:

?-firstname(reagan, ronald) -

In the micro-PROLOG version, you

would ask:

is(firstname(reagan ronald))

In either case, the system would

respond with "yes." The question

?-firstname(n'ixon,richard). would pro

duce the response "no" since the fact is

not in the data base, even though it is true

in real life, Asking a question is referred

to as setting a goal for the PROLOG sys

tem to satisfy.

PROLOG can do much more than a

straight search. The next step up would be

to make a selective search by giving part

of the information and asking the system

to locate and supply the rest of the infor

mation. For instance,in Micro-PROLOG

you could ask the question:

which(x : firstname(Fonda x))

and the system would search the data base

and supply the answer:

jane

If a version close to the C & M standard

is used, the question could be phrased:

?-firstname(fonda,What).

and the system would respond with:

What = jane

Important to note is that PROLOG

works by pattern matching to try to satisfy

the goal. Also, the symbols X.Y,Z,x,y,z

... are treated by Micro-PROLOG as

variables to which any value can be

attached. Similarly, in the standard ver

sions any word starting with an upper

case letter {What in the above example) is

treated as a variable. So (he system is able

to mutch the questionfirstnameffondax)

orfirstname(fonda,What). with the fact

firsmame(fondajane) orftrsl-

name(fonda Jane) in the data base and

supply the answerjane or What —jane.

What if more than one solution can be

found by pattern matching? It is instruc

tive to consider what would happen if you

were to ask the Micro-PROLOG question:

which(y x : firstname(y x))

PROLOG always works by searching

the data base in the order the facts have

been entered. So in this case the first

match that would be found would be with

v= smith andx=John. Micro-PROLOG

would print out the solution:

smith John

then look for the next match and print out

adams abigail and so on until it can find

no more solutions.

Micro-PROLOG also allows you to get

only as many of the possible solutions as

you want by asking the question in the

form:

one(y x : firstname(y x))

In this case. Micro-PROLOG would print

out the first solution it finds and then ask

the user for a yes/no to whether more

solutions should be searched for. Simi

larly, in the standard versions the system

would produce one solution and wait for

the user to indicate whether more solu

tions are to be searched for.

With the C & M standard, the user

types in a semicolon and the system will

search for alternative solutions; if the user

hits the carriage return, the system will

not look for any more possible answers.

One of the versions available for IBM

PCs, PROLOG-86, uses a different con

vention. It automatically prints out all the

answers. You can indicate to the system

that you do not want more than one solu

tion by using the cut operator, which is .'.

For example, you could ask a question as:

?-firstname(Who,john),!.

to indicate that you want only one solu

tion. If the .' is omitted, the PROLOG-86

system would find all possible solutions.

Rules in PROLOG

We have seen that the basis of PROLOG is

its flexible, deductive data base. But what

really lends PROLOG its power as a user-

friendly language is that you can ask the

system to draw logical deductions based

on rules. All the user has to do is specify

the pattern of deductions required, and the

system takes on the task of interpreting

the logical specifications as procedures

samefirstname(xl

samefirstname(One

x2) if

,Other)

firstname(xl x) and firstname(x2 x) and not(xl EQ x2)

:- firstname(One,Something),

firstname(Other,Something),

One <> Other.

(standard version)

Listing 1.

50 COMPUTER tANGUAGEB JULY 1985

and then executes them. In other words, a

human being focuses on the logical speci

fication of the problem while the PRO

LOG system attends to the procedural task

of executing the specification.

To illustrate how rules work, let us con

sider the data base of first names we

looked at before. Suppose the user wants

to extract information on which pairs of

persons have the same first name. A rule

would be added to the data base (Listing

1).
You can sec the Micro-PROLOG rule is

really a logical specification saying that

xl and x2 have the samefirstname if the

first/tame ofxl and x2 are the same x, and

xl and x2 are different persons (not(xl EQ

x2)). The other version of the rule says

the same thing.:- stands for//, and < >

stands for not equal to, though some ver

sions use different symbols for these con

cepts. The user does not have to give any

procedural directions to the system on

how to implement this search task. It is

the system that makes a procedural inter

pretation of the logical specification or

declaration made by the user. It interprets

this procedurally in the following manner.

To find two persons with the same first

name, first find a person with some first

name [x or Something), then find another

person with the same first name and check

that the two persons are not the same. It is

useful to think of a rule as something that

sets multiple goals for the system to

satisfy.

In this example, if you ask the Micro-

PROLOG question:

one(x y : samefirstname(x y))

the system would print out the answer:

smith kennedy

and ask the user if another solution should

be found. If the user says yes, the system

will resume the search and give a second

solution:

adams vanburen.

Let us analyze in detail how the system

would find the solution to the standard

PROLOG question:

?-samefirstname(Who,Whoelse).

It first tries to match the goal set by the

question with a fact or rule in the data

base. In this case, it can only find a match

with a rule and matches Who in the ques

tion with One in the rule and Wiwelse in

the question with Other in the rule. A

rule, as we have seen, is really a condi

tional goal connected by an i/(or:-) with

other goals. So here it tries to satisfy each

of the goals in the rule, going from left to

right.

The system is able to satisfy the first

goa\,firswame(One,Something) by match

ing One with smith and Something with

John.

It now tries to satisfy the second goal,

which has becomefirstname(OtherJohn).

It is important to note that in satisfying the

first goal, the variable Something has

acquired the value^oAn—it is no longer a

variable. The valueJohn carries through

to all the other goals in the rule.

The system satisfies the second goal by

again searching the data base, starting at

the top, and assigns the value smith to

Other. Remember, to satisfy any goal, the

system always starts its search at the top

of the data base.

It now tries to satisfy the third goal.

One < > Other. It fails to satisfy this

goal because both One and Other have

been assigned the value smith.

We now come to a very important char

acteristic of PROLOG: backtracking.

When a goal fails, the system goes back to

where it satisfied a previous goal and

starts searching further in the data base.

So in this case it cancels the value it allot

ted to Other and searches further down the

data base to try and find a solution to the

second goal, firsmame(Otherjohn).

Clearly, it can satisfy this only when it

gets tofirsttuime(ketwed\\john) . Now it

again tries to satisfy the third goal,

One< > Other, and succeeds this time

since One is smith and Other is kennedy.

Since all the goals in the rule have been

satisfied, it prints out the solution:

Who = smith Whoelse «■ kennedy

By applying this principle of back

tracking, we can see that if we ask for

more solutions, the system will backtrack

to the first goal in the rule and satisfyfirst-

name(One.Something) with One — adams

and Something = abigail. It will now try

to satisfy the second goal in the formf'trst-

namefOthenabigait). Once again it will

satisfy this second goal with Other —

adams, but this will lead to failure on the

third goal. So it will backtrack, find Other

= vanburen to satisfy the second goal,

and finally succeed on the third goal as

well and print out the second solution Who

- adams and Whoelse — vanburen.

Keeping in mind the fundamental prin

ciple of backtracking when satisfying

multiple goals, the reader will certainly be

able to deduce that if we ask for more

solutions, the system will provide the

answers:

vanburen adams

kennedy smith

in that order. In the standard version you

would get a series of answers:

Who = vanburen Whoelse = adams

and

Who = kennedy Whoelse » smith

provided the system is prompted for more

answers by typing a : each time.

Let us consider one more example with

an extended data base containing two

more sets of facts (Listing 2).

A rule can be based on more than one

type of fact. For example, suppose we

want the system to use the data base to

find out for us the names of owners of a

particular type of computer in a particular

city. That is, we want to ask for names of

say. Apple II owners in Philadelphia. We

could of course ask a combined question:

?-lives_at(Who,Somewhere,

philadelph ia), has_computer

(Who,applell).

What we are doing here is asking the

51

system to satisfy two goals or find

matches for both the facts in our question.

But it would be more convenient to design

a rule as in Listing 3.

Now if we ask a question:

?-owns(Who,applel I, Philadelphia),

the reply would be:

Who — adams

This response is in accordance with the

principles we have discussed of the way

PROLOG tries to find matches starting at

the top of the data base.

We can see something of the flexibility

of PROLOG by considering a different

type of information we could extract from

the same data base of rules and facts. If we

pose the question in the form:

?-owns(Who,applell,Where).

we would be able to get the names of all

Apple II owners in our data base, along

with the city in which they live.

Recursion in PROLOG

We have discussed the basics of how

PROLOG can be used flexibly as a power

ful, deductive data base. One other valu

able feature of PROLOG is the facility il

provides for writing recursive programs.

A recursive procedure or rule is defined

as one that involves using the same rule as

part of the application of the rule. A typi

cal recursive definition would be for

reversing a list of names or numbers in the

following manner: to reverse a list,

reverse the rest of the list, then add the

first item at the end. This example shows

that to reverse a list, we use the same

reverse operation on the rest of the list.

What distinguishes a recursive defini

tion from a circular one is that it does not

go on endlessly. In the preceding exam

ple, when we apply the definition of

reverse to the rest of the list (from item 2

onward), the definition tells us to again

reverse the list from item 3 onward and

put item 2 at the end of the list, which in

turn leads us to reverse the list from item 4

onward. However, a stage is reached

when the list is empty, and to reverse an

empty list we keep it as it is. So the pro

cedure does operate noncircularly {List-

ing4).

The situation where recursion ends is

called the boundary condition. In this

case, it is the rule that reversing an empty

list gives an empty list.

The recursive rule for finding the larg

est number in a list of numbers can be for

mulated as follows: to find the largest

number in a list, compare the first number

with the largest number in the rest of the

list and choose whichever is bigger.

We can see that this involves finding the

largest number in the list from item 2

lives_at (smith,lll_elm_st, anytown).

lives_at (adams,3300_elfreths_alley, Philadelphia

lives_at (fonda, 10_some__ave,los__angeles).

lives_at (reagan,1600_j?ennsylvania_ave,Washington

lives_at (vanburen,212_loop_way,Chicago).

lives_at (kennedy,2010_presedential_blvd,boston).

and:

has_computer (smith, applell).

has_computer (fonda, ibm_pc).

has_computer (reagan, ibra__pc).

has__coraputer (vanburen, applell).

has__computer (kennedy, applell).

has_computer (adams,applell).

Listing 2.

52 COMPUTER LANGUAGES JULY 1985

onward, which in turn involves finding

the largest number in the list from item 3

onward. But it is not endless, for the

boundary condition is reached when the

list has only one number—the largest

number in the list is just that number.

To write a PROLOG rule for this we

need a supporting rule for comparing two

numbers, and designing this will illustrate

some other features of PROLOG. Let us

examine the rule:

greater(First,Second,Bigger):- First

> Second,

Bigger is First.

greater(First,Second,Bigger):- Bigger

is Second.

As we saw in previous examples, a rule

involves trying to match conditional

goals. In this case, to get a match if we

type in a question, say:

?-greater(7,3, Bigger).

PROLOG will match First with 7 and

Second with 3. To get a match for Bigger,

it will try to match the conditional goals in

the body of the rule following the .■-sym

bol. In this case, since First (7) is greater

lhan Second (3), it is able to match the

goal First Second and decides that First is

Bigger. The output will be:

Bigger = 7.

To see how the second goal ofthe rule is

used, let us analyze what happens if we

ask:

?-greater(4,9, Bigger)

Arguing as before, we sec that First and

Second in the head of the rule would be

matched with 4 and 9, respectively. But

the goal First > Second does not succeed.

Since the first rule fails, the alternative

goal. Bigger is Second is satisfied and the

result:

Bigger = 9

is output.

To summarize, this pair of rules can be

expressed in a free translation as: if

First > Second, then give Bigger the value

of First, else give Bigger the value of Sec-

and. We can see that this construct is anal

ogous to the IF. . . ELSE of other lan

guages.

We can now use this rule for selecting

the greater of two numbers in a recursive

definition for finding the largest number

in a list of numbers. But first it should be

noted that the representation of a list of

items in PROLOG is by enclosing them in

brackets with the items separated by

commas—for example, the list of five let

ters, a through e, would be represented as

[a,b,c,d,e].
Second, PROLOG provides a notation

distinguishing the first clement of the list

or head of the list from the rest of the list

or tail, as follows: (Head j Tail}.

In this notation. Head - a and Tail =

fb,c,d,ej, In other words, the head is the

first element of the list, while the lail is a

list consisting of all elements except the

first. Head and Tail can. of course, be

replaced with any variable names we

prefer.

Now let us consider the recursive pro

gram for finding the largest number in a

list. It consists of a pair of rules:

largest([Only],Only).

largest([First | Rest], Biggest) :.-

largest(Rest,Y),

g reater(First, Y, Biggest).

What happens if we ask a question:

?-!argest([19],Result).

We see that PROLOG will be able to

match the question with largest

({Only/,Only) by identifying 19 with Only

and Result with Only and so will output:

Result=19

But suppose we ask the question:

?-largest([3,6,7,l 1,4,2],Result)

Since PROLOG searches the data base

from top to bottom, it will try the first rule

with largest but will be unable to find a

match because the rule has a list with a

single element, Only, whereas the ques

tion has a list with six numbers in it. So

PROLOG will now look for any other fact

owns(Person,ComputerType,City) :-

lives_at (Person,Somewhere,City),

has_computer (Person,ComputerType).

Listing 3.

reverse

which is

reverse

which is

reverse

which is

reverse

which is

reverse

which is

i

of

of

of

of

of

(b

(c,

(d,

(e)

0

,c,d,e) followed by a

d,e) followed by b

e) followed by c

followed by d

followed by e

Listing 4.

PROGRAMMER'S UTILITIES

especially for Turbo Pascal on

IBM PC/XT/AT and compatibles

MORE POWERFUL THAN UNIX UTILITIES!!!

Whether you are a

-- Student - Hobtryisi ■■ Professional Software Developer -

THESE UTILITIES WILL IMPROVE YOUR

PROGRAMMING PRODUCTIVITY'!'

These Powerful, Ready-to-Use programs fully support Turbo

Pascal versions 2.0 and 30. and MSDOS 2.X and 3.0. Here's

what you get-

Pretty Printer
Standardize capitalization, indentation, and spacing of

source code Dont waste your own time' Several adjustable

parameters to suit your tastes (works with any standard

Pascal source).

Program Structure Analyzer
Find subtle problems trie compiler doesn't; uninitialized and

unused variables, mcdiiied value parameters, ■sneaky"

variable modificalion. redefined standard identifiers. Also

generates a complete variable cross reference and a pro

gram hierarchy diagram. Interactive or write to file [works

with any standard Pascal source}

Execution Timer
Obtain a summary oi time spent in each procedure and

function of your program, accurate to within 200 micro

seconds. Also counts number of calls to each subprogram

Fully automatic

Execution Profiler
Obtain a graphic profile of where your program spends its

time. Interactive, easy-to-use Identify weak code at the in

struction level (Profiler and Timer for Turbo Pascal Source

code only.)

Command Repeater
Go beyond MSDOS batch files to combine a powerful text

parser with general-purpose command execution capability

Use to copy, print or delete across subdirectories, "make"

programs and more.

Pattern Replacer
Find and REPLACE versatile regular expression patterns in

any text file. Supports nesting, alternation, tagged words

and more. Over a dozen programmer's applications

included.

Difference Finder
Find differences between two text files, and optionally create

an EDLIN script which rebuilds one from the other

Disregard white space, case, arbitrary characters and Pascal

comments il desired.

Super Directory
Replace PCDOS DIR command with extended pattern

matching, sort capability, hidden file display, date filtering,

and more

File Finder

Locate files anywhere in the subdirectory tree and access

them with a single keystroke Display the subdirectory tree

graphically.

AVAILABLE IN SOURCE

AND EXECUTABLE FORMAT

Executable: $55 COMPLETE including tax and shipping.

Compiled and ready to run. includes user manual, reference

card and one 51/." DSDD disk Ideal for programmers nol

using Turbo.

Source: S95 COMPLETE including tax and shipping. In

cludes all of the above, and two additional DSDD disks.

Disks include complete Turbo Pascal source code, detailed

programmer's manual (on disk) and several bonus utilities.

Requires Turbo Pascal 2 0 or 3.0

Requirements: MSO0S Z.X or 30. 192K RAM - programs

run in less RAM with reduced capacity Two drives or hard

disk recommended.

TO ORDER:
VISA/MasterCard orders, call 7 days toll-free 1-800-538-8157

x83Q In California, call 1-800-672-3470 i830 any day.

Or mail check/money order to:

TurboPower Software

47B '.',' Hamilton Awl. Suite 196

Campbell, iv, 95008

CIRCLE 45 ON READER SERVICE CARD

53

or rule with which a match can be found.

When it tries the second rule for largest

it will match 3 with First and f6,7,11,4,2]

with Rest, This will lead it eo try to satisfy

the goal largest([6J,1I,4,2J,Y) in the

body of the rule. To satisfy this, once

again it has to use the second rule, which

leads it to try to satisfy, largest

(l7.II,4,2j,Y). . , until it reaches a

stage where it has to satisfy kirgesi(/2/, Y).

At this stage we see that PROLOG can

use the first rule and identify Y with 2. It

tried the goal largest((2j, Y) when it tried

to satisfy the head goal, largest

({4,21.Biggest). at which stage it

took 4 to be First. So it has now to go on

to try to satisfy the second goal,

greater(4,2,Biggest), which it does, and
to extract 4 as Biggest because of the oper

ation of the rule for greater, which we

analyzed earlier.

But the goal largest {{4,2],Y) itself arose

as the body goal when earlier trying to

satisfy the head goal,, largest

(111,4,2\,Biggest), so we sec that

the 4 has to be compared with the 11.

Working backward this way, the 11

extracted by comparing 4 with 11 will in

turn be compared with 7, until finally it

outputs:

ARE YOU TRYING

TO COMMUNICATE ?
C programs can communicate with the world now through the power of

The Greenleaf Comm Library. Now from the people who brought you The

Greenleaf Functions General Library for C, comes this rich interrupt driven,

ring-buffered asynchronous communications capability.

Over 100 functions in C and assembler to facilitate communications at up to

9600 baud. Up to eight ports at a time. ASCII or XMODEM. X-On/X-Off too.

Hayes compatible modems controlled here. Safe too, bet you can't exit your

application with interrupts hot. Major applications around the world base

their communicating applications on The GreenleafComm Library. Stop just

trying and start really communicating. Get your copy of The GreenleafComm

Library today. For all major C compilers, all models, all versions. For the

IBM PC and just about any machine with MSDOS and an 8086. Comes with

source code, extensive examples, demo programs, featuring C-Terminal,

reference card and newsletter. No royalty. $185

Other Products: The Greenleaf Functions General Library, over 220

functions for total control of the IBM PC, with source. $185 for the compilers

listed below. (See ordering instructions below).

The

GREENLEAF

COMM

LIBRARY™

Specify compiler when ordering: Lattice, Microsoft, Computer Innovations,

Maik Williams, ot DeSmct. Add $7.00 for UPS Second Day Air (or J5.00 for

ground). Texas residents add suits tax. Mastercard, VISA, check, (ir P.O.

In stock, shipped same day.

For Information:

214/446-8641

DGeneral Libraries

DComm Library

DCI186 Compiler

D Lattice C

□ Mark Williams

$185

$185

$349

$395

$475

GREENLEAF

SOFTWARE?

PRICES ARE SUBJECT TO

CHANGE WITHOUT NOTICE.

2101 HICKORY DR.

CARROLLTON, TX 75006

Result = 11

A convenient way of visualizing this

recursive process is to think that the pro

gram first identifies 3 with First, puts it

away somewhere, and then proceeds to

deal with largest((6,II, 7,4,2],Y). But this

ir turn requires it to put 6 away some

where and deal with the rest of the list.

So we may think of the 3,6, ... as

being successively stacked one on top of

the other so that the program can later

take them off the stack in reverse order for

using them in the comparisons required in

satisfying the second goal of

greater(4,2,Biggest), which leads to

greater(4,l 1 .Biggest), which leads to

greater(l 1,7,Biggest), which leads to

greater(11,6,Biggest), which finally leads

to greater(l 1,3,Biggest).

Writing expert systems

This article has attempted to highlight

some of the features of PROLOG and in

particular emphasize its declarative or

assertional way of writing programs as

contrasted with the procedural methods

that characterize other high-level lan

guages. The declarative aspect of PRO

LOG makes the language a really handy

tool in writing expert systems programs.

Expert systems are programs that emu

late the working of a human expert. The

approach that has been found most useful

is to make a distinction between the

knowledge base used by the expert and the

inference program for drawing conclu

sions using the store of knowledge.

PROLOG lends itself ideally to storing

the relevant knowledge in the form of

facts and rules and then using the PRO

LOG interpreter to draw conclusions.

Space considerations prevent enlarging on

this use of PROLOG with examples. But

depending on reader interest as communi

cated to the editor, we hope to have an

opportunity in a subsequent article to

illustrate the use of PROLOG for building

expert systems. H

References

Clocksin, W.E.andC.S. Mellish. Program

ming in PROLOG. New York: Springer-

Verlag, 1981.

Clark, K.L. and McCabe, EG. Micro-

PROLOG. New Jersey: Prentice-Hall.

1984.

Bharath, Ramachandran. Programming in

PROLOG. (TAB Professional & Reference

Books, forthcoming by end 1985,)

Bharath, R. and Deb, A. An Introduction to

PROLOG: A Tutorial. Proceedings of the

National Meeting of the American Institute

for Decision Sciences, Nov. 1984. (This

article is a revised and expanded version

of the tutorial.)

Ramachandran Bharath and Margaret

Sklar are professors in the Management,

Marketing and Computer Information Sys

tems Dept. ofNorthern Michigan Univ.'s

School ofBusiness, Marcjuefte, Mich. 49855.

CIRCLE 44 ON READER SERVICE CARD

54

TURBO EDITASM

Introducing the firs! co-resideni editor assembler for the IBM PC family

TURBO EDITASM (TASM) is significantly faster and easier to use than the IBM

Macro-Assembler (MASMI Whether you are new to assembly language and want

10 quickly wnle 3 small assembly language routine, or are an experienced MASM

user tired of waiting months to assemble large dies. TURBO EDITASM will bring

the excitement back lo assembly language

TURBO EDITASM IS MUCH FASTER:

• How fast is TASM? The graph below shows relative assembly times lor a 48K

source file. For large files like this we blow MASM's doors off at 3 times their

speed For smaller 8K files we positively vaporize them at 6 times Iheir speed

TASM (UO sec)

MASM (340 sec.)

• TURBO EDITASM is faster for the following reasons (1) Written entirely in

assembly language (unlike MASM) (2) Editor, assembler and source file always m

memory so you can go msianily from editing to assembling and back. (3) Elimi

nates the time needed to LINK programs. Executable COM files can be created

directly. (Also creates OBJ files compatible with the IBM linker).

TUfiBO EDITASM IS EASIER TO USE:

TASM includes many other features to make your programming simpler

• Listings are sent directly to screen or printer Assemblies can be single stepped

and examined without having to leave the editor

• Access the built-in cross reference utility from the editor

• Full support of 136 and 286 (real mode] instructions

• Both Microsoft and 8087 floating point formats are supported 8087 and 287

instructions supported directly without macros for faster assembly.

• Calculator mode: Do math in any radix even using symbols from the symbol table.

• Direct to memory assembly feature lets you test execute your code from editor ■

• Coming soon. A coordinated symbolic debugger

COMPATIBILITY: TASM is source code compatible with WASM and supports

macros, records and structures.

Introductory Price $49
With .OBJ Capability $99

Speedware™
IBM. MciOSOfl tiaaemarns of IBM Corp

Include S5.00 shipping and

handling. California residents

add 6% Sales Tax.

Dealer Inquires welcome

916-988-7426

118 Buck Circle, Box C

Sacramento, CA 95030

Microsoft Corp

Expert Systems

Natural Language

APES

Augmented PROLOG
for Expert Systems

Language Interpreter

MS-DOS / PC-DOS

CP/M - UNIX

Machines

LPA PROLOG Language Interpreter 4.0-MS-DOS S395 00

LPA Sigma-PROLOG UNIX Version - 68,000 5695.00

LPA Sigma-PROLOG UNIX Version - VAX Si 500.00

LPA PROLOG Language Interpreter Documentation 45.00

APES Augmented PROLOG - MS-DOS $395.00

APES for UNIX Systems S695.00/S1500.00

APES Documentation 10.00

Pkg. LPA PROLOG a APES - MS-DOS S650.00

PROGRAMMING LOGIC SYSTEMS
31 Crescent Drive

Milford, Connecticut 06460

(203)877-7988

CP'M 11 ■
MS-DOE

PC-DOS i

UNII 11 o

EdutalionilS P«g

CIRCLE 41 ON READER SERVICE CARD

THE SYMBOLIC SWF QUA NON

I S i

Cybermetrics UNXUSP-86 (tm) Features:

• 1 Megabyte address space.

• LAMBDA, NLAMBDA, MACRO with
displacement.

• CATCH, THROW, ERRSET, & ERR.

• SAVE/RESTORE virtual images to/from disk.

• ^OPTIONAL, &REST, and &AUX parameters.

• Tree-structured object list, functional

directories.

• Lisp utilities with source, including pretty-
printer, structure editor, debugging functions.

• Works with any text editor through exec

function.

• Extensive manual - written in ENGLISH

• Requires 32OK memory and runs under
MSDOS and PCDOS versions 2.O and later.

$49.OO

ADD S3.OO FOR
SHIPPING & HANDLING

TECHNICAL

(4O8) 725-1344

CIRCLE 21 ON READER SERVICE CARD

THE fifth generation language

> R O L O (

Implementing the full Edinburgh Syntax as

described by Clocksin and Mellish.

Recognized by Japan as providing unparalleled

opportunity for artificial intelligence.

Applications:

• The highest level of a hierarchial robotic

control system,

• Machine recognition of natural language.

• Expert systems and knowledge engineering.

Optional:

■ Virtual memory

• Special libraries

• Language extensions

• Large model

Requires 192K memory and runs under MSDOS

and PCDOS versions 2.0 and later,

TECHNICAL

(215)646-4694

automata design assoc.

educational package

$29.95
other versions $5O-$5OO

1570 ARRAN WAY

DRESHER, PA19O25

TO ORDER CALL (215) 355-5400 USE IT FOR 3O DAYS

VISA

MASTERCARD

CIRCLE 1 ON READER SERVICE CARD
55

Now!... Software with know-how^
Unitek Technologies is a leading Artificial

Intelligence company. Our software starts with

market-proven conventional applications and

adds the know-how of expert assistance in

planning, organization and interpretation.

Unitek is looking for new technologies {es

pecially C, Prolog and expert systems) that will

enhance our ability to deliver advanced

products.

We also want additional, qualified staff.

• If you would like to do state-of-the-art

R&D in applied Al,

• If you are excited by the prospect of making

Al commercial,

• or if you have developed a new Al techno

logy, we encourage you to contact:

Dr. Vance Giboney, Unitek Technologies Corporation

#115-10751 ShellbridgeWay, Richmond, B.C. Canada

V6X2W8 (604) 276-2429

TECHNOLOGIES CORPORATION

CIRCLE 23 ON READER SERVICE CARD

DATESTAMPER™has the answers

« file

E!: RDDRES

61: JSMITH

Bi: TEST!

Bi: TEST2

created

22:61-17 Jsn

accessed

68:36-61 Feb

16: 38-24 Dee'84 1H59-16 Feb
89:34-22 Jar.

11:55-63 Feb

16:27-36 Jan

23-61 Feb

16:36-24 [>ecJ

09:35-22 Jan

11:55-81 Feb

When did we

print that letter?

Has the mailing

list been updated?

Which is the

latest version?

DateStamper keeps your CP/M computer up-to-date!

• avoid erasing the wrong file • keep dated tax log of computer use

• back-up files by date and lime • simplify disk housekeeping chores

OPERATION: DateStamper extends CP/M 2.2 to automatically record date and time a file is created, read or
modified. DateStamper reads the exact time from the real-time clock, if you have one; otherwise, it records the order in

which you use files. Disks prepared for datestamping are fully compatible with standard CP/M.

INSTALLATION: Default (relative-clock} mode is automatic. Configurable for any real-time clock, with pre-
assembled code supplied for all popular models. Loads automatically at power-on.

UTILITIES: Enhanced Super Directory • Powerful, all-function DATSWEEP file- management program with date and

time tagging • Installation and configuration utilities

PERFORMANCE: Automatic. Efficient. Versatile. Compatible.

Requires CP M 2.2. Uses less than IK memory. Real-time clack is optional.

When ordering please specify format h^mmmi^^h^^^^^^^^h^^

8" SSSD, Kaypro, Osborne Formats $49

For other formats (sorry, no 96 TP/l add $5.

Shipping and handling $3

California residents add 6% sales tax

Write or call for further information

MasterCard and Visa accepted

Specialized versions of this and other software available for the Kaypro
CP'M is a registered trademark of Digital Research. Inc.

[Plu'Perfect
BOX 1494 • IDYLLWILD CA 92349 • 714-659 4432

CIRCLE 35 ON READER SERVICE CARD

COMPUTER LANGUAGE ■ JULY 1985

PUBLIC DOMAIN SOFTWARE REVIEW

Screen scroll utilities and a gnu

IT
his month we will

briefly detour

from the planned

scheme of things to answer some requests

sent in by several readers.

Those who do a lot of listing on the

screen with the MS-DOS TYPEcommand

or who look at program listings in

BASIC, for example, arc well acquainted

with the problem of listings zipping past

on the screen too quickly, or worse, hav

ing the part of the listing that was of inter

est disappear off the top of the screen

before the listing is frozen. Scroll Lock

and the Control-S. Control-Q methods of

pausing the display work well, but they

lack the refinement that could make

screen dumps very useful.

As many of us do screen dumps of doc

umentation, listings, or multiple direc

tories, it is time to take a look at a few

programs designed to make life with the

scrolling screen a little easier. While this

may not seem like an important issue, it is

actually a frequently requested item that

rarely gets mentioned in examinations of

the public domain libraries.

Vincent Bly has developed a program

called Re-View. It is a user-supported

program available on several sources,

including PC-SIG vol. 138. A contribu

tion of S15 is requested.

For those who didn't catch my earlier

remarks on user-supported programs, a

quick digression. User-supported pro

grams are intended for free distribution

and are usually available through bulletin

boards, public domain libraries, user

groups, and other sources. The authors of

the programs essentially release the pro

gram to the public domain but add a rider

saying they would appreciate a given

amount of money (usually $15-530) if the

program is found useful. There is no obli

gation to send the requested amount, and

there is nothing illegal about not doing so.

The advantages of sending the contribu

tion are the support and the ensuing

updates that are available quickly and

readily. Also, the programmer will be

encouraged in many cases to continue

writing programs and rewriting versions

of existing programs. This allows pro

grams to be distributed widely and gives a

user a free look at the material.

By Tim Parker

The user-support idea eliminates one of

the major headaches of commercial soft

ware: buying a program for several tens

or hundreds of dollars, only to find it

doesn't do what the user thought it would.

Further, the ever-present piracy and ille

gal duplication problems are much less

important when the program is allowed to

be distributed. True, the author may not

make as much money with user-supported

programs as if the program had been

released in a commercial package, but

most of the programs released in the user-

support fashion are not the programs that

can cost up to several hundred dollars.

Now for some details about Re-View.

Re-View gives IBM and compatible

machines a buffer that holds 75 lines in it.

As text is scrolled off the top of the dis

play, it is loaded into the buffer and can be

recalled easily. With the buffer and the

current screen together, this gives a

100-line "virtual" screen that is fully

accessible. The lines can be recalled

cither one at a time or a page at a time.

Re-View requires a color/graphics

board. It does not work with the IBM

monochrome display adapter card, but it

works fine with Compaqs and other com

puters that have a dual purpose card.

Re-View is activated by simply typing

the program's name. (You may wish to

included in an AUTOEXEC.BAT file for
convenience.) It will create the necessary

buffer and activate the keys it uses for

commands. These are the right-hand plus

and minus keys by the numeric keypad.

The standard plus and minus keys are

unchanged. The program is temporarily

deactivated by using a Control-ALT/

Scroll Lock sequence. This will be neces

sary whenever the program is resident in

memory and another program is used

which also uses the plus or minus keys.

Re-View also will not work with pro

grams that access screen memory directly

or use pages other than page 0 for the

screen.

The plus key scrolls through the screen

buffer one line at a time toward the top.

while the minus key scrolls line by line

toward [he bottom. A Shift-plus combina

tion goes up by pages (25 lines), while a

Shift-minus goes down by pages. The

scrolling is fairly smooth compared to the

usual color/graphics scroll, but when

compared to the dual function boards

available or a Compaq which supports

both monitors, it seems a bit jerky.

The saving to the buffer can be toggled

on or off with a ALT/Scroll Lock combi

nation . The status is fed back to the user

by beeps from the speaker. Two beeps sig

nify that the save is activated; one beep

means it is deactivated. This is useful

when an introductory or reference section

is loaded into the buffer and recalled for

quick referral when needed while scroll

ing through the rest of the text. Alterna

tively, one text can be stored in the buffer

and recalled at a later time, or when in

another program, or while scrolling

through another.

Although Re-View is most useful with

the standard scrolling commands in DOS

(TYPE, DIR, etc.). it can also be used

inside other programs and languages.

such as Microsoft's BASIC, that use a

screen dump for some functions, such as

listings. A long listing can be stored in the

Re-View buffer and skipped through

when jumps are encountered or variable

references used. The buffer's contents are

destroyed when some programs are run.

though, and SCREEN and WIDTH com

mands clear the buffer.

Re-View will not work with the DOS

Version 2.x ANSLSYS program. This is

because the ANSI. SYS program docs not

support the usual routines in ROM for

scrolling. However, a patching program is

supplied with Rc-Vicw that will correct

the problems in the ANSLSYS file, cre

ating a new file called ANSIR.SYS (so the

original is not destroyed). The new file is

then called from the CONFIG.SYS file.

Two other programs are supplied with

Re-View. CLA is a program that works

like DOS's CLScommand but which also

clears the contents of the virtual screen

buffer. UP adds the facility to scroll the

text above the cursor into the buffer.

Re-View proved to be especially useful

when disks were being scanned for con

tents and the directories saved in the

buffer for reference. Further, when a long

document file is examined, the recall fea

tures were used instead of having to print

the file out. In this respect. Re-View

57

would prove very useful for someone who

does a lot of text processing.

Those who have used mainframes run

ning VM/CMS will be acquainted with

the command BROWSE. BROWSE lets the

user scan a file and move through it to the

top or bottom, left or right, just as if a

word processor was invoked, but without

the edit commands. A similar program is

available on PC-SIG vol. 205.

When the command BROWSE FILE

NAME is entered, the screen is cleared

and the text is rapidly displayed. The top

two lines of the screen are reserved by

BROWSE and arc shown in reverse video.

The file being scanned is named in the

upper left corner, while a running line and

column count appear in the upper right

corner in the format "Line 73 of 156 Col

umn 30 of 120".

The cursor movement keys are used to

move through the file. The up and down

arrows move through a page at a time,

while the left and right arrows move the

text to the left and right, with some over

lap for readability. The Home key returns

to the top left of the file, while the End

key goes to the bottom left.

The BROWSE function can be exited

using the ESC key. BROWSE is useful in

that it is fast and allows movement any

where in the document or program listing

being examined. Although it cannot oper

ate over another program like Re-View, it

is useful in its own right and will proba-

Instant-Cm:
The Best Value

In C Programming Tools

The edit-compile-link-test-debug cycle that takes tens of minutes with

compilers and linkers is only seconds with the Instant-C interpreter. Yet it

runs your programs 50 to 500 times faster than conventional C inter

preters! You get the best of both compilers and interpreters. Only Instant-

C is a complete, integrated environment for creating,.testing, and running
your programs.

Instant-C gives you all of these proven capabilities in one tightly inte
grated package:

interpreter—Instant-C runs your programs faster than some compilers;
has direct execution; full K&R

compiler—Instant-C can make stand-alone programs

full-screen language editor—shows syntax errors with cursor set to
trouble spot

C source debugger—single-step, breakpoints, stack trace, more

run-time checker—validates pointer refs, array bounds, more

C source formatter—save editing time, find logical flaws

standard library with source—for best portability

linker—work with multiple source modules

Lint—extensive compile-time validation

The cheapest available examples of these tools would cost $800 (and

they don't even work together). You could spend close to $3000 to get the
best product of each kind, but you'd have ten times the complexity, filling

megabytes of disk. Instant-C is faster: it performs these functions
automatically. instant-C is far more than the sum of its parts.

Instant-C is all of these capabilities in one package, fits on a single floppy
disk, is full K&R, works on IBM PC's, compatibles, and others under DOS
or CP/M-86. ft costs only $495.

Instant-C is the best value in C programming tools. Guaranteed, or your
money back for any reason in first 31 days.

Rational
Systems, Inc.

(617) 653-6194

P.O. Box 480

Natick, MA 01760

instantC is a trademark o' Rai'onai Systems. Inc

bly replace the DOS LISTcommand for

many people once they have tried ii.

Another program that acts like Re-

View but adds other features is available

on PC-SIG vol. 198 under the name L4.

Written by Vernon Buerg. it runs only on

DOS 2.x and will not use ANSI.SYS.

L4 is invoked exactly like LIST, but

allows the user to issue a number of posi

tioning commands. These are all relative

to the cursor's current position and will

affect the block of text in memory. This is

variable depending on the amount of free

memory in the machine, to a maximum of

64K.

The name of the file is displayed in the

top left of the screen. The bottom line is

reserved for commands, and a quick com

mand index appears in the lower right cor

ner. The file is displayed in half intensity.

Commands can be issued by either let

ters or control keys. Files arc scanned

with the normal arrow keys: up and down

arrows move up or down one line, while

the left and right arrows move 20 columns

to the left or right. Alternatively, the letter

keys N (for next) and P (for previous)

move one line up or down, while the L

(left) and R (right) keys move 20 columns

to the left or right, respectively.

Paging through a document is done

with the PgUp and PgDn control keys or

with the D and U keys. Striking the

RETURN key advances you to the next

page. The Home key (orT. for top) moves

you to the start of the file, and the End key

(or B. for bottom) moves you to the end.

The ESC key exits, as docs cither Q (quit)

or X (exit). Striking the Fl, H, or? keys

will reveal the command list.

L4 also has a text search facility,

which is not found in any of the pre

viously mentioned programs. A character

string can be searched for by issuing the

slash (/) command, followed by the text to

be located. The maximum text length is

32 characters. The string to be located is

then displayed on the command line and

the text in the memory block is scanned. If

a match is found, the line blinks. If no

match is found, an error message is

issued. To scan another block of memory,

the PgUp or PgDn command must be used

to load new text into the memory block

and the F3 key used to reissue the scan

command. F3 is also used to locate the

next occurrence ofa match in the current

memory block, if required.

A few other commands that move

within the memory block are also pro

vided. These commands also move within

[he entire text when the find function is

used. Control-Home restarts from the

current memory block, while Control-

PgUp goes to the start of the file. Control-

PgDn skips to the end of the file, and

Control-left arrow resets the scrolling to

column one. The find facility is exited

with the F10 key.

L4 takes longer to load than either of

the other two programs mentioned in this

CIRCLE 72 ON READER SERVICE CARD

58 COMPUTER LANGUAGE ■ JULY 1985

article, but it has the text find facility, if it

is required.

Of the three TYPE replacements, one is

probably of greater use to a programmer

or writer, while another works well for a

casual DOS user. Experimentation ulti

mately determines which is best, if indeed

a TYPE replacement is deemed necessary.

I?:::::::::::::;:::: A lthou8h a £n"IS
■■■■■■■■■■■■■■■■■■■a #% i ,-■ . ■ ■
■•■■■■■■■■■■■■■■■■I* m % , ■■ini.', ■ i ■■:■.*
■■■■■■■■■■■■■■■■■■■a m m UCJIULU 111 LUC
*■■■■■■■■■■■■■■■■■■■ ^■■K

:::::::::::::::::::: § Vdictionary as

"an African antelope with an ox-like head

and a long tail" or a "wildebeest," the

GNU in this month's column has nothing

to do with Africa. The "GNU Project"

has achieved something of a cult status in

the computer world. Many people have

heard about it but few really know what it

is and even fewer have up-to-date infor

mation. The head of the project, Richard

Stallman. has recently tried to rectify this

problem by placing updates on services

such as CompuServe, bulletin boards, and

in some magazines.

GNU is an attempt to create a free ver

sion of UNIX. Its name stands for

"GNU's Not UNIX," which is an excel

lent example of a recursive name if ever

there was one! The intention is to create a

complete system that is UNIX compatible

in every sense but which lacks the exor

bitant costs associated with UNIX. If

eventually completed. GNU will be dis

tributed free of charge and modifications

and redistribution will be allowed, but no

one will be able to charge for GNU or a

modified version.

To date, Stallman reports thai a por

table implementation of both C and Pascal

compilers are completed. An EMACS-

like text editor, a yacc-compatibie parser

generator, a linker, and 30 to 40 utilities

are ready. The crucial command inter

preter, or shell, is supposedly near com

pletion, with the kernel and debugger tar

geted for distribution by the end of this

year.

The aims for GNU are high. Although

the goal is to make it UNIX compatible,

some changes will be implemented to aid

in operating convenience. It is intended to

have both C and LISP as primary lan

guages, with longer file names, window

ing, and terminal independent display

support.

At the moment, GNU is being imple

mented on 68000/16000-class machines

with virtual memory. Despite many

rumors to the contrary, the adaptation to

other machines such as the IBM-PC is not

intended to be part of the original GNU

plan.

The fate of the GNU project, and

whether it makes it down to the IBM PC,

is still to be seen. It is an ambitious

project, and although the goals arc com

mendable, it is likely to generate some

animosity from the industry. Stallman

(who wrote the original EMACS editor)

can be contacted through InterNet. or at

166 Prospect St., Cambridge. Mass.

02139.

Recently crossing

my desk was a

press release

from the New York Amateur Computer

Club Inc. (NYACC). NYACC, founded in

1976. is one of the oldest and largest orga

nizations of microcomputer users in the

world. Although well known for its sup

port of 8080 and Z80 programs, it has

recently unveiled its PC/Blue Library of

IBM PC public domain material.

For information about this organization

and the available material, address your

letters to NYACC, Box 106. Church St.

Station, New York. N.Y. 10008. A catalog

containing a list of diskette contents, an

alphabetical index of files, and a list of

programs grouped into 19 topics is avail

able for S5. At last check, there were 110

disks in their library. Most are double-

sided. Although much of the material is

contained in bulletin boards and from

such other sources as PC-SIG (1556 Hal-

ford Ave., Suite 130, Santa Clara, Calif.

95051), NYACC disks are inexpensive at

$7 each and provide a fairly large source

of public domain material on the east

coast.

Two of the programs mentioned in this

column are available from NYACC: Re-

View on vol. 52, and L4on vol. 81. (An

earlier version of L4 can be found on vo!.

68.)

Many volumes from NYACC match

those of PC-SIG. especially user-

supported programs. Having this large,

trustworthy source of public domain

material now available on both coasts of

the United States is a definite benefit for

all users. All the programs mentioned in

this column will be available on the

COMPUTER LANGUAGE Bulletin Board

Service (BBS) and CompuServe.

Please continue to submit your com

ments, suggestions, and requests for pro

grams to me in care of COMPUTER

LANGUAGE. Reader feedback is the best

judge of what is wanted out there, and so

far you've been very helpful. Short notes

also can be left on the BBS, but letters

really arc the better form, as I can be more

sure of seeing and responding to each

one.H

REMOVE

from your C programs
with

PC-LINT

PC—UNT analyzes your C programs (one

or many modules) and uncovers glitches,
bugs, quirks and inconsistencies. It will catch
subtle errors before they catch you.

PC—UNT resembles the Lint that runs on

the UNIX O.S. but with more features and
greater sensitivity to the problems of the

8086 environment.

• Full K&R C

• Supports Multiple Modules-finds incon
sistencies between declarations and use

of functions and data across a set of

modules comprising a program.

• Compares function arguments with the

associated parameters and complains if
there is a mismatch or too many or too

few arguments.

• All warning and information messages

may be turned on and off globally or

locally (via command line and comments)

so that messages can be tailored to your

programming style.

• All command line information can be

furnished indirectly via file(s) to automate

testing.

• Use it to check existing programs, pro

grams about to be exported or imported,

as a preliminary to compilation, or prior
to scaling up to a larger memory model.

• All one pass with an integrated pre

processor so ifs very fast.

• Has numerous flags to support a wide

variety of C's, memory models, and

programming styles.

• Introductory Price: $98.00 MC, VISA
(Includes shipping and handling) PA residents add b%

sales lax. Outside USA sdd $10-00

• Runs on the IBM PC (or XT, AT or

compatible) under DOS 2.0 and up, with
a minimum of 128KB of memory. It will

use all the memory available.

3207 Hogarth Lane • Collegeville, PA 19426

(215)584-4261

■Trademarks: IBM (IBM Corp). PC-LINT ICimpel Software),
UNIX (AT&T)

59

SuperSoft Languages
When Performance Counts

A programmer's most

important software tool is

the language compiler or

interpreter he uses. He has

to depend on it to work

and work well.

At SuperSoft, we believe it.

That's why we offer four

excellent compilers:

SuperSoft FORTRAN,

SuperSoft A, SuperSoft C,

and SuperSoft BASIC. They

answer the programmer's

need for rock solid,

dependable performance

on microcomputers.

SuperSoft

FORTRAN

With large code and data.

SuperSoft FORTRAN version 2.0

with large code and data space

is now available under MS DOS

and PC DOS. It gives you the

power to compile extremely large

FORTRAN programs on micros.

It allows double precision and

complex numbers, full IEEE float

ing point, and a full range of other

important features for the serious

FORTRAN programmer. Both

8087 support and a RATFOR pre

processor are optionally available.

FORTRAN (CP/M-80 & 86, MS

DOS, PC DOS): 5325

8087 support: S50 RATFOR: $100

SuperSoft A

A true Ada* subset

SuperSoft A is a completely standard

subset of the Ada language, incor

porating approximately 63% of the

standard Ada syntax and including

such important features as packages

and separate compilation. For

CP/M-80 microcomputers: $300.

SuperSoft C

SuperSoft C is a high-powered, full-

featured C compiler designed for

serious C applications. It is fast-

both in compilation and execution,

and it is packed with more than 200

library functions (all delivered in

source code form). SuperSoft C

produces optimized assembly code,

and object code can be ROMed.

SuperSoft C (for CP/M-80, CP/M-86,

MS DOS, PC DOS): $350

SuperSoft

BASIC

The SuperSoft BASIC compiler lets

you get serious with business and

financial programs. It uses BCD

math to give you highly accurate

results for demanding applications.

SuperSoft BASIC is a true native

code compiler that is generally

compatible with Microsoft's BASIC

interpreter. And an additional

bonus-no run time license fee is

required.

SuperSoft BASIC Compiler (for

MS DOS, PC DOS, and CP/M-86):

$300

Also available for programmers:

Star-Edit, a full-featured

programmer's text editor: $225.00

Disk-Edit, an invaluable

programmer's disk data editor:

$100.00

To order call 800-762-6629

In Illinois call 217-359-2112

In conjunction with SuperSoft. SuperSoft FORTRAN was developed by Small Systems Services,

(Jrbana. IL a leader in FORTRAN development.

Japanese Distributor ASR Corporation International. TBL Building. 7th Floor, 1-19-9 Toranomon,

MinatoKu. Tokyo 105. Japan Tel. 03-5025550, Telex 222-5650 ASRTYO J.

•Ada is a trademark of the Department of Defense

PC DOS is a trademark of International Business Machines.

MS DOS is a trademark of Microsoft.

CP/M-80 and CP/M-86 are trademarks of Digital Research. Inc.

SuperS ft
SuperSoft, Inc., 1713 S. Neil St,

P.O. Box 1628, Champaign, 1L 61820

CIRCLE 74 ON READER SERVICE CARD

EXOTIC LANGUAGE

OF THE MONTH CLUB

MRS: An experimental Al system

By John Sechrestand Nick Flann

n artificial intel

ligence program

ming, you

generally try to reason about time, states,

or alternatives. There arc programming

techniques that make this reasoning

easier.

If you program in a traditional pro

gramming language, you end up building

your own set of tools to support AI pro

gramming. LISP, for example, has

become popular because it manages data

structures easily and its programs can

manipulate other programs. PROLOG has

gained its status because it is a logic pro

gramming language that changes pro

gramming from a prescriptive activity to a

descriptive one.

However, both of these languages have

their shortcomings when it comes to AI

programming. LISP has no tools for logic

programming, and PROLOG has no effi

cient mechanism for closely controlling a

procedural activity. Without rewriting

parts of PROLOG, it is difficult for pro

grams in PROLOG to reason about their

own behavior.

MRS is an experimental logic program

ming system written in LISP by the Stan

ford University Heuristic Programming

Project. The most significant difference

between MRS and PROLOG is MRS's

ability to observe and control its own

activity.

MRS provides tools to manipulate

meta-levcl information. With these tools,

representations, inference methods, and

search strategies can be switched. A LISP

function also can be attached to a predi

cate to increase flexibility and efficiency

as needed. This ability to control the

meta-levcl structures of a problem makes

MRS a useful tool for AI programming.

Syntax. MRS uses a prefix notation.

This notation is inherited from the LISP in

which MRS is written. In MRS, a set of

primative symbols is used to represent

things and facts aboul things. An object

can be almost anything: Fred, car. hobbit.

Relations describe the relationship

between objects and are used to slate

facts. For example, the line:

(Uncle Bilbo Frodo)

can represent the statement that Bilbo is

Frodo's uncle. Some of the symbols have

predefined meanings, such as logical

operators. All statements arc collections

of terms in a prefix notation.

All logic systems are merely syntactic

manipulation systems. The semantics of a

statement arc independent of the syntax.

As long as the statements arc used consis

tently, the semantics of the statements will

be maintained. Many bugs occur because

people assume some semantic component

to a statement about which MRS has no

information and therefore no ability to

reason about it.

Logical operators. A set of logical

operators (and, or, not, if) is built into

M RS. These operators allow the combina

tion of simple facts to create more com

plex facts:

(and (hungry Bilbo) (tired Bilbo))

(if (tired Bilbo) (sleepy Bilbo))

These operators work in the obvious way:

and succeeds if all of its subclauses suc

ceed, or succeeds if any of its subclauses

succeed, and no! succeeds when the sub-

clause doesn't.

//is the equivalent of the PROLOG

implies. In PROLOG you might write:

P:-Q. (Pis implied byQ)

In MRS you would say:

(ifGP)

Variables. If you wanted lo refer to some

undetermined object instead of specific

objects, you would use a variable to refer

to the object. There are two types of vari

ables in MRS: base-level and meta-level.

Base-level variables begin with a $ and are

used to refer to objects. Meta-levcl vari

ables begin with an & and arc used to

refer to statements.

Now you can make statements like:

(if (wear magic-ring $x) (invisible $x))

(if (orc$x) (ugly$x))

Noic that if you just say (itglySx), jtxwil]

match all objects in the whole world, in

other words. "All things are ugly." To

limit the scope of a statement, you must

use an (/clause.

Data base. MRS also provides func

tions lo add and delete facts from its data

base. To store a fact in the MRS data base,

use assert:

(assert'(fat Bilbo))

Notice the single-quotation mark charac

ter. Assert is a LISP function that takes

LISP variables as arguments. If you are

putting a constant into the data base, you

must quote it to make it a literal. Unassert

will remove a fact from the data base.

Both assert and unassert can do additional

inferencing when storing a fact.

The data base can be looked at two ways.

You can look for items either stored in the

data base or implied by items in the data

base. If, for example, you say:

(assert'(age Bilbo 111))

(lookup '(age Bilbo $x))

MRS will return:

This is a binding list describing the bind

ings of the variables. If you want to find

an item implied by the data base rather

than look into the data base for items

stored there, you would use tnwp. Truep

will do backward inferencing through the

data base to find if a fact is implied by the

database.

Instead of looking at binding lists in all

of the examples, let's define a function to

print the lists in readable form. A LISP

function called output prints a fact from

the data base based on a template that you

provide. Listing 1 shows some definitions

that make function output look more

reasonable.

If you say:

(find '(age bilbo $x))

MRS will return:

Bilbo is 111 years old

61

instead of

Truep also searches for the implications of

a data base. If you look at the following

set of statements, you can see that the fact

that Bilbo is happy is not in the data base

but is implied by it.

(assert '(if (hobbit $x) (happy $x))
(assert '(hobbit Bilbo))

(lookup '(happy $x)); this will return

nil

(find '(happy $x))

Bilbo is happy.

Default inferencing. Most programs

written in a logic language may not need

all of the fancy facilities MRS provides.

The default state for MRS is backward

inferencing. Switches add forward infer

encing, justification, caching, and agenda

processing. In the default state, these are

turned off because each adds to the over

head of the system.

Assert does forward inferencing, while

truep does backward inferencing. Let me

illustrate the difference. (Note that chang

ing the inference method will not alter the

answer but will alter ihe amount of work

needed to find the answer. Whether the

alteration is good or bad depends on the

structure of the rules.) We can turn on for

ward inferencing for a set of statements:

(assert '(toassert (&x) fc))

for forward inferencing with the follow

ing rules:

(assert '(if (ore $x) (ugly $x)))

(assert '(ore ragashak})

When you assert (ore ragashak) then (ugly

ragashak) will be stored in the data base.

Then the process of asking if ragashak is

ugly is just a lookup. In other words, (ugly

ragashak) is already in the data base.

If the forward inferencing on ore was

not turned on, inferring the answer would

take longer. When asked if ragashak is

ugly [(find '(ugly ragashak))], the back

ward inferencing procedure looks for

(ugly ragashak) . When this fails, it looks

for 'rules like (iff. . .) (ugly). MRS will

find the rule (if (ore $x) (ugly $x)) and sub

stitute ragashak for Sx. It will then look

for (ore ragashak) and will succeed.

Rule structure determines which type

of inferencing is more efficient. If the

rules are forward branching, then back

ward inferencing is more efficient. If they

are backward branching, then forward

inferencing is more efficient.

Although I defined forward inferencing

with (toassert (&x)fc), I could just as eas

ily have said (toassert (ore &x)fc) . This

procedure causes only facts with the form

(ore &x) to be forward-inferenced. All

others will continue to be backward-

inferenced. Note that if you use $x instead

of &x, MRS will match only statements of

the literal form (ore $x). It will not find a

statement of the form (ore $y). That is the

purpose of the meta-levcl variable: to

allow you to reference statements that

contain base-level variables.

The ability to specify the types of state

ments you do forward inferencing on

allows you to tailor inferencing to the

data. Suppose, for example, you have the

following rules:

(assert '(if (ore $x) (ugly $x)))
(assert '(if (ore $x) (mean $x)))

(assert '(if (ore $x) (big $x)))

(assert'(if (hobbit $x) (nice$x)))
(assert '(if (dwarf $x } (nice $x)))

(assert'(if (elf $x) (nice $x)))

(assert '(ore ragashak))

(assert '(hobbit bilbo))

If you look closely, you will notice that

rules about ores are forward branching.

The rules about things that are nice are

backward branching. No matter what type

of inferencing you choose, you still get

the same answer. However, for some of

the rules it is more efficient to do forward

inferencing instead of backward infer

encing. To find out (ugly ragashak), you

don't care if he is big and mean, so you

want to do backward inferencing. To find

out (nice bilbo), you don't care if (nice

dwalin), so forward inferencing on hobbit

will be more efficient.

As you can see, both inferencing meth

ods will work, but one will take longer

than the other. By using information about

the structure of your data, you can make

the inferencing more efficient.

Basic AI tools. As I stated earlier, jus

tification, caching, and search control

normally are turned off in MRS. All of

these add overhead in time and space. But

(assert '(template (&x &y) (&y is &x)))
(assert '(template (hobbit &y) (&y is a hobbit)))

(assert '(template (ore &y) (&y is a ore)))
(assert '(template (age &x &y) (&x is &y years old)))

(defun find (x) (output (plug x (truep x))))

Listing 1.

you should alter how the defaults are set if

you need to follow the reasoning for a

problem, if you know that a specific type

of inference is going to be done repeat

edly, or if you have a problem with a

structure that is inappropriate for depth-

first searching.

Justification. Using the previously

cited rules, we can show how the reason

ing is done. We can turn on justification

by saying:

(setq justify 'justifications)

Then when we say (find '(ugly $x)) all of

the reasons that lead to this conclusion are

stored into the justification theory. If we

say:

(why '(ugly ragashak))

MRS will respond with:

p274: (ugly ragashak) by be

p272: (ore ragashak)
p273: (if (orcSx) (ugly$x))

giving you all of the work that it went

through. p272: is a reference to where the

fact is stored.

Caching. Using the previously cited

rules, if you say (lookup '(ugly$x)) it will

return nil. On the other hand, if you say

truep a binding list will be returned. Even

after truep has returned a binding, lookup

will not find a reference. This is because

the facts inferred in the process of infer

ring a statement are not saved. If every

inference were saved, you would soon run

out of space. But if you know that some

inference will be used frequently, you can

say:

(setq cache 'cache)

and all of the inferred facts will be stored

in a theory called cache. Theories are just

collections of facts stored under a name.

You can switch or empty theories. This

gives you control of the facts that are

stored in the data base. Just think of them

as buckets that facts are put into. You can

remove all of the facts from a theory by

typing (empty 'cache).

Search control. Since many reasoning

tasks are done in very large spaces, you

will need to manage not only the memory

usage (with caching) but the time as well.

Search control can reduce the amount of

work a program may need to do. Both the

base- and meta-level interpreters work by

taking tasks from an agenda and executing

them. 1hzpreferredcovnmand allows you

to order the items on the agenda. Since

this ability adds more overhead, the

ordering feature is normally disabled.

You can turn it on with (setq preferred t) .

After the preferred switch is set, you

can make statements like the one

presented in Listing 2. But this procedure

62 COMPUTER LANGUAGES JULY 1985

thefirst

name in

Runs a wide range of applications and AI

development environments including OPS-5,

Flavors, MRS, GLISP, Pearl.

Compiler, interpreter and library of LISP

functions.

The most widely distributed dialect of LISP.

Common LISP compatibility.

Can access C, Fortran and UNIX shell from

within a LISP program.

Available on a wide range of machines includ

ing Apollo, Cadmus, Harris, Masscomp, SUN

and VAX (UNIX and VMS). Complete cross

machine compatibility.

Franz Inc.

2920 Domingo, Suite 203

Berkeley, California 94705

(415) 540-1224

CIRCLE 55 ON READER SERVICE CARD

nattier in a series of

productivity notes on UNIX

software from UniPress.

Subject: A complete Kit of compilers,

cross compilers and assemblers.

The Amsterdam Compiler Kit is the

only C and Pascal UNIX package

which includes a wide range of native

and cross tools. The Kit is also easily

modifiable to support custom targets.

■ C and Pascal compilers (native

and cross) for UNIX machines.

■ Host and target machines include

VAX" 4.1/4.2 BSD, PDP"-11/V7.

MC68000-* and 8086" Cross

assemblers provided for 8080? 180',"

Z8000? 8086? 6800? 6809?

68000? 6502 and PDP-11.

■ The Kit contains complete

sources * of all programs, plus com

prehensive internals documentation

on how to make modifications needed

to add a new program language or

new target machine.

Full Source System

Educational Institutions

Selected binaries are available -

us with your machine type.

$9950

995

contact

AMSTERDAM
COMPILER

"A source UNIX or C license is required

from AT&T.

For more information on these and

other UNIX software products, call or

write: UniPress Software. Inc., 2025

Lincoln Hwy., Edison, NJ 08817.

Telephone: (201) 985-8000, Order

Desk: (800) 222-0550 (Outside NJ).

Telex: 709418. Japanese Distributor:

SofTec 0480 (85) 6565. European Dis

tributor Modulator SA (031) 592222

OEM terms available.

Mastercard/Visa accepted.

CIRCLE 81 ON READER SERVICE CARD

tJniPrcssSoPtLUQre
tour leading Source for UNiX'Softwarz

63

is not always as straightforward as one

might like. The preferred statement is a

message to the meta-level interpreter to

prefer inferring on ugly before inferring

on mean. This can be used to implement

forms of searching, such as breadth-first

searching.

Procedural attachment. Sometimes

you will need access to more information

or flexibility than is available inside MRS.

You can access the underlying LISP sys

tem by using procedural attachment. The

LISP system gives you access to the oper

ating system calls and a faster language

for computation. If the default structure of

MRS makes a computation difficult or

inefficient, you can attach a LISP pro

cedure to do the work instead.

While procedural attachment gives you

efficiency, it also removes MRS"s ability

to know what the procedure is doing. If

you want MRS to gather information

about what an attached procedure is

doing, you must explicitly assert the facts

you want MRS to know: "

(assert '(totruep (time &x) get-time)}
;totruep modifies how truep is

done.

(defun get-time (x) (setq x (status
ctime)))

(truep '(time)

This truep will return:

| SunApr21 12:04:001985 I

The ctime function is an operating sys

tem call to the system clock. Reasoning

systems can get access lo the real world

through this mechanism.

Because of all the things you might

want to do with a predicate, several differ

ent mechanisms can attach a LISP pro

cedure to a MRS predicate. But it is only

important to know that this is possible.

Let's see how it can be applied to a spe

cific problem, which we'll call the frame

problem.

N

main tasks in design: first, that of knowl

edge representation, or how to describe

the problem to the machine; and second,

controlling the search so the problem is

solved in a reasonable amount of time.

The construction of a problem solver

involves representing two kinds of knowl

edge: state descriptions and operators.

The two cannot he designated separately

because the form of one determines the

other. Basically, the states are described

by predicates and the operators by rules.

Search is performed by inference, cither

reasoning back from ihe goal state to the

initial state or vice versa.

To clarify the important issues inherent

in representation, a scheme for solving

the standard AI toy problem of hobbits

and ores is presented. The problem is

described as follows:

Two hobbits and two oresfind them

selves on the north side ofa river. They

have agreed that they want to get to the

other side. But the hobbits are not sure

what else the ores have agreed upon. So

the hobbits want to manage the trip across

the river in such a way that the number of

hobbits on one side ofthe river is never less

than the number ofores on the same side.

Vie only boat available holdsjust two peo

ple at a time. How can everyone get across

the river without the hobbits getting eaten ?

The similarity of this problem to sym

bolic integration can be seen by identi

fying the states and operators of this

domain. A state describes so:nc arrange

ment of the hobbils, ores, and boat. The

program searches the problem space con

taining all such arrangements. Rowing the

boat over the river forms the operators

that transform states.

We can imagine how a system would

solve this problem. Beginning with the

. t/,-/-,*\/ * -,\ss hobbits and ores on the north side, various
(assert (if (ugly $x) nasty $x ugly))) arrangements in the boat would be tried to
(assert (if (mean $x) (nasty $x mean))) form new states. At each new state a
(assert (template (nasty &x &y)(&xis nasty because he is &y) check would be made for termination (for

(setq preferred t; example, all people on the south side) and
(assert (preferred (bedisp ((ugly &x)).l)

(bedisp ((mean &y)). &m)))

(find '(nasty $x $y))

ragashak is nasty because he is ugly

Listing 2.

(goal-state {statedescription})

(illegal-state {statedescription})
(possible-operator operator-n {statedescription} {newstatedescription})

(if (or (goal-state {statedescription})

(and (unprovable (illegal-state {statedescription}))
(possible-operator $operator {statedes} {newstatedes})

(hobbits-orcs $ops {newstatedes})))

(hobbits-orcs ($operator . $ops) {statedescription}))

ow that the basic

programming

tools available

within MRS have been introduced, we can

take a closer look at applying MRS to

solve some more advanced problems. AI

methods arc usually search-intensive

because they are employed to solve prob

lems for which no direct algorithmic solu

tion is available. The basic paradigm is to

model problem solving as a controlled

search through possible solutions.

Consider the design of a symbolic inte

gration problem solver. The problem

space can be defined as all mathematical

expressions representable by the

machine. Search is performed by the

application of operators that transform

mathematical expressions according to

the rules of algebra and integration. The

goal of the system is to locate in the space

an expression that does not include an

integral sign and that was formed by some

sequence of operators applied to the initial

problem expression.

The programmer is faced with two

Listing 3.

64 COMPUTER LANGUAGE ■ JULY 1985

illegal states (hobbits get eaten). If the

search is to continue, new operators arc

applied and the process repeated recur

sively. We can develop a rule scheme to

perform this search, as shown in Listing

3.

Backward chaining inference can be

used to solve this problem. The user

types:

(truep '(hobbits-orcs $operators

{initialstatef))

The system will return a binding list with

Soperaiors bound to a list of suitable

operators.

A state describes the location of all the

hobbits. ores, and the boat in the domain.

Other information, such as the count of

hobbits and ores on each side, may be

included in the description to simplify the

rules. One way to represent a state is to

explicitly mention all the individual

descriptive facts in the rules and

predicates:

(hobbits-orcs $operators $sideboat

$sideorcl
$sidehobbitl $northhobbitcount...)

and initially call the problem solver wilh:

(hobbits-orcs $operators north north

north 2)

The method looks a bit clumsy with this

problem, but it is quite suitable for very

simple domains. As domains increase in

complexity and state descriptions become

more involved, this approach becomes

impractical.

This method has two main disadvan

tages. First, the memory requirements

become excessive during the search

because of the many copies of the full

state description stored on the agenda.

Second, solution time increases because

of the time spent copying unchanged

information from one state description to

another.

The difficulty with this approach is

apparent in real world domains such as

robots whose states are described by thou

sands of facts. This problem—the frame

problem—is well known in AI and occurs

in all nontrivial domains when a system

has to reason about changes.

An elegant solution to this problem was

proposed in 1970. The basic idea of the

strips method (named after the robot plan

ning system) is to represent all facts

describing states as individual predicates

in a global data base and to use lookups to

access data and assert to make changes.

In this rule scheme, the state descrip

tions are replaced by state variables and

Logic programming: the art of reasoning

Before asking the question "What is

logic programming?" we first must

ask "What is logic? '"

In termsof programming, logic can

be thought of as the process of reason

ing, both rightly or wrongly, toward a

conclusion. To bring this definition

into focus, let's look at logic in terms

of the kinds of problems it can solve.

Syllogisms are types of logical argu

ments having two premises and a con

clusion. For example, consider the

following:

All men are tall.

All tall people wear hats.

All men wear hats.

The first two lines are the premise,

the last the conclusion. The basic ques

tion here is if the premise is true, will

the conclusion be true? Or, in more

precise terms, does the conclusion log

ically follow from the premise?

Logic can prove a conclusion based

on a certain starting premise by show

ing that the conclusion logically fol

lows the premise. As in mathematics,

many of the more advanced theories of

logic are derived in this way from

base-level postulates.

Logic, as applied to natural lan

guage interpretation, is very useful for

understanding language. This under

standing is essential for certain forms

of processing, such as language trans

lation, and for deriving meaning from

the written and spoken word.

These examples of the types of

problems logic addresses show that it

is a very powerful tool. To better

understand how the science of logic

has progressed to where it is now, let's

look at where it started.

History shows Aristotle to be the

father of logic. In fact, much of

today's study of logic still consists

of rules and assumptions made by

Aristotle and some of his followers.

Between Aristotle's time and the

1800s, his work stood without serious

challenge. This changed with the work

of two great minds. Augustus De

Morgan, born in 1806. was a mathe

matician and philosopher who delved

into many aspects of logic and mathe

matics. He also was instrumental in

bringing to attention the work of a

hitherto unknown school teacher,

George Boole. Born in the late 1700s,

Boole's work concentrated on the

algebraic properties of logic.

Many of the methods and theories

put forth by Boole and De Morgan

stand unchanged to this day. Their

fields of expertise included mathe

matics, logic, and many forms of

engineering analysis, such as electrical

circuit analysis.

Now, you may ask. what does logic

programming have to do with logic?

The study of logic may be interesting,

but why apply it to programming?

Why take the trouble to change? Pro

gramming in logic does not necessarily

fit into the traditional von Neumann

computer model—that is, that one

instruction follows another.

The answer is that some problems

can be described very easily using the

constructs of logic. In logic program

ming, the process of specifying how

the solution should look is almost

equivalent to writing the program.

Logic programming brings to the

computer power to attack problems

that previously were difficult, if not

impossible, to understand. From a

programmer's standpoint, logic can be

thought of as a system of rules and

facts.

Rules and facts take the place of the

traditional statement used by other

programming languages. Facts are

simply statements of constants (for

example, "Lee is tall"). Rules are tra

ditional logical statements {for exam

ple "A man is tall if he is thin*'). In

addition, rules can be interpreted in

two ways: procedurally, as in the von

Neuman tradition, and semantically.

For exapiple, the rule "A man is tall if

he is thin" can be interpeted pro

cedurally as "To find a thin man. first

find a tall one" or semantically as "All

thin men are tall men."

In addition to their the ability to use

logic, some logic programming lan

guages allow control over how the

inference process is executed. These

languages are sometimes referred to as

meta-logical, because they can control

the flow of logic.

For more information on logic program

ming, a good general reference is W.F.

Clocksin and C.S. Mellish's Program

ming in Logic, available from Springer-

Verlag.

By William Lee Duncan

William Lee Duncan is an independent

UNIX consultant and hasjustfinished a

year ofgraduate school at Oregon State

Univ. He received a B.S. in electrical

engineeringfrom Oregon State in 1981 and

was employed with Hewlett-Packardfor

two years.

(he rules extended to look up the relevant

values. The initial state and termination

recognition rule presented in the example

problem can be seen in Listing 4.

Changes to the state are achieved by

asserting new facts into the data base with

a new state variable and altering the way

facts are looked up. Consider the effect of

rowing the boat to the south side with both

bobbitS aboard. The possible-operator

rule will generate a new slate variable and

assert the following facts:

(onside state-1 south hobbits Bilbo)

(onside state-1 south numberofhobbits

2)

(nextstate state-0 state-1)

To look up the stale of the world at state-1.

the system performs a search—for exam

ple, for the statement (onside state-1 south

countofliobbitsScoum). the value 2 will be

returned directly. But if you want to look

up (onside state-1 north numberoforcs

Scount). the system will first check statc-

1 and, on finding nil, will use the nextstate

relationship to find the previous state and

lookup in state-0. Generally, the search

will continue until a value is found.

MRS has many advantages over lan

guages such as PROLOG for imple

menting systems like this. The lookup

routines can be implemented as pro

cedural attachments as shown in Listing

5. The method in Listing 5 allows MRS

programs to solve problems in large,

complex domains where the conventional

approach is infeasiblc.

Controlling the search through the

problem space often is not just preferable

to allow speedup but can be essential for

termination. In the example problem, for

instance, without the ability to control the

search, the system might have tried to row

the boat back and forth infinitely with one

hobbit aboard.

A
spectrum of

methods is avail

able for control

ling the search. Conventional algorithmic

solutions have built-in controls and usu

ally solve problems in ideal times. Many

problems, although not algorithmicly

solvable, allow heuristic knowledge that

can be applied to select one operator or

state over another. Where no additional

knowledge is available, systems revert to

pure generate and test, with solution times

greatly increasing.

One of the major achievements of AI

research over the last 25 years has, been

the realization of the need for additional

knowledge to guide searches through

problem spaces. Specdups in the order of

magnitudes can be gained by the addition

of some simple heuristic knowledge. In

ihe hobbits and ore problem, tremendous

spcedups can be achieved by making the

system prefer the operator that carries two

people south and only one north over any

(onside state-0 north ores ragashak)

(onside state-0 north numberoforcs 2)

(onside state-0 south numberoforcs 0)

(onside state-0 north hobbits Bilbo)....

(if (and (onside $state south numberoforcs 2)

(onside $state south numberofhobbits 2))

(goal $state))

(if (and (onside $state $anyside numberoforcs $norcs)

(onside $state $anyside numberofhobbits $nhobbits)

(> $norcs $nhobbits))

(illegal-state $state))

other operator.

Because of the importance of search

control, it is surprising that MRS is the

only logic programming language to

directly incorporate it. PROLOG solves

all its problems using a depth-first gener

ate and test, with the static ordering of

clauses providing the only direct control.

MRS allows the user to impose an

ordering over the tasks on the agenda. Tu

order search by depth, the main problem

solving clause in the example problem

(such as (hohbits-orcs . . .)) needs an

additional slot to hold the depth informa

tion, which is incremented at each recur

sive call.

Preferred rules can be written to select

the lowest depth to give breadth-first

search or to select the greatest value to

give depth-first search. The numerical

value in the clause can be computed by an

evaluation function (hat refers to the cur

rent state giving best-first search.

If you would like a copy of MRS, it is

available for S500 ($200 for universities).

For more information, contact:

Margaret Timothy

Symbolics Systems Resources Group

Stanford University Medical Center

RoomTB 105

Stanford. Calif. 94025 H

John Sechrest has a B. S. in math and com

puter sciencefrom the Univ. ofIllinois at

Champaign-Urbana. Formerly employed

with Hewlett-Packard, he is currently a lab

coordinator with Oregon State Univ. in

Corvallis, Ore.

Nick Flann has an electric and electronic

engineering degreefrom Coventry Poly

technic in England and is currently work

ing on a masters in artificial intelligence at

Oregon State Univ.

Listing 4.

(tolookup (onside &state Sside &type Svalue) strips)

(defun strips

(state side type value)
(or (lookup "(onside-g ,state ,side ,type ,value))

(strips (lookupbdg '$nextstate r($nextstate $nextstate ,state))

side type value)))

Listing 5.

66 COMPUTER LANGUAGE ■ JULY 1985

LISP
The preferred symbolic processing language

of the Artificial Intelligence Community

catch the next micro-wave with

UO-LISP

Not "just another pretty dialect" but the most

powerful implementation of LISP available in

the micro market place. For the professional

engineers, researchers, and educators, UO-

LISP maintains the power and flexibility

inherent in LISP while providing the expected

functionality of mainframe LISP systems.(+)

UO-LISP steps beyond the competition

and provides a real source to native code

compiler.

CPU

Family

Operating

System

Production

System

Learn

System

8086

* 280

/ MS-DOS

PC-DOS

CPM/86

CPM

TRS DOS

15000 8500

15000 8500

available soon

12500 8500

8000 N/A

For MORE DETAIL AND TO ORDER:

Send for FREE brochures and order forms.

NORTHWEST COMPUTER ALGORITHMS

P.O. Box 90995, Long Beach, California 90809

(213) 426-1893

CIRCLE 39 ON READER SERVICE CARD

AI
ExperTelligence™ has the "tools" to transform

your Macintosh"" into a powerful Artificial Intel

ligence workstation. ExperLisp™ is the first com

plete implementation of LISP on a microcomputer.

Developed on a Symbolics 3600,™ the compiier gener

ates efficient MC68000 code providing speed and

function ideal for the development and delivery of

sophisticated AI applications. ExperOPS5,'" by Sci

ence Applications International Corporation, is a com

plete implementation of the well-known OPS5 expert

systems building tool. It provides a fast and efficient

method for constructing complex Expert Systems.

ExperLogo™ features 3-D and spherical graphics,

English-like commands and shares the speed and

function of ExperLisp. In the classroom or in the lab,

ExperLogo provides an environment for discovery

and exploration for children and developers alike.

Call today for more information about these and other

innovative AI products-

ExperTeltigence, Inc.

m j. 559 San Ysidro Road

fgy ™ Santa Barbara, CA 93108
%T Tel: 805/969-7871.

Macintosh is a trademark licensed to Apple Computer. Inc.

Symbolics 3600 is a registered trademark of Symbolics, Inc.

CIRCLE 30 ON READER SERVICE CARD

helps save time, money and cut frustrations. Compare, evaluate, and find products.

SERVICES

Programmer's HslcmI List • Dtiler'tInquire

Compirt Pnrtueti ■ Hwnlettei

Help find a Publnher ■ Ruih Order

Evaluation Ulerjturclrec ■ Over 700 products
BULLETIN BOARD - 7 PM lo 7 AM 617-82S-4OU

ARTIFICIAL INTELLIGENCE

ExpertLISP - Interpreter: Common

LISP syntax, lexical scoping, toolbox,

graphics. Native code COMPILER.

512K MAC S465

ExpertEASE - Expert system tool.

Develop by describing examples of

how you decide. PCDOS S625

EXSYS - Expert System building

tool. Full RAM, Probability. Why,

serious, files PCDOS S275

GC LISP - "COMMON LISP", Help,

tutorial, co-routines, compiled

functions, thorough. PCDOS Call

INSIGHT 1 - Expert Sys. Dev't.

decent PCDOS $ 95

M Prolog ■ full, rich, separate

work spaces. MSDOS $725

PROLOG-86 - Learn fast. Stan

dard, tutorials, samples of Natural

Language. Exp. Sys. MSDOS S125

TLCLISP-"LISP-machine"-like.
all RAM. classes, turtle graphics
8087. CP M-86. MSDOS S235

BRIEF Programmer's Editor - undo,

windows, reconfigurable. macro

programs, powerful. PCDOS S195

VEDIT - well liked, macros, buffers.

CPM-80-86. MSDOS. PCDOS $119

Free Complete Al Products Literature
Evaluate products Compare competitors learn aOout new alternatives Ore tree call

brings information on |ust anout any programming need Ask lor any LISP. PROLOG.

SMALLTALK. EXPERT SYSTEMS Includes products for learning aid (or sophisticated

development Macintosh and MSDOS 20 *■ pages.

RECENT DISCOVERIES

SMALL TALK for PCDOS -

"Methods" has objects,

windows, browser,

inspector. PCDOS $239

C Terp Interpreter by Gimbel,

full K&R. .OBJ and ASM interface,

8087. MSDOS $275

INSTANT C ■ Interactive develop

ment - Edit. Source Debug, run.

Edit to Run-3 Sees. MSDOS $445

"INTRODUCING C" - Interactive

C to learn fast. 500 page tutorial,

examples, graphics. PCDOS $ 95

MEGAMAX C - native Macintosh

has fast compile, tight code. K&R.

toolkit. .OBJ, DisASM MAC S275

Wizard C - Lattice C compatible, full

sys. 111 syntax, lint included, fast,

lib. source. MSDOS S450

riiTi'j;!

We evaluate, carry every available

programmers product. Ask for a

packet describing OVER 20

PRODUCTS

APPLICATION TOOLKIT by Shaw -

Complete: ISAM. Screen. Overlay

mgnt. report gen, Strings, String

math. Source. CPM, MSDOS $475

COMMUNICATIONS by Greenleaf
($159) or Software horizons ($139)
includes Modem7, interrupts, etc.

Source. Ask for Greenleaf demo.

C SHARP Realtime Toolkit-well

supported, thorough, portable, ob

jects, state sys. Source MANY $600

CIndex j- -fullB+Tree,variable

length fields. Source, no

royalties. MSDOS S369

PC.'LINT - Small, big model. Batch
option. Lattice, C86 MSDOS $ 95

MacFORTRAN - full 77, '66 option,

toolbox, debugger. 128K or 512K,

ASM-out option MAC $375

RM/Fortran - Full 77, BIG ARRAYS,

8087, optimize, back trace,

debug. MSDOS $525

Ask about Microsoft, Supersoft, others.

OTHERLANGUAGES

ASSEMBLER - ask about FASM-86

($95), ED/ASM ($95) - both are
fast, compatible, or MASM
($125). improvements.

BetterBASIC all RAM, modules,

structure. BASICA-like PCDOS S185

SNOBOL4+ -greatfor strings,
patterns. CPM86, MSDOS S 85

SUPPORTPRODUCTS

BASIC DEVELOPMENT SYSTEM -

(BDS) for BASICA; Adds Renum.

crossref, compress. PCDOS Si 15

CODESIFTER - Execution PRO
FILER. Spot bottlenecks. Symbolic,

automatic. PCDOS S109

FASTER C - Lattice users eliminate

Link step. Normal 27 seconds. Faster

C in 13 sec. MSDOS $ 95

PLINK-86 for Overlays, most lang..

segment control. MSDOS S325

PS MAKE by Unipress - Interactive or
batch. Full MAKE. MSDOS S129

'C" LANGUAGE

MSDOS CE6-SG87. reliable

InstantC-lnler .last.(ill

Lattice C ■ the standard

Microsoft C 3 0 - new

Williams-debugger.last

Wizard C ■ lull, last

CPM80 - EcoPIjs C - faster. SLR

BDS C - solid value
MACINTOSH: Hippo II

Megamax - optimizer, lull

Consulair's MAC C. toolkit

OUR

PRICE

call

445
call

279

call

450

275
125

375

275
395

EDITORS Programming

BRIEF - intuitive, flexible
C Screen with source
Epsilon-likeEMACS

FINALWORD-lormanuals

PMATE-powerful
VEDIT-full. liked

XTC-multitasking

OUR
RUNS ON PRICE
PCOOS 195

8680 75

PCDOS 195
8680 215

B086 185

86'80 119

PCDOS 95

Compare, evaluate, consider other Cs

BASCOM-86-Microsoft 8066 279

CB-86-DRi CPMB6 419
Data Manager-lull source MSOCS 325

CADSAM-Fu!!BKee. source MSDOS 150
InfoREPORTER-multilile PCDOS 115

Prof Basic-Inter .debug PCOOS 89

SCREEN SCULPTOR PCDOS 115

TRUE BASIC -ANSI PCDOS 125

Ask about ISAM, other addons for BASIC

Dig Res-decent MSDOS 525

Macintosh COBOL -Full MAC 1850
MBP-Lev II. native, screen MSDOS 885

Micro Focus Prof.-Full PCDOS call
Microsoft - Lev II, no royal MSDOS 500

Ryan McFarland • portable MSDOS 695

Ask about program generators.

GRAPHICS Halo for Turbo Postal MSDOS 95

GRAPHMATIC-3D.FTN.PAS PCDOS 125

MulliHALO - fast, lutl-all lang PCDOS 220
File MGNT BTrieve-all lang MSDOS 215

Clndex- -source, no royal 86 80 369

CTree-source, no royal ALL 369

dBC ISAM by Lattice 8086 229
(IBVISTA-"Network"Structure MSDOS 465

PHACT-upunderUNlX.addons MSDOS 225

OTHER C Utilities by Essential MSDOS 129
Greenleal-200- MSDOS 159
SOFTHorrzons-Blocksi PCDOS 139

SCREEN CURSES by Lattice PCDOS 125

MetaWINDOW-icons.clip PCDOS 139
PANEL-many lang term MSDOS 249

PioScreen-windows, source PCDOS 415

Turbo V - Greenleaf C. last PCDOS 159
Windows for C MSDOS 175

MSFORTRAN-86-lmpr

DR Fortran-86 - full '77

PolyFORTRAN-XREF. Xtract

OUR
RUNS ON PRICE

MSDOS 239

8086 249

PCDOS 165

ALL PRODUCTS - We carry 700 products

lorMSOOS.CP M86.CPM80 Mac

intosh aid key products lor other
micros.

Call for a catalog, literature, and solid value

800-421-8006
THE PROGRAMMER'S SHOP '

128-1 Rockland Street. Hanover. MA 02339

Visa Mass 800-442-8070 or 6< 7-826-/531 MasterCard (

OTHERPRODUCTS

Advanced Trace 86 - Symbolic PCDOS 149

Assemblers Tools-DRI 8086 159

AtronDeOuggerlor Lattice PCDOS 395

CHelper DIFF.xref,more 8680 135
CODESMITH-86-debug PCDOS 129

MacASM-full, fast, tools MAC 115
MBPCobol-85-fast 8086 865

MicroProlog -improved MSDOS 185
Micro SubMATH-FORTRANIull 8680 250

Microsoft MASM-86 MSDOS 125

Multilink-Miltitasking PCDOS 265

PC FORTH-well liked MSDOS 213

Plinish-Prolilebyroulme MSDOS 345

PFIX-86 Debugger MSDOS 169

PLi-86 8086 495

Poiylibranan-inorougfi MSDOS 95
PolyMAKE PCDOS 95

TRACE86 debugger ASM MSDOS 115

ZAPComrminications-VTlOO,
TEK4010.lullxfer PCDOS 65

Note All prices surged to cnange wittiout notice

Mention tnis ad Some prices are specials

Ask aoou! COD and P0i. All lormais availaDle

UNIX isatrademark of Bell Labs.

CIRCLE 84 ON READER SERVICE CARD

68 COMPUTER LANGUAGE ■ JULY 1985

O®O PRODUCT BINGO

By Doug Millison

Each month Product Bingo features the latest in new soft

ware and hardware products of interest to COMPUTER

LANGUAGE readers. Send new product information to

Doug Millison, Product Bingo, COMPUTER LANGUAGE,

131 TownsendSt., San Francisco, Calif. 94107.

Thoroughbred BASIC for IBM PC/AT

Thoroughbred BASIC, a business basic interpreter

designed for 16-bit, multiuser microcomputers, is now avail

able from SMC Software Systems for the I BM PC/AT run

ning Microsoft's XENIX 3.0 operating system.

SMC Software Systems, P.O. Box 0600, Basking Ridge,

NJ. 07920, (201)647-7000.

CIRCLE 101 ON READER SERVICE CARD

GetSmart/C

Smart/C incorporates Al techniques in a fully integrated

precompilation development environment for C. Smart/C

prices range from $500 for the I BM PC to $ 1 0,000 for VAX

11/780.

AGS Computers Inc., 11 39 Spruce Dr., Mountainside,

N.J. 07092, (201)654-4321.

CIRCLE 102 ON READER SERVICE CARD

MacFORTRAN for guess what?

MacFORTRAN, an ANSI FORTRAN 77 compiler with

debugger, was designed for the Macintosh and features full

access to the Mac toolbox.

Absoft Corp., 4268 N. Woodward Ave., Royal Oak,

Minn. 48072, (313)549-7111.

CIRCLE 106 ON READER SERVICE CARD

B-tree indexing

B-Tree Library is available with full documentation, full C

source, and phone support in most formats for $75.

Softfocus, 1 277 Pallatine Dr., Ookville, Ont., Canada

L6H 1Z1, (416) 844-2610.

CIRCLE 108 ON READER SERVICE CARD

Utilities power Turbo Pascal

Turbo Pascal users can power-up with TurboPower Util

ities, priced at $95 for the IBM PC family and compatibles.

TurboPower Software, 478 W. Hamilton Ave., Ste. 196,

Campbell, Calif. 95008, (408) 378-3672.

CIRCLE 109 ON READER SERVICE CARD

Multiwindow, multiuser C

Interactive C is a multiwindow, multiuser, full-featured C

language development system for the IBM PC, priced at

S395.

IMPACC Associates, P.O. Box 93, Gwynedd Valley, Pa.

19437.

CIRCLE 103 ON READER SERVICE CARD

Modula-2 for $80.88

S80.88 gets you a full-featured Modula-2 programming

environment for the IBM PC family and compatibles.

Interface Technologies Corp., 3336 Richmond Ave., Ste.

200, Houston, Texas 77098, (71 3) 523-8422.

CIRCLE 110 ON READER SERVICE CARD

True source debugger for C

Programmers using the Lattice C compiler will be interested

in C Debugger, priced at $165 plus shipping and handling.

Micro-Software Developers Inc., 214V2 W. Main St., St.

Charles, III. 60174, (312) 377-5151.

CIRCLE 104 ON READER SERVICE CARD

CTOS/BTOS version of CLOUT

Clout, a natural language data base, is now available for

CTOS/BTOS-based microcomputers.

Microrim Inc., 3380 146th PI. S.E., Bellevue, Wash.

98007, (206} 641-6619.

CIRCLE 111 ON READER SERVICE CARD

UNIX-compatible Forth

u4th brings a portable, standard Forth to the UNIX and

XENIX world.

Ubiquitous Systems Inc., 13333 Bel-Red Rd. N.E., Belle

vue, Wash. 98005, (206) 641-8030.

CIRCLE 105 ON READER SERVICE CARD

C program analyzer for MS-DOS

Pre-C, a new MS-DOS/PC-DOS program analyzer for C

users, is priced at $395.

Phoenix Computer Products Corp., 1416 Providence

Highway, Ste. 220, Norwood, Mass. 02062, (617)

762-5030.

CIRCLE 112 ON READER SERVICE CARD

69

HCR PASCAL MOTH ITS WEIGHT IN C

PASCAL
Originally designed by Niklaus Wirth, is now

available for a wide range of UNIX™

processors. HCR/PASCAL conforms closely

to industry standards, passes all conformance tests in the PASCAL

Validation Suite. Supports multiple module programs, a dynamic

string package, and direct random file access.

Cis the standard language of UNIX, HCR/PASCAL is written in C

and translates PASCAL into C producing efficient optimized

code. This approach allows direct interaction with the UNIX

environment and offers a high degree of portability.

UNIX
is a powerful yet flexible operating system environ

ment. HCR/PASCAL is available today on a diverse

range of UNIX hardware: AT&T 3B™ series, the NCR

Tower,™ DEC PDP-11/VAX,™ and others. HCR has a growing line of

UNIX software including business applications. We back up all our

software with full support. To find out how we can put HCR/PASCAL,

C, and UNIX together for you, call or write:

Human

Computing

Resources

Corporation

10 Si. Mary Street, Toronto, Ontario, Canada M4Y1P9 (416)922-1937

CIRCLE 93 ON READER SERVICE CARD

70 COMPUTER LANGUAGE ■ JULY 1985

SOFTWARE REVIEW

Knowledge Systems for the IBM PC, Part I

Xpert systems

technology is one

i of the fastest

moving and most widely discussed areas

of computer software. Strictly speaking,

an expert system is a finished knowledge

system application that has been perfected

until it achieves expert-level performance.

However, the term is often used in a loose

way to mean the tools designed specifi

cally for developing these applications as

well as for any and every application that

uses this same type of technology.

Numerous legitimate applications of this

technology could not be called expert sys

tems in the true sense by any stretch ofthe

imagination. So it seems much less con

fusing to consider expert systems an

important subclass of a technology that

could be called knowledge systems or

knowledge-based software.

This review will attempt to give you an

overview of this software system as wel I

as offer a survey of the first major wave of

knowledge system development tools for

PCs. This month, in Part I. we will look at

the following categories of expert sys

tems: decision modeling software, lan

guage extension packages, example-

driven decision tree systems, and small

production system tools.

Next month, in Part II, we will explore

rule-oriented mathematical modeling sys

tems, intermediate-level systems, and

advanced systems. The following prod

ucts will be reviewed in Part II: Insight-2

from Level Five Research Inc., Expert

Systems International's ES/P-Advisor,

the TIMM PC from General Research

Corp., Lotus/Software Arts' TKISolver.

REVEAL from McDonnell-Douglas,

KES from Knowledge Engineering Sys

tem, and Teknowledge Inc.'sM.I.

In terms of knowledge, there are two

basic types of software applications: those

that incorporate knowledge to help a user

better handle problems and those that are

primarily efficiency tools to which a user

must apply his or her own knowledge and

skill, such as word processors, spread

sheets, and programming languages. A

superb word processor can take much of

the drudgery out of writing, but a poor

By Ernie TeMo

writer will still write just as poorly with

it. With knowledge-based software, the

idea is that the knowledge built into it can

and should help the user to perform better.

Although expert systems technology is

a by-product ofartificial intelligence

research, not all knowledge-based soft

ware is. Often when a program is

described as AI, a user or programmer

who tries it will expect some awe-

inspiring omniscience to emanate from its

every movement. But even the best expert

systems developed so far arc only expert

in their ability to apply expert knowledge

to solving certain types of problems. They

are in no sense a replacement for living,

breathing experts who can talk to you and

think about your problems. Let's take a

brief look at some of the major types of

knowledge-based systems to sec what they

are and what they are capable of doing.

Production systems. Most of the soft

ware available for developing expert sys

tems is aimed at creating some type of

rule-based production system. Usually

such a system will have at least three com

ponents: a rule base, an inference engine,

and a consultation shell. The consultation

shell is the end-user environment for the

finished application.

In a given session, the system will pose

certain questions to the user. Depending

upon the answers given, the system is

directed to a particular outcome where a

result is displayed. The result may be a

choice of several alternatives, a diagnosis

of the cause of trouble, a prediction that

various events have a certain probability

of occurring, or something along these

lines.

One of the things that production-rule

systems offer that hard-coded programs

generally do not is the ability to justify

their answers and results. This is

extremely important, because without it a

user would be expected either to accept

the results on faith or ignore them. The

more a user is able to explore the way a

system arrived at a particular result, the

more the user is able to learn about the

problem and the better the user is able to

make a decision and analyze the results.

But as important as a justification facil

ity is, even more important is the amount

of detail and flexibility a system provides

in the final outcome. The whole point is to

help solve a problem in as expert a manner

as possible. It is the power of the repre

sentation language used to provide the

rule base that determines the quality of the

outcome.

Some important initial questions should

be asked about the representation

language:

■ Are there symbolic variables that allow

the general statement of rules for whole

ranges of lookup values?

■ Docs it allow the calculation of numer

ical values on the basis of a user's input?

■ Docs it provide for the entry of facts as

well as rules?

■ Does the language provide for OR

operators between the antecedent condi

tions of a rule?

It seldom takes an expert to tell you

what you need for your particular situ

ation and requirements. But to tell you

how much you need requires expertise.

Yet if the representation language has no

math capability, there is no way such

expertise can be included in the system. If

the system can only handle rules about

constant numbers and not variables, the

number of rules needed may get astrono

mical. Similarly, the presence of OR oper

ators for conditions often can keep the

number of rules down. Otherwise, a new

rule would have to be entered for each of

the alternate conditions. The fewer rules a

production system has to search through,

the faster it can run. So the number of

rules an expert system tool is capable of

handling actually means very little. What

is more important is how well and how

easily the tool can be used to create pow

erful and compact rules with the system.

Closely tied to a given representation

language is the inference engine, which is

the control center for whatever degree of

intelligence the production system can

exhibit. The two main types of inference

procedures are forward chaining and

backward chaining. Although it would be

nice to have a system capable of both, so

far there are no knowledge engineering

tools for microcomputers that offer both

as complementary tools to design single

knowledge systems. At best, there are

high-level languages that allow develop-

71

FILE SAVIOR

is a disk utility you can't afford to

be without!

• Makes recovering an erased file easy...

as long as you haven't written a new file-

on lopof ii

■ Display and edit any disk sector — in hex.

Ascii or Ebcdic

• Search a file or your whole disk for a text

siring

• IBM PCtfXT/AT and true compatibles

• DOS 1.0 thru 3.1

• Any DOS-formatted diskette or hard disk

- up to 33 meg

49
95 VA residents

add4r; sales tax

Technisoft
1710 Allied Street. Suite 37

Chflrlottesville,VA2290]

(804)979-6464

FAST SCREEN

OUTPUT FOR

TURBO PASCAL

FASTSCREEN ™

is a set of inline assembler and Pascal

procedures for Turbo Pascal users.

• Display an entire screen or window almost

instantly

• Process multi-field input screens that give

your user full cursor control

• Sample program uses Conway's LIFE to

illustrate use of procedures

• All source code included

• Color and monochrome support

• IBM PC/XT/AT and true compatible:

• DOS operating system

29
95 VA residents

add 4rr sales tax

Technisoft
1710 Allied Slreet. Suite 37

CherlottesvJIIe.VA 22901

(804)979-6464

Turbo Pas.-a! :s J [tgisicurd Kidemiik

u(Borland Inuinitmiul

ers who know what they're doing to

implement both. Let's take a look at what

these two types of procedures involve.

The main requirements for an inference

engine are:

■ A way of determining when and where

to start

■ A procedure for searching toward a

result

■ A way of determining that a result has

been found or that no result can be found.

In a backward chaining inference

engine, the reasoning process begins with

a conclusion, or Then part of a rule, which

is designated as a goal. A very simple sys

tem might just pick the conclusion of rule

1 as the first goal and go on down the list.

In a more sophisticated system, the

knowledge engineer designates what the

goal is to be, and the inference engine

looks for the rules that have that goal as

theirconclusion.

Once the goal has been determined, the

inference procedure attempts to prove

true those antecedent conditions that

establish that goal. Often the process will

stop once one rule has been found where

all the antecedents that prove the goal are

true. More sophisticated systems allow

attributes that permit multiple values.

Sometimes you might want all the possi

ble solutions to a goal—for example, if

the goal were a way to get S10,000 in

one day. In this case, the system would

attempt to find as many values as it could

for the goal.

Forward chaining inference engines

approach the problem in the opposite

manner. They are bottom-up, or data-

driven, systems. They begin by trying to

find antecedents or conditions in the if

part of rules that are true facts. In this

case, it is not sufficient to have just point

ers to the goal and the current rule; it is

necessary to have an inventory of known

facts that is maintained in a list known as

the working memory. The antecedents of

rules are compared with the contents of

the working memory to determine if they

are true. When all the antecedents of a

rule compare favorably, the conclusions

of the rule are added to the contents of

the working memory and the process

continues.

Decision trees. Two types of software

packages discussed here directly incorpo

rate decision trees: decision modeling

programs and example-driven, rule

induction programs. Although

production-rule systems usually result

less directly in data structures that are

similar to decision trees, the flexibility of

their use and the explicit nature of the

knowledge used to build them are their

key advantages. In effect, decision-tree

software takes a shortcut. If a tree struc

ture is to result anyway, the approach of

this type of software is to generate the

structures as easily and efficiently as pos

sible, with the least amount of trouble to

both the developer and user. But in doing

this, decision-tree software gives up the

ability to handle as broad a range of prob

lems and to give transparent reasons for

the results.

Decision modeling programs are sig

nificantly different from most of the prod

ucts discussed here. These programs

belong to the category ofdecision support

software. Although this is clearly an

important class of knowledge-based soft

ware and uses decision trees, in most

other respects these programs are quite

different from expert system development

tools.

An example-driven, rule induction sys

tem is one that can take the logical skele

ton of a problem—in terms of the value

certain variables take as other variables

change—and build a decision tree with the

ability to induce a general rule about how

one variable varies with another based on

specific examples. In principle, the

advantages of such a system are that it is

rather straightforward to use, fast, and

efficient. It is important, though, to care

fully evaluate particular implementations

of this product to ensure that these advan

tages do in fact exist.

Data base interfaces. To get the most

out of a knowledge system, the system

should be capable of interfacing with Files

of a powerful data base. Mosl businesses

do not want to enter their data all over

again, and it is not productive for users to

have to continually answer questions

about information that is already on the

system.

At the minimum, an interface capability

should execute external programs and

return values to the running knowledge

system application. This allows the exter

nal program to query the user or a data

base or read hardware sensors for values,

perform calculations on them, and then

return a value to the rule that requested it.

But a fully configured interface capability

would allow the expert system itself to

send a fairly extensive list of parameters

to an external environment for activating

nested batch files and performing soph

isticated multiple queries to a relational

data base.

In terms of real-time use. it is often not

adequate for the expert system to talk to

the outside world only when it needs

information. Alarms that come in have to

be evaluated by the rules, and there has to

be a way for the system to handle a rapid

foray of such alarms without jumping

from one to the other and never reaching

any conclusions.

What makes knowledge systems dis

tinctive, then, is not just their ability to

incorporate sophisticated knowledge.

They are also distinctive because of their

capacity to do it explicitly and in such a

way that it is relatively easy to add and

subtract knowledge from them and to par

tition them so that certain sections can

accept alternate knowledge blocks. In this

CIRCLE 83 ON READER SERVICE CARD

72

A FULL C

COMPILER

FOR

$4995
The Ecosoft Eco-C88 compiler for the 8088 and MSDOS is going to set o ne-

standard for price and performance. Consider the evidence:

Compiler

Seive

Fib

Deref

Matrix

Price

Eto CS8

13

44

13

21

M9.95

iDtiwID
!1

58

n

29

'500.00

mm
13

46

-

27

l395.00

Computer Language, Feb., 1985, pp.73-102. Reprinted by permission.

The Eco-C88 compiler is a full K8.R C compiler thot supports all data types and

operators lexcept bit fields). Now look at the other features we offer:

* 8087 co-processor support using o single library. If you install on 8087

ater, the software will use it without hoving to recompile.

* A robust standard library with over 150 functions, including trans-

cendentols, color, and others.

* OBI output for linking with the MSDOS linker (LINK).

* Error messages in English - no cryptic numbers to look up. A real plus

especially if you're just getting started with C.

* Easy-lo-read and complete user's manual.

* Works with all IBM and compatibles running MSDOS 2.0 (or later).

* Plus mony other features.

For $10.00 more, we will include the source code for the C library functions

(excluding transcendental*!. For an additional S15.00, we will include our

ISAM file handler in OBJ format (os published in the C Programmer1!
library, Oue Publishing). The discount prices for the library source and ISAM

only apply ot the time the compiler is purchased. Please odd S4.00 to cover

postage and handling. To order, call or write:

Ecosoft Inc.

6413 N. College Avenue

Indianapolis, IN 46220

(317) 255-6476

oft). MS0OS (Mkroiofi). UNIX (B*ll Uibii. CP/M (Digiiat Htwo-thl. ISO (Elog). 80B4. 6087, 808B (lnt.li

CIRCLE 17 ON READER SERVICE CARD

Pascal Users—Save Time & Errors

(with PascalPac and tidy)

For the IBM PC, XT, AT.

A major step toward paperless programming!

Debug on the screen!

Neater programs!

PascalPac'"
X-REF creates cross reference table.

X-RAY browses cross reference and

program simultaneously.

X-PRNT is a versatile listing program.

X-PEEK browses programs or text files.

One version of PascalPac supports Microsoft

and TURBO PASCAL.

tidy-

Program formatter makes a PASCAL program easier to

read, understand and modify. In use for over one year in

major companies and programming organizations. Available in separate

versions for Microsoft and TURBO PASCAL.

"tidy is a lightning-fast Pascal formatter from Major Software."

"Of the products we've seen, we felt that tidy is the one most

programmers will prefer."

PC Tech journal

PascalPac....$69; Separate Modules...$60; (idy-Turbo...$49; tidy Microsoft...$69; Shipping...$5

To order: VISA/MasterCard orders. Call (415) 941-1924. Or mail check/money order to:

Major Software, 66 Sylvian Way, Los Altos, CA 94022

CIRCLE 14 ON READER SERVICE CARD

...waiting

for C programs to
compile and link?

UseC-terp
the complete C interpreter

This is the product you've been

waiting (and waiting) for!

Increase your productivity and avoid
agonizing waits. Get instant feedback of
your C programs for debugging and rapid
prototyping. Then use your compiler for
what it does best...compiling efficient code

...slowly.

C-terp Features

• Full K&R C (no compromises)

• Complete built-in screen editor-
no half-way house, this editor has every
thing you need such as multi-files, inter-file

move and copy, global searching, auto-

indent, tab control, and much more.

• Fast- Linking and semi-compilation are
breath-takingly fast. (From edit to run

completion in a fraction of a second for

small programs.)

• Convenient-- Compiling and running are

only a key-stroke or two away. Errors

direct you back to the editor with the

cursor set to the trouble spot.

• Object Module Support - Access functions
and externals in object modules produced
by C86 or Lattice C or assembly language.
Utilize your existing libraries unchanged!

• Complete Multiple Module Support-
Instant global searches, auto-compile

everything that's changed, etc.

• Many more features including batch mode,

8087 support and symbolic debugging.

• Runs on IBM PC, DOS 2.x, 192K and up.

• Price: $300.00 (Demo $45.00) MC, VISA

Pikv ot demo includes documentation and ifrtppmg

within US. PA •cuclenti jdd6% ulei tm
Specify C86 or Lattice WJfon

mm mm
3207 Hogarth Lane • Collegeville, PA 19426

(215)584-4261

'Trademarks: C86 (Compuier InnuYddons) Lattice
(Utnce Inc), IBM (IBM Corp),C-terp (Ompel Software)

73

MYSTIC

PASCAL
IS 10 TO 1000

TIMES FASTER

THAN TURBO
Mystic Pascal compiles at over 100,000

lines per minute on a standard IBM PC.

How.' When you change a few lines of

code, other Pascals make you recompile

the whole program—Mystic only recom

piles those lines. As if thars not fast

enough, the compiler even runs in the

background while you are editing. You

can recompile a 2000 line program usually

in less than one second.

Mystic produces 8086 object code, opti

mized on two levels. The single precision

floating point is 5 to 50 rimes faster than

any other compiler. 4000 multiplications

or 2000 divisions per second, without an

8087—compare that to your present

Pascal!

Still not sold?! OK. Mystic Pascal is also

interactive—Pascal statements can be in

stantly compiled and executed. And

there's a Full Screen Editor. And Help

windows for the Standard Pascal

language. And support for multi-tasking.

And its only—

$39.95!
Requires an IBM PC or true compatible

with 256K. Turbo Pascal is a registered

trademark of Borland International, Inc.

MYSTIC CANYON SOFTWARE

P.O. Box WW

Pecas, New Mexico 87552

Place your order today!

Phone or use the coupon!

(505)988-4214

Name

Address

City

State Zip

Price is $39.95 plus S4 shipping.

Outside US 6k Canada add 520 shipping.

Pavment must be in US funds on a US

bank. Purchase orders accepted from

recognized institutions.

NM residents add sales tax.

□ Check/MO D COD □ VISA D MC

Card

Exp..

Signature

form, the knowledge can be accessed to

tell [he user why il might be asking for

what it is or how il produced the result it

did. But formany tasks, there is still no

way for expert systems to be used to

lighten the workload of human experts.

For example, a writer who knew nothing

about expert systems could not use a sys

tem that is expert on the subject of expert

systems to write this article.

DECISION MODELING SOFTWARE

A decision modeling system is one that is

intended for problems that involve select

ing one of a number of known alterna

tives. Rather than using knowledge pre

pared by an application developer, a

decision modeling package is designed to

allow users to incorporate their own

knowledge and opinions in a systematic

way to force a conclusion.

Decision Support Software

Expert Choice

Decision Support Software Inc.'s system,

written in compiled BASIC, allows very

complex decision models and provides a

graphic representation of the decision's

structure. An integral part of the decision-

tree display is a powerful tree editor that

includes the ability to browse through a

decision model at will. There is a complex

system of weighting each of the factors

and subfactors. All the necessary calcula

tions for distributing and proportioning

the weights arc done automatically by the

system.

To model a decision using Expert

Choice, nodes ofa tree arc created that

arc represented as boxes extending from a

common node above and displayed in a

row across the screen as each additional

node is added. The root of the whole deci

sion tree is the goal node. Its name is the

name of the decision being modeled.

Every node box below the goal contains

both its name and a number that desig

nates its resultant weight in comparison

with its peer nodes on the same level

descending from the same parent node.

There is always one node, which is

highlighted, that is the current focal node.

Arrow keys arc used to move about in the

tree, thereby changing the node that is

highlighted, \i\hc redraw command is

issued, the display will change to show all

the node boxes thai arc the immediate

children of the node that was current when

the redraw command was issued. When

the display of node boxes shi fts down the

tree, all the upper nodes, including the

goal, are represented by oval characters in

their proper position, connected by arc

lines. The arrow keys can still be used to

move to these symbolically represented

upper nodes, highlighting them, and to

redraw the tree display.

It is easy to move quickly from node to

node on the tree display and to redisplay

the tree to show important details and to

access desired nodes. The edit function

can be invoked to edit anything in the tree.

The nodes affected by the editing oper

ations are the immediate children of the

current node when the editor was

invoked. The lowermost nodes in any

branch of the tree are called the leaves of

the tree. Up to seven node children can be

created under each parent, and the tree

can have as many as seven levels.

From this I think you can see how pow

erful a tool Expert Choice is for giving a

very graphic model of the structure of all

the issues and subissucs of even the most

complex decisions. But even more

important than making the overall .struc

ture of the decision explicit ii defining

how the various issues and subissues

interact and relate to each other.

To establish how the various criteria or

subcriteria relate involves going into the

comparison mode. All combinations of

two peer nodes on a given level are com

pared to one another. They are compared

on up to three bases: likelihood, prefer

ence, and importance. The result of

responses to these comparisons assigns

relative numerical weights to each of the

peer nodes. These relative weights are

transmitted proportionally to all of the

branches below each node.

Comparisons can be assigned both ver

bally and numerically. In the verbal mode

arc multiple choices on how much more

or less important, likely, or preferred one

issue or criteria is to another. Answers to

these questions result in a standard

weighting assignment for each degree. In

the numerical mode, the user is presented

with one screen that has an impact matrix

with all of the numerical weightings dis

played. Any of the numbers displayed

may be changed.

Generally, once you become familiar

with how Expert Choice works, it is much

faster and can be more accurate to use the

numerical mode to assign any values on

the one screen rather than to go through

all the possible questions in the verbal

mode.

Once all the relative weightings for all

the criteria have been assigned, it is nec

essary to make sure that all the main alter

natives exist as leaves at the bottom of all

the branches you want considered. When

the decision model is evaluated, the value

for each leaf is calculated. Then the val

ues for all the identical leaves arc summed

up and the results for each alternative are

displayed on a bar graph, usually in order,

with the winners highest and the losers

lowest.

In a decision model of any size, a

potentially formidable editing problem

exists in trying to get copies of all the

decision alternatives to all the bottom leaf

positions where they need to be. Fortu

nately. Expen Choice's tree editor has a

powerful replicate command with an

option that allows the replication of

CIRCLE 57 ON READER SERVICE CARD

options to all the leaves of the tree. Thus,

very complex and detailed decisions can

be modeled with this system. Without this

option, the time required to model u deci

sion using this approach would be

formidable.

The main limitation of Expert Choice is

that it takes far too long for the evaluation

of complex decisions because the value of

each individual leaf is sent to the screen or

printer branch by branch before the final

score is displayed. There ought to be an

option to see the results as rapidly as they

can be computed rather than having to

wait. This one flaw detracts from the use

fulness of an otherwise very ingeniously

designed and welcome package.

Lightyear

Lightyear Inc.'s decision modeling system

is very similar in purpose and scope to

Expert Choice, with a few pluses and

minuses. For instance, Lightyear has no

visible tree hierarchy to edit. Instead,

everything is done with lists and windows.

The two systems have other differ

ences. In addition to quantified criteria,

Lightyear supports a fairly powerful and

easy-to-read rule syntax for imposing fur

ther conditions on the criteria. Also, the

bar chart evaluation of the final results

can be displayed at any time without hav

ing to wait. You can also ask for detailed

evaluation charts of separate criteria in an

alternative and have the charts display a

comparison of any two alternatives for all

criteria. In addition. Lightyear docs not

limit the alternatives to seven.

From this it may appear that Lightyear

is simply a more powerful program than

Expert Choice, but Lightyear has its lim

itations. The biggest of these is that it sup

ports only a single level of criteria, not the

numerous levels of subcriteria that Expert

Choice allows in its hierarchies. Thus, in

spite of its excellent features for limiting

criteria and alternatives in complex ways

and quickly displaying the results vividly

and effectively, Lightyear cannot model

decisions that arc as complex as those

Expert Choice can. So there is a trade-off:

either you can choose to model complex

decisions with limited options for dis

playing the results or you can opt for rapid

modeling of simple choices with all the

bells and whistles for display and evalu

ation purposes.

Where Lightyear really gets interesting

is in areas such as declaring the vocab

ulary for verbal criteria categories and

using rules to limit the role of decision

criteria. When a list of decision criteria is

prepared, one of three modes must be

assigned directly to each criteria. In addi

tion to the verbal and numeric modes

found in Expert Choice, there is also a

graphic mode. And the modes in Light-

year are not jusl alternate ways for a user

to access any criterion, but categories that

are assigned to given criteria according to

what is most appropriate for them. Of

Program Editing with

is More Productive and Less Frustrating
because it will work YOUR way, and BRIEF elegantly integrates:

• A high-level, readable Macro Programming Language - allows full parsing or

syntax anaylsis.... Complete, unlimited variables, etc.

■ Edit multiple files of unlimited size (2 Mag is OK)

• Mu Itiple Windows on screen with different or same file, fragments, etc.

• A bona-fide UNDO stack (up to 300) of all operations: deletions, reading files,

search, translate, more

• Full "regularexpression search" ■ wild cards, complex patterns

• A completely reconfigurable keyboard

• Keystroke macros - for common typing sequences

• Suspend BRIEF to execute, exit to DOS - run another program (like a compiler,

dir, XREF, DIFF, or DEBUG) then resume BRIEF session

• Compiler-specific support like auto indent, syntax check, compilewithin BRIEF

AVAILABILITY: PCDOS, AT, & Compatibles ONLY $195

Full refund if not satisfied in 30 days

CALL 800-821-2492 35"L *
wmmm
CIRCLE 122 ON READER SERVICE CARD

PROLOG-86
Become Familiar in One Evening

Thorough tutorials are designed to help learn the PROLOG language quickly. The in
teractive PROLOG-86 Interpreter gives immediate feedback. In a few hours you will

begin to feel comfortable with it. In a few days you are likely to know enough to

modify some of the more sophisticated sample programs.

Sample Programs are Included like:

■ an EXPERT SYSTEM

■ a NATURAL LANGUAGE INTERFACE
(it generates a dBASEII "DISPLAY1" command)

■ a GAME (it lakes less than 1 page of PROLOG-86)

PROTOTYPE Ideas and Applications QUICKLY

1 or 2 pages of PROLOG is often equivalent to 10 or 15 pages in "C" or PASCAL. It is a
different way of thinking.

Describe the FACTS and RULES without concern for what the computer will have to

do. Maybe you will rewrite in another programming language when you are done.

Programming Experience is not required but a logical mind is. PROLOG-86 supports

the de facto STANDARD — in "Programming in Prolog" by Clocksin & Mellish.

AVAILABILITY: PROLOG-86 runs on MSDOS, PCDOS or CPM-86
machines. We provide most formats.

Only

Full refund if not

satisfied during

first 30 days.

Solution
335-L Washington St.,

Norwell, Mass. 02061

617-659-1571

800-821-2492

CIRCLE 42 ON READER SERVICE CARD

75

course, it all boils down to assigning

numerical weights, but to get the best

results with a decision model, it is often

very important to know how the com

parisons are presented.

In the graphic mode, you are shown a

sliding scale of the degree to which each

decision alternative is affected by a crite

rion with a graphic mode. To express your

grasp of these relationships, you move a

marker of each alternative along a linear

scale until you find a place that looks like

the correct degree of impact. With the

numeric mode criteria you supply the

weighting factor as a number in the corre

sponding column.

The verbal mode is more complicated.

When you enter the verbal comparison

mode you sec a rectangular window. On

the left are all the criteria that have been

designated V, for verbal. The top one will

already be highlighted. In the center arc

the words and on the right the numerical

weight values. But the words and numer

ical weights that appear apply only to the

criterion that is highlighted. The words

are descriptive terms such as Best, Worst.

Average, etc. But these rating terms can

be defined as the user sees fit to make

them appropriate to the issues to which

they refer.

For example, if you were deciding on

possible areas for relocating your busi

ness, you could define words such as

North, South. East, and West for the Area

criterion and assign each of them their

Advanced
Screen Management

made easy

Now a professional software tool from

Creative Solutions.

WINDOWS FORC
More than a window display system,

WINDOWS FOR C is a video tool kit for all

screen management tasks.

■ Pop-up menus and help files

■ Unlimited files and windows

■ Instant screen changes

■ Complete color control

■ Horizontal and vertical scrolling

■ Word wrap

■ Highlighting

■ Auto memory management

■ Plus a library of over 50
building block subroutines

Designed for portability.

Easy to learn, easy to use.

Once you've tried WINDOWS FOR C,

you'll wonder how you ever managed without it.

Full support for IBM POXT/AT and compatibles, plus interfaces for non-IBM computers:

Lattice C. CI-C86. Mark Wm. C, Aztec C. Microsoft C, DeSmet C fPC/MSDOS),

NEWVer.3.1
Enhanced portability.

Topview compatible.

WINDOWS FOR C$195
(specify compiler & version)

Demo disk and manual $ 30
(applies toward purchase)

Full source available.

No royaides.

:

■-. ■

;

\

■

-

- -

Creative Solutions

21ElmAve..BoxT7,

Richford.VT 05476

802-848-7738

Master Card & Visa Accepted

Shipping $2.50

VT residents add 4% tax.

numerical weight depending on your pref

erence for each. Similarly, as in Expert

Choice, you could define the words so

that they represent degrees of likelihood

or importance or as any basis for com

paring (he alternatives, such as the degree

of known certainty or the degree to which

you arc sure it is what you want.

One distinctive feature of Lightyear is

its ability to further limit and control the

decision criteria by defining rules that act

as further constraints for the decision.

The rule syntax is very easy to read and

surprisingly versatile and powerful. A

convenient rule editor prepares rules.

There are two basic types of rules to

select from: simple rules and if-then rules.

Once you have chosen your option, a rect

angular window is displayed for that rule.

You select the criterion involved from a

menu and then the operators, such as

MUSTBE, SHOULD NOTBE, and AT

LEAST There are facilities for modifying

and deleting rules, and the summary eval

uation can be displayed immediately to

sec the affect of the rule on the final out

come of the decision.

Lightyearisa very satisfying program.

Its primary advantage is the speed with

which an application can be developed

and executed. It would work very well

with a mouse since it is menu- and list-

oriented. One improvement, which would

probably make this product the leader in

its category, would be adding levels of

subcriteria. as in Expert Choice.

EXTENSION PACKAGES

Programming Logic Systems APES

APES —Augmented PROLOG for Expert

Systems— is an extension of the PROLOG

programming language. This Program

ming Logic Systems product provides an

overlay system for Logic Programming

Associate's Micro-PROLOG consisting of

several modules that give additional facili

ties for user interaction and explain the

reasoning behind conclusions. This is

intended to pave the way for using the

augmented PROLOG as an environment

for developing and running less user-

friendly knowledge systems or for devel

oping a more complete environment using

PROLOG for the more familiar type of

consultation and rule-based system. In

addition, there are modules that assist in

editing knowledge bases and in preparing

systems with overlay files on disk. This is

important because the memory addressing

capability of Micro-PROLOG is limited.

Ideally, with such an approach and by

using a RAM disk, these memory lim

itations could be overcome and larger

applications could be developed.

What APES really offers is a tool kit

that helps make the powerful facilities

inherent in PROLOG more comprehen

sible and easier to use. This can be helpful

both to developers unfamiliar with PRO

LOG and for use in building a consulting

environment for the end user. The main

CIRCLE 8 ON READER SERVICE CARD

76 COMPUTER LANGUAGE ■ JULY 1985

Lifeboat

C is the language.
Lifeboat is the source.

J M

Productivity Tools from the Leading Publisher of C Programs.

The Lattice® C Compiler

The cornerstone of a program is its compiler; it

can make the difference between a good pro

gram and a great one. The Lattice C compiler

features:

• Full compatibility* with Kernighan and

Ritchie's standards

• Four memory model options for control and

versatility

• Automatic sensing and use of the 8087 math

chip

• Choose from the widest selection of add-on

options

• Renowned for speed and code quality

• Superior quality documentation

"Lattice C produces remarkable code...the

documentation sets such a high standard that

others don't even come close... in the top cat

egory for its quick compilation and execution

time and consistent reliability."

Byte Magazine

Lattice Library source code also available.

Language Utilities

Pfix 86/Pfix 86 Plus — dynamic and symbolic

debuggers respectively, these provide multi

ple-window debugging with breakpointing

capability.

Plink 86 — a two-pass overlay linkage editor

that helps solve memory problems.

Text Management Utilities — includes GREP

(searches files for patterns), DIFF (differential

text file comparator), and more.

LMK (UNIX "make") — automates the con

struction of large multi-module products.

Curses — Sets you write programs with full

screen output transportable among all UNIX,

XENIX and PC-DOS systems without changing

your source code.

BASTOC — translates MBASIC or CBASIC

source code directly to Lattice C source code.

C Cross Reference Generator— examines vour

C source modules and produces a listing of

each symbol and where it is referenced.

Editors

Pmate — a customizable full screen text editor

featuring its own powerful macro command

language.

ES/P for C — C program entry with automatic

syntax checking and formatting.

VEDIT — an easy-to-use word processor for

use with V-PRINT.

V-PRINT — a print formatting companion for

VEDIT.

CVUE — a full-screen editor that offers an

easy way to use command structure.

EMACS — a full screen multi window text

editor.

Fast/C — speeds up the cycle of edit-compile-

debug-edit-recompile.

Graphics and Screen

Design

HALO — one of the industry's standard

graphics development packages. Over 150

graphics commands including line, arc, box,

circle and ellipse primitives. The 10 Fontpack

is also available.

Panel — a screen formatter and data entry aid.

Lattice Window — a library of subroutines al

lowing design of windows.

Functions

C-Food Smorgasbord — a tasty selection of

utility functions for Lattice C programmers;

includes a binary coded decimal arithmetic

package, level 0 I/O functions, a Terminal In

dependence Package, and more.

Float-87 — supports the 8087 math chip to

boost the speed of floating-point calculations.

The Greenleaf Functions — a comprehensive

library of over 200 routines.

The Greenleaf Comm Library — an easy-to-

use asynchronous communications library.

C Power Packs — sets of functions useful for a

wide variety of applications.

BASIC C — This library is a simple bridge

from IBM BASIC to C.

Database Record

Managers

Phact—a database record manager library of C

language functions, used in the creation and

manipulation of large and small databases.

Btrieve — a sophisticated file management sys

tem designed for developing applications under

PC-DOS. Data can be instantly retrieved by key

value.

FABS — a Fast Access Btree Structure function

library designed for rapid, keyed access to

data files using muitipath structures.

Autosort — a fast sort/merge utility;

Lattice dB-C ISAM — a library of C functions

that enables you to create and access dBase

format database files.

Cross-Compilers

For programmers active in both micro and mini

environments we provide advanced cross-

compilers which product Intel 8086 object

modules. All were developed to be as functional

— and reliable — as the native compilers. They

are available for the following systems:

VAX/VMS, VAX/UNIX, 68K/UNIX-S,

68K/UNIX-L

Also, we have available:

Z80 Cross-Compiler for MS- and PC-DOS —

produces Z£0 object modules in the Microsoft

relocatable format.

New Products

Run/C— finally, a C interpreter for all levels of

C Programmers.

C Sprite — a symbolic debugger with break

point capability.

Call LIFEBOAT: 1-800-847-7078. In NY, 1-212-860-0300.

r,
YES!Please rush me the latest FREELifeboat™ catalog ofCproducts.

Name Title

Company Name

Address

Musiness Phone_

Please check one ofthefollowing categories;

£ Dealer/Distributor O EndUser U Other.

Return Coupon to: Lifeboat™Associates

1651 TItirdAvenue, Nezv York, NY10128
; T*f& l.Mboat Associates

CIRCLE 87 ON READER SERVICE CARD

CL

77

DeSmet

C
8086/8088

Development $11)0
Package I US!

FULL DEVELOPMENT PACKAGE
• Full K&H C Compiler

• Assembler, Linker & Librarian

■ Full-Screen Editor

■ Execution Profiler

■ Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT

BOTH 8087 AND S/W FLOATING POINT

OVERLAYS

OUTSTANDING PERFORMANCE
• First and Second in AUG '83 BYTE

benchmarks

SYMBOLIC DEBUGGER s50
Examine & change variables by

name using C expressions

Flip between debug and display

screen

Display C source during execution

Set multiple breakpoints by function

or line number

DOS LINK SUPPORT $35
Uses DOS .OBJ Format

LINKS with DOS ASM

Uses Lattice® naming conventions

Check:

SHIP TO-

□ Dev. Pkg (109)

□ Debugger(50)

□ DOS Link Supt (35)

ZIP

C
WAR E

CORPORATION

P.O. BOXC
Sunnyvale, CA 94087

(408) 720-9696

All orders shipped UPS surface on IBM formal disks.

Shipping included in price. California residents add

sales tax. Canada shipping add S5, elsewhere add

S15. Checks must be on US Bank and in US Dollars

Call 9 a.m - 1 p.m to CHARGE by VISA/MC/AMEX

Street Address: 505 W. Olive. «767. (940B61

advantages it provides are:

■ Natural language templates for ques

tions posed to the user in a consultation

and in answers made to requests for

explaining the basis of results

■ A menu-generating module

■ A facility that can force PROLOG.

under instructions, to ask the user for

values it needs.

An example of how the PROLOG envi

ronment looks when made more friendly

by the APES front-end is in Listing 1.

Remember that this is not an application

program perse, but Micro-PROLOG

itself with the APES front-end and util

ities added to it! In this context, a user

could delay responses to the "Answer is"

prompt by asking for an explanation or

making a sophisticated query to the PRO

LOG data base.

What APES points out most clearly is

the power that PROLOG offers lor expert

system development. By adding a more

English-like front-end, an explanation

facility, and various utilities and using no

inference procedure or representation lan

guage other than PROLOG, environments

can be built that are suitable as is for many

knowledge system projects and that can be

extended for other systems.

The one difficulty I see is that because

the source code is encrypted, a black box

is created that could turn into a liability in

some circumstances. If serious use of this

system were planned, I would suggest that

some arrangement be made with the

authors to purchase a source code license.

Although this could be expensive, it might

prove economical in comparison with

unforeseen development costs.

Mountain View Press Expert-2

Forth programmers have the opportunity

to learn how a simple rule-based reason

ing system is built with this package

written by Jack Park and distributed by

Mountain View Press.

Expert-2 comes on two disks, one with

u run-time knowledge system module and

the other with Forth source code screens.

The user's guide contains a tutorial on

expert systems that can help the complete

novice grasp some of the fundamentals in

knowledge system processing. Also

included are tutorials that take beginners

through the steps involved in writing pro

grams in both Expert-2 and Forth. An

example of Expert-2's rule syntax is

presented in Listing 2.

Which :

Choose

1 -

2 -

3 -

4 -

Answer

Answer

Answer

:ruits did Peter like?

from the following

apples

pears

oranges

bananas

is pears

is 1

is 2

** I already know Peter likes

Answer

Answer

is oranges

is end

(an earlier

(selecting

(selecting

pears

(selecting

answer)

apples)

pears)

oranges)

Listing 1.

(RULE 1 —

IF t

AND

AND

AND

AND

AND

AND

AND

subject 1

subject

subject

subject

subject

subject

subject

subject

Measles)

las i

has

has

has

has

has

has

has

•ash on scalp, then

brownish pink rash

white spots inside

conjunctivitis

bloodshot eyes

harsh hacking cough

high, fast, rising

runny nose

THENHYP is Measles

body

cheek

fever

Listing 2.

CIRCLE 11 ON READER SERVICE CARD

78

In this scheme, capitalized words arc

operator key words. Expert-2 has five

main types ofoperators: basic operators,

negative context operators, RUN-lypc

operators, the THENHYP operator, and

BECAUSE operators. The basic operators

are the IF, AND, and THEN familiar in all

production rule languages. The negative

context operators arc IFNOT and

ANDNOT, An IFNOTstatement is used as

a condition that stipulates what will follow

in the event that a state of affairs is not the

case. /lArD/V07'operates MkzAND in stip

ulating additional conditions, except that

the described situation is not true.

RUN-lypc operators arc used to access

Forth subroutines. They include

IFRUN, ANDRUN, THENRUN, and

ANDTHENRUN. They all work anal

ogously to their namesakes, but instead of

referencing a statement string they refer

ence any Forth word that has been defined

and loaded. The one stipulation is that the

words for the subroutines have to be

loaded before the rules. The THENHYP

operator states that the string that follows

it will be considered a hypothesis to be

tested rather than an outright truth.

Finally, BECAUSE and BECAUSERUN are

keywords thai stipulate how the system

will respond to a why (W) request by the

user. With BECAUSE you can provide a

statement like the others in a rule.

BECAUSERUN allows you to call your

own Forth word that can do whatever you

want it to do in generating an elaborate

explanation.

Like the representation scheme, the

inference mechanism is extremely simple.

It seems to have been derived from an

example in the first edition of Patrick

Winston and Berthold Horn's LISP

(Addison-Wesley). The main word is

DIAGNOSE, which calls on VERIFY.

DIAGNOSE accesses HYPSTACK, the

hypothesis stack, and gets the pointer to

the character string that is the hypothesis

it will try to prove. If the hypothesis is

found to be true. DIAGNOSE stores its

pointer in CURHYP. If not, it fetches

another pointer from HYPSTACK. When

VERIFYis called, it picks up a duplicate

of this hypothesis pointer and attempts to

see if the hypothesis is true. To do this, it

calls on RECALL to see if the pointer is

among those things considered facts.

One interesting side note to Forth afi

cionados is the use of a forward reference

in this program. When TESTIF+ calls

VERIFY, it uses a feature of MVP-Forth

that allows duplicate names by using a

version of VERIFYihat is actually an exe

cution vector. Normally in Forth you can

not call a word until it has already been

defined.

Although Expert-2 is an extremely sim

ple program and intended only as a learn

ing aid, with the inclusion of the source

code and the RUN-\ypc operators, pro

grammers should note that the full Forth

language is present. Thus they can extend

the program, write other inference

engines for it. and add their own Forth

subroutines freely from rule sets. A start

on a forward-chaining inference pro

cedure is suggested with FINDRULES > .

This is a nice, clearly explained pack

age for programmers to experiment both

with simple knowledge engineering con

cepts and the implementation of rule pro

cessing and reasoning environments.

RULE INDUCTION SYSTEMS

Expert Systems Expert Ease

It was inevitable that products offering

ease of use in exchange for limited capa

bility would emerge. Here the attraction is

a decision tree system that has a sprcad-

shecllikc editor and is totally example-

driven. No rules have to be written with

Expert Systems Inc.'s Expert Ease. Spe

cific examples are entered and a type of

decision rule is inferred that will handle

the examples and other similar cases.

While this sounds very easy, early reviews

criticized Expert Ease for not being that

easy to use at all, and I have to admit that

when I first tried it. I was a tittle puzzled

by exactly how everything fell into place.

Some critics of Expert Ease have

claimed that its knowledge bases consist

of only one large rule. However, it might

If lightning still scares you,

you're using the wrong file manager.

Be sure. Btrieve™
Lightning may strike. But it doesn't

have to destroy your database.

Btrieve™ file management offers

automatic file recovery after a system

crash. So accidents and power failures

don't turn into database disasters.

Your Btrieve-based applications will

come up when the lights come back on.

Fast. Btrieve is lightning fast, too. It's

written in Assembly language espe

cially for the IBM PC™. And based on

the b-tree file indexing system, with

automatic balancing and electrifying

access speed.

The standard for networking.

Btrieve/N {network version) sets the

standard for the industry's most

popular LANs, including IBM's PC

Network.

Fully-relational data management.

SoftCraft's entire family of products

gives you a complete, fully relational

database management system.

Rtrieve™ adds report writing capabil

ities. Xtrieve™ speeds users through

database queries with interactive

menus.

For professional programmers.

Btrieve is the fast, reliable answer for

all your application development. In

any development language—BASIC,

Pascal, Cobol, C, Fortran, and APL.

With Btrieve, you can develop better

applications faster. And know they'll

be safe if lightning strikes.

SoftCraftlnc.
P.O. Box 9802 #917 Austin, Texas 78766

(512) 346-8380 Telex 358 200

Suggested retail prices: Btrieve, S245; Btriciv/N, $595; Xtrwve, $195; Xtricvc/N, S395; Rtrieve, $85;

Rtricir/N, $175. Requires PC-DOS or MS1V-DOS IX, 2.X, or 3.X. Btrieve, Xtricve, and Rtriciv; IBM;
and MS arc trademarks ofSoftGaft Inc.; International Business Machines; and Microsoft Inc.

CIRCLE 31 ON READER SERVICE CARD

79

be more accurate to say that the cases

entered cannot lead to a rule that draws

any conclusion other than one of the pos

sible final outcomes. This is equivalent to

a system where various rules are possible

but where the THEN part must always be

about the final outcome rather than an

intermediate result.

Though this is true of Expert Ease, it

is not a final limitation of the system

because a chaining capability allows the

conclusion of a decision tree to result in

loading a new knowledge base beginning

at the top of a new decision tree. In this

way, a network of decisions can be built

where only the final leaf evaluated repre

sents the outcome. The slowdown in

speed caused by having to load another

file from the disk for each link of the

chain can be eliminated by using a RAM

disk. Still, this does not put Expert Ease

on an equal footing with systems that can

simply use any legal statement in the rep

resentation language in the THEN part of a

rule. The construction and debugging of

these decision tree chaining networks is

not a trivial task and is more difficult than

simply adding rules in a production rule

system.

An application is developed in Expert

Ease by making various entries in several

different screens in the spreadsheetlike

display. Below the screen display is a

command line menu listing various single

character commands. First enter "a" for

the attribute screen where the main fac

tors in the decision are declared. The

attributes are one of two types, integer or

logical. The default is integer. To convert

this to logical, a first value must be

entered from the attribute screen as a

string. The attribute is then displayed as

the logical type.

To begin entering example values for

the attributes, shift to the examples

screen. Already a number of flaws are

apparent in Expert Ease's user interface

that make it more difficult to use than it

should be. All entering of values should

be from one mode screen, and there

should be an explicit command on the

attributes screen for declaring attributes

either integer or logical.

The design has other faults also. First,

there is generally no consistent way to

back up once you've selected an editing

command but then decide that's not what

you really want to do. For example, in

using the change option. I found that

rather than being able to hit Escape to

back out. I had to enter false values to get

back to the editing menu and then delete

the false values. Also, commands like n

and v must be reentered each time a new

entry is made. These should be offered as

modes that can be toggled so that in enter

ing a list of attributes or values the com

mand does not have to be issued sepa

rately each time. Another difficulty with

Expert Ease is that on-screen help.

although available from the main menu,

often is not available in situations where

the user actually needs it the most.

When all of the attributes and values for

a decision are entered, the next step is to

use them to generate a rule. This is done

simply by hitting the ! character. The

rule that has been induced can then be

inspected on the rule screen.

After the rules have been induced, the

next step is to test out the decision by

selecting the query mode. Left to itself.

Expert Ease will generate automatic ques

tions that ask for the value of each attri

bute and offer multiple choices that are

selected by number. Fortunately, a text

option allows you to word your own ques

tions as well as the conclusion.

Perhaps the most important thing to

recognize about Expert Ease is that there

is no facility for asking how a conclusion

was reached. This is not a trivial omis

sion. One of the most important differ

ences between rule-based systems and

knowledge-embedded programs written

with conventional algorithms is that

because the knowledge is represented

explicitly in rules, it can be accessed to

help the user see the reasoning involved so

that he or she is not expected to accept the

conclusions blindly. For this reason.

Expert Ease is not appropriate for any

important applications where it would be

irresponsible not to evaluate and question

the result.before making an independent

decision.

In addition to Expert Systems Inc., a

company called Human Edge Inc. is also

liscensed to market Expert Ease. Human

Edge is located at 2445 Faber PI.. Palo

Alto, Calif.. 94303, (415)493-1593.

KDS

If talking to the outside world by real-time

data acquisition or the ability to call exter

nal programs is a central issue, then the

KDS system may be worth looking into.

This KDS Corp. product is an example-

driven rule induction program designed

along the same lines as Expert Ease.

KDS. though, has a number of advan

tages over Expert Ease. First of all, it runs

under MS-DOS rather than the UCSD p-

system, which means that it can and does

interface with other MS-DOS programs.

In addition to this, it provides for cer

tainty factors and has two alternate infer

ence options and a back-up key that allows

both a user and a developer to back their

way through the decision tree at any

point. Also, if you like skillfully designed

color displays, then you may find the

use of color text displays in KDS very

effective.

Another important factor is KDS's

speed. Written entirely in assembly lan

guage, it is very possibly the fastest of all

the systems reviewed here. I also think

that KDS is somewhat easier to use than

Expert Ease. The right screen panel is

devoted to on-screen help messages that

shadow where you are in the system and

tell you what you need to know to pro

ceed. It also allows considerably larger

applications to be developed. The Play

back module for end users can be pur

chased for $495.

KDS does not deal with attributes and

values but rather conditions described in

text strings thai are either true or false or

known with some degree of certainty. One

advantage of this is that it is not restricted

to just one category of results for a given

knowledge module. But it also means that

the system acts like it creates only binary

trees and the user is answering only yes or

no to each condition. Actually, KDS is

somewhat better than a binary decision

tree system. To see how, it's best to know

something about how the development

environment works.

When you first boot up KDS, you see

this menu:

[1] Enter new cases

Edit

Transform to finished KMOD
Make rules

Print-outs

Initialize knowledge file

Edit reference numbers
[8] Require a definitive answer

[9] Quit

[Fl] Display case conclusions

[F2] Display conditions

To get started on a new application, you

would hit [6]. The prompts for file name,

author, copyright notice, etc., then

appear. Next you arc asked for the first

condition. Then you see two more

prompts, one for a conclusion that follows

if it is true and another if it is false. After

these are entered you are returned to the

menu. Now you can choose [1] to add fur

ther cases. The conclusion of each case is

a separate outcome and consists of what

ever text it is that you type. This means

that there is no way for KDS to keep track

of which conclusions arc about the same

issue or alternate options. There's just a

string of text that has a certain place in the

hierarchy, along with some factors associ

ated with it.

Many advanced features of KDS give

the developer some powerful and con

venient tools for chaining applications by

creating additional files on subdirectories

of the data disk. The KDS manual, how

ever, is quite ill-suited to this otherwise

very streamlined product. It is rambling,

verbose, and poorly conceived and orga

nized. A product like this needs a quick

guide to get the end user up and running as

quickly as possible, a well-organized ref

erence guide to let the experienced profes

sional see quickly everything that is there,

and a knowledge system development

tutorial for complete novices.

80 COMPUTER LANGUAGE ■ JULY 1985

WHEN YOU BUILD A HOUSE... VOU DON'T NKBD TO MAKK THE WINDOWS VOI/HSELK. NOW... THE SAME IS TttLK WHE\ YOCHE WRITiXC CODE.

Windows With A View

Toward The Future

The Window

Machine'" occupies

only 12K! Written in

tight, fast Assembler.

i! performs like a

racing engine...with

more power than

you'll probably ever

need. Yet. it's an
engine designed to fit

in the vehicle of

your choice...from a

"stripped-down"

128K IBM PC to a

fully loaded AT. The
programs you write

today will run on

the broadest range of

machines possible...

now, and in the

future.

Windows Bigger

Than Your Screen?

Here's where the

VSI part of our name

fits in. VSI means

Virtual Screen Inter

face. Behind each

window, there's a

much bigger picture.

VSI defines virtual
screens rather than just windows. The
window itself shows whatever portion of

its virtual screen you wish to exhibit at

any given point in your program. Each

screen can be up to 128 x 255 (columns x

rows, or rows x columns). And there are

more than 100 screen primitives at your

command.

Multilingual Windows

You can order The Window Machine

with the language interface of your choice:

C, Pascal, Compiled Basic, Fortran, Cobol,
or PLl. We've even recently completed

These are

coders'

windows...

designed to be

built into the

programs you

are writing.

They can

overlap, move

anywhere on

the screen,

grow, shrink,

vanish or blink.

They can be

bordered in

anything from

a simple line to

/lashing

asterisks...or

even no border

at all. And

you can have

up to 255 of

them at a time.'

Color or

monochrome

...of course.'

Why did Simon &
Schuster, 3Com,
Tymshare, and
Rev on choose
VSI-TheWindow

figured if you wanted ribbons and bows

you could always add them yourself.)

And by offering you the product our

selves, we were able to cut oul all the
middlemen and save you a tremendous

amount of money.

VSI
THE WINDOW

MACHINE

Available for ific IBM PC. XT. AT. IBM Compolibles,

Wong. T.J-. and HP 150

The Window Machine Includes:

(and how come
you can buy it for
such a low price?'

$59.95

■ Zoom Windows

Mu/Iipie Virtual

Screens (up to 255)

i Choice of Borders
(including flashing borders)

■ Support /or all Color and
Monochrome Video Attributes

(no graphics card required)

■ Built-in Diagnostics
And much, much more

ORDER YOUR COPY OF

VSI—THE WINDOW MACHINE TODAY

For Visa & MasterCard orders call loll free:

800-538-8157 Ext. 824 In CA 800-672-3470 Exl. 824

Cull Mon.-Fri. GA.M. la 12P.M.. Sit. h Sun. 6A.M. la SP.M. (P.S.T.)

an interface for Turbo Pascal*, so that

now true, full-featured windowing can be
utilized with this fine compiler. (Turbo's

own built-in "windowing" procedure is

extremely limited).

Windows That Won't Break You

We decided to save you a lot of money.

So, we left behind fancy binders, mono-

grammed slip cases and plastic pre
sentation boxes. Instead, you'll find an
extremely powerful too! and a 200 page
manual written with an eye toward
simplicity, clarity and completeness. (We

"Turbo Pascal i* a Trademark of Borland Inlurnalianal

ThtWindonWichint"1 SS9.9S + SS Shipping and Handling

LANGUAGE INTERFACE:

E Lattice C CRealu Cobol DMIouofl 3isi: Compiler C Microsoft Fortran

E'PLl QMinwrfl Pascal CTurboPara] [full (tainted ime windowing]

COMPUTES

N'arae

Addrtss

Cily .Slats Zip Cud;.

□ Chuk CMoittyOrdH DVISA CMaittrCird

Cards

-California residents: lax included. Orders ouls

SID for shipping and handling

3D day Money Back Guirant

Cl.

AMBER SYSTEMS

11715. Saratoga -Sunnyvalt Road

San lost. CA 95123

AMBER SYSTEMS, INC. 1171 S. Saratoga-Sunnyvale Road, San Jose CA 95129 Vim DEALER INQUIRIES: CALL OUR 800 NUMBER

CIRCLE 2 ON READER SERVICE CARD

SMALL PRODUCTION

SYSTEM TOOLS

Level Five Research Inc.
Insight Knowledge System
The only way to begin a description of

Insight is to say that it is the best bargain

around for the complete novice who wants

to dabble in knowledge system develop

ment to find out what it is all about. This

system, though in no sense the most pow

erful in the lineup, is very nearly fool

proof. Once you understand how the sys

tem works, you can go about making

running knowledge systems that work

without a lot of syntax problems and other

complexities that distract you from con

centrating on the problem your applica

tion is supposed to help solve.

Insight is both user friendly and fast. A

lot of care has gone into designing its user

interface. The system is entirely driven by

function keys and menus and deliberately

refrains from supporting color displays,

so that those who have color monitors see

everything in dull, unadorned white.

As you proceed through a consultation

with Insight, you are presented at each

step with a distinct set of choices selected

by indicated function keys that vary

depending on the options chosen for the

®

LATTICE"WORKS

LATTICE TOPVIEW

TOOLBASKET RELEASED

If you develop programs oriented to take ad

vantage of IBM's TopV:ew multi-tasking win

dow environment, you need the Lattice Top-

View Toolbasket.

The Lattice TopView Toolbasket is a library

of more than 70 C functions to control win

dow, cursor, and pointer functions, along with

printer controls, cut and paste functions,

debugging, and general utilities. It also in

cludes an assembler interface and master file

and data definition headers.

This new Lattice product speeds your pro

gram development with its documented tips

on handling I/O and dispatch routines, plus its

sample programs with source code and batch

files your programs can be patterned after.

The Lattice TopView Toolbasket runs on the

IBM PC, XT, AT, and compatible systems with

256K (512K and TopView Toolkit from IBM

recommended). The Lattice TopView

Toolbasket is available for S250. Binary and

Source Code available for S500. The Lattice

TopView Toolbasket was developed for Lat

tice by Strawberry Software.

Speed your TopView program's release.

Order the Lattice TopView Toolbasket today1

UNICALC COMPONENT

SPREADSHEET SOURCE KIT

CHOSEN BY ORACLE
Lattice, Inc. and Oracle Corp. have jointly

developed SQL-Calc, a unique product based

on Lattice's UNICALC spreadsheet program

and the ORACLE Database software.

SQL-Calc gives users the ability to extract

and manipulate database information using

spreadsheet features made popular by pro

grams such as VisiCalc, SuperCalc, and Lotus

1-2-3- SQL-Calc is the first full-featured spread

sheet :o be coupled so closely with a power

ful relational database to give users the abili

ty to treat SQL database access statements

like normal spreadsheet formulas.

The UNICALC Source Kit, used to develop

SQL-Calc, is a component electronic spread

sheet kit for UNIX, MS-DOS, PC-DOS, and

other systems that support the C language,

and is available to other program developers.

It allows program developers to incorporate

electronic spreadsheet features into new or ex

isting software programs. UNICALC also gives

users many display options and will generate

printed reports in a variety of formats which

may be saved for further manipulation by a

word processing system.

The UNICALC Source Kit is available with

a wide range of royalty and licensing ar

rangements at very competitive pricing. Call

Lattice, Inc. at (312) 858-7950 to discuss your

applications.

LATTICE C COMPILERS CHOSEN

BY MORE THAN 26,000

SOFTWARE DEVELOPERS!

The top-selling C compiler, Lattice C, is now

published directly by Lattice, Inc.

When you purchase our edition, you get

support directly from the people who wrote

the C compiler. You also get free "bug fix" up

dates during the warranty period. When you

register your purchase with us, you are

notified of all updates, enhancements, and

new C programming tools as they become

available. And, as with all Lattice products,

you are covered by a money-back guarantee.

When you are ready to purchase a C com

piler, consider the source, Then call us: Latt-

tice, Inc.

ASK ABOUT OUR "TRADE

UP TO LATTICE C POLICY"

Lattice, Inc.

P.O. Box 3072

Glen Ellyn, IL 60138

(312) 858-7950

TWX 910-291-2190

Intcrnnliana! Sak*s OITiccs

Belgium: 5o(tsllnp I'lliiIK- (321 53-fi64K7.i

England: Rmuulliill I'lwttc: |tni72i uiirr.

Japan: l.ili-hu.ii I'ltinii- (li.d J-H471I

CIRCLE 18 ON READER SERVICE CARD

user. At each step, your options are kept

at a minimum and carefully laid out for

you, making Insight very easy to learn and

use.

The other components of Insight are the

rule language and the compiler. To pre

pare a knowledge base, an external text

editor like Volkswritcr Deluxe or ihc EC

editor can be used. When you want to test

the knowledge base, you compile it with a

separate compile program and run it in the

consulting component.

The representation language is very

rudimentary. Inequality operators are

available for comparing numbers, but

there are no numeric variables and no

arithmetic operators for making simple

calculations. Confidence values, how

ever, are supported.

The inference engine employed by

Insight is a simple backward chaining type

of the familiar EMYCIN variety. It incor

porates a structured goal mechanism that

allows the prime interest areas of a prob

lem to be specified. The system comes

with an easy-to-read, 44-page manual that

is sparse on details about the inner work

ings of Insight. As a system intended pri

marily for the student of knowledge sys

tem development, a more comprehensive

user guide and tutorial would be far more

appropriate.

EXSYS

A little more expensive than Insight, but

with substantial additional power. EXSYS

Inc.'s product offers calculated variables,

a rule editor, color displays, and the abil

ity to execute external programs that can

be written in your favorite programming

language. If your main objective is simply

to get acquainted with the knowledge

engineering process or to do some quick

prototyping or proof of concept work for

a proposed expert system, then EXSYS

would be a relatively inexpensive way

to go.

This system has a number of convenient

features. The representation language is

surprisingly powerful. Compared with

the more advanced and higher priced sys

tems, EXSYS lacks some important

things, but it's a good idea to see how far

you can take a system like this. By using a

few tricks, you'll find ways to get around

features you thought were necessary but

arc absent in EXSYS.

The system consists of two main pro

grams: EXSYS.EXE. the run-time envi

ronment, and EDITXS.EXE, the develop

ment environment. One of the nice things

about the EXSYS rule editor is the way

the conditional qualifiers and choices,

or outcomes, arc kept in numbered lists

so that it is not necessary to repeatedly

retype the same items in different

combinations.

The main editing screen is divided into

three windows, a right and left screen,

and a command lineal the bottom. The

choices or outcomes are automatically

82 COMPUTER LANGUAGE ■ JULY 1985

numbered so that to enter one from the list

into a given rule it is only necessary to

type its number. The same is true of the

conditions as well as each condition's list

of values. In each case, after you have

entered a factor once, it is simply a matter

of selecting numbers, and the correspond

ing text is automatically entered in the

rule. If at some point you decide that you

want to rearrange the order of the rules,

there is a function for doing this.

Mathematical formulas are not handled

in the same way. They must be retyped

each time. Another peculiarity of the

arithmetic functions is that the numerical

variable names, unlike the qualifiers and

choices, cannot be deleted altogether

from the system once entered. This is a

minor flaw, but it limits your ability to

experiment with things you might not

want in the final version.

There are three main modes for

encoding an EXSYS knowledge base: for

yes or no answers only, for certainty fac

tors ranging from one to 10, and for cer

tainty factors ranging from one to 100.

Once an option is chosen it will hold the

entire knowledge base. EXSYS also has

options regarding such things as whether

rules should be checked for consistency,

whether rules should be displayed as rules

to the end user, and whether variables

should be displayed at the end of a

session.

On the whole, the EXSYS rule editor

provides an extremely convenient envi

ronment for development. The one draw

back of this type of system is that EXSYS

writes its own file formats that do not

allow for editing rules in a normal text

editor. Also, creating backups is

extremely important, because if for any

reason your knowledge base file becomes

damaged and the EXSYS environment

cannot read it properly, you have no other

recourse.

EXSYS also has the ability to call exter

nal programs. So far this can be used in a

limited way to get additional data, to per

form calculations, and to make the data

available to an EXSYS application. This

can be done in two different ways. One

method is used when just one value needs

to be returned. The other enables a num

ber of different values for variables to be

made accessible to an application running

in EXSYS. For returning single numerical

values, the /?[Wprocedure can be called

from a rule to execute a program that

requests input for calculating a value that

will be made accessible to EXSYS by cre

ating the file RETURN.DAT. which

EXSYS reads automatically.

To return multiple variables as well as

qualifiers involves making a special dec

laration to the rule editor at the outset.

Also, a special format must be used in the

RETURN.DAT file so that, in addition to

the value itself, EXSYS knows whether it

is a variable or qualifier and what its num

ber is. Using this option, programs that

read data base or spreadsheet files and

then write the values in the format to be

picked up by the EXSYS knowledge base

can be called from EXSYS.

The one major limitation of both these

procedures for interfacing with external

data and programs is that there is not yet a

way for EXSYS to pass data to the exter

nal program. However, plans exist to

update this in the future, and it appears

that this program, which was quite rudi

mentary when first released, will continue

to add the capabilities that make it an

increasingly attractive option for many

applications.

EXSYS already is being applied to a

number of interesting uses. It is being

used by the U.S. Dept. of Agriculture to

aid farmers in deciding when and how

much to irrigate crops, by a railroad com

pany to rapidly troubleshoot equipment

malfunctions automatically, and by the

U.S. Dept. of Energy to aid indecisions

about security classification of

information. W\

Expert Systems products

and manufacturers

Expert Choice —S495

Decision Support Software Inc.

1300 Vincent Place

McLean, Va. 22101

(703) 442-7900

(800) 368-2022 (orders only)

EXSYS-S295

EXSYS Inc.

P.O. Box 75158

Contract Station 14

Albuquerque, N.M. 87194

(505) 836-6676

Expert Ease (v 1.1) —$475

Expert Systems Inc.

868 West End Ave., Ste. 3A

New York, N.Y. 10025

[212)662-7206

KDS—S795 (development system)

KDS Corp.

934 Hunter Rd.

Wilmette, 111.60091

(312)251-2621

Insight Knowledge System (v 1.2) —S95

Level Five Research Inc.

4980 South A-1-A

Melbourne Beach, Fla. 32951

(305) 729-9046

Lightyear—S495

Lightyear Inc.

1333 Lawrence Expwy., Bldg. 210

Santa Clara, Calif. 95051

(408)985-8811

Expert-2-SlOO

Mountain View Press Inc.

P.O. Box 4656

Mountain View, Calif. 94040

(415)961-4103

APES-S395

Programming Logic Systems

31 Crescent Dr.

Milford, Conn. 06460

(203) 877-7988

ACTIVE TRACE

"Software that lives up to

its promises. When a Basic
program doesn't work the way you

want it to, this package... will help

you track the problem down...

Scope is a tool for the beginning,

advanced, or professional program

mer, and it begins where the cross

reference maps leave off."

Howard Glosser, Softalk for

the IBM Personal Computer

July '84, pp 120-121

"Extremely useful program...

Anyone doing much programming

in Basic should appreciate Active

Trace a lot."

Jerry Pournelle, Byte Magazine

April '83, p 234

"A marvelous Basic programming

aid.. .It's just amazing to watch a

program you wrote run under Scope,

and debugging becomes if not trivial,

then at least doable"

Thomas Bonoma, Microcomputing,

Dec. '83, p 22

".. .a really neat utility...

designed to untangle even the

most convoluted Basic

program... .The documentation is

almost worth the price of the

package."

Susan Glinert-Cole, Creative

Computing, July '84, p 210

Active Trace will lead you through your

program letting you know variable values

(all variables or just those you specify)

as they change. Your program's internal

activity is presented on your screen, or

printer, or it can be saved on disk. It's

simple, effective and works with the

BASIC you already own.

Active Trace 579.95
includes Scope, XREF mapping and documentation

Active Trace is available lor most MS-DOS and CPM
Z.Z systems and supports the special features of

Brand specific versions ot Microsoft Basic such as

Baslca on the IBM-PC.

WARECO
ctive Software

P.O. Box 695 Gualala, CA 95445

(707) 884-4019

800-358-9120{US) 800-862-4948(CAj

Active trace. Active sollware. ana Scope are trademarks o!

AWARECQ-CPM Is a UaOemarh ot Digiial Research—MS-DOS

ana Microsoti are trademarks of Microsoft Corporation—IBM-

PC is a trademark ot IBM Corp

4

CIRCLE 5 ON READER SERVICE CARD

83

Microprocessor programming made simple.

'"Keep it simple" was the principle

of the 14th Century English philos

opher William of Occam and it has

even more validity today. Faced with

the problems of sophisticated

computer systems, designers have

found that ever more complex pro

gramming languages are further

complicating theirtasks. Until now.

Occam. Created for system

design and implementation.
When we started designing our

new VLSI family of 10-M1P trans

puters, we built on William's simple

philosophy. To take advantage of

the possibilities opened up by the

transputer, we needed to create a

language capable of properly ad

dressing parallelism and multi

processor systems.

With the ability to describe con

currency {whether timeshared or

real) and to handle message-

passing at the lowest level of the

language, all aspects of a system

can be described, designed and

implemented in occam. From in

terrupt handling through signal

processing to screen editors to

artificial intelligence. And on.

But occam is not limited to our

transputer family. It provides an

efficient, responsive implementa

tion language for systems built

on today's microprocessors. It also

opens up future possibilities with

its performance-enhancing

multiprocessor capabilities. And

INMOS now offers a product to let

you exploit occam"s total capability

in your system.

Simplify your job with the

Occam Programming System.

The Occam Programming System

(OPS) gives you the tools for com

plete VAX/VMS software develop

ment. This package includes an

integrated editor/checker, an

optimizing VAX compiler and full

documentation. This gives you a

supportive environment for the

development of occam programs

for execution on the VAX. Cross-

compilers for 68000 and 8086-based

systems will also be available.

What's more, the occam programs

developed and proven on the OPS

will give you a head start for work

with the 1NM0S transputer. Exten

sions to the OPS will be available

which will allow occam programs

to run on the transputer.

And if you have a requirement

to program the transputer in other

popular high-level languages, other

extensions will include compilers

for C, Fortran, and Pascal.

Get started today.

Contact us for our information

pack on occam. the Occam Program

ming System and the transputer.

You'll be surprised how simple

your life can be.

For quick response, call us at

g (303) 630-4000 or write:

| Occam, P.O. Box 16000,

| Colorado Springs, CO 80935.

inmos.Wand occam are trademarks of ttie
nmos Croup of Companies

TK>S

CIRCLE 32 ON READER SERVICE CARD

84 COMPUTER LANGUAGE ■ JULY 1985

SOFTWARE REVIEW

L
ISP lives on. Most

of the languages

developed in the

late 1950s and early 1960s have long since

fallen by the wayside (FORTRAN is one

great exception). But LISP continues to

survive and even grow in strength and

capabilities, and the recent swell of inter

est in artificial intelligence-based applica

tions has not diminished this growth. In

fact, AI has become primarily responsible

for LISP's continued existence.

LISP is not the sort of thing that readily

lends itself to a comparative style of

review. By its very nature, LISP is a beast

that seems to defy quick and easy descrip

tions, being as much a mind-set as a lan

guage. But how is one to critique the

uniqueness of mind-sets? Granted, the

standard benchmarks can be run. Feature

matrices can be constructed. Commentary

can be written. Yet none of these can fully

convey the feel of these products.

And the feel is what makes the differ

ence. To a large degree, this feel is cre

ated by the environment offered, which is

a result of integrating the editor, inter

preter, debugger, and (in the case of a

few) compiler, plus the style and quality

of the documentation. It is the very seam-

lessness of this integration that imparts a

distinct ambiance nearly impossible to

capture in the nonpoetic prose of a com

parative review.

Each of these products had a different

feel, and it would be difficult to say that

any one was better than the others. But

one attribute shared by all these products

is the sense of satisfaction their authors

must feel in providing realistic, workable,

symbolic programming to the micro envi

ronment. It was a joy to work with these

LISPs and talk to their authors. Heroes

are hard to find.

Test methodologies. There is a danger

in relying too much on the results of

benchmark tests. LISP, unlike C or Pas

cal, is not a language that tells its full

story via execution speed. It should be

emphasized that most LISPs are env iron-

ments for symbolic manipulation and nol

just test beds for number crunching.

The diversity of the dialects encoun

tered in these tests, as well as the sheer

size ofsome of the packages, preclude the

authors from certifying that all efforts

Shopping fora LISP

By Tom Kenyan

were made to optimize the benchmark

code for the particular package tested. My

guess would be that almost all of the

benchmark figures could be improved

upon after some experience with the

package.

All three benchmarks required high

degrees of recursion. This was intentional

because LISP by nature is a highly recur

sive language. Two of the benchmarks are

standard for almost any language: Fac

torial and Fibonacci (Listings 1 and 2).

The third, MYREV/APP (Listing 3), is

specialized for LISP and is a LISP imple

mentation of the standard LISP primative

functions REVERSE and APPEND. This

combined function was intended to give

the symbol-slinging aspect of the lan

guage as hard a workout as possible.

The MS-DOS benchmarks (Table 1)

MS-DOS benchmarks

were conducted on a Leading Edge PC

set with a clock speed of 7.14 MHz. All

of the benchmark figures are in the

format MINUTES:SECONDS.-

HUNDREDTH-SECONDS. Table 2

presents a useful general criteria cross-

reference for each package.

Levien Instrument BYSO LISP

BYSO LISP's young creator, Raphael

Levien, is to be congratulated for this rel

atively fast and complete package. BYSO

is not without its problems but should

overcome these as it matures.

BYSO has the standard complement of

LISP functions but is not too well docu

mented. The writing in the manual is

stilted and, to some extent, incomprehen

sible. The section on the editor still has

me puzzled.

Manufacturer

and product

Levien Instrument

BYSO LISP

ExperTelligence Inc.

ExperUSP

Gold Hill

GCLISP

Integral Quality

IQLISP

Software Toolworks

LISP/80

Norell Data Systems

LISP/88

Microsoft

MuLISP

The Lisp Co.

TLC-LISP (compiled)

The Lisp Co.

TLC-LISP (interpreted)

Northwest Computer Algorithms

UO-LISP (compiled)

Northwest Computer Algorithms

UO-LISP (interpreted)

ProCode International
Waltz LISP

XUSP

Factorial

0.79

3.74

3.11

0.97

6.58

2.26

Fibonacci

9.01

0.32

11.20

16.28

2:23.21

5.31

9.37

23.73

2.81

31.44

13.17

1:46.04

MYREV/APP

2:28.41

—

1:23.26

2:30.88

16:05.48

29.64

56.15

2:45.66

10.37

10:10.02

1:23.26

11:11.32

Table 1.

85

BYSO does not deal well with a color

graphics adapter. Each keystroke gener

ated a burst of color and snow across the

screen. Suspecting that IBM compatibility

problems existed with the Leading Edge

PC the tests were conducted on, I ran

BYSO on an associate's straight IBM sys

tem and encountered the same problem.

BYSO also did not deal well with buggy

code. Rather than trapping errors and

reporting them, BYSO had an annoying

habit of going off into never-never land

and remaining there until the computer

was switched off and back on.

When things were working well (on a

monochrome monitor with perfect code),

BYSO performed admirably. The bench

mark times were quite respectable, as was

the completeness of the implementation.

Unfortunately, BYSO's negatives out

weigh its positives. At $125, BYSO

does not constitute a good buy. The icing

on this none-too-tasty cake is that BYSO is

copy protected, bad news for a language

product. For a few dollars more, one

could purchase Waltz LISP, UO-LISP, or

IQLISP, all of which perform well and are

adequately documented.

Gold Hill Computers GCLISP

GCLISP (Golden Common LISP) is a

subset of what many think will become the

de facto standard LISP dialect—Common

LISP, which is big, full-featured, and

complex. But GCLISP differs from Com

mon LISP in one major respect—scoping.

Common LISP is lexically scoped, while

GCLISP is dynamically scoped. This

presents a major compatibility problem.

Gold Hill claims operational efficiency as

the reason for dynamically scoping

GCLISP. A lexically scoped system would

probably execute at only half the speed.

Gold Hill is foregoing the complete com-

Factorial benchmark

(DEFUN FACT (LAMBDA (X)

(COND

((LT X 2) 1)

(T (* X (FACT (SUB1 X))))))

Invoking statement: (FACT 250)

Listing 1.

Fibonacci benchmark

(DEFUN FIB (LAMBDA (X)

(COND

((LT X 2) 1)

(T (+ (FIB (SUB1 X)) (FIB (- X 2))))))

Invoking statement: (FIB 17)

Listing 2.

patibility of GCLISP with Common LISP

until its compiler becomes available. The

compiler should take care of the speed

issue.

Thorough is the operative word here.

The system requires 512K to run. It has

all of the features one would expect of a

complete LISP system priced at $495.

The documentation consists of Patrick

Henry Winston and Berthold Klaus Paul

Horn's LISP (second edition), Guy

Steele's COMMON LISP language defini

tion manual, and a user's manual. Besides

the LISP interpreter, the system has an

excellent GMACS editor and a first-rate,

computer-based instruction course called

the San Marco LISP Explorer.

The GMACS editor is similar to the

EMACS editor and has some very helpful

features, including a blinking indication

of matching parentheses. Operating the

editor is relatively straightforward. The

only downside to the editor is its frequent

interruption for garbage collection. This

can prove annoying on occasion.

Evaluation of LISP forms can be done

from the editor. This neutralizes the

somewhat irritating necessity of saving

the edited text on a disk file and then re

loading the file into the LISP interpreter

for running. Multiple window buffers can

be viewed and edited simultaneously.

The San Marco LISP Explorer is fun. It

contains a feature called the LISP

Inspector that is nearly undocumented in

the manuals. The LISP Inspector is a

graphics and text showpiece that visually

traces the execution of a LISP program. It

is one of the slickest tools I have ever

seen. The rest of the Explorer is a multi

part tutorial on LISP. It does an excellent

job of adding hands-on support and sim

plifying explanations of topics addressed

in the Winston and Horn text.

The LISP interpreter itself is complete

and stable. It contains a full complement

of list operations, read and splice macros,

recursive and iterative control structures,

and integer and floating point math. The

transcendental math functions have full

MYREV/APP benchmark

(DEFUN MYREV (LAMBDA (X)

(COND

((NULL X) NIL)

(T (APP (MYREV (CDR X)) (LIST (CAR X)))))))

(DEFUN APP (LAMBDA (X Y)

(COND

((NULL X) Y)

(T (APP (MYREV (CDR (MYREV X))) (CONS (CAR (MYREV X)) Y))))))

Invoking statement: (APP '(A B C D E F G) '(ABCDEFG))

Listing 3.

86 COMPUTER LANGUAGE ■ JULY 1985

' Y /\ /\
"Now I program

with Power Windows"
Alan R. Feuer

Vice President, Research and Development

Calalytix Corporation

Author: The C Puzzle Book

CCA EMACS...The Most Pbwerful Editor

Environment Available for Unix and VAX/VMS
"Programming with CCA EMACS, I can look at two

or more files at once in different windows and then

move text between them."

Alan Feuer is just one of many demanding

programmers who have discovered that CCA
EMACS™ makes program editing and system develop

ment much easier and faster. And "power windows"

are only part of the reason Alan Feuer uses CCA

EMACS.. .

Unprecedented power, speed, functionality, extensi

bility, pliability, and consistency across systems and
on any terminal are others. CCA EMACS includes

close to 400 built-in commands which let you do any

job with only a few keystrokes, even the kinds of

things that are difficult or impossible with other edi

tors. And with our full Common Lisp-based extension

language, Elisp™, you can customize CCA EMACS to
meet all your specific program needs.

CCA EMACS has two extensive recovery facilities to

protect against system failures. Supported by a full

online documentation package, including tutorial, the

system can be used by beginners and experts alike.

This complete kit of editing tools runs under Berkeley

Unix™ (4.1BSD and 4.2BSD), Bell Unix (Systems III

and V), Xenix™, and VAX/VMS™.

Binary prices range from $380 to $850 for Unix to

SI900 for VMS.

CCA Uniworks, Inc.
Productivity Tools for Programmers

20 William Street, Wellesley MA 02181

CIRCLE 60 ON READER SERVICE CARD

For more information or to place an order

call our customer representatives at

800-222-0214
in MA (617) 235-2600

or mail this request form today.

Please send me information on:
D CCA EMACS □ The Safe C Development Tools
G AI Development Tools □ Your complete line of state-of-

-the-art programming tools

LJ Please send license forms

Name

Title

Company

Address .

City, State. Zip

Phone () „

CCA UNIWORKS, INC.

20 William Street Wellesley, MA 02181

ZJ A Crowntek Company

Unix. VAX and VMS and Xenix are trademarks of Bell Laboratories. Digital C17B5
Equipment Corporation, and Microsoft Corporation, respectively. Safe C is a

trademark ol Calalylix Corporation. CCA EMACS and Elisp are trademarks of

CCA Uniworks. Inc.

87

8087 support (in fact, most of them

require the presence of an 8087). Only

single-dimensioned arrays arc supported.

Among the more advanced features are

closures, package support, windowing

and I/O streams, and full use of optional

and rest parameters. The debug package

is quite complete and has the usual com

plement of trace, break, and single-

stepping functions. The San Marco LISP

Inspector is also available for debugging.

All in all, this is a very complete pack

age, with features not found in any of the

other packages. I have only one real crit

icism of GCLISP—it is copy protected.

Integral Quality IQLISP

Integral Quality"s IQLISP is like a tank. It

might not be the fastest thing on the road,

but it is solid, dependable, full of features,

and gets the job done in a no-nonsense

fashion. It also has its fair share of

chrome and flash. But unlike a tank,

IQLISP is reasonably priced. It is a com

mercial grade system. In fact, several of

the new Texas Instruments AI products

for the TI Professional were written with

IQLISP. This should give you some indi

cation of the stability and maturity of this

product.

The IQLISP package contains an inter

preter, debugger, structure editor, and

numerous development utilities. At this

time it has no compiler, but Integral Qual

ity is promising a compiler sometime in

the not too distant future.

The IQLISP debugger and error mon

itor are the best of all the packages that

were tested. The development environ

ment contains a set of functions to facili

tate the inspection of the stack after an

error has occurred. Additionally, the

monitor allows the programmer to restart

computation from any of the suspended

functions. A nicely laid out stack control

window is presented whenever the error

monitor is invoked. A lucid English error

message appears, along with the expres

sion that caused the error. Ti.e user may

then use the cursor control keys to climb

up and down the stack and modify the

offending expressions or values. Very
slick.

This system also provides a package

General information

It

fl

Levien Instrument

BYSO LISP

ExperTelligence Inc.

ExperLISP

Gold Hill

GCLISP

Integral Quality

IQLISP

Software Toolworks

LISP/80

Norell Data Systems

LISP/88

Microsoft

MuLISP

The Lisp Co.

TLC-LISP

Northwest Computer

Algorithms

UO-LISP

ProCode

International

Waltz LISP

XLISP

1. See IEEE standard.

FS int no

FS int,real —'

FS int,real yes

struc int,real yes

Struc int no

FS inf/int no

FS int,real yes

multi no no yes no no no no FE S no yes no

multi yes yes yes yes yes yes yes FE RS yes yes yes

single yes yes yes no yes no yes FLSR RS yes yes yes

multi yes yes yes no yes yes yes FLSR RS yes yes no

no no no yes no no yes no FE S no yes no

no yes no yes pseudo no yes yes FLSR RS yes yes no

single yes yes yes yes yes no yes FLSR RS yes yes yes

FS inf/int no single yes yes yes yes no yes yes FLSR RS yes yes in source

FS inf/int no

no int no

FS = Full screen.

struc = Structure.

inf/int = Infinite precision integers.

FE = FEXPR EXPR.

Table 2.

single no yes yes no no yes yes FLSR RS + yes yes no

multi yes yes yes no no C source yes FE S no yes yes

FLSR = FEXPR LEXPR subroutine.

S = Sequential.

RS = Random/sequential.

RS+ = Random/sequential with additional types to find.

88 COMPUTER LANGUAGE ■ JULY 1985

system, pretty printer, windows,

graphics, floating point math with 8087

support, multidimensional arrays, read

and splice macros, and a good assembly

language interface. File control is well

implemented, as is a first-rate DOS

interface.

Suspended environments can be saved

and restored with IQLISP. Garbage col

lection is relatively fast and unobtrusive.

Oblist control is extensive. The

DEVELOP. SYS package contains pack

aging commands and a full complement of

structured programming functions. Using

the structured commands can help ease

the transition from a standard algebraic-

type language to LISP. It is a big plus for

this package.

Documentation for IQLISP generally is

good, although the manual could do with

more examples. Overall, this is one fine

package.

Software Toolworks LISP/80

Norell Data Systems LISP/88

Software Toolworks1 LISP/80 and Norell

Data Systems' LISP/88 seem to be the

same package in their MS-DOS incar

nations. What is said here applies to both

interpreters. LISP/80 is friendly and slow

compared to other implementations. The

price and features make this an ideal LISP

for someone who wants to learn the

language.

Walt Bilofsky, the author of LISP/80,

says that some of his customers find it

quite adequate for serious applications as

well, but he does not make claims nor try

to sell it for that sort of use. LISP/80 and

LISP/88 are patterned after the INTER-

LISP dialect of LISP and are integer-only

systems.

For LISPs in this price range (S39.95).

the packages are feature-rich. In addition

to the interpreter, LISP/80 and LISP/88

contain a structure editor, pretty printer,

several example programs (including a

version of the ELIZA program), and a

fairly complete manual.

The manuals are divided into two parts:

a humorously written tutorial and a lan

guage reference. The useful tracc/break-

type debuggers feature a backtrace func

tion. LISP/80 and LISP/88 are small

LISPs and spend a lot of time doing gar

bage collections. Use of available space

can be optimized by reserving list cells

and stack space when invoking the

interpreter.

Assembly language subroutines can

also be written and interfaced. LISP/80

and LISP/88 are written in C/80 and use

thai language's subroutine calling con

ventions. This procedure is quile straight

forward and is well documented in the

manual.

Microsoft MuLISP

The Microsoft marketing boys are at it

aaain. The front cover of the MuLISP

binder calls it an artificial intelligence

development system. This almost leads

one to suspect that next they'll be bun

dling an editor and macro assembler

together to sell as an integrated spread

sheet development system.

MuLISP was one of the first micro

computer implementations of LISP. It was

developed by Al Rich, David Stoutmeyer,

and Roy Feidman of the Soft Warehouse.

What they designed was a high-perfor

mance, general purpose LISP program

ming system that is very good and very

fast.

The MuLISP package is also very com

plete. It contains an interpreter, a super

editor called MuSTAR. a complete

computer-based tutorial, and a competent

debugger. In addition, it contains a num

ber of compatibility packages that allow it

to function like INTERL1SP and MAC

LISP. The package is rounded out by a

number of good demonstration programs.

MuLISP is quite compact. The MS-

DOS version can run (albeit not too effi

ciently) in as little as 64K. The MuLISP

system itself is a combination pseudocode

compiler and interpreter. It is very fast.

The speed, however, comes at a cost.

Error trapping is kept at a minimum. The

pointer system is a closed pointer uni

verse, which prevents the implementation

of closures. But these are minor problems

and do not impact the overall quality of

the package.

MuLISP has a full complement of the

things that define a good LISP package:

sequential and random access I/O, I/O

streams, highly efficient string functions,

infinite precision integer arithmetic (no

floating point support, however), read and

splice macros, and a table-driven scanner.

A graphics support package is also

included. MuLISP does not support

arrays or a package system.

The MuSTAR editor features a console

customization function for adaptation to

almost any computer. The editor allows

the editing of functions, variables, and

property lists. Evaluation of the LISP

form from within the editor also is

provided.

The Lisp Company TLC-L1SP

TLC-LISP. put out by The Lisp Company,

is one of the more complete packages in

this group and features one of the nicest

documentation packages. It isn't often

that a manual is written with such style

and elegance that it can be readjust for

reading's sake. And the LISP tutorial por

tion of the manual compares favorably

with many of the LISP texts I have read in

[he past.

TLC-LISP is sleek and elegant. The

interpreter and compiler fulfill the prom

ise of the manual. This package is one of a

handful of LISPs that include a full class

system, and the class system implemented

here is very LISP-machine-like in nature.

COMPLETE. Over 300 tested

and well documented func

tions. All features of the PC
&AT are at your finger tips.

ADVANCED. Features like

windows, data entry fields,

switching displays, and batch

file execution are supported.

GRAPHICS. A complete set

of fast business graphics

functions. Our low level

graphics routines are the

fastest in the business.

SOURCE. All source code is

included. 95% of the library

is written in C. Only func

tions demanding fast execu

tion speed are in Assembler.

COMPATIBLE. With Lattice,

MicrosoftU.O), CI-C86,
Aztec, DeSmet, Wizard, and

Mark Williams. All memory

models are supported.

MUCH MORE. Dozens of

string functions, the best

time & date math and for
matting, DOS directory and

file mgmt., keyboard control,
polled async communications,

and more. NO ROYALTIES.

We SUPPORT what we sell.

C UTILITY LIBRARY - $185

COMPILERS: Lattice $349,
CI-C86 $329, Mark Williams

$449. Save $40-$50 with

compiler & library package.

Specify compiler and version

number when ordering. Add $4 for

UPS or $7 for UPS 2-day shipping.

NJ residents add 6% sales tax.

VISA, MC, Chks & qualified PO's.

Essential Software, Inc.

P O. Box 1003

Maplewood, New Jersey 07040

914/762-6605

CIRCLE 33 ON READER SERVICE CARD

89

SOFTWARE

DEVELOPERS!

V-FILE

THE VIRTUAL MEMORY

FILE MANAGER

Let V-FILE save precious development

time & cost as you create efficient appli

cations with the povverof VIRTUAL MEMORY

DON'T RE-INVENT THE WHEEL

Why spend weeks or months coding and

debugging file and memory management

systems when you can order V-FILE today.

V-FILE is a library that you can link with

your code to provide sophisticated virtual

file and memory management — allowing

you to concentrate on developing your

application.

VIRTUAL DATA

OBJECTS SUPPORTED!

Data is referenced by using VIRTUAL

MEMORY DATA HANDLES. Your code

doesn't need to know whether the data

is actually on disk or in RAM, Swapping

between disk and RAM and updating files

on disk ts handled automatically and trans-

parenrjyl Complex VIRTUAL DATA

STRUCTURES can be created by linking

with data handles instead of pointers.

CHECK THESE FEATURES!

Multiple, independent swap buffers

Multiple files per swap buffer

Highly efficient swap algorithm

Automatic file updating

Data prefetching supported

Data may be locked in memory

Memory buffers may be flushed

Makes full use of extended memory on

IBM PC/AT

SOURCE CODE AVAILABLE

NO ROYALTIES REQUIRED

Supports Dos 2.00+ with

Lattice & Microsoft C compilers

Supports Microsoft windows

$299

FILE

TM

Contact:

MindBank. Inc

4620 Heniy Sireet

Pittsburgh. PA 15213

■112/683-9800

VISA/MASTER CARD ACCEPTED

CIRCLE 63 ON READER SERVICE CARD

90 COMPUTER LANGUAGE ■ JULY 1<?85

It supports separate name spaces in a

monolithic address space. The author says

this is in anticipation of very large address

spaces (and therefore very large projects)

that will be available in the near future.

This technique will be of substantial use

as the size and number of embedded LISP

applications expand. TLC-LISP contains

the full complement of class operators

CL4SS, INSTANCE, and INHERITANCE.

Like IQL1SP. TLC-LISP includes many

structured forms of iterations: CASE and

C47'C//-77/tfOH'pairs, and DO. The

addition of these explicit control struc

tures to the implicit control (call-by-vatue

and recursion) of LISP provides a very

powerful set of control tools.

TLC-LISP's interpreter is quite slow,

but the compiler increases efficiency

fourfold or better. For instance, the

MYREV/APP benchmark required nearly

4 minto finish running interpretively.

But after compiling, the system executed

in just over 50 sec. The debug package

allows tracing compiled functions.

There is debate as to whether floating

point math is necessary for a symbolic

language. I. for one. use LISP for the

development of vision and imaging sys

tems. Convolution would be impossible

without it. TLC-LISP supports floating

point math and the 8087 chip.

Other features worth noting arc full

graphics, turtle graphics, a DOS inter

face, an autoloader, I/O streams, a full

screen editor, anda library of IBM PC

specific features. Overall, this was one of

the best packages tested and is highly

recommended.

Northwest Computer Algorithms

UO-LISP

Northwest Computer Algorithms' UO-

LISP was a surprise. After seeing the ads

for the package. I was anticipating a

stripped-down learning system similar to

LISP/80. Wrong. The UO-LISP develop

ment system is full and complete. It is also

unbelievably fast.

The compiler version for MS-DOS is

an extended version of UO-LISP 1.16a

(the CP/M version). The interpreter is rel

atively slow. Once compiled, however,

UO-LISP turned in the fastest speeds of

any of the LISPs tested. The compiler,

incidentally, can be toggled to produce a

complete assembly code listing that can

then be further optimized by the

programmer.

The package is feature-rich and worked

in a predictable and reliable fashion. The

only glitch occurred when loading a

buggy program from a disk. This caused

the cvaiuator to stick in a loop that neither

Control-C nor Control-ALT-delete could

terminate. The machine had to be

switched off and then back on to regain

control.

Calling UO-LISP complete may be a bit

of an understatement. Besides the inter

preter and compiler. UO-LISP contains a

complete debugging (trace) package and

an execution profiler. Utility packages

include three editors —structure, charac

ter, and full screen—an RLISP dialect

compatibility package, the LISPTEX text

formatter, a BIGNUM and FIXNUM sys

tem for handling large integers and fixed

point numbers, sort/merge, two printing

systems (pretty printer and terse printer),

and one of the better screen and graphics
driver packages I've seen. One ofmy

favorite features was a history-saving

read loop that allowed me to play back a

LISP session. PC-DOS interface routines

also arc included.

Documentation is copious. The manual

is nearly 400 pages long. It is clearly writ

ten and contains hundreds of examples. At

S150. this is certainly a bargain.

ProCode International Waltz LISP

Waltz LISP, by ProCode International,

has been a long-time favorite of the CP/M

crowd and deservedly so. It occupies less

than 30K of RAM. It provides an excep

tionally efficient and friendly working

environment by virtue of the fact that the

debugger and error-handling routines

remain on-line (in RAM) at all times

rather than relying on overlays.

It has the fastest and fanciest file access

system of the LISPs tested (this is where

the benchmarks can lead one astray—if

any of the benchmarks were to test ran

dom access file handling. Waltz LISP

would have left the others in the dust).

The elegance of the file handler allows for

the near instantaneous access of any byte

in the file. This enables easy program

ming of virtual function storage and. to a

great extent, entire virtual programs.

Waltz LISP does not limit the user to the

number of open files dictated by the

FILES = NNdeclaration in the CON

FIG.SYS file. Waltz creates its own han

dles and provides for open file manipu

lation up to the available memory limit.

Waltz LISP fully supports the MS-DOS

2.x file system, including the sub

directory structure.

The Waltz LISP package contains a

WordStar-like lull screen editor that

allows editing files of almost any size

from within the LISP environment. In

addition. ProCode plans to add another

RAM resident editor in the near future.

As with most of the better LISPs. Waltz

LISP includes the standard suite of struc

tured programming control functions (do,

let, catch, etc.). Large integers with

selectable radix are supported up to 611

digits. Floating points arc not supported.

The usual complement of mappers, pretty

printers. I/O streams, and sort/merge are

included.

The documentation for this product,

FOR THE SERIOUS KAYPRO® USER

THE DISKIT

SERIES OF

HARD DISK

DRIVES

now

with

ZCPR3 by Echelon, Inc.
Now you can add from 5 to 40 Megabytes of fast-access Winchester

storage to your KAYPRO 2, 4, or 10. The DISKIT is only 4 inches high;
5.7 if you get the two drive model with the removable 5 or 10 Mb.
cartridge, and weighs less than 10 pounds. Easily disconnect DISKIT
from the computer whenever you want, and if more capacity is required,

just swap your drive for a larger model.

Our DISKIT Model 10 has 10.8 Megabytes of formatted capacity. . . 20%
more than a Kaypro 10, and runs about twice as fast. Installs in minuies.

Call SPC now and ask for more information. Quantity and prepayment

discounts are available.

SYSTEMS PERIPHERALS CONSULTANTS
9747 Business Park Avenue

San Diego, CA 92131

(619) 693-8611

CIRCLE 38 ON READER SERVICE CARD

THE WORLD'S FASTEST

MOST POWERFUL 8080

RELOCATING MACRO

ASSEMBLER
ONLY

AT THIS PRICE, SHOULD YOU BE WASTING

YOUR TIME USING SOMETHING ELSE?

This is what they said about

Z80ASM. our Z80 assembler. Now

the same features and performance

are available in our Intel Mnemonic

product. SLRMAC is compatible

with M80 in .8080 mode, with many

extensions. Too many features to

list here.

To order or to find out more

about our complete family of

development tools, call or write:

_S~LR—Systems—

1622 N. Main St., Butler, PA 16001

(800) 833-3061, (412) 282-0864

Telex 559215 SLR SYS

",. a breath of fresh air .."

Computer Language, Feb. 85

■'.. in two words, I'd say speed &

flexibility".

Edward Joyce, Nov. 84

Microcomputing

C.O.D., Check or

Money Order Accepted.

NORMALIZED PERFORMANCE

LOT

.7 5--

,50--

.2 5--

Assemble

ZCPR3

to create a

HEX file.

E £

Add S3 shipping.

Z80 CP/M compatibility required.

1:10 4:24 5:19

2Mhz

8"SS/SD

CIRCLE 28 ON READER SERVICE CARD

YOU NEED
A GOOD^
LIBRARYm

POWERPACKS

COMPLETE SOURCES
NO ROYALTIES

COMPREHENSIVE C Power Packs

include over 1000 functions which
provide an integrated environment

for developing your applications ef

ficiently. "This is a beautifully doc
umented, incredibly comprehensive

set of C Function Libraries."
- Dr. Dobb's Journal, July 1984

USEFUL "...can be used as an ex

cellent learning tool for beginning C

Programmers..."
- PC User's Group of Colorado. Jan. 1985

FLEXIBLE Most Compilers and all
Memory Models supported.

RECOMMENDED "I have no hesita

tion in recommending it to any pro

grammer interested in producing
more applications code, using more

of the PC capabilities, in much less

time." — Microsystems, Oct. 1984

■ PACK 1: Building Blocks I $149
DOS, Keyboard, Rle,

Printer, Video, Async

■ PACK 2: Database $399
B-Tree, Virtual Memory, -

Lists, Variable Records

g PACK 3: Communications $149
Smartmodem™, Xon/Xoff,
X-Modem, Modem-7

g PACK 4: Building Blocks II $149

Dates, Textwindows, Menus.
Data Compression, Graphics

PACK 5: Mathematics I

Log, Trig, Random,

Std Deviation

$99

$99■ PACK 6: Utilities I

(EXE files)

Arc, Diff, Replace, Scan, Wipe

Master CarcWisa. S7 Shipping. Mass. Sales Tax 5%

ASK FOR FREE DEMO DISKETTE

novun
ORGflMJtt
inc.

SOFTWflW
Howzons
inc.

165 Bedford St., Burlington, MA01803

(617)273-1711

CIRCLE 25 ON READER SERVICE CARD

91

over 300 pages, is quite good. It is written

with a sensitivity for the beginner but is

not short on the nuts and bolts information

required by the experienced LISP

practitioner.

XLISP

XLISP is a public domain LISP inter

preter. David BetZ, the author, provides

both an executable file and the source for

[he interpreter in C. The documentation is

sketchy but provides the necessary syn

tactical information for the experienced

LISP programmer.

What is surprising about XLISP is its

completeness. It incorporates a full

object-oriented programming system.

CLASS, INSTANCE, andINHERITANCE

are fully supported. The usual list-

handling and control forms also are

included.

The operation of XLISP was entirely

bug free as far as I could tell. The version

tested, 1.4, is sufficiently mature to

ensure good operation.

Written in C, the language is easily

extensible. Numerous bulletin boards

contain code for the addition of floating

points, graphics, and communications to

the package. I have talked to the author on

several occasions, and he fully supports

the idea of additions to the package, but

he requests that those making changes for

ward a copy of the extensions to him. He

is trying to work as a clearinghouse for

the XLISP language and appreciates

knowing what's going on with the

language.

For those who want to get their feet wet

with symbolic programming. I can think

of no better way than with XLISP and a

good introductory text to LISP. H

For the Macintosh: ExperTelligence ExperLISP

ExperLISP is a result of Exper

Telligence Inc.'s historical sup

port for artificial intelligence. The

company claims it is the first compiled

implementation but Table 2 shows oth

erwise. ExperTelligcnce plans a future

release that will correct some of the

bugs reported to date.

While the Mac does not have color

graphics at this time, you are able to

specify five shades between black and

white. The sample graphics program

offers two-dimensional, three-

dimensional, and spherical bunny

graphics like Logo's. A complex fig

ure was drawn in three windows simul

taneously. It was quite impressive.

Programming errors are indicated

and the next release promises to pin

point the variables within the specified

line even better. A listener window-

keeps track of all interactive code and

the second window holds the program

in an edit buffer. It is very easy to click

back and forth between the two win

dows to compile your code, either

selected sections or the entire buffer.

Compiled code is not saved in the ini

tial release. A file compiler will be

available in the near future, as well as

the ability to save a snapshot of

memory. ExperLISP is lexically

scoped, so symbols are bound within

the scope of their containing body.

The benchmark times are

impressive and the number of func

tions and commands (403 in version

1.0) extensive. The cost is $1.23 per

function. If this is within your budget,

then 1 highly recommend this product.

It has the added advantage of calling

assembly language routines directly.

Numbers may be integer or real (float

ing point), and 80-bit precision is

offered with the Apple SANE pack

age, IEEE standard. Garbage col

lection uses the mark and sweep

method. A future release will be able

to control this space.

Also provided w ith this product is

An ExperLISP Reference Guide, 189

pages; David S. Touretzky's LISP: A

Gentle Introduction to Symbolic Com

putation , 384 pages; two disks; and

four pages of notes to ensure com

patibility between ExperLISP and

Tourctzky"s LISP. You can have it

either way.

ExperLISP has three sample pro

grams: search, a case-sensitive search:

graphics: and Quicksort, a numerical

sort. Because LISP has several dia

lects, the guide with each function

indicates whether it is primitive, what

type it is. the version it will be imple

mented in (1.0 or 1.1), and if it came

from Common LISP. ZetaLISP, or the

Macintosh Toolbox (ROM) or is

unique to ExperLISP.

As ExperLISP is under active devel

opment, those who support the release

of 1.0 will receive updates to release

2.0 at a nominal cost (disk plus ship

ping). The current release makes

extensive internal use of the class sys

tem. Later you will be able to define

your own classes and methods. Sec

Patrick Henry Winston and Berthold

Klaus Paul Horn's LISP {second edi

tion) for object-oriented program

ming. Apple is introducing Object

Pascal, which will include classes and

objects to handle the user interface

portions of a Macintosh application.

This will be called MacApp. A version

will be in release 2.0 of MacApp in

LISP. See also K.J. Schmucker's

Object-Oriented Programming on Mac

intosh and Lisa.

Overall, this ExperLISP package is

excellent, and the future offers many

new advancements to drive LISP to

even greater heights.

ExperLISP-$495

ExperTelligence Inc.

559 Son Ysidro Rd.

Santa Barbara, Calif. 93108

(805} 969-7874

By Robert Ashworth

LISP products and

manufacturers

BY5OLISP-S125

Levien Instrument

Box 31

McDowell, Va. 24458

(703) 396-3345

GCLISP-S495

Gold Hill Computers

163 Harvard St.

Cambridge, Mass. 021 39

(617)492-2071

IQ-LISP-S175

Integral Quality Inc.

P.O. Box 31970

Seattle, Wash.

(206)527-2918

LISP/80-S39.95

Software Toolworks

15233 Ventura Blvd., Ste. 1118

Sherman Oaks, Calif. 91403

(818)986-4885

USP/88-S49.95

Norell Data Systems

P.O. Box 70127

3400 Wilshire Blvd.

Los Angeles, Calif. 90010

(213)748-5978

MuLISP-$300(lBM) $250(CP/MJ

Microsoft

10700 Northup Way

Box 97200

Bellevue, Wash. 98009

(800) 426-9400

TLC-LISP-S250

The Lisp Co.

P.O. Box 487

Redwood Estates, Calif. 95044

(408) 354-3668

UO-LISP-S150

Northwest Computer Algorithms

P.O. Box 90995

Long Beach, Calif. 90809

(213)426-1893

Waltz LISP-SI 69 (IBM and CP/M)

ProCode International

15930 SW Colony PI.

Portland, Ore. 97224

(503) 684-3000

XLISP-S7 (add S3 for overseas)

PC/BLUE Users Group

The New York Amateur Computer Club Inc.

Box 106

Church St. Station

New York, N.Y. 10008

92 COMPUTER LANGUAGES JULY 1985

mbp COBOL

i 4* for your IBM PC

The new
standard for
convenience.
Now, the mbp COBOL Compiler offers

unrivaled convenience to go with its

unmatched performance.

Here are the convenience

features you've wished for:

l) an enhanced Screen

Management System with pro

gram-controlled video attributes

and color: 2) support for PATH &

sub-directories; 3) DOS command

execution from within a COBOL

program; 4) permanent" DEFAULT

modification.

The new mbp Compiler 1ms them

all! And they're exclusives: you get them only with mbp.

Plus, it's 4 times faster.

Because the mbp COBOL Compiler generates native machine

language object code, it executes programs at least 4 times faster

(see chart). Now we've made

that performance even

more convenient to use.

mbp COBOLJ1000
Please send complete mbp COBOL information

to:

GIBSON MIX Benchmark Results

Calculated S-Profile

(Representative COBOL statement ?nix)

Execution time ratio

mbp*

COBOL

1.00

Level II" R-M* Microsoft*

COBOL COBOL COBOL

4.08 5.98 6.18

The complete COBOL.

An Interactive Sym

bolic Debug Package

included standard; Multi-

keyed ISAM structure; SORT

& Q IAI N;

to ANSI 74 Level II; IBM/PC-AT and TI Professional compatibility:

with mbp, you get it all. Optional: Novell NetWare interface.

mbp COBOL: the choice ofprofessionals.

It's no surprise more and more companies like Bechtel, Bank

of America, Chase, Citicorp. Connecticut Mutual, Hughes Aircraft,

McDonnell-Douglass, and Price-Waterhouse choose mbp COBOL.

Make ityour choice, too. Just send the coupon, or call, for

complete information. Today.

CITVSTATE/Z1P.

mbp Software & Systems Technology, Inc

7700 Bdgewater Drive, Suite 360

Oakland, CA 94621

Phone 415/632-1555

CIRCLE 53 ON READER SERVICE CARD

93

C Programmers:
Consider 104 Ways —
To Be More Productive

If you find and choose the right development soft

ware, you can: cut development effort, make imprac

tical projects feasible, and eliminate unproductive,
frustrating aspects of programming.

Confused? We'll help you sort thru the huge number

of alternatives. Call for comparisons or information.

Learn C Programming

Only $95

"Introducing C" Interpreter

Compute^ Innovations has done

if again! This interactive implemen

tation is combined with o full

screen editor and a thorough, self-

paced manual

You can develop programs fas

ter by getting immediate feed

back Programs will start instantly

upon your command There is no

need to wait for "compile and

link."

Introducing C includes demo

programs, powerful C language

interpreter, complete C function

library, full screen editor, color

graphics, and C language com-

potibility PCDOS S95

Simplify

Screen Management
Windows tor C

Keep your software up fo dote

with the latest screen manage

ment feafures.

• Pop up menus and help files

• Instant screen changes

• Multiple windows

• Complete color control

Windows for C offers all ot these

plus much more in an integrated,

compact, easy-to-use library of ob

ject code functions. Thorough,

reference manual Support for all

memory models of popular C

compilers New version 31 offers

enhanced portability and TopView

compatibility Full source avail

able MSDOS S180

Which Compiler Features Do You Need?
Optimizing C86 Compiler

Over the yeors the Optimizing C86 has evolved to be the most complete

set of C compiler tools. It includes utilities, a rich library, and thorough tech

support In line 8087/287 routines run up to 100 limes faster than the 8086

math package The source code fo all routines is included, so you have

complete control over how they work Thorough ROM support, Intel UDI &

VMS cross versions are available.

More of the features you want include:

• special IBM-PC library • 2 math and 2 I/O libraries

• full memory utilization of the 8086/88/186/286

• compatibility with most commercial libraries

• object and source module librarian MSDOS £339

Get File Access with

TIGHTER Control
db_VISTA Data Management

Full source, no royalties and "normal" indexed file management are

part ot db_V!STA. Get .more for the price of only an ISAM.

You can minimize data stored and access records even faster and

more logically than just using indexes. Example, address and transaction

data should not require redundant storage of customer names or

numbers Use pointers. Related data fields point to other related groups

- the "network model" of data.

Use db^VISTA os a "normal ISAM" or save programming time, access

time and file size. Lattice, C86, Williams, Desmet, Microsoft C.

We carry 27 C Compilers, 4 C Intepreters, 49 Support

Libraries, 5 C source debuggers, and 19 other C Add

ons for programming with MSDOS, Macintosh, or

CP/M - more than 104 products, really. Here are
some of The best products available:

SORT/MERGE Files for

Clean, Fast Maintenance
With OPT-TECH SORT

Performance should not suffer

with DOS or other "free" sorts,

ISAMs alone are slow when 10% or

even less is changed/added.

OPT-TECH includes:

- CALLable and Standalone use

- C, ASM, BAS, PAS, FTN, COBOL

- Variable and fixed length

- 1 to 9 fields to sort/merge

- Autoselect of RAM or disk

- Options: dBASE, BTrieve files

- 1 to 10 files Input

- No sofware max for tt Records

- All common field types

- By pass headers, limit sort

- inploce sort option

- Output = Record or keys

Try what you're using on an XT:

1,000 128 byte records, 10 byte key

in 33 seconds. MSDOS S90

Add Communications

Features to

Your Programs
Greenleat Comm Library

Greenleof now enables you to

communicate with remote systems

or databoses with an asynchronous

communications library for C

Individual transmission ond re

ception ring buffers combine with

on interrupt driven system This

eliminaies the extra function of

separately calling up the com

munications program.

Included are 1 library/object files,

100 functions; 100 page manual,
complete source code, library

tailor-made to suit compiler and

memory, Hayes-compatible

modem commands, and o com

plete sample file transfer program

MSDOS S169

Inventive Programming Becomes Possible

with 300 + ESSENTIAL, tested, fast, routines to Rely On.

C Utilities Library by Essential Software

Recent Enhancements to Graphics, Windows, AT Support

Every application you write is likely to require functions where you feel like

you are "reinventing". Don't. Even if you use only 5% of this library, you will

come out ahead on schedule and cost.

Full business Graphics, Window support, polled Communications, and

Data Entry support have recently been added/upgraded along with more

functions for DOS Interface and AT support. Siring handling, screen control,

"word processor" functions, memory management, directory and path ac

cess, date handling, program chaining, keyboard and printer control are

traditional strengths.

Full source code is included. No royalties are charged to include functions

in your programs. 95% are C for portability and to make it practical for you

to understand or modify them.

Lattice, Microsoft, C86, Mark Williams, Aztec, Desmet and Wizard C are

supported. Specify which you need.

Substantial time, effort, testing and attention has been invested by Essen

tial Software developing, documenting and supporting this comprehensive

library. Make new projects practical and interesting. Use this tested and

reliable library.

Some functions are PC-specific. Most support any MSDOS. S159.

MSDOS. Source S450, Object $275

Call tor details, comparisons, or for our'C Extras Packet" with over 50 pages of information about C support products.

I PROGRAMMER'S SHOP
The programmer's complete source for software, services and answers

128-LC Rockland Street, Hanover, MA 02339 (617) 826-7531 (800) 421-8006

Ask about COO and PO's. All lotmots available. Prices subject to change Names ot products and componles ore generally their trademarks.

CIRCLE 117 ON READER SERVICE CARD

SOFTWARE REVIEW

PC PROLOGS

By Namir Clement Shammas

ROLOGisoneof

the latest arti

ficial intelligence

languages to gain popularity. In this

review we will look at the various PRO

LOG packages thai currently are available

t'nr the IBM PC microcomputer running

under MS-DOS 2.0 or later.

The primary published reference for

PROLOG is Programming in PROLOG by

W.F. Clocksin and C.S. Mellish. pub

lished by Springer-Verlag. This book

defines a core PROLOG. An alternate

PROLOG syntax is found in Micro-

PROLOG, which is implemented by LPA

Micro-PROLOG.

In this review we will look at each

package's extension and how it reflects

the authors' creativity. Several of the

PROLOG implementations reviewed arc

still undergoing changes and enhance

ments. These numerous language exten

sions appear to have created a portability

problem for such systems as the IBM PC.

Four benchmark tests were used in this

comparison:

■ The Sieve of Eratosthenes

■ List reversal

■ Quicksort

■ The Towcrof Hanoi.

The Sieve test returns a list of primes up

to 100. This does not correspond to the

Sieve version used in benchmark tests of

other languages such as BASIC. C, Pas

cal, and Modula-2. The main limitation of

this test is the stack overflow due to exten

sive recursion, which is something PRO

LOG seems to rely on heavily.

The list reversal was a simple test sug

gested by Automata Design Associates.

Quickson and the Tower of Hanoi were

included to check internal speed in more

elaborate schemes. The Tower of Hanoi

reflects the combined speed of internal

processing and screen display.

While there were other, more elaborate

benchmark tests suggested, they used

commands peculiar to some imple

mentations. However, since some of the

PROLOG implementations are still in

their infancy, expect additional develop

ment in this area, particularly more predi

cates and greater speed. So note that the

speed benchmarks presented here are not

the final word!

Table 1 is a comparison table. Table 2

shows the results of the benchmark tests.

Arity/PROLOG

This heavyweight product comes from

Arity Corp.. a subsidiary of Lotus Devel

opment Corp. Two versions are available:

the PROLOG interpreter and the complete

system, which includes a PROLOG com

piler. The implementation revolves

around the Clocksin and Mellish defini

tion, with a few modifications and several

versatile additions.

The Arity/PROLOG interpreter dis

plays the 7- question prompt which makes

it more accessible to answering questions.

To assert any fact from the key board, the

qssertaQ and assertzi) predicates must be

used. The assert0 predicate is not

implemented.

Arity/PROLOG supports all the PRO

LOG data types, including floating point

numbers. Trigonometric and transcen

dental mathematical functions are

offered, as are the AND. OR. NOT. and

shift left and shift right bitwise

operations.

In addition, Arity/PROLOG supports

strings and data base reference numbers.

The latter are eighi-hexadecimal-digit

codes with the tilde symbol to their left,

acting as reference points for the data

base. As with other PROLOG imple

mentations, Arity/PROLOG supports

data classification predicates, including

predicates to indicate if a datum is a vari

able, atom, or integer.

Arity/PROLOG has added predicates to

test for floats, strings, and data base refer

ence numbers. In addition, the general

purpose predicate type(Code,Arg) can be

implemented to identify integers, strings,

floating point reals, and data base refer

ence numbers.

Arity/PROLOG also provides a number

of predicates that perform such string

Benchmark results (sec)

Manufacturer

and product

Arity Corp.

Arity/PROLOG 3.1

Automata Design Associates

ADA PROLOG 133

Chalcedony Software

PROLOG V 1.10

Expert Systems

International

PROLOG-1 2.2

Solution Systems

PROLOG-86 2.00

Logic Programming

Associates

LPA Micro-PROLOG 3.1

Logicware

MPROLOG 1.5

SO = Slack overflow.

IE = Interpreter logical error.

CX = Compulsory (racing.

Table!.

Sieve

16

46

SO,CT

16

8

IE

30

Reverse

list

6

15

CT

4

3

6

8

Quicksort

17

63

CT

15

6

SO

15

Tower of

Hanoi

6

9

CT

29

8

21

22

95

General information

h

ifi

Arity Corp.

Arity/PROLOG 3.1

Automata Design

Associates

ADA PROLOG 1.33

Chalcedony Software

PROLOG V 1.10'

Expert Systems

Inlernational

PROLOG-1 2.2

Expert Systems

International

PROLOG-2

Solution Systems

PROLOG-86 2.00

Logic Programming

Associates

LPA Micro-PROLOG 3.1

Logicware

MPROLOG 1.5

yes

yes

no

no

yes

no

yes

yes

yes

yes

no

yes

yes

yes

yes

no

yes

yes

no

no

yes

yes

no

no

yes

yes

no

no

yes

no

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

3 3

Arity Corp.

Arity/PROLOG 3.1

Aulomato Design

Associates

ADA PROLOG 1.33

Chalcedony Software

PROLOG V 1.10

Expert Systems

International

PROLOG-1 2.2

Expert Systems

International

PROLOG-2

Solution Systems

PROLOG-86 2.00

Logic Programming

Associates

LPA Micro-PROLOG 3.1

Logicware

MPROLOG 1.5

, s

£38 / £ &§£

yes

no

yes

yes

no

no

no

yes

yes

yes

yes

1. PROLOG 5-plus, a large memory model PROLOG, will be released in September.

2. Special version.

Table 2.

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes yes

yes

yes

yes

yes

no

no

yes

no

yes

yes

96 COMPUTER LANGUAGE ■ JULY 1985

Fast compiles, fast code and great diagnostics

make Wizard C unbeatable on MSDOS. Discover

the powers of Wizard C:

ALL UNIX SYSTEM III LANGUAGE FEATURES.

UP TO A MEGABYTE OF CODE OR DATA.

SUPPORT FOR 8087 AND 80186.

FULL LIBRARY SOURCE CODE, OVER 200 FUNCTIONS.

CROSS-FILE CHECKS OF PARAMETER PASSING.

USES MSDOS LINK OR PLINK-86.

CAN CALL OR BE CALLED BY PASCAL ROUTINES.

IN-LINE ASSEMBLY LANGUAGE.

240 PAGE MANUAL WITH INDEX.

NO LICENSE FEE FOR COMPILED PROGRAMS.

The new standard for C Compilers on MSDOS!

Only $450

WSS
For more information call (617) 641-2379

Wizard Systems Software, Inc.

11 Willow C1-, Arlington, MA 02174

Visa/Mastercard accepted

CIRCLE 86 ON READER SERVICE CARD

Now With Windowing!
$49.95 Basic Compiler

MTBA5IC
Features:

Multitasking Windowing

Handles interrupts Interactive

Fast native code Compiles quickly

Floating point No runtime fee

MTBASIC is a true native code compiler. It runs Byte's Sept. '81

sieve in 26 seconds; interpreters take over 1400 seconds! Because

MTBASIC is multitasking, it can run up to 10 Basic routines at the

same time, while displaying ten separate windows. Pop-up/down

menus are a snap to implement.

The MTBASIC package includes all the necessary software to

run in interpreter or compiler mode, an installation program (so

any system can use windowing), three demonstration programs

and a comprehensive manual.

AVAILABLE for CP/M (Z-80), MS-DOS, and PC-DOS systems.

ORDERING: Specify format when ordering. We accept Visa, MC,

checks and COD. Send $49.95 plus S3.50 shipping and handling

($10 overseas) to:

l ■OrlADjno

P.O.Box 2412 Columbia, MD 21045-1412

301/792-8096

c
POWER

C LIBRARIES
C WINDOWS

Best You Can Get!

325 Fully Tested Functions

SIX C LIBRARIES

FUNCTIONS YOU DON'T HAVE BUT NEED!

All Source Code. No royalties.

51 screen hand[in£/£iaphic

functions 549.95

50 cursDr/ktyboard/dal2

inpul functions $39.95

85 superior siring

(unctions $59.95

25 system status t control

functions $2935

72 ulilily/DOS/BIOS/time/

date functions S49.95

42 printer control

functions $29.95

RICHLY COMMENTED
EASY TO LEARN

EASY TO MODIFY

no matter'what else
YOU HAVE
GET THESE!!

ANY3 LJBRVRIES*S69.95
All 6 LIBRARIES $99.95

50 MOST NEEDED FUNCTIONS

S49.95

POWER WINDOWS
PROFESSIONAL WINDOW MANAGEMENT

OVERLAYS, BORDERS,

POPUP MENUS, HELP WINDOWS,

STATUS-LINE, COLOR HIGHLIGHTING,

ANO MORE1II

C WINDOWS: COMPLETE SOURCE CODE S99.95

CIRCLE 78 ON READER SERVICE CARD

ALL LIBRARIES
PLUS

WINDOWS $149.95

€ntelekon
SOFTWARE SYSTEMS

EMTELEKON 12ITS KIMBERLEY

HOUSTON. TX. 77024 (713M6B-4412

VISA»HASTERCARD-CHECK

CIRCLE 50 ON READER SERVICE CARD

97

NGS FORTH

A FAST FORTH,

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER AND

MS-DOS COMPATIBLES.

STANDARD FEATURES

INCLUDE:

•79 STANDARD

•DIRECT I/O ACCESS

•FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

•ENVIRONMENT SAVE
& LOAD

•MULTI-SEGMENTED FOR
LARGE APPLICATIONS

•EXTENDED ADDRESSING

•MEMORY ALLOCATION
CONFIGURABLE ON-LINE

•AUTO LOAD SCREEN BOOT

•LINE & SCREEN EDITORS

•DECOMPILER AND
DEBUGGING AIDS

•8088 ASSEMBLER

•GRAPHICS & SOUND

•NGS ENHANCEMENTS

•DETAILED MANUAL

•INEXPENSIVE UPGRADES

•NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICES START AT $70

NEW<*-HP-150 & HP-110

VERSIONS AVAILABLE

NEXT GENERATION SYSTEMS

P.O.BOX 2987

SANTA CLARA, CA. 95055

(408) 241-5909

manipulation as string search, obtaining

substrings, string length, and concate

nation. Predicates to convert between

strings and other data types are also avail

able, including conversions with terms,

atoms, integers, floating point reals, and

lists. Each predicate is capable of per

forming a two-way transformation,

depending on which argument is

instantiated.

Thirty-two external counters are pro

vided and can be accessed by all parts of a

program at any recursive level. Four

predicates are provided to initialize,

increment, decrement, and recall coun

ters. Other predicates count the number of

atoms in a list, convert from lists to

atoms, and convert from atoms lo lists.

Arity/PROLOG implements versatile

I/O facilities. Thekeyh(Ascii,Soan) predi
cate allows the PROLOG interpreter to

scan any codes generated by pressing any

of the IBM PC keyboard function keys

and cursor control keys on the numeric

hexpad. Combinations of these keys with

the control key and alternate keys arc also

scanned.

There are also predicates to check

screen cursor position and to move the

cursor to a specified location. Screen

brightness can be controlled, and the

screen will display underlined characters,

reverse video and blinking characters, and

blinking underlined and blinking reverse

video characters. Controlling the scroll

ing of a specific screen area is also

possible.

Both sequential and random access files

are supported. Five I/O modes exist:

read, write, append, read-or-write. and

read-or-append. The latter two modes are

involved with random access files. The

SEEK predicate is used to locate informa

tion stored in random access files. Arity/

PROLOG also provides predicates to

redirect I/O and perform bytewise port

I/O.

Accessing the MS-DOS command

interpreter also is possible. This tempo

rarily suspends the action of the PROLOG

interpreter. Typing Exit in MS-DOS takes

you back to PROLOG. A wide variety of

MS-DOS file manipulation from within

Arity/PROLOG can also be performed,

including directory listing; making,

choosing, and removing directories;

deleiing and renaming files; accessing and

setting file attributes; and accessing the

system clock and date.

I was able to run all the benchmark pro

grams with Arity/PROLOG. The inter

preter ran a close third to PROLOG-86

and PROLOG-1's interpreters, and its

Tower of Hanoi screen ouiput speed was

faster than PROLOG- I'-s.

Automata Design Associates

ADA PROLOG

This product comes from Automata

Design Associates. It is available in many

versions, ranging from a low-cost intro

ductory model to a large virtual memory,

system model. The latter incorporates

mass storage devices as memory exten

sions. The language was developed using

C.

ADA PROLOG uses a ?- question

prompt, making the system more acces

sible lo answering questions. To assert

any fact from the keyboard, the assen(),

aSsertaQ, and assertzO predicates must be

used.

This product supports all PROLOG

data types, including floating point num

bers. A special, large memory language

version supports the 8087 chip. Several

mathematical functions are offered,

including transcendental, trigonometric,

and conversion. AND, OR, XOR. and bit

wise negation operations arc also offered.

ADA PROLOG has no built-in editor,

but it offers an £"X£C function that allows

the execution of other programs from

within PROLOG, assuming there is

enough memory. Thus your favorite text

editor can be invoked to change any PRO

LOG program. The reconsult predicate

can be called to update the fact data base

to reflect changes made during the editing

process.

Many new predicates included in

ADA PROLOG perform a variety of

routine tasks, including versatile I/O

operations. ADA PROLOG supports the

MS-DOS 2.0+ directory structure. I/O

redirection, and the predicates to perform

file I/O for atoms, characters, strings, and

numbers.

Formatted floating point output is avail

able using the C language format rule.

The UPDATE function permits updating

of the resident memory data base by stor

ing it on the disk. Six optional I/O modes

are available when files are opened. Both

sequential and random access file I/Os are

supported, including append and update

options.

ADA PROLOG'S modularity is similar

loModula-2's import and export facili

ties. Thus. PROLOG programmers can

divide tasks and create nested libraries

using treelike structured domains. Each

domain can import and export predicates

between niultiplc-subdomains and a

single-parent domain. Like MS-DOS

structured file directories, domains also

can be created, removed, and selected.

Import and export predicates allow the

interaction of domains.

All benchmark tests were run on ADA

PROLOG. The results show the current

implementation to be the slowest of all

those reviewed.

CIRCLE 61 ON READER SERVICE CARD

98

TM

ConIX
NOW ONLY $79.95!

If you think you're missing out on innovative software
developments because nobody is writing for CP/M™-80. take
a look at us. We've adapted UNIX™ features to CP/M like
never before, and with the kind of professional, quality-
controlled product that you deserve. That product is none
other than the critically acclaimed ConIX Operating System.

ConIX can provide any 48K+ CP/M-80 or compatible system
with I/O Redirection and Pipes (uses memory or disk),
perfected User Areas. Command and Overlay Path Searching,
Auto Screen Paging. 8Mb Print Buffering. 22 new SysCalls.
Function Keys. Virtual" disk system. Archiver (saves over
50% disk), extensive command language. 300+ variables. 100+
commands, pull-down menu, and much more! Uses as little as
1/2K RAM! Runs with CP/M for true data and software

compatibility. Installs easily without any system mods!

The ConIX package lists at $165 and has been advertised and
sold internationally to many enthusiastic customers since
October 1983. As a special limited offer, we've lowered the
price of the complete ConIX system by 50% to only $79.95!
Don't miss this opportunity to bring your 8-bit micro back into
the software revolution. Order your copy of ConIX today!

Price includes manual. 8" disk, and user support. 5VT conversions
available. Conlact your local dealer, or buy direct and add shipping;
$4.50 UPS, $10 Canada. $25 overseas. NY residents add sales tax.

Computer Helper Industries Inc.
P.O. Box 680 Parkchester Station. NY 10462
Tel. (212) 652-1786 (for information/orders)

"We're helping your computer work better for you!"

UNIX: ATfcT Bell Labs. CP/Mi Dijital RtMarcti. ConIX: Computer Helper Ind.

*&f :<«£^
♦^s^

9>

«

A*^
7*<f W

OEGISTEREO TWOEMAf*

Of APPLE COMPUTER (NC

CIRCLE 10 ON READER SERVICE CARD CIRCLE 13 ON READER SERVICE CARD

OASYS
TOOLKIT

SNAP-SHOT

C-68000
CROSS AND NATIVE OPTIMIZING COMPILERS

FOR 68000/10 (and 68020 SOON)

OASYS offers a "ONE STOP SHOPPING" service for software developers in need of proven 8-, 16- and 32-bit cross and
native tools for Unix and non-Unix 68000, 8086 and 32000 systems. Our critically acclaimed and widely used 68000 tool kit

offers high quality, reliable, cost-effective tools.

The OASYS 68000 tool kit consists of Green Hills compilers (C, Pascal and FORTRAN), our own M68000 Macro Assembly
Development package, and dozens of other OASYS compatible support tools. Simply stated, we beat the competition on

price, speed and tightness of emitted code.

C-68000/10

• Full K & R with Western Electric and Berkeley

extensions

■ Complete run-time library available as

source. No royalty if passed on.

• Supports DEC & IEEE Floating Point

• Integrated optimizer: 30% tighter code than

Portable C; 4 times faster

• Generates M.I.T. or EXORmacs assembly

source code

• Interfaces to all OASYS tools and Pascal,

FORTRAN and PL/M-68K compilers

• Ideal for cross development of boards with no

OS, a kernel OS (e.g. VRTX, PSOS, MTOS),

or Unix based 68000's

C68K-11/84

68000/10 Assembly package Other tools

• EXORmacs compatibile Macro

Assembler, Linker, Librarian, and

Cross Reference Utility

• Generates S-records and a.o.

• PIC and reentrant code

• Used 2 years in house

• Over 3,000 sold to date

• Runs on VAX, Prime, PDP-11,
68000's, 8086/88 (PC)

• Written entirely in C

Coming soon

• 68020 C and Cross assembler

Symbolic C Source Debugger

68000 Simulator

& Disassembler

C Linecount and Time Profiler
Utility (CLUE™)

LINT for VAX/VMS

Check Out compiler

(SAFE-C™)

Communications tools

OASYS
60 ABERDEEN AVENUE

CAMBRIDGE. MA 02138

(617)491-4180

CIRCLE 70 ON READER SERVICE CARD

99

NEW FEATURES
(Free update for our early customers!)

• Edit & Load multiple memory

resident files.

• Complete 8087 assembler

mnemonics.

• High level 8087 support.

Full range transcendentals
((an, sin, cos. arctan.

logs and exponentials)

Data type conversion and

I/O formatting.

• High level interrupt support.

Execute Forth words from with

in machine code primitives.

• 80186 Assembler extensions for

Tandy 2000, etc.

• Video/Graphics interface for

Data General Desktop Model 10

FORTH
• Fully Optimized & Tested for:

IBM-PC IBM-XT IBM-JR

COMPAQ EAGLE-PC-2

TANDY 2000 CORONA

LEADING EDGE

(Identical version runs on almost all

MSDOS compatibles!)

• Graphics & Text
(including windowed scrolling)

• Music ■ foreground and

background

includes multi-tasking example

• Includes Forth-79 and Forth-83

• File and/or Screen interfaces

• Segment Management Support

• Full megabyte ■ programs or

data

• Complete Assembler

(interactive, easy to use & learn)

• Compare

BYTE Sieve Benchmark jan 83

HS/FORTH 47 sec BASIC 2000 sec

w/AUTO-OPT 9 sec Assembler 5 sec

other Forths (mostly 64k) 70-140 sec

FASTEST FORTH SYSTEM

AVAILABLE.

TWICE AS FAST AS OTHER

FULL MEGABYTE FORTHS!
(TEN TIMES FASTER WHEN USING AUTO-OPT!)

HS/FORTH. complete system only: S250.

Visa Mastercard

Add $10. shipping and handling

HARVARD

SOFTWORKS
PO BOX 69

SPRINGBORO, OH 45066

(513)748-0390

CIRCLE 47 ON READER SERVICE CARD

100 COMPUTER LANGUAGE ■ JULY 1985

Chalcedony PROLOG V

Put out by Chalcedony Software, this

implementation adheres closely to the

Clocksin and Mellish definition. The

main benefit of such an implementation is

that a novice PROLOG programmer need

not worry about language extensions.

PROLOG V is a good package to accom

pany the Clocksin and Mellish text and is

certainly affordable.

In PROLOG V, the user uses the >

prompt to enter facts or ask questions in a

simple and straightforward manner. The

|F2| key on ihe IBM PC keyboard can be

used to recall the last typed line.

The PROLOG V implementation does

not support floating point numbers. The

manual explains that PROLOG is hardly

viewed as a number-crunching language

and deems the floating point number sup

port omission as minor. PROLOG is more

involved in fact manipulation. PROLOG

V implements the Clocksin and Mellish

data manipulation. I/O. and program trac

ing and debugging.

Two problems were encountered while

running the benchmark tests for this prod

uct. The PROLOG V determination

allows tracing through decisions made by

the compiler, but the manual does not

explain how to turn this function off. In

addition, stack overflow occurred during

many tests.

Expert Systems International

PROLOG-1

Expert Systems International's PROLOG-

1 has an implementation that adheres

closely to the Clocksin and Mellish defini

tion. PROLOG-1 displays the ?- question

prompt, making the system more acces

sible to user questions. To assert any fact

from the keyboard, \\\t assert {), assertaf),

and assertzO predicates must be used.

PROLOG-1 supports all PROLOG data

types, including floating point numbers.

Unlike ADA PROLOG, this imple

mentation does not provide transcendental

and trigonometric functions. Conversion

between integers and floating point num

bers is available, as are rounding and

truncating reals.

Built-in predicates are provided for

altering and inquiring about internal sys

tem states, including execution tracing,

user polling. I/O redirection, and error

handling. The built-in clause editor is able

to add, delete, list, and number predicates

and allows for multiline definitions by

putting a : prompt at the beginning of

every continuation line. An I/O clause

that saves definitions is also available.

PROLOG-1 implements versatile file

I/O, including the I/O predicates defined

by Clocksin and Mellish. While

sequential and random files are sup*

porled. appending data to files is not.

Random access is possible using the

seekjread and seek_write predicates to

select specific records. The getbyte predi

cate reads binary files, returning the

ASCII code number of the byte read.

PROLOG-1 also allows for deleting

and renaming files and making inquiries

about the existence of files. The inter

preter can be suspended, causing a break

but preserving the context. A break can be

achieved by using the break predicate or

interrupts or through the occurrence of

certain errors. Program abortion and

restart can be achieved in the same ways.

All benchmark tests were run with

PROLOG-1. The results show the

assembly-language-based implementation

to be the second fastest.

Expert Systems International

PROLOG-2

The implementation of Expert Systems

International's new product was not avail

able for this review, but the manual was.

PROLOG-2 is a superset imple

mentation of PROLOG-1 and uses new

nomenclature with substantial enhance

ments, fi is compatible with DEC 10. Two

versions of PROLOG-2 arc on the distri

bution disk: one that supports windows

and one that does not.

The two primary parts of PROLOG-2

arc the interpreter core and the program

development satellite facilities. The latter

can be customized by the end user.

Besides the interpreter, the system core

contains a memory allocator, garbage col

lector, module handler, window handler,

system editor, error and help handler,

expression cvaluator. and string handier.

System state predicates are also provided

to allow some control of the core system.

Mass storage can act as an extension of

the RAM through implementation of a

virtual memory. A powerful editor that

can alter modules, predicates, and clauses

is also supplied. Windows can be used in

conjunction with the editor, creating an

editing window with predicates for cursor

control and an execution window.

A range of values from -8388608 to

+ 8388607 is available through the sup

port of signed 24-bit integers. Floating

point reals and strings arc also supported.

One interesting aspect of PROLOG-2 is

that siring constants can contain symbols

for backspace, form Iced, line feed, car

riage return, horizontal tab. double

quotes, and backslash, all following the

convention in C of the backslash being

used with another letter. For example.

•'Hello \ nTherc World S 7" will be dis

played with "Hello" on one line and

"There World" on another, followed by a

beep (ASCII 7 is the code for the bell).

Strings also are supported in PROLOG-2.

C Sick?
PLZ is the cure!

Introducing a native code PLZ compiler

for the 68000, featuring:

D Complete PLZ language, including structure
assignment and comparison

□ Fully compatible with Zilog Z80, Z3000 PLZ

D Ideal for embedded. ROM based systems

□ Strongly typed

□ Data types include signed and unsigned byte, word
and longword

D All of the protection of Pascal, with the flexibility of C

□ Inherently more portable than either Pascal or C

□ Easy for Pascal or C programmers to learn

□ Fully compatible with the CP/M-68K C library

Requires CP/M-68K. Other systems and CPU's supported soon

Package includes: All this for
6B0OD CompilerCode generator thG lOW

introductory
Spnnger-Verlag "Report on the n-i-- nf
Programming Language PLZ/SYS" **" ' ■

Ore Year Iree updates

75
Add S3 S/H NJ Resic)enls

include 6% sales tai

|7llKCSystems
^^tems 20 Lamington Drive, Succasunna.NJ 07876

I Z M[gQ1] 927-9104

SPARRY BASIC-B COMPILER

1. Floating Point Math

2. Use all 640K of Memory

3. Multiple Data Segments

4. Multiple Code Segments

5. Internal ISAM File support

6. 4 Virtual Screens (Big Windows)

7. Easy Assembly Language Interface

8. Direct System Interrupt Calls

9. A Compatible BASIC Compiler

Req. PCDOS 2.00+ with 128K

Sparry Software Labs

P.O. BOX 632

MILFORD, MA01757

617-473-5435

Compiler$i59

) DemoDisk$15

PCDOS is a Trademark of

International Business Machine Corp.

CIRCLE 59 ON READER SERVICE CARD CIRCLE 66 ON READER SERVICE CARD

OASYS
TOOLKIT

SNAP-SHOT

WIZARD

C-8086
CROSS AND NATIVE OPTIMIZING COMPILERS

FOR 8086/87/88/186/286

As part of OASYS' "OWE STOP SHOPPING" service for software engineering tools, we are proud to announce the addition

of WIZARD C to our integrated collection of more than 50 professional programming tools (e.g. compilers, assemblers,

linkers, debuggers, simulators & translators) for M68000, Intel 8086/80186 and NS32000 micros.

WIZARD C benchmarks (against Lattice, Microsoft) prove that It is, by far, the most advanced, full featured, fastest,

tightest, optimizing C compiler now available for cross and native (PC) development. Here's why...

FEATURES

• Complete K&R implementation plus

V7, III extensions

• Supports 8087 Floating Point

• Built-in LINT

• Long, medium, short models

• 190+ UNIX III functions — complete

run-time library

• In-line assembly allowed

•100+ extensive warnings/diagnostics

• Intel and Microsoft compatibility at

source and object levels

• Written in C — easily ported

• Comprehensive bound documentation

• Supports DOS 2.0, 2.1, IBM/BIOS

SUPPORT TOOLS

• Symbolic C Source

Level Debugger (CDEBUG™)

■ 100% Intel compatible structured

Macro Cross Assembler,

Linker/Locater and Librarian

■ 8086 Simulator

• Floating point math package

(40+ functions)

• C Time Profiler (CLUE™)

• Checkout compiler (SAFE-C™)

• Comm. utilities for up/down

loading to MDS, TEK, Microtek

\W86CH-11/84

AVAILABILITY

NATIVE: PC/XT/AT using

MS/DOS, PC/DOS (Xenix soon)

CROSS: VAX/VMS, Bsd 4.1, 4.2, III, V;

8086's, 68000's (All Unisoft III, V;

ports); Callan, Masscomp, Sun,

Pyramid, dozens more ...

Call for pricing, OEM, Site, Corporate,

Source and Maintenance licensing

information.

OASYS
60 ABERDEEN AVENUE

CAMBRIDGE. MA 02138

(617)491-4180

CIRCLE 71 ON READER SERVICE CARD

101

RUN/C:™

Finally,

a C Interpreter
Available NOW for only $149.95 !

Finally, a painless introduction to

the C language. With RUN/C:

The C Interpreter you

can create and run C language

programs in an environment as

easy to use as BASIC.

RUN/C is C for the rest of us.

It is a robust implementation of

standard KSR. RUN/C is for

both the beginner and profes

sional.

RUN/C includes full floating

point, 8087 support, structures,

unions, castsand more than 100

built-in C functions.

With RUN/C you get all this

with a command structure mod

eled after BASIC'S using familiar

terms such as EDIT, RUN. LIST.

LOAD. SAVE. TRON. SYSTEM, etc.

Since RUN/C is a true inter

preter it means that C programs

can be written, tested and run

within a single protected envi

ronment. It is a teaching tool and

a source code debugger.

Here's more good news. . .

• Great documentation: a 400-

page, easy-to-read manual

filled with executable

programs

• Array-index and pointer

bounds checking

• Variable-trace and dump

diagnostics PLUS an integral

program profiler

• Full buffered and unbuffered

file I/O

• Printer and asynch support

• Forking to your favorite full

screen editor with automatic

return to RUN/C with

your edited program

• System Requirements:

IBM"' PC or compatible with

PC-DOS 2.0 or MS"V-DOS 2.0 or

greater with ANS1.SYS.

Get things right the first time

with RUN/C:

The C Interpreter. ™

For immediate delivery or more

information, call:

1-800-847-7078

(in NY. 1-212-860-0300)

or write: Lifeboat Associates"1'

1651 Third Avenue

New York. NY 10128

RUN/C is a trademark of Age of Reason Co

as are predicates for concatenating.

inserting, deleting, and extracting strings.

Each part of the satellite system is a

module. There arc three types

of modules: data, library, and pro

grams. Each can use virtual memory and.

like the USCD p-system, can he swapped

in and out ofmemory as required. Mod

ules can also contain external code written

in other languages, assuming the interlace

conventions arc followed. The data mod

ules contain PROLOG data base informa

tion (that is. clauses). Program modules

contain unalterable and private executable

programs. Library modules are similar to

program modules except that individual

predicates can be loaded into the memory

as needed.

PROLOG-2 implements a versatile and

powerful low-level I/O. Streams are used

to perform all I/O operations and must be

created, opened, and then closed when no

longer needed. Some streams, including

special devices with names such as

printer, reader, punch outpul, screen,

keyboard, mouse, and glass-tty, arc cre

ated automatically but still need to be

opened.

There are (bur stream types: files,

devices, user-defined streams, and win

dows. File streams are employed for I/O

with DOS disk files. Sequential and ran

dom access I/O are supported. Device

streams are related to the special devices

previously mentioned. User-defined

streams are required to handle I/O from

nonstandard devices. Window streams are

similar to the screen, bul I/O is normally

confined to a screen portion (that is. win

dow boundaries). PROLOG-2 has several

predicates thai set up. manipulate, and

manage windows.

Solution Systems

PROLOG-86

Two versions of this Solution Systems

product (written by Micro-AI) are avail

able. One is designed for the novice PRO

LOG student. The other is primarily a

development system. The implementation

is close to the Clocksin and Mcllish defi

nition, with a lew changes. The distribu

tion disk includes Dean Scholobom's tax

program.

PROLOG-86 allows for the user to

enter rules, questions, and commands.

Rules are asserted by the period. Ques

tions can be asked either by typing ?-, fol

lowed b> a question that ends with a

period, or by typing the question and end

ing it with a question mark. Commands

allow for the execution of a variety of

statements, mostly 1/0. without having to

end with the usual PROLOG "Yea" or

"Nea,"

PROLOG-86 allows the user to invoke

a text editor. This can be specified by a set

statement (forcxample. set ED/TOR —

<your editor >) in the CONFIG.SYS

file, which sets up the environment for

MS-DOS during the boot stage, or by

using the PROLOG-86 predicate

set_cdilor to make the necessary selec

tion. Three predicates are involved. The

(/predicate allows fora text file but does

not force the PROLOG-86 interpreter to

read it. The ed predicate allows the edi

ting of a text file containing PROLOG

definitions. As the editing ends, the inter

preter reads the file to update the informa

tion in the data base. Errors are flagged

and the user is given an option to reedil or

abort and restore the previous definitions.

This is a powerful and interactive way of

editing. The third predicate, cm . removes

(unloads) the current definitions in the

memory before going into the editing

process.

PROLOG-86 supports floating point

reals and transcendental, trigonometric,

absolute, ceiling, floor, and square root

Functions. Theses functions are imple

mented as predicates but still act like

functions in the sense that each function is

not capable of implicitly becoming its

reverse function.

The 8087 numeric coprocessor chip is

supported by a special PROLOG-86 ver

sion that is available on the distribution

disk. Basic bitwise operations are also

implemented, including bitwise AND,

OR. XOR, left and right shift, and com

plements. PROLOG-86 defines if-then

and if-ihcii-cl.se constructs using - > . This

allows decision making and the selection

of alternate action.

PROLOG-86 also presents a number of

additional functions. Among them is

chaiiiicyascfL.U). which allows fora

two-way upper-lower case conversion. If

the L variable is instantiated (initialized in

PROLOGese). then the U returns the

upper ease atom. On the other hand, when

U is instantiated the L variable returns the

lower-case atom.

Other PROLOG-86 predicates allow

the user to perform screen cursor control,

including clearing lines and screen and

cursor positioning. The conceit (List,Atom)

predicate concatenates the list elements

and produces a single atom. Its reverse

predicate is name(Atom,List). The

length(List,Num) predicate returns the

number of atoms in a list.

The I/O operations supported by

PROLOG-86 have the ability to invoke

the MS-DOS command shell. In addition,

the interpreter can be temporarily sus

pended so the user can go back to the

operating system. The exit command

issued in the operating system resumes the

interpreter. MS-DOS structured file paths

are not supported in this version, but

deleting and renaming files is possible.

The directory command allows the user to

inspect active directories.

All benchmark tests were run with

PROLOG-86. The results show it to be

the fastest.

CIRCLE 85 ON READER SERVICE CARD

102

Poor Person Software
Introduces

Write-Hand-Man
Desk accessories for CP/M

Write-Hand-Man lets you take notes, check phone

numbers, make appointments, and countless other tasks

without leaving Wordstar, dBase, Multiplan, or any other

application. Enter Write-Hand-Man with a single key

stroke and choose the program you want. When you

leave Write-Hand-Man, your application continues

normally.

$49.95 plus tax delivers Write-Hand-Man and 4
companion programs; Notepad, Phonebook, Calendar,

and Termcomm. User written programs are easily added.

All you need is M80 or some other LINK-80 compatible

assembler.

Other CP/M products available from Poor Person Software:

Poor Person's Spooler (S49.95), Poor Person's Spelling Checker

($29.95), Poor Person's Spread Sheet ($29.95), Keyed Sequenlial

Files (539.95), Poor Person's Menus ($29.95), aMAZEing Game

($29.95), Window Syslem ($29.95), Crossword Game ($39.95),

Mailing Label Processor (S29.95). Shipping included.

All products available on I8M H inch and Notthsl.ir 5 inch disks. Oilier 5 inch

formats add $5 kindling charge. No credit cards.

Poor Person Software

3721 Starr King Circle

Palo Alto, CA 94306

tel 415-493-3735

CP'U is a registered Irademark of Digilal Research

CIRCLE 67 ON READER SERVICE CARD

C Programmers:

File System Utility Libraries

Source Code Included, No Royalties,

Powerful & Portable.

BTree Library $75*°°
• High speed random and sequential access.

• Multiple keyc per data file.

• Up to 16 million records per file.

• Full documentation and example programs included.

$40,00ISAM Driver

Works with the BTree Library.

Greatly speeds application development.

Combines ease of use of database manager with flex-

bility of programming language.

Supports multi key files and dynamic index definition.

Very easy to use; fully documented; example pro

grams included.

Both products

Are written entirely in K&R C.

Come with complete source code.

Are free of any royalty charges.

+ S3.00 Shipping &

Handling Charge.

For more information call:

sdfocus
Credit cards accepted.

1277 Pallatine Drive

Oakville. Ontario, Canada

L6H 1Z1

(416) 844-2610

Dealer inquiries invited.

WRITE

The Writer's Really Incredible Text Editor lives up to its

name! It's designed for creative and report writing and

carefully protects your text. Includes many features

missing from WordStar, such as sorted directory listings,

fast scrolling, and trial printing to the screen. All editing
commands are single-letter and easily changed. Detailed

manual included. Dealer inquiries invited. WRITE is

S239.00.

BDS's C Compiler

This is the compiler you need for learning the C language

and for writing utilities and programs of all sizes and

complexities. We offer version 1.5a, which comes with a
symbolic debugger and example programs. Our price is

(postpaid) Si 30.00.

Tandon Spare Parts Kits

One door latch included, only S32.50.

With two door latches S37.50.
Door latches sold separately for $7.00.

All US orders are postpaid. We ship from slock on many

formats, including: 8". Apple, Osborne, Kay Pro, Olrona.

Epson, Morrow, Lobo, Zenith, Xerox. Please request our

new catalog. We welcome COD orders.

Workman & Associates

112 Marion Avenue

Pasadena, CA 91106

(818) 796-4401

CIRCLE 68 ON READER SERVICE CARD

We Beat ALL

Prices!
LIST OURS

Ascom 195 120

C Sprite 175 147

Greenleaf communications 185 150

Greenleaf Functions 185 150

Harvard Total Project mgr. 495 320

Instant C 495 400

Lotus 695 375

Lattice 500 275

Lattice Windows 295 217

Pfinish 395 275

Pftx 395 275

Plink 395 275

Pmate 225 150

PreC 395 275

RiinC 150 120

Crosstalk 195 120

253 lOlh AVE.

NEW YORK, N.Y. 10001 U.P.S. & FedX 212-989-7167

CIRCLE 80 ON READER SERVICE CARD CIRCLE 120 ON READER SERVICE CARD

103

68000

CO-PROCESSING
For

IBM PC, PC/XT

and

COMPATIBLE

SYSTEMS

Now you can add the MOTOROLA 68000

16/32 Bit Processor to your PC via use of

the Pro 68 Advanced Technology Co-

Processor. Enjoy all ol the performance

benefits of the 66000 processor without

sacrificing your current PC system. Con

sider these impressive standard features

of Pro 68:

• High Speed MOTOROLA 68000 micro

processor

• 10Mhz no wait statedesign (3 times
faster than the IBM PC/AT)

• True 16/32 bit technology

• For use on IBM PC. PC/XT or compati
ble systems

• On board 16 bit parity checked memory,

256K to 1024K

• Two serial I/O ports for multi user
Interface

• Provisions for the high speed NS32081

math processor

• High speed proprietary dual port host

bus interface

• Parallel or array processing via multi

processor architecture

• MS/PC DOS RAM disk driver program

• Choice of two popular integrated 16'32
bit operating systems:

— CPM68K from Digital Research Inc.

— Full suite of development tools

— "C" compiler with floats and

UNIX I/O library

— Many third party compatible

languages and applications

— OS9/6800 from MICROWARE

Corporation

— UNIX look alike with multi user/

multi tasking, shell, hierarchical

disk directory, record and file

lock, pipes and filters

— Full suite of development tools

— UNIXVcompatible "C" compiler

— Optional languages include

BASIC, ISO PASCAL, FORTRAN

77.

Pricing from $1195 includes Pro68 with

256K, OS. and MS/PC DOS RAM disk

driver. HSC also manufactures and mar

kets a full line of co-processors and

RAM disks for use on Z80 based systems.

DISTRIBUTORS:

Australia-Computer Transition Systems

. . .03-537-2768

Great Britain-System Science

. ..01-248-;062

West Germany-DSC International

. . .089-723-1125

Canada Remote Systems

. ..416-239-2835

Dealer, Distributor and OEM inquiries

invited.

Hallock Systems Co., Inc. //

267 North Main Street

Herkimer, NY 13350

(315)666-7125

Logic Programming Associates

Programming Logic Systems

LPA-PROLOG (Micro-PROLOG)

LPA-PROLOG (or Micro-PROLOG). a

product of Logic Programming Associ

ates distributed in the U.S. by Program

ming Logic Systems, employs a some

what different syntax from that discussed

in the Clocksin and Mcllish book. It fol

lows the more limited Micro-PROLOG

variable name convention. Variable

names must start with X. Y, Z. x. y, or z.

The LPA Micro-PROLOG package

includes a copy of K.L. Clark and EG.

McCabe's book Micro-PROLOG: Pro

gramming Logic, published by Prentice-

Hall.

Quintus PROLOG

Quintus PROLOG, a product of Quin

tus Computer System Inc., has an

implementation similar to PROLOG-

20. DECI0 PROLOG, and C-

PROLOG. It runs on the VAX scries

under VMS. UNIX, and the UNIX

68000-bused Sun-2 workstation from

Sun Microsystems Inc.

This system provides boih an inter

preter and a compiler. It can be inter

faced with the EMACS editor and uses

windows to edit files and run PRO

LOG. An on-line help system is avail

able. Quintus PROLOG is menu

driven and refers to documentation

chapters. To interface with C. the user

first prepares the required PROLOG

facts and then calls the built-in predi

cate loadjbreign_files to load C func

tions into the running PROLOG

system.

Quintus PROLOG supports floating

point reals, mathematics, and stream-

based I/O. Strings are not supported.

Many I/O predicates arc implemented

to handle different data types and redi

rection, with improved handling of

data base references. Other imple

mented predicates include keysort and

sort for sorting and statistics to output

various execution statistics. This sys

tem can access UNIX facilities by

using the available UNIX predicate.

LPA Micro-PROLOG supports a wide

range of integers (-99999999 to

+ 999999991. floating point numbers, and

strings in addition to other data structures.

LPA*Micro-PROLOG has the SUM() and
TIMES0 predicates for doing addition,

subtraction, multiplication, and division.

Both predicates function in one of three

ways:

■ Result verification. For example, the

SUM(10 15 25) succeeds since 25 = 10 +

15, while SUM(12 I 44) fails because 44

is not equal to (12 + 1).

■ Direct operation. SUMO and TIMESQ

arc used to add and multiply, respectively.

For example, T/MES(105x) gives* = 50

and SUM(105x) givesx =15.

■ Inverse operation. SUM() and TJMESQ

can be used to perform subtraction and

division, respectively. Thus. TIMES(I0x

50) gives x = 5 and SUM(I00x 144) gives
X = 44.

LPA Micro-PROLOG offers predicates

to manipulate and compare strings. The

LESS predicate compares strings.

STRINGOFpacks list members into

strings and vice versa. CHAROF returns

the ASCII code of a character. LPA

Micro-PROLOG also has type-checking

predicates, which allow checking for

numbers, integers, constants, atoms nam

ing a defined program, and variables.

LPA Micro-PROLOG also implements

the decision-making if-then predicate.

Seven console I/O predicates-

including those to read terms, display

terms, pretty print, poll the keyboard fora

pressed key, and reset the keyboard and

type-ahead buffers —are also available.

File I/O allows the user to read and write

characters and text files. Random access

and formatted file I/Os are also sup

ported. LPA Micro-PROLOG allows the

console, printer, punch output, reader

input, and keyboard to be treated as spe

cial I/O devices. Other supported file

operations include logging to a new disk,

erasing and renaming files, and obtaining

the disk directory.

Each LPA Micro-PROLOG module has

five components: a name, an export list.

an import list, a local dictionary, and the

module program. Each module can export

relations to other modules or programs.

The local dictionary contains the list of all

local constants. Modules are saved

{SAVE) and loaded {LOAD) and are

entered in a hierarchical, treelike struc

ture similar to the ADA PROLOG struc

ture. LPA Micro-PROLOG has four prim

itives related to modules: CMOD. which

104

CIRCLE 12 ON READER SERVICE CARD

PROGRAMMER DEVELOPMENT TOOLS
NEW LISTINGS:

List Ours
C UTILITIES:

Brief By Solution Systems 195 Call
Megamax C compiler for Macintosh 295 239

PC Lint by Gimpel Software 100 89

Prolog-86 by Solution Systems 125 Call

Scientific Subroutine Lib forC by Peerless 175 159

C-terp Complete C Interpreter

Full K&R C interpreter/semi-compiler which can

access functions and externals compiled on various

C compilers. Comes with a powerful, integrated

screen editor providing a complete professional

C programming environment.

List Price $300 Our Price $269

dBC dBase/C interface by Lattice 250 219

dBC with source code 500 459

ESP for C by Bellesoft Call Call
Graphic by Scientific Endeavors 250 209

Greenleaf C Functions Library ver 3.0 185 139

Greenleaf Comm Library 185 139

Multi-Halo Graphics by Media Cybernetics 250 199

PANEL Screen Designer ver. 6.0 by Roundhill 295 234

Pasm86 Macro Assembler by Phoenix 295 259

Pfinish Performance Analyzer by Phoenix 395 339

Pmaker Program Development Manager by Phoenix . . 195 179

Pre-C Lint utility by Phoenix 395 339

Safe C Dynamic Profiler by Catalytix 150 Call

Safe C Runtime Analyzer by Catalytix 400 Call

Windows For C by Creative Solutions 195 139

Computer Innovations C-86 Compiler 395 299

DeSmet C Compiler with Debugger 159 145

Lattice C Compiler from Lattice 500 339

Lattice C from Lifeboat Ltd Oty Special 500 275

Mark Williams C Compiler w/Source Debugger 495 429

Run/C Interpreter by Age of Reason Sale 150 99

Safe C Standalone Interpreter by Catalytix Call Call

Wizard C Compiler by Wizard Systems 450 399

Xenix Development System by SCO 1350 1099

Microsoft C Compiler version 3.0

This entirely new version of Microsoft's C compiler

features fast execution and compact code

generation, small, medium and large memory

models, Xenix compatibility, a linker and a librarian.

List Price $395 Our Price $339

TURBO PASCAL:

OTHER LANGUAGES:

8088 Assembler w/Z-80 Translator by 2500 AD ... 100 89

APL«PLUS/PC by STSC 595 469

BetterBASIC by Summit Software 200 169

Golden Common LISP by Gold Hill 495 Call

Janus/ADA by R&R Software 900 699

MASM-86 ver 3.0 w/utilities by Microsoft 150 119

Modula-2/86 by Logitech 495 439

Professional BASIC by Morgan Computing 99 89

RM/Fortran by Ryan-McFarland 595 439

C Power Paks From Software Horizons Call Call

C-Sprlte Symbolic Debugger for Lattice C 175 159

c-tree by FairCom 395 359

C Utility Library by Essential Software Call Call

Screen Sculptor by Software Bottling 125 109
Turbo ASYNCH by Blaise Computing 100 89

Turbo GRAPHICS TOOLBOX by Borland Int'l 55 49

Turbo PASCAL ver3.0 by Borland Int'l Sale 70 49

Turbo PASCAL w/8087 or BCD Sale 110 89

Turbo PASCAL w/8087 & BCD Sale 125 99

Turbo POWER TOOLS by Blaise Computing . New 100 89

Turbo TOOLBOX by Borland Int'l 55 49

Turbo TUTOR by Borland Int'l 35 29

XTC Text Editor by Wendin 99 89

Advanced Trace-86 by Morgan Computing 175 159

APL2C by Lauer Software Interfaces APL to C 150 139

Blaise Tools for C& Pascal Call Call

Btrieve by SoftCraft 250 199
Codesmith-86 Debugger by Visual Age 145 129

Epsilon Emacs-like Text Editor by Lugaru 195 179

FORTRAN Libraries by Alpha Computer Service Call Call

Pfix-86 Plus by Phoenix 395 299
Plink-86 Overlay Linker by Phoenix 395 299
Pmate Macro Text Editor by Phoenix 225 159

Polytron Products We Carry a Full Line Call Call

Profiler by DWB Associates 125 89

Xtrleve by SoftCraft 195 169

C UTILITIES:

Periscope Symbolic Debugger

by Data Base Decisions

Write-protect memory board and breakout switch

allows instant recovery from runaway code.

Provides on-line help, windowing, extensive
breakpoints, dual monitor support and more.

List Price $295 Our Price $269

ADVANTAGE #2
At Programmer's Connection most popular products are always In stock ready to be

shipped. Most orders are on their way to you the same day they are placed. We know your

time is Important, that's why we tell you exactly when you can expect to receive your

package. Maintaining an adequate inventory is part of our philosophy of fast,

efficient service. Call us — you'll discover that Programmer's Connection delivers

products and service without delay.

Discover the advantages of buying from Programmer's Connection:

1. We offer the latest version of a product.

2. Most popular products are in stock ready to be shipped.

3. Receive same manufacturer's support as if buying direct.

4. Experienced professional programmers are on staff.

5. Choose from a large selection of the best software products available.

6. Knowledgeable and courteous sales staff.

7. Significant discounts off of retail prices.

8. No extra charge on prepaid orders, including major credit cards.

9. Reasonable charges for shipping and handling.

10. Toll free services from Canada and the U.S. "Programmers Serving Programmers'

Programmer's Connection
136 Sunnyside Street Hartville, Ohio 44632 (216)877-3781 (In Ohio) -j^ «_

U.S.; 1 -800-336-11 66 Canada; 1-800-225-1166
Call For Our Catalog

Account is charged when order is shipped

Prices are subject to change wiihoul noiice

CIRCLE 16 ON READER SERVICE CARD

105

... Journal?
The n Resource Journal for IBMj PC Programmers

More than simply a

computing magazine,

Programmer4'sJour

nal takes you deep

into the art, technol

ogy, present and fu

ture ofprogramming

for the IBM PC. It's

a tool, a resource

and your voice in

the constantly

changing environ

ment of computer

programming.

PROGRAMMER'SJOURNAL.

IT'S YOUR SHOW.

SHOWS you the tricks of the trade, revealing valuable tips and techniques

for smoother, faster and more efficient computing . . . with working

examples.

PROVIDES you with a source code library, profiles of leading authors and

software houses, program listings and unique features on the state of

programming art.

SUMS up important articles, books and pertinent research.

BRINGS you timely features, inside information and gives you a forum for

sharing your ideas.

COVERS codes, applications, legal affairs, new products and more!

REVIEWS program development tools and technological advances.

TALKS your language, letting you take an active part in a programmer-to-

programmer dialogue.

SAVES vou valuable time!

IBM and Personal Computer are trademarks of International

Business Machines. Armonk, New York.

BACK ISSUES

Vol. 1, No. 1: Norton Pascal I/O, Program Style Manual,

COBOL, System Analysis, BASIC modules. Rounding error

Vol. I, No. 2: Defining character sets, C86 BIOS calls, Cop}

protection, Pascal code. Input routines, Writing

an Assembler.

Vol. 1, No. 3: ASM dumb terminal, C source code, ASM

graphics line drawing, Text editors reviewed, Utilities.

Vol. 1, No. 4: Diskette directory via Pascal, MASM WHIUE

WEND, C/ASM interface, ASM scay resident routine.

Structured programming.

Vol. 1, No. 5: Multi-tasking software review. Transporting C

Programs, Programmers calculator, dBase bargraphs, Utilities

Vol. 1, No. 6: ASM printer configuration, DOS patch utility,

Hi-speed graphics, Software ownership, dWINDOW review

Vol. 2, No. 1: Freelance consulting. Sorts in C, Pascal text

editor source code, Designing national database, Ultra utilities

Vol. 2, No. 2: Undersranding C through Assembly language,

Utility routines in C and Assembly, Music in C (using a C

music program), Cornucopia of software development tools.

Vol. 2, No. 3: Software development environments, Creating

a productive screen handling tool, Generating graphics withir

windows, Create, edit and play your musical ideas, Linking

Assembler to Pascal and Basic.

Vol. 2, No. 4: Writing a custom ROM BIOS for PC-DOS.

The future of disk protection, Time-saving MASM Macros, C

routines you can purchase.

Vol. 2, No. 5: Scroll control using BASIC and Assembler,

RTool, a PC-resident programmer's toolkit, Calling Assembl'

routines from dBase II, Pascal's pointer power.

Vol. 2, No. 6: Periscope-Building a hardware board for the

IBM PC, AT&T surprises all, dBase II to dBase HI?, Intel

80286 bugs by FNE, calendar functions for BASIC.

Vol. 3, No. 1: November's Comdex, C - its uses and abuses,

Using the C preprocessor, Memory segmentation examples,

Index files (pan 1), Stuctured programming language, Periscope,

a symbolic debugger.

Vol. 3, No. 2: UNIX, Artificial Intelligence,

Pointers to functions, Ask/batch file utility. Index

files (part 2), Scanning in Turbo Pascal. Calendar

date routines in BASIC, Calculate record layouts

automatically.

Vol. 3, No. 3: NAPLPS and the professional pro

grammer, Uniforum, Instant C reviewed, Printer

control from a batch file, Repositioning the stars in

Starfinder, Reducing EXE file size through data

positioning, Tools for better programming.

Name

Company _.

Address

State ZipCity

Telephone .

Send me the following back issues: (Circle the issue(s) desired)

$5.5OeachU.S.,($6.5OCanada, $8.50 Foreign, U.S. funds)

pre-paid only

Vol. 1, No. 1

Vol. 1, No. 2

Vol. l,No. 3

Vol. 1, No. 4

Vol. 1, No. 5

Vol. l,No. 6

Vol. 2, No. 1

Vol. 2, No. 2

Vol. 2. No. 3

Vol. 2. No. 4

Vol. 2. No. 5

Vol. 2. No. 6

Vol. 3, No. 1

Vol. 3, No. 2

Vol. 3, No. 3

□ 1 year bi-monthly subscription:

$24.00 (S30 Canada, 340 Foreign, U.S. Hinds only)

D Check enclosed □ Bill me (subscriptions only)

D Charge my Bankcard: □ VISA □ MC

. Expir. Date

Signature

Send to:

PROGRAMMERS JOURNAL

P.O. Box 3000, Dept. EE

Denville, NJ 07834 4 5 2 0

(503) 345-30-13 CIRCLE 75 ON READER SERVICE CAR[

returns the name of the current module;

CRMOD. which creates a new empty

module and makes it the current module:

OfMOD, which enters an existing mod

ule and makes it the current module; and

CLMOD, which closes the current non-

root module.

For the benchmark tests. LPA

Micro-PROLOG was run using the

DEC 10 supervisor. This allowed the pro

grams to run without modifications. The

list reversal and Tower of Hanoi tests ran

successfully. The Sieve test gave "NO"

for an answer instead of the list of primes.

The Quicksort test caused stack-overflow

Logicware MPROLOG

This Logicware product is characterized

by the numerous predicates it contains and

its support of modular programming in a

manner very similar to Modula-2. It has a

learning tool called LOGIC-LAB and a

program development support system

(PDSS). MPROLOG has almost enough

predicates to warrant a separate review!

MPROLOG has already been imple

mented on mainframes and mini

computers, so going to a microcomputer

version meant few sacrifices in the PDSS

and module implementations. The PDSS

allows for the use of if, and. or. ".-",

";", or ":" ",". ";" notations in assert

ing facts. MPROLOG does not support

floating point numbers. The conditional

if-ihen-like- > is supported.

MPROLOG only supports 24-bit

integers, with numbers rantzinti from

-8388608 to+8388607.

MPROLOG has many predicates to

check the type of expression, including

digits, letters, characters, numbers, vari

ables, and nonvariables. Other predicates

handle terms and perform tasks such as

sorting, keysorting. list counting, and

expression comparison. Expression com

parison is interesting because it allows the

user to inquire about the relation between

two expressions. The compare predicate

is capable of returning relational oper

ators like < = . MPROLOG also has

many data base-handling predicates to

manage clauses, including adding, rena

ming, deleting, and inquiring about

clauses.

MPROLOG's string manipulation

predicates find the siring length, extract

substrings, concatenate two or more

strings, convert between upper and lower

cases, convert from ASCII code to char

acters, and remove blanks from strings.

MPROLOG implements several error-

handling and preventing predicates. Pre

venting predicates can extend the stack, if

there is room, to allow more space for

recursion. Protection against fatal errors

can be turned on or off.

Finally, A Lint and

Make for MS™- DOS
Get the full range of features C pro

grammers working in UNIX1" have

come to expect from their Lint and

Make utilities. With Prc-CIM you can

detect structural errors in C programs

five times faster than you can with a

debugger. Find usage errors almost

impossible to detect with a compiler.

Cross-check multiple source files and

parameters passed to functions. Un

cover interlace bugs that are difficult

to isolate. All in a single pass. Capa

bilities no C compiler, with or without

program analyzing utilities, can offer.

Pre-C outlints Lint, since you can

handle analyses incrementally,

Pre-C's flexible library approach lets

you maintain continuity across all

programs in your shop, whether you

use Pre-C's pre-built libraries, func

tions you already have, or some you

might want to buy.

Plus, you're not limited to one partic

ular library- Pre-C keeps track of all

the libraries you're using to make

sure that code correctly calls them.

With Pmaker1%1 you can update and

track every module in your program.

When you make a change in any

source or include file, all you do

is run Pmakcr. It will recompile

changed modules and relink your

program. With any compiler or linker

you choose. Pmaker can update an

object module library when one or

several of the object modules are

changed. You can use Pmaker to

handle any task when a change

requires several steps.

Pre-C by Phoenix. $395. Pmaker

by Phoenix. $195.

Call (1)800-344-7200.

In Massachusetts (617) 762-5030.

Or. write: Phoenix Computer

Products, Corp., 1420 Providence

Highway. Suite 115, Norwood,

MA 02062.

PROGRAMMERS' PFANTASIES'" BY PHOENIX

Programmers' Pfantasies. Pre-C. and Pmaker are trademarks of Phoenix Computer Products Corporation.

MS is a trademark of Microsoft Corporation. UNIX is a trademark of AT&T Bell Laboratories.

CIRCLE 19 ON READER SERVICE CARD

107

MPROLOG also implements predicates

to get the date and time. The predicate

systein_sitite(Indicator, Value) allows for

system control. Indicator specifies what is

to be controlled and Value sets its state or

value, including turning garbage col

lection, list notation, mixed and nor

malized cases, and tail recursion. The

indicator also sets the minimum free space

that is left in the global, main, and trail

stacks that could trigger an error. In addi

tion, the indicator can include CPU time;

elapsed processor time for garbage col

lection; time. date, and storage allocation

for the stack; and what tables have been

used.

I/O predicates in MPROLOG are

extensive and proliferated. I/O redirection

is supported. The reading predicates

allow a variety of items to be read, such as

mathematical and nonmathematical

expressions, end of lines, end of files.

comments, records, and symbols. Output

predicates allow the user to write expres

sions, print tabs, create new lines, and do

spacing. Predicates that inquire about out

put column location and available space

are on the same line.

One of the highlights of MPROLOG is

the module implementation. Each module

has a name, interface specification, decla

rations, comments, predicate definitions,

and program goals. Modules also can

import and export predicates between one

another, as in Modula-2. According to the

instruction manual, the current version

has many features missing in the PC/MS-

DOS implementation.

The benchmark programs could only be

run after converting them to modules.

MPROLOG showed a slight advantage

over the other products in the Quicksort

test. The other tests reflected its moderate

speed. R

Realia COBOL
What to do while

your COBOL programs

compile and execute:

1. Wait

2. Wait some more.

3. Stop waiting. Call Realia

Patience isn't always a virtue.

Realia COBOL is fast:

Compilation Speed

J™ *

l onn

5.000

coaoi

;51

i HI!

CO«OI

fi H

■us ir

■xecution Time Rat
G.bion Mil. BkllljWd S-Pr

COSOL

1.0

mOD

man;

3.6

CO BO.

3:42

16:58

0

COBOl

W.7

rcondl)

COBOl

5:05

COSOl

21 b

1

5:11

45:26

"..;.■."

22.3

Sieve of Eratosthenes :•

Realia COBOL is written in COBOL. We offer you the

tool; we use ourselves:

• Our FOLLOW-THE-SOURCE- interactive symbolic

debugger. Works with normal native code.

• A speedy full-screen editor that handles very large files.

• Mainframe IBM VS COBOL compatibility.

• Interfaces to Assembler and C.

• No royally or run-lime fee.

• No limit on program size, up to available memory.

• In our new release, no need to insert the product

diskette when you're using a hard disk.

Realia COBOL costs S995. Qualified companies can

try it (or Iree. Call us. And ask about our other

products, Spacemaker" and TermulatOr1",

What are you

waiting for?

PROLOG products and

manufacturers

Arity/PROLOG-S 1,950 comp/inler
Arity Corp. $495 interpreter
336 Baker Ave.

Concord, Moss. 07142

(617)371-1243

ADAPROLOG-S300

Automata Design Associates

1570 Arran Way

Dresner, Pa. 19025

(215)646-4894

PROLOG V-S69.95

Chalcedony Software

5580 La Jolla Blvd., Ste. 126

La Jolla, Calif. 92037

(619)483-8513

PROLOG-1-S395

PROLOG-2-$l,895

Expert Systems International

1150 First Ave.

King of Prussia, Pa. 19406

(215)337-2300

LPA-PROLOG (Micro-PROLOG)-$250

Logic Programming Associates

Programming Logic Systems (distributor)

31 Crescent Dr,

Milford, Conn. 06460
(203) 877-7988

MPROLOG-S725

Logicware

5000 Birch St., West Tower
Ste. 3000

Newport Beach, Calif. 92660

(714)476-3634

Quintus— Sun: S8,400-S14,280

Vax:$6,600-$21,800

Quintus Computer Systems Inc.

2345 Yale St.

Palo Alto, Calif. 94306

(415)494-3612

PROLOG-86-S125

Solution Systems

335 Washington St.

Norwell, Mass. 02061

(800)821-2492

1O South Rivit iiilt! Pl.uo

(312) 346-0642

TELEX: 332979 <REALIA INC)

CIRCLE 76 ON READER SERVICE CARD

108 COMPUTER LANGUAGE!JULY 1985

PROFESSIONAL PROCRflMMINC

ENUIRONMENT

ftLLOWS

MULT]-LINE

CONDITIONALS

BENDORF
ASSOCIATES
6006 S. MfllN

P.O. BOX 5910

ROSWELL, NM

BS2B1
505 347-5701

UlSfi/MASTERCARD

WORKS WITH

BflSICA

INTERPRETER

COMPILER

FULL ERROR

LOCCINC

PROGRAM

LISTER

LABELED

PROCEDURES

MftCROS

SUB-ROUTINES

LIBRARIES

MQB014
ONLY

This exceptional language will amaze you with its
versatility. Compatible with main-frame
SN0B0L4. use it at work and home Perform those

complicated programming jobs and prototype your

exotic ideas quickly. This rubust implementation
supports large memory model. 80B7df float de

sired!. 32 bit integers. 32K strings Includes 60
page reference guide and sample programs includ
ing ELIZA. You can also get Gnsuvolds et al defini

tive "green" book or even the source code. Needs

IBM PC or BDBB/BB. ^12BK. IBM or MS DOS

Guide - 5Va" SSDD diskette S44.95
Guide - diskette - "green" book S59.95
"Green" boak only $24 95
Source code and license S5DD 00
Prices postpaid. In NY state add sales tax.

S 19141271-5855 S —

BERSTIS INTERNATIONAL

P.O. Box 441

MILLWOOD, NY 1O54B USA

Q/ JJTlyperon (Software

Specializing in innovative programming

tools.

■ Complete documentation and

C-source provided (presently DOS

only).

■ Reasonable prices.

■ High quality and good

performance

Products currently available:

C Preprocessor. Features include

variables and expressions, loops,

and full macros. Price — S39.95.

General purpose editor Line oriented

commands with a screen oriented

submode. Command window Price

— S29.95

Order Irom:

HYPERON SOFTWARE

P.O. Box 3349

Costa Mesa. CA 92628

Enclose check or money order. California

residents add 6%

3532 Orange Ave.. Costa Mesa. CA

CIRCLE 6 ON READER SERVICE CARD CIRCLE 88 ON READER SERVICE CARD CIRCLE 51 ON READER SERVICE CARD

<

i

1
1

5^Advanced

r Trace86™

Symbolic Debugger & Assembler Combo

• Full-screen trace with Single stepping;

Even backstepping'

• Write A Edit COM S EXE programs

• Conditional breakpoints (programmable)

• Switch between trace and output screen;

Or set up two monitors

• 8087. B01S6. 80286. 80287 support

• Write labels S comments on code

• Polish hex/decimal calculator

• and more ... Priced at $175.00

To order of request more information contact

-^ J Morgan Computing Co., Inc.

»—-* PO Box 11273O. Dallas TX 75011

(214)245-4763

CIRCLE 22 ON READER SERVICE CARD

Pnscnl-to-C Translator Convert UCSO

Pascal, MT* Pascal, ond others to KE.R C.

Handles nested procedures, intrinsic

functions, separately compiled units and

modules, all data types including long

integers. Requires 256K IBM PC/XT/AT. Send

for free samples or send us up to 500 lines

of Pascal and we will convert it for you for

FREE. Licensed source and executable code

$5,000, conversions 25 cents/line.

T6L Inc.

4400 Sulphur 5prings Rd.

Corvollis, OR. 97330

(503)-745-7476

FLOWCHARTER

Interactive EasyFlow is a lull-blown, on-screen

flowchart processor with advanced features. This

is a program dedicated to flowcharts & organiza

tion charts, not a general-purnose graphics pro

gram that makes you do most of the work.

• automatic line routing • automatic text cen

tering within shapes • charts up to 16 shapes

wide by 16 shapes high • three levels of zoom

(close-up, normal, wide-angle) • horizontal & ver

tical scrolling within the chart • 18 standard

flowcharting shapes included ■ user defined

shapeseasilyadded • widechartscanbeprinted

in strips ■ complete, well written manual • works

with all printers • requiresaPC-DOSorMS-DOS

machine with IBM compatible graphics adapter

6 256K.

OnlyS149.95 + $2.00 s & h.

HavenTree Software Limited

P.O. Box 1093-D

Thousand Island Park, NY 13692

(613) 542-7270 Extension 82

CIRCLE 58 ON READER SERVICE CARD

^CONTROL SYSTEMS SOFTWARE ENGINEER^
A Ch.illsnqmg Opportunll) in on' ricndi Cvponit Ollicai

RS1H oilers a cnailengmg position with responsi

bility for development ot systems level and applica

tions level software tor various Industrial Process
Control applications.

Responsibilities will include involvement in associ

ated hardware, anfl control strategy design. Cut a

strong systems software background is the primary

requirement

Candidates snouid nave at least three years experi

ence and a strong working knowledge ot at least one
computer operating system, assembly language

and "C" Familiarity with various DEC equipment

operating systems. "C" and MACRO is particularly

desirable Experience with development ot real

time sollwa'e wilri some Process Control'lnslru-

meniation background is desired A BS degree in
Computer Science or Engineering is a minimum re

quirement

RSJH is a mulli-diSciplineO A'E'P lirm tvitn a «3

year reputation lor innovative technology applica

tions ana professional development RS4H offers

an aiiractive salary and benelits package including

a prime Florida location providing a Quality ol lite

second to none Please send your resume m com

plete confidence, including salary history to

Thorns* M. HIIU (904) 739-2000.

REYNOLDS, SMITH AND HILLS

Archiiecti-Engirweri-Planneri. Inc

P.O. Box 4650

^Jacksonville. FL 32201

BSSH encourages qualified rmnorilies women

veterans aid handicapped irtd viduais lo apply a

OPT-TECH SORT

SORT/MERGE Program tor the

IBM-PC, XT, AT & Compatibles

Btrieve Files Now Supported

• Written in assembly language (or high performance

Example14,000 records of 128 bytes sorted to give key

& pointer file in 30 seconds COMPARE!

• Son ascending or descewling on up lo nine fields

• Ten input files may 05 sorted or merged al one lime

• Supports many lite structures 8 Oala types

• Flesize limited only by your disk space

• Output file can be lull records, keys or pointers

• CEn Be run from keyboard or as a batch command

• Can be called as a subroutine lo many languages

• Easy to use — Fully documented

• JS9 - VISA. M/C, Check, Money Order, COD, or PO

Quantity discounts and OEM licensing available

To order or lo receive additional information

write or call

OPT-TECH DATA PROCESSING
P.O. Box 2167 Humble, Texas 77347

{713)454-7428

CIRCLE 40 ON READER SERVICE CARD

FORTRAN
PROGRAMMERS

Discover why

you should be using

F77L
the complete implementation

of the ANSI FORTRAN 77

Standard for the IBM PC and

compatibles.

If you are serious about your

FORTRAN programming, you

should be using F77L.

$477

Lahey Computer

Systems, Inc.

31244 Palos Verdes Drive Weil. Suite 243

Rjncho Palos Verde*. California 90274

1213) 541-1200

Serving the FOP.TRAS community

since 1969

CIRCLE 95 ON READER SERVICE CARD CIRCLE 79 ON READER SERVICE CARD CIRCLE 15 ON READER SERVICE CARD

109

ORDER COMPUTER LANGUAGE

BACKISSUES - WHILE THEY LAST!

PREMIER

The biggest collector's

issue

• Basic Becomes a

Structured Language—

by Kemeny & Kurtz

• Programming in the UNIX

Environment

• COBOL: Pride and

Prejudice

• Exploring Ada and

Modula-2

Exotic Language:

SNOBOL

Interview: Charles Moore

OCTOBER '84

• An Implementation

Demonstrating C

Portability

• The Evolution of ZCPR-

Part I

• BATCH—A Powerful IBM

"Language"

Exotic Language: PILOT

Interview: Donald Knuth

NOVEMBER '84

• Enhancing Source Code

Control under UNIX.
Parti

• Natural Language

Processing and LISP

• Building Portable

Programs

Exotic Language:

OCCAM

Interview: Gary Kildall

DECEMBER '84

• Exploratory

Programming

• Fred: A Language

within Framework

• Six Pascal Compilers

Compared

Exotic Language: OMNI

Interview: Bill Godbout

JANUARY '85

• Macros and Procedures

• Extensibility in Forth

• The Illrd Dimension-

Programming in dBASE

III

Exotic Language:

Transaction Application

Language

Interview: Sol Libes

FEBRUARY '85

C Language Special

Issue

• Twenty-One C

Compilers Compared

• The Standardization of

C

• C to Assembly

Interface

Exotic Language: MUMPS

Interview: P.J. Plauger

MARCH '85

• Modifying MS-DOS

Device Drivers

• Hashing out FORTH with

Charles Moore

• Programming Macros in

C (Debugging)

• Sol Libes Covers

Multiprocessing Systems

APRIL'85

• Recursive Procedures

• Sorting by Dispersion

• COBOL Compiler

Analysis

• C on the Macintosh

Exotic Language: APT

Interview: Gordon

French

MAY '85

Exclusive Interview:

Nlklaus Wirth and

Donald Knuth

• Twenty-nine BASIC

Interpreters and

Compilers Compared

• Macros In BASIC

Exotic Language:

Clascal

JUNE '85

• Forth: Twithe Curthed, too!

• Porting the UNIX Utilities

• Symphony Command

Language

Exotic Language: COMAL

Interview: Ward

ChrisTensen

Only a limited quantity

ofmagazines is

available, so order

today. To receive your

back issues, just fill

out this coupon

and mail it back with

a check for $5.00 per

issue.

Foreign orders1 Add S3 00 tor

airmail.

Premier

Oct. '84

Nov. '84

Dec. '84

Jan. '85

Feb. '85

Mar. '85

Apr. '85

May'85

Jun. '85

copies X $5.00= $

copies x$5.00= S

copies XS5.00= $

copies XS5.00= $

copies X$5.00= $

copies X $5.00= $

copies X $5.00= $

copies X $5.00= $

copies X $5,00=$

copies X $5.00= $

TOTAL $

NAME

COMPANY

ADDRESS .

CITY. STATE, ZIP

Send payment and coupon to:

COMPUTER

LANGUAGE
Back Issues

131 TownsendSt.

San Francisco, CA 94107

Creators of

COMPUTER LANGUAGE

Sponsor the C Expert Forum

Never before have so many leaders in the C pro

gramming field gathered for one event. The C Seminar/

Workshop will be an exciting forum on the latest technical

innovations and C language developments. Best of all, you'll experience a practical, hands-

on approach in small workshop sessions. AN this in the beautiful autumn foliage of New

England, just four blocks from Harvard Yard. The C Seminar/Workshop is brought to you by

the publishers of COMPUTER LANGUAGE.

The cost for this comprehensive 2!/2 day event is only $695. Sign up by June 30th and

receive a $100 early bird discount.

CURRICULUM

Speakers Jim Brodie, ANSI C committee chairman-. Overview of the ANSI Standardization Effort

P.J. Plauger, author, ANSI C committee secretary-. Programming Style and C
Larry Rosier, ANSI C language chairman-. Language Standardization Issues

Tom Plum, author; Efficiency of C Programs

Heinz Lycklama,/usr/group UNIX chairman: UNIX Perspective on C

Leor Zolman, compiler writer-. Porting C Programs between Operating Systems

Robert Ward, C User's Group coordinator: Structured Methods of Debugging C

Workshops Seminar participants will be able to choose four from this list:

(Subject to change
based on

availability)

Debugging Techniques

Interpreters in a Development Environment

Programming for Portability

Efficient Code Generation

Cross Compilers

Network Data Base Theory and C

Object-File Formats for UNIX Systems

Philosophy and Methodology of Benchmarks

ANSI Standards: Questions & Answers

Code Readability and Organization

Asynchronous Communications

Writing Extensions to C

C / UNIX System Subroutine Interfaces

Porting C between CP/M, MS-DOS, and

UNIX

C Seminar/Workshop Registration Form

Please enroll me in the C Seminar:

D Early Bird $595 (pay by 6/30/85)

D Single $695

D Multiple
(3 or more enrollments get $100 discount)

□ I do not wish to enroll at this time but

please send me more information.

Method of Payment:

□ Check Enclosed

□ Bill My Company

Make check payable to:
C.L. Publications Inc.

Name & title

Name & title

Name & title

Company

Address

Gly, State, Zip

Phone
EA85

COMPUTER LANGUAGE Seminar

131 Townsend St.

San Francisco, Calif. 94107

(415)957-9353

CIRCLE 116 ON READER SERVICE CARD

ADVERTISER INDEX

AGS Computers Inc

Amber Systems,

Arity Corp

Automata Design Assoc

Awareco

BD Software

Bendorf & Associates

Berstis International

Blaise Computing Inc

Borland International

C Ware/DeSmet

CCA Uniworks Inc

Chalcedony Software

Computer Helper Industries

COMPUTER LANGUAGE C Seminar

Creative Programming

Creative Solutions

Ecosoft

Entelekon

Essential Software Inc

ExperTelligence

ExsysInc

Franz Inc

Gimpel Software

Gimpe! Software

Gracon Services Inc

Greenleaf Software Inc

HSCInc

Harvard Softworks

Haventree Software

Human Computing Resources Corp

PAGE

NO.

1

81

18

55

83

22

109

109

6

CIRCLE

NO.

. 7

. 2

.48

. 1

. 5

. 4

. 6

.88

. 3

cover IV 9

78 11

87 60

8 49

99 10

111

21

76

73

97

89

67

39

63

59

73

40

54

104

100

109

70

116

.52

.. 8

.17

.50

.33

30

.54

.55

Hyperon Software 1 09

Inmos Corp 84

KC Systems 101

KDSCorp 33

Lahey Computer Systems Inc 1 09

Lattice Inc 82

Level Five Research Inc 21

Lifeboat Associates 77

Lifeboat Associates 1 02

LISP Company (The) 33

mbp Software & Systems Technology 93

MIX Software 41

Major Software 73

56

.44

.12

.47

.58

.93

.51

32

.59

.62

.15

.18

.64

.87

.85

.65

.53

.24

.14

Manx Software Systems

Megamax Inc

Microsoft Corp

Microsoft Corp

Mindbank Inc

cover III 69

99 13

3 —

5 —

90 63

112

Morgan Computing Co 1 09

Mystic Canyon Software 74

Next Generation Systems 98

Northwest Computer Algorithms 67

Oasys 99

Oasys 101

Op Tech Data Processing 109

Phoenix Computer Products Corp 1 07

COMPUTER LANGUAGE ■ JULY 1<?85

.22

.57

.61

.39

.70

.71

.40

.19

Plu Perfect Systems

Polytron Corp

Poor Person Software

ProCode

Programmer's Connection

Programmer's Journal

Programmer's Shop (The)

Programmer's Shop (The)

Programming Logic Systems

Quintus Computer Systems Inc. ..

Rational Systems Inc

Realia Inc

Relational Database Systems Inc.

Reynolds, Smith, & Hills

SLR Systems

STSC

SoftCraftlnc

Softaicf Inc

Softfocus

Software Horizons

Softway Inc

Solution Systems

Solution Systems

Sparry Software Labs

Speedwore

Spruce Technology Corp

SuperSoft

Systems Guild

Systems Peripheral Consultants...

TGLInc

Tardis Software

Technisoft

Turbo Power Software

UniPress

Unitek Technologies Corp

Watcom Products Inc

Wendin

Wizard Systems

Workman & Associates

PAGE CIRCLE

NO. NO.

56 35

34 34

103 67

10 73

105 16

106 75

68 84

94 117

55 21

48 20

58 72

108 76

9 77

109 79

91 28

cover II 121

79 31

97 78

103 80

91 25

42 29

75 42

75 122

101 66

55 41

17 26

60 74

10 27

91 38

109 95

21 82

72 83

53 45

63 81

56 23

25 36

23 43

97 86

103 68

The index on this page is-provided as a service to our readers. The

publisher does not assume any liability for errors or omissions.

BUY AN AD

GET A CAT!

(Details to come next month.)

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO- 27346 PHILADELPHIA, PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

COMPUTER

SUBSCRIBE LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.95—over

30% savings off the single copy price.

D Yes, start my Subscription to COMPUTER LANGUAGE today. The cost

is only $24.95 for 1 year (12 issues).

□ I want to increase my savings even more—send me 2 years (24

issues) of COMPUTER LANGUAGE for only $39.95.

G Payment enclosed □ Bill me

Name

Company

Address

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S.

funds. Canada orders $30.95 per year. Outside the U.S., $36.95/year for surface mail or

$54.95/year for airmail.

CI75

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UtJrTEO STATES

SUBSCRIBE LANGUAGE

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 PHILADELPHIA, PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUA3E
PO. BOX 11747

PHILADELPHIA, PA 19101

Subscribe to COMPUTER LANGUAGE today for only $24.95—over

30% savings off the single copy price.

G Yes, start my Subscription to COMPUTER LANGUAGE today. The cost

is only $24.95 for 1 year (12 issues).

D I want to increase my savings even more—send me 2 years (24

issues) of COMPUTER LANGUAGE for only $39.95.

D Payment enclosed G Bill me

Name

b Company

Address

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S.

funds. Canada orders $30.95 per year. Outside the U.S., $36.95/yoar for surface mail or

$54.95/year for airmail.

CI75

1

HO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 224B1 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

If MAILED

IN THE

UNfTED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

I

I

s
I

i

■

FREE INFORMATION

Name

Company

Address

City. State. Zip

Country . Telephone number.

July issue Noi good if mailed ofW November 30. 19B5.

Circle numbers tor which you desire Information.

I obtained this issue through

D Subscription U Passed on by associate

Q Computer Store L] Othef

D Relail outlet

Comments

1

2

3

41

i

6

7

8

9

»

IB

21

22

33

14

25

36

17

28

29

30

31

32

33

34

35

36

37

38

39

40

1

12

3

14

5

16

7

8

9

>0

51

S3

53

54

55

56

57

SB

59

60

61

63

63

64

65

66

67

68

69

70

71

73

73

74

75

76

77

78

79

80

81

83

S3

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

ltd

117

116

119

120

131

123

123

134

135

136

137

118

119

130

131

132

133

134

I3i

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
Arrn; Reader Service Dept.

FREE INFORMATION

July issue. Not goo<J if moiled ofier November 30. 1985.

Circle numbers for which you desire information.

I 11 21 31 41 51 61 71 81

I obtained this issue through:

□ Subscuption □ Passed on by associate

D Computer Slore U Other

I ! Retail outlet

Comments

101 111 121 131 141

102 112 122 132 142

63 73 83 93 103 113 123 133 143

64 74 B4 94 104 114 124 134 U4

105 115 125 13S 145

106 116 126 136 146

107 117 127 137 147

108 118 128 138 148

109 119 129 139 149

10 10 30 40 50 60 70 80 90 100 110 120 130 140 150

52 62 72 82

53

54 64 74 84 94

55 65 7S 85 95

56 66 76 66 96

17 27 37 47 57 67 77 87

18 28 38 48 58 68 78 88

19 29 39 4O 50 (ft 79 «9

Attn: Reader Service Dept.

aztec The Most Powerful C
for the IBM AT • MACINTOSH • MS DOS • CP/M-80 • ROM APPLICATIONS

IBM PC/XT • APPLE // • CP/M-86 • TRSDOS • CROSS DEVELOPMENT

Why Professionals Choose Azlec C

AZTEC C compilers generate fast, compact

code, AZTEC C is a sophisticated development

system with assemblers, debuggers, linkers,

editors, utilities and extensive run time libraries.

AZTEC C is documented in detail. AZTEC C is

the most accurate and portable implementation

of C for microcomputers. AZTEC C supports

specialized professional needs such as cross

development and ROM code development.

MANX provides qualified technical support.

AZTEC C86/PRO

— for the IBM AT and PC/XT

AZTEC C86/PRO provides the power, portabili

ty, and professional features you need to

develop sophisticated software for PC DOS, MS

DOS AND CP/M-86 based microsystems. The

system also supports the generation of ROM

based software for 8088/8086, 80186, and 80286

processors. Options exist to cross develop ROM

code for 65xx, 8080, 8085, and Z80 processors.

Cross development systems are also available

that target most micro computers. Call for infor

mation on AZTEC C86/PRO support for XENIX

andTOPVIEW.

POWERFUL - AZTEC C86/PRO 3.2 outper

forms Lattice 2.1 on the OHRYSTONE

benchmark 2 to 1 for speed (17.8 sees vs 37.1)

while using 65% less memory (5.8k vs 14k). The

AZTEC C8&PRO system also compiles in 10%

to 60% less time and supports fast, high volume

I/O.

PORTABLE — MANX Software Systems pro

vides real portability with a family of compatible

AZTEC C software development systems for PC

DOS, MS DOS, CP/M-86, Macintosh, CP/M-BO,

APPLE // +, lie, and lie (NIBBLE - 4 apple rating),

TRSDOS (80-MICRO ■ 5 star rating), and Commo

dore C64 (the C64 system is only available as a

cross compiler - call for details). AZTEC

C86/PRO is compatible with UNIX and XENIX.

PROFESSIONAL — For professional features

AZTEC C86/PRO is unparalleled.

• Full C Compiler (8088/8086 ■ B0186 ■ 802861

• Macro Assembler lor B088/8086/80186/80206

• Linkage Editor with ROW supporl and overlays

• Hun Time Libraries - object libraries + source

DOS 1.x; DOS 2.»; DOS 3.x; screen I/O; Graphics;

UNIX I/O; STRING; simulated float; 8087 support;

MATH; ROM; CP/M-86

• Selection of 8088/8066, 80186. or 80286 code genera-

lion to guarantee best choice for performance and

compatibility

Utility to convert AZTEC object code or libraries to

Microsoft format. (Assembly + conversion takes

less than half the time as Microsoft's MASM to pro

duce MS object)

Large memory models and sophisticated memory

management

Support products (or graphics. DB. Screen. & ...

ROMablecode + ROM support + separate code and

data + INTEL Hex Converter

Symbolic Debugger & Other Utilities

Full Screen Editor (like VI)

CROSS Compilers are available to APPLE II, Macin

tosh. CP/M-80. TRSDOS, COMMODORE C64, and

ROM based 65xx, and 8080/8085E80

• Detailed Documentation

AZTEC C86/PRO-AT $500

(configured lor IBM AT - options for ;

AZTEC C86/PRO-PC/XT S500

(configured for IBM PC/XT ■ options for 80186/80286)

AZTEC C86/BAS includes C compiler (small model only),

8086 MACRO assembler, overlay linker, UNIX, MATH,

SCREEN, and GRAPHICS libraries, debugger, and

editor.

AZTEC C86/BAS S199
AZTEC C86/BAS (CPfM-86) S199

AZTEC C86/BAS (DOS + CP/M-86) S299

UPGRADE to AZTEC C86/PRO S310

C-TREE Database with source . $399

CTREE Database (Object) S149

CROSS COMPILERS

Cross Compilers for ROM, MS DOS. PC DOS. or CP/M-86

applications.

VAX ->B086iB0xxx cross S5000

PDP-11 ->8086/80xxx cross S2000

Cross Compilers with PC DOS or CP/M-86 hosts are S75D

for the first target and $500 for each additional target.

Targets: 65xx: CP/M-80; C64; 8080/8085/Z80; Macintosh;

TRSDOS. 8086/8088/80186/80286; APPLE //.

AZTEC C68K

— (or the Macintosh

For power, portability, and professional features

AZTEC C68K-C is the finest C software development

system available for the Macintosh.

The AZTEC C68K-C system includes a 68000 macro

assembler, a linkage editor, a source editor, a mouse

based editor, a SHELL development environment, a

library of UNIX I/O and utility routines, lull access and

support of the Macintosh TOOLBOX routines, debug

ging aides, utilities, make, diff. grep. TTY simulator with

upload 5 download (source supplied), a RAM disk (for

512K Mac), a resource maker, and a no royalty license

agreement. Programming examples ar included. (Over

600 pages of documentation).

AZTEC C68K-C requires a 128K Macintosh,

and two disk drives (frugal developers can make

do with one drive). AZTEC C68K supports the

512K Macintosh and hard disks.

AZTEC C68K-C (commercial system) .S500

AZTEC C68K-p (personal system) S199

AZTEC C68K-p to AZTEC C68K-C upgrade .$310

MANX
TRS 80 RADIO SHACK TRS DOS is a trademark of TANDY

APPLE DOS MACINTOSH is a trademark of APPLE.

Mac C-tree database $149

Mac C-tree database *ilh source S399
Lisa Kit (Pascal to AZTEC C68k object converter) . .5 99

AZTEC C65

— for Ihe APPLE II

-...The AZTEC Csystem is one of the lines! software

packages I have seen... " NIBBLE review, July 1984.

The only commercial C development system available

that runs native on the APPLE II+ . Me. and lie. the

AZTEC C65 development system includes a full floating

point C compiler compatible with UNIX C and other

MANX AZTEC C compilers, a 6502 relocating assem

bler, a linkage editor, a library utility, a SHELL develop

ment environment, a full screen editor, UNIX I/O and

utility subroutines, simple graphics, and screen func-

lions.

AZTEC C65 (Apple DOS 3.3) $199

AZTEC C65/PRO (Apple DOS + ProDos) S350

(call for availability)

AZTEC C II/PRO

— loi CP/M.80

The first member of the AZTEC C family was the

CPfM-BO AZTEC C compiler It is "the standard" com

piler lor development on CP/M-80. The system includes

the AZTEC CMC compiler, an 8080 assembler, a linkage

editor, an object librarian, a full library of UNIX I/O and

utility routines, CP/M-80 run time routines, the SMALL

library (creates modules less than 3K in size), the tast

linker for reduced development times, the ROM library,

RMAC and MBO suopoit. library source, support for

DRl's SID/ZSID symbolic debugger, and more.

AZTEC C WIPBO $349

AZTEC CII/BAS S199
C-TREE Database with source S399

CTREE Database in AZTEC object form S149

AZTEC C80

- lor TRSDOS (Radio Shack Model III & 4)

-I've had a lot ol experience with different C compilers.

Out the Aztec C80 Compiler and Professional Develop

ment System is the best I've seen." 80-Micro. Decem

ber. 1984. John B. Harrell III

This sytem has most ot the features of AZTEC C II for

CP/M. It is perhaps the best software development

system for the Radio Shack Model 111 and IV.

AZTEC C80 model 3 (no floating point) $149

AZTEC C80 model 4 (full) $199

AZTEC C80/PRO (full for model 3 and 4) S299

To order oi for information call:

800-221-0440
(201) 530-7997 (NJ and outside U.S.A.). Or write MANX

SOFTWARE SYSTEMS. PO Box 55. Shrewsbury. N.J.

07701

SHIPPING INFORMATION - Standard U.S.

shipment is UPS ground (no tee). In the U.S.

one day shipment is $20, two days is $10.

Canadian shipment is S10. Two days ship

ment outside the U.S. is by courier and is

freight collect.

For Technical Support

(Bug Busters) call: 201-530-6557

CIRCLE 69 ON READER SERVICE CARD

, Power, Price. ■

Borland'sTurbo Pascal Family.
77ie industry Standard. With more than 250.000 users worldwide Turbo Pascal is me industry's de facto standard

Turbo Pascal is praised by more engineers, hobbyists, studens and professional programmers than arty other development

environment in the history of microcomputing. And yet, Turbo Pascal is simple and fun louse'

Jatl Duntemann. PCMagazlna: "Language dealot she century

programming environment and runs like magic"

Turbo Pascal 11 introduces s new

Dave Garland. Popular Computing: Most Pascal compilers barely fit on a disk, but TurDo Pascal packs an editor, compiler, linker,

and run-vme library into jusi 29K bytes of random-access memory"

Jerry Poumelle. BYTE: What I think Me computer industry is headed tor well documented, standard, plenty olgood leatwes.

and a reasonable price.'

Portability. Turbo Pascal is available today tor most computers running PC DOS. MS DOS, CP/M 80 or CP/M 86 A XENIX venson of Turbo
Pascal will soon be announced, and before the end of the year. TurDo Pascal will be running on most 68000 based microcomputers.

High resolution monochrome graphics for the IBM PC and the Zenith 100 computers

Dazzling graphics and painless Windows. The Turbo Graph.- Toolbox will give even a beginning programmer
the expert's edge. It's a complete library ol Pascal procedures that include:

—Full graphics window management.

-Tools that will allow you to draw and hatch pie charts, bar chans. circles, rectangles and a lull range of geometric shapes
—Procedures thai will save aid restore graphic images to and from disk.

—Functions thai will allow you to precisely plot curves.

-Tools that will allow you to create animation or iolve those difficult curw fitting problems.
and much, much more .

NO sweat and no royalties. You may incorporate part, or all of these tools in your programs,
and yet. we won't charge you any royalties. Best of all. these (unctions and procedures come complete
with commented source code on dish ready to compile!

Searching and sorting made simple ^^M

The perfect Complement tO Turbo Pascal. It contains. TbrOo-Aceess. a powerful implementation of the state-oUhe-art B+tree ISAM
technique. Turbo-Sort, a super efficient implementation of the fastesi data sorting algorithm. "Quicksort on disk" And much more.

Jerry Poumelle, BYTE: The tools include a B-Mree search and a sorting system. I've seen siulf like this, but not
as well thought out. sell for hundreds of dollars."

Get Started right away: free database! Included on ewry Toolbox disk is the source code to a working
data base which demonslrates how powerful and easy to use the TurbD-Access system really is.

Modify it to sun your individual needs or just compile it and run.

Remember, no royalties!

From Start to Finish in 300 pages. Turbo Tutor

is 'or everyone, Irom novice lo expert Even if you've never

programmed before. Turbo Tutor will get you started right away

If you already have some experience wilh Pascal or another

programming language. Turbo Tutor will take you step by step

through topics like daia structures and pointers If you're an expert.

you'll loyejhe sections detailing subjects such as "how to use assem

bly language routines with your Turbo Pascal programs"

A must. You'll find The source code for all
the examples in the book on the accompanying

disk ready to compile Turbo Tulor might be

the only reference on Pascal and pro

gramming you'll ever need.

BORlflflD
INTERNATIONAL

Tuito Pascal a a rejsiKea tiademaifc o! B&lapi lniNr-.aiior.at1. lie

CIRCLE 9 ON READER SERVICE CARD

$34.95

Softwares Newest Direction
4585 Scoits Valley Drive
Scotts Valley, CA 95066

TELEX 172373

