

PSSST
JANUS/Ada

$99.95!!

PRESENTING THE NEW

JANUS/Ada C-PAKH

Janus/Ada Compiler

Janus/Ada Linker

Janus/Ada Libraries

Janus/Ada Example/

Programs

Janus/Ada User Manual

AND THESE ADDED

FEATURES!!

1. Free User's Group

2. $99.95 Discount on

the Janus/Ada D-Pak

3. No License!!

4. No Copy Protection!!!

5. Customer tested for

over 3 years!!!

This is the introductory Ada™ package you've been waiting

for. . . over three years of actual field use, specifically on

microcomputers, by the government. Fortune 500 businesses

and major universities. Realistically priced, at $99.95, so you

can afford the most popular Ada implementation used on

microcomputers!

The new "C"-Pak is available for most microcomputers

running MS-DOS, including the IBM PC AT™, as are all the

other fine Janus/Ada programs. Call us or an authorized

distributor for your copy today!

National Distributors

Westico, Inc.

25 Van Zanl St.

Norv.alk.CT 06855

(203)853-6880

ASH II

7107 Marisol

Houston. TX 77083

(713)933-1828

A.O.K. Computers

816 Easley St., Suite 615

Silver Springs. MD 20910

(301)588-8446

Trinity Solutions

5340 Thornwood Dr., Suite 102

San Jose. CA 95123

(408)226-0170

Microprogramming. Inc.

P.O. Box 3356

Chalsworth, CA 91313

(818)993-6475

International Distributors

Ada Australia Progesco

218 Lutwyche Rd. 155, rue du Faubourg

Windsor 4030 St. -Denis

QLD. Australia 75010 Paris

(07) 57 9997 France

(1) 205.39. 47

Lifeboat, Inc. Japan

3-6. Kando-Nishikicho

Chlyoda-ku

Tokyo 101, JAPAN

03-293-4711

LP M. IP M.W. CCP M-S6.T.

W\ II ■ nadcmnli of tin U S

Copyright 1984 RR Softwar

OFTWARE, INC. specialists in state of the art programming

P.O. Box 1512 Madison, Wisconsin 53701

(608) 244-6436 TELEX 4998168

CIRCLE 58 ON READER SERVICE CARD

"Now I program

with Power Windows"
Alan R. Feuer

Vice President, Research and Development

Catalytix Corporation

Author: The C Puzzle Book

CCA EMACS...The Most Powerful Editor
Environment Available for Unix and VAX/VMS
"Programming with CCA EMACS, I can look at two

or more files at once in different windows and then

move text between them."

Alan Feuer is just one of many demanding
programmers who have discovered that CCA

EMACS™ makes program editing and system develop
ment much easier and faster. And "power windows"
are only part of the reason Alan Feuer uses CCA

EMACS...

Unprecedented power, speed, functionality, extensi
bility, pliability, and consistency across systems and
on any terminal are others. CCA EMACS includes

close to 400 built-in commands which let you do any
job with only a few keystrokes, even the kinds of
things that are difficult or impossible with other edi

tors. And with our full Common Lisp-based extension

language, Elisp™, you can customize CCA EMACS to
meet all your specific program needs.

CCA EMACS has two extensive recovery facilities to
protect against system failures. Supported by a full

online documentation package, including tutorial, the

system can be used by beginners and experts alike.

This complete kit of editing tools runs under Berkeley

Unix™ (4.1BSD and 4.2BSD), Bell Unix (Systems 111

and V), Xenix™, and VAX/VMS™.

Binary prices range from $380 to S850 for Unix to

$1900 for VMS.

CCA Uniworks, Inc.
Productivity Tools for Programmers

20 William Street, Wellesley MA 02181

CIRCLE 82 ON READER SERVICE CARD

For more information or to place an order
call our customer representatives at

800-2220214
in MA (617)235-2600

or mail this request form today.

Please send me information on:
D CCA EMACS □ The Safe C Development Tools
D Al Development Tools LJ Your complete line of state-of-

-the-art programming tools

D Please send license lorms

Name . .

Title

Company

Address

City, Stale, Zip

Phone ()

CCA UNIWORKS, INC.

20 William Street Wellesley, MA 02181

^p ACrowntekCompany

Unix, VAX and VMS and Xenix iiri! trademarks of Bell Laboratories, Digital CL
Equipment Corporation, and Microsoft Corporation, respectively. Sale C is a

trademark ol Calalytix Corporation. CCA EMACS and Elisp are trademarks of

CCA Uniworks. Inc.

Imagine

dBASE IIP

running up

to 20 times

faster.

The time

for Clipper

has arrived.

Clipper introducesyou to tlie time ofyour life.

Time is your most

valuable commodity.

Because how you

spend your time, is how

you live your lite.

At Nantucket, we

believe you should live

life to the fullest.

Clipper, Ihe first true

compiler lor dBASE

III,"1 is a timely exam

ple. Now, dBASE com

piled by Clipper runs 2

lo 20 limes faster than

dBASE with its stan

dard interpreter.

A dBASE interpreter

painstakingly checks

and executes your

source code one liiie at

a lime, every time you

run a program. Wilh

Clipper, once you've

debugged your source

code, it's compiled into

more efficient machine

code. Your program

runs without Ihe lime

consuming overhead of

redundant translation.

Clipper compiles all

your existing and future

dBASE III programs.

Developing a com

piler for dBASE III was

just a matter of lime.

Call your dealer or our

loll Iree 800 number

and ask (or Clipper.

Then go make the

most ol your life time.

20456 Pacific Coasl Hwy., Malibu. Ca 90265 (800) 5561234 ext. 225. In California (800) 4412345 exl. 225

CIRCLE 59 ON READER SERVICE CARD clBASI III is a regislrirud Iradomafk Ol Asfilon fete

COMPUTER

LANGUAGE

ARTICLES
Recursive Procedures
by John Snyder

For hundreds of years, mathematicians have been using recursively
defined functions to solve all sorts of problems. In computer program

ming, a recursive procedure is simply a process that uses itself as a sub-

process. Understanding exactly how and when to use recursion in a

given program is often a tricky issue. Yet, once mastered, it becomes an

important tool to add to your programmer's workbench.

Sorting by Dispersion
by David Keil

The dispersion method of sorting is used frequently on mainframes.
However, it has rarely been applied with microcomputers due to the

greater complexity of the algorithms, higher memory overhead, and
marginal speed advantage at array sizes below about a thousand. Yet

now, as hard disks and RAM chips of greater capacity come into use, it

is possible that dispersion-based sorting algorithms may replace the
more traditional algorithms based on comparison.

Programming Macros in C, Part III
by Alexander B. Abacus

Programming problems often call for table-driven solutions, and related

programs (or different modules of the same program) may use tables

derived from the same data. In this final installment of the author's series
on C macros, he explores how the preprocessor of a C compiler can be
used to translate a common representation of a table of data into differ
ent but related tables.

19

17

35

DEPARTMENTS
Editor's Notes

Feedback

CrossXthoughts
Search by hashing

Public Domain Software Review
More MS-DOS utilities

Exotic Language of the Month Club
APT: Automatic and Programmable Trees

Com puterVision s

Gordon French—Old man of the micro revolution

Product BINGO

Software Review
Microcomputer COBOL compiler analysis

Software Review
Con the Macintosh

Advertiser Index

5
9

13

41

43

57

63

65

83

96

SOLVE PROGRAMMING PROBLEMS
IHEWAJfYOUlHINK.

PUREANDSYMBOL.

APL*PLUS®/PC
IS THE ANSWER.

The shortest distance between

two points is a straight line. But

unfortunately, that's not the case

in programming.

Most languages require you to go

through an enormous number of

steps before an idea becomes reality.

That's why the APL*PLUS/PC

System is such a dramatic and

exciting software tool for serious

PC programmers and application

developers.

Instead of requiring you to

learn—and write—long-winded

and complicated programs, APL is

based on your instinctive ability to

deal in symbols. And once you

begin using APL's quick notations,

you'll find it the ideal programming

environment for all your applica

tion needs.

The incredible shortcuts you'll

get with APL not only make you

more productive, but make pro

gramming enjoyable. Intricate

calculations and modeling on PC's

are a snap. You'll spend less time on

drudgery, and more time creating.

Only with APL* PLUS/PC, do

you get:

• full-screen editing

• a built-in terminal emulator

• communications

•graphics primitives

• and report formatting.

Writing time-consuming

programs like sorting, ma

trix inversions, and string

searching is eliminated.

APL's concise notation

already provides these.. .and more.

No wonder a PC Magazine re

viewer enthusiastically reacted to our

APL*PLUS/PC System with

"awe and delight."

So will you. The complete pack

age price is $595 and major credit

cards are accepted.

Act now and we'll send you a free

Convincer Kit. Contact your local

dealer, or call 800-592-0050 (in

Maryland, call 301-984-5123) to

order your system, or for more in

formation about our other

APL PLUS*WARE™ products-

from our UNIX™ version

to our new streamlined

Pocket APL™

You'll see how symbol

they are to use, the very first

time you use them.

Problem-solving atthe speed of thought.

CTC/1 "FL * "L-s pC System requires 192K. A soft character set can be used lor computers with IBM compatible graphics board. A character generator ROM or
9 I 3V software is included for Ihe IBM PC or selected compatibles
a coniei company PLUS* WARE and POCKET APL are trademarks of STSC. Inc. APL* PLUS is a registered service mark and trademark ol STSC, Inc. UNIX is a trademark 01

AT&T Bell Laboratories.

CIRCLE 74 ON READER SERVICE CARD

Editor's
Notes

E
xciting news!

Next month, we

I will present a

very special feature in the pages of

COMPUTER LANGUAGE . . .

Our debate columnist, Ken Takara,

recently had the opportunity to interview

perhaps the two most legendary figures in

programming today — Donald Knuth and

NiklausWirth.

Discussing a wide variety of subjects

like programming style, language preju

dices, art vs. science, and many other

philosophical subjects, Knulh and Wirth

review the past, preseni, and future of

programming from their special

perspectives.

In addition, Donald Knuth plays an

indirect role in this month's COMPUTER

LANGUAGE. A vital source for two fea

tures that appear in this issue is the well-

known Sorting and Searching volume III

of Vie An ofComputer Programming.

This month we have two articles that

explore sorting and searching from new

angles. In "Sorting by Dispersion,"

author David Keil explores a sorting

methodology that has really only been

used for mainframe computations in the

past. It has rarely been applied on micro

computers because of the inherent com

plexity of the algorithm's design, the

higher memory overhead required to use

it. and the marginal speed advantage at

array sizes below a thousand.

But as hard disks and RAM chips of

greater capacity conic into use. it is possi

ble that dispersion-based sorting algo

rithms may replace the more traditional

sorting algorithms which have been based

on comparison.

Hash coding is also treated from a dif

ferent perspective by our CrossXthoughts

columnist, Namir Clement Shammas, as

he explores a searching method that

involves data sorted in memory and on

stored files. He shows how hashing tech

niques are important for data base pro

grams as well as language compilers,

interpreters, preprocessors, and any soft

ware that must search in a list of names

quickly and efficiently.

On the electronic COMPUTER

LANGUAGE side of things, another spe

cial news item this month is that our Com

puServe data base has just passed the

10.000 caller mark! The amazing success

we've had with this electronic medium,

and with our two bulletin boards, has been

almost as exciting as the magazine itself.

One notable change was also made in

our CompuServe SIG— we have a new

sysop. Jim Kyle, from Oklahoma City,

Okla.. will now be in charge of our

COMPUTER LANGUAGE reader meeting

place. He has plans for future real-time

conferences with language founders and

other notable technical people in our

industry.

Just starting on our SIG are also various

special interest groups—like the new lan

guage development club that Namir Cle

ment Shammas has started (see the Cross

Xthoughts column, page p. 13)and

special C and Forth language forums.

Finally, if you're a loyal C programmer or

a person just interested in getting into C,

don't forget to mark Sept. 16—18 on your

calendars and meet us in Cambridge,

Mass., for our C Seminar (see the adver

tisement on page 94). We will soon be

announcing the C technical experts that

will be speaking and conducting work

shops for this special event. Maybe your

company can pay for the trip?

COMPUTER

/ut^J^C~
Craig LaGrow

Editor

Telecommunicate to COMPUTER LANGUAGE

COMPUTER LANGUAGE has established two bulletin board systems for you to

upload and download text and binary programs, as well as to leave your own elec

tronic Letter to the Editor. All the program listings referred to in every issue of the

magazine will be available here.

For those readers without access to a modem who desire a copy of program listings

referred to but not printed in an issue, send $5 to COMPUTER LANGUAGE, attention:

Listings Dept., 131 Townsend St., San Francisco, Calif. 94107. We will mail you a

copy of all the listings not printed in this issue.

In addition. COMPUTER LANGUAGE has its own Special Interest Group on Com

puServe's national data base. After calling into your local CompuServe node, simply

type "GO CLM" at any prompt and you'll be in our SIG.

To access our bulletin board, set your computer or terminal to the following param

eters: 8 data bits, no parity. 1 stop bit. full duplex, and either 300 or 1200 baud. The

telephone number is (415)957-9370. After your modem makes the connection, type

RETURN several times, and everything else is easy.

Both systems are open 24 hours per day, 7 days per week. Due to the heavy number

of callers, please do not log into the system more than one time per day. Messages left

on either system will be combined the following day.

LANGUAGE
EDITOR

Craig LaGrow

MANAGING EDITOR

Regina Starr Ridley

TECHNICAL EDITOR
John Halamka

PRODUCT REVIEW EDITOR

Hugh Byrne

EDITORIAL ASSISTANTS
Lorilee Biernacki, John Harrington

CONTRIBUTING EDITORS
Doug Millison, Tim Parker, Peler Reece,

NamirClement Snammos

INDUSTRY NEWS CONSULTANT
Bruce Lynch

SPECIAL PROJECTS MANAGER
JanDente

OPERATIONS CONSULTANT

Beatrice C. Blatteis

CIRCULATION COORDINATOR
Renalo Sunico

ART DIRECTOR
Jeanne Schacht

COVER PHOTO

Dow Clement Photography

PRODUCTION ARTIST

Anne Doering

PRODUCTION

Barbara Luck, Steve Campbell, Kyle Houboll

TECHNICALCONSULTANT
Addison Sims

MARKETING CONSULTANT

Steve Rank

ACCOUNTING MANAGER

Lauren Kalkstein

COMPUTER LANGUAGE is published monthly by COM

PUTER LANGUAGE Publishing Ltd., 131 Townsend Sf.,

Son Francisco, CA 94107. (4)5) 957-9353.

Advertising-. For inform of/on on ad rofes, deadlines, and

placement, contact Cor/ [ondou or Jon Dente at 1415)

957-9353, or writs to: COMPUTER LANGUAGE, 131

Townsend St., San Francisco, CA 94107.

Editorial: Please address all letters and inquiries to: Craig

LaGrow, Editor, COMPUTER LANGUAGE, 135 IWnsend

St., San Frondsca, CA 9.1107.

Subscription* Contact COMPUTER LANGUAGE, Sub-

scriptions Dept., 2443 Fillmore St., Suite 346, San Fran-

Cisco, CA 94115. Single copy price: $2.95. Subscription

prices: S24.95per year (U.S.); S30.95 per year (Canada

and Mexico). Subscription prices for outside the U.S.,

Canada, and Mexico: S36.95 (surface mail), S54.95 (air

mail)— U.S. currency only. Please allow six weeks lor new

subscription service to begin.

Postal information: Second-class postage rate is pending

at San Francisco, CA and additional mailing offices.

Reprints: Copyright 1985 by COMPUTER LANGUAGE

Publishing Ltd. All rights reserved. Reproduction af mate

rial appearing in COMPUTER LANGUAGE it forbidden

without written permission.

Change of address: Phase allow six weeks for change of

address to take effect. POSTMASTER: Send change of ad

dress (Form 3579) to COMPUTER LANGUAGE, J3I

Townsend Si., Son Francisco, CA 94107.

COMPUTER LANGUAGE is a registered trademark

owned by the magazine's parent company, Ct Publica

tions. Ail material published in COMPUTER LANGUAGE

is copyrighted 8 1985 by Cl Publications, Inc. All rights

reserved.

Programmers' Pfantasies
by Phoenix.

Phoenix makes programmers' dreams come true.

With the best-engineered, highest performance

programming tools you can find. A full line of

MS™-DOS/PC DOS programs and utilities no

other company offers. All designed to help you

write, test and deliver the best programs possible.

Top-of-the-line quality at a price you can afford.

Finally, A Lint For MS-DOS.

Now you can get the full range of

features C programmers working in

UNIX™ have come to expect from their

Lint program analyzer.

With Pre-C™ you can detect struc

tural errors in C programs five times

faster than you can with a debugger.

Find usage errors almost impossible to

delect with a compiler. Cross-check multiple source files

and parameters passed to functions. Uncover interface bugs

that are difficult to isolate. All in a single pass. Capabilities
no C compiler, with or without program analyzing utilities.

can offer. In fact. Pre-C outlints Lint, since you can handle

analyses incrementally.

And, Pre-C's flexible library approach lets you maintain

continuity across all the programs in your shop, whether

you use Pre-C's pre-built libraries, pre-existing functions

you already have, or some you might want to buy yourself.

Plus, you're not limited to one particular library, and

Pre-C keeps track of all the libraries you're using to make

sure that code correctly calls them. $395.

Assemble Programs Twice

As Fast.

Pasm1M 86 assembles Masm files 2 to

3 times faster than Masm 3.0. Pasm86

supports 8086/88, 8087, 80186 and

80286 processors.

With Pasm 86 *S built-in defaults, you

can write code quickly since you won't

spend hours learning all the control

statements needed at the beginning of your program. You

can define symbols on the command line. Decide whether

you want error messages or not. And. put local symbols

within procedures. $295.

Special Thanks to Gastcn Audrey of Framingham, MA.

Still Fixing Bugs The

Hard Way?

Pfix™86 Plus, the most advanced

symbolic debugger on the market,

eliminates the endless error searches

through piles of listings. Locate in

structions and data by symbolic name,

using symbolic addresses. Handle

larger, overlayed programs with ease.

An adjustable multiple-window display shows source and

object code and data, breakpoint settings, current machine

register and stack contents simultaneously. An in-line as

sembler allows program corrections directly in assembly

language. Powerful breakpoint features run a program full

speed until a loop has been performed n times.

With a single keystroke you can trace an instruction and

the action will be immediately reflected in source, object,

data, stack, and register windows. Another key begins a

special trace mode that executes call and loop instructions at

full speed. Designed to work with both Plink86 and MS|1J

LINK linkage editors. $395.

Get The Lead Out

Of Binary File Transfer.

Ptel™ is the universal binary file

transfer program for MS-DOS 2.0 or

3.0. You can move binary files fast and

accurately. Upload or download groups

of files from Bulletin Boards or remote

computers. Move files between dissim

ilar machines and operating systems.

Ptel's advanced binary protocol, Telink, offers better-

than-Modem7 accuracy and performance. Faster transfer

speeds. An on-screen update of error correction, blocks,

transferred, and time to complete.

Includes popular Modem7 and XModem protocols. With

Checksum or CRC. Plus Kermit and ASCII. $195.

COMPUTER LANGUAGE ■ APRIL 1985

Maximize Your Program's

Efficiency.

Pfinish™ delivers the fastest running

programs possible. This performance

analyzer lets you "zoom in" on the

inefficient parts of your program.

Whether written in assembly language.

C. Pascal. Fortran. Even Basic. Unlike

profilers available today, Pfinish under

stands the structure of your program and reports the amount

of activity and time spent in its subroutines or functional

groups. Pfinish analyzes both overlaid and memory resident

programs. Down to the instruction level. Reports are dis

played. Stored on disk. Or printed out. In tabular form or

histograms.

Do a dynamic program scan. Identify the most frequently

executed subroutines. Find inefficient code that costs your

program valuable time. Rank subroutines by execution fre
quency. $395.

Why Work With A Primitive

Editor?

More than a powerful editor,

Pmate™ is a text processing language.
An emulator of other editors. A lan

guage-specific editor for C, Pascal,

and Fortran. Pmate™ can even run in

the background!

You get full-screen, single-key edit

ing. Ten editing buffers. Horizontal and vertical scrolling.
A "garbage stack" buffer. A built-in macro language with
variables, control statements, radix conversion, tracing and
120 commands thai you can group and execute with a single
keystroke. $225.

Why Squeeze Your Program

More Than You Have To?

The PIink™86 overlay linkage editor

brings modular programming to 8086/
88-based micros. Write large and

complex programs without worrying
about memory constraints. Work on

modules individually, link them into

executable files. Use the same module in different programs.
Changes the overlay structure of an existing program without
recompiling. Use one overlay to access code and data in
other overlays.

PMnk86 links Intel-format modules. $395.

Call (1) 800-344-7200. In Massachusetts (617) 762-5030.

Or, write.

Phoenix Computer Products Corp.

1420 Providence Highway Suite 115

Norwood. MA 02062

Pmate. Plink86. Pfix86 Plus, Pasm86, and Ptcl are trademarks

uf Phoenix Software Associate Ltd. Pre-C and Pfinish arc trademarks

Ol Phoenix Computer Products Corporation.

MS-DOS, and MS LINK are trademarks

of Microsoft Corporation. UNIX is a trademark of AT&T Bell Lahoratoric

CIRCLE 66 ON READER SERVICE CARD

Microprocessor programming made simple.

"Keep it simple" was the principle

of the 14th Century English philos

opher William of Occam and it has

even more validity today. Faced with

the problems of sophisticated

computer systems, designers have

found that ever more complex pro

gramming languages are further

complicating their tasks. Until now.

Occam. Created for system

design and implementation.

When we started designing our

new VLSI family of 10-MIP trans

puters, we built on William's simple

philosophy. To take advantage of

the possibilities opened up by the

transputer, we needed to create a

language capable of properly ad

dressing parallelism and multi

processor systems.

With the ability to describe con

currency (whether timeshared or

real) and to handle message-

passing at the lowest level of the

language, all aspects of a system

can be described, designed and

implemented in occam. From in

terrupt handling through signal

processing to screen editors to

artificial intelligence. And on.

But occam is not limited to our

transputer family. It provides an

efficient, responsive implementa

tion language for systems built

on today's microprocessors. It also

opens up future possibilities with

its performance-enhancing

multiprocessor capabilities. And

INMOS now offers a product to let

you exploit Occam's total capability

in your system.

Simplify your job with the

Occam Programming System.

The Occam Programming System

(OPS) gives you the tools for com

plete VAX/VMS software develop

ment. This package includes an

integrated editor/checker, an

optimizing VAX compiler and full

documentation. This gives you a

supportive environment for the

development of occam programs

for execution on the VAX. Cross-

compilers for 68000 and 8086-based

systems will also be available.

What's more, the occam programs

developed and proven on the OPS

will give you a head start for work

with the INMOS transputer. Exten

sions to the OPS will be available

which will allow occam programs

to run on the transputer.

And if you have a requirement

to program the transputer in other

popular high-level languages, other

extensions will include compilers

for C, Fortran, and Pascal.

Get started today.
Contact us for our information

pack on occam, the Occam Program

ming System and the transputer.

You'll be surprised how simple

your life can be.

For quick response, call us at

(303) 630-4000 or write:

Occam. P.O. Box 16000,

Colorado Springs, CO 80935.

mos
InmosJo* and occam are tndemarks of the

nmos Group of Companies

8 COMPUTER LANGUAGE ■ APRIL !985 CIRCLE 40 ON READER SERVICE CARD

FEEDBACK

Touchy subjects

Dear Editor:

I was attracted to your February issue

by the crisp cover photo and was delighted

to see it was good food for thought as

well. Your comparison of C compilers

was courageous and I'm grateful. Crit

icizing compilers is about as welcome as a

frank appraisal of your mate. Sometimes

you have to live with the product to appre

ciate it.

Mike Pasini

San Francisco, Calif.

Waiting for Mac Cs

Dear Editor:

I really enjoyed the February issue on

C. However, I am a Mac owner and pro

grammer, and I was aghast you did not

review the versions of C for the Mac. I am

currently using Softworks C, which is a

version of Whitesmiths' C compiler.

Please review the Mac C compilers so that

I might get some insight into the others.

Kyle Jedrusiak

Hazlet, N.J.

Five Macintosh C compilers are

reviewed in this issue, beginning on page

83. -Ed.

Toolworks C/80 rebuttal

Dear Editor:

We at The Software Toolworks are

puzzled and distressed at the inaccurate

evaluation of the Toolworks C/80

compiler for CP/M (COMPUTER

LANGUAGE, February 1985).

COMPUTER LANGUAGE'S panel of

experts made many factual errors which

we will attempt to correct.

Toolworks C/80 is not "a late entry into

the group of CP/M compilers," and it

does not cost "about $90." It sells for

$79.90, including the integer compiler

($49.95) plus the MATHPAK ($29.95),

which adds true float and long data types.

It has been on the market since 1980.

At this price, you would not expect a

full Kernighan and Ritchie (K&R) C com

piler. Indeed, of the six CP/M C com

pilers reviewed, only one or two

(depending on where in the review you

look) are full K&R C. Toolworks C/80 is

not. The features we do not support are

double-precision arithmetic, bit fields,

typedefs, arguments to macros, #line, and

declarations within nested blocks.

We were shocked, then, that not once,

but twice, COMPUTER LANGUAGE

incorrectly stated that we advertise a full

C and then took us to task for not meeting

the claim. The Software Toolworks has a

fine reputation for quality software, bar

gain prices, and square dealing with cus

tomers, built up over five years. Since we

do not spend a great deal of money adver

tising our products (a fact reflected in our

low prices), our reputation is particularly

dependent on objective reviews. This

inaccurate allegation of misleading adver

tising is libclous and very damaging to us,

and we hope that COMPUTER

LANGUAGE will see fit to formally retract

it.

Perhaps the panel of review experts did

not read our advertising carefully. We do

not use the terms "full C" or "full K&R

C". We do use the phrase "full-featured,"

which doesn't mean the same thing at all.

We use it to refer to such features as built-

in command line wildcard expansion and

I/O redirection, ROMablc code, Macro-

80 and RMAC compatibility, execution

time profiling, in-line assembler code,

and an extensive library. These are

important features, and we think

COMPUTER LANGUAGE'S failure to

mention any of them contributes to the

inaccurate impression given by the

review.

We acknowledge that this last com

plaint goes beyond correcting factual

errors and takes issue with the reviewer's

personal opinion and choice of what

points to make in limited space. Still, we

do feel that C/80 was presented more

negatively than other compilers. For

example, Q/C was praised for how much.

of K&R it supports for under $100, yet C!

80, which supports far more of the lan

guage for less money, was attacked for its

points of difference with K&R. The

reviewer also liked Q/C's run-time trace

and support for several assemblers. C/80

has similar features, but the only mention

of either was a backhanded acknowl

edgement of "rudimentary verification

tools."

Toolworks C/80 failed to compile the

Deref benchmark because it is limited to

seven levels of indirection in a type decla

ration. We don't feel that this is even a

mild drawback.

The review said that the compiler

"exploded on Dercf." We called Jim

Reed, who actually ran the benchmark,

and he was very kind in helping us deter

mine what actually happened. The full

Deref benchmark produces an error mes

sage; the explanation of the message in

the manual points out the seven-level

limit. When Deref was reduced to seven

levels, the program compiled without

error. When run, it printed out garbage

and returned to the A prompt. The state

ment that the compiler failed was simply

bad English writing on the part of the

reviewer, who meant to say that the com

piled program failed.

But the problem was in the benchmark,

not in the compiler. The program contains

the statement:

prinrf("%u loops \ n",LOOPS)

where LOOPS is ^defined as 50000.

Since 50000 exceeds the signed integer

size limit, it is compiled as a long

constant—consistent with K&R—and

should be printed with a %ldconversion,

not %d. Because of the way printf is

implemented on most compilers, the pro

gram, while buggy, will still run, but on

Toolworks C/80, it prints garbage. This is

not a fault of the compiler; if the argu

ments and the conversions do not agree,

nonsense may result, again according to

K&R. Furthermore, the program does not

explode or lose control, as the reviewers

thought; it runs correctly but the printout

is wrong.

Our experience also contradicts the

reviewers' hesitancy to use Toolworks C/

80 for "writing a large program." We

have used Toolworks C/80 to compile the

compiler itself, ourMyCalc "full-

featured" (but not full K&R) spreadsheet,

and many other large programs. Others

have used Toolworks C/80 to implement

products like the Random House Proof-

Illustmlion: Anne Doering

reader and much of the original Perfect

Software line.

It is always difficult to reply to a critical

review. The reviewers are presumed to be

competent, thorough, and objective, and

the software developer appears to be a

crybaby. We trust the reader to judge

whether that is the case here. To put this

letter in perspective, we would like to

point out that The Software Toolworks has

never before, in five years of publishing

more that 40 software products, objected

in this strong fashion to a review.

Walt Bilofsky. chairman

The Software Toolworks

Sherman Oaks. Calif.

A pat on the back

Dear Editor:

We were very pleased to see the survey

of C compilers in the February issue of

COMPUTER LANGUAGE. We thought

the survey as a whole was pleasant, infor

mative reading, and correctly represented

the products with which we are directly

familiar. It is important because it has

been well over a year since such a wide

ranging view has been taken (since

BYTE's, September 1983 issue).

One important improvement for future

surveys when using the style of saying at

least one bad thing and one good thing

about each product would be to add ranks

or a ranked summary for the products.

Readers have to do a lot of reading

between the lines to separate the losers

from the superior products.

Also the Deref benchmark seems tech

nically irrelevant. Not only are such con

structions extremely unlikely to appear in

practice, but the ANSI C standard will

only require that six levels of indirection

be supported by a conforming imple

mentation. At least two other fully com

petent C implementations, from Wizard

and Computer Innovations, would appear

upon casual reading of Table 2 to be

defective in some major way. Why have a

benchmark that shows half of the products

won't process language features that

never occur in real programs?

In closing, the look and the reading of

this issue make it the best yet: congratu

lations and thanks.
Tern1 Cotligan, president

Ben Williams, vice president

Rational Systems Inc.

Natick, Mass.

FORTRAN'S many virtues

Dear Editor:

Anthony Skjellum"s article "C Instead

of FORTRAN?" {COMPUTER

LANGUAGE, February 1985) gave a nice

tutorial on C for numerical applications

but could hardly be called a comparison of

the languages.

For scientific and engineering prob

lems, FORTRAN has the following

virtues—principally numerical and very

often concerned with linear (matrix)

algebra—over C:

■ Multiple dimension matrices can be

passed and handled more naturally. It is

legal in FORTRAN to say:

SUBROUTINE F(A,N,M)

DIMENSION A(N,M)

whereas C has nothing similar. This facil

itates writing library routines in which the

dimensions are passed as arguments.

■ The FORTRAN default convention of

starting indices with 1 is more natural

than the C convention of zero-based

arrays. Most FORTRANs allow this to be

changed but not C. In FORTRAN, if I

define:

PARAMETER(N = 20)

DIMENSION A(N)

then the last element in A is A (N), loops

run from 1 to N, etc. In C, for the same

array:

#define N 20

double a[N-l];

is needed; the possibilities for confusion

and error abound.

■ FORTRAN has the COMPLEX type.

For many electrical engineering applica

tions, complex numbers are a godsend.

■ C generally does all its floating arith

metic as double. This can be wasteful of

time. FORTRAN allows me to decide

what needs double precision.

■ For exponentiation in C, I must use

pow(x,y). with the argument floats. In

FORTRAN, A**Yw\\\ work with Kan

integer, for A real or integer, as well.

Often this is optimized, that is, if7=2, a

multiplication is done instead of finding

logarithms, multiplying, and

exponentiation.

■ The library of functions, including in

line functions, is much more extensive for

numerical applications in FORTRAN. I

can write:

BIG= AMAX1 (A,B,C,D)

where AMAX! can have any number or

arguments, as it is expanded in-line. C has

no similar capability.

■ Finally, there is a heck of a lot of FOR

TRAN source out there for most any con

ceivable application. Aside from EISPAK,

LINPAK, and BLAS (basic linear algebra

subroutines), many books on numerical

analysis have excellent routines in FOR

TRAN (for example. Forsythe, Malcom,

and Moler's Mathematics ofComputation

has routines for singular value decom

position, solving linear systems, integra

tion, systems of differential equations,

finding roots, and optimization).

What advantages does C have? Mostly

in the non-numeric applications, for

example, interfaces to the operating sys

tem. I often use FORTRAN to find the

numerical results and plot them with C

(Microsoft FORTRAN on a Corona PC,

with a program called Graphic using

DeSmetC. Microsoft FORTRAN for

MS-DOS machines has all of the features

mentioned, such as type COMPLEX and

PARAMETER). The best of all worlds

would be interfaces between the two (I

have written one between Aztec C and

Microsoft FORTRAN for CP/M).

The best language still depends on the

application.

Louis Baker

Albuquerque, N.M.

C—no serious challenger

Dear Editor:

I cannot stand back any longer. I must

take exception to Ihe C lovers who appear

to be inhabiting computer magazines. I

take particular offense to Anthony Skjel-

lum's article "C Instead of FORTRAN?"

I will go through some of the arguments

raised by the author and provide some

counterarguments.

"FORTRAN did not provide a pro

gramming environment that was condu

cive to structured, modular program

ming." Bunk! A prime example of

structured modular programming is the

IMSL and UNPACK libraries that have

been developed. With only a few lines of

code and these libraries (standard across

micros, minis, and mainframes alike) one

can do virtually any mathematical oper

ation one wishes to perform.

Skjeilum states that the lack of a univer

sal FORTRAN standard forces many

users to fall back on FORTRAN 66. It is

interesting to note that in the same issue of

the magazine—in fact, the previous

article—is a discussion of the beginning

of a C standard. FORTRAN has at least

the 66 and usually the FORTRAN 77

standard.

"C . . . is widely available with essen

tially no dialects." Again I must beg to

differ. Other articles in the same issue

serve to prove my point. In the article on

standardizing C are several examples of

compiler-dependent differences. Then in

the software reviews at the end of the

issue is more evidence. Look at the tables

and note the number of blanks. In addi

tion, read the reviewers' comments

regarding the problems of compiling the

benchmarks on all of those different, but

"no dialects" compilers.

If C is supposed to be taken seriously as

a scientific and engineering language then

further information will need to be pro

vided in software reviews, preferably in

10 COMPUTER LANGUAGES APRIL 1985

the tables as well as the text. Information

is needed on the support or lack of same

for numeric coprocessors, if they exist. In

the case of compilers designed to use Intel

microprocessors, we need to know about

the memory models supported. Finally,

what about support for complex

variables?

While C is a highly structured language

with all sorts of silly symbols, I cannot

believe that it is a serious challenger to

FORTRAN. Who is going to go to the

expense of'converting those large librar

ies to a language that is not even close to a

standard? Let C stay in the domain where

it is most useful and let FORTRAN take

care of the math, perhaps even going as

far as having subroutines in many special

ized languages. I think the author made

this point in his second paragraph, but he

then proceeded to ignore it. Use the lan

guage best suited to the application.

Period.

David W. Hopper, P.Eng.

Toronto, Ont.

Worth the wait

Dear Editor:

Namir Shammas's CrossXthoughts col

umn in the February COMPUTER

LANGUAGE was thought provoking. The

column really sounds exciting.

The level of syntax checking put into

the program NILE is just right. You don't

want to get carried away with rules or

invent a new programming language. It's

just a means of human communication

that can be improved somewhat with the

aid of a computer, in much the same way

you might use a spelling or style checker

on your prose.

The thing I like most about NILE,

though, is the list of undefined procedures

and functions it provides. Using that, you

can be constantly aware of how much

work still lies ahead of you. A lot of my

time has been spent perusing routines I've

already designed, looking for what I have

to do next. This will help.

The angle brackets enclosing the key

words were a problem. Notice how neat

and clean Listing 5 looks as it is printed in

your column. Compare it, please, with the

appearance of the input to NILE. Brian

Kernighan and P.J. Plauger, although they

were addressing a slightly different sub

ject, made an appropriate comment in

Software Tools: "For supplying argu

ments to programs, we feel that commas

and parentheses as argument separators

merely add noise and keystrokes and are

better avoided." I urge you to reconsider

this aspect of PPL.

There were two errors in the copy of

NILE that I downloaded from the

COMPUTER LANGUAGE Bulletin Board

Service. In procedure INITIALIZE, the

link on OTHERWISE points to itself. That

is, the line was:

Save(Kword[13],'OTHERWISE',

1,13,0,0,0);

It should be:

Save(Kword[l 3], 'OTHERWISE',

1,12,0,0,0);

Also, the THEN could not follow an

ELSEif. That is, the line was:

Save{Kword[7]/THEN',1,6,0,0,0);

It should be:

Save(Kword[7],'THEN',2,6,9,0,0);

A question: whence the name NILE?

Bill Blum

Daly City, Calif.

Author Namir Clement Shammas

responds: Thanksfor noting the errors in

NILE. An updated version is now on the

BBS.

Asfor the name NILE—until recently I

was doing the business under the company

name ofPyramid Software, so the name

NILE seemed an appropriate choice.

If lightning still scares you,

you're using the wrong file managed

Be sure. Btrieve
Lightning may strike. But it doesn't

have to destroy your database.

Btrieve™ file management offers

automatic file recovery after a system

crash. So accidents and power failures

don't turn into database disasters.

Your BtTieve-based applications will

come up when the lights come back on.

Fast. Btrieve is lightning fast, too. It's

written in Assembly language espe

cially for the IBM PC™. And based on

the b-tree file indexing system, with

automatic balancing and electrifying

access speed.

The standard for networking.

Btrieve/N (network version) sets the

standard for the industry's most

popular LANs, including IBM's PC

Network.

Fully-relational data management.

SoftCraft's entire family of products

gives you a complete, fully relational

database management system.

Rtrieve™ adds report writing capabil

ities. Xtrieve1M speeds users through

database queries with interactive

menus-

For professional programmers.

Btrieve is the fast, reliable answer for

all your application development. In

any development language—BASIC,

Pascal, Cobol, C, Fortran, and APL.

With Btrieve, you can develop better

applications faster. And know they'll

be safe if lightning strikes.

SoftCraftlnc.
P.O. Box 9802 #917 Austin, Texas 78766

(512) 346-8380 Telex 358 200

Suggested retail prices: Btrieve, S245; Btrieve/N, $595; Xtrieve, 5195; Xtriei>c/N, 5395; Rtrieiv, S85;

Rtrieve/N, $175. Requires PC-DOS or MS™-DOS IX, 2.X, or XX. Btrieve, Xtrieve, and Rtrieve; IBM;
a'ld MS are trademarks of SoftCraft Inc.; international Business Machines; and Microsoft Inc.

CIRCLE 75 ON READER SERVICE CARD

11

Don't cripple Pascal

Dear Editor:

In Feedback in the January 1985 issue

of COMPUTER LANGUAGE, StarretC.

Kennedy complains that Pascal suffers

from something to which he/she refers as

the "triad syndrome." Kennedy appar

ently feels that Pascal is not a good teach

ing language (this is the impression one

gets, though Kennedy never really

addresses the issue directly) due to this

and some undefined problem with the

looping constructs.

I believe Pascal to be an excellent

teaching language, and I consider Pascal

the language of choice for some program

ming tasks. I do not consider Pascal to be

the do all and end all of programming lan

guages, nor do I believe that there shall

ever be such a language.

Kennedy complains that Pascal sup

ports three assignment operators (:=,:,

and =). Balderdash and hogwash. Ken-

Illuitratian: Anne Daering

nedy has obviously missed the point.

There is but one "assignment" operator

in Pascal, the : = symbol. This symbol is

used to denote assignment of the results of

an expression on the right side of an oper

ator to the location identified by the value

of the expression on the left side of an

operator.

The : symbol is not by any stretch of the

imagination an assignment operator.

Rather, the : is a binding operator, binding

a type attribute to an identifier (or group

of identifiers in a declaration. A declara

tion is a statement to the compiler that

requests storage space for an identifier

and binds certain attributes to that

identifier.

The = symbol, in the context in which

Kennedy refers to it, is a definition oper

ator. This symbol defines for the compiler

an identifier with a constant value. This

value is then replaced by text substitution

for the name of the identifier whenever

that identifier is encountered in the source

file during compilation.

Assignment is a run-time phenome

non—it does not take place at compile

time. Declaration and definition are

compile-time operations and likewise do

not occur at run time. These distinctions

may appear to be nitpicky but, in fact,

they are essential to the understanding of

compiler operation and utilization.

Yes, I believe that unnecessary com

plexity in a programming language is

undesirable. Yes, I concur that user-

friendly software is essential in the com

puting industry. However, programming

languages are not applications programs

and are not intended for the neophyte who

merely wishes to get the payroll out, the

inventory counted, and the daily tally

sheets to bed.

Persons who are learning to program

need to be prepared to learn a complex,

detailed and highly sophisticated meth

odology for causing the computer to

accomplish specifically defined and care

fully formulated tasks. Overgeneral-

ization of control flow constructs and

operator conventions will not, as implied

by Kennedy, benefit the programmer.

They will simply make the task of

designing, implementing and analyzing

code more difficult, more tedious, and

less efficient.

I am a strong proponent of computer

literacy and would like to see as many

people as possible learn to perform at

least simple programming. I do not

believe that a language that is specifically

designed as a teaching language for com

puter sciences ought to be crippled by

oversimplification to cater to the lack of

technical expertise and understanding of

the general public. Pascal is such a lan

guage and, as such, is a success.

Thomas Keller

Santa Rosa. Calif.

Hard problems? Csharp can help

Cut your development time with C source code for realtime data acquisition and

control. The Csharp Realtime Toolkit includes: graphics, event handling,

scheduling, and state systems. Processor, device, and operating system

independent. Price: $600

SYSTEMS systems Guild, Inc., P.O. Box 1085, Cambridge, MA 02142

(617) 451-8479

12 COMPUTERLANGUAGEBAPRIL1985 CIRCLE 89 ON READER SERVICE CARD

CROSSMTHOUGHTS

Search by hashing

By Namir Clement Shammas

n the lasl issue we

talked about math

ematical parsers

and interpreters. This month, let's take a

look at searching methods that use hash

ing techniques, employing data in

memory as well as on stored files.

Hashing techniques arc important for

data base programs as well as language

compilers, interpreters, preprocessors

and any software that must search in a list

of names quickly and efficiently.

The idea behind the hash-based search

is to transform the search key. be it

numeric or alphanumeric, into a unique

address used to locate the information.

This procedure offers a fast search capa

bility to a computer system, useful, for

example, when an airline needs to pull out

passenger reservation information with

out delays. We will explore hashing, its

merits and faults, and suggest some reme

dies for its weaknesses.

The technique in question essentially

relics on the use of a hash function. H(x),

that maps the search key onto (we hope) a

unique address in a predefined range of

addresses.

The address range limitation is one

weakness of hashing. The majority of

hash functions generate random values (or

addresses). Thus a list of ordered keys

would create scattered addresses that do

not reflect the original order, as in:

If key X > key Y... then

H(X} > H(Y}

is not always true.

This immediately tells us that using

such hash functions deprive us of the abil

ity to easily maintain sorted lists, which is

the price to pay for speed. If sorting is

required, one can use an order-preserving

hashing function, such that:

If key X > key Y... then

H(X) > H(Y)

Since the hashing functions produce

numeric addresses, textual keys must be

converted into numerical values. Using

the ASCII code is one way to go. however,

each character yields two or three digits.

Shifting values can also be used. The

addresses calculated can be used to either

store the data records when one search

key is used or their indices when the data

is searched by multiple keys. The records

would be stored sequentially in the latter

case.

'hat are the

types of hash

ing functions?

How do they work? What are their

strengths and weaknesses? These are the

questions to answer to properly choose a

hashing function.

To answer the first question, keep in

mind that there areas many types of hash

functions as the imagination can create.

Here area few:

Truncation. A specific set of digits or

numbers, such as the second, third and

fifth digits in an eight digit key is selected.

The rest is ignored. This method provides

a fast and easy way of obtaining an

address in the hash table but often fails to

provide even distribution in the table.

Folding. The original numeric key is

divided into segments that arc simply

added. If the result is bigger than the hash

table size, the address is taken as (sum of

digits) modulus (table size). For example,

a 10 digit key (1234567890) is folded into

34567 and 12890. Their sum yields

47457. The latter is a suitable address for

a hash table with a size of 50.000. The

method is reportedly very good at ran

domizing the key. However, it depends on

the key sequence and is not very reliable.

Modular arithmetic. The address is

obtained as the remainder from dividing

the numeric key by the hash table size.

This very popular method yields a good

spread over the hash table.

Midsquare method. This method yields

an address by squaring the numeric key

and selecting an appropriate number of

digits from the middle of the square. This

method has been criticized by some but

proven to be effective with certain types

of keys.

Length dependent method. The length

of the key is used along with some portion

of the key to produce an address. On

many occasions the address is seen as an

New language project!

In the March CrossXthoughts column I

invited and challenged the readers of

COMPUTER LANGUAGE to create a

new programming language or modify

an existing one. Since then, I've had a

lot of interaction with readers,

especially via CompuServe. The

project received a lot of enthusiasm.

The development of a new, general-

purpose language will give us an

opportunity to learn how a computer is

designed and how it works.

This announcement includes an

invitation for you to participate. A

wide variety of talents arc needed for

the numerous aspects of the project.

We will work as teams, each handling

a specific task. There will be a lot of

interaction between the teams.

COMPUTER LANGUAGE will dedi

cate a regular sidebar identical to this

one as space for important announce

ments and progress reports. The maga

zine will also help in mailing reports

and material to those involved. The

editor has agreed to publish the

project's document and sell it at cost.

I believe that this can turn into one

of the most dynamic and rewarding

projects for ail of us. Keep in mind that

there arc many basic and initial deci

sions to make. For example, what is

the best way to communicate? Not

everybody has a modem or a Com

puServe subscription. (The old U.S.

mail is perfectly fine with me!)

Another decision concerns where the

project documents will be stored

electronically.

Let us use our talents to create a bet

ter programming environment. You

are welcome to send me. in care of this

magazine, your name, mailing

address, phone number and area of

interest in the project. For more infor

mation, write to: Namir Shammas,

COMPUTER LANGUAGE. 131

Townsend St., San Francisco, Calif.

94107.

13

C Libraries

C Windows

Best You Can Get!

SIX C LIBRARIES
250 Fully Tested Functions

FUNCTIONS yOU DON'T HAVE BUT NEED'

All Source Code. No royalties.

More £ Better Functions

Best Documentation

41 screen handling/graphic

functions $33 95

40cursof/keyboaril/data

input functions $39.95

69 superior string

functions S59S5

15system status 8 control

functions $19.95

58 utility/DOS/BIOS/time/
date (unctions $49.95

30 printer control

functions $29.95

No Mailer What Elbe You Have, Get These!

Any 3 Libraries S59.95-AU 6 Libraries S99.95

C Windows

PROFESSIONAL WINDOW MANAGEMENT

WJp Huito.iiHlui-tint.Wcr ld|*Jrjsui AM ltait'!l

C Windows- Complete Source Code $69.95

THE PROFILER

by DWB ASSOCIATES

The Cadillac or piofilers. .S125.00

COMBINATION OFFER
C WINDOWS PLUS 8 LIBRARIES

For $14 8.8ft

C WINDOWS PLUS THE PROFILER

Both For S189B3

SIX LIBRARIES & THE PROFILER

Bolh For S179.H5

C WINDOWS & 6 C LIUHARIES

& THE PROFILERS

A S31S. Wluo All For 5219.95

€ntelekon
SOFTWARE SYSTEMS

ENTELEKON 12118 KIMBERLEY

HOUSTON, TX. 77024 {713)468-4412

J
CIRCLE 24 ON READER SERVICE CARD

14 COMPUTER LANGUAGE ■ APRIL 1985

intermediate value that yields the sought

location via modulus calculations with the

hash table size (as with modular arith

metic). This method is useful in dealing

with alphanumeric keys.

Many of the books listed in the refer

ence section discuss the types of hashing

functions in more detail.

A reader may ask. "Is there any hash

ing function that guarantees no two differ

ent keys will yield the same address?"

The answer is no.

Collision, as the effect is called, is

almost certain and is caused by the choice

of hashing function or the use ofa small

size for the hash table. Increasing the size

will not eliminate collision completely,

only decrease it.

The next question is. "What methods

do we use to deal with collision?" The

good news is that there arc a good num

ber. One category, called open address

ing, includes:

Linear probing. This method is very

simple. If the hashing function gives an

address that turns out to be already

occupied, it performs a sequential search

for the locations that follow the collision

site until an empty location is found. Keep

in mind that the hash table should be

regarded as a circular list. The major dis

advantage of linear probing is the for

mation of clusters and an uneven

distribution.

Quadratic probing. This technique is a

modification of linear probing. If there is

a collision at address H(x), then start

probing at addresses H(x)+1. H(x)+4,

H(x) + 9, and so on. While this method

resolves the problem of clustering, you

can clearly see that not all the locations of

the hash table will be probed.

Key dependent probing. This method

uses part of the search key to decide the

magnitude of an address offset once col

lision occurs.

Increment functions. A more soph

isticated approach is to use a set of hash

functions instead of one function. If the

address from the first one causes col

lision, then we apply the second hash

function to calculate an address. If col

lision occurs with the second, we use the

third hash function and so on.

lhaining. another

method for deal-

ling with

collision, dictates the use of two types of

storage locations: the hash table and the

overflow area. When a collision occurs,

say between the newly added key Y and

resident key X, the former is stored in the

overflow area at the next available

location. Key X sets a pointer lo the site

where key Yis stored, forming a linked

list. If another collision occurs between

another inserted key. Z and X, then Z is

also stored in the overflow area. To main

tain the linked list, key Kwill contain the

pointer for the site of key Z.

The advantage of chaining lies in eco

nomical storage, which becomes more

evident as the records stored are larger.

The hash table need not be oversized.

The disadvantage of chaining becomes

apparent when searching through an

unSOrted list. If a sought key is non

existent, then the entire linked list is

searched. However, chaining works better

than open addressing techniques. Data

Structures and Program Design uses math

ematical proof to demonstrate this.

Imagine searching in memory, using

the chaining method to resolve collision.

An alternative to maintaining linked lists

in the overflow area is to use binary trees,

especially when a collision occurs fre

quently. This makes searching in the over

flow area faster since the keys in the over

flow area arc now sorted. The price to pay

is thai maintaining binary trees is more

involved, especially when it comes to

deleting.

The idea of using binary trees becomes

more appealing when order-preserving

hash functions arc used. They can simply

use the first one or two most significant

digils or letters in the search key.

The combination of hash table and

binary trees —I'll call it the H-Tree—

allows for fast searching and sorting in

memory. The hash table will contain a set

of roots for binary trees. By using the

divide-and-conquer strategy, we arc scan

ning fewer nodes at a time while adding,

deleting and searching.

What about searching in files saved on

disks'? First, we must remember that

access time of a mechanical device is

much greater than that for memory. So we

need to perform the least number of disk

accesses.

Second, since I/O operations occur via

memory blocks or buckets of 256 bytes or

its multiples, we can collect a num

ber of keys in a bucket. Thus we can store

the data records separately and create

another storage area for the pages con

taining the search keys.

Again we have two storage areas for

keys: the hash table and overflow area.

The mechanism is very similar to thai of

memory-based search. The difference is

thai single keys in a memory-based search

arc replaced by buckets. Thus the hash

table will contain a number of buckets,

each containing colliding keys. When a

hash table bucket overflows, a bucket in

the overflow area is created, and the two

buckets link using a pointer.

To decrease the number of collisions,

bigger hash tables arc required. This is a

disadvantage, because we arc reserving a

lot of space and assuming even distribu

tion of the keys. The following strategy

deals with the problem of excessive space.

Using a two-dimensional hash table and

two distinct hash functions, the first hash

function determines the row address, and

the second determines the column

address. Any keys colliding due to the

first hash function address are separated

by the second hash function. The over

flow area is still used, for nothing is

collision-proof.

So far we have handled the col

lision problem but still have to solve the

space allocation problem, especially in

dealing with buckets. Here is the way out:

rather than creating the space for the key

buckets, we instead create, in memory, a

two-dimensional map of pointers. As for

the key buckets, we store them up in chro

nological order as they are introduced in

the system.

The map needs to be loaded at the

beginning and stored at the end of a data-

manipulation session. Here is how the

scheme works:

Initialization. Assign the data file and

the key-buckets file and zero all data

counters and pointers. Initially the ele

ments of the latter are pointing nowhere.

Start-up. As data starts to flow in the

system, update the number of records and

extract the search key. Use the latter to

determine the row and column address in

the key map. If the latter is zero, the cre

ation of a new bucket is required. In any

case the key is stored in a slot located

inside a bucket. Figure 1 shows a fairly

empty key map. The first record added

has a key equal to 16. So Map(l,6) is the

first-used pointer to the first bucket. A

second record with a key equal to 36 is

entered and is used to point to the second

bucket, and soon.

Routine addition. As buckets are

filled, new ones are created and pointers

are used to maintain the linked list of

buckets. Suppose that we add 19 more

records, all with keys equal to 16. If each

bucket holds 20 keys, then we have filled

the first bucket. As we add the twenty-

second record, always with a key equal to

16, then a new bucket is created (number

three to be exact) and the key points to

record number 22.

Deletion. It is usually more difficult to

delete parts of data structures than to build

them. As records and keys are deleted,

they create gaps in the data lists. One can

construct additional lists for the latter

gaps. The lists arc cither used in periodic

packing offiles or to fill the gaps by stor

ing newly added records and keys.

An alternative way to keep track of the

lists is to move the last element in the

linked lists of records and keys into the

location of the deleted record and key.

One must take into account the effect of

emptying buckets. Their space must be

regained. This will require that the buck

ets be double-linked lists to allow travel

through the lists in both directions.

Listing 1 has a few procedures-

written in programmer's pscudo listing

(PPL)—to demonstrate the code for addi

tion and search. I have not included the

code for deletion due to space limitations.

If this technique is used with order-

preserving hash functions then the ability

to perform sorting is vastly improved.

Once more the principle of divide-and-

conquer is put to service. To sort, a pro

gram would go through the map in a sys

tematic way (reflecting ascending or

descending order) and read the unsorted

list linked to that map element. The keys

in each of the lists arc then sorted in

memory and the result output. Since there

are relatively few elements in a set of

linked lists, sorting should not be too

painful.

The other alternative is to maintain the

linked lists of buckets in a sorted order,

which slows the process of adding and

deleting data but yields an improved

search.

Data structures and management arc of

interest to most, if not all. programmers.

Sorting and searching play a vital role in

data processing. It is probably the subject

most talked about and most researched. It

is also an art.

The numerous algorithms involved and

their modification form a vast number of

methods. It is indeed a fascinating sub

ject. Let me hear from you. If you have

some code you developed that performs

Mapped-keys strategy (pointers to the records belong to the first

keys added to a bucket)

0

1

2

3

)

0

<AM

1

ke;

2

/ map

3 4 5 6

16

36

Key buckets

-v

16 |

36 1

16

Data records

■> 16 data

■> 36 data

22

■> 16 data

Figure 1.

15

fast searching, then here is the good news:

you may be the winner in our searching

minicontcst!

We will award prizes (at least a free

one-year subscription extension) for the

best three well-written and fastest (and I

mean fast) codes. Because 1 may not have

the same hardware and language imple

mentation. I will rely on your speed test

results, which should be included. The

winners will be announced in four

months.

In the next issue we will talk more

about external hashing. Some interesting

techniques overcome the limitations ofa

predetermined hash table size. I leave you

with a list of references on the subsets. H

References

Hanson. O.. 1982. Design ofComputer Duta

Files. Rockville, Md.: Computer Science

Press.

Horowitz. E. and Sahni, S.. 1982. Funda

mentals ofData Structures. Rockviile. Md.:

Computer Science Press.

Horowitz, E. and Sahni, S., 1984. Funda

mentals ofData Structures in Pascal. Rock

ville, Md.: Computer Science Press.

Knulh.D.. 1973. The Art ofComputer Pro

gramming, Vol. 3: Sorting andSearching.

Reading, Mass.: Addison-Wesley.

Kruse.R.L., 1984. Data Structures & Program

Design. EnglewoodCliffs. N.J.: Prentice-

Hall.

Mclhorn,K., 1984. Sorting and Searching.

New York. N.Y.: Springer-Verlag.

Tenenbaum. A.M. and Augenstein. M.J..

1981. Data Structures Using Pascal.

Englewood Cliffs, N.J.: Prentice-Hall.

Tremblay, J. andSorcnson, P.G.. 1984. An

Introduction to Data Structures with Appli

cations. New York. N.Y.: McGraw-Hill.

Ullman. J.D.. 1982. Database Systems. Second

Edition. Rockville, Md.: Computer Sci

ence Press.

Weidcrhold. G.. 1983. Database Design, Sec

ond Edition. New York. N.Y.: McGraw-

Hill.

Wirth, N., 1976. Algorithms + Dam Structures

= Programs. Englewood Cliffs. N.J.:

Prentice-Hall.

A collection of procedures, written in PPL, for initializing,

adding, and searching for records

— Data types will be defined in a Pascal-like style.

-- RECORD : Anytype;

— KeyData : record Key : Anytype; RecordPointer : integer end;

— Map : array[l..MAXROW,1..MAXROW] of record First, Last : integer end;

— Cell : record First, Last : integer end;

— Bucket : record

NumSlot, PreviousBucket, NextBucket : Integer;

Slots : array[1..BUCKETSIZE] of (same type as) KeyData

end;

PROCEDURE Initialize

OPEN "DATAFILE",1,"RANDOM"

OPEN "KEYFILE",2,"RANDOM"

NData = 0; NBucket = 0;

Zero all elements of Map

END Initialize

PROCEDURE Add

Obtain RECORD

NData += 1; KeyData.RecordPointer = NData;

WRITE 1, RECORD

Row = Hashl(KeyData.Key); Column = Hash2(KeyData.Key)

Cell = Map[Row,Column]

IF Cell.First = 0

THEN — create a new bucket

[Add_to_New_Bucket]

Map[RowtColumn].First = NBucket; Map[Row,Column].Last = NBucket;

ELSE — Locate last bucket

READ 2, Cell.Last, Bucket

IF Bucket.NumSlot = BUCKETSIZE — Is the bucket full?

Listing 1 (Continued on following page).

16 COMPUTER LANGUAGE ■ APRIL 1985

THEN — Create a new bucket and maintain linked list

Bucket.NextBucket = NBucket + 1; WRITE 2, Cell.Last,Bucket

[Add__to_New_Bucket]

Map[Row,Column].Last = NBucket — keep track of last bucket in list

ELSE — Add in the same bucket

Bucket.NumSlot += 1

Bucket.Slots[Bucket.NumSlot] = KeyData

WRITE 2, Cell.Last,Bucket

END IF;

END IF;

PROCEDURE Add_to_New_Bucket

NBucket += 1; Bucket.NumSlot = 1;

Bucket.PreviousBucket = Cell.Last — pointer to previous bucket or zero if

— this is the first bucket in the list

Bucket.NextBucket =0 — zero indicates end of linked list.

Bucket.Slots[lj = KeyData

WRITE 2, NBucket, Bucket

END Add_to_New_Bucket

PROCEDURE Search;

— Seacrh through buckets.

Obtain SearchKey

Row = Hashl(SearchKey); Column = Hash2(SearchKey)

Cell = Map[Row,Column]

IF Cell.First =0 — sought data is definitely not on file

THEN

DISPLAY "Data nonexistent"

ELSE

INITIALIZE: FoundFlag = False; NextOne = Cell.First

LOOP <BIG>

BEGIN

READ 2, NextOne, Bucket

INITIALIZE: None

LOOP <Look_in_a__Bucket>

BEGIN for i = 1 to NumSlot

IF Slots[i].Key = SearchKey THEN FoundFlag = True; EXIT <BIG> END IF;

END LOOP <Look_in_a_Bucket>;

TERMINATE: NextOne = Bucket.NextBucket

IF NextOne = 0 THEN EXIT <BIG> END IF; — when end of link is found

— exit loop

END LOOP <BIG>;

TERMINATE: IF FoundFlag

THEN

DISPLAY "Data in record # ";Slot[i].RecordPointer

READ 1, Slot[i].RecordPointer, RECORD

— Perform more data processing of your choice

ELSE

DISPLAY."Data nonexistent"

END IF;

END Search

Listing 1 (Continuedfrom preceding page).

)

17

THE RIGH
DEVELOPMENT

FORYO

COBOL
NVIRONMENT
JRPC

For IBM* PC applications; Professional COBOL* OR For MAINFRAME applications; VS COBOL Workbench'

Professional COBOL anticipates many programming

needs. Each function-key performs <i specific thought
process that automates the everyday tasks of

programming IBM PC applications.

Professional COBOL gives you everything you need for

total system access. Load Professional COBOL in the

morning and do all your work withirT Professional

COBOL for the rest of the day. There is no need to leave
the Professional COBOL environment, even to perform
DOS functions.

Professional COBOL closely couples more than 10

integrated tools and it gives you the same function-key

driven command structure and help facilities in each of
them.

The Professional COBOL tools include: a powerful full

screen Editor for writing code and documentation; The

Micro Focus* Forms* screen painter that generates source

code for interactive displays; a fast, easy-to-use Syntax
Checker for full Federal High Level ANSI '74 COBOL;

the unique source code Animator" which greatly

simplifies debugging and maintenance; an 8086 native

code COBOL Compiler to speed CPU-bound programs in

your applications—you can mix intermediate code for

compactness, native code for speed, and user-written

assembly code for special extras; the Micro Focus multi-

key B-tree ISAM for fast run-time I/O; a Run facility to

execute checked and/or compiled programs; a Library

facility for creating a single library file from object and

reference files; and a Build facility to link your base

modules into DOS loadable format.

Additional features include an on-line Help facility; file

Directory facilities; the Colorizer for customizing

foreground and background colors and other IBM-PC

display attributes; and Run-time subroutines that let you

access any DOS or BIOS function from COBOL

Professional COBOL integrates these features into a

programming environment that lets you concentrate on

what you really want to build. The energy and time you

save can go into making software of a quality you will

feel truly proud of. That's why professional COBOL

benefits your productivity, and beyond that, your

creativity.

Offloading mainframe program development work to the

PC is now possible. The combination of Micro Focus VS

COBOL Workbench with the IBM PC provides a true
distributed programmer workstation.

VS COBOL Workbench allows fast and uninterrupted

development, testing, and maintenance of programs

downloaded to or originated on the PC. The programs are
then uploaded to the mainframe for integration testing
and production.

You experience no delays during program development

and module testing because no one is competing for the

PC's time.

VS COBOL Workbench supports most features of the
COBOL language as implemented in IBM's OS/VS

COBOL*, VS COBOL II*, and the Federal High Level

ANSI '74 COBOL present in Micro Focus' other products.

OS/VS COBOL and VS COBOL II syntax can be used
separately or coexist in a single program. VS COBOL

Workbench allows easy conversion of OS/VS COBOL

programs to VS COBOL II via flags that report errors in

code compiled from one syntax to the other.

You can test CALLs or embedded host command

languages (EXEC statements) to host database/data

communications services such as IMS*, CICS*, DL/1\

SQL/DS*, and DB2*. This allows you to continue

developing off-line on the PC through module and

program testing.

Application testing is also made easier with the optional

Session Recorder feature. The Session Recorder

automatically records to disk all the keystrokes you make

during a test session. You can then play back the

keystrokes for regression testing. You can even edit them

to keep in step with program changes.

VS COBOL Workbench closely couples an integrated set

of Micro Focus tools. You switch between tools with a

single keystroke. Tools such as Animator, for interactive

source-level program analysis, and Forms, for fast and

easy prototyping of interactive displays, greatly enhance

your productivity and make your work more satisfying.

Act Now

On the West Coast, call our U.S. headquarters, 415/856-4161

On the East Coast, call our Philadelphia office, 215/668-0961

MICRO FOCUS
'Micro Focus, Professional COBOL, VS COBOL Workbench, Animator, and Forms are trademarks of Micro Focus Ltd.

IBM. OS/VS COBOL VS COBOL II. IMS, CICS, DUl, SQL/DS, and DB2 an trademarks

or registered trademarks of Itdtrnatianal Business Machines, Corp.

18

CIRCLE 84 ON READER SERVICE CARD

COMPUTER LANGUAGE ■ APRIL 1985

Recursive

Procedures^
JUUUUUUUU

JLSLBJL2JLSJU

JUUUUUL2JUO
vcr recent

years, many of

us in (he pro

gramming

business have discovered structured pro

gramming. The longer a person has been

programming and the more unstructured

the language environment, the more trau

matic the discovery. In my case, it was an

enlightenment.

I will never forget struggling through

my first totally structured program (in

COBOL). Fora while, I thought it nearly

impossible to follow the rules. But when it

was done, I realized (he power ofthe

method. Regardless ofthe language. I

have not written an unstructured program

since. I have written many large pro

grams, which executed bug free the first

time they were run. I have made major

modifications and additions to existing

programs with relative ease and minimal

damage to the original code. Obviously. I

have become an advocate of structured

programming.

I hope some readers can identify with

my experience because this article is

about a similar discovery, ever)' bit as

powerful but less well-known and less

used—recursive procedures. My objec

tive is to describe what they arc and what

they can do and to communicate their

importance, particularly to those who

have never written a recursive routine.

If you know what a recursive procedure

is. but you cannot imagine ever having the

need to write one—read on! You do not

know what you are missing. If you do not

know what a recursive procedure is. you

By John Snyder

are about to be exposed to one ofthe won

ders of programming. Finally, I will

present a small but interesting problem.

which is not at all a classical recursion

problem. However, after analysis, it begs

fora recursive solution.

Definitions

Recursive procedures arc not new, and

they were not born out of programming.

Recursively defined mathematical func

tions have been around for hundreds of

years. Some ofthe oldest programming

languages were designed with recursion

in mind because it was required by the

problems they addressed. For example,

the LISP language was invented in 1958

by John McCarthy. Today, it remains the

primary language for artificial intel

ligence programming. Recursion is an

integral part both in data structure and

function definitions.

A recursive procedure is simply a pro

cess which uses itself as a subprocess.

The process has to be identified with a

name, to be used for reference. In

COBOL or FORTRAN, such a process

would be known as a subroutine, in Pascal

a procedure or function, in C a function,

and in Forth a word definition. Normally,

references to execute a process are known

as ra//s. So. what makes a recursive pro

cedure different is that within the code

defining a process, there is a call to the

process being defined. Sounds like

infinite loop time! But, if all goes well, it

isn't.

As a simple example, let us look at the

factorial function, defined as follows:

If n is a positive integer, it factorial.

denoted n!, is

n/-n*(n-1)*(n-2)

* ... * 3 *2 * 1

(as usual, the asterisk, *, means

multiplication).

In words, n factorial is the multi

plicative product of all positive integers

less than or equal ton.

In any programming language, it is not

difficult to code a factorial process with

out resorting to recursion. But let us look

at what recursion can do for this problem.

First, we note that

So, if we know what (/; — 1)! is, we can

calculate n! with a single multiplication.

By the same token, if we knew (;i— 2)!,

we could have calculated (n — I)! with a

single multiplication. This unraveling of

the definition suggests recursion. We can

create a recursive process for factorial

calculation as in Listing 1.

This coding is not any particular lan

guage, just metacode. If you have never

seen a recursive procedure before, study

this example and play computer in your

head until you develop a feel for how it

works. Like structured programming, you

must learn to think recursive to develop

recursive algorithms.

This process illustrates several

important characteristics of recursive pro

cedures. First, note how short and sweet it

is— the problem is distilled to its essence.

Second, with any recursive procedure, a

19

stopper must be provided to avoid the

infinite loop. That is, there must be a con

dition of execution which prevents the

recursive call. and that condition must

always eventually be realized. In this

case, it is N becoming zero, which breaks

the chain of calls.

How they work

Programming languages either provide

for recursion or they do not. Recursive

procedures can be written in any pro

gramming language, but if the language

does not provide for recursion, it will be a

difficult task to program recursive

routines.

Why is this so? Recursion depends

upon two major factors. The first factor is

the linkage mechanism, used when one

routine calls another. The linkage mech

anism is responsible for saving whatever

is necessary in the calling routine, setting

up access to the parameters being passed

and, finally, relinquishing conlrol to the

called routine while storing an address to

which to return when the routine has com

pleted execution.

There are two ways to pass parameters,

by address and value. Passing parameters

by address causes the called routine to

operate directly on the values of the

parameters residing in the calling routine.

If the called routine changes a parameter

value, it is also changed in the calling rou

tine. Passing parameters by value gives

the called routine its own copies of the

parameters, which may be changed inde

pendent of the parameters as they reside in

the calling routine.

If you think about it. it is obvious that

recursive routines must pass parameters

by value. Otherwise, each successive

call to the routine (by itself) will destroy

the values in the earlier calls. By the same

reasoning, the return address to the call

ing routine must be stored so that it is not

destroyed by successive calls, orthe

called routine will never find its way back

through the chain of linkage. Keep in

mind, when a recursive routine calls

itself, it does not load in another copy of

the code to execute. The calling code and

the called code are one and the same.

The second factor affecting recursion is

the method of allocating storage to local

variables, used only by the called routine.

It should be clear from the discussion of

parameter passing that the same space

cannot be used for local variables from

every call. Some sort of temporary stor

age must be allocated by the called rou

tine, so that each call has its own copy of

all local variables. In essence, recursive

routines are characterized by having the

same machine instructions operate on data

areas which arc uniquely defined for each

call.

This should give you an appreciation

for recursion's dependency on the pro

gramming language. If the linkage mech

anism and local variables do not comply

with the requirements of recursion, you

must program your own saving and resto

ration of linkage, parameter, and local

data items. Although this can be done by

tricks within the language itself, it may be

easier to write assembler-language rou

tines to do the dirty work. For example,

you could write an assembler interface

between the calling routine and the called

routine which allocated a temporary work

area and made copies of linkage addresses

and parameters.

Popular languages which do support

FUNCTION FACTORIAL(N)

INTEGER N

IF N IS NOT GREATER THAN 0 THEN

RESULT IS 1

ELSE

RESULT IS N * FACTORIAL(N-l)

recursion are Pascal. C, and Forth. Those

which do not are BASIC, COBOL, and

FORTRAN. Frankly, on a micro

processor, I believe that if you want to

write a recursive routine, you should use a

language which supports it. It is not worth

the hassle to implement your own recur

sive capabilities. It might be worth it for a

large application on a mainframe or mini

computer, due to other considerations in

language selection.

The basic tool for allocating temporary

storage is a stack. It consists of a block of

computer memory and a poinier (usually a

register) to indicate the area currently

being used. When data is stored on the

stack (commonly referred to as a PUSH),

the pointer is automatically shifted to the

next available area. You literally build a

stack of data. When data is retrieved from

the stack (referred to as a POP), the

pointer is automatically shifted back so

that the memory can be reused. Stacks can

be used for many important programming

functions, and they are the engine of

recursion.

When a routine is called in a recursive

language, the stack is used to PUSH all

linkage data, including parameter values.

The called routine will then allocate addi

tional space in the stack for all local vari

ables. For the latter function, insiead of

using PUSHcs and POPs, the routine

explicitly moves the stack pointer enough

to accommodate all local variables and

references the space directly. When the

routine completes execution, it moves the

pointer back and POPs ihe return address.

Thus, no matter how many recursive calls

are made, each ra//gcts its own area in the

stack.

Most microprocessors have hardware

stack support. That is, they provide regis

ters and machine instructions forper-

forming stack operations. In Pascal and

C. the use of the stack is invisible to the

programmer. One routine simply calls

another and the object code contains the

stack operations.

In Forth, the data stack is explicit al the

software level (linkage is handled through

the dictionary structure, a method

unique to For(h). In fact, stacks arc an

Listing 1.

20 COMPUTER LANGUAGES APRIL 1985

SLSUULSUU JUUULSL2JU JLSUL23JLSLSU

integral pan of the Forth language for all

datastorage, manipulation, and retrieval

functions. If you want to learn all about

what stacks can be used for, learn Forth.

Stacks are one of the keys to Forth's

astonishing speed as an interpretive lan

guage. Hardware stack support also sim

plifies assembler-language recursive pro

gramming. Lack of hardware stack

support makes life difficult for assembler-

language programmers and authors of

compilers and interpreters.

The astute reader will have noticed a

problem in the call by value discussion.

Suppose the calling routine is passing a

giant array to the called routine as a

parameter. Is the entire array going to be

duplicated in the called routine? In the

stack?

In general, the answer is no. Arrays are

passed by address, not by value, to avoid

wasting storage. In C, the programmer

has no choice. According to the language

definition, individual variables are passed

by value, and arrays are passed by

address.

In Pascal, the programmer can dictate

whether each parameter is to be passed by

value (referred to, appropriately, as value

parameters) or by address (referred to as

variable parameters). But Forth is a dif

ferent ball game because all words are

universal and parameter lists, as such, do

not exist. However, everything on the

Forth data stack is essentially passed by

value, and any variables, including

arrays, arc passed by address.

Does array passing by address cause a

problem in recursion? It possibly could,

depending upon the problem, but it usu

ally does not. If you were writing a recur

sive routine which required a fresh copy

of an array, passed as a parameter, for

each call, you would have to insure that

each call had a copy with which to work.

However, it is the nature of most recur

sive algorithms that if an array is

involved, it is something which is being

scanned or manipulated at the element

level from call to call, rather than being

overhauled in its entirety.

Which brings us to another very useful

(but not absolutely essential) recursive

tool—the software pointer. The pointer

allows indirect reference to a data item by

an address reference rather than an

explicit variable name. Pointers are effi

cient to use in accessing arrays because

they avoid subscript calculations. They

are also useful for passing arrays as

parameters to called routines since (he

pointers themselves may be passed by

value, and you avoid having to pass a sub

script separately, thus saving a parameter.

Pointers may be operated on arith

metically; to go to the next element of an

array, you add one to the pointer for the

array.

What they can do
Unlike structured programming, recur

sive procedures should not be used for

every program. (Some would argue that

not every program should be structured

either, such as mainframe, on-line mod

ules. However, that is another article.)

The factorial function, for example,

despite its elegance, is inefficient as a

recursive procedure. The overhead of the

recursive calls in speed and probably even

memory is greater than a straightforward

nonrecursive routine.

If you have encountered recursive pro

cedures before, they were probably being

used in an application with a treelike data

structure, maybe artificial intelligence

or system utilities, like sorting.

Trees are the classic case where use of

recursive procedures is essential. Wher

ever you are in a tree, it looks like (and, in

fact, is) the top of another tree. So you

develop routines which process from the

tops of trees looking down and call them

selves when they get to the top of a new

(sub)tree.

The point I'm trying to make is that

recursive procedures are very useful in a

wide variety of applications beyond the

classic cases. Modern languages make

them more accessible to the programming

community. But, somewhere along the

way, we forgot to teach programmers

about them.

I read an otherwise excellent book on

Pascal, which mentioned in only one sen

tence that procedures and functions could

call themselves, but then said it would not

be discussed further—that is, it was a sub

ject beyond the scope of the book. Now, I

do not expect a book about a program

ming language to do a dissertation on

recursion, but it could at least give a hint

of the significance of this capability or a

reference for further study.

Recursion is simply a form of looping

where each call is a cycle, pass, or iter

ation of the loop. Once you begin to think

recursively, you will look at almost any

program which requires looping as a can

didate for a recursive procedure. I do not

mean the big loops that process record-

by-record from a file. I am talking about

looping logic-nested loops, search loops,

and particularly indefinite loops which

can end at any time and/or may fail along

the way and have to be redone.

The first special thing about recursive

looping is that you start fresh with each

iteration. You only carry the baggage

from the previous iteration that you want

to carry. You can concentrate on a little

piece of the problem at a time, limiting the

program view to the immediate data

situation.

The second special thing about recur

sive looping is that you are actually build

ing a chain of iterations. You do not have

to complete the loop unless you want to,

that is, if you are successful in what you

were trying to accomplish. If you fail, you

can back up in the loop as far as you want.

I am sure this all sounds very esoteric.

The best way to begin to appreciate what

recursion can do for you is to study some

sample recursive procedures and then

start developing your own. Before we

launch into my example, I would like to

also refer you to an ingenious recursive

algorithm for sorting called Quicksort.

Unlike many recursive sorts, it does not

build tree structures. It uses recursion as a

looping tool, as I described earlier. You

can read about Quicksort in an article

called "Bubble Sort, Insertion Sort, and

Quicksort Compared11 by Richard G. Lar

son in the premier issue of COMPUTER

LANGUAGE.

A sample problem

In this final section I will present a prob

lem and discuss the development of a

recursive solution. It is a good example of

the usefulness of recursion in everyday

21

QQPOPOQOflOOOOOOOOOOOOOflqQftp

f Q QQ Q P P P PJLPJLPJLPJlg flPPPPPPPPPPPOPOPPOOOOOOOOOO OOOflO QQQO oooq

JUUAAJUAfl fl g P,P,g.9JJ PPPgPPgQPJlOgPPgQQOOOOOOOOOOOO o Q Q Q poop ft

POOOPQOQOOPOOOOOOOOOOQOQOflOOOOQQQOOOOOOOOO0 00 0 0 0 0 0 q p p oqft

PPPgPgBPBgPgggggggPPQQPQOQQpQ P.0,,0.,0,0, g QQQO 0.0.0 P O.g.0_P_Q_g_g_Q_fl_ft.P,Q-P

programming. I encountered il in my

work, financial application systems, not

in artificial intelligence and not even in

sysiems programming.

Suppose you have two arrays. SUM and

ELEMENT, such that each entry in the

SUM array is the sum ofoncormorc

entries in the ELEMENT array. In addi

tion, when all entries in the SUM array are

factored into sums of ELEMENTentries.

each ELEMENT'entry is used once and

only once as a factor.

The problem is to develop an algorithm

that will discover how the SUMs can be

factored into the ELEMENTS. The solu

tion may or may not be unique. That is.

there may be several ways to do the fac

toring. However, once we have the algo

rithm for finding one solution, we should

be able to extend it to find all possible

solutions.

This is a very practical problem. Given

one set of things, composed of another set

of things, we wish to uncover the com

position. For simplicity. I use addition as

the composition method. However, very

little of the algorithm will actually depend

upon the composition method, and it can

be translated to other well-defined meth

ods, even nonarithmetic methods.

One of the interesting things about this

problem is that it does not sound very dif

ficult. As an exercise, once you under

stand the problem, you should stop read

ing and try to write a conventional

algorithm to solve it. You will discover

thai it is very messy.

Obviously, the basic approach is trial

and error. It may have occurred to you

that sorting the ELEMENTS and maybe

even the SUMs will reduce the number of

trials. An ELEMENTcnlry cannot be a

factor of a SUM entry (or what is left of a

SUM entry after partial factoring) if the

ELEMENTcnlry is greater than the SUM

entry.

However, no matter how you try to sim

plify it. you can still go a long way down

the road only to discover that it's the

wrong road. You can factor all but the last

two SUMs and find that what you are left

with in ELEMENTS will not work with the

remaining two SUMs. This means one or

more of the earlier SUMs is not properly

factored. So you need to back up and try

again.

From the recursive siandpoint. I look at

this problem as trying (o find a thread

through all of the ELEMENTS so that

when the thread is followed, it will pro

duce all of the SUMs. 1 need to find where

to start the thread, where to go next, then

next. etc.. factoring the first SUM. then

continuing until all of the SUMs are fac

tored. I may hit a dead end at any point

and have to back up. unraveling, to try a

new thread.

Each step in the attempted thread will

be a recursive call to a routine that will

find a candidate for the ncxl factor and

then continue the thread by calling itself

again. Any call may fail to find a next fac

tor, in which case I break the chain of

calls back to the nearest point where 1 can

try an alternate thread. If all threads are

tested, eventually I will find a successful

one with a chain of calls running through

all the ELEMENTS. That is. when I find a

solution, my depth in recursive calls will

be equal to the number of ELEMENTS.

This reminds us that recursion is not

necessarily cheap, especially in terms of

memory. If each call takes .Y bytes of the

stack for linkage, parameter, and local

data items, and I have YELEMENTS. I

needXtimes Kbytes of stack memory for

a work area. The old trade-offs of

memory vs. speed and simplicity never go

away.

However, let me get back to basics on

developing the algorithm. Since SUMs

and ELEMENTS with a value of zero are

irrelevant to this problem. I can use the

convention of terminating each array with

a zero value (any zeros in either array to

start with must, of course, be removed).

This allows me to use pointers and not

have to keep track of subscripts. If I find a

zero value being pointed to in cither array,

I know I am at the end of that array.

Next, I need a method of recording my

factoring results. How do I keep track of

the fact that the ihird SUM has been fac

tored into the second, sixth, and twentieth

ELEMENTS? I have chosen to use a

MARKER array running in parallel with

the ELEMENT array.

If a MARKER emrv is zero, the corre

sponding ELEMENTcnlry has not yet

been assigned as a factor of any SUM.

(MARKER is filled with zeros to start.) If

a MARKER entry is not zero, the corre

sponding ELEMENT cniry has been

assigned as a factor of the SUM entry sub

scripted by the MARKER value (subscripts

starting with one, not zero). All MARKER

values of one indicate factors of the first

SUM. two, the second SUM. and soon.

Thus, the MARKER array is my thread at

any point in the factoring. When the fac

toring is completed, no MARKER values

of zero will remain, and the MARKER

array records the factoring.

The procedure itself, as mentioned

briefly earlier, will be a routine with the

job of finding a candidate to be the next

ELEMENT factor of a given SUM. If it is

successful, it will continue by calling

itself again. If it fails, it will indicate its

failure to the previous call, so it can back

up and try again.

The routine will need four parameters:

■ A pointer to the current SUM being

factored

■ A pointer to the ELEMENTarmy, posi

tioned to the entry with which to start the

search for the next possible factor of the

current SUM

■ A pointer to the MARKER array, syn

chronized with the pointer to the ELE-

MENTarray, that is, pointing to the same

entry number

■ A LEVEL number, which is really the

subscript of the current SUM, to use in

setting entries ofdieMARKER array.
In addition, the routine needs a global

reference to the beginning of the ELE

MENT'and MARKER arrays. As each indi

vidual SUM is being factored, the pointers

are moved through these two arrays.

However, once a SUM entry is completely

factored, and the next SUM entry is to be

started, the routine must have a way of

returning the search pointers to the begin

ning of these two arrays. Note these point

ers could also be passed parameters but

since they are constants and would take up

stack space as parameters, it is more effi

cient to make them globals.

Finally, the routine needs a method of

returning its result. Did it find a factor or

not? I have used a simple return-code

22 COMPUTER LANGUAGE ■ APRIL 1985

switch. Zero means success, one means

failure.

Wilh this background, I can describe

the routine in words:

1. Using the ELEMENTand MARKER

pointers, scan for an ELEMENTenlry

which could be used as a factor of the cur

rent SUM. It must be unused (correspond

ing MARKER entry is zero) and less than

or equal to the SUM. If one is not found,

return failure code to previous call.

2. Subtract the ELEMENTcnlry factor

from the current SUM and store the

LEVEL number in the corresponding

MARKER entry.

3. Increment the ELEMENTand

MARKER pointers to the next entry.

4. If the current SUM entry is not

reduced to zero, call the routine again

using the CURRENTpointers and the

REDUCED SUM value.

5. If SUM entry is reduced to zero,

check to see if it is the last SUM entry. If it

is the last SUM, return success code to

previous call. If it is not, call the routine

again using a pointer to the NEXTSUM

entry, pointers to the STARTof the ELE

MENTand MARKER arrays, and the

NEXTHIGHER LEVEL number.

6. Check the result code of the recur

sive call in either step four or five. If suc

cessful, return success code to the pre

vious call. If not successful, back out the

processing in step two (add back the last

ELEMENT entry to the current SUM and

zero the last MARKER entry), then go to

step one.

That is all there is to it! If you did try to

develop a conventional routine, I am sure

you can appreciate the simp] icity of this

algorithm. For reference, I have included

the listing of this routine coded asaC lan

guage function (Listing 2). If you want to

try an interesting recursion problem of

your own, figure out how to extend and/or

utilize this routine to find all possible fac

torings for a given SUM and ELEMENT

array instead ofjust one.

Recursive procedures are fun—enjoy

them!MB
M

John Snyder is a vice president at DISC

Inc., Baltimore, Md.

#**##**:!=*#ft:fc##*##

MULTIPLE ADDITION FACTORING FUNCTION

** name factor

Aft

synopsis result = factor(sum, element, marker, level);

int result;

int *sum;

function return code

0 = factoring successful

1 = factoring failed

array of■sums to be factored,

assumed to be terminated with

a zero entry

**

Listing 2 (Continued on following page).

O0000Q000000OO00O0OOO0 O_O_qj>A

PROFESSIONAL PROGRAMMER'S BULLETIN:

Be Productive, Be

The Programmer's Editor

BRIEF'S power and flexibility provide

dramalic increases in programming

productivity. BRIEF'S economically designed

human interface becomes a natural extension

of your mind, allowing you to eliminate

tedium and concentrate on creativity.

BRIEF.

So'ut-oi

> WINDOWS

• Full UNDO (N Times)

■ Compile within

BRIEF

■ Keystroke Macros

■ Exil 10 DOS inside

BRIEF

1 Programmable Macro

Language

Svsiems .s a iraoema'k ni eoiui,OT $

Multiple files,

unlimited size

"Regular

Expression" search

Reconfigure

keyboard

Language sensitive

user controllable
features (such as

Aulo-lndent for C)

AVAILABLE FOR PC-DOS. IBM-AT.

AND COMPATIBLE SYSTEMS

ONLY $195.
DEMO AVAILABLE FOR ONLY $10

(applicable to future purchase)

CALL TOLL FREE

800-821-2492
for 'Technical Description" or to order

-Solution
Systems

335-L Washinaion St . Norwell. MA 02061

617-659-1571

CIRCLE 37 ON READER SERVICE CARD

23

Pascal and C
Programmers

Your programs can

now compile the

FirsTime™
FirsTime is an intelligent editor that

knows the rules ofthe language being

programmed. Ii checks your statements

as you enter them, and ifii spots a

mistake, it identifies it. FirsTime then

posiiions the cursor over the error so

you can correct it easily. FirsTime irill

identify all syntax errors, undefined

variables, and even statements with

mismatched variable types. In fact, any

program developed with the FirsTime

editor will compile on the first try.

Unprecedented

FirsTime has many unique features

found in no other editor. The.sc powerful

capabilities include a zoom command

that allows you lo examine the

structure of your program, automatic

program formatting, and block

transforms.

If you wish, you can work even faster

by automatically generating program

structures with a single key-stroke. This

feature is especially useful to those

learning a new language, or to those

who often switch between different

languages.

Other Features: Full screen editing,

horizontal scrolling, function key menus,

help screens, inserts, deletes, appends,

searches, and global replacing.

Programmers enjoy using FirsTime. It

allows them to concentrate on program

logic without having to worry about

coding details. Debugging is reduced

dramatically, and deadlines are more

easily met.

FirsTime for PASCAL S245

FirsTime for C S295

Microsoft PASCAL Compiler S245

Microsoft C Compiler S395

Demonstration disk $25

Get an extra SlOO off the compiler when

it is purchased with FirsTime.

(N.J. residents please add 8% sales tax.)

Spruce
Technology Corporation

110 Whispering Pines Drive

Lincroft, N.J. 07738

(201) 741-8188 or (201) 663-0063

Dealer enquiries welcome. Custom versions

for computer manufacturers and language

developers arc available.

FtrstTtme is a trademark of .Spruce TVi'linoI«>fiy

Corporal kin.

VISA'

CIRCLE 33 ON READER SERVICE CARD

24 COMPUTER LANGUAGE ■ APRIL 1985

**

#*

#*

globals

int *element

int *marker;

int level;

int *starte;

int *startm;

array of factors elements, **

assumed to be sorted in

ascending numerical sequence **

and terminated with a zero **

entry **

array of factor markers **

current sum (subscript) number **

#*

**

**

constant pointer to first

entry of element array

constant pointer to first

entry of marker array

**

description Factor function will find the elements which

comprise the sums by recursive "threading"

analysis. Each call will try to identify an

entry in the element array which can be used

as an additive factor of the current entry in

the sum array. If the search is successful,

the factoring is continued by a recursive

call, until all sum entries are factored.

Each entry in the element array must be used

once, and only once, in the total factoring

of all sums.

**

##

**

*#

**

**

*#

/** GL03ALS TO START OF ELEMENT AND MARKER ARRAYS
int *starte, *startra;

/** START OF FUNCTION

factor(sum, element, marker, level)

int *sum, *element, ^marker, level;

**/

// LOCAL DATA DECLARATION

int result;

/** MAIN SEARCH LOOP **/

for v ; ;) {
/** FIND AN UNUSED, POSSIBLE FACTOR OF SUM **/

for (; *marker && *element <= *sum; element*+, marker++)

/** CHECK FOR ELEMENT TOO BIG OR END - FAILURE

if (*element > *sum |[*element == 0)
return(l);

/♦* FOUND ONE - DEDUCT FROM SUM AND MARK IT

*sum -= *element++;

*marker++ = level;

/** IS SUM COMPLETELY FACTORED ?

if (*sum)

/** IF NOT - GO FOR NEXT FACTOR

result = factor(sum, element, marker, level);

else

/#♦ IF SO - IS IT THE LAST SUM ?

if (*(sum+l) == 0)

return(O);

else

/** if NOT - START ON NEXT SUM

result = factor(sum+l

/** WAS THREAD SUCCESSFUL ?

if (result == 0)

return (0);

/** IF NOT - BACK OUT LAST FACTOR AND CONTINUE

*sum += *(element-l);

*(marker-l) = 0;

Listing 2 (Continuedfrom preceding page).

**/

*#/

##/

starte, startm, 1eve1+1);
**/

Windows With A View

Toward The Future

The Window

Machine1" occupies

only 12K! Written in

tight, fast Assembler,

it performs like a

racing engine...with

more power than

you'll probably ever
need. Yet. it's an

engine designed to fit

in the vehicle of

your choice...from a
"stripped-down"

128K IBM PC to a

fully loaded AT. The
programs you write

loday will run on

the broadest range of
machines possible...

now, and in the

future.

Windows Bigger

Than Your Screen?

Here's where the

VSI part of our name

fits in. VSI means

Virtual Screen Inter

face. Behind each

window, there's a

much bigger picture.

VSI defines virtual
screens rather than just windows. The

window itself shows whatever portion of
its virtual screen you wish to exhibit at

any given point in your program. Each

screen can be up to 128 x 255 (columns x

rows, or rows x columns). And there are

more than 100 screen primitives at your

command.

Multilingual Windows

You. can order The Window Machine

with the language interface of your choice:

C. Pascal, Compiled Basic, Fortran, Cobol,

or PI.1. We've even recently completed

These are

coders'

windows...

designed to be

built into the

programs you

ore writing.

They can

overlap, move

anywhere on

the screen,

grow, shrink,

vanish or blink.

They can be

bordered in

anything from

asimpJeiine to

/lashing

asterisks...or

even no border

at all. And

you can have

up to 255 of

them at a time!

Color or

monochrome

...of course.'

Why did Simon &
Schuster, 3Com,
Tymshare, and
Rev on choose
VSI-The Window
Machine?

figured if you wanted ribbons and bows

you could always add them yourself,)

And by offering you the product our

selves, we were able to cut out all the

middlemen and save you a tremendous
amount of money.

VSI
THE WINDOW

MACHINE

Available for the IBM PC. XT. AT. IBM Compofibles,

Wang, T.L.and HP 150

The Window Machine Includes:

(and fiow come
you can buy it for
such a low price?)

an interface for Turbo Pascal*, so that

now true, full-featured windowing can be

utilized with this fine compiler. (Turbo's

own built-in "windowing" procedure is

extremely limited).

Windows That Won't Break You

We decided to save you a lot of money.

So. we left behind fancy binders, mono-

grammed slip cases and plastic pre
sentation boxes. Instead, you'll find an

extremely powerful tool and a 200 page

manual written with an eye toward
simplicity, clarity and completeness. (We

Turbo Pascal Is <i TrodBmorli of Borland International

$59.95

■ Zoom Windows

i Multiple Virtual

Screens (up to 255)

i Choice of Borders
[including flashing borders)

i Support for ail Color and

Monochrome Video Attributes
(no graphics cord required)

i Built-in Diajjnnsfics

And much, much more

ORDER YOUR COPY OF

VSI—THE WINDOW MACHINE TODAY

For Visa & MasterCard orders call toll free:

800-538-8157 Ext, 824 In CA 800-672-3470 Ext. 824

Call Mon.'Fri. 6A.M. lo 12P.M.. Sit. ft Sun. 6A.M. lo BP.M. (P.S.T.)

ThtWindow Michine" S59.95 + S5 Shipping iind Handling

LANGUAGE INTERFACE

□ i.ili::-V. _Rvj.ii Cobol -Microsoft Bane Compiler.. Microsoft Fortran

C PLl CMicnsofi Pascal DTurbo Pascal |full featured In* windowingl

COMPUTER

N'amo

Addrelt

City . Stair ZipCodr.

D Check DMOMJ Order DVISA GMasierCard

Card« Eip.Dite.

mud* USA: Please arid

Sin fnr thippinR iiml hu

30 diy Money Bick Gu

AMBER SYSTEMS

1171S. Sara tog)-Sunnj vale Road

San loss. CASSIIS

AMBER SYSTEMS, INC. 1171 S. Saratoga-Sunnyvale Road, San Jose CA 95129 FOR DEALER INQUIRIES: CALL OUR 800 NUMBER

CIRCLE 2 ON READER SERVICE CARD

Sorting y

Dispersion
omputcr jour

nals have

recently pub

lished ;t number

ofarticles on sorting algorithms. The

authors have usually favored the com

parison method used in the Shell sort and

inC.A.R. Hoare's Quicksort. Some have

noted as well the existence of the distribu

tion or dispersion method, which also

goes under the names of hash coding,

address calculation, bulldozer sort, and

range sorting.

Sorts using the comparison method

arrange elements of an array, such as

words, in ascending lexicographical order

by repeated comparisons of selected ele

ments, two at a time. The processing

exchanges elements that are found to be

out of order with respect to each other.

After the program has compared each cle

ment with a certain number of other ele

ments in the array and made the appropri

ate exchanges, it can be determined that

the entire array has been sorted.

An alternative approach

The dispersion method makes an initial

pass through the array, evaluating each

element in some way and putting a vector

into internal storage at a location corre

sponding to the value of the clement. This

vector points to the element.

The algorithm then retrieves all the

pointers in their new, sorted order. That is

the procedure, roughly sketched.

We may try to sort a small mailing list

By David Keil

according to zip code, for example, by

assigning each record to one of a thousand

pointers. The subscript in the pointer

array will be the value of the first three

digits of the zip code in the corresponding

record.

After the pointer array has been cre

ated, we may run through it, collecting

nonzero pointers and thus gaining access

to the records they point to. They will be

in perfect order by the first three digits of

the zip code.

If two records' zips have the same first

three digits, however, we have a problem:

room must be made for two pointers that,

according to the rules, should have the

same subscript. One solution is to assign

the record to a location one higher or one

lower than the corresponding three-digit

zip value. Additional displacements may

be made in case there is still a collision.

Provided the number of such collisions

is low. the extra time required to move a

pointer up or down the array—before

depositing it where it will lie until col

lection time—will be well spent, because

a dispersion-based sort can be very fast,

as will be seen later on.

But if our mailing list happens to be

entirely from the same region, the large

number of collisions will cause the sort to

take a very long time—longer than the

Shell sort or Quicksort.

A possible solution to the collision

problem is to create a very large array

with plenty of room for colliding pointers.

Instead of shifting hundreds of pointers up

or down the pointer array to make room

for one new pointer, we might displace a

pointer into one of the extra slots, of

which there will be plenty.

If we were manually sorting index

cards with names on them, we might use

such a method. We could put carets on a

table with plenty of space between them to

make room for yet-to-be-cncountcrcd

cards.

Such a solution entails plenty of table

space—or. in a computer, high-memory

overhead. Harold Lorin's Sorting and Sort

Systems (p. 152) states that for certain

implementations, "the algorithm requires

space for the representation of 2(A*/V)

elements," where N is the size of the

array being sorted and A is the number

of possible values for a character position.

(If numbers were being sorted, A would

be 10; if words composed of letters of our

alphabet were being sorted, A would be

26.)

In other words, if we were sorting 50

index cards into groups according to the

first letter of the name on each card, we

would need table space for 26 times 50, or

1.300 cards, to cover the possibility that

all the cards will be in the same group.

Sometimes data that must be sorted has

more or less randomly-distributed key

values. For these, the simple "address-

calculation" sort described by Douglas

Davidson in BYTE (November 1983) will

be adequate.

But if we are sorting names, text words,

or even zip codes, we will almost cer

tainly find a highly nonrandom distribu

tion. We will find clumps of Smiths and

Jones's that will cause large numbers of

collisions and hence turn a fast sort into a

slow one.

This article will present a way to solve

27

the problem of quickly sorting unevenly

distributed data in a memory space not

substantially greater than that required to

hold the array being sorted. In other

words, it will describe a way to avoid the

time-consuming processing of collisions

without using a large extra amount of

memory.

Why dispersion can sort faster

First let us examine the comparison

approach and see what its limits arc. The

graph in Figure 1 indicates how the Shell

sort, a fast, comparison-based algorithm.

requires increasing amounts of time per

element to sort increasingly large arrays.

Because the X coordinate (Size of array

(N)) on the graph is scaled loga

rithmically, with a base of two, we can

easily see that the Shell sort requires an

execution time proportional to log^.A'to

process each element: the curve approxi

mates a straight line originating at zero.

As Donald Knuth has shown, sorting

algorithms based on comparisons cannot

execute faster than this—the total time is

at best proportional toN*log2N. (That is.

at least log2JV comparisons must be made

for each element.)

This is because a comparison yields

only one bit of information: either the left

element is greater than the right or it is

not; either an exchange must be made or

no exchange is to be made. For each

doubling of the size of the array to be

sorted, an extra pass is required, com

paring each element to some other

element.

By the time we're sorting about 16,000

elements, about 13 passes through the

whole array will be necessary: 2'3 =

16,384. The way to flatten the graph and

decrease the number of passes necessary

is to extract more than one bit of informa

tion from each examination of an element.

String data yields eight bits of informa

tion just by an examination of the first

eight-bit character. Words composed of

letters of our alphabet yield about five bits

by such an examination; that is, the first

letter can be anything from A to Z if capi

tal and lower-case letters arc assigned the

same value. 26, the number of letters in

our alphabet, is approximately 25.

Increasing in'lhis way the number of

bits of information extracted in examining

an element means that instead of needing

an extra pass each time the array size is

doubled, we will require an additional

two-way pass only after the size of the

array increases 26-fold.

In other words, if we extract informa

tion from the first character of a word

string, rather than comparing strings, our

Compiled versions—Pascal source

100-

7 90-

1 80-
E

r 70-

1 60-
o

• 50-
<o

| 30-
1 20-

10-

♦—♦—*■

Random data

Shell sort/*

P.DISP

16 32 64 128 256 512 1,024 2,048 4,096

Size of array (N)

goal can be a sort-time-pcr-clcment figure

proportional to log:,^. For 17,000 ele

ments, logzh/Vis only about 3. This means

that six passes are necessary for such a

sort: three to distribute elements and three

to collect. Six passes are fewer than half

as many as 13, the number of passes

required to sort 16,000 elements with a

comparison-based algorithm.

Test results

Observe Figures 1 and 2. Here we find

that the performance nf some dispersion-

based algorithms (called P.DISP in Figure

1 and DISP. I and D1SP.2 in Figure 2)

have slopes that arc consistent with this

general theoretical prediction. The dis

persion algorithm sorts large numbers of

random array elements almost twice as

fast as the Shell algorithm.

If we extrapolated the performance fig

ures shown, we could predict that tens or

hundreds of thousands of random ele

ments can be sorted, using dispersion, in

only slightly more time per element than

is necessary to sort hundreds of elements.

That is. total sorting time is very close to

being proportional to the number of ele

ments sorted.

The dispersion sort illustrated not only

performs roughly twice as fast as Shell in

the 3,000-to-6,000-eleniem range, it

promises to perform better and better in

comparison with Shell or any other

comparison-based sort as the number of

elements to be sorted rises.

It is moreover not adversely affected by

prcordcring of arrays (as is Quicksort),

and it is not highly sensitive to unevenly

distributed data. Compare DISP2 sorting

text data in Figure 2 with the two sorts of

random data. (DISP. 1 and DISP.2 arc sim

ilar dispersion sorts.) The strings used in

the text data were the words from a scene

in "Hamlet. Prince of Denmark" whereas

the other samples were randomly gener

ated, three-letter strings. Performance

with nonrandom word strings was not

qualitatively slower than with random

strings in the 50-to-l ,600-element range.

Figure 1.

28 COMPUTER LANGUAGE ■ APRIt 1985

This dispersion algorithm is thus a gen

eral purpose one, requiring no special

inspection of the data before use. It is

designed in such a way that its worst-case

performance will be comparable to the

performance of the Shell sort, and its

best-case performance will be much,

much faster than Shell.

One dispersion algorithm

The Pascal listing, P.DISP. presented in

Listing 1 shows the logic of one of the

algorithms whose performance was

graphed in Figure 2. Exactly the same

logic was used in the BASIC program

DISP. 1, and the logic in DISP.2 was

almost identical.

Five modules of P. DISP are relevant to

our discussion: the main routine; the

segment-processing routine. ProcSeg; the

pointer-dispersing routine. Distribute; the

pointer-collecting routine. Collect: and

the Shell-sort routine. Shell, which is

used as part of the dispersion algorithm.

Two other procedures. Create and Report.

come into use only to generate random

string data, time the test, and display the

results.

To sort our array of random three-letter

words, the program first examines each

clement and puts it into one of 27 "bins"

where it can be retrieved. P.DISP does

this by beginning with a segment consis

ting of the entire array. ProcSeg processes

this segment, first calling Distribute to

allocate the elements among 27 linked

lists according to the letter of the alphabet

with which the word begins. An extra

twenty-seventh bin will accept words not

beginning with a letter of the alphabet.

The linked lists are one key to the suc

cess of the algorithm. Instead of creating

27 arrays, each dimensioned to the max

imum number of elements to be sorted,

N, our algorithm creates one array of 27

elements, called Anchor, and an array of

jVinteger links. Anchor(l) is a

pointer pointing to the first clement begin

ning with "a"; Anchor(2) points to the

first "b" word, etc.

To insert a second "a" word into the

linked list, the word's subscript is

assigned to Anchor(l) . Anchor(l)

acquires a link that points to the previous

occupant ofAnchor(l), Further additions

to the "a" bin arc accomplished by

replacing Anchor(1) and by linking the

new occupant of Anchor{I) to its old

occupant. The "a" bin, a linked list, has

the capacity to contain all the elements in

the array to be sorted, if necessary.

Twenty-seven such linked lists are created

by Distribute.

A way to understand the linked lists in

P. DISP is to picture a row of 27 hooks on

the wall. We hang an "a" word from the

"a" hook. The "a" word has a hook

hanging from it as well. To add a new "a"

word, we take the top word off the hook

on the wall, replace it with the new word,

and hang the old top word from the new

word's hook. More words are added in the

same way, at the top.

Why add words at the top and not at the

bottom of the chain? Because to access the

bottom of a linked list in computer

memory, we must examine each link to

BASIC interpreter

500-

tcarn what the next clement will be.

Adding to the top allows us to avoid a pos

sibly long series of examinations each

time a new element is added to the list.

This brings us to the next step of the

dispersion sort, the collection routine—

Collect in the Pascal program illustrated

here. Again, each chain is removed from

the wall and the words are taken off the

top of the chain in order.

The linked lists here are employed as

stacks, not as queues; the last "a" word

added is the first retrieved. In this way the

collect module may retrieve each element

in one short step. As the bins are emptied.

A through Z, their pointer contents are

assigned to an N-element pointer array.

If each bin has only one element in it, or

400-

300-

200-

100-

Shell sort with • random data

/ ..• Shell sort
¥ .' with text data

DISP.2 sort

/.■' with text data

/'
. .• DISP.l sort

with

random data

DISP.2 sort
with

random data

13 25 50 100 200 400 800

Size of array (N)

1,600 3,200

Figure 2.

29

none, our entire array has been sorted in

one step, [f not, we must perform further

processing, because Distribute and Collect

do not sort within bins, only among them.

To sort within a bin. as is required

whenever the bin contents number more

than one, our algorithm selects one of two

paths. If a bin's size is less than nine. Col

lect calls Shell, which sorts the contents of

the bin by the comparison method. Nine is

an arbitrary choice. We use Shell here

because it sorts small arrays faster than a

dispersion sort. (A Bubble sort in place of

the Shell sort might sort the nine or fewer

clement bins in even less time.)

If the size of the bin is greater than

nine, we consider it, after retrieval, as a

segment, saving its beginning and end

locations in the overall pointer array as

LO and HI for that segment.

The depth at which the program is

examining the data array— one if the first

letter of each element is being evaluated,

two if the second, etc.—is saved as

DEPTH for the new segment. Then we

continue collecting the contents of bins

until the twenty-seventh is emptied.

On completion of Collect, control pro

ceeds to the next segment. IT the first seg

ment was the entire array to be sorted, the

second is the first bin that contains more

than nine elements. Just as we have sorted

the entire array into 27 bins in processing

the first segment, the processing of the

second segment sorts one of the resulting

bins into 27 bins.

Our program distributes and collects

the contents of this second segment,

examining the second character of each

word. If the "b" bin was the first to con

tain more than nine elements on the first

pass, then "bat," "baffle." and "bar"

will end up in the first bin. the "a" bin, of

this second distribution and collection.

Through use of the method known as

tail recursion, the entire array is repeat

edly subdivided in this way into bins until

it has been fully sorted.

If a bin is collected that results from a

distribution on the third character and still

has more than nine pointers in it, then it is

Shell sorted rather than saved as a seg

ment to be distributed and collected on the

fourth character. There is no point in try

ing to distribute and collect on the fourth

character because our random test data

words contain only three characters each.

II"nil the elements in a segment fall into

the same bin. then we Shell son that bin

rather than distribute it again, because we

arc in a situation where it seems likely that

examinations of the next character bin

will only yield more bins containing all

the elements, as would be the case with a

long list of Smiths.

Using a range table

We have examined here only one way to

use the dispersion technique in a general

purpose sort. Improvements are not hard

to imagine: one example is a range table

that allocates words among bins according

to an examination of two or three charac

ters at a time.

Calculating the bin number for a distri

bution on two characters would require

21*27. or 729 bins, and most would

probably end up empty, such as all the

bins containing words beginning with

"x" and another consonant. A much

smaller numberof bins would be needed if

a good range table were used, because

only a small proportion of these 729 com

binations of letters actually occur in

Knglish-language names and text words.

Rather than yielding four or five bits of

information, as an examination of one let

ter does, an examination of two letters,

using a range table to choose a bin num

ber, would yield perhaps eight bits (256

bins). In that case, we might aim for a

much greater speed than is possible with

the algorithm presented in P.DISP.

Whereas P.DISP requires six passes to

sort 16.000 randomly chosen strings, up

to 64K English-language words could be

sorted in four passes if the range table

yielded eight bits of information per

examination.

The dispersion method is known to the

computer world but seems to have been

rarely applied with microcomputers due

to the greater complexity of the algo

rithms, the higher memory overhead (a

factor sometimes overestimated), and the

only marginal speed advantage at array

sizes below about a thousand. An addi

tional factor may be that fast algorithms

arc undoubtedly often kept as business

secrets.

As hard disks become more widespread

and RAM chips of greater capacity come

into use. it seems likely that dispersion-

based sorting algorithms will tend to

replace algorithms based on comparison.

In spelling-checker programs, for exam

ple, a fast sort of words in RAM will

mean a very fast check and much-

improved response, to the benefit of

users. That is part of what the present

generation of computers and software is

all about, tm

David Kcil works in computer interfaced

typesetting at Crockergruphics, Needham,

Mass. He has a B. A. in historyfrom the

Univ. ofMinnesota.

PROGRAM P.DISP (DISPERSION SORT);

(**)
VAR L,E,B,I,X,POINTER,SEGMENT,LAST.T1,T2,T3,LETTER: INTEGER;

TI: REAL;

P.LINK: ARRAY[1..4O96] OF INTEGER;

ANCHOR: ARRAY[1..27] OF INTEGER;

HI,LO,DEPTH: ARRAY[1..6O] OF INTEGER;

ELEMENT: ARRAY[1..4096] OF STRING[3];

(* CREATETESTDATA *)

PROCEDURE CREATE (X: INTEGER);

BEGIN

MEM[$D021]:= CHR(O);

WRITE(CHR(147),CHR(5),CHR(14));

FOR I := 1 TO 27 DO

ANCH0R[I] := 0;

WRITE('NO. OF ELEMENTS? ');

READ(L);

FOR I:= 1 TO L DO

BEGIN

Listing 1 (Continued onfollowing page).

30 COMPUTER LANGUAGE ■ APRIL 1985

Tl:= TRUNC(65+26*ABS(RND(1)));

T2:= TRUNC(65+26*ABS(RND(1)));

T3:= TRUNC(65+26*ABS(RND(1)));

ELEMENT[I]:= CONCAT(CHR(T1),CHR(T2)fCHR(T3));

WRITE(ELEMENT[I],' ');

P[I]:= I;
LINK[I] := 0;

END;

MEM[$OOAO] := CHR(O); MEM[$OOA1] := CHR(O); MEM[S00A2] := CHR(O);
SEGMENTS 0; LAST:= 1; LO[1]:=1; HI[l]-: = L; DEPTH[1]:= 1;

END;

(* DISTRIBUTE ELEMENTS *)

PROCEDURE DISTRIBUTE (B,E: INTEGER);

VAR WORD: STRING;

SEGDEPTH: INTEGER;

LETCHAR: CHAR;

BEGIN

SEGDEPTH := DEPTH[SEGMENT];

FOR I:= B TO E DO

BEGIN

LETCHAR := COPY(ELEMENT[P[I]],SEGDEPTH,1);

LETTER := ORD(LETCHAR)-64;

LINK[P[I]] := ANCHOR[LETTER];

ANCHOR[LETTER] := P[I];

END

END;

(* SHELLSORT *)

PROCEDURE SHELL (B,E: INTEGER);

VAR D,SL,J,T,FIRST,SECOND: INTEGER;

BEGIN

SL:= E-B+l;

D:= TRUNC(EXP(TRUNC(LN(SL)/LN(2))*LN(2)))-1;

WHILE D>=1 DO

BEGIN

I := B;

WHILE K=E-D DO

BEGIN

J := I;

WHILE J>=B DO

BEGIN

FIRST := P[J]; SECOND := P[J+D];

IF ELEMENT[FIRST] > ELEMENT[SECOND]

THEN BEGIN

T:= P[J]; P[J]:= P[J+D]; P[J+D]:= T; J:= J-D;

END

ELSE J:= 0;

END;

I:= 1+1

END;

D:= TRUNCCD/2);

END;

END;

(* COLLECTELEMENTS *)

PROCEDURE COLLECT (BEGSEG: INTEGER);

BEGIN

I := BEGSEG-1;

FOR LETTER:= 1 TO 27 DO

Listing 1 (Continued on following page).

31

BEGIN

B:= 1+1;

IF ANCHOR[LETTER] > 0 THEN

BEGIN

I := 1+1;

P[I] := ANCHOR[LETTER];

ANCHOR[LETTER] := 0;

WHILE LINK[P[I]]> 0 DO

BEGIN

I := 1+1;

LINK[P[I-1]] := 0;

END;

IF I-B > 9

THEN

IF (B = BEGSEG) OR (DEPTH[SEGMENT] > 2)

THEN

SHELL(B.I)

ELSE

BEGIN

LAST:= LAST + 1;

LO[LAST]:= B; HI[LAST]:« I; DEPTH[LAST]:= DEPTH[SEGMENT] + 1;

END

ELSE

IF I > B

THEN SHELL(B,I);

END

END

END;

(* PROCESSSEGMENT *)

PROCEDURE PROCSEG (X: INTEGER);

BEGIN

WRITE(SEGMENT/ ');

DISTRIBUTE (L0[SEGMENT],HI[SEGMENT]);

COLLECT (LO[SEGMENT]);

END;

(* PRINTRESULTS *)

PROCEDURE REPORT (L: INTEGER);

BEGIN

Tl := ORD(MEM[$OOAO]); T2 := ORD(MEM[$OOA1]); T3 := ORD(MEM[$OOA2]);

TI := 1092.26*Tl+4.26667*T2+T3/60;

WRITELN(CHR(13),L,' ELEMENTS',CHR(13),'TIME: ',TRUNC(100*TI+0.5)/100);

WRITELN('MILLISEC/ELE: ',TRUNC(1000*TI/L+0.5));

WRITELN('PRESS RETURN'); READ(X);

FOR I:= 1 TO L DO

WRITE (ELEMENT[P[I]],' ');

END;

(* MAIN ROUTINE *)

BEGIN

CREATE(O);

WHILE SEGMENT < LAST DO

BEGIN

SEGMENT:= SEGMENT + 1;

PROCSEG (0);

END;

REPORT(L);

END.

L i s t i n g 1 (Continuedfrom preceding page).

32 COMPUTER LANGUAGE ■ APRIL 19B5

k m ^d for your IBM/PC

The new
standard for
convenience.

Now, the mbp COBOL Compiler offers

unrivaled convenience to go with its

unmatched performance.

Here are the convenience

features you've wished for:

1) an enhanced Screen

Management System with pro

gram-controlled video attributes

and color; 2) support for PATH &

sub-directories; 3) DOS command

execution from within a COBOL

program; 4) permanent' DEFAULT
modification.

The new mbp Compiler has them

all! And they're exclusives: you get them only with mbp.

Plus, it's 4 times faster.

Because the mbp COBOL Compiler generates native machine

language object code, it executes programs at least 4 times faster

(see chart). Now. we've made

that performance even

more convenient to use.

mbp COBOLJ1000
Please send complete mbp COBOL information

to:

GIBSON MIX Benchmark Results
Calculated S-Profilc

(Representative COBOL statement mix)

Execution time ratio

mbp'

COBOL

1.00

Level II'

COBOL

4.08

R-M* Microsoft'

COBOL COBOL

5.98 6.18

The complete COBOL.

An Interactive Sym

bolic Debug Package

included standard; Multi-

keyed ISAM structure; SORT

& CHAIN; GSA certification

to ANSI 74 Level II; IBM/PC-AT and TI Professional compatibility;

with mbp, you get it all. Optional: Novell NetWare interface.

mbp COBOL: the choice of professionals.

It's no surprise more and more companies like Bechtel, Bank

of America, Chase. Citicorp, Connecticut Mutual, Hughes Aircraft.

McDonnell-Douglass, and Price-Waterhouse choose mbp COBOL.

Make ityour choice, too. Just send the coupon, or call, for

complete information. Today

CIRCLE 53 ON READER SERVICE CARD

ClTVSTATF.'ZiP.

mbp Software & Systems Technology, Inc.

7700 Edgewater Drive, Suite 360

Oakland, CA 94621

Phone 415/6324555

CLtDJ

"In the art
ofprogramming

the difference between

greatness and mediocrity

is often the quality of

the artist's tools."

POLYOVERLAY
Make Maximum Use ofMemory with Overlay Code. Creates optimal memory

overlay structures, in terms ofutilizing a minimum oi total physical memory, while

it builds a batch file to automatically drive an overlay linker, for creating efficiently
overlayed executable code. Creates optimum overlay structures tor any modular

language including C, FORTRAN. Pascal, Ada and even BASIC. Essential lor

porting mainframe code too large to fit into personal computers memory all atone

time. Requires MS-DOS 2.0, and Microsoft's Linker Version 2.4 Shipped with

Users Manual $QQ

Praise From Professionals

"PolyLibrarian is a powerful tool for serious

hobbyists and professional programmers. It

is a thing of beauty; a work of art. The docu

mentation is excellent, the large selection

of commands are intuitive to learn and easy

to use, and the program itself provides a

service of inestimable value. It is refreshing

to see a tool of this caliber available for seri

ous programmers. The design of this pro

gram shows foresight and ingenuity. It sets

the human engineering standard for pro

gramming utilities. If all of a programmer's

tools were so simple to work with, better

programs could be developed in less time

and with fewer headaches. Bravo, Polytron!

I look forward to your next product."

Dan Rollins,

Programmer and Author writing in PC Age

"PolyLibrarian is an extensive, friendly utility

... an excellent tool for serious program

mers. It combines professional quality with

a flexible user interface."
Greg Estes

Editor, Programmers Journal

"I am thoroughly pleased [PolyLibrarian] is

definitely one of the best products of its

type that I have ever used on any system."
An Unsolicited Comment from

Steve Kauffman

Consulting Engineer

POLYTRON C LIBRARY 1
A Library of High-Performance Functions for Lattice C Compiler Users. Over 50 significant routines
more useful than common library functions. The library includes UNIX-like utility functions, file management

functions, more efficient and flexible I/O routines, and executive functions. This is a powerful, professional-
quality C library that is easy to use and designed to increase your productivity. Assembly and C source code
included. Requires Lattice C Compiler Includes Users Manual

To Order or Request Literature Call

1-800-547-4000
Ask For Dept. 315

VISA & MasterCard Accepted

Or Send Checks, P.O.'s To:

Polytron Corporation D8-31S-F1

P.O. Box 787, Hillsboro, OR 97123

Add $1.25 Shipping Charge For Each

Product Ordered.

CIRCLE 88 ON READER SERVICE CARD

POLYLIBRARIAN
The Object Module Library Manager for MS-DOS"". PolyLibranan lets you create a single library trom

related Objects Modules. The IBM PC Linker will then select only the modules necessary to produce an
executable file. PolyLibrarian can: Create, organize, reconstruct, dissect, and compress libraries ofobject code
modules. Add, delete and replace an object module. Extract a module from a library to create an OBj file.
Change public and external names. Modules are time-stamped within the library. Supports full path names.
Supports Microsoft's original and latest Linker (Version2.4). Includes installation program to customize options

to your specific needs. Features three Modes of Operation (Interactive, Command File, Command Line) that
caii be freely intermixed. Surpasses performance of other primitive librarians. Features a highly functional user
interface that uses simple meaningful key words. Requires 128K RAM, MS-DOS (PC-DOS) 1.1 or 2.0.
Compatible with any compiler or assembler that uses the MS-DOS (PC-DOS) Linker. Shipped with
comprehensive Users Manual including step-by-step tutorial for 99

POLYLIBRARIAN II
Extends PolyLibrarian's power to Intel™ and Digital Research" Format Libraries. PolyLibranan II is an

enhanced version of PolyLibrarian. In addition to all the features and functions listed above tor PolyLibrarian,
this version adds a new dimension of productivity for programmers using Intel and Digital Research Language
Products. Compatible with any Intel Format Library and any Microsoft Format Library. Compatible with
Intel's Link 86 under MS-DOS. Compatible with Digital Research Linker under MS-DOS T49

POLYMAKE , r e L
The Intelligent Program Builder & Maintenance Tool for MS-DOS. PolyMakc trees you from the need to

remember which files depend on others and which files have been modified. PolyMake will: Remember the
exact sequence of operations necessary to make a new version of a program. This will significantly reduce
developemem time, prevent bugs & manage large software projects. Automatically invoke your compiler,
assembler, linker, librarian, or do whatever is necessary to bring all dependent files up to date. Compare the date
and time of all relevant files and use internal rules to rebuild a program or complete software system. Rules can
be modified and expanded. Extensive debug capabilities help construct efficient make files. Includes features
superior to UNIX Make. Fully automatic operation under MS-DOS 2.0. Full path name capabilities under
MS-DOS 2.0. Requires 128K. Shipped with a comprehensive Users Manual ^99

POLYFORTRAN TOOLS 1
Four Powerful Utilities in One Package. For developing or enhancing soltware or porting mainlrame

software to personal computers these easy-to-use tools will become indepensible for the professional
FORTRAN programmer. Includes: 1. FORTRAN-XREF for developing comprehensive cross-re terence

maps of FORTRAN source code. Mainframe users expect this kind of utility. Now personal computer users
haw X-REF power. 2. FORTRAN-EXTRACT extracts the MAIN routine as well as all SUBROUTINES,

FUNCTIONS and BLOCKDATAS from FORTRAN source code. It is unsurpassed for brcaking-up large
codes into manageable modules that can be individually modified, compiled, added to libraries and finally linked
into a single executable code. 3.FORTRAN-CLEANUP performs three critical functions to improve

FOR IRAN source code readability: A. Renumbers FORTRAN source code statements within each routine to
begin at a user specified starting'number; B. Adds spaces around delimiters and key words; C. Performs
indentation for DO loops, IF...Then and similar structures. Ifyou arc becoming weary ofcleaning up "sloppy '
code then you need FORTRAN-CLEANUP. 4. FORTRAN-SCREEN lets you show oft your software. This
is a complete set of FORTRAN callable screen attribute and cursor position control functions for creating user

friendly, interactive menus and displays. Requires MS-DOS 2.0, 256K, One Disk Drive, Compatible w/hard

disk. Shipped with Users Manual 1/9

Part III: Translating tables

Programming

Macros
in

i
nthis final install

ment of my three-

part series on C

macros, we'll

explore how the preprocessor of a C com

piler can be used to translate a common

representation of a table of data into dif

ferent but related tables required by dif

ferent programs. The technique is applied

to the generation of structure definitions

and corresponding initialization lists in

the C programming language.

Programming problems often call for

table-driven solutions. Related programs

ordiffcrent modules of the same program

may use tables derived from the same

data. If separate copies of the tables are

built into different parts of programs,

multiple copies of tables must be syn

chronously maintained. A better way is to

keep one master copy of data and generate

all related tables from it.

For programs written in C and for cer

tain classes of tables, the preprocessor can

be used to generate variations of tables.

Here we explore one way to do it. We first

concentrate on a specific problem. Later

we generalize the technique.

Structure initialization

When initializing a structure in C, the list

of initial values follows after all names of

structure members have been specified, as

in Listing 1.

In larger structures it is difficult to

establish correspondence between the

member name and the initial value. It

would be more convenient if we could
write:

By Alexander B. Abacus

struct tag

char * member! = "first";

char * member2 = "second";
) instance;

Let us try to use the C preprocessor to

generate the first form from specifications

similar to the second form. We chose the

following format to specify the initialized

structure:

StrucfBEGIN(tag)

DCL(char * memberl) INIT("first")

DCL(char * member2) INIT("second")

StructEND(instance)

where SlruaBEGINQ , StructENDQ ,

DCLQ, and INITQ are preprocessor mac

ros to be defined.

We can easily define the macros to gen-

crate from this specification either the

first part of the required text (declaration)

or the second part (initialization), shown

in Listing 2.

Implementation constraints

Our goal is to generate both declaration

and initialization parts from one copy of

the compact specification. To achieve this

goal using only the C preprocessor, we

have to impose certain severe constraints

on our idealized solution.

Each specification of initialized struc

ture must be kept in a separate include

file, and each file must be included twice

on two consecutive lines in order to gener

ate the complete initialized structure.

Therefore, this approach becomes prac

tical only for large structures. An include

file defining an initialized structure must

have the form shown as follows:

I* FileaStruct.h-begin. */

#include "initstruct.h"

{
char * memberl;

char * member2;

) instance =

{
"first",

"second",

};

Listing 1.

/*

/*

end

beg

of declaration part */

inning of initialization part */

35

\\

7

Listing 2.

#define StructBEGIN(Tag) struct Tag {

#define DCL(TypeName) TypeNarae;

#define INIT(initValue) /* empty */
#define StructEND(Name) } Name =

"Macros defining declaration part"

#define StructBEGIN(Tag) {

#define DCL(TypeName) /* empty */

#define INIT(InitValue) InitValue,

#define StructEND(Name) };

"Macros defining initialization part"

/* File initstruct.h — begin. */

#undef StructBEGIN

#undef DCL

#undef INIT

#undef StructEND

#if ! defined Hinitstruct

§ define Hinitstruct

/* definition part */

define StructBEGIN(Tag) struct Tag ■

define DCL(TypeName) TypeName;

define INIT(InitValue) /* empty */
define StructEND(Name) } Name =

#else defined Hinitstruct

undef Hinitstruct

/* initialization part */

define StructBEGIN(Tag) {

define DCL(TypeName) /* empty */

define INIT(InitValue) InitValue,

define StructEND(Name) };

#endif Hinitstruct

/* File initstruct.h — end. */

StructBEGIN(tag)

DCL(char * memberl) JNIT("first")
DCL(char * member2) INIT("second")

StructEND(instance)

/* FileaStruct.h—end. */

The file initstruct.h included jusl before

the specification of the initialized struc

ture must define the appropriate set of

macros. When the file aStruct is first

included, macros implementing the defi

nition pan must be defined. When the file

aStruct is included for the second time,

macros implementing the initialization

part must be defined. Therefore the file

initstruct-h must be defined as in Listing

3.

Here we have introduced preprocessor

symbol Hinitstruct, which must not be

defined in any source file other then ini

tstruct.h. This symbol will be undefined

for odd inclusions of initstruct.h and

defined for even inclusions. If aStruct.h

and other include files defining initialized

structures are used correctly—that is,

always included twice on two consecutive

lines—this symbol will always be

undefined for the first inclusion and

defined for the second.

We have to undefine our macros before

redefining them. The C preprocessor

issues a warning message when a symbol

is redefined.

Declaring structures

To make initstruct.h really useful, we

must add the ability to generate declara

tions of the structure without allocating

any storage. Our objective is to keep only

one specification of the structure that will

be included in all source files that need to

know the layout of the structure.

In one source file, typically the one

containing the function main() , the speci

fication should generate the definition of

the structure with storage allocation and

initialization. In other source files the

specification should generate the declara

tion of the same structure without allo

cating any storage. We have arrived at the

Listing 3.

36 COMPUTER LANGUAGE ■ APRIL1985

final form for our include file initstruct.h.
We now introduce the new prepro

cessor symbol Storage. It must be

undefined in source files where only dec

laration is to be generated without allo

cating storage. It must be defined in the

source file where definition with storage

allocation and initialization is to be gener

ated. If it is defined as:

#defme Storage /* global */

the name of the structure variable will be

global, that is, visible to all files com

posing the program. If it is defined as:

#defme Storage static

the scope of the name will be limited to

the source file.

At the very end we have added a small

test driver. That part will only be com

piled if we specify the compilation option:

-DDriverH

To compile this file, we have to rename it

first into initstruct.c. Keeping the test

driver in the same file with the code to be

tested makes it easy to do a consistency

check after any modifications. We do not

have to code a test program each time we

make a modification. We keep it together

with the code to be tested. It also serves as

an example on how to use the macros

defined in this file.

Recapitulation

Let us now state the complete set of rules

for using macros defined in initstruct.h.

The specification of each initialized

structure must reside in a separate file.

Only structure specification and com

ments may be placed in that file. For the

sake of an example, the name aStruct.h

will be used for such a file.

The first noncomment line in aStruct.h

must be:

#include "initstruct.h"

File initstruct.h contains two alternative

definitions for each macro. One set

becomes defined on odd-numbered inclu

sions of the file, the other on even-

numbered inclusions. The odd macro

definitions generate declarations of struc

ture members; the even macro definitions

generate initial values.

The second noncomment line in

aStruct.h must be macro

StructBEGIN(TagName)

The argument TagName is optional.

The last noncomment line in aStruct.h

must be macro

StructEND(VarName)

The argument VarName is the name of the

variable of type structure that is to be

defined or declared.

The remaining noncomment lines in

aStruct.h must be of the form:

DCL(Type Identifier) INIT(Value)

Each of these lines defines one member of

the structure and its initial value. The

argument of the macro DCL() (short for

DECLARE) is identical to the declaration

for the structure member without the ter

minating semicolon. The argument of the

macro INIT() is the initial value.

In the source file where the structure is

to be defined and initialized, preprocessor

symbol Storage must be defined before

including the file aStruct.h two times on

two consecutive lines (comment lines may

intervene). If the symbol is defined as:

#define Storage static

the structure will be defined with the attri

bute static. If the symbol is defined as:

#define Storage /* empty */

the structure will be global.

In other source files where the structure

is to be declared as external, preprocessor

symbol Storage must not be defined

before including the file aStruct.h once.

Generalized problem

Apart from the limited usefulness of mac

ros defined here, the file initstruct.h is an

example of using the C preprocessor to

Programmers: ■

This new book shows

you how your software

can support over 150

video terminals and

microcomputers!

How to support the wide variety of video

display terminals has long been a problem for

programmers. The "cursor up" code for one

VDT might well clear the screen on another!

If you have spent time searching for control

code sequences then this new book will be a

welcome relief. We gathered 146 data sheets

to give you a single source for your VDT

support questions.

A Programmer's Guide to Video Display

Terminals shows you how to clear the

screen, position the cursor (with examples!),

home the cursor, make seven erasures, turn

video attributes on and off. and recognize

cursor (arrow) keys for over 150 VDTs! We

even include data for many VDTs which are

no longer manufactured.

You will find this book an indispcnsible aid

if you arc a programmer, software developer,

consultant, dealer, OEM. value-added

retailer, or just frequently called on to support

a variety of VDTs.

We are so sure that this book will eliminate

your VDT support problems that we offer a

FREE 15-day examination. To receive your

copy, return the coupon below.

Examine it free for 15 days. If you are not

completely satisfied, return it and owe

nothing. Prepaid orders will receive a refund.

15-DAY FREE EXAMINATION!

A Programmer's Guide to Video Display Terminals
by David Stephens

Atlantis Publishing Corporation Dept. 203
P.O. Box 59467, Dallas. Texas 75229-1467
ISBN 0-936158-01 -8 S30 335 pages, sottcover

Atlantis Publishing Corporation Dept. 203
P.O. Box 59467. Dallas. Texas 75229-1467

"I

n YES! Please send A Programmer's Guide to Video Display
I Terminals lor 15 days FREE examination. III decide to keep I

the book I will pay 530 plus shipping.

Texas residents add sales tan. Price subject to change. Oder subject to'
I acceptance by Atlantis Publishing Corooialion. Foreigr buyers remit in US i
currency, specify method and add ship-ping.

' Name . I

Company.

Address _

City, State. Zio.

□ Check or money order H Bill me.

Publisher pays stiipuing on prepaid orders. Same return privilege.

□ MasterCard fJVisa Eid. Date I

Card Number . ,

SIGN HERE. Credit orders invalid unless signed

I 1

CIRCLE 3 ON READER SERVICE CARD 37

#if MacroVariant == 1

define Macro(al, ..., aN) cO(l) al cl(l) .

#endif MacroVariant == 1

#if MacroVariant == 2

define Macro(al aN) cO(2) al cl(2) .

#endif MacroVariant == 2

#if MacroVariant == M

define Macro(al, ..., aN) cO(M) al cl(M)

tfendif MacroVariant == M

ile macro.h — end. */

Listing 4.

.. aN cN(l)

. . aN cN(2)

. aN c

Advanced
Screen Management

made easy

Now a professional software tool from

Creative Solutions.

WINDOWS FORC

More than a window display system,

WINDOWS FOR C is a video tool kit for all

screen management tasks.

■ Pop-up menus and help files

■ Auto memory management

■ Keyboard interpreter

■ Word wrap

■ Auto scroll

■ Highlighting

■ Color control

■ Overlay and restore

■ Plus a library of over 50
building block subroutines

Designed for enhanced portability.

Easy to learn, easy to use.

Once you've tried WINDOWS FOR C,

you'll wonder how you ever managed without it.

Full support for IBM PC/XT/AT and compatibles, plus interfaces for non-IBM computers;

Lattice C, CI-C86. Mark Wm. C. Aztec C, Microsoft C. DeSmet C (PC/MSDOS).

NEW Ver. 3.1
Enhanced portability.

Topview compatible.

WINDOWS FOR C$195
(specify compiler & version)

Demo disk and manual $ 30

(applies toward purchase)

Full source available.

No royalties.

Creative Solutions

21ElmAve.,BoxT4,

Richford. VT 05476

802*848-7738

Master Card & Visa Accepted

Shipping $2.50

VT residents add 4% tax.

solve particular instances of the following

general problem.

Given a table with an arbitrary number

of lines (L) and a fixed number (N) of con

stants in each line:

Macro(ol(l) a

Macro(al(L) aN(L))

generate a fixed number (M) of different

tables having the same number of lines as

the given table and each line having the

form:

cO(m)al(l)cl(m)...aN(l)cN(m)

where I <~ m < = M.I <=\ < = L,

and parameters cO cN are constant

for all lines of one table bul arc different

indifferent tables.

A generalized solution is to have M

definitions for ihe macro Macro defined

conditionally, as in Listing 4. Note that

this solution is easily applied to even more

general problems. Constantsa/ an.

can be ordered differently in different

tables. Different subsets of those con

stants can be used in different tables. Rep

etition of a constant within a line of the

generated table is also possible.

The solution of the generalized problem

can be used to generate different but

related initialized structures or arrays in

different modules of a program or in

related programs. For example, similar

constant tables may be needed in several

passes of a compiler. They could be

defined in one include file and different

variations of the table can be generated

for each pass.

For those who'd enjoy more attention to

this subject, I"ve placed a rather long list

ing called STRUCT. H on the COMPUTER

LANGUAGE Bulletin Board Service and

on the magazine's account on Com

puServe. The listing will give you macros

for initializing structures. M

Alexander Abacus has a B. S. in electrical

engineering and is a software consultant

forCGA Computer inc., Cranford, N.J.

His software experience includes workfor

Sperry, IBM, and AT&T Bell Laboratories.

CIRCLE 14 ON READER SERVICE CARD

THE fifth generation language

PROLOG

i'n;. tn'»i:niiii lha lull Edinburgh SynUX »a 0*icrlb*a by

Clcckjon ma MalHtn. Rsccgnlud by J*o*n « wo.Wirva

J- ni'J It « ,'PKflu!!/ li, inilul miHig.rc,

Application*; Highlights of LVM Protog:

A Tie riignesi level of a heirarchiai *Tyoe LVM Prolog makes possible the

robolic control system. execution ot Al aoolicalions previously

only possible on a mamtrame.

A Maonino recognition of natural

language. A Invisible compilation to a semaniic

network provides the flexibility of the

A Expert systems anfl knowledge intein'etaO moDe and Irie speed of a

engineering compiler.

A Virtual memory anfl a sophisticated

Option*!: cache olgonlnim limited only by !he

A Soecial libraries

A Syntax superset with many extensions

A Language eitensions such as pattern specilied insertion

and deletion, clause indexing, robotic

control.

Educational Package A Unlimited number of resirlenl and

oqq OC virtual modules, each up To 2 giga-

Obi7>b7O bytes m size

(MSDOS)

▲ ▲ ▲ A ▲ ▲

»THE most cost efficient package In the Industry.

S500- (MSDOS version) Also available rcr Xenix. Unix. CP/W68K

^■^^^■^ aVISA, Mastercard. AMEX

■^B IVlV Acallor write for brochure
automata design ttsoc

1570 Arran Way Dreshei, W 19025 technical: (21S646-48&4 ofd»m: {219355-5400

HIPPOC
The C compilers for the Macintosh '

■ ' ' til
Powerful, expandable, yet affordable:

■ A friendly. inteRralet! environment complete with an editor, full compiler, linker. Mmrce-ievel

dehunjier. tutorial. MainLird C lihr.trs, and stniciure (Jerinilion fil«.

1

I

1

1

I Convenient acctss 10 serial pons and sound channels.

I Access to over h00 1oolho\ routines.

i (h'er 200 pages of documentation and many sample programs.

I loadable 10Hippo-Clevel 'forS2TO.00

i New version 1.2

i (149.95

■M ■■■■ 1. ■

Professional C development system. Here's what you've been

waiting for:

■

i

i

i

i

i Allows for ihe creation of large, stand-alnue Macintosh applicaiions

I Comes with an editor optimizingl- compiler. 68000 assembler, linker. C library stdiu package.

full floaiing-poinl SUpporl (Including math and trig functions), and structure detinition files.

i Convenient access to over ioo Madntodi Toolbox routines

I Documentation, many sample programs, and sources to useful programs,

I No royalties or licensing fees.

i You may obtain a non-copy protected disk by signing and returning a form along with a

nominal fee to Hippopotamus.

■ $399.95.

Available from your local ik-aler or directly frnm Hippopotamus Software:

i_i ippopcyrAivfijs

!2S0 Oakmead Paifaraj; Suite 210, Sunnwale. QV9*86 408/738-1200

Iiealer inquiries welcome ftBWBM crrilit cards, checks. andnKMKj orden i:alifomia rtstdiiils add local salts lax
Fleast Indudt 510 for shipping andhaBdliog Midntosti Is a liadtmiik ofAppl* Computer, luc Hijipu-C is a ir.idtm.irk
(if Hippopotamus Software, !nc i11 ease .ill"* t 1 wteki for deliverv I'nci1. anjljbihh. jmi spi'ciliollons sublffl i«
chmgevtihaui notice

CIRCLE 1 ON READER SERVICE CARD CIRCLE 39 ON READER SERVICE CARD

OVERCOME

FORTRAN and PASCAL
LIMITATIONS WITH

Visa/MC

A library of 58 Assembler routines transforms MS FORTRAN and PASCAL

plus other 8086/87/88 FORTRANs into the flexible, responsive, complete lan

guage needed for the microcomputer environment. Ver 1,0 Features:

EXTENSIVE GRAPHICS

FULL SCREEN CONTROL

STRING MANIPULATION

KEYBOARD CONTROL

FILE MANAGEMENT

COMMUNICATIONS

OTHER FEATURES

(Get, Put, Paint, Color, Dot, Line, Box, Circle,

Ellipse, Large Characters)

(Windows, Cursor, Read/Write Screen)

(Match, Compare, Concatenate/Extract, Pack,

Justify, Zero Fill)

(Read Key During Execution, String Read)

(Exist?, Rename, Delete)

(Set Com Line, Send/Receive, Line/Modem

Status)

(Peek, Poke, Determine Time/Date, Random

Numbers, Beep, Clear Screen, OR/AND/

XOR/NCT/NEG of Byte/Word, Printer Status)

Ver 2.0 with 92 routines now available.

Directories, Command Line Read, Program Chaining,

Interrupt Driven Communications. $129. Upgrade $40.

M | E j F Environmental Inc.
P.O. Box 26537 Austin, Texas 78755

(512) 251-5543 Outside Texas (800) 562-9700

SMALL FOR IBM-PC

Small-C CompilerVersion

2.1 for PC-DOS/MS-DOS

Source Code included

forCompiler& Library

New 8086 optimizations

Rich I/O & Standard Library

CBUG SOURCE LEVEL DEBUGGER FOR SMALL C

Break, Trace, and Change

variables all on the

source level

Source code included

Datalight

CIRCLE 55 ON READER SERVICE CARD

11557 8th Ave
Seattle, Washington 98125

(206)367-1803

ASM or UASM is requ red with compiler
include disk size n 60W32Okl, and DOS version with order

VISA & MasterCard accepted include card no a expiration date
wasnmgton srate residents include 7 9% sales rax

IBM-PC & PC-DOS are trademarks of international Business Machines
MS-DOS is a trademark o(Microsoft Corporation

CIRCLE 19 ON READER SERVICE CARD

39

WHITESMITHS, LTD. 370 COMPILER

NOW YOU CAN RUN BOTH

C AND PASCAL ON IBM MAINFRAMES

FEATURES:

• Full implementation of the C programming

language for the IBM 370/43XX/30XX

• Supports full ISO Level 0 Pascal, extended to

support separate compilation

• Uses standard IBM tools to facilitate debugging in

the standard IBM save area layout

• Compatible with the full range of Whitesmiths'

compilers (PDP-11, VAX, 68000, 8080, and 8086)

• Provides optional cross support for MS/PC-DOS,

CP/M-86, CP/M68k, and CP/M-80

• Runs under all versions of OS (VM, MVS, SVS,

MVT, andMFT)

• Includes unlimited use of libraries in binary form

• Runs interactively under TSO and CMS

• Includes first year of technical support

CALL WHITESMITHS NOW AT (800) 225-1030

MASS. RESIDENTS CALL (617) 369-8499

WHITESMITHS, LTD.

97 LOWELL ROAD

CONCORD, MA 01742

TELEX 750246

Distributors: Australia, Fawnray Prance Ltd., Rosebery 2018, N.S.W., Sidney 662-4111

Japan, Advanced Data Controls Corp., Chiyoda-ku, Tokyo (03) 263-0383

United Kingdom, Real Time Systems, P.O.B. 70, Douglas Isle of Man, 011-44-0642-26021

Sweden, Unisoft AB, Goteborg, 011-46-31-125810

CIRCLE 43 ON READER SERVICE CARD

40 COMPUTER LANGUAGE ■ APRIL I9B5

PUBLIC DOMAIN SOFTWARE REVIEW

Mk few months ago,
!■■■■■■■■■■■■■■■■■■■ B ^L *i_ _ i_ j. i_ r

^^m another batch ol
■■■■■■«■ ^^i^^ft _ ,

:::::::::::::: * mdisks from the

PC-SIG organization came in the mail.

PC-SIG has been mentioned here before

as an excellent source of public domain

material for MS-DOS and PC-DOS

machines. Its catalog now lists 222 disks,

covering a wide variety of material. Since

PC-SIG's last catalog edition, 24 new vol

umes have been added.

Probably of most interest to readers is a

disk of C utilities that perform a multitude

of tasks. PC-SIG vol. 216 contains 41

items ranging from C source to batch

files. A documentation file contains

details of the volume's contents. A few

calendar programs are included for con

verting Gregorian dates to Julian dates

and vice versa, packing date formats (thai

is, going from 1/2/85 to 01/02/85), deter

mining the day of week from the

Gregorian date, returning DOS time and

date as integers, and getting time and date

in different forms.

The unpacking program is useful when

interfacing into packaged programs that

expect predefined string formats for the

date, and the Julian-Gregorian con

versions are really the only accurate

method of tracking dates between years.

The Julian day is simply a constantly

increasing integer, started at an arbitrary

date long ago and now reaching into the

millions. It does, however, provide an

unambiguous method of tracking con

tiguously throughout time.

A few programmer's utilities are sup

plied for functions such as reading a string

from STDIN, writing a string to STDOUT,

writing a character to the screen using

DOS calls, opening menu files and

accessing them on the console device, and

initializing screen and keyboard arrays.

Scrccn-oricmed utilities allow you to

erase to the end of the line, toggle screen

attributes (blink, reverse, etc.). position

the cursor using row-column coordinates,

move up or down a specified number of

lines, move the cursor on a line by a speci

fied number of columns in either direc

tion, and erase a line from the screen. A

By Tim Parker

pause routine allows timed pauses to be

inserted into source code.

Finally, a series of batch files are sup

plied that emulate UNIX commands, such

asls,ct,rm,Id, and others.

g ^^urbo Pascal users

I will find a utility
I that acts as an

enhanced source lister on PC-SIG vol.

217. It can automatically underline cer

tain words, if requested. The Pascal

source code, compiled program, and a

documentation file are supplied. A sepa

rate list of keywords to be checked is

maintained in a data file directly address

able by an editor. A BLOADable screen-

dump utility that will work with high-

resolution graphic screens is included.

The disk's contents are rounded out

with a few more utilities. Probably the

most noteworthy is a floppy-disk drive

alignment program, supplied with

documentation.

An updated version of the popular

remote bulletin board system (RBBS)

program (version 12.2) is on PC-SIG vol.

212. For anyone interested in establishing

a RBBS. this disk supplies all the required

software in a tried and tested form. Full

help for users is supplied in a series of

eight help files describing commands

available to the user, supported functions

on the system, message protection, mes

sage editor, and file menu and

subsystems.

Separate programs are supplied for

essential BBS operations. The main pro

gram, RBBS-PC, is supplied as an ,EXE

file and a squeezed BASIC version. The

unsqucczcr is supplied on the disk. A doc

umentation file covers all required aspects

of the program. For those with earlier

versions of RBBS-PC, update programs

convert 12.1 to 12.2 and a list of fixes

from version 12.1. A ring-back function

is supplied for implementation if the

SYSOP desires it. Menus and sign-on

prompts arc supplied in two forms, one

with graphics and one without them. This

allows the system to be adapted to differ

ent machine configurations without using

a debugger.

For anyone contemplating setting up a

BBS system, the RBBS-PC software sup

plies most of the functions that can be

required by a starting system operator and

surpasses several commercial implementa

tions in many aspects. As these updates

show, a continual upgrading policy by

the users exists to expand the capabilities

of the program.

For telecommunications use, PC-SIG

vol. 202 supplies a PC-to-mainframe

data communications program. The Sim-

ware IBM 3278 version 2.30 program

with the keyboard command configura

tion routines and communication protocol

setups does the job that many expensive

commercial products do. A CMS/TSO

communications program allows error-

free use of CMS implementations, as can

be found on many university mainframes

running IBM or Amdahl machinery and

OSVS1 or OSVS2. A start-up batch file

gets everything running smoothly. In use,

the SIM3278 software performed flaw

lessly, accessing both CMS and Wylbur

systems. For many of the more common

commands, definable keys were greatly

appreciated.

A couple of new disks cater to word-

processing applications. PC-SIG vol. 211

supplies a microjustification routine for

left and right microjustification of text.

Assembler source code and fairly com

plete documentation are supplied on the

disk. The rest of the disk space is taken up

with a speed-reading package.

For WordStar users, PC-SIG vol. 201

has a few WordStar-to-ASClI formatters

and their reverse. Two simple word pro

cessors are supplied on the disk. Neither

will displace a commercial word

processor.

And last but by no means least are more

utilities. PC-SIG vol. 204 has a useful

program called FCOPY that will format

and copy single-sided disks in 30 sec. Pas

cal and object source code arc supplied

with documentation, although most copy

routines are not too difficult to figure out.

A couple of other copy enhancements

are on the same volume, including an

enhanced delete function. MSPOOL2

allows up to four printer spoolers to be

used with the PC. WRTE allows copies

of a read-only file to be made.

The next disk in the series, vol. 205,

includes an extended batch language with

demonstration programs and documen-

41

Z setsyou FREE!
Z— yes! Synergistic combination of ZCPR3 and ZRDOS2 produces
flexible state-of-the-artZ80 operating system with tremendous produc
tivity features.

Z-System consists of software modules, dynamic loading segments,
and tools permitting optimum computer usage ranging from produc

tion program development to turnkey, password-controlled, end-user

installations. Facilities include: multiple commands per line, file search

paths, named directories, I/O redirection, command flow control,

screen-oriented menu generators, complete housekeeping file and

directory management, shells, alias (scripts) and nested-alias genera
tion, and complete online help.

Seventy-six support utilities, five tool packages, and two application

programs available now! Fully upward compatible with CP/M-80.

Z can now be purchased as auto-install program (Z-Com) or as
manual-install ZCPR3 with semi-auto install ZRDOS package {Z-

System). Our latest versions, to be released this year, support Zilog

Z800 and Hitachi HD62801/64180 high-technology chips, chips run
existing 8080 and Z80 programs!

Echelon eight-bit operating systems written in Assembly Language,

using linkable macro subroutine libraries, offer performance parallel
ing best single-user 16/32-bit microcomputer systems.

1. Z-Com Full-up Z Operating System with input/output redirection
running under CP/M-80, online command and utility documentation
and help system $219.95

2. Z-System Manual-install ZCPR3 and ZRDOS2, easily tailored by

programmer to custom needs; source code to core and utilities; similar
to Item 1 $199.95

3. Z-Tools Four software development system packages permitting
advanced, structured program design, macro relocating assembler,

linking loader, librarian, cross-reference generator, debugger, mne

monic and pseudo-op translators, and interactive disassembler. Super

$315.00 package value $200.00

4. DSD Dynamic Screen Debugger offers high-level features never

before found in microcomputers; simultaneous display of dual-memory

segments, stack, cpu states, and flags, with software In-Circuit-

Emulation $149.00

5. The Libraries Linkable ZCPR3 libraries (Vlib,Z3lib, and Syslib3)

of over 400 subroutines used for Assembly Language program writing.

Simplifies structured, efficient code production; online help system

and full source code provided $45.00

Syslib3 alone $29.00

6. Term3 New generation communication program permits menu

control of computer/modem operations between operator and time-

share services, bulletin-boards and other remote computer systems;

auto-answer to command-line prompt $99.00

7. Discat Fancy file and disk catalog program running under Z-

System, menu driven and easily customized by operator $49.00

Fortnighter newsletter, 24-hour BBS Z-Node System keep Z users

informed of microcomputer happenings. Write or call for brochure or

order now! State disk format desired; add $3.00 shipping & handling;

Californians please add 6-1/2% sales tax. Visa/MC, check, money or

purchase order accepted. {Program names are trademarks of their

respective owners.)

Echelon, Inc.
101 First Street • Los Altos, California 94022 • 415/948-3820

lation. A program called CURSOR allows

Che cursor's shape to be changed, while

CV2 chances diskette labels with DOS

2.0.

NDOSEDIT is a DOS command

editor with a command stack, resembling

VM's editor. CMS's browse command

is simulated by another routine. Lastly,

CGCLOCK2 displays a color clock that

beeps every 15 min. The excitement never

ends!

It would be impos

sible for any pro

grammer keeping

abreast of the trends in this market to

ignore the overwhelming growth of the

C language. After the February issue of

COMPUTER LANGUAGE, which was

devoted almost exclusively to C, a number

of readers asked inc where versions of C

can be found in the public domain.

I have mentioned the Small-C imple

mentation of the popular language in this

column before. As noted earlier, the ver

sion is not a full Kernighan and Ritchie

implementation but docs contain enough

of the flavor of C to allow a newcomer to

the language to get the feel of it. Small-C

allows a programmer to develop fairly

complete program tasks without shelling

out several hundred dollars for a commer

cial C compiler.

Small-C is not without its problems.

Virtually no documentation exists for the

system other than text files bunched

together. This is overcome by the wealth

of good books available on C (and every

one who uses C has to have a Kernighan

and Ritchie textbook).

Secondly, the inherent limitations of

the implementation may frustrate some.

However, by the time those limitations are

reached, the user should be ready to move

up to a full-blown C version.

Hence, Small-C provides a very easy

entry vehicle into the language of the

eighties for many programmers. Luckily,

there are versions of Small-C for almost

every operating system. Most bulletin

boards now stock the most popular of

these for CP/M 80. and they can be

obtained from several of the usual public

domain software sources. Addresses are

appended for further information.

The version that seems the hardest to

locate is the one for CP/M 86. However,

CP/M 86 has Small-C available in several

sources, including SIG/M (Special Inter

est Group/Microcomputers) vol. 149.

Small-C is supplied as a library file with a

small documentation file. This version is

also now available on the COMPUTER

LANGUAGE BBS in case you can't track it

down anywhere else.

PC-SIG is at 1556 Halford Ave. Suite

130. Santa Clara, Calif. 95051. SIG/M is

at P.O. Box 2085, Clifton, N.J.

07015-2085.H

CIRCLE 22 ON READER SERVICE CARD

42 COMPUTER LANGUAGE ■ APRIL 1985

EXOTIC LANGUAGE

OF THE MONTH CLUB

APT: Automatic and Programmable Trees

F
cople generally

agree that certain

basic elements

are desirable in all languages. Items like

string manipulation and a good set of

mathematical functions are considered

essential. Less obvious considerations

such as good readability and structured

code are gradually receiving the same

status.

Beyond these basics, however, the

designer of a general purpose language

has noway of knowing what tasks the user

will be asking the language to perform.

Similarly, the designer cannot predict the

power of the computer on which the lan

guage will be used. It therefore makes

sense to provide tools which enable a pro

grammer to add to the basic commands

which were originally built into the lan

guage. Ideally, the language should get

smarter as it is used. A user should be able

to tailor it to the tasks for which it is most

often used and to the available computer

resources.

Automatic and Programmable Trees

(APT) is such a language. It contains a

highly robust command set and a complex

syntax while at the same time having a

low-resource overhead (without sacri

ficing speed, efficiency, or ease of use).

In addition. APT is easily customized. It

can grow with the user, both auto

matically extending itself as programs are

written and providing the means for

generic extensibility—of creating com

mands which create commands.

This is further enhanced by the pro

vision of several features found only in

some special purpose languages, such as

LISP-like lists, stacks, toolbox structures.

LOGO graphics, self-modifying code,

etc. Figure 1 depicts an overall model of

the language. This article discusses some

of the ways in which APT accomplishes

these functions.

We'll begin by using some simple pro

gramming examples to study the lan

guage's ability to grow. Executable

strings, toolbox files, hierarchical work

spaces, and trees will all be discussed in

this context.

Next we'll look at APT's internal struc

ture in which trees, threads, and opti

mization techniques contribute to the

overall power and flexibility of the lan

guage. Finally, we'll take a look at APT in

By Peter Reece

the total context of present day languages

and language design strategies in general.

L
ike LISP or Forth.

APT is an exten

sible language.

This term has a number of meanings but

generally refers to the ability of a lan

guage to grow—to add to itself or to be

added to and customized without any

changes to its basic command set. In APT

this can occur in several ways, including

procedures, toolbox files, builds, trees.

workspaces, Assembler, and executable

strings.

Like COBOL or Pascal. APT is a struc

tured language composed of one or more

modules called procedures. These are

arranged in a hierarchical bottom-up man

ner, that is, the most primitive operations

are defined first. APT procedures are

invoked by name and, once defined, may

be used in a number of ways (Listing 1).

As you can sec. once a procedure is

defined, it can be used as if it were a com

mand, an argument, a variable, data, or in

fact any other valid APT construct. Like

LISP, APT does not recognize differences

between data or programs unless specifi

cally told to do so. Therefore any expres

sion may be substituted for any other, pro

viding, of course, that the context is

A model of APT and its components

Controller

I/O link

dispatcher

Math, logic and

comparisons

The major internal divisions in APT are shown. Distance from the center indicates

decreasing complexity in the internal design of the language—e.g., the complexities

involved in designing implicit trees were greater than those required to design explicit
trees. The various features in the diagram are elaborated in the accompanying text.

Figure 1.

43

appropriate. Consequently, defining a

procedure automatically adds a new func

tion to the language. As we shall see, this

allows for considerable flexibility in

programming.

APT may also grow through the use of

executable strings. Any program may

execute or compile any string or string

array. Because the language provides a

good set of string-manipulation tools it is

a simple matter to modify then execute

strings from within a running program.

Hence a program can write another pro

gram, compile it and execute it all without

programmer intervention. A trivial exam

ple of this is seen in Listing 2. The BUILD

statement in APT is conceptually similar

to the statement in Forth or STOIC of the

same name. Its complete format is:

BUILD Name...WHENDEF...

WHENRUN...END

The three dots (...) represent any

valid APT expressions. Basically. BUILD

creates a command by executing the state

ments between WHENDEF and WHEN-

RUN. When this new command is

invoked, it will execute the statements

1. PROC EXAMPLE

2. L0G(X+2.4)/3.1

3. END

EXAMPLE

COS(EXAMPLE)

EXAMPLE+2.1 -> TEST

Define a procedure named EXAMPLE (APT

automatically numbers each line in a procedure).

Find the natural logarithm of the

expression, then divide it by 3.1

End the procedure definition

Typing EXAMPLE will execute the

procedure - EXAMPLE here is used as a command.

Find the cosine of log(x+2.4)/3.1 -

here EXAMPLE is used as a argument to a function.

Here EXAMPLE is used as a variable. It

is added to 2.1 and the result is saved in TEST.

Listing 1.

PROC EXECUTABLE.STRING.EXAMPLE

"PROC ABC 2+3->I END" -> DUMMY

EXECUTE(DUMMY)

ABC

nXYZ"->DUMMY(6:3)

EXECUTE(DUMMY)

7. END

Listing 2.

PROC TOOLBOX.EXAMPLE

RUN"AVERAGE"

(I+RUN"VARIANCE")/2

Place the string (in

quotes) into the string

variable DUMMY.

Executing DUMMY creates

the procedure called ABC.

This places 5 into I

(i.e. the just created

proc ABC will execute.)

This replaces the 'ABC1

in line 2 with 'XYZ\

Executing DUMMY now

creates a new procedure

- XYZ - in addition to ABC.

End the procedure definition.

END

Procedure demonstrating simple toolbox calls

Add 2 and 3, place the result

into the variable I.

This executes the toolbox program

AVERAGE - AVERAGE is used as a simple command

I + the result of VARIANCE is

divided by 2 - here a toolbox

file is used as a variable

End the program

Listing 3.

44 COMPUTER LANGUAGE! APRIL 1985

between WHENRUN and END. Hence the

BUILD construct is used primarily to cre

ate a class of commands which creates

other commands which in turn share a

common run-time code—the WHENRUN

portion. This is clarified in Figure 2.

Like the C language, APT allows the

programmer to build and compile a set of

utility, or toolbox, files which may be

included in a program at will. Two options

are available. First, the editor (more

about APT's editor later) enables any

number of source programs to be brought

in from disk and merged into a user

program.

A more powerful technique, however.

is the inclusion of a RUN "XXX " state

ment in a program, where XXX is the

name of a previously compiled program.

APT will automatically execute XXX if it

is currently in memory, or automatically

load it from disk prior to execution if it is

not in memory.

Like any other APT function, toolbox

files may also be used interchangeably as

variables, commands, data, or arguments.

Listing 3 is an example. As you can sec,

the programmer can build a set of toolbox

files, save them in compiled format (that

is, object rather than source code) and

include them at will in a program. Vari

ables may be shared by toolbox programs

since, like FORTRAN. APT allows the

creation of a COMMON block through

BUILDing extensibility

The instruction:

BUILD ABC WHENDEF...

WHENRUN...

END

does the following:

1.BUILD—places 'ABC into the current dictionary

—instructs the compiler that ABC is to be used to define commands, i.e., it is a
command that builds other commands

2. WHENDEF—all statements between here and WHENRUN will be executed when

ABC is used in a program to define another command

3.WHENRUN—all following statements will be executed when the command created by
ABC is run

For example:

BUILD ABC WHENDEF COMPNUM

WHENRUN + ARGS?

END

COMPNUM—compiles the number on the stack into memory

ARGS—gets arguments from the input stream

+ —adds two numbers

? —prints the value of the top entry on the stack

Hence, if we write:

2 ABC "NEWCOMMAND"

then NEWCOMMAND will be entered into the current dictionary. When

NEWCOMMAND is used in a program, the number 2 will be placed onto the stack. If we

now write:

NEWCOMMAND (5)

then 7 will be printed - 2 is placed onto the stack, 5 is read from the input stream

(ARGS), 2 and 5 are added (+), and the result is printed {?).

Similarly, 7 ABC "ANOTHER.COMMAND"

ANOTHER.COMMAND(10)will print 17.

This works as follows:

Command

ABC

NEWCOMMAND

ANOTHER.COMMAND

Figure 2.

Points to

whendef code for ABC

whenrun code for ABC
whenrun code for ABC

Which contains

2

+ ,ARGS,?

+ ,ARGS,?

DeSmet

C
8086/8088

Development SiflQ
Package 1U%J

FULL DEVELOPMENT PACKAGE

. Full K&R C Compiler

■ Assembler, Linker & Librarian

■ Full-Screen Editor

• Execution Profiler

. Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT

BOTH 8087 AND S/W FLOATING POINT

OVERLAYS

OUTSTANDING PERFORMANCE

■ First and Second in AUG '83

benchmarks

SYMBOLIC DEBUGGER '50
Examine & change variables by

name using C expressions

Flip between debug and display

screen

Display C source during execution

Set multiple breakpoints by function

or line number

DOS LINK SUPPORT $35
Uses DOS .OBJ Format

LINKs with DOS ASM

Uses Lattice4 naming conventions

Check:

SHIP TO

□ Dev. Pkg (109)

D Debugger(50)

□ DOS Link SupL (35)

zip.

C
WARE

CORPORATION

P.O. BOX C
Sunnyvale, CA 94087

(408) 720-9696

All orders shipped UPS surface on IBM formal disks.

Shipping included in price. California residents add

sales lax. Canada snipping add S5. elsewhere add

S15. Checks must be on US Bank and in US Dollars.

Call 9 a.m - 1 p.m. lo CHARGE by VISA/MC/AMEX.

Streel Address: 505 W. Olive. #767, (94086)

CIRCLE 11 ON READER SERVICE CARD

45

1. PROC TRIVIAL.TREE.RESTRUCTURING.EXAMPLE

2. TREEC'AVBV'CV'D") A
3. TREEC'AV'CV'BV'D") A

4. END

Listing 4.

Create a tree, then execute it.

Change it, then execute it again.

CREATEWS MEDICAL(5000) ; Create a medical workspace and

CKANGEWS(MEDICAL)

EDIT

Listing 5.

allocate 5K bytes to its use.

Enter the newly created workspace

Summon the editor to begin creating

rules involving medicine onto the workspace

DEMIGJV

THE STRUCTURED

PROGRAMMING TOOL

FOR MODERN TIMES

Design your programs right on the screen, using modern

techniques based on the popular Jackson Structured Program

ming method (JSP)!

DEZIGN is more than just another flowcharting tool. It is an

integrated tool for designing and documenting programs and

for generating ADA, C, PASCAL, and PL/I source code, as well

as dBASE II and dBASE III command files.

DEZIGN enables you to create Data and Program Structure

Diagrams using the Sequence, Selection (IF-THEN-ELSE), and

Iteration (DO WHILE) constructs; assign detailed statements

to the diagrams; and synthesize source code from the control

logic represented on the diagrams and the detailed statements

assigned to them.

DEZIGN lists for $200. It runs on the IBM PC, XT, or AT and

requires 128K RAM, one disk drive, and an 80-column color

or monochrome display.

• DEZIGN-PC runs under DOS 2.0, 2.1, and 3.0.

• DEZIGN-86 runs under CP/M-86 1.1.

Want to learn more? Please contact us concerning pricing and

availability of JSP reference texts and seminars.

ZEDUCOMP • P.O. BOX 68 • STIRLING, NJ 07980

(201) 755-2262

dBASE II and dBASE III are trademarks of AshtonTate, Inc.

CIRCLE 83 ON READER SERVICE CARD

46 COMPUTER IANGUAGEB APRIL 1985

which variables may be passed when

using overlaying (placing one program on

top of another in memory).

If the program AVERAGE, in line three

of the procedure TOOLBOX. EXAMPLE,

contained a command RUN"AVERAGE",

then the program would call itself (it

would already be resident in memory).

Toolbox files may therefore be used

recursively. All this means that toolbox

programs may be brought in from disk, be

executed, call another program, and pass

information to one another without user

intervention.

A very important construct in APT is

the tree structure. Trees in APT are simi

lar to lists in LISP. Lists of procedures

may be linked or unlinked without pro

grammer intervention. Suppose that we

have four procedures called A. B, C, and

D. The command:

TREE("A"/'C","B"/'D")

will form a simple connection between

these separate procedures. This con

nection is called a tree, in this case named

A, which looks like this:

A —> C-> B —> D

Each element of the tree is termed a

node. When A is invoked, each node of

the tree will execute in turn—that is, node

A, then node C, B, and finally node D.

Exactly the same thing could have been

accomplished by creating a procedure as

presented below:

PROC EXAMPLE

A C B D

END

When EXAMPLE is run, A. C, B, then

D will execute. Why create a tree if a pro

cedure will produce the same result?

Because a tree may be altered by a user, a

program, or another tree at will (Listing

4).

To pursue the tree analogy further,

techniques can easily be developed in

APT for adding new branches to trees.

Trees may be pruned, nodes may be

extended, entire trees may be displayed

and so on. Commands also exist for pat

tern matching of trees, selecting branches

based on template matching or mis

matching and similar functions.

All nodes arc either procedures or other

trees. Thus a given node may contain any

valid APT command, including tree-

manipulation commands. Trees may

therefore self-modify, allowing the lan

guage to grow as trees grow.

Once a tree growing program has exe

cuted and a given tree has been construc

ted, a single command, TRACETREE.

may be issued to find out what nodes exist

and in what order in the final tree.

While beyond the scope of this article.

APT's tree structure is ideal for certain

types of data base creation. For the reader

familiar with data base design, imagine

that tree nodes represent sets containing

either subsets, data arrays, or data files

with schemes and subschemas being

embodied in tree definitions.

Tree commands may then be used to

rapidly navigate through the data base to

reach the data in a given set. Trees may be

manipulated as wholes, broken apart, and

reassembled into new structures at will.

This gives a tremendous flexibility to the

language, allowing it to be used in appli

cations as diverse as artificial intel

ligence, game playing (for example,

chess) or data base design without sacri

ficing case of use.

I
ike expert sys

tems, {forexam-

Iplc, Solver or

Dendril), APT enables a user to create

data and rules for manipulating that data

for a particular class of problems. These

rules and data may be isolated from those

pertaining to other problem classes by

means of a logical construct called a

workspace (Listing 5).

Any number of workspaces may exist.

Where appropriate, they may even be log

ically grouped together into workspace

hierarchies resembling a tree structure.

Figure 3 illustrates how, to a medical user,

APT could appear to be a medical pro

gramming language with several levels,

while to a mathematical user, it could

appear as a mathematical language,

depending upon which workspace hier

archy is in use.

Each workspace contains its own list o(

reserved words called a dictionary. Dic

tionaries contain the names of all func

tions in the workspace and pointers to the

code for these functions (Figure 4).

As such, when a new problem-specific

dictionary is created within a workspace.

a metalanguage results which uses APT's

reserved words as a subset.

Sample workspace usage

Public (APT) workspace

(contains APT language)

I

Medical workspace Geometry workspace

Med. Development

1 \
Med.Test

Med.Run

Geom.Non.Euclid Geom. Euclid

—Theorems are commands

— Derivation roles are commands

Med. Run. Data

Med.Run.Data.Cardiac Med.Run.Data.Age

All of these workspaces exist within the public workspace. To create the medical work
space, the user would (while within the public workspace) type:

'CREATEWS MEDICAL (size}'

where 'size' is the maximum amount of room to be allocated to the workspace. Med. Run
would be created from within the MEDICAL workspace, not the public workspace.
Med. Run. Data users can access the Med.run.data.xxx workspaces, but not the

Med.Development, Med.Run, Med.Test workspaces. No MEDICAL users can access

GEOMETRY, and vice versa.

Conceptually, APT's workspace structure resembles the layout of an account structure
on a VAX or PRIME computer, for readers familiar with these systems.

Figure 3.

Dictionary structure

This example shows a dictionary entry for the APT command 'RUN' (which executes a

program from disk).

1st byte:

Dictionary Entry

Type byte

2nd byte Usertype and

internal code

3rd-5th byte RUN

Action

— Indicates the type of command (variable,

command, proc, array, etc.)

— Indicates the internal level (i.e., execute

only, compile only, requires more parts, etc.)

— Indicates whether the command takes

arguments

— Indicates whether or not the token RUN is

strongly typed, and if so, what its type is

— Used to flag special compiling options

—As many bytes as are necessary to hold the

name of a command occur from byte #3

onward

6-7th byte Address of RUN routine —Compiler compiles a routine branch (two

bytes) to this address into the program object

code

— Interpreter branches to this address if cur

rent mode is interpret mode

Note: APT may have any number of logically isolated dictionaries, Dictionaries are

only used by the compiler, interpreter, and debugger—they are not in memory during

program execution.

Figure 4.

47

ISAM

IBM

APPLE DEC

AT&T

ex

DODY7 BUY
IT OHCE!

BY FAIRCDM

2606 Johnson Drive

Columbia MO 65203

The company that introduced micros to

B + Trees in 1979 and created ACCESS

MANAGER'" for Digital Research, now

redefines the market for high performance,

8+ Tree based file handlers. With c-tree1"

you get:

• complete C source code written

to K&R. standards of portability

• high level, multi-key ISAM routines

and low level B + Tree functions

• routines that work with single-user

and network systems

• no royalties on application programs

$395 COMPLETE

Specify format:

5'A" PC-DOS 3'/i"Mac

8"CP/M£ 8"RT-II

for VISA, MC or COD orders, call

1-314-445-6833

Access Manager and CP/M are trademarks of Digital

Research, Inc. Apple is a trademark of Apple Computer, Inc.

c-tree and the circular disc logo are trademarks

of FairCcrn IBM is a trademark of International Business

Machines Corporation DEC is a trademark of Digital

Equipment Corporation & I9M FurCom

CIRCLE 26 ON READER SERVICE CARD

ADVANCED PROCESSORS ARE OK

TUNED SOFTWARE IS BETTER

Performance. Every user wants more of it-

Advanced hardware is one solution. But advanced hardware is difficult lo obtain and

expensive. Meanwhile, there are MILLIONS of existing machines waiting for a new

generation of fastet. more robust software. How will your software measure up?

Performance optimization should be considered part of the
software development cycle.

Many programs spend 90S of the time cieculinj less than 105 of the code A small amount

of time invested in oplirniunj, these busy areas can yield big performance dividends But
rarely is it obvious just what pieces of source code account for '>1S of the processor time
You need a sieve thai can quickly isolate the big pieces (timewise) of your program

CODE SIFTER is the tool you need to identify the time

consuming sections of your EXE or COM File.
It observes your running ptogiam and generates a statistical report lhat indicates which areas

of your program are prime candidates fo: your optimisation efforts The statistical output

includes the symbols from your LINK map and can be directed to your display, printer, or to

a file

CODE SIFTER has advanced features.

Like a user friendly interface with function keys and oniine help An adjustable sampling

tale provides more accurate statistical data. An iteration option can rerun your program a

number of times lo reduce the busy areas to veiy narrow ranges A demonstration program
(with source] is provided for use with the step by step tutorial in the manual so thai you can

become productive m just a few minutes CODE SIFTER works with any source language
and does NOT require a knowledge of assembler to use And if you aie still not convinced

- we will loan you a demonstration version.

David Smith Software

Box 25A R.D.#3
Oxford, N.Y. 13830

(607) 843-6209

$119
Requires

IBM-PC or XT
128K DOS 2.x

IBM is a registered trademark of International Business Machines Corporation

In this sense any number of these meta

languages may be built so that each spe

cialized user may program using termi

nology with which he or she is familiar. A

medical programmer would use medical

terms; a mathematics programmer would

use mathematical terms.

Dictionaries are used during program

development only. Unless specifically told

otherwise. APT eliminates a dictionary

from a workspace during program exe

cution in order to conserve memory.

Once a given workspace or hierarchy

has been set up. subsequent programming

becomes very simple. The user may add

to the current dictionary at any time, cre

ating classes of commands peculiar to a

certain type of problem.

Since each workspace contains its own

dictionary, rules for one type of task arc

logically isolated from those commands

better suited to other problem classes. A

dictionary in a hierarchy is accessible to

those workspaces higher than it in the

same hierarchy. The same structure can

also be used to isolate data (for example,

test data from live data—Figure 3.

Med.Test vs. Med.Run.Data), or even

different users from one another.

To isolate users, an interrupt clock

could switch between workspaces in a cir

cular queue. A user would be assigned a

workspace which would be active for n

ticks of the clock, at which time the next

user workspace in the queue would

become active and so on. (Saving a given

user's current status is very simple since.

internally, all workspaces operate via a

special stack architecture). Thus APT's

workspace strategy also lends itself to

time-share activity.

An important additional point is that the

use of workspaces allows the language to

maintain its integrity. Although the work

space structure allows APT to grow in

meaningful ways, it cannot degenerate

into different dialects.

The public workspace, the language's

central repository of commands, is avail

able to all other workspaces and is itself

never altered. Different hardware, for

example, would see the addition of a

workspace specific to that hardware. The

central public workspace would not be

altered. In this way. regardless of the APT

environment, metalanguage or computer

with which a programmer is working, the

basic command set will always be the

same. The dialectic confusion typical of

BASIC or FORTRAN, for example,

would not occur.

The need for a programmer to resort to

machine language is practically elimi

nated by APT. This is because the lan

guage contains a number of commands

specifically for the control of I/O ports as

well as commands which can peek and

poke memory both on a bylc-by-byte or

block-by-block basis. Commands also

CIRCLE 36 ON READER SERVICE CARD

48 COMPUTER LANGUAGE ■ APRIL 1985

1. ASSEM ADD

2. POP HL POP DE

3. ADDR(HL.DE)

4. PUSH HL

5. ENDASM

1. PROC EXAMPLE

2. 2 4 ADD

3. END

Listing 6.

exist for jumping to and returning from

non-APT programs which reside in

memory.

Sometimes, however, a specialized task

requires direct access to machine lan

guage. To allow this to happen as pain

lessly as possible, APT is equipped with
an assembler. By adding special assem

bler procedures to a program, it is a sim

ple matter to extend APT to take advan

tage of particular hardware. Assembler

commands make use of a special type of

procedure called the ASSEM procedure

(Listing 6).

Various assembler functions exist. For

example, assembler code in APT is struc

tured codc-FOR. . . NEXT, BEGIN. . .

END, etc., may be used. Also an assem

bler procedure may CALL other assembler

procedures by name. Finally. APT's

assembler provides easy methods of hook

ing into other non-APT programs.

A
Imost all pro

gramming in

APT is done

through APT's editor. This is a front-end

interactive system through which a pro

grammer writes, compiles, tests, debugs,

and executes a program. When writing a

program the editor is used pretty much

like a word processor. Full-screen scroll

ing, wildcard searches, split screens,

block moves, formatted printing of source

text, merging of files from disk, DOS

access, and various other word-

processing features arc all available with a

single keystroke.

Prompts and help messages appear

where appropriate. When a program has

been written, a single keystroke causes it

to be compiled. The area of the buffer to

be compiled lies between the cursor and a

. STOP, statement so that the entire pro

gram or only one or more procedures may

be selected for compilation. This is very

handy during program development.

If an error occurs during compilation.

This assembler procedure will use hardware

registers to add two integers.

Z80 code - pop the top 2 stack entries into

the hi, then de registers.

Add hi and de, leave the result in hi.

Push the result onto the stack.

End the assembler procedure.

This procedure demonstrates how the

assembler routine may now be used just like

any other.

Use the ADD routine to sum the top two

numbers on the stack - in this case 2&4

End the procedure.

A POWERFUL 68000 DEVELOPMENT

ENVIRONMENT FOR YOUR Z80 SYSTEM

CO1668 ATTACHED RESOURCE PROCESSOR

68000 Assembler

C Compiler

Forth

Fortran 77

Pascal

BASIC-PLUS

CBASIC

APL. 68000

6 MHZ 68000 CP/M-68K 768K RAM

4 x 16081 MATH CO-PROCESSORS CPM80 RAM DISK

Develop exciting 68000 applications on your current Z80 based CPM system using

powerful mini-frame like 32 bit programming languages. And then, execute them at

speeds that will shame many S100K plus minicomputer systems.

The CO1668 ATTACHED RESOURCE PROCESSOR offers a Z80 CPM system owner a

very low cost and logical approach to 68000 development. You have already spent a

small fortune on 8 bit diskette drives, terminals, printers, cards cages, power

supplies, software, etc. Tha CO1668 will allow you to enjoy the vastly more powerful
68000 processing environment, while preserving that investment.

CO1668 ATTACHED RESOURCE PROCESSOR SPECIAL FEATURES:

68000 running at 6 Mhz

256K to 75SK RAM (user partitioned between

CPU and RAM Disk usage)

Up to four 16081 math co-processors

Real time clock, 8 level interrupt controller

& proprietary I/O bus

Available in tabletop cabinet

Delivered w/ sources , logics. & monolithic

program development software

Easily installed on ANY Z80 CPM system

CP/M68K and DRI's new UNIX W compatible

C compiler (w/ floating point math) - standard

feature

Can be used as 768K CPM80 RAM Disk

Optional Memory parity

No programming or hardware design required

for installation

Optional 12 month warrantee

PRICES START AS LOW AS S899.00 for a CO1668 with 256K RAM. CPM68K, C Complier. Sources,

Prints. 200 page User Manual, Z80 Interface, and 68000 System Development Software.

For further information about this revolutionary product or our Intel 8086 Co-Processor, please send SI

[no checks please) or call:

Hallock Syslems Company, Inc.

262 East Main Sireet

Frankfort, New York 13340

(315) 895-7426

RESELLER AND OEM

INQUIRIES INVITED.

CIRCLE 31 ON READER SERVICE CARD

49

3

4,

PROC EXAMPLE.OF.ERROR.TRAPPING

ERROR(XYZ)

BREAKOFF

END

; After this routine has executed,

; errors will be trapped automatically.

; If an error occurs, the user procedure
; called XYZ will execute.

; Disable escape keys - i.e the user

; cannot exit a program illegally.

; End the procedure.

Listing 7.

A BECOMES B

A BECOMES rTSELF
All references to array A now refer to array

All references to array A now refer to A

Listing 8.

INTEGER APPLES

APPLES->ORANGES

INTEGER ORANGES

SETYPE("APPLES",1) SETYPE("ORANGES",2)

APPLES+I->APPLES

APPLES->ORANGES
ORANGES+I->ORANGES

Create two integer variables

This is legal since

the only type attribute of the

variables is integer.

Arbitrarily choose a

strong typing of '1'

for APPLES, '2' for ORANGES.

Quite legal - I is type integer.

Illegal - APT displays

TYPE MISMATCH even

though both variables are integer

Listing 9.

computational power of tjaur computer?

Is a neu programming language that
nyidES most of ths computing pgluet cf

a dEdicatEd CViD SYSTEfil at an incrediblE
pries: Iess than onE CEnt an thE dollar

E .E ■ is a comp Iet:e graphics language:
* automate the ggneration nf drawings
* des ign math intsns iwe products
* unujrap £. temp [ate curved surfaces
* output ascii files ta drive n.c.toals
t accuracy exceeds 1 part in 3E3BHB

'43 commands central I nap in
d isc accE5s- internaI data str
5libraun ines and output deuices

I nap ing, branch ing
I dt structures]

ces

E.G.is also a powerful post—processor:
* pjnt your numerica I data in 3-D
:| virtually unlimited macro capab i I i ty
* ujr ite "turn-key" app I icat ions
* 1000 data points, 1000 lines per file
■t optional "best fit" plot algorithm

Easy to use, rather than easy to learn

EiG.prnvidci the programmer with
mathemat icaI operat ion £ function p
in BR51C + powerful^ proprietary shape
generating and manipulating commands.

every

fpuna
h

EUCLID GRRPtiiC5
.. . dEMelaperi at

E4K PiPPLE 5E<JEFI] 5EPi5 SDFTLiPRE
C.LJ.5 3 ■a 35 Cspb GEorgE Wye

Port ToujEnsEnDj da ■
98368

(206) 385-3771

CDITPLETE SEBt
free updates
for one year

5 igned nond iscInsure agreement required

the

source debugger

for lattice C
Your time and convenience come

first! The MSD C Debugger'" is the last,

and perhaps final, word in programming
assistance for Lattice C users. C Debugger

produces a high level view of C programs

via function names, line numbers, variable

names and C data types, plus a low-level view

of machine addresses and instructions for
testing assembler language functions.

More features include:

1 All documentation is prepared for

programmers.

Online help screen throughout the

process.

Capability to single step

through your program.

Set break points, examine registers and^

variables.

J165.00 +S3.50 shipping

IWSD
To order, call or write:

MICRO-SOFTWARE DEVELOPERS, INC.

214Vi W. Main St. • St. Charles, IL 60174

312/377-5151

Lattice C is a trademark o(Lattice, Inc.

CIRCLE 28 ON READER SERVICE CARD CIRCLE 54 ON READER SERVICE CARD

50 COMPUTER LANGUAGE ■ APRIl 1985

the editor will position the cursor over the

error and print the nature of the problem

at the bottom of the screen. The user then

may repair the error and hit a single key to

continue compilation. It is not necessary

to restart compiling from the beginning of

the source text.

Once the program has been compiled

without error, it may be executed by the

editor, again with a single keystroke. Dur

ing development the programmer may

execute either the entire program or a pro-

cedure(s) from the editor. When the pro

gram completes execution, or an error

occurs, the editor will again resume con

trol. It may also be used to feed values to

variables in procedures for testing pur

poses, to place data into arrays or onto the

stack or, in fact, to access any APT com

mand at all.

All of this makes the actual mechanics

of programming, compiling, debugging,

and executing very simple and straight

forward. Debugging is particularly

simple.

From the editor a wide variety of

debugging techniques are available. In

addition to partial compilation and testing

of individual procedures and program

pans, debugging control of a running pro

gram is possible.

Programs can be single stepped with

each step scrolling horizontally across the

bottom of the screen, freeing the rest of

the display for use by the program. Dur

ing single stepping, loops may be auto

matically executed at full speed if desired.

Breakpoints may be set. That is, a pro

gram may be run until a chosen procedure

or command is encountered. Execution

will then halt and instructions may be

given to continue, print the value of a

variable, skip a loop and so on.

Programs may also be traced while

operating at full speed (program steps are

printed on the last line of the screen).

Decompilation of compiled code is also

possible, although this requires that the

current workspace contains a dictionary

corresponding to the program being

decompiled. Recall that dictionaries are

used during development only; they are

not needed while a program is running.

Finally, error trapping within a program

is easily accomplished {Listing 7).

T
'he dictionary in

the public work

space contains

literally hundreds of commands. While it

is impossible to describe all of them here,

some of the more interesting ones may

help give you a better feel for what tools

are available to the programmer. For

example, commands exist to create and

modify arrays at run time (that is, after

compilation). An array may even be made

equivalent to another array by a program

while it is running. That is, all references

to array A may be made to refer instead to

array B without destroying any data in the

original array A . When desired, refer

ences to array A may be made to refer

again to A (Listing 8).

Another powerful command is the

PLOT statement, which is part of APT's

graphics package:

PLOT("T1ME","FREQUENCY","SPEC

TRUM",ABC(l,lj)

will automatically scale and plot the data

starting at the first cell of array ABC, onto

a plot which will be labeled SPECTRUM

with an x-axis labeled TIME and a y-axis

labeled FREQUENCY.

APT also allows the programmer full

control of variable, array, and even com

mand type designations. For example,

variables may be weakly or strongly typed

(Listing 9). Infix (normal algebraic)

notation and postfix (stack) notation may

be used interchangeably in APT. The fol

lowing two expressions, for example,

yield identical results:

(2 + 5)/(17*2)

2 5STACK+ 17 2 STACK+STACK/

There are a large number of stack-

manipulation commands in APT. These

are useful when variable storage space is

at a premium. Stacks do not use memory

at the same rate as variables. Also, pass

ing recursive arguments is very simple

with stacks.

All procedures in APT are recursive.

Even toolbox files call themselves recur

sively. The two procedures in Listing 10,

which produce identical results, illustrate

both recursion and passing arguments

using variables and stacks.

Other facilities of interest include those

presented in Table 1.

H
aving touched

briefly on some

basics of APT, it

may be useful to step back a moment and

take a look at a longer program than we

have discussed so far.

On the COMPUTER LANGUAGE BBS

and on this magazine's account on Com

puServe. I've put a copy of a program

called Conway's Game of Life which was

too long to be printed in the magazine

(look for the file name APT.LTG in the

April listings). It demonstrates an unso

phisticated APT program to play the pop

ular Game of Life. This should give you a

feel for what a typical program looks like.

As you read through the program and

the comments, notice the high level of

readability which the language offers and

the straightforward syntax. In general, the

language is very forgiving of syntactical

errors since the rules are few and often

optional. Points to note arc the mixing of

stack and algebraic notations (for exam

ple, in the second procedure), the use of

the SELECT statement (one of several

variants of APT's case statements), and

the simple manner in which large amounts

of data may be passed between I/O and an

array (the MOVE statement).

The way that APT accomplishes all of

this is surprisingly simple. Internally

APT operates in three distinct ways:

threads, trees, and optimization.

First, I'll talk about threads.

A compiled program is really a series

of branches to previously defined pro

cedures or commands. Since the

addresses of these procedures are usually

scattered throughout memory, some

method must exist to keep track of where

the branch originated. Otherwise, there

would be no way of returning to a user's

APT facilities

Sort To sort arrays, data, or memory locations

Graphics Commands for LOGO turtle graphics, cartesian, polar, and normal
coordinate systems, vector graphics, hi/low- resolution drawing,

automatic plotting and scaling, etc.

Pointers Similar to pointers in the C language; access to the absolute and/or
relative address

Mathematics A full set of functions is available (sine, log, etc.], including complex
numbers.

DOS calls Calls to the operating system are easily accomplished with a single
command.

Files Many commands e.g., any number of files may be open at a time,

random access, mixed types, etc.

Control A whole set of loop and control functions (While, Begin, For, Case,

etc.)

Table 1.

[US

NGS FORTH

A FAST FORTH,

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER AND

MS-DOS COMPATIBLES.

STANDARD FEATURES

INCLUDE:

•79 STANDARD

•DIRECT I/O ACCESS

•FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

•ENVIRONMENT SAVE
& LOAD

•MULTI-SEGMENTED FOR
LARGE APPLICATIONS

•EXTENDED ADDRESSING

•MEMORY ALLOCATION
CONFIGURABLE ON-LINE

•AUTO LOAD SCREEN BOOT

•LINE & SCREEN EDITORS

•DECOMPILER AND
DEBUGGING AIDS

•8088 ASSEMBLER

•GRAPHICS & SOUND

•NGS ENHANCEMENTS

•DETAILED MANUAL

•INEXPENSIVE UPGRADES

•NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICES START AT $70

NEW^HP-150 & HP-110

VERSIONS AVAILABLE

to
NEXT GENERATION SYSTEMS
P.O.BOX 2987

SANTA CLARA, CA. 95055

(408) 241-5909

Operation of the thread dispatcher

Suppose that procedures A,B,C, and D exist and occupy the following contiguous

locations in memory:

B

D

A

C

location 7AFC to 7B2F

location 7B31 to 8190

location 8192 to 917C

location 917E to 9180

If a procedure 'Q' is compiled beginning at location A100 as:

PROCQ

ABCD

END

then when Q is executed:

Address on

dispatch stack

A100

A102

A104

A106

Address pointed Routine

to by dispatch stack executed

8192 A

7AFC B

717E C

7B31 D

This would result in the thread of branches through memory looking like this:

A100 - 8192 - 7AFC -» 717E -» 7B31 -» A108

Threading simply places the address of the current program step onto the dispatch
stock. Then the o branch to the routine pointed to by this address is executed. When it has
finished, the top address on the dispatch stack is popped, incremented by two bytes (to
point to the next address in the current routine) and the process repeated.

Figure 5.

Recursion

Imagine that the procedures names A, B, and C exist and that a recursive procedure
(one which calls itself) named Q has been written as follows:

PROCQ A B C Q END

then when Q is invoked, the following sequence of events occur:

Address on

dispatch stack

Q + 2

Q+4

Q+6

Q + 8

Q + 2

Q+4

Q+6

Q + 8

A

t<

A

B

C

Q

A

B

C

Q

Address pointed
to by dispatch stack

Depth of

dispatch stack

1

1

1

2

2

2

2

3

Following each recursive call the thread lengthens. Only resolving the colls (i.e., going
back up the thread) or using the EMPTY command will return the thread to the starting
point.

Figure 6.

CIRCLE 61 ON READER SERVICE CARD

52 COMPUTER LANGUAGE ■ APRIL1985

program once the code at a branch had

completed execution.

APT uses a very efficient means of

accomplishing this. It lays down a

thread—a list of addresses prior to

branching —onto an internal stack. Once

the code branched to has been executed.

APT can return to its previous position by

popping this thread of addresses from the

stack until il finds the first one. much like

a child following a string to find the way

home (Figure 5) and in a fashion remi

niscent of MUMPS or Forth threading

techniques. The module within APT

which accomplishes this is called the

dispatcher.

By carefully designing the dispatcher,

this technique results in fast, resource-

efficient programs. For example, using a

command in a program compiles to only

two bytes of code. Similarly, recursion is

easily accomplished (Figure 6). The tech

nique of threading, however, is used only

within a procedure. Interproccdurc links

are handled quite differently.

All APT procedures are strung together

as trees. These trees arc created auto

matically by the compiler to link different

procedures. As Figure 7 shows, this is

done by reserving pointer space within

each procedure. Pointer spaces contain

the address of the next procedure in the

tree to execute or of the next tree to exe

cute. This is conceptually similar to the

list structure in LISP.

Whenever the compiler is invoked,

both procedures and the commands within

them arc resolved into threads and trees

(Figure 8). Trees, as you can see. do not

require the intermediate slep of reference

to a dispatcher to locate the next piece of

code to execute. They are. therefore, even

more rapid than threads. There is a cost

however; extra memory overhead is

required for pointer space.

APT overcomes this problem by

reserving trees for inter- rather than intra-

procedure communication. The extra

memory required by pointer space there

fore becomes negligible. (Knowledgeable

readers will recognize in this scheme a

combination of list processing, threading

with pointers, and subroutine threading

without the need for garbage-collection

algorithms, excessive memory usage, or

thrashing.) Tree creation is implicit.

Trees are created automatically whenever

a program consists of more than one

procedure.

Explicit programmer control of trees is

also possible, as we have seen. Hence the

name APT—Automatic and Program

mable Trees. An important point here is

that all implicit tree structures (that is,

created automatically by the compiler)

can be explicitly manipulated by a pro

gram or programmer. This allows a com

piled program to be altered at run time.

producing a number of side benefits such

as array equivalencing. program self-

modification, and a number of other fea-

Trees—linking procedures

Intro-procedure statements require only two bytes of code (the address of the routine to

be executed) since the dispatcher retrieves this address and executes a branch to it. Inter-

procedure links between procedures, however, require four bytes (two for the branch and

two for the address of the next procedure to branch to).

Program statement Pointer

PROC

2 + 3
2

END

dispatcher

dispatcher

dispatcher

direct jump to next proc

Space required (bytes)

2

6

2

4

Regardless of their nature, all APT commands require two bytes of storage only. The

exception to this is the END (and ENDASM) statement which requires four: two for a

branch command, and two to act as a pointer to the next procedure. (If no procedure

exists, the pointer bytes point to the interpreter routines.) For example:

PROCB"B"?END

PROC E"E"? END

PROC C"C"? END

PROC F"F"? END

PROCA"A"?END

PROC D"D"? END

PROCQ

ABDFEC

END

When Q is created, the following structure is built:

Procedure Pointer bytes contain address of

Figure 7.

Threads and trees in a program

Here are three simple programs:

PROCA 1+2 END PROCB2 END PROCC3 END

and here is a program to run all three:

PROCQ

ACB

END

When Q is executed:

Address on

dispatch stack

Program step (threaded call)

Q

1 number routine

+ addition routine

2 number routine

END

2 number routine

END

3 number routine

END

Pointer bytes

(implicit tree)

A (dispatcher not used]

C (dispatcher not used)

B (dispatcher not used)

Interpreter

Within a procedure, the dispatcher finds the address of the next routine to execute,

saves the address containing this address on the dispatch stack, then jumps to that

address. When the routine is finished the dispatcher pops the top address on its stock and
uses it to find the address on the next routine, and soon (Figure 5). This creates threaded

jumps under direction of the dispatcher.

Between procedures, however (e.g., when procedure A has completed executing), the

address of the next procedure to execute is already stored in the body of procedure A.
Therefore the dispatcher need not be called and a direct jump to procedure C is executed.
This creates implicit trees.

Figure 8.

53

tures inherent in the language.

The third type of coding performed by

the compiler is optimization. A general

idea of what this means can be seen from

the single example in Figure 9.

In this example an array-creation com

mand is encountered in the input stream.

The first thing the compiler or interpreter

must do is reserve space for the array in

memory. Since multidimensional arrays

are usually stored sequentially in memory,

a mapping function is used to locate the

address of a requested cell relative to the

first cell (Figure 9). This mapping func

tion must be performed each time an array

is referenced during execution of a pro

gram since there is no way to tell ahead of

time what cell in the array will be

requested. As Figure 9 illustrates, there

arc two methods for arriving at a cell of an

array when the program references it-

one involves using multiplication, the

other vectoring. The first is memory effi

cient but slow, the latter memory ineffi

cient but fast.

An optimization compiler has built

within it the algorithms to resolve prob-

1.

2.

3.

4.

1.

2.

3.

4.

PROC

+5

IF

END

PROC

I+.

IF

END

A

DUP

<1OO THEN A ENDIF

B

)->I

KlOO THEN B ENDIF

This procedure uses a stack for

argument passing.

Add 5 to the current stack

contents, duplicate the result.

If the value on the stack is less

than 100, call A (recursively)

End the procedure. Notice that no

variable storage has been used.

This procedure uses a variable to

pass arguments in its recursive

calls to itself.

Add 5 to I, store the result in I.

If KlOO then call B again.

End the procedure.

Listing 10.

C Sick?
PLZ is the cure!

Introducing a native code PLZ compiler
for the 68000, featuring:

n Complete PLZ language, including structure
assignment and comparison

□ Fully compatible with Zilog Z80, Z3000 PLZ
□ Ideal for embedded. ROM based systems
C Strongly typed
D Data types include signed and unsigned byte, word

and longword

□ All of the protection of Pascal, with the flexibility of C

D Inherently more portable than either Pascal or C

3 Easy for Pascal or C programmers to learn
□ Fully compatible with the CP/M-68K C library

Requires CP/M-68K. Other systems and CPU's supported soon

Package includes: All this for
6B000 Compiler-Code generator tllG low

introductory
price of

User Manual

SpnngerVerlag "Report on the

Programming Language PLZ/SYS

One Year free updates

$ 75
AddS3S'H NJ Residents
include 6% sales ta>

T^KCSystems
MS.2O Lamington Drive, Succasunna.lNJJ 07876

"1927-9104

CIRCLE 45 ON READER SERVICE CARD

54 COMPUTER LANGUAGE■ APRIL 1985

Only $95 with FULL SOURCE CODE!

"... an incredible learning tool." Byte

For only S95. Q, C is a ready-to-use C compiler for CP M with com

plete source code. Here's what BYTE (May 1984) said Q C ... has

a portable library and produces good code quality. If you want to

learn compiler construction techniques or modify the standard lan

guage. Q C is the obvious choice-'

• Source code for compiler and over 75 library functions.

• Strong support for assembly language and ROMs

• No license fees for object code.

• Z80 version takes advantage of Z80 instructions.

• Q C is standard. Good portability to UNIX.

Q C has casts, typedef. sizeof. structure initialization, and function
typing. It is compatible with UNIX Version 7 C. but doesn't support

long integers, float, parameterized Adelines, or bit fields. Call about

our new products: Q/C profiler. Z80 code optimizer, and Z80 as
sembler and virtual linker, all with full source code!

imCODE
WORKS

5266 Hollister. Suite 224

Santa Barbara. CA 93111

[805)683-1585

OC CP M Z80 and UNIX are trademarks of Oualily Compuler Sysiems Digital
Research Zilog Inc and Bell Laboratories respectively

CIRCLE 42 ON READER SERVICE CARD

lemssuch as this, that is. which one of the

techniques should be compiled when

accessing a memory cell. The APT com

piler, for example, computes the space

necessary to store vectors, then uses vec

tored array mapping as opposed to multi

plicative mapping according to the ratio of

this space to the total memory space avail

able. Optimization in this context, then,

refers to the ability of the compilerto

choose an algorithm according to the con

text in which that algorithm will be

required. Of course, the choosing hap

pens at compile time, not at execution

time.

APT is written entirely in APT, with

two small exceptions: the I/O interface

(roughly 500 bytes) and the controller

(roughly 200 bytes).

Both of these arc written in the assem

bler of the destination computer and com

bined will typically require less than IK

bytes of code.

APT purposefully avoids the Pascal p-

codc approach—using pseudo-assembler

commands to interface to an actual

assembler—because true optimization of

the I/O and controller requires native

mode, that is, machine-specific coding.

The I/O interface consists of any special

drivers required to map the I/O of the

hardware onto the internal I/O handlers in

APT. For example, if acomputer contains

floating point hardware, the I/O interface

would map this hardware onto pointers

within APT's floating point software.

The controller contains code to drive

the dispatcher and to handle intcr-

proccdure branching (trees). APT's speed

is dependent upon the hardware stacks

available and the addressing capabilities

of the hardware. This is because the dis

patcher makes use of up to three internal

stacks and because both tree control and

dispatching rely heavily upon directed

branching throughout memory. It makes

sense therefore to write the controller in

the machine language of a particular com

puter to best use that computer's stack and

addressing architecture.

Once these two small pieces of coding

are written for a particular computer, the

body of the language may simply be

loaded onto the machine. This should

make the implementation of APT on dif

ferent types of computers quite

straiiihlforward.

•here are three ele

ments which are

generally

considered to be essential in a general

purpose language. The language should

contain a robust command set. be easy to

use, and be efficient. As a result, APT

contains many or all of the functions and

capabilities found in FORTRAN,

COBOL. Pascal, Forth, LISP. BASIC.

and other readily available languages. It

docs this in an efficient, malleable, easy-

to-use package.

T

APT's approach is to allow the pro

grammer to work with whole structures

rather than the typical one-thing-at-a-timc

of most other languages. Hierarchical and

other data structures can be manipulated

as wholes, broken apart, and reassembled

into new structures at will. This helps

make APT a cognitive!}' rich language.

Flexible and interactive, it adapts to the

user, getting smarter as new procedures

and dictionaries are added.

Yet it still retains its readability, ease of

use, and efficiency (for example, it easily

fits onto a !6K byte computer).

It was out of a desire for this kind of

power in a language that I created APT.

Version 0.1 of the language has been up

and running for approximately three

months on a seven-year-old Tandy Mod 1

computer. While only extended use will

prove the system, few bugs have so far

appeared. The only further additions that

I plan to add to the language are improved

string handling and relocatable object

code. Both should be completed by the

time you read this. Once I am satisfied

that it is bug free, and I have completed an

APT manual, it is my intention to release

APT into the public domain.

Overall, APT has met all of its design

goals nicely and has resulted in a general

purpose language of some elegance and

power. To find out more about APT. drop

me a note c/o; COMPUTER LANGUAGE,

131 Townsend St., San Francisco. Calif.

94107, and Til respond to your requests

for information. H

Optimization example

Multiplicative algorithm

Suppose the compiler encounters an array request:

INTEGERAA(100'5-20)

The array will be stored in a contiguous block of sequential memory of 100'5'20
WORDS (integers require two bytes, or one word, each) like so, for a total of 20K bytes:

cell number (each cell is two bytes long):

1 2 99 499 500 501 502 1000

Tooccessthedata in AA(1,2,3), an algorithm is used to translate the (1,2,3) into a
number relative to the first cell in the array. This number is then added to the absolute
memory address of that first cell to arrive at the desired data. The algorithm is:

(sub 1 - 1) + (dim 1 • (sub2 - 1) + (dim 1 • dim2 * (sub3 - 1)))

where sub = subscript dim = maximum size of the array dimension

Vectoring algorithm

An alternative approach to calculating a relative cell address is to use an addition

algorithm based on stored vectors. Suppose we have an array:

INTEGER AA(4,5)

cell

number

subscript: 1,1 1,2 1 ,n 2,1 2,2 ... 3,1 3,2 4,5

For this simple array, a vector N would be stored consisting of five elements:

nl n2 n3 n4 n5

1 2 5 6 9 10 20

0 4 8 12 16

To locate the data in AA(a,b):

vector N(b) + a

For example AA(3,2) is the tenth cell relative to the start:

cell number = N(3) + 2

= 8 +2

= 10

Figure 9.

55

Lifeboat

C is the language.
Lifeboat is the source,

TM

Productivity Tools from the Leading Publisher of C Programs.

The Lattice® C Compiler

The cornerstone of a program is its compiler; it

can make the difference between a good pro

gram and a great one. The Lattice C compiler

features:

• Full compatibility with Kernighan and

Ritchie's standards

• Four memory model options for control and

versatility

• Automatic sensing and use of the 8087 math

chip

• Choose from the widest selection of add-on

options

• Renowned for speed and code quality

• Superior quality documentation

"Lattice C produces remarkable code...the

documentation sets such a high standard that

others don't even come close.. .in the top cat

egory for its quick compilation and execution

time and consistent reliability."

Byte Magazine

Lattice Library source code also available.

Language Utilities

Pfix 86/Pfix 86 Plus — dynamic and symbolic

debuggers respectively, these provide multi

ple-window debugging with breakpointing

capability.

Plink 86 — a two-pass overlay linkage editor

that helps solve memory problems.

Text Management Utilities — includes GREP

(searches files for patterns), DIFF (differential

text file comparator), and more.

LMK (UNIX "make") — automates the con

struction of large multi-module products.

Curses — lets you write programs with full

screen output transportable among all UNIX,

XENIX and PC-DOS systems without changing

your source code.

BASTOC - translates MBASIC or CBASIC

source code directly to Lattice C source code.

C Cross Reference Generator— examines your

C source modules and produces a listing of

each symbol and where it is referenced.

Editors

Pmate — a customizable full screen text editor

featuring its own powerful macro command

language.

ES/P for C — C program entry with automatic

syntax checking and formatting.

VEDIT — an easy-to-use word processor for

use with V-PRINT.

V-PRINT — a print formatting companion for

VEDIT.

CVUE — a full-screen editor that offers an

easy way to use command structure.

EMACS — a full screen multi window text

editor.

Fast/C — speeds up the cycle of edit-compile-

debug-edit-recompile.

Graphics and Screen

Design

HALO — one of the industry's standard

graphics development packages. Over 150

graphics commands including line, arc, box,

circle and ellipse primitives. The 10 Fontpack

is also available.

Panel — a screen formatter and data entry aid.

Lattice Window — a library of subroutines al

lowing design of windows.

Functions

C-Fbod Smorgasbord — a tasty selection of

utility functions for Lattice C programmers;

includes a binary coded decimal arithmetic

package, level 0 I/O functions, a Terminal In

dependence Package, and more.

Float-87 — supports the 8087 math chip to

boost the speed of floating-point calculations.

The Greenleaf Functions — a comprehensive

library of over 200 routines.

The Greenleaf Comm Library — an easy-to-

use asynchronous communications library.

C Power Packs — sets of functions useful for a

wide variety of applications.

BASIC C — This library is a simple bridge

from IBM BASIC to C.

Database Record

Managers

Phact — a database record manager library of C

language functions, used in the creation and

manipulation of large and small databases.

Btrieve — a sophisticated file management sys

tem designed for developing applications under

PC-DOS. Data can be instantly retrieved by key

value.

FABS— a Fast Access Btree Structure function

library designed for rapid, keyed access to

data files using muHipath structures.

Autosort — a fast sort/merge utility.

Lattice dB-C ISAM — a library of C functions

that enables you to create and access dBase

format database files.

Cross-Compilers

For programmers active in both micro and mini

environments we provide advanced cross-

compilers which product Intel 8086 object

modules. All were developed to be as functional

— and reliable — as the native compilers. They

are available for the following systems:

VAX/VMS, VAX/UNIX, 68K/UNIX-S,

68K/UNIX-L

Also, we have available:

Z80 Cross-Compiler for MS- and PC-DOS —

produces Z80 object modules in the Microsoft

relocatable format.

New Products

Run/C— finally, a C interpreter for all levels of

C Programmers.

C Sprite — a symbolic debugger with break

point capability.

r

CMLIFEBOAT: 1-800-847-7078. In NY, 1-212-860-0300.
CIRCLE 85 ON READER SERVICE CARD

YES!Please rush me the latest FREELifeboat™ catalog ofCproducts.

Company Name

Address

.Business Phone.

Please check one ofthefollowing categories:

O Dealer/Distributor Q EndUser O Other.

Return Coupon to: Lifeboat™Associates
1651 TltirdAvenue, New York, NY10128

. 1985 LifeboatAssodltea
CL

COMPUTERVISIONS

Gordon French—

Old man of the micro revolution

guess I'm the

only guy in [he

business who's

been in it this long and hasn't made a mil

lion dollars." wryly chuckled Gordon

French, a self-described aging hippie who

has spent the past 10 years in the center of

Silicon Valley's microcomputer

revolution.

French's lack of a million dollars is one

of the distinctions he may hold in the

microcomputing industry. He also may

have been involved in the largest number

of microcomputer product and organiza

tion start-ups.

In early 1975 French, together with

Fred Moore, founded the Homebrew

Computer Club—the first club for micro

computer owners. While Homebrew was

in its first year, French was closely

involved in the development of one of the

most exciting microcomputers at the time:

Processor Technology's Sol. His next job

was with another notorious start-up.

IMSAI, where he opened and managed

the first Computer Shack, which later

became ComputerLand. Other job stints

have included work at Exidy, Com

modore, 3M. and CompuPro.

French is now about 50 years old and

projects the impression of not having

changed much over the years. His

greyish-whitish hair grazes his collar, and

he wears corduroys held up with sus

penders. He has moved from a house in

Menlo Park, Calif, with a machine shop

and a huge garage to an equipment-filled.

one bedroom apartment in nearby Sun

nyvale. He worries about paying the rent.

Now he's considering writing a book

about the early years of the micro

computer industry from his special per

spective, which began when he became a

computer operator in 1954.

oon after gradu

ating from high

school, French

went to work for White Stag, a sportswear

manufacturer, in Portland, Ore. His first

job was to calculate the pay of the seam

stresses, who worked on a piecemeal

basis. He spent his lunch times in the

tabulating department and soon landed the

By Regina Starr Ridley

job of keypunch operator—the only man

among 17 women.

Soon after his big move to keypunch.

White Stag installed a computer, which

turned out to be the first Univac 120 in the

Northwest, according to French. By 1954

he became a trainee TAB operator and has

been around computers ever since.

Most of his work was in assembly lan

guage. "At one time in the early 1960s I

found myself practically unemployable

because I did not code in COBOL or FOR

TRAN," said French. But that kind of

experience proved very helpful, he added,

because when he went to work for Pro

cessor Technology, he and Steve Dompier

were the only people who could sit down

and write assembly language code that

would do input and output.

French's jobs in the 1960s and early

1970s included work on special purpose

apparatus at the AMES Research Center

and a job with Planning Research Corp.

certifying that RPG code on large projects

was correct and operational.

"I became probably the world's author

ity on RPG. That is so ludicrous! RPG is

the kind of thing they put beginning peo

ple through to learn how to do simple

reports. To make claim to be the world's

authority on RPG is so ridiculous that it's

absurd, but it was true," said French.

By the time 1975 rolled around, French

was working for Microform Data Systems

installing a huge system for the Social

Security Administration in Maryland. He

was working for them when he founded

the Homebrew Computer Club.

The forerunner of Homebrew was

Wednesday night potluck suppers orga

nized by the People's Computer Company

in Mento Park. Due to some political tur

moil on the board and the fact that "the

women weren't very hot for doing the pot-

luck," said French, ""the thing was com

ing unstuck."

"Finally it was decided by the powers

that be at the People's Computer Com

pany not to hold the Wednesday potluck

meetings any more." said French. "Fred

Moore, who was trying to set up a net

work system with a data base of 3- by 5-

cards in a shoe box, and I walked out on

the sidewalk, and both of us felt that

something had been lost."

"Fred asked where else we could meet,

and I told him I had a big. warm garage in

Menlo Park, why don't we meet there?

Fred. who's always short of money, said

"well, it's going to cost about $5 to get

handbills printed.'

"I said fine and gave him the $5. He

went off, did a little artwork for it. and

posted it all over the place." The potluck

suppers ended in November, and the first

meeting of the new group was March 5,

1975."

"It rained to beat hell that day,"

remembered French, "but between 17 to

22 people showed up." Unfortunately, no

accurate written record exists as to who

attended, but French said the list included

Bob Marsh, who was setting up Processor

Technology; LeeFelsenstein. a consultant

to Proc Tech; Steve Dompier. who was to

write Target and Trek for the Sol; Bob

Reiling. who was co-owner of the first

West Coast Computer Fairc and wrote the

Homebrew newsletter; and Steve Woz-

niak. designer of the Apple computer.

The timing of Homebrew was impecca

ble. The first meeting was held just one

month after Altair appeared on the cover

of Popular Electronics. "Whammo!,"

said French, "here we were starting up a

public club exactly at the time when you

could buy for $400, or thereabouts, a

machine!"

Moore brought an Altair to the second

meeting. French described it as "a box

with a cord coming out of a thing that you

plugged in the wail, and when you turned

the thing on the lights flashed." "But by

the third meeting, Dompier found out that

a transistor radio placed next to the CPU

would begin to get radio frequency inter

ference. He noticed that certain com

mands would give it certain tones and

intonations."

This meeting was held at the Flood

Mansion, a big house in Menlo Park built

about 100 years ago. Electricity had been

added around 1920, so there were few

outlets. Plugging in the Altair required

using a 150-ft extension cord running

down the stairs and into the meeting

room.

"Dompier spent the entire meeting

handkeying a program on the Altair to

play "Fool on the Hill.' He entered all 256

bytes of this thing and was sitting there

with the machine quietly humming,

waiting for the meeting to end so he could

play "Fool on the Hill," and some kid com

ing down the stairs kicked the cord out,"

groaned French. laughing.

"He re-entered it, and just by the time

the meeting was over we were able to play

'Fool on the Hill.' There was much shout

ing, laughter, and applause. Everybody

remembers that, and I believe that it's

Wozniak's favorite story." said French.

French was conducting the meetings

during that period, but in the summer of

MEMO:

QUIT

WORKING

SO HARD.
These people have quir working so hard: IBM, Honeywell, Control Data,

GE, Lotus, Hospitals, Universities &. Government Aerospace.

THE GREENLEAF FUNCTIONS™

THE library of C FUNCTIONS that probably has just what you need . . . TODAY!

. . . already has what you're working to re-invent

.. . already has over 200 functions for the IBM PC, XT, AT, and compatibles

. . . already complete . . . already tested ... on the shelf

. . . already has demo programs and source code

. . . already compatible with all popular compilers

. . . already supports all memory models, DOS 1.1, 2.0, 2.1

. . . already optimized (parts in assembler) for speed and density

. . . already in use by thousands of customers worldwide

. . . already available from stock (your dealer probably has it)

. . . It's called the GREENLEAF FUNCTIONS.

Sorry you didn't know this sooner? Just order a copy and then take a break —
we did the hard work. Already.

THE GREENLEAF FUNCTIONS GENERAL LIBRARY: Over 200 functions in C

and assembler. Strength in DOS, video, string, printer, nsync, and system interface. All DOS 1

and 2 functions are in assembler for speed. All video capabilities of PC supported.
All printer functions. 65 string functions. Extensive time and dare. Directory searches.
Polled mode async. (If you want interrupt driven, ask us about the Greenleaf Comm

Library.) Function key support. Diagnostics. Rainbow Color Text series. Much, much more.

The Greenleaf Functions. Simply the finest C library (and the most extensive).
All ready for you. From Greenleaf Software.

... Specify compiler when ordering. Add $7.00 each for UPS second-day air. MasterCard,

VISA, check, oi P.O.

Compilers:

CI C86 $349

Lattice $395

Mark Williams... $475

GREENLEAF

SOFTWARE©

General Libraries.... $175

(Lattice, Microsoft, Mark

Williams, CI C86)

DeSmet C $150

Comm Library $ 160

GREENLEAF SOFTWARE, INC.
2101 HICKORY DRIVE ♦ CARROLLTON, TX 75006 ♦ (214)446-8641

1975 had to move to Woodlawn, Md., for

three months to install the system at the

Social Security Administration headquar

ters. Lee Felscnstein took over the

chairmanship of Homebrew. About that

time the meetings were moved to

the Stanford Linear Accelerator Center

auditorium or. if it were occupied, the

cafeteria.

French was under pressure to move

hack East with his family, but "precip

itously" quit his job on Friday, Dec.

14, 1975. By that Monday, he had a job

with Proc Tech across the bay in

Emeryville, Calif.

Proc Tech was started up by Bob Marsh

and Gary Ingram to produce 4K Altair

memory boards. Felsenstein, who wanted

to remain independent, was a consultant.

"About the third or fourth day I was

there," said French, "Felsenstein came in

with a big drawing and pasted it up on the

wall. In one corner of it were the letters

SOL. SOL in the Northwest where I came

from meant Shit Out of Luck, and I

thought, what on earth are they doing with

a name like that?" [The name is said to

have been derived from the expression

"having the wisdom of Solomon" and

also was a reference to Les Solomon,

technical editor of Popular Electronics.)

French described the Sol as the second

integrated personal computer. "I am

really sick and tired of the argument that

keeps going on between Steve Jobs and I

whether the Apple was the first. The

Apple was the third. The first one was

called the Sphere and was produced in

Utah. Then came Sol followed by Apple."

At first the Sol was kept under tight

wraps, said French. But eventually the

project matured to the point where others

had to become involved. French's major

contribution was to build the sheet metal

case or, as one author has put it, the

"mechanical realization" for the original

Sol.

"My hobby for years was building

small-scale, live steam locomotives, and I

was the only one around with any mechan

ical skills. In addition to my garage in

Menlo Park. I had a large machine shop

with several drill presses and lathes," said

French.

French was also responsible for hook

ing up Proc Tech with Gene Tepper, the

man who designed the look of the Sol.

Dick Gray of Gray Associates drafted and

created the sheet metal. "Gray is the kind

of guy that designs gun mounts for fighter

planes," said French. "Everything was

re-enforced with double sheets and gus
sets for strength."

The sturdy case is the basis for one of

French's favorite incidents. "At the office

I never wore my shoes," he said. "One

day I had my shoes off with the Sol down

on the floor. I got up and stood on it. For

some time. Marsh and Ingram talked

about running an ad with me standing on

the thing saying 'no Gordon, we meant

stand behind it!'"

COMPUTER LANGUAGES APRIL 1985 CIRCLE 44 ON READER SERVICE CARD

French asserted that one of the big inac

curacies in Fire in the Valley, Paul Frei-

berger and M ichacl Swainc's popular

book on the development of the micro

computer, is that it credited the Sol exclu

sively to Marsh and Felsenstein.

"Felsenstein did the circuitry. Marsh's

sole contribution was the keyboard, which

was a delight. Outside of that, the rest was

up to the staff. What I want is my due for

the mechanical side of the Sol."

The Sol's big introduction to the world

was at the Atlantic City, N.J., PC com

puter show in June 1976. "The night

before we were to leave, we didn't even

know how many of us were going," said

French. "Money was quite tight. I went at

the last minute because we were still

installing the circuit board and getting the

thing together. We got virtually no sleep

the night before our 7 am flight."

"We had two Sols with us. One had all

the electronics in it and was in a blue case.

The other had been done as an appearance

model and was in suntan tones or, as one

of the hippies at Proc Tech described it,

earth tones.

"The one in earth tones had no elec

tronics in it at all. It was just a case with

everything shoved up and poked in with

cardboard and held in with tape. That one

was put way in the back of the display

once we goi there."

French went out that night with a cou

ple of people he met from Technical

Design Laboratories and drank beer until

around 3 am. No sooner had he quietly

crawled into bed in the hotel room he was

sharing with Felsenstein than he heard

some banging.

"I thought, what the hell was that?

Then I heard another bang and Felsenstein

came in with the Sol under one arm and a

scope under the other. What had happened

was that we installed a tantalum capacitor

in the power supply backward, and it

finally gave out. Getting down to the

power supply meant everything had to

come apart.

"Soil was back out of bed forme, and I

was about three sheets to the wind. We

took the damn Sol apart again to replace

this capacitor and then put the thing back

together again. I don't think Felsenstein

and I got any sleep the second night."

It was worth it though because "we

stole the show with the Sol," said Frcneh.

The two big displays at the show were

Proc Tech's and Micro Instrumentation

Telemetry Systems' (MITS), manufac

turer of the Altair.

'rench worked

lexactly one

year—until Dec.

17; 1976—for Proc Tech. "I couldn't get

a decent raise so I quit," he said. Immedi

ately he began work for IMSAI, Proc

Tech's number one competitor.

IMSAI was filled with adherents of

Erhardt Sensitivity Training (cst). "Bill

Millard [IMSAI founder and presidentl

broadly suggested that anybody who

wanted to succeed at IMSAI would have

to work until 10 pm, and I said, no way.

My wife had taken a job that left me with

two kids to put to bed every night. All the

guys who had some sort of est training

told me exactly the words to use: 'I choose

not to do that." I was the only one who

went home at some kind of reasonable

hour."

"Ed Faber, who was Millard's right-

hand man, asked me what my career goals

were. I told him I'd like to make some

money and a few things like that. He told

me he had two impossible jobs and would

I like both of them. I thought he was jok

ing. He wasn't!

"That day I got to be manager of prod

uct selection, evaluation, and test. The

second job was pilot manager for the first

Computer Shack, later to become

ComputerLand."

Faber wanted French to "select some

things that would really be flashy when

the store opened." French also gathered

some big names in the industry to attend

the store opening, including Greg Yob,

who wrote Hunt the Wumpus; Li-Chen

Wang, author of Palo Alto Tiny BASIC;

Ed Hall, a senior software designer; and

Alice Algrcn, a Ph.D. with Cromenco, a

new start-up.

French assembled these people in a

small anteroom, while in the main room a

GOOD1NEWS!
c

for the

6809

CORPORATION

847 W. Virginia SI.

Milwaukee, WI63204

(414)276-2937

SNEYE
BETTER!

INTROL-C/6809,Version1.5

Introl's highly acclaimed 6809 C

compilers and cross-compilers are now

more powerful than ever!

We've incorporated a totally new 6809

Relocating Assembler. Linker and Loader-

Initializer support has been added, leaving

only bitfield-type structure members and

doubles lacking from a 100% full K&R

implementation. The Runtime Library has

been expanded and the Library Manager is

even more versatile and convenient to use.

Best of all, compiled code is just as

compact and fast-executing as ever - and

even a bit more so! A compatible macro

assembler, as well as source for the full

Runtime Library, are available as extra-cost

options.

Resident compilers are available under

Uniflex, Flex and OS9.

Cross-compilers are available for PDP-

11/UNIX and IBM PC/PC DOS hosts.

Trademarks:

Introl-C. Introl Corporation

Flex and Uniflex, Technical Systems Consultants

OS9, Microware Systems

PDP-11. Digital Equipment Corp.

UNIX, Bell Laboratories

IBM PC. International Business Machines

For further information, please call or write.

CIRCLE 32 ON READER SERVICE CARD 59

photographer was taking pictures of Mill-

ard, Faber. the mayor of Hayward and

Miss Hayward. French asked the photo

grapher to come into the next room to take

"what probably would have been the most

historic photograph in microprocessing

history." but the photographer refused,

saying he'd been chartered to lake only

seven photographs and already had taken

eight.

The incident still aggravates French as

if it were yesterday. "I should have gone

to the drugstore and bought a camera!" he

said with frustration. "That particular

piece of foolishness and nonsense cost us

a very historic document."

French left Computer Shack after a

controversial change in management. He

quickly went to work for Exidy. a another

start-up. There he worked with Howell

Ivy on the Sorcerer, a computer system

which "was never a success." After the

design was completed, he left.

That night happened to be a Homebrew

meeting. It was the only night that Chuck

Peddle, division manager of computer

operations wilh Commodore and architect

of the 6502. attended. "I stood up and

asked if anyone wanted to employ an

aging hippie." French said. "Not a soul

stirred."'

But after the meeting Peddle asked

French to conic to his office the next day.

French became manager of customer

applications software.

Management at Commodore was some

what disorganized, and in a little less than

a year French decided he'd like to run his

own business. In 1977 he became a dis

tributor for 3M. Pretty soon, says French.

he was selling 2,000 diskettes a month out

of his garage, about S120.000 worth of

diskettes a year.

French urged 3M to go all out and rap-

CP/M-80 C Programmers ...

Save time
... with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Ullra-last compilation, linkage and

execution that produce drreclly

executable 808CraSO CP/M command

dies.

A comprehensive deougger nat

ifaces program execution arx!

mieractively displays botri local ana

exiernai variables Dy name and

proper type.

Dynamic Overlays thai allow lor run-

lime segmentation of programs too

large to fit inio memory

• A 120-function library written in both

C and assembly language wiln full

source code.

Plus ...
• A thorough, easy-to-read. 101-page

user's manual complete with

tutorials, hints, error messages and

an easy-fo-use index — it's the

perfect manual tor the beginner and

the seasoned professional.

An attractive selection of sample

programs, including MODEM-

compatibie telecommunications,

CP.'M system utilities, games and

more.

A nationwide BDS C User's Group

(S10 membership fee — application

included with package) I ha I offers a

newsletter, BDS C updates and

access to public domain C utilities.

Reviewers everywhere have
praised BDS C lor its elegant

operation ana optimal use of

CP/M resources. Above ail, BDS C

has oeen hailed for it's remarkable

speed.

BYTE Magazine placed BDS

C ahead of all other 8080/ZSO C

compilers tested (or fastest

ob|ect-code execution with all

availaole speed-up options in use.

In addition, BDS C's speed of

compilation was almost twice as

last as its closet competitor

(benchmark for this test was the

Sieve of Eratosthenes).

I recommend both the

language and the implementation
by BDS very highly."

Tim Pugh. Jr.

in Infoworid

"Performance ExeeUrnt,

nocumentalioiu Excellent
East of Vae. EzctliinL "

InfoWortd

Software Kepon Card

"... a superior buy ..."

Van Court Hare

in LifeUnesiThe Softuorv
M

l-MMMuwmi

Don't waste another minute on

a slow language processor. Order

your BDS C Compiler today!

Complete Package (two 9' 5SSD disks.
181-page manual). J150

Free shipping on prepaid orders inside
USA

VISA/MC. COD's. rush orders accepted.
Call lor information on olher disW

format s.

BDS C is desired fo> use win CPjM-BO

operating syswms, vwsion ZZ or rirghef. II is

not currently availaole fo< CPiMSB a MS-

DOS.

BD Software, Inc.
P.O. Box 2368

Cambridge, MA 02238
(617) 576-3828

idly expand its production of 5 f4-in

floppy disks. "They could have owned the

market." said French, "because the only

other manufacturer that could produce

anywhere near the quality was Dysan. and

Dysan has always been small production.

3M's shortsightedness in not under

standing the exact nature of what I was

telling them must have cost them, conser

vatively, $50 million."

While a 3M distributor, French did

some consulting for the Japanese at S110

per hour. But he did not enjoy doing busi

ness with them, mostly because of cul

tural differences in conducting business.

French recalled early morning wake-up

calls for urgent meetings at strange hours.

Business was conducted with a strong

emphasis on secrecy. He remembered the

time a Japanese firm placed a

100,000-piece order through him wilh a

U.S. company. The order was delivered

by a semi into his driveway and precisely

20 min later a truck from an airfreight

company owned by the Japanese company

packed up the boxes for shipment straight

to Japan.

"The money was good but I just don't

want to do business with those guys," said

French.

French sold the last of his 3M products

in 1982 when3M decided to get away

from distributors and go directly to end

users.

ince 1982 French

• says he's "pretty

much done some

sliding and gliding." He spent about five

months working on the mechanical side of

the CompuPro system 10. He currently

works sporadically at a friend's Byte Shop

in Hayward, Calif.

French also has kept busy working on

the computer systems in his apartment,

which include 21 microprocessors. 50

million bytes of storage capacity, six key

boards, six video display instruments, six

printing devices, and 350 floppy disks.

He runs an active remote bulletin board

system and recent conversations have

focused on stories of the development of

microcomputers. It helped spark an inter

est in French to write a book and set the

record straight about that time of, as he

described it, "extraordinary people doing

extraordinary things."

The memories of that time are very

important to French. A camaraderie was

created that he still feels a part of and

doesn't want to lose.

"Nobody forgets those days. No one

who really was there," he said, almost
wistfully. H

Regina Starr Ridlex is managing editor of

COMPUTER LANGUAGE.

COMPUTER LANGUAGE ■ APRIL 1985 CIRCLE 4 ON READER SERVICE CARD

SuperFast Software Development Tools

INCREASE YOUR PROGRAMMING EFFICIENCY
with high-performance software development products from SLR Systems.

No other tools approach the speed or flexibility of the SLR Systems line.

"Z80ASM Is an extraordinary product...",

Robert Blum. Sept. 84 DDJ

ASSEMBLERS
RMAC/M80 macros

Nested INCLUDES &

conditionals

16 char, labels on

externals

Built in cross-

reference

Optional case

significance

Phase/dephase

Math on external

words and bytes

Define symbols from

console

Generate COM, HEX,

SLR-REL, or Micro-

soft-REL files

Time & Date in listing

Over 30 configure

options

Z80ASM -full Zilog Z80 $125

NEW! Z80ASM+ -all tables virtual $195

NEW! SLRMAC -full Intel 8080. with

Z80.LIB extensions internal $125

NEW! SLRMAC+ -all tables virtual $195

Z80 CPU. CP/M compatible.'32K TPA required.

"Z80ASM...a breath of fresh air...",

Computer Language. Feb. 85

C.O.D., Check or Money Order Accepted

"...In two words, I'd say speed & flexibility",

Edward Joyce. Nov. 84 Microcomputing

LINKERS
• Links SLR & M80

format files

• Output HEX or COM

file

SLRNK+ includes:—

Three separate

address spaces

Load map and

SID/ZSID .SYM file

All tables overflow to

disk

HEX files do not fill

unused space

Intermodule cross-

reference

EIGHT separate

address spaces

Works with

FORTRAN & BASIC

Generate PRL&SPR

files

Supports manual

overlays

Full 64K output

SLRNK -fastest memory based $125

NEW! SLRNK+ -full featured virtual $195

Combo Paks available from $199. - $299.

For additional information contact SLR Systems

1-800-833-3061, in PA (412) 282-0864

1622 N. Main St.. Butler, PA 16001 ■ Telex 559215

CIRCLE 73 ON READER SERVICE CARD

MODULA-2 PROGRAMMING TOOLS
A collection of utility modules ready to link into your programs and greatly speed

programming efforts and the operation of programs.

Each tool is supplied as a definition module with in-line documentation, an

implementation module with full sou tee code and a ready-to-link object module. A fully-

linked ready-to-run test program with source code is included.

,tm
Each module is implemented using Logitech's Modula-2/86 , Version 1.1 and MS-DOS/PC-

DOS1"" Version 2.0 or later unless otherwise specified. All modules are upward compatible

with Microsoft's Xenix operating system as specified in the Microsoft MS-DOS

Programmer's Reference Manual.

high-speed memory utilities coded using 8086 string instructions.

Keyboard: a complete IBM-PC keyboard handler.

ScreenOps: high-speed routines for controlling IBM-PC text screen.

Based on ROM BIOS calls.

EilsQES.'- direct access to MS-DOS file handling functions via DOS function calls.

DirOps: direct access to MS-DOS's hierarchial directories via DOS function calls.

DiBKUtilg: miscellaneous disk and drive utilities via MS-DOS function calls.

gingVD: calculates singular values of real-values matricies.

HiCIPMpuse,: direct access to all 16 Microsoft Mouse funtcions via mouse system

software function calls.

Hemutils

Keyboard

ScreenOps

FileOps

DirOps

DiskUtils

HicroMouse

SingVD

529

$39

$39

?39

$39

$29

$49

$89

- All three for $59

— All three for $79

Developed by: Thomas H. Woteki, Ph.D.

Entire package of 8

modules - all with

source code and

test programs

for $1B9

Add $3/order shipping and handling VA residents add 4% sales tax 8E3
Call 703/ 522-8898 or send your order to: Information Systems Incorporated

1901 Ho. Fort Myer Drive, Arlington, VA 22209

-Quality Software At Low Pcices- -Save Time With Expert Tools-

C1RCLE 20 ON READER SERVICE CARD 61

ORDER COMPUTER LANGUAGE

BACK ISSUES WHILE THEY LAST!
Complete your collection of COMPUTER LANGUAGE magazines with our selection of

back issues. A complete set is sure to become a valuable collector's item in years to

come. Here are just a few of the features included in each issue:

OCTOBER'84

The biggest collector's issue

• Basic Becomes a Structured

Language—by Kemeny 8c

Kurtz

• Programming in the Unix

Environment

• COBOL: Pride and Prejudice

• Exploring Ada and Modula-2

Exotic Language; SNOBOL

Interview: Charles Moore

NOVEMBER '84

• An Implementation

Demonstrating C Portability

• The Evolution of ZCPR-Part I

• BATCH—A Powerful IBM

"Language"

Exotic Language: PILOT

Interview: Donald Knuth

DECEMBER '84

• Enhancing Source Code

Control under UNIX, Part 1

• Natural Language Processing

and LISP

• Building Portable Programs

Exotic Language; OCCAM

Interview: Gary Kildall

JANUARY '85

• Macros and Procedures

• Extensibility in Forth

• The IIIrd Dimension-

Programming in dBASE III

Exotic Language: Transaction

Application Language

Interview: Sol Libes

• Exploratory Programming

• Fred: A Language within

Framework

• Six Pascal Compilers

Compared

Exotic Language: OMNI

Interview; Bill Godbout

FEBRUARY '85

C Language Special Issue

• Twenty-One C Compilers

Compared

• The Standardization of C

• C to Assembly Interface

Exotic Language: MUMPS

Interview; PJ. Plauger

Only a limited quantity of magazines is available, so order today. To receive your back issues, just fill out
this coupon and mail it back with a check for $4.00 per issue.

Premier

Oct. '84

Nov. '84

Dec. '84

Jan. '85

Feb. '85

Mar. '85

.copies X $4.00 = $

copies X $4.00 = $

copies X $4.00 = $

copies X $4.00 « $

copies X $4.00 = $

copies X $4.00 = $

copies X $4.00 = $.

copies X $4.00 = $.

Total $_

NAME

COMPANY

ADDRESS .

CITY, STATE, ZIP

Send payment and coupon fo:

COMPUTER

LANGUAGE
Back Issues

131 TownsendSt.

San Francisco, CA 94107

COMPUTER LANGUAGE ■ APRIL 1985

PRODUCT BINGO

Each month Product Bingo features the latest in new soft

ware and hardware products of interest to COMPUTER

LANGUAGE readers. Product Bingo items are based on

information received from the manufacturer and are not

meant to be product evaluations, reviews or endorsements.
To find out more about a particular product simply circle the

appropriate number on the Reader Service card—you'll

receive information directly from the manufacturer.

Note to manufacturers: Send new product information to

Doug Millison, Product Bingo, COMPUTER LANGUAGE,

137 TownsendSt., San Francisco, Calif. 94107.

(8)000®
Intel development on the IBM PC

Software developers can now use the IBM PC to design soft

ware for Intel microprocessor-based systems. The Univer

sal Development Interface from RTSC lets you run

Intel 16-bit software on any MS-DOS-based computer sys

tem. With the communications software provided, Intel com

pilers and utilities can be uploaded or downloaded to and

from an Intel Microprocessor Development System and an

IBM PC or compatible. The developed software can then be
downloaded from the PC to a target system.

In addition, RTSC offers the 86/88-based compilers and

utilities, written for the Intel MDS ready to run under the Uni
versal Development Interface, at half the price of the same

software purchased directly from Intel.
Universal Development Interface requires a PC with 256K

RAM and two 360K RAM floppies, or one floppy and a

10MB hard disk, and PC/MS-DOS version 2.0 or higher.

Retail price is S500.
Address: RTSC, 1 390 Flynn Rd., Unit E, Camarillo, Calif.

93010,(805)987-9781.

CIRCLE 101 ON READER SERVICE CARD

Put an APL in your pocket

STSC Inc. offers PocketAPL, an inexpensive APL pro

gramming package for the IBM PC, PCjr, and true com

patibles running PC-DOS and MS-DOS.
Priced at $95, PocketAPL comes with an introductory

book, reference guide, keyboard reference and placard.

PocketAPL is upwardly compatible with APL* PLUS/PC
System, an application development system from STSC

Containing programs for software development, screen

management, report formatting, disk emulation, and com

munications, the APL* PLUS/PC System runs under MS-DOS

or PC-DOS and sells for $295,
Address: STSC Inc., 2115 E. Jefferson St., Rockville, Md.

20852, (800) 592 0050, in Maryland (301) 984-5123.

CIRCLE 102 ON READER SERVICE CARD

By Doug Millison

You control the video

You'll add a dash of Gallic panache to your screen design

with Matis, the screen manager from France via Soft-

way Inc.

Matis allows you to design data entry/display screens of

almost unlimited size; create windows, single or multiple
screen display; and manage the screens while running the

application. Matis commands let you control the video attri

butes of each object—lines, fields, text, windows, pages—

independently.
For the IBM PC/XT and true compatibles equipped with

DOS and 128K RAM, Matis is available under interpreted

and compiled BASIC, Pascal, C, Assembler, and other popu

lar languages. Suggested retail is $150.

Address: Softway Inc., 500 Sutter St., Ste. 222, San

Francisco, Calif. 94102, (415) 397 4666.

CIRCLE 103 ON READER SERVICE CARD

UNIX-like programming tools

QTOOLS, a programmer's toolbox from QCAD Systems

Inc., is available for use under MS-DOS or PC-DOS on IBM

PCs and compatibles.

Adapted from UNIX, the 19 QTools cover file listing, pat

tern search, substitution, translation, and file maintenance.

QTools supports I/O redirection and pipes, wildcards, envi

ronment variables, command-line options, and on-line help.

QTools sells for $49.95.

Address: QCAD Systems Inc., 1164 Hyde Ave., San

Jose, Calif. 95129, (408) 255-5574.

CIRCLE 104 ON READER SERVICE CARD

Clean up your language

Your Microsoft and Turbo Pascal programs will be easier to

read, understand, and modify with TIDY, a Pascal for

matter from Major Software.
Tidy transforms a raw input program into the recommen

ded standard, highly structured form. With Tidy, formatting

style can be ignored as the program is entered, speeding the
program's creation. Tidy indents structures, capitalizes key

words, formats declarations, sensibly places comments, and
adds blank lines where they will best increase readability.

Tidy runs on IBM PC/XT/AT under PC-DOS or MS-DOS
with 128K RAM. The Microsoft Pascal and Turbo Pascal ver

sions retail for $69 and $49 respectively, plus $5 for

shipping.

Address: Major Software, 66 Sylvian Way, Los Altos,

Calif. 94022, (415)941-1924.

CIRCLE 105 ON READER SERVICE CARD

63

Epsilon
The Emacs-Like Text Editor For

Programmers Who Don't Like to Wait!!

State of the Art Text Editor
Epsilon is an exciting new text editor designed to make pro

grammers more productive. Epsilon is faster than Brief,

faster than Mince, faster than Gosling Emacs, and faster

than the editor you're using now.'

Concurrent Processes!
Epsilon lets you compile while you edit! You can run

compilers, assemblers, linkers, and almost any other

program that isn't screen oriented, all under Epsilon's

control, while you edit your files!

With Epsilon you don't wail for programs like compilers to

finish. Use Epsilon's concurrent process command, and

while the compiler runs, you can continue to examine and

edit files. Any errors in the compilation are displayed

immediately, and Epsilon gives you the opportunity to

correct them while the compiler continues to run. With

Epsilon, you're finished correcting errors when other

editors first let you start.

Powerful Commands
Epsilon has over T25 commands instantly available. Epsilon

can manipulate words, sentences, and paragraphs easily.

Epsilon will automatically save text you have deleted in a

"ring" of kill-buffers, so that you can relrieve it later. It will

help you avoid syntax errors by displaying matching

parentheses. And best of all, Epsilon's macros let you define

your own commands, which can be loaded automatically

each time you start Epsilon.

Speed with No Limits.
Epsilon reads and writes files 25% to 600% faster than

competing editors. From its convenient keyboard macros to

its completion facility that completes the names of

commands, files and buffers, to its optimized incremental

search, Epsilon has been designed for programming ease

and speed.

There's no limit to the number or the size of buffers you

can have. Each buffer can hold a different file, or different

versions of the same file. You can create as many windows

as will fit on the screen, and display different buffers in

each. And should you run out of memory, Epsilon will

create and automatically utilize a swap file.

Speed Comparison with Other Editors
[Time in Secondsl

Epsilon Brief Mince Emacs

Start-up

Read 21K file

Write 21K file

Next Screen

String Search

I-Search

First Help

Other Helps

2.60

1.06

2.11

.19

3.85

3.85

8.30

.20

Epsilon runs on IBM PCs.

4.11

1.33

14 30

.24

7.04

..

12.33

11.64

1.43

8.95

6.05

1.33

4.49

--

24.93

7 52

7.95

1.80

8.41

8.73

-

XTs, AT's and compatibles with
PC-DOS 2.0 or above and requires 192K of memory

Epsilon's price is only $195.00.
ALL MAJOR CREDIT CARDS ACCEPTED.

Lugaru Software, Ltd.
5227 Fifth Avenue, Suite 12 / P. O. Box 110037

Pittsburgh, Pa. 15232

(412) 621-5911

CIRCLE 51 ON READER SERVICE CARD

64 COMPUTER LANGUAGE ■ APRIL 1985

Write it once!

MasterFORTH
Portable programming environment

. : Whether you program on the Macintosh,

H the IBM PC, an Apple II series, a CP/M
— I system, or the Commodore 64, your pro

gram will run unchanged on all the rest. If

you write for yourself, MasterFORTH will

protect your inveslment. If you zz:==^zi jzz

write (or others, it will expand S 5Z£ =—=

your marketplace. SS = 7 SI tm

JL MasterFORTH is a state-of-the-art imple

mentation of the Forth computer language.

Forth is interactive - you have immediate

feedback as you program, every step of the

way. Forth is fast, too, and you can use its

built-in macro assembler to make it even

faster. MasterFORTH's relocatable utilities,

transient definitions, and headerless code

let you pack a lot more program into your memory. The

resident debugger lets you decompile, breakpoint, and

trace your way through most

programming problems. A string

package, file interface, and

full screen editor are all standard features.

MasterFORTH exactly matches the Forth-83 Stan

dard dialect described in Mastering Forth by Anderson

and Tracy (Brady, 1984). The standard package in

cludes the book and over 100 pages of supplemen

tary documentation.

CP/M

MasterFORTH standard package

Macintosh S125

IBM PC and PC Jr. {MS DOS 2.1) 125

Apple II, II+, lie, Me (DOS 3.3) 100

CP/M 2.X (in several formats) 100
Commodore 64 100

Extensions

Floating Point (1 ^84 FVG standard) S40
Graphics (Apple II series) 40

Module relocator (with utility sources) 60

Printed source listing (each) 35

Publications

Mastering Forth (additional copies) $18

Thinking Forth by Leo Brodie 16

Forth-83 International Standard 15

Rochester Bibliography, 2nd ed 15

1984 Rochester Conference 25

1984 J1 of Forth Appl. & Res. 2(2) 15

1983 FORML Conference 25

MICROMOTION
12077 Wilshire Blvd., #506

Los Angeles, CA 90025

(213)821-4340

CIRCLE 56 ON READER SERVICE CARD

SOFTWARE REVIEW

Microcomputer COBOL compiler analysis

IOBOL is an old-

timer computer

I language. With

its roots dating back to the early 1960s,

few doubt whether it is a survivor.

Up until approximately 1978 COBOL's

range extended through the mini to main

frame environment due to the size of the

compilers and their tremendous appetite

for both disk space and memory. Now that

micros are available with 512K to over

1 MB of memory, you will probably see all

computer languages grow in size as the

designers no longer are bound by memory

restrictions.

Additionally, this change makes it pos

sible to find COBOL on microcomputers.

The current microcomputer COBOL com

pilers are now capable of providing

almost all of the features found in the

mainframe environment. Several of the

compilers are now rated by the General

Service Administration (GSA) at the high-

intermediate level based on the 1974

ANSI COBOL standard.

Many of you may be wondering why

anyone would implement a mainframe

language on a micro when C, Pascal, and

others are available and most run much

faster. However, COBOL was designed

for business and since the bulk of micro

computers are being used in a business

environment, it is the logical language

choice.

Let's begin

This wrap-up of the currently available

COBOL compilers and interpreters for

both MS-DOS and CP/M will focus not so

much on the speed of the compilers as on

the features they offer the software devel

oper or in-house programmer. We will

cover 12 compilers for PC-DOS/MS-DOS

and one for the CP/M environment. Basic

information on the compilers is contained

in Table 1.

Fortunately, or unfortunately,

depending on your viewpoint, MS-DOS

seems to be gaining momentum and is

rapidly replacing CP/M as the operating

system of the future. Although I only

received one compiler for the CP/M envi

ronment, Microsoft, Ryan-McFarland,

By Charles K. Ballinger

Micro Focus and Digital Research all

either sell or distribute compilers for the

CP/M environment.

This wrap-up is not a detailed review of

these compilers but instead is a general

overview of the strengths and weaknesses

of each compiler. Each compiler will have

its own section with references made to

the variety of tables I compiled during the

course of the review. Following that will

be a brief overview of the various royalty

charges currently required and a summary

of this article.

While many of the versions I received

for review were beta or prerelease ver

sions, I'm not going to dwell on bugs or

errors I discovered during the course of

my benchmarks. This is done for two rea

sons. First of all, since each vendor has

beta test sites, I will assume that the errors

have been reported and are now in the

process of being corrected. Secondly, it is

not fair to give you, the reader, a false

impression of problems when I am not

reviewing the same software you would

receive at order time.

The benchmarks used in this review are

listed in Table 2 with descriptions of the

tests each performs. Ifyou'd like a copy

of the actual benchmark you can obtain it

from either the COMPUTER LANGUAGE

Bulletin Board Service or from the maga

zine's account on CompuServe (type "GO

CLM").

Perhaps in other reviews you have read

speed has been a critical consideration.

This is due in part to the fact that both C

and Pascal are system-oriented rather than

business-oriented languages. When it

comes to system functions or utilities,

speed is foremost on your list of

requirements.

Writing in COBOL is a different

matter. Remember, COBOL is left with

the day-to-day drudgery processing. How

creative can you be when writing

an accounts receivable or payroll system

in COBOL? COBOL is the workhorse of

business while C and Pascal can share the

limelight for graphics, games, special

utilities, and the like.

Since COBOL programs usually access

fairly large data files and are used to kill

many trees with printout, speed becomes

of secondary importance.

COBOL was originally a batch-oriented

language. This means the data coming

into the computer was normally entered

via punchcard and not via terminal. With

users demanding faster turnaround on

their information, it is now essential to go

to an interactive mode.

With this new concept implemented in

COBOL, the operator becomes the slow

est link in the chain. With interactive

screen handling the program must now

wait for the operator to complete data

entry before the program can process the

data. This places the speed of the com

pilers in a different light. Now, ease of

data manipulation via the terminal

replaces speed as the most important fea

ture of a COBOL compiler.

Personally, as a software developer I

look for ease of use, ability to easily con

vert existing software to the micro envi

ronment, and manufacturer support as a

few of the most important features. One

additional feature I also look for is the

ability to port the software I've written to

a variety of systems while making few, if

any, changes.

The compilers presented in this review

have been tested on an IBM PC-XT with

640K of RAM running PC-DOS version

2.0. While several of the vendors offer

generic MS-DOS compilers, I received

only PC-DOS versions so could not test

some of the others for their particular

implementation under generic MS-DOS.

I tested the CP/M compiler on my Z100

running CP/M 85 with 704K of RAM

installed and 10MB of hard disk and run

ning at 4.77MB clock rate. In all cases the

timings I obtained are approximates and

should not be held to the second.

On the IBM I have a clock card

installed so the timings should be fairly

accurate. For the timings on the compile

and link steps, as well as the run times for

the CP/M tests, I had to rely on a stop

watch. So in your assessment do not omit

the related human error factor that such a

device introduces. In those compilers

requiring the link step to be a separate

function, I timed them as a separate entry

so the compile times may be misleading

65

unless you take the link-step time into

account.

It is my hope that by the time you have

finished this review, you can decide for

yourself which compiler would suit your

particular task and proceed from there.

The tables provided will give you an over

view of the speed comparisons, (he

options supported, and other factors that

should assist you in your decision on a

compiler.

Digital Research

level II COBOL v. 3.0
This product is a fusion ofsomething

from both Digital Research Inc. and

Micro Focus. The basic portions of [he

compiler are identical to the Micro Focus

level II compiler with the exception that

DRI has added an access manager arid

display manager to its version of the

compiler. In all the benchmark programs

shown in Table 4. you will note that both

Micro Focus level II and DRI level II pro

duced identical .GNT modules. Execution

speed was identical with the exception of

program PCPERF. which ran 1 sec slower

under the DRI level II version. Compile

Bundled software and essential information

Digital

Reseorch

Ellis Nevada

Computing COBOL

mbp Software mbp
& Systems COBOL
Technology

mbp Software mbp

& Svstems COBOL
Technology

$1,000 9.00 PC-DOS

Micro

Focus

Micro

Focus

Micro

Focus

Micro

Focus

Microsoft

Microsoft

Realia

ftyan-

McFarland

WATCOM

Professional 53,000

COBOL

Professional 53,000

COBOL

1.0 PC-DOS

not avail.

Level II SI,500

VS-COBOL S4,000

Microsoft S 700

C080L

Microsoft S 700

COBOL

Reo!io-

COBOL

S 995

RM-COBOL S 950

1.1

2.6.2

2.5

1.0

1.12

2.0

1.0

1.2 in

Apr.

2.0B

PC-DOS

yes

yes

yet

yes

yes

yesJ

yes

yes

.INT,

.GNT

.OBJ

.OBJ

575 +

165

740+

.OBj

PC-DOS, yes,

MS-DOS, builder

CP/M,

UNIX

PC-DOS, no

MS-DOS

MS-DOS

MS-DOS,

UNIX 286'

PC-DOS

2.0 +

PC-DOS

MS-DOS

PC-DOS

yes

yes

yes

yes

no yes

N.A. yes

yes

N.A.

no3

yes incf. no

yes incl. no

yes incl. no

yes incl. no

no S200 no

no incl. no

yes yes

no S100- no

S300

753 +

built-in

built-in

no

built-in

no

no

yes

no

ves

yes

yes5

no

yess

no

yes

no

yes

no

yes

yes

yes

yes

no

no

no

yes

N.A.

.GNT,

.INT

.INT,

.GNT

.INT,

.GNT

.INT,

.GNT,

.COM

.EXE

.INT

.EXE

.COB,

.OBJ,

N.A.

594 +

600 +

569 +

600+

600+

650

198 +

476 +

712WATCOM $1,500' 2.1

COBOL $3,000'

S 250 one-

lime charge

'UNIX version to be released soon.

N.A.—Not Applicable or Not Supported.
1. Only available to educational or commercial institulions since the compiler is licensed on a yeorly basis. Covers unlimited copies for the licensed site location.
2. Uses linker as supplied on the IBM DOS diskette. 3. Option purchase item animator package is $1,200, forms package is S300.
5. To run under a network may require ihe purchase of the networked version or additional support modules nol normaiiy supplied with the compiler.

Table 1.

66 COMPUTER LANGUAGE ■ APRIL 1985

time was somewhat slower than the native

Micro Focus version and it should be

noted that while Micro Focus level II

allows you to output cither .INT or .GNT

files, the DRI version automatically gen

erates only .GNT files as compiler output.

The DRI version supports basically the

same features that the native Micro Focus

version did except in the areas of screen

handling and file I/O. Under the DRI

method you now can use the popular

access manager and display manager to

handle screen formatting and both random

and indexed sequential access method

(ISAM) file access.

Changing from Micro Focus level II to

DRI level II could be time-consuming if

your application does considerable screen

formatting or file I/O. If, however, you

are migrating applications from the CP/M

environment that were written using

either the access manager or display

manager, your conversion should be

quite easy.

This product should be DRI's mainstay

in the COBOL department since the com

pany is now locking buyers into its prod

uct line. Without the access manager or

display manager, applications developed

in DRI level II are not automatically trans

portable to Professional COBOL of Micro

Focus.

Ellis Computing

Nevada COBOL v. 2.1

Ellis Computing's compiler was the only

one I received for testing under CP/M,

although many of the vendors listed in this

wrap-up supply a compiler for the CP/M

environment. The Nevada COBOL com

piler produces .OBJcode which must then

be run in much the same fashion as the

new version of Microsoft COBOL and

RM-COBOL.

Only seven of the benchmark programs

would compile due in part to lack of sup

port for various verbs used within the

COBOL programs. The compiler does not

support the COMPUTE verb. Although it

can be remedied with the use of the basic

commands ofADD. SUBTRACT,

DIVIDE, etc., it would change the timings

of the benchmarks. The failure of several

of the table programs was the compiler's

inability to handle the VARYING or

INDEXED verb within this particular

implementation.

These benchmarks were tested on my

ZIOO under CP/M 85 so were running on

the 8085 CPU at a 4.77MB clock rate.

Even at this rate this compiler came up

dead last in the timing of execution speed.

I'm not sure how much CP/M affected

this situation, but it is hard to make a com

parison against the other compilers when

you consider the cost difference.

Overall this compiler is an excellent

choice if you are still running CP/M on

your system— it will run under an 8080,

Benchmarks used

Program name Description

PCPERF Execute 10,000 PERFORM statements as o null routine

PCGOTO Execute 10,000 GOTO statements

PCADDSUB Execute 10,000 ADD and SUBTRACT statements

PCINTADD ADD integers 32,676 times

PCMLTDIV Do 1,000 MULTIPLY and DIVIDE operations

PCMOVE Execute 10,000 MOVE statements

PCIF Execute 10,000 /Fstatements

PCSTRING Execute 10,000 string concatenations

PCILOOK Read a 100 element table 100 times using INDEXING

PCSLOCK Read a 100 element table 100 times using SUBSCRIPTING

SIEVE Sieve of Eratosthenes prime number routine as discussed in BYTE,

January 1983, p. 283. Does two interations of the routine for

timings,

PCFIBNCI Performs 24 Fibonacci-number generation interations 100 times

PCMATRIX1 Simulated program of Matrix benchmark—which tests floating

point arithmetic speed—for C compilers (see COMPUTER LAN

GUAGE, February 1985, p. 82). Issue of subscripts must start atl

for COBOL and value routines were modified accordingly.

1. Of (he benchmarks that have now appeared across languages, the PCMATRIX program is the
only one that con only approximate the functionality of the same benchmark in either C or Pascal.
Please do not make any attempt al comparison between languages on this particular program since
it con be heavily tainted depending on how you wish to implement the code.

Table 2.

Program Editing

Breakthrough

The first reconfigurable editor to

combine windows with undo and

a macro language — BRIEF

Paul Callahan, information systems manager for a major Boston

bank, says that "BRIEF is the only editor that I am aware of that

incorporates all of the features preferred by most programmers:"

Full UNDO (N Times)

Edit Multiple Large Files

True Automatic Indent for C

Exit to DOS Inside BRIEF

Uses All Available Memory

Intuitive Commands

Tutorial

Repeat Keystroke Sequences

15 Minute Learning Time

Windows (Tiled and "Pop Up")

Unlimited File Size

Reconfigurable Keyboard

Online Help

Search for 'Tegular expressions'

Mnemonic Key Assignments

Horizontal Scrolling

Comprehensive Error Recovery

Compiled MACRO Language

Availability: PCDOS-compatible systems, AT, Tandy.

Try BRIEF. Use the Demo...or the full product

for 30 days. Only $195. Call 800-821-2492.

BRIEF is a trademark of UnderWare

-Solution
3ystems

335-Z Washington St.. Norwell, MA02061

CIRCLE 94 ON READER SERVICE CARD

67

8085. or Z80—and you are interested in

the possibilities that COBOL offers. Even

if you are just learning the language, this

compiler is a good choice. Just be aware

that it is somewhat limited, so don't con-

dem COBOL based on Nevada COBOL's

lack of features.

The manual that accompanies the com

piler is handy and provides adequate

information for the new programmer to

start using the compiler. Several sample

programs are also provided to assist you

in your learning.

This compiler docs not support the

SORTvcrb and to do debugging you must

make use of the "D". feature in column 7

to put out appropriate debug messages.

While very simplistic, it is priced right for

the individual interested in learning

COBOL without spending a fortune.

mbp COBOL v. 7.40

mbp's compiler version 7.40 was the fast

est compiler on the market as of two

months ago and would have retained that

honor had Realia COBOL not entered the

picture. This early version of the compiler

was amazing. For the size of the compiler

and the amount of disk space it ate up, it

produced some of the fastest programs I

have ever seen on a micro.

When I first reviewed this product

several months ago, I had to run some of

the benchmarks twice just to be sure they

were actually executing. The strengths

this version had have been passed on to its

successor. In addition, the amount of disk

space it uses remains the same.

In order to run this compiler in a devel

opment mode, you must be running in a

hard disk environment. Although you can

run it using floppies. I have yet to subject

myself or anyone else to a 20 min compile

while changing five diskettes. In order to

accomplish any serious development.

Compile time comparisons (sec)

COBOL

compiler

DRI

level II

v.3.03

Ellis

Computing

Nevada

v.2.1

mbp

v.7.41

mbp

v. 9.0'

Micro Focus

Professional

v.1.0*

Micro Focus

Professional

v. U2

Micro Focus

level li

v. 2.6.2*

Micro Focus

VS-COBOL

v. 1.0

Microsoft

v. 1.12W

Microsoft

v. 2.034

Realia

v. 1.0'-5

Ryari-MacFarland

RM-COBOL

v.2.0B

WATCOM

v.2.1

N.C—Would not com

1. Requires separate 1

PCPERF

80

10

119/20

74/12

39

20

14

20

23/20

24

14/14

20

N.C.

PCGOTO

82

10

115/20

74/12

41

22

14

20

20/20

25

15/14

20

N.C.

PCADDSUB

81

10

115/20

76/12

42

23

14

20

20/20

25

14/14

26

N.C.

PCINTADD

79

10

110/20

78/12

40

23

13

20

20/20

26

15/14

27

N.C.

3lle or function nol supported by compiler

nk step usin

integral parl of the compile step.

a the IBM

PCMLTDIV

80

11

113/20

88/12

41

26

14

20

22/20

31

15/14

28

N.C.

PCMOVE

86

11

120/22

83/12

44

28

16

20

22/20

30

16/14

36

N.C.

PCIF

82

11

115/20

83/13

43

29

15

20

22/20

31

16/14

28

N.C.

PCSTR1N6

96

N.C.

114/20

74/13

48

35

15

20

20/20

31

16/14

N.C.

N.C.

PCI LOOK

90

N.C.

114/20

79/13

46

29

16

20

23/22

31

15/14

36

N.C.

DOS linker. 2. Required that ihe code first be checked prior to compile

PCSLOOK

87

N.C.

120/20

78/13

43

31

16

20

23/22

31

15/14

35

N.C.

SIEVE

119

N.C.

114/20

87/14

56

57

17

20

27/23

37

16/14

35

N.C.

PCFIBNCI

92

N.C.

115/20

80/12

45

35

16

20

22/20

31

14/14

34

N.C.

. 3. Link or code generation i

i. Uses MS-LINK supplied with the compiler. 5. Compile time reported by the compiler, link time approximate

6. Produces either-INT or .COM files as output, which ma/ be executed.

All timings, with the exception of the Realia compile time, were hand limed using a stopwatch.
thai are Tess than 2 sec apart.

lease take this into consideration when

POYIATRIX

113

N.C.

138/20

80/12

70

34

14

20

35/24

41

17/14

23

N.C.

ton

omparing timings

Table 3.

68 COMPUTER LANGUAGE ■ APRIL 1985

Squeeze More OutOf Every
On-Line Minute.

'resenting the software

package that makes your

computer more productive

and cost-efficient.

CompuServe's new Vidtex™ is compatible

with many personal computers sold today

(including Apple? Commodore® and
Tandy/Radio Shack® brands). And it offers

the following features*-and more-to let

you communicate more economically

with most time-sharing services (including

CompuServe's Information Service).

Auto-Logon. Lets you log on to a host

simply and quickly by utilizing prompts

and responses defined by you. Also allows

quicktransmission of predefined responses

to host application programs after

logging on.

Function Keys- Let you consolidate

long commands into single keystrokes.

Definitions can be saved to and loaded

from disk file, allowing multiple definitions

for multiple applications.

Error-Free Uploading and Down

loading. CompuServe "B* Protocol con

tained in Vidtex lets you transfer from

your computer to CompuServe and from

CompuServe to your computer anywhere

in the country. Also provides error-free

downloading from CompuServe's exten

sive software libraries.

Full Printer Support. Printer buffer

automatically buffers characters until

printer can process; automatically stops

on-line transmission when full; and

automatically resumes transmission

when capacity is re-established. Also, lets

you print contents of textual video screen

or RAM buffer at any time.

'Siimi! versions nf the Vidtex software do not implement all features listed.

Vidtex is a trademark of CompuServe) Incorporaled. Apple is a trademark ol Apple Compuler. Inc. Commodore is a trademark of
Comniodrtre Business Machines. Radio Shark is a trademark of Tandy Corji

Capture Buffer. Saves selected

parts of a session. Contents can be

written to a disk file; displayed both on and

off line; loaded from disk; and transmitted

to the host.

On-line Graphics. Integral graphics

protocol displays stock charts, weather

maps and more.

If you are already a CompuServe sub

scriber, you can order Vidtex on line by

using the GO ORDER command. Other

wise, check with your nearest computer

dealer; or to order direct, call or write:

CompuServe
P.O. Box 20212. 5000 Arlington Centre Blvd.

Columbus. Ohio 43220

1-800-848-8199
In Ohio, call 614-457-0802

An H&R Block Company

CIRCLE 7 ON READER SERVICE CARD

you'd better have at least 5MB of free

space on your hard disk before you start

your project.

This compiler does produce excellent

output. The cross-reference feature,

while not used each and every time, can

be of great benefit when searching a long

listing for a data name or a procedure.

The feature I found most annoying was

the fact that this compiler does not con

form to the standard COBOL SORT/

MERGE convention and lacks INPUT/

OUTPUTPROCEDURE features within

the sort phase. Since its implementation

of the sort is done via a call to a sort pro

gram, the user is very limited in the stan

dard usage of the SORT verb as used in a

mainframe COBOL. Conversion of the

sort to this compiler's method is easily

accomplished, but it still proves to be an

annoyance.

Overall, this compiler is an excellent

choice for the software developer who

needs fast execution and a relatively easy

method of screen design, mbp has imple

mented a screen management system

(SMS) that reminds me of my CICS days.

In mbp's system you generate screens as a

separate entry and then use the CALL

function to do screen I/O. Using this

approach, you can keep your screen code

external to your actual program code.

This version executed al! the bench

marks with no problems. When you com

pare the size of the .EXE modules pro

duced (Table 4), you sec that they are

relatively large in comparison to Micro

soft's or Realia's. This compiler was the

slowest of all tested in the actual compile

phase. This is probably due to the sheer

size of the compiler and the number of

overlays necessary. Actual space required

is somewhere between 1MB to 1.5MB of

disk space, depending on file sizes and

work-file requirements.

Comparison of benchmark programs on the IBM PC XT running PC DOS 2.0 (sec)

PCPERF PCGOTO PCADDSUB PCINTADD PCMLTDIV PCMOVE PC1F PCSTRING PCILOOK PC5L00K SIEVE PCFIBNCI PCMATR1X
COBOL

compiler

DRI

level II

v.3.0

Ellis

Computing

Nevada

v.2.1

mbp

v.7.40

mbp

v.9.0

Micro Focus

Professional

v. 1.0

Micro Focus

Professional

v.1.1

Micro Focus

level II

v.2.6.2

.GNT

.INT

Micro Focus

VS-COBOL

v.1.0

.INT

.COM

Microsoft

-v.-l.12

Microsoft

v. 2.00

Realia

v.1.0

Ryan-MacFarlond

RM-COBOL

v. 2.0B

WATCOM

v.2.1

10

10

14

14

20

32

1

10

10

18

16

40

64

1

11

11 31 24 11 11 61

52

1

1

54

1

1

102

19

19

361

4

4

18

15

15

11

2

2

23

3

3

N.C. N.C. N.C. N.C

11

11

31

29

24

20

11

10

19

20

11

10

153

161

61

58

42

42

73

93

2

50

N.C. N.C. N.C.

52

51

223

366

5

123

N.C

12

12

19

28

3

21

N.C.

15

15

11

36

1

11

N.C.

10

10

17

39

1

15

N.C.

28

28

88

131

2

19

19

113

240

1

41

41

296

296

N.C. 72

N.C. N.C.

93 756

191 1,374

2 21

66 465

N.C. N.C.

16

16

22

50

1

17

N.C.

41

57

60

41

40

9

17

10

23

11

44

31

60

9

13

4

15

2

12

24

163

11

41

11

43

61

304

5

16

41

96

94

94

24:

454

19

135

N.C.

N.C.—Would not compile or function no! supported by compiler.

All timings reported by programs v/jth exception of CP/M version. These were hand timed using a stopwatch since CP/M does not support a date/lime
function in Nevada COBOL.

Table 4.

70 COMPUTER LANGUAGE ■ APRIL 1985

mbp COBOL v. 9.0

Version 9.0 is the latest one from mbp. As

you will note in Table 1. the price has

been increased from version 7.40 by

$250. With ihc increase in price come

many enhancements, including user-

configurabie defaults, command-line

parameter passing, and a progress rcporl.

As you will sec in Table 5, the size of the

modules when compared to the prior ver

sion have been reduced by about IK to 2K

per module. This is due to the fact that a

system interface module (SIM) now stays

resident in RAM and helps reduce module

size as well as the time required to load

and execute a program.

The benchmark programs all compiled

and executed on this version as well. The

compile phase has been reduced by about

20 sec per module when you compare the

compile time against version 7.4 (Table

3). Link time was also reduced but not as

drastically, about 8 sec per program.

Unlike Microsoft, mbp's latest version

maintained run times in all but four mod

ules. The Sieve program takes 8 sec

longer than it used to and the program

PCMATRIX only ran 3 sec longer.

This version is a notable improvement

over version 7.4 since many of the omis

sions found in version 7.4 have been cor

rected. Although the SORT/MERGE verb

is still not directly supported, mbp has

added an OPEN SUBROUTINE option,

address and key-out options, as well as

ISAM sort capability to its callable

50^7" routine.

You also have the option to use cither

the standard linker supplied with DOS or

the PLINK linker available from Phoenix

Software, which allows overlay manage

ment. This version also supports the abil

ity to CHAIN to system commands {COPY

ERASE etc.), and the CHAINR function

allows you to chain to another program

and have that program remain resident

since you can now have more than 64K of

data in memory at one time.

This version also supports the Novell

Netware OS ($500 additional) for those

interested in a networking environment.

Micro Focus

Professional COBOL v. 1.0

Professional COBOL version 1.0 is certi

fied at the highest possible level by the

GSA. Even the communications section is

supported, although nol usable unless you

are in a networked environment.

This compiler did extremely well in

speed comparisons (Table 4) and was

about average in the compile phase. Note

in Table 5. you have the option to produce

either .GNTor .COM files. The .COM

files are stand-alone programs and have

the necessary run-time system (RTS) sup

port included in the module. Micro Focus

is changing the usage of run time to appli

cation support module (ASM) since if you

call SORT or ISAM, you still access the

run-time module for these functions.

This compiler had no problem with any

of ihc benchmarks, however, it should be

noted that you must use the CHECK fea

ture prior to compiling a program. If you

attempt to compile a program without

checking it first, the compiler will report

that it cannot find the module.

As the price would indicate, this com

piler has all the features you can think of

and is entirely menu-driven via function

keys. When coupled with the ability to

design your screens using the forms pack

age and then cheeking program flow with

the annimator, it is no wonder a program

mer could be very productive using this

package.

The ease with which an application can

be developed using this product became

apparent shortly after I started using it.

Although the documentation is very com

plete. I had to make little reference to it

since everything was accessible via the

screen. Help menus are even included

should you have a question at any point

along the way. You simply press the help

function key. and you'll get a description

that applies to the spot where you are

currently.

My compliments to Micro Focus on an

excellent product, even if it is slightly

expensive for the average software

developer.

Micro Focus

Professional COBOL v. 1.1

DRI markets this compiler under the

Micro Focus name but has no direct

ties with it. Professional COBOL 1.1 does

not currently support DRI's access or dis-

e have over 200

complete, tested, and. documented functions

All source code and demo programs are included

The library was specifically designed lor software

development on the IBM PC, XT, AT and compatibles. There are no royalties

Over 95% of the source code is written in C. Experiencedprogrammers

can easily customize" functions. Novices can learn from the thorough comments

Concentrate on software development—not writing functions

THE C UTILITY LIBRARY includes:

Best Screen Handling Available Windows Full Set of Color Graphics

Functions Better String Handling Than Basic DOS Directory and File Man

agement Execute Programs, DOS Commands and Batch Files Complete

Keyboard Control Extensive Time-Dale Processing Polled ASYNC

Communications General DOS BIOS gate And More

The Library is compatible with: Lattice, Microsoft. Computer Innovations Mark Williams

and DeSmet.

C Compilers: Lattice C—S349. Computer Innovations C86—S329. Mark Williams C - S449

C UTILITY UBRARY S149

Order direct or through your dealer Specify compiler when ordering. Add $4.00 shipp.ng tor
UPS ground. S7.00 for UPS 2-day service. NJ residents add 6°/o sales tax Master Card Visa
check or P.O

ESSENTIAL SOFTWARE, INC
P.O. Box 1003 Maplewood. New Jersey 07040 914 762-6605

CIRCLE 18 ON READER SERVICE CARD

71

play manager software.

Like the version 1.0 from Micro Focus,

this compiler had no problems with any of

the benchmarks and although the execute

times for [he benchmark programs are

identical, it did compile the programs

faster than version 1.0 did. In fact, the

compile time was reduced by about 50%

when compared to version 1.0. Note in

Table 5 that the .GNT modules stayed the

same but the .COM output is approxi

mately 2K to 3K larger.

This compiler produces everything you

could ask for. Additionally, it does all this

using very little disk space.

All comments applying to the Micro

Focus version 1.0 also hold true here.

Although I received a prerelease version

of this package. I must assume that Micro

Focus will be releasing this in its finished

form shortly, possibly as you are reading

this review.

Micro Focus level II v. 2.6.2

Level II COBOL version 2.6.2 experi

enced no problems with any of Ihc bench

mark programs and. in fact, compiled as

fast as the Realia compiler. In this version

you also have the ability to stop after pro

ducing an .INT file, which may be run, or

continuing on and producing a .GNT file.

The .GNT version, as you can see from

Table 4, produces the fastest code of the

two, but the .GNT modules arc approxi

mately twice the physical size of the .INT

modules.

With the exception of the PCPERF pro

gram, the execution times were identical

to the Professional COBOL limes.

PCPERF was 1 sec faster in level II than

when run under the Professional COBOL

compiler.

Level II can be raised up to the profes

sional level by purchasing the forms pack

age and the annimator package. However.

by the time you have done that, you have

spent as much as if you had just purchased

the Professional version to start with.

This compiler is good for those who

can't afford the professional version now

but may someday migrate up to it. All

code is upwardly transportable and this is

handy when it comes time to move to a

bigger system. With the logical

progression between the versions that

Micro Focus has implemented, it is easy

to see why this series of compilers rates at

the top.

Execution module size comparison (bytes)

Benchmark name

DRI

level II

v. 3.0 .GNT

Ellis Computing

Nevada

CP/M

mbp

7.40.EXE

mbp

v. 9.0.EXE

Micro Focus

Professional

v.1.0 .GNT

.COM

Micro Focus

Professional

v.1.1 .GNT

.COM

Micro Focus

level II

v.2.6.2 .INT

.GNT

Micro Focus

V5-COBCJL

v.1.0 .INT

.COM

Microsoft COBOL

v. 1.12.EXE

Microsoft COBOL

v. 2.0 .INT

Realia

v.1.0 .EXE

Ryan-MacForland

RM-COBOL

V.2.0B.COB

WATCOM

v.2.1

PCPERF

3,712

2,048

12,642

11,038

3,456

51,792

3,456

55,152

1,536

3,712

2,048

51,888

8,320

1,514

6,241

1,024

N.C.

PCGOTO

3,840

2,048

12,642

11,036

3,584

51,936

3,584

53,520

1,536

3,840

2,048

51,888

8,320

1,526

6,239

1,024

N.C.

PCADDSUB

3,968

2,

12,

11/

3

52

3

53

1

3,

2

51

8

1

6

1

048

690

076

,712

,408

,712

,632

,536

,968

,048

,888

,320

,536

,273

,280

i.e.

PCINTADD

3,712

2,048

12,642

11,032

3,456

51,792

3,465

53,376

1,536

3,712

2,048

51,888

8,320

1,532

6,523

1,280

N.C.

PCMLTDIV

3,840

2,048

12,754

11,128

3,840

52,176

3,840

53,760

1,536

3,840

2,048

51,904

8,320

1,570

6,843

1,280

N.C.

PCMOVE

4,096

2,048

13,506

11,334

4,096

52,432

4,096

54,016

1,536

4,096

2,048

52,128

8,064

1,742

6,521

1,536

N.C.

PCIF

3,840

2,048

13,634

11,157

3,968

52,304

3,968

53,888

1,536

3,968

2,048

52,032

8,448

1,612

6,389

1,280

N.C.

PCSTRING

4,352

N

13,

11,

4

52

4

54,

1,

4,

2

52

r

170

200

,352

,688

,352

.272

792

352

,048

,016

7,936

1 ,676

6,389

N

N

.C.

i.e.

PC1LO0K

4,224

N.C.

12,946

11,348

4,224

52,560

4,224

54,144

1,536

4,224

2,408

52,096

8,576

1,818

6,475

1,280

N.C.

PCSLOOK

4,096

N.C.

14,162

11,410

4,096

52,432

4,096

54,016

1,536

4,096

2,408

52,096

8,576

1,808

6,657

1,280

N.C.

N C —Would not compile, or function not supported by compiler. ,

Where more than one run-time module is available, they are both shown. The larger of the two would normally run in a stand
incorporates the necessary run-time linkage and support.

SIEVE

12,672

N.C.

22,706

19,952

12,672

61,008

12,672

62,592

9,984

12,672

2,304

60,352

16,896

10,110

14,981

1,280

N.C.

PCFIBNCI

4,096

N.C.

14,018

11,413

4,096

52,432

4,096

54,016

1,792

4,096

2,048

52,048

8,576

1,742

6,487

1,280

N.C.

PCMATRIX

11,264

N.C.

21,634

18,729

11,264

59,600

11,264

61,104

8,192

11,264

2,560

58,416

15,360

8,478

14,135

1,792

N.C.

-alone environment, as it

Table 5.

72 COMPUTER LANGUAGE M APRIL 1985

TOTAL CONTROL
FORTH: FOR Z-8CP, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS. GAMES. COMMUNICATIONS. ROBOTICS
DATA ACQUISITION . PROCESS CONTROL

• FORTH programs are instantly

portable across the four most popular

microprocessors.

• FORTH is interactive and conver

sational, but 20 times faster than

BASIC.

• FORTH programs are highly struc

tured, modular, easy to maintain.

• FORTH affords direct control over

all interrupts, memory locations, and

i/o ports.

• FORTH allows full access to DOS

files and functions.

• FORTH application programs can

be compiled into turnkey COM files

and distributed with no license fee.

• FORTH Cross Compilers are

available for ROM'ed or disk based ap

plications on most microprocessors.

Trademarks IBM International Business Machines

Corp.. CP/M. Digital Research Inc. PC'Forth+ and

PC/GEN. Laboratory Microsystems. Ire

FORTH Application Development Systems

include interpreter /compiler with virtual memory

management and mulli-tasking assembler, lull

screen editor, decompiler, utilities and 200 page

manual Standard random access files used for

screen storage, extensions provided for access to

all operating system lunctions

Z-80 FORTH Icr CP/M* 2 2 or MP/M II. S100.00.

8080 FORTH for CP'M 2 2 or MP/M II. S100.00.

8086 FORTH lor CP/M-86 or MS-DOS. $100.00.

PC/FORTH for PC-DOS. CP/M-86. Of CCPM.

$100.00; 68000 FORTH lor CP/M-6SK. $250.00

FORTH + Systems are 32 bit implementations

thai allow creation of programs as large as 1

megabyte. The enure memory address space of

the 68000 or 8086/38 is supported directly.

PC FORTH + $250 00

8086 FORTH +tor CP/M-86 or MS-DOS S250.00

68000 FORTH + lor CP/M-68K $400.00

Extension Packages available include: soft

ware floating point, cross compilers. INTEL

8087 support, AMD 9511 support, advanced col

or graphics, custom character sets, symbolic

debugger, telecommunications, cross reference

utility, B-tree file manager. Write lor Brochure.

Laboratory Microsystems Incorporated

Post Office Box 10430, Marina del Rey, CA 90295

Phone credit card orders to (213) 306-7412

CIRCLE 35 ON READER SERVICE CARD

An Optimizing, hassle-free

C Compiler for the 8086-8088.
Ecosoft's Eco-C, the performance leader among full C

compilers for the Z80, is now available for the 8086-

8088 running under MSDOS (2.0 or later). Eco-C has

features not found in any other 8086-8088 C compiler.

* Over 100 library functions. Since they follow UNIX standards, your

programs are highly portable in "both" directions ("up" to a UNIX

machine or "down" to our Z80 compiler]. This means new markets

for your software at minimum development cost.

* A single library. No more "dual" libraries and frying to remember

wha! has to be linked with what. Your programs automatically take
advanlage of an 8087 if one is present of runtime.

* A single floating point answer. No more "fuzzy floating point";

your programs produce the same answers whether the floating point

is done in hardware (8087) or softwore.

* Error messages in English. No more cryptic numbers !o look up. We

tell you where the error occurred, what was found there, and whaf
should have been there.

* Stric! syntax parsing. LINT is going to uncover fewer surprises

because our parser fooks hard at the details.

* Efficient code. The optimizer pass of the compiler generates
assembler code in Intel mnemonics that rivals that produced by
compilers costing twice as much.

The price of the Eco-C compiler is $250.00 {all
versions), including the user's manual, and is designed
for use with Microsoft's MASM (or compatible) assembler
and linker. When ordering, please specify disk format

and whether you want the Z80-CP/M or 8088-MSDOS
version of Eco-C.

Ecosoft Inc.

6413 N. College Avenue

Indianapolis, IN 46220

(317) 255-6476

iff) UNIX iBel! lobil. CP/M (0,fl,wl Re . Z80 (Zlogl. 8036. 8087. 8088

NEW FEATURES
(Free update for our early customers!)

• Edit & Load multiple memory

resident files.

• Complete 8087 assembler

mnemonics.

• High level 8087 support.

Full range transcendentals

(tan, sin, cos, arctan.

logs and exponentials)

Data type conversion and

I/O formatting.

• High level interrupt support.

Execute Forth words from with

in machine code primitives.

• 80186 Assembler extensions for

Tandy 2000, etc.

• Video/Graphics interface for

Data General Desktop Model 10

FORTH
• Fully Optimized & Tested for:

IBM-PC IBM-XT IBM-JR

COMPAQ EAGLE-PC-2

TANDY 2000 CORONA

LEADING EDGE

(Identical version runs on almost all

MSDOS compatibles!)

• Graphics & Text

(including windowed scrolling)

• Music • foreground and

background

includes multi-tasking example

• Includes Forth-79 and Forth-83

• File and/or Screen interfaces

• Segment Management Support

• Full megabyte ■ programs or

data

• Complete Assembler

(interactive, easy to use & learn)

• Compare

BYTE Sieve Benchmark jan 83

HS/FORTH 47 sec BASIC 2000 sec

w/AUTO-OPT 9 sec Assembler 5 sec

other Forths (mostly 64k) 70-140 sec

FASTEST FORTH SYSTEM

AVAILABLE.

TWICE AS FAST AS OTHER

FULL MEGABYTE FORTHS!
(TEN TIMES FASTER WHEN USING AUTO-OPT1)

HS/FORTH. complete system only: $250.

Visa Mastercard

CIRCLE 17 ON READER SERVICE CARD

Add $10. shipping and handling

HARVARD
SOFTWORKS

PO BOX 2579

SPRINGFIELD, OH 45501
^ (513) 390-2087

CIRCLE 47 ON READER SERVICE CARD

73

Micro Focus VS-COBOL

This compiler is the latest one out the gate

from Micro Focus. It is so new that I only

received a preliminary release version for

testing, so please lake this into

consideration.

You will immediately notice that the

compile time for VS-COBOL is somewhat

misleading. Since the compiler I received

did not support the actual COMPILE

phase, I had to first CHECK the program

and then use the BUILD facility in order to

generate the actual .COM version of the

program. The actual timings for this com

piler ran from 9 to 15 sec for the CHECK

function and approximately 8 sec to build

the .COM version using the BUILD func

tion provided.

You will see from Table 5 that the tim

ings fall somewhere between the Profes

sional version and level II COBOL when

it comes to .INT module size generation.

When compared with the .COM version

the Professional compiler produces, there

is only an average of 800 bytes difference

between module sizes. What was most

surprising was that except for one bench

mark, all the timings were identical for

the .INT and .COM versions.

Here again the benchmarks are fairly

deceptive. This compiler is not intended

for the software developer. It is instead an

LATTICE WORKS

GSS SELECTS LATTICE

FOR GRAPHICS SOFTWARE
Graphic Software Systems (GSS) and

Lattice. Inc. recently joined forces to

offer VDI & GKS graphics, based on the

emerging ANSI standard, for the G lan

guage. As a result. Lattice is market

ing graphics-based software that takes

full advantage of the capabilities of

personal computers.

According to Lattice President

David A. Schmitt. "this coupling will

allow the direct application of creative

ideas without the constraints of many

large-scale systems. Software develop

ment firms can develop graphics pro

grams faster and at less cost."

The two companies also agreed to a

continued sharing of technology

which will support the development of

standardized graphics software and

ease the distribution of products.

LATTICE UNVEILS

FOUR PRODUCTS

Lattice has announced the avail

ability of four new software products

for MS-DOS environments:

C-SPRITE is a software tool that sim

plifies debugging of programs written

in Lattice C or assembly language.

Cost: $175 per copy.

LMK is an Automated Product Gen

eration Utility (UNIX ■■MAKE") that

enhances productivity and relieves

the tedium of rebuilding complex soft

ware systems or documents. Cost: $195

per copy.

The TEXT MANAGEMENT UTILITY

PACKAGE includes utilities to search

a set of files for simple or complicated

patterns, to see the exact minimal dif

ferences between two text files, and to

modify one or more text files automat

ically. Cost: $120 per copy.

CVUE is a full screen text editor

that supports all normal screen editor

functions and includes a configura

tion program to define tabstop posi

tions, horizontal scrolling and edit

commands. Cost: $100 per copy.

For complete information on these

new products, contact Lattice.

LATTICE C NAMED

'BEST OF 1984'

The Lattice C compiler has been

rated 'Best of 1984" by PC Magazine.

According to columnist Peter Norton.

"The Lattice C compiler is quite good

. . . and in my opinion noticeably bet

ter than any of its competitors. Lattice

C generates code that Is quite compact

and fast running; the closest, competi

tor in my tests generated code that

was about 10 to 15 percent bulkier."

ASK ABOUT OUR "TRADE

UP TO LATTICE C POLICY"

Alter purchase, return registration cards

for free subscription to the "Lattice

Works " newsletter and important informa

tion about the Lattice Users Group

Lattice, Inc.

P. 0. Box 3072

Glen Ellyn, IL 60138

(312) 858-7950

TWX 910-291-2190

ideal compiler for large mainframe shops

lhat either incorporate PCs in their data

processing departmeni or plan to do so.

With this compiler you can relieve the

burden on the mainframe while increasing

programmer productivity. Since this com

piler supports full IBM VS-COBOL syn

tax, you have a very effective tool with

which you can develop mainframe appli

cations without tying up expensive main

frame resources. You have the ability to

stress test your code without waiting for

mainframe time since you can store a

complete session of keystrokes that can be

played back at a later point in time.

When used with an IBM PC-3270, IBM

XT, or IBM AT connected to the main

frame, you have the ability to download

code from the mainframe, develop the

code on the micro, test the code on the

micro, then upload the final program for

actual production testing. VS-COBOL

currently supports simulation of CALLs to

CICS, IMS, DL/1, SQL/DS, and DB2.

By the time this appears in print. Micro

Focus should have released an update to

this package that will offer emulation of

these services. The COMPILE feature will

also be added shortly. Again, this is not

intended to develop micro software.

Instead it is meant as a mainframe tool to

increase programmer productivity. This

compiler provides syntax checking for

OS/VS COBOL based on the 1974 stan

dard as well as VS-COBOL II. IBM's new

COBOL compiler incorporating elements

of the yet-to-be-finalized ANSI 8X

standard.

VS-COBOL is currently the only com

piler on the market intended for use in a

truly distributed workstation environ

ment. This package is available now,

(January 1985) and supports the IBM

PC, XT, AT. 3270-PC. 3270-PCVG, and

3270-PC/GX. If the customer is under the

Early Customer Program (ECP). he or

she receives special status for technical

support and provides feedback to Micro

Focus on what changes or enhancements

he or she would like to see in the package.

Current plans call for a CICS mapping

support enhancement that will allow the

development of CICS BMS screens on the

micro. This is a product that should be

received with open arms by data pro

cessing managers as an effective tool to

increase productivity within their depart

ment at a reasonable price.

For programmers not wanting to learn a

new editor, the product will even be inte

grated with the micro/SPF mainframe-

like editor so programmers will not have

to cross-learn a different editor. Learning

curve time on this product is extremely

short, which is another factor manage

ment must take into consideration.

Microsoft COBOL v. 1.12

This version of the Microsoft MS-DOS

compiler corrected many of the bugs and

minor errors found in the previous version

CIRCLE 48 ON READER SERVICE CARD

74 COMPUTER LANGUAGE ■ APRIL 1965

(version 1.07). The most noticeable

change was the correct handling of the

occurs clause, which enables programs

such as the Sieve benchmark to run.

something Microsoft's CP/M version still

docs not allow.

This compiler ran all of the benchmarks

with no problems. Unfortunately, if you

are into speed, Microsoft COBOL version

1.12 is at the end of the line (Table 4).

While this may seem like a drawback ini

tially, it is not the case. In the 30,000-plus

lines of code I have written with this com

piler. I have found that the compiler is

very easy to use. screens arc a snap to pro

duce or change, and the ISAM access

speed is more than adequate for all busi

ness applications I have written to date.

The final output of the compiler is an

.EXE file that requires the run-time mod

ule but produces relatively small code

files. The major strengths of the Micro

soft product is the ability to configure it

for a variety of systems other than the

IBM and that the run-time, screen config

ure programs, and utilities can all be dis

tributed royalty free.

The compiler supports the standard

COBOL SORT/MERGE verb, and you can

do tag sorts as well as full-record sorts.

The ability to handle the SOtf^statement

in the same fashion as IBM mainframe

COBOL makes this an easy version to

which to convert mainframe code. You

will notice in Table 5 that the .EXE mod

ules are comparatively small and run well

from a floppy or hard disk. It is important

to remember that even though you may be

developing software on your hard disk,

not everyone is as fortunate and many still

only have two disk drives.

This product's weakness is its inability

to have multiple keys or indexes for a file.

The other seeming omission in this ver

sion of the compiler, when compared to

the company's CP/M version, is the

inability to access any of the MS-DOS

functions such as DELETE or RENAME.

The documentation is relatively good as

documentation goes but fell far short

when it came to helping me develop the

8088 code necessary to handle the

DELETE and RENAME functions.

In the price vs. performance field.

Microsoft COBOL version 1.12 is an

excellent compiler and, as you can sec by

the newest version, Microsoft continues

to enhance its product line.

Microsoft COBOL v. 2.0

This compiler represents a major devi

ation from the prior Microsoft COBOL

versions. No longer producing .EXE

files, the compiler instead produces .INT

files in much the same manner as RM-

COBOL does. So you must now enter

RUNCOB < program name > in order to

execute a program. This compiler now

has validation at the highest possible

level. The only items it does not support

are the communications module and the

report-writer module.

Like Microsoft's version 1.12, this ver

sion had no trouble with any of the bench

marks. As you compare execution speeds

as shown in Table 4, you will note one dis

concerting fact. This version produces

even slower code than version 1.12 did. It

did. however, reduce the .INT size of the

modules by an average of over 7K per

module (Table 5) when compared to the

.EXE sizes. I would suspect that this

causes somewhat more overhead within

the run-time modules, which would

account for the increase in run times.

In some cases this version took two to

three times longer to execute. This ver

sion now supports multikey ISAM, split

keys, and duplicate keys, all important

features when being used in a business

environment. The ISAM routine is now

RAM-resident and must be loaded prior to

being used. While this does take about

30K from the system, the speed of ISAM

is noticeable.

Although not a part of this review, I did

convert some of my current ISAM appli

cations just to see what the differences

were. Here again, the speed of the bench

marks is misleading. While the bench

marks would indicate this compiler is

slower than a turtle, I found quite the

The C Interpreter:

Instant-C"
Programming in C has never been Faster.

Learning C will never be Easier.

Instant-G'"' is an optimizing interpreter for the C language that can make
programming in C three or more times faster than using old-fashioned

compilers and loaders. The interpreter environment makes C as easy to

use and learn as Basic. Yet Instant-C' is 20 to 50 times faster than inter
preted Basic. This new interactive development environment gives you:

Instant Editing. The full-screen editor is built into Instant-C" for imme
diate use. You don't wait for a separate editor program to start up.

Instant Error Correction. You can check syntax in the editor. Each error

message is displayed on the screen with the cursor set to the trouble
spot, ready for your correction. Errors are reported clearly, by the editor,

and only one at a time.

Instant Execution. Instant-C' uses no assembler or loader. You can
execute your program as soon as you finish editing.

Instant Testing. You can immediately execute any C statement or func

tion, set variables, or evaluate expressions. Your results are displayed

automatically.

Instant Symbolic Debugging. Watch execution by single statement

stepping. Debugging features are built-in; you don't need to recompile or

reload using special options.

Instant Loading. Directly generates .EXE or .CMD files at your request

to create stand-alone versions of your programs.

Instant Floating Point. Uses 8087" co-processor if present.

Instant Compatibility. Follows K & R standards. Comprehensive stand

ard library provided, with source code.

Instant Satisfaction. Get more done, faster, with better results.

Instant-C''' is available now, and works under PC-DOS, MS-DOS', and

CP/M-86* Money back guarantee within 30 days.

Find out how Instant-C'' is changing the way that programming is done.
Instant-C' is $495. Call or write for more information.

Rational (617) 653-6194

PO. Box 480

Systems, Inc. Natick, Mass. 01760
Trademarks US-DOS (Microsoft Corp) S0B7 (Intel Carp). CP/M-86 (Dig.tal Research, Inc), Instant-C (Raiional Systems. Inc]

CIRCLE 72 ON READER SERVICE CARD

75

OIP?
...waiting

for i^ programs to

compile and link?

■-

Use C-terp
the complete C interpreter

This is the product you've been

waiting (and waiting) forl

Increase your productivity and avoid

agonizing waits. Get instant feedback of
your C programs for debugging and rapid
prototyping. Then use your compiler for

what it does best...com piling efficient code

...slowly.

C-terp Features

• Full K&R C (no compromises)

• Complete built-in screen editor-

no half-way house, this editor has every

thing you need such as multi-files, inter-file

move and copy, global searching, auto-
indent, tab control, and much more.

• Fast-- Linking and semi-compilation are

breath-takingly fast. (From edit to run
completion in a fraction of a second for

small programs.)

• Convenient-Compilingand running are

only a key-stroke or two away. Errors

direct you back to the editor with the
cursor set to the trouble spot.

• Compiler Compatible--You can access

functions and externals compiled with C86

or Lattice C or assembly language. Utilize

your existing libraries unchanged!

• Complete Multiple Module Support-

Instant global searches, auto-compile
everything that's changed, etc.

• Many more features including batch mode

and symbolic debugging.

• Runs on IBM PC, DOS 2.x, 192K and up

• Price: $300.00 (Demo $45.00) MC, VBA

Pnceot demo includes documentation And shipping

within US. PA residents add 6% sales lax.

Specify C8b or Lattice version

mm mm
3207 Hogarth Lane • Collegeville, PA 19426

(215)584-4261

•Trademarks: C86(Computer Innovations),Lalbce

(Lattice Inc.), IBM (IBM Corp.),C-terp (Cimpel SoftwdreJ

opposite to be true when used in an

actual production situation. To use this

new version you must be running

MS-DOS/PC-DOS version 2.xx or higher

since portions of the run time remain resi

dent. You need at least a 192K system and

dual floppies.

Most important at installation time for

this compiler is that you must have a

CONFIG.SYS file on your system that has

the FILES = 10 statement in it. After I

configured the compiler using the

INSTALL program I could not figure out

why the compiler would get to the code

generation step and then fail under the

pretext of "OVERLAY NOT FOUND."

Thefiles statement is absolutely necessary

before the compiler will successfully gen

erate code.

Microsoft COBOL version 2.0 com

piled and generated . INT code for all of

the benchmark programs with no prob

lems. In spite of the poor showing this

compiler puts up when compared to the

others. I still favor this compiler for

the ease with which you can design and

implement screens as well as for the fact

that no run-time royalties are required on

distributed code.

Added features, such as its easy instal

lation on a variety of terminals and sys

tems and the ability to specify alternate

keys, make this a compiler well worth the

money. The price remains at $700 even

with the sort feature now incorporated

into the package. This version of the com

piler supports the IBM network, and sup

port for other networks are in the works. I

must admit that I am somewhat prejudiced

by this compiler since I have generated

over 50,000 lines of code using version

1.12 in the last 12 months and found it

very easy to use and maintain.

Realia COBOL v. 1.0

The Realia compiler has now edged out

mbp COBOL as the fastest COBOL com

piler on the market. While this compiler is

not currently certified by the GSA (as of

late January 1985). it will be by late

March 1985. As you read this review,

Realia's compiler should have received

certification, and testing should be

completed for its support of the Novell

network.

Realia's COBOL version 1.0 is

intended for the programmer who is very

familiar with the inner workings of

COBOL, which the company's manual

reflects. It is a reference manual only and

not intended to walk you through any

thing. Since Realia's compiler is intended

to support the same coding structure as

IBM VM-COBOL. you may need to

acquire the manuals directly from an IBM

publication center.

Realia's compiler was the only one

tested that supported the time clock while

the compiler was running. Each pass of

the compiler is reported as to the time it

started, and a full listing of all options

selected arc directed to the output file.

This compiler produces one of the most

extensive outputs 1 have seen.

It truly appears as if the output were

produced on a IBM 370/158. This com

piler has a multitude of options that can be

set either via the command line or as the

first line of the COBOL source program.

While most options may not be used every

day, they do represent almost every possi

bility you could ask for.

The strong points of this compiler are

its amazing speed for sheer computations

and the ability to produce native code in

the form of a stand-alone .EXE file. The

compiler also gives you full access to all

DOS functions via a DOS interface. With

this interface you can access any of the

standard DOS functions, such as get date/

time, or change date/time, make a direc

tory, change a directory, etc. While this

type of coding would tend to lock you into

a very IBM compatible system you could

still generate code for some MS-DOS

machines.

In the limited testing I did, I found that

this compiler had to run on an extremely

IBM compatible system. When I

attempted to run the output on my Z100

under MS-DOS 2.111 ended up with a

runaway machine displaying "WILD

INTERRUPT". Since the Z100 is only

about 75% compatible and not compatible

at all in the area of screen I/O, I must

assume that the target system must appear

very much like an IBM PC in order to

have the code execute correctly.

While this compiler is very fast, it only

has rudimentary screen I/O capability.

You. the programmer, are left with the

task of handling any and all screen cursor

positioning. Although this can be done, it

would put a definite crimp in any develop

ment speed.

If full-screen I/O is not something you

normally have to contend with, this com

piler definitely should be considered. It

has a full-screen editor included as part of

the compiler, so you can generate source

code without the requirement of another

editor.

This compiler does not currently sup

port any type of sort feature, so if a sort is

a must then you must turn to another com

piler. At the point in time this compiler

implements full level II support it will

become a well-rounded compiler. The

only major areas that I think would need

consideration are the SORT/MERGE fea

ture and some easy way to handle full

screen I/O in order to reduce development

time.

Realia's manual may well explain the

compiler's implementation of screen han

dling, but I was left confused when I tried

to follow the explanation provided. As

you can see from Tables 3. 4 and 5, this

CIRCLE 38 ON READER SERVICE CARD

76 COMPUTER LANGUAGE*APRIL 19B5

ConJX
UNIX™ Technology for CP/M™

ConIX can provide any 48K+ CP/M-80 compatible system
with many advanced capabilities of UNIX. You'll be amazed
at whal your 8-bit micro can do now! ConIX features include:

I/O Redirection and Pipes (uses memory or disk), multiple
commands per line, full upper/lower case and argument
processing, Auto Screen Paging. Programmable Function Keys,
improved User Area Directory manipulation. Command and

Extension (Overlay) Path Searching. "Virtual" disk system.
8Mb Print Spooler, extensive preprocessed "Shell" command
programming language. 300+ variables, over 100 built-in

commands. Math Package. 22 new BDOS SysCalls. Archiver
(compacts files for disk space savings of over 50%). On-Line
Manual System, and much more! Uses as little as 1/2K RAM!
Runs with CP/M for true data and software compatibility.
Installs quickly and easily without any system modifications.

The ConIX Operating System

List Price: $165

Price includes Instructional Manual. 8" SSSD disk, and free support.
5V*" format conversions available. To order, contact your local dealer
or buy direct and add shipping: (4.50 UPS. $10 Canada. $25 overseas.
COD (2 extra (USA only). NY State residents add sales tax.

Computer Helper Industries Inc.
P.O. Box 680 Parkchester Station. NY 10462
Tel. {212)652-1786

Dealer inquiries invited!

UNIX: AT&T Belt Labi. CP/M: Digital Research, ConIX: Computer Helper Ind.

CIRCLE 12 ON READER SERVICE CARD

RP/M T.M.

By the author of Hayden's "CP/M Revealed."

New resident console processor RCP and new

resident disk operating system RDOS replace CCP

and BDOS without TPA size change.

User 0 files common to all users; user number

visible in system prompt; file first extent size

and user assignment displayed by DIR; cross-drive

command file search; paged TYPE display with

selectable page size. SUBMIT runs on any drive

with multiple command files conditionally invoked

by CALL. Automatic disk flaw processing isolates

unuseable sectors. For high capacity disk systems

RDOS can provide instantaneous directory access

and delete redundant nondismountable disk logins.

RPMPIP utility copies files, optionally prompts

for confirmation during copy-all, compares files,

archives large files to multiple floppy disks.

RPMCEN and CETRPM self-install RP/M on any

computer currently running CP/M®2.2. Source

program assembly listingsof RCP and RDOS appear

in the RP/M user's manual.

RP/M manual with RPMGEN.COM and CETRPM.COM

plus our RPMPIP.COM and other RP/M utilities on

8" SSSD $75. Shipping $5 ($10nonUS). MC.VISA.

A 118 SW First St. - Box C

Warrenton, OR. 97116

.icro
ethods, Inc.

I (503) 861-1765
CIRCLE 52 ON READER SERVICE CARD

ou0o

S-5SF*
1g&r&

MACINTOSH IS A

REGSTEH6D TRADEMARK

OF APPLE COMPUTER NC

CIRCLE 13 ON READER SERVICE CARD

(LISP) FOR A.I.
UO-LISP Programming Environment

The Powerful Implementation of LISP

for MICRO COMPUTERS

LEARN LISP System (LLS.l)

(see description below £39 95

UO-LISP Programming Environment

Base Line System (BLS.l) $49.95

Includes: Interpreter. Compiler,

Structure Editor. Extended Numbers,

Trace, Pretty Print, various Utilities,

and Manual with Usage Examples,

(BLS. 1) expands lo support full system

and products described below.

UO-LISP Programming Environment: The Usual LISP Interpreier Funciions.

Data Types and Extensions. Structure & Screen Editors, Conpiler, Optimizer. LISP &

Assembly Code Intermixing, Compiled Code Library Loader, I/O Support. Macros,

Debug Tools. Sorl & Merge. On Line Help, Olher Utility Packages, Hardware and

Operating System Access, Session Freeze and Resiatt, Manual ivith Examples expands to

over 350 pages. Olher UO LISP products include. LISPTEX lext formatter, LITTLE

META translator writing system, RLISP high level language, NLARGE algebra system.

Prices vary u.ith confiyuralions beyond (BLS. 1) please send for FREE catalog.

LEARN LISP System (LLS.l): Complete with LISPTutorial Guide. Ednot Tutorial

Guide, System Manual with Examples, Full LISP Interpreter. On Line Help and other

Utilities. LEARN LISP fundamentals and programming techniques rapidly and effectively.

This system does not permit expansion to include the compiler and other products listed

above.

LISP Tutorial Support {LTS. 1): Includes LISP and Structure Editor Tutorial

Guides, On-line Help, and History Loop. This upturn adds a valuable learning tool 10 the

UO-LISP Programming Environment (BLS.l). Order (ITS 1) lor $19.95.

REQUIRES: UO LISP Products run on most 280 computers with CP/M. TRSDOS or

TRSDOS compatible operating systems. The 8086 version available soon.

TO ORDER: Send Name. Addtess. Phone No., Compuiei Type. Disk Format Type. Package

Price, 6.5rb Tax (CA residents only). Ship & Handle lee of S3 00 made US & CN. $10 outside

U S-. Check. Money Order. VISA and MasterCard accepted With Credit Card includee»p ddte.

Other configurations and products are ordered thru our FREE catalog.

Northwest Computer Algorithms
P.O. Box 90995, Long Beach, CA 90809 (213) 426-1893

CIRCLE 46 ON READER SERVICE CARD

77

\

Software

Development

PCDOS/MSDOS

Complete C Compiler
• Full C per K&R

• Inline 8087 or Assembler Floating

Point, Auto Select of 8087

• Full 1Mb Addressing for Code or

Data

• Transcendental Functions

• ROMableCode

• Register Variables

• Supports Inline Assembler Code

MSDOS 1.1/2.0

Library Support
• All functions from K&R

• All DOS 2.0 Functions

• Auto Select of 1.1 or 2.0

• Program Chaining Using Exec

• Environment Available to Main

c-window™

Symbolic Debugger
• Source Code Display

• Variable Display & Alteration

Using C Expressions

• Automatic Commands

• Multiple Breakpoints by Function

& Line Number

8088/8086 Assembler
• FAST —Up to 4 times Faster than

IBM Assembler

• Standard Intel Mnemonics

• Compatible with MSDOS Linker

• Supports Full Memory Model

8088 Software Development

Package

$ 19900

Includes: C Compiler/Library,

c-window, and Assembler, plus

Source Code for c-systems Print

Utility

c-systems
P.O. Box 3253

Fullerton.CA 92634

714-637-5362

compiler had the shortest compile time

under MS-DOS, the fastest execution

times, and extremely small .EXE modules

for run time.

The major complaint I have about this

compiler is that even in a hard disk envi

ronment you must place the floppy disk in

drive A to use the compiler (copy protec

ted). I find this annoying and wonder what

happens if the disk is damaged and you

must wait for a replacement disk until you

can continue to compile. You could be

down for several weeks while waiting for

the diskette.

Aside from this aspect, Realia's com

piler is the one to watch in the coming

months as new developments are

underway.

Ryan-McFarland COBOL v. 2.0B

This compiler managed to run ail of the

benchmarks with the exception of

PCSTRING. It seems that the STRING

and UNSTRING functions are not sup

ported under RM-COBOL. It did, how

ever, produce the smallest run-time mod

ules of any of the compilers tested.

Compile time was fairly fast as RM-

COBOL did not have to be linked to pro

duce the final output code. I only wish

Ryan-McFarland had picked an extension

other than .COB for the resulting code. It

makes an interesting display when you

attempt to edit a file that ends in .COB

when you thought it was source code from

another compiler.

Very easy to use, RM-COBOL has a

fair amount of source code and applica

tion packages written in it already on the

market. The fact that the SORTopiion is

not supported surprised me a great deal

when I went to use it.

Although available from third-party

vendors, the price seems a little high

when you consider that most business

applications will require the use of the

SORT feaiure at some point in time. The

lack of the STRING/UNSTRING verb is a

minor point since I'm not even sure when

you would use the instruction, especially

when you consider that this is not an avail

able mainframe instruction.

WATCOM COBOL v. 2.1

Although all the tables for this compiler

show N/C (Not Compiled), WATCOM "s

COBOL version 2.1 is still a good com

piler. It is rather different than all the rest

in that WATCOM did not implement stan

dard COBOL coding form convention.

For this compiler, comments (asterisks)

must appear on column 1. Column 1 is

also the continuation column. Margin -A-

starts in column 2 and margin -B- starts in

column 6. This proceeded to give me fits

since all the benchmark programs are

set up for standard COBOL margins as

being column Sand column 12, with the

comment or continuation column being

column 7.

The programs that come with this com

piler arc excellent for the leaching envi

ronment, which is where this compiler is

intended to be used. For educational insti

tutes or large organizations involved in

training, this compiler would be a good

choice since you can make unlimited

copies under the single license. If you are

a commercial institution you get to pay

S3,000 a year for the use of the compiler.

The licensing fee is a yearly amount

that must be paid. This compiler has a

built-in expiration date that will prevent

the compiler from functioning 30 days

after the license expires, unless you have

paid for the license extension.

WATCOM's compiler is intended to be

run in close association with a VAX or

similar mainframe since it supports

network-type features that allow remote

access to host systems. The documen

tation and sample programs are all keyed

to teach the user COBOL and would make

an ideal lesson plan for the instructor

teaching COBOL. The only flaw I

see is rejection of the COBOL margin

convention.

Royalty information

Microsoft, Realia, and Nevada COBOLs

carry no royalty fees whatsoever. You can

freely distribute the run-time modules

with the compiled code. Microsoft docs

require that you sign a licensing agree

ment and will then give you examples of

the copyright notice that must appear at

the start of your program.

mbp's royalty agreement states that

under version 7.4 the first 50 installations

of any system developed with its compiler

are included in the purchase price. But

with version 9.0. you can only distribute

to the first 25 installations and. if you

wish to purchase the unlimited run-time

license, it will cost you S2.5OO instead of

the $1,000 it did under version 7.4.

Ryan-McFarland's royalty scheme is

based on the number of distributions you

make of the run time. For one to 24 it

will cost you $100; 25 to 99. $75; 100 to

499, S50; 500 to 999. $35; and 1,000 to

4,999,$25.

Micro Focus has adopted a somewhat

easier royalty method. Under Micro

Focus's agreement it will cost you a flat

$40 for each run time you distribute,

regardless whether it is for the level II or

Professional COBOL compiler. Micro

Focus now refers to this as its application

support modules and not as a run-time

package since it is only required for

screen and file I/O.

Since DRI's products are basically

Micro Focus items, I can only guess that

their royalty policies are along similar

lines.

CIRCLE 16 ON READER SERVICE CARD

78 COMPUTER tANGUAGE ■ APRIL 1985

Poor Person Software
Introduces

Write-Hand-Man
Desk accessories for CP/M

Write-Hand-Man lets you take notes, check phone

numbers, make appointments, and countless other tasks

without leaving Wordstar, dBase, Multiplan, or any other

application. Enter Write-Hand-Man with a single key

stroke and choose the program you want. When you

leave Write-Hand-Man, your application continues
normally.

$49.95 plus tax delivers Write-Hand-Man and 4
companion programs; Notepad, Phonebook, Calendar,

and Termcomm. User written programs are easily added.

All you need is M80 or some other LINK-80 compatible
assembler.

Other CP/M products available from Poor Person Software:

Poor Person's Spooler (S49.95), Poor Person's Spelling Checker

($29.95), Poor Person's Spread Sheet ($29.95), Keyed Sequential

Files (S39.95), Poor Person's Menus ($29.95), aMAZEing Came

($29.95), Window System ($29.95), Crossword Came (S39.95),

Mailing Label Processor (S29.95). Shipping included.

All products available on IBM 8 inch and Northstar 5 inch disks. Oiher 5 inch

formats add S5 handling charge. No credit cards.

Poor Person Software
3721 Starr King Circle

Palo Aito. CA 94306

tel 415-493-3735
CP/M is a registered trademark of Digital Research

The Tools

You Need

ToT You Thru.
Now the %.y.-:.'.:--,. Applications Programmers Toolkit provides

everything you need to increase your C programming productivity.

AFT" features include:
• COMPLETE SOURCE CODE (aver 5000 lines!)

• File handling with direct & keyed access

• Screen and Report GeneraUjra, with full screen handling for your programs

• Generic Terminal Driver for portable code

• String math functions, and string manipulation routines

• Reference Manual on Disk (over 50 pages)

• Tutorial Manual (over 25 pages) with Source for Mailing List Manager

• A host of useful Utilities, Database and File Editors

• Available for Lattice C. Mark Williams C. DeSmet C. BDS C. others.

Also Available: C-STARTER Toolkit, great for learning C!! Includes: Customized

APT, DeSmet C Compiler, and ■'Programming in C on the IBM-PC" (200 pages)

APT/MS-DOS versions «49o

APT/DeSmet C version »395

APTYBDS C version 1395

C-Starter (binary APT, DeSmet Compiler and Book) *295

APT/Manual only I 50
"DeMUcd Brochures on request"

'Manual Coil will be applied IT APT purchased wilhln

30 dayn (>10 re ■tockltlK charge.) U.S. funds only, plsaao.

"" CaU (502^583^5527
Ask for APT" or C-Starter, or Send Check to:

Shaw^American Technologies

-•—- 830 South Second St. - Box 648 *m*

Louisville, KY 40201, USA W
(CO D. and Foreign Orders ■ Add t.ri Shipping Handling)

IWrl^r™ l<aiik if Lmivnllr Cnurna Pidrliiy IW.a l»ui>vH> OicdHi

CIRCLE 67 ON READER SERVICE CARD CIRCLE 34 ON READER SERVICE CARD

Another in a series of

productivity notes on UNIX ■

software from UniPress.

Subject: C Cross Compiler

for the 8086 Family.

The Lattice C Cross Compiler
allows the user to write code on a
VAX" (UNIX or VMS") or MC68000'

machine for the 8086 family. Lattice C

is a timesaving tool that allows a more
powerful computer to produce object

code for the IBM-PCV. The compiler
is regarded as the finest C compiler

for the 8086 family and produces the
fastest and tightest code.

Features:

m For your UNIX or VMS Computer.

M Use your VAX or other UNIX

machine to create standard Intel ob

ject code for the 8086 (IBM-PC).

■ Highly regarded compiler pro

duces fastest and tightest code for
the 8086 family.

■ Full C language and standard
library, compatible with UNIX.
■ Small, medium, compact and

large address models available.

■ Includes compiler, linker, librarian
and disassembler.

■ 8087' floating poin! support

U MS-DOS'" 2.0 libraries.
■ Send and Receive communication
package optionally available.

Price S500.

■ Optional SSI Intel Style Tools.
Package includes linker, locator and

assembler and creates execulables

lor debugging on the Intel workstation
or for standalone environments.

Price $8,550.

Price:

VAX (UNIX or VMS)

MC68000
S5000

3000

For more information on these and

other UNIX softv/are products, call or
write: UniPress Software, Inc.. 2025
Lincoln Hwy, Edison, NJ 08817.

Telephone: (201) 985-8000. Order

Desk; (800) 222-0550 (Outside NJ).
Telex: 709418. Japanese Distributor:
Softec 0480 (85) 6565. European Dis
tributor: Modulator SA (031) 59 22 22.

OEM terms available.
Mastercard/Visa accepted.

CROSS COMPILER

FOR THE 8086 FAMILY

LATTICE C
CROSS
Cl MPILER

■ '■■ ■■ ■ .-■ - .'»ws Dvui

Will iri/fl-SIBl'KHn ISM'C NMIMWfepI ■ '■' ■

I/SMS UcWQt KMttB 'Am™ Sffl&Sffl' am IniPfessSoftujofG
tfwr Lesomg Sxro la UVflf Softaam

CIRCLE 81 ON READER SERVICE CARD

79

The universal, super-efficient

Lisp for PC-DOS, MS-DOS,

CP/M-86and CP/M-80

systems.

Wallz Lisp is a very powerful and complete

implementation of Lisp. It is similar to Frani (the

Lisp running under Unix), and is substantially

compatible with MacLisp and other mainframe

Lisps.

gnuniB In ndependent tests, Wallz Lisp

than competing microcomputer Lisps

Easy to use.
The interpreter can directly

load program files created

with any ASCII text editor. Full debugging and

error handling facilities are available at all times.

No debuggers to link or load.

Random file access, binary file

support, and extensive string

operations make Waltz Lisp suitable for general

programming. A text-file difference program and

other utilities are included in the package.

Functions of type lambda (exprj.

nlambda (lexpr), lexpr, macro.

Splicing and non-splicing character macros. Full

suite of mappers, iterators, etc. Long integers (up

to 611 digits). Fast list sorting using user defined

comparison predicates. Built-in prettyprinting and

formatting facilities. Over 250 functions in all.

Transparent (yet programmable)

handling of undefined function

references allows large programs to reside partially

on disk at run time. Optional automatic loading of

initialization file. User control over all aspects of

the system. Assembly language interface.

Each function is

described in detail.

The 300+ page manual includes an exhaustive

index and hundreds of illustrative examples

Order Wallz Lisp now and receive free our

PROLOG Interpreter
Clog Prolog is a tiny (but very complete) Prolog

implementation written entirely in Wiltz Lisp. In

addition to the full source code, the package

includes a 50 page Clog manual.

16-bit versions require DOS 2 x or CP'M-86 and 90K

RAM (more recommended).

Z-80 version requires CP/M

2.x or 3x and 48K RAM

minimum. Waltz Lisp runs on

hundreds of dillerent com

puter models and is available

in all disk formats.

Superbly documented.

S1B9
'Manual only '30 irefund

able with order) Foreign orders add '5 for surface mail.

•20 lor airmail. COD add '3 Apple CP'M. hard sector,

and 3" formats add '15. MC/Visa accepted

r .) For further information or lo order call ^^

" 1-800-LIP-4000 DEPT. 23
In Oregon and outside USA call 1-503-684-3000

15930 SW Colony PI..

Portland. OR 97224per
IiVTERXA TIOSAL >

What criteria to use

As you can tell from the benchmarks,

COBOL happens to be one language

where benchmarks do not necessarily

give you a true picture of the compilers.

Remember, the compiler you pick

should be as closely as possible suited to

your purpose. If you need fast sorting

speed, tnbp, Microsoft, and Micro Focus

COBOLs are prime contenders. If sorting

is not going to be a requirement, then

RM-COBOL will serve your purposes

although you get a better deal by pur

chasing the latest version of Microsoft's

COBOL.

One thing that has cropped up in several

of the tables is the mention of network

support. I believe that this will be the next

hot button for both software and hard

ware, and it will be a major revision to

many vendors' way of thinking. Cur

rently, Microsoft, mbp, Rcalia, and Micro

Focus COBOLs all either have run times

that support network or multiuser envi-

Manufacturer

Digital Research Inc.

Box DRI

Monterey, Calif. 93942

(408) 649-3896

Ellis Computing Inc.

3917 Noriega St.

San Francisco, Calif. 94122

(415)753-0186

mbp Software & Systems Technology Inc.

7700 Edgewater Dr. Ste. 360

Oakland, Calif. 94621

(415)632-1555

Micro Focus Inc.

2465 East Bayshore Rd. Ste. 400

Palo Alto, Calif. 94303

(415)856-4161 West Coast

(215) 668-2278 East Coast

Microsoft Corp.

10700 Northup Way

Box 97200

Bellevue, Wash. 98009

(206) 828-8080

Realia Inc.

10 S. Riverside Plaza

Chicago, III. 60606

(312)346-0642

Ryan-McFarland

609 Deep Valley Dr.

Rolling Hills Estates, Calif. 90274

(213)541-4828

WATCOM Products

415 Phillip St.

Waterloo, Ont.

Canada N2L 3X2

(519)886-3700

ronments or will have them ready by the

time you read this. Most vendors will sup

port the Novell network first and then add

other networks as they become known.

Use of these network run times will usu

ally result in higher costs, as is the case

with mbp and Micro Focus COBOLs.

Network support and compiler

enhancements that increase productivity

are going to be the next changes you see to

COBOL because it is such a verbose lan

guage. Anything done to improve the

number of lines of code a programmer can

generate in these compilers will result in

that compiler becoming the predominant

force the rest of the market must deal

with.

1 hope you have finished this wrap-up

with a better understanding of what the

various compilers support and now have

a tool to decide which one is just right

for you. H

Charles BaU'mger is a systems analyst and

has been involved in computers and pro

grammingfor a little over 10 years.

Product

Level II

v. 3.0

Nevada

COBOL

v.2.1

mbp COBOL

v. 7.40, v. 9.0

Professional v.l .0,

Level II v. 2.6.2,

VS-COBOLv.1.0

Microsoft

COBOL

v. 1.12,v.2.0

Realia

COBOL

v. 1.0

RM-COBOL

v.2.0B

WATCOM

v.2.1

CIRCLE 60 ON READER SERVICE CARD

80 COMPUTER LANGUAGE ■ APRIL 1985

YOUR CODE MAY BE WASTING ITS TIME!
THE PROFILER™ CAN HELP . . .
• Statistical Execution Profiler • Time critical code optimization
• Works with any language • Abnormal code behavior tracking
• Completely configurable • Graphic presentation of results
■ Up to 16 partitions in RAM/ROM • Easy to use menu interface

THE PROFILER is a software package which gives you, the programmer, a powerful tool for locating
lime consuming functions in your code and allows you to performance tune your program. With
THE PROFILER you can determine where to optimize your code for maximum benefit, then measure
the results of your efforts.

Using THE PROFILER, you can answer questions like:
Where is my program spending its lime?

Why is my program so slow? What is it doing?

Is my progam I/O bound? CPU bound? Are data buffers large enough?
How much improvement did my changes make?

THE PROFILER is completely software based and consists of a system resident driver and a monitor
program. Thememory partitions can range from 1 byte to 1 megabyte in size and can be anywhere

in the address space.

NO ADDITIONAL HARDWARE IS REQUIRED!

Requires an IBM PC or compatible system with a minimum 64k

and one drive.

THE PROFILER is available for S125.00 (New Low Price) from

DWB Associates or ask your software dealer. To order or for more
information, call or write DWB Associates. VISA/MC accepted.

Dealers welcome.

. I he memory

B
dwb
Associates

P.O. Box 5777

Beaverton, OR 97006

(503)629-9645

IBM is a trademark ol IBM Coin. MSDOS is a trademark ol Microsoft. Corp.

THE PROFILER is a trademark ol DWB Associates.

CIRCLE 21 ON READER SERVICE CARD

ADVERTISE
in the July issue of

COMPUTER
LANGUAGE
Artificial intelligence/

Expert systems

Reservation deadline:

May 6

Contact:

Carl Landau

COMPUTER LANGUAGE

131 Townsend St.

San Francisco, Calif. 94107

(415) 957-9353

RUN/C:™
Finally,

a C Interpreter
Available NOW for only $149.95 !

Finally, a painless introduction to

the C language. With RUN/C:

The C Interpreter you

can create and run C language

programs in an environment as

easy to use as BASIC.

RUN/C is C for the rest of us.

It is a robust implementation of

standard KSR. RUN/C is for

both the beginner and profes

sional.

RUN/C includes full floating

point. 8087support, structures,

unions, casts and more than 100

built-in C functions.

With RUN/C you get all this

with a command structure mod

eled after BASIC'S using familiar

terms such as EDIT, RUN. LIST.

LOAD. SAVE. TRON. SYSTEM, etc.

Since RUN/C is a true inter-

preterit means that C programs

can be written, tested and run

within a single protected envi

ronment. It is a teaching tool and

a source code debugger.

Here's more good news. . .

• Great documentation: a 400-

page, easy-to-read manual

filled with executable

programs

• Array-index and pointer

bounds checking

• Variable-trace and dump

diagnostics PLUS an integral

program profiler

• Full buffered and unbuffered

file I/O

• Printer and asynch support

• Forking to your favorite full

screen editor with automatic

return to RUN/C with

your edited program

• System Requirements:

IBM® PC or compatible with

PC-DOS 2.0 or MS"V-DOS 2.0 or

greater with ANS1.SYS.

Get things right the first time

with RUN/C:

The C Interpreter.™

For immediate delivery or more

information, call:

1-800-847-7078

{in N.Y. 1-212-860-0300)

or write: Lifeboat Associates™

1651 Third Avenue

New York. NY 10128

RUN/C is a trademark of Age of Reason Co.

CIRCLE 87 ON READER SERVICE CARD

81

WRITE

The Writer's Really Incredible Text Editor lives up to its

name! It's designed for creative and report writing and
carefully protects your text. Includes many features

missing from WordStar, such as sorted directory listings,

fast scrolling, and trial printing to the screen. All editing

commands are single-letter and easily changed. Detailed

manual included. Dealer inquiries invited. WRITE is

$239.00.

BDS's C Compiler

This is the compiler you need for learning the C language

and for writing utilities and programs of all sizes and

complexities. We offer version 1.5a. which comes with a

symbolic debugger and example programs. Our price is

(postpaid) S130.00.

Tandon Spare Parts Kits

One door latch included, only S32.50.

With two door latches S37.50.

Door latches sold separately for $7.00.

All US orders are postpaid. We ship from stock on many
formats, including: 8", Apple. Osborne. Kay Pro, Otrona,

Epson, Morrow, Lobo, Zenith, Xerox. Please request our
new catalog. We welcome COD orders

Workman & Associates

112 Marion Avenue
Pasadena, CA 91106

(818) 796-4401

CIRCLE 68 ON READER SERVICE CARD

RTL

RELOCATABLE THREADED LANGUAGE

RTL is similar to FORTH but

contains features not normally

included in threaded languages.

Since each word ia independently

relocatable. RTL allows deleting

either individual words or all

unused words with garbage

collection. All code is romable.

The decompiler allows editing

directly from RAM. Any word may

be redefined retroactively. It

supports string variables, local

variables. bitmaps and pictured

numeric formating.

RTL is currently available

for the 68000, 6809. 8086 and

280. The 6SOO0 version is a 32

bit implimentation.

RTL Programming Aids

10844 Deerwood SE

Lowell. MI 49331

(616) 897-5672

£3 n_ so

INCUDES ALL

SOURCE CODE

Now With Windowing!

$49.95 Basic Compiler

MTBA5IC
Features:

Multitasking Windowing

Handles interrupts Interactive

Fast native code Compiles quickly

Floating point No runtime fee

MTBASIC is a true native code compiler. It runs Byte's Sept. '81

sieve in 26 seconds; interpreters take over 1400 seconds! Because

MTBASIC is multitasking, it can run up to 10 Basic routines at the

same time, while displaying ten separate windows. Pop-up/down

menus are a snap to implement.

The MTBASIC package includes all the necessary software lo

run in interpreter or compiler mode, an installation program (so

any system can use windowing), three demonstration programs

and a comprehensive manual.

AVAILABLE for CP/M (Z-80), MS-DOS, and PC-DOS systems.

ORDERING: Specify formal when ordering. We accept Visa, MC,

checks and COD. Send $49.95 plus $3.50 shipping and handling

(SlO overseas) to:

OPIAID,lnc.\

P.O.Box 2412 Columbia,MD 21045-1412

301/792-8096
CIRCLE 78 ON READER SERVICE CARD

Fast compiles, fast code and great diagnostics

make Wizard C unbeatable on MSDOS. Discover

the powers of Wizard C:

• ALL UNIX SYSTEM III LANGUAGE FEATURES.

• UP TO A MEGABYTE OF CODE OR DATA.

• SUPPORT FOR 8087 AND 80186.

• FULL LIBRARY SOURCE CODE, OVER 200 FUNCTIONS.

• CROSS-FILE CHECKS OF PARAMETER PASSING.

• USES MSDOS LINK OR PLINK-86.

• CAN CALL OR BE CALLED BY PASCAL ROUTINES.

• IN-LINE ASSEMBLY LANGUAGE.

• 240 PAGE MANUAL WITH INDEX.

• NO LICENSE FEE FOR COMPILED PROGRAMS.

The new standard for C Compilers on MSDOS!

Only $450

wss
For more information call (617) 641-2379

Wizard Systems Software, Inc.

11 Willow Ct., Arlington, MA 02174

Visa/Mastercard accepted

CIRCLE 71 ON READER SERVICE CARD

82 COMPUTER LANGUAGE ■ APRIL 1985

CIRCLE 86 ON READER SERVICE CARD

SOFTWARE REVIEW

C on the Macintosh

By Michael Rothman

rhat's the most

interesting

thing about C

compilers for the Apple Macintosh? Not

surprisingly, it's the same thing that's

interesting about the Mac—the unique

Mac user interface.

The nontechnical user has two rela

tively easy questions to answer: do I

understand this interface (desktop,

mouse, graphics), and do I like it? The

technical user (or the company trying to

sell a technical application) has to struggle

with a more complicated reality: what's

best for the user may not be best for the

developer. Is the Finder, the Macintosh

operating system, an appropriate environ

ment for development?

The companies who make the five Mac

intosh compilers I review here have all

had to answer this question. Some have

said yes (Consulair. Softworks) and piggy

backed onto Apple's own Macintosh

Development System (MDS), which uses

all the special Mac features. One has said

a resounding no (Manx) and essentially

provided its own operating system. And

some have compromised, trying to have

the best of both worlds (Megamax,

Hippopotamus).

Is the Mac a good development envi

ronment? This is what a colleague of mine

calls a "religious" question, and I won't

try to answer it here. But this religious

question makes ii crucial that you don't

take the benchmarks as gospel! You

should also consider how you feel about

the interface and whether you prefer to

have an underlying development system

from Apple or from some other manufac

turer. (For more on this subject, please

see the two sidebars.)

Whatever the companies who make the

compilers think of the Mac as a develop

ment system, they all think it's important

to support the unique Mac interface in

your environment, and they all make

access to the Mac ROM toolbox as simple

as a function call. The compilers

straighten out the differences between C

and Pascal calling interfaces—the differ

ence between C and Pascal strings is

either handled directly by compiler-

provided "glue" routines or the user must

call a conversion function.

Table 1 provides basic information on

the Macintosh compilers. Table 2 lists the

benchmark results. For a discussion of

three of the benchmarks used—Sieve of

Eratosthenes (which generates prime

numbers. Fib (which generates Fibonacci

numbers), and Matrix (which tests float

ing point arithmetic speed)—see the C

review in the February issue of

COMPUTER LANGUAGE (p. 82).

A fourth benchmark, Macptr, examines

the efficiency of pointer dereferencing.

This is the deref.c benchmark used in the

February issue, but it has been modified

to initialize each level of the pointer refer

ence to a real RAM value. In the table, the

time to do this initialization is included in

the "Run load" category rather than the

"Run" category.

Table 3 shows the results for the Sieve

benchmark in greater detail.

Consulair Mac C

Consulair's Mac C includes the compiler

and a prerelease version of Apple's MDS

including the editor, assembler, and

linker. The system also includes a Consul

air version of the Exec (batch file) utility,

meant to substitute for the Apple version

until it is available. If you pay extra, you

also get the Mac C toolkit, a large library

of useful functions that Consulair has

"prewritten" for you. This should not be

confused with the Macintosh's own ROM

toolbox, which Consulair supports.

Consulair does not support floating

point arithmetic but plans to add it in an

update. Ditto for register variables.

The Mac C system includes sources for

all the libraries. The standard C library

comes in three pieces.

The documentation for the system is a

manual of about 100 pages, similar in

shape and binding to the manuals Apple

provides with the Mac. Thus it lies flat

and fits in a relatively cramped work

space, a nice touch. Contents include an

overview of the C language (useful mainly

for its description of machine-specific

implementation details), instructions on

running the system, an unusual and inter

esting section on the compiler's strategies

for code generation, a description of

the standard library functions, and a sec

tion on Consulair's Mac C toolkit. The

manual has no index.

The compiler runs as described in the

sidebar "MDS-based systems." Among

the compilers that run from the Finder,

Consulair has the best selection of com

pilation options (intersperse C source in

assembler output, verbose errors, choose

integer size of 16 or 32 bits, and several

others).

I had to remove the void type reference

in the Fib benchmark. With that change,

everything compiled very easily. Inci

dentally, the Consulair error messages I

encountered were more complete than the

average and made intelligent guesses

about what was wrong in ambiguous

situations.

Of course, one of the strengths of C is

that it can be a very ambiguous language.

The error messages for Pascal, for

instance, are usually much more precise

and have a certain authoritarian manner.

In the late 1970s, an implementation of

Pascal on the Yale Dec-20 insulted you

after you reached a certain error count.

Hippopotamus Software Hippo-C

I would be tempted to buy Hippo-C on

name alone: there's not enough whimsy

in this industry. (Manx's Aztec C shares

the virtue of an unusual name.) Hippo-C

comes at two levels. Level I is designed

for the more casual user and level 2 for the

serious developer. I didn't rigorously test

level 1. but the company says its bench

marks would be less impressive than those

for level 2.

Level 2 was only available in a pre

release form and only at the last minute,

so I didn't have time to check every fea

ture. Level 1 produces a pseudocode that

is interpreted at run time; level 2 produces

assembly source that is assembled and

linked. There is no way to produce a

stand-alone application in level 1, but you

can do it in level 2. The benchmarks are

level 2. Some of the features described

here are currently only in level I, but Hip

popotamus says that eventually level 2

will be a superset of level 1.

83

helps compare, evaluate, find products. Straight answers for serious programmers

SERVICES

■ Programmer's Releml Lilt

■ Compart Product!

- Help lind i Publisher

Evaluation Literature Iree

Dealer's Inquire

Newsletter

RushOn)er

Over TOO products

■ BULLETIN BOARD ■ 7 PM Io7 AM 617-826-4046

Free Literature - Compare Products
Evaluate products Compare competitors Learn about nev. alternatives One tree call

Brings information on iusi aQoui any programming need Ask tor aiy "Picket" or

Addon Packet O ADA. Moduia G At □ BASIC ETC DCOBOL □ Editors

DFOBTH ^FORTRAN CPASCAL QUNIX PCor CrJeDuflQers. Linkers, etc

RECENT DISCOVERIES

FASTER C - Lattice users eliminate Link
step Normal 27 seconds. Faster C
in 13 sees MSDOS S95

'C" LANGUAGE
OUR

PRICE

MSOOS C86-8087. reliable call

InstantC-Inter fast, full 495

Lattice? i -improved call

Microsoft C 2 x 329
Williams, debugger, fast call

C Systems & debugger

CPM80 "Ecosoft C-now solid.ifull 225
BOSC- solid value 125
MACINTOSH Softworks 365
Megamax-obiect. full 295

Consular s MAC C 295
Compare evaluate, consider other Cs

EDITORS Programming ■ ■ LANGUAGE LIBRARIES

BRIEF-Intuitive, flexible

C Screen with source

Epsilon - like EMACS

RUNS ON

PCDOS
B6 80

PCDOS

FINAL WORD-lor manuals 1

MINCE-like EMACS

PMATE-poweriul

VEDIT-lull. hked

iii;i>.«-H

PC 80

8086

86 80

OUR
PRICE

195

75
195

215

149

185

119

Active Trace-debug
8ASCQM-86 ■ Microsoft

BASIC Dev't System

Better8AS(C-640K

CB-S6-DRI
Prof BASIC Compiler

Databurst - screens

SCREEN SCULPTOR

RUNS ON

86 80 75

8086 2/9

PCDOS 115

PCOOS 185

CPM86 419

aCD0S 89

MSDOS 215

PCDOS H5

COHERENT- tor "C" users PCI*e 475
COHERENT-NCI-Realtime PCIike call

XENIX-plus C to MSOOS PC 1275

Ask about run-ttmes. applications. DOS compatibil

ity, other aftematives UNIX is a trademark ol Bell Labs

GRAPHICS. Graphic-source in C

GRAPHMATIC-3D FTN.PAS
HALO-fast. full-all lang

FILE MGMT- BTrieve-all iang

Clndex --source no royal

CTree-source, no royal

dBC ISAM by Lattice

dB VISTA- Network' Structure

PHACT-up under UNIX, addons

OTHER CUtil try Essential

Greenleaf-200 ■

CSriarp-Real-Time

PORTABLECtoPC.Mac.il

SOFT Horizons-Blocks I

SCREEN CURSES Oy Lattice

CView - input, validate
MetaWINOOW - icons, clip

PANEL-many lang. term

ProScreen - windows, source

Windows tor C

MSDOS 250
PCDOS 125

PCOOS 145

MSDOS 215
86 BO 375
ALL 375

8086 235

MSDOS 465
MSDOS 225

MSDOS 139
MSDOS 149

MSDOS 600
Mam 125

PCDOS 139
PCDOS 125
PCDOS 195

PCDOS 139

MSDOS 265

PCDOS 455

MSDOS 175

Ask about ISAM, oiner addons tor BASIC

ALL PRODUCTS ■ We carry 700 products

for MSDOS CP M 86. CP M 80. Mac-

htosfi and ney products for other

micros

Call for a catalog, literature, and solid value

800-421-8006
THE PROGRAMMER'S SHOP™

128-L'RocWanrJ Street, Hanover, MA 02339

Visa Mass 800-442-8070 or 617-826-7531 MasterCard 8517

IJi]:»;MlI runs on
MSFORTRAN-86-lmpr A

DR Fonran-86 - full "77"

PolyFORTRAN-XREF. Xlract

OTHER PRODUCTS

fcsemDlerS Tools-DRI

Atron Debugger for Lattice

cEnglisfi ■ dBase to C 1

C Helper DIFF.xref. more

C0DESMITH-86 - debug
MacASM-lull. fast, tools

MBPCoDol-86-tast

METAWINDOW-grapn, fonts, clip

Micro SubMATH-FORTRAN full

Microsoft MASM-86

MSD Debugger

Muttilmk ■ Multitasking

PC FORTH ■ -*ell liked

PFIX-86 Debugger

PL1-B6
Polylibranan ■ tnorougn

PolyMAKE

PROFILER ■ flexible

Prolog-86- Learn. Experiment

SLK F - Copy Protection

SYMD aeDugger-symbols

TRACES6 debugger ASM

ASOOS

B086

^CDOS

1
8086

PCDOS

-1SDOS

8680

PCDOS
MAC

8086

PCDOS

8680

\1SD0S

PCDOS

PCDOS

USDOS

ysoos

8086

MSDOS

PCDOS
MSDOS

MSDOS

PCDOS

PCDOS

MSDOS

OUR

PRICE

S 239

249

165

159

395
750

135

139
115

680

135

250
125

119

265

219

169

495

95

95
125

125
14E

119

115

Note All prices subject to change without notice

Mention itiisad Some prices are specials

Ask about COO and POs. All formats available

CIRCLE 70 ON READER SERVICE CARD

and

FIPST-Ap/W

DIFF and CMP - for "intelligent" file comparisons.
XREF- cross references variables by function and line.

C Flow Chart- shows what functions call each other.

C Beautifier - make source more regular and readable.
GREP - search for sophisticated patterns in text.

There are several other utilities that help with converting

from one C compiler to another and with printing

programs.

C Helper is written in portable C and includes both full

source code and executable files

for $135 for MS-DOS, IBM AT

CPM-80 or CPM-86. Use

VISA, Master Card or COD.

Call: 800-821-2492

-Solution
Systems

335-L Washington Street

Norwell.MA020.6l
617-659-1571

PROLOG-86™
Become Familiar in One Evening

Thorough tutorials are designed to help learn the PROLOG

language quickly. The interactive PROLOG-86 Interpreter gives

immediate feedback. In a few hours you will begin to feel comfort

able with it. In a (ew days you are likely to know enough to modify

some of the more sophisticated sample programs.

Sample Programs are Included like:

■ an EXPERT SYSTEM

■ a NATURAL LANGUAGE INTERFACE
(it generates a dBASE II "DISPLAY" command)

■ a GAME (it takes less than 1 page of PROLOG-86)

PROTOTYPE Ideas and Applications QUICKLY
1 or 2 pages of PROLOG is often equivalent to 10 or 15 pages in

"C" or PASCAL. It is a different way of thinking.

Describe the FACTS and RULES without concern for what the

computer will have to do. Maybe you will rewrite in another

programming language when you are done.

Programming Experience is not required but a logical mind is.

PROLOG-86 supports the de facto STANDARD established in

"Programming in Prolog."

CONTEST: Win SI.OOO. Ask about it. Deadline of 4/30/85.

AVAILABILITY: PROLOG-86 runs on MSDOS. PCDOS,
IBM AT or CPM-86 machines. We provide most formats. The price

of PROLOG-86 is only $125. ^olutlOfl

Full Refund if not <E>yStefnS
33S.L ujQShlngton Street

Norweii. ma 02061

617-659-1571

satisfied during

first 30 days.

800-821-2492

CIRCLE 91 ON READER SERVICE CARD

84 COMPUTER LANGUAGE ■ APRIL 1985

CIRCLE 92 ON READER SERVICE CARD

Like Manx's Aztec C, Hippo-C imple

ments a command shell (called the Hippo

operating system or HOS) lo make the

Mac more like a conventional computer.

But Hippo-C allows command entry either

through a menu or keyboard entry. The

commands include the all-time UNIX hits

like/a1, mv, rm, and so Corth. Command

line redirection and the argc argv con

ventions arc also supported.

Hippo-C has its own editor, Ed. which

is similar to Edit with some C develop

ment specific features. One of these is a

goto line number command, which is

great for error diagnosis. Files prepared

under a standard Mac text editor work

fine in Hippo-C, but a file created under

Hippo-C has different line ending con

ventions and so will not show correctly in

a standard Mac editor.

Hippo-C has a feature unique among

the compilers I tested—level 1 has a C

source level debugger. (Hippopotamus

says it will eventually include one

in level 2, but not in the first release.)

I didn't test the utility carefully, but

assuming everything works well, this

could be a tremendously useful devel

oper's tool.

Hippo-C also has a make file utility

which, given the name of a C file, creates

a batch file to compile, assemble, and

link it.

Hippo-C might be a good system for

you if you're interested in how it's done—

the source for the HOS UNIX-like com

mands is included. So is the source for the

standard C libraries. The archiver doubles

as a librarian. The documentation (level

1) is contained in a well-written, book-

size three-ring binder.

The system seems to be K&R com

patible; however, there was no floating

point support in my prerelease level 2 so

I skipped the matrix benchmark. (Hippo

potamus says that eventually there will be

C-integrated floating point support but

currently the way to go is to use the Mac

ROM routines.)

I had to remove the void type and

include stdio.h in everything because

exit() is defined in stdio.h and Hippo-C's

own code references exit. Myrefrevealed

a problem in the prerelease level 2. When

I ran the benchmark it whizzed by so fast

that I got suspicious and inserted aprintf

statement into the loop that contains the

actual dereferencing. Sure enough, the

pn/i(/"statement failed to appear when I

ran the new version—the loop was never

executing. Changing the counter variable

to a long instead of an unsigned cleared up

the problem.

My copy of Hippo-C level 2 was clearly

unfinished, but after all, that's exactly

what I had been told. Judging by level 1,

the bugs will be out by release time (are

you listening Hippopotamus?).

Manx Aztec C

Manx has taken the most radical approach

to the Mac interface issue by providing

Aztec C with its own command shell

(called, sensibly enough, the shell). No

menus, no mice, no desktop—just a good

old-fashioned, user-hostile computer

interface. You'll think AT&Tsnuck into

your Mac one night. The Aztec C shell

works very well, mimicing many

important UNIX commands, emulating a

hierarchical file structure, and also pro

viding a simple shell script (batch file)

capability.

Along with the shell and compiler,

Aztec C comes with its own macro assem

bler and a linker. Because of the shell.

these are used in a manner very similar to

that of typical (non-Mac) C environ

ments. For example. B compile of the

Sieve program with no options is invoked

by typing "cc sieve".

The developer has a choice of writing

code cither for the shell or for the stan

dard Mac Finder. Manx achieves this by

offering three different application start

up routines. Depending upon which one

you link in, your application will have

greater or lesser UNIX-like capabilities.

Note that Aztec C can support the argc

argv command passing conventions for

programs designed to run under the shell.

Aztec C supports most of the Mac ROM

toolbox routines. Manx says they will be

adding toolbox routines with each update.

Realia COBOL
What to do while

your COBOL programs

compile and execute:

1. Wait.

2. Wait some more.

3. Stop waiting. Call Realia

Patience isn't always a virtue.

Realia COBOL is fast:

Compilation Speed imwme

1,001)

. ^000

:S1

3:30

8:.).l

48:117

(-4J

1ft -H •

5:11

4'- •(,

ixetutinn Time Ralin
Urn* ukuUled S-Prnlik-I

COBOL

1.0

mbp

3.6

cuwn

14.7

coaoi

21.6

COBOI

22.3

Sieve of Eralosthenes "J^JoT '

Realia COBOL is written in COBOL. We offer you the

tools we use ourselves:

•Our FOU.OW-THE-SOURCE- interactive symbolic

debugger. Works with normal native code.

• A speedy full-screen editor thai handles very largefile:..

. Mainframe IBM VS COBOL compatibility.

• Interfaces to Assembler and C.

• No royalty or tun-time fee.

• No limil on program st/e, up to available memory.

■ In our new release, no need to insert the product

diskette when you're using a hard disk.

Realia COBOL costs S195. Qualified companies can
try it for free. Call us. And ask about our other

products, Spaceniaker" and Termulator".

What are you

waiting for?
1O South Riverside Plaia

j Chicago, Illinois 6O606

(312) 346-0642

TELEX: 332979 (REAMS INC)

CIRCLE 76 ON READER SERVICE CARD

85

Thunder Software

• TheTHUNDERC Compiler- Opyrai^s under the APPLE P.i-r.il I ! op«aBngsvsttnn.Crealefa«Tiarii.t-6.r)!)^ prograrnsionirt

as siand alont; programs or assubmuiuK's in Pascal program*. Amaiors-jbje: or ;>v C di/fint-ii K K& R Ini-hiiv.,i2'1 pogi*ust?r=

guide newsletter!. Macro preprcwisSOK "in* nn APPLE]',) [-<■ //•;. ffc Source code for libraries is included Only M9.95

• ASSYST: The AucanMer System- A comptete6502 ed-1or/.ii=,emhlerand I,siw lor APPLE DOS3 3 Menu dltven, exccHenl
error trapping 2<k p users guide, demo prnyr.inis source cod* lor all programs! Grv<n f»r hejinners Only S23.50

• THUNDER XREF- A crass reference utility lot APPl.F. P^vmI 1 1 XRKiry..-m]Mte*CnM«(deMnc<-" lor i?arh procedure Source

code and documentation provided Only $19.95

Thunder Software POB 31501 Houston Tx 77231 713-728-5501

Include $3.00 shipping. COD. VISA and MASTERCARD accepted

CIRCLE 65 ON READER SERVICE CARD

I/O A BORE? NOT ANY MORE!

IO
PRO

Screen Development System

for

• Program I/O Media

• Presentation Materials

• On Screen Shows

DISPLAY PROGRA
GRAPHICS LIBRAS

ENHANCE

PROGRAM

INTERACTION

ELIMINATE

SCREEN ENTRY

ERRORS
0

0

SLASH

DEVELOPMENT

COSTS

REVISE SCREENS

IN SECONDS

Library handling is very flexible; a good

library utilily is included that Ids you cre

ate and modify your own libraries. In

addition, since the source for all the stan

dard libraries is included, it is possible to

customize your environment. The linker

selects referenced modules from libraries,

leaving unreferenced code alone (unlike

the MDS-based systems).

The Aztec C compiler comes in two

versions. The more expensive version

includes a number of utilities familiar to

UNIX fans, such as make, grcp and diff

and, perhaps most amazing, a clone of the

VI editor, which Manx calls the Z editor.

Like several other companies, Manx

also has an agreement with Apple to pro

vide RMaker. Edit, and MacsBug. This

means you have your choice of a mouse-

based or a traditional editor. Manx also

throws in a RAM disk for the fortunate

512K owner. This can of course substan

tially improve development speed. (It was

not used for the benchmarks.)

Manx documentation is excellent—two

Where does the time go?

The most difficult part of preparing

this review was attempting meaningful

timing comparisons among the com

pilers. The question seems pretty

straightforward: How long does it take

to run a compile and a link of a given

program with this system? Not sur

prisingly, it is the innovative Mac envi

ronment that makes it difficult to

answer the question.

All but two of these compilers

(Manx's Aztec C and Hippo-C) run

under the Finder, the Macintosh oper

ating system. The Finder maintains

much more information than a typical

operating system and trips through it

between development steps (for exam

ple, compilation and assembly, assem

bly and link) can significantly

lengthen the process. Thus, each of the

compilers reviewed here offer at least

one and sometimes several tools as

short cuts. (These are outlined in the

sidebar "MDS-based systems" and in

the individual reviews.)

Unfortunately, these tools vary from

compiler to compiler, and this makes

meaningful comparison difficult. It's

equally difficult to just ignore the tools

in question since in many cases they

are the default mode and operate auto

matically. To disable them and test in

that mode would give an unrealistic

account of a typical user's experience.

M|E|F Environmental, Inc.

P.O. Box 26537

Austin, TX 78755 (512] 251-5543

$450 : OEM Pricing and Licenses Available

Demonstration Diskette S10

applicable to purchase

CIRCLE 15 ON READER SERVICE CARD

86 COMPUTER LANGUAGE ■ APRIL 1965

large three-ring binders with tutorials,

full descriptions of all utilities, descrip

tions ofeach library function, and more.

Only an index is lacking.

K&R is fully supported, except for the

bitfield data type. Scanning the bench

marks, it's hard to resist the conclusion

that Manx blows away the competition for

pure compilation speed. Unburdened by

trips in and out of the Finder and helped

by the Shell's clean handling of two disks,

the total compilation and link time in

every benchmark is at least 40% less than

the nearest competitor. Manx also does

well in code size and run time. The com

piler could only handle six levels for each

pointer in the dereferencing benchmark.

I found the shell a pleasure to work in

{but be warned. I'm an old UNIX hacker!)

and the illusion ofa more conventional

computer is complete. All in all an excel

lent effort.

With a great deal of trepidation, I

chose to run each compiler in its most

"natural" mode, and this produced the

times in the Table 2. By natural mode I

mean that I used any shortcuts that

presented themselves automatically as

part of the run process. I did not use

tools (such as Aztec C's RAM disk or

Megamax's optimizer) that require

separate initialization or run as an

additional step in compilation. I did

not count time for user-dependent

actions, such as typing in a file name to

a dialogue box.

In addition. I have provided for the

Sieve benchmark a more elaborate

table showing each step in the process

for each compiler. This gives the

reader an idea where the time goes,

The wise reader will bear in mind that

steps involving the Finder are not a

fixed length since they depend on the

complexity of the Mac desktop and

other factors. Furthermore, as new

tools become available (for example,

better batch utilities) and the MDS sys

tem is improved, these compilers may

improve their performance. If time to

compile is all that is holding you back

from a particular compiler, you would

do well to call the manufacturer and

inquire for the latest information.

Debugging Bugging You?
Torpedo program crashes and debugging delays with

debugging dynamite for the IBM PC ...

UP PERISCOPE!

First, you install the hardware.

The hardware's a special memory board

that fits in a PC expansion slot. Its 16K of

write-protected memory contains

Periscope's resident symbolic debugger. No

runaway program, however berserk it may

be, can touch this memory!

Then you UP PERISCOPE.

Use Periscope's push-button break

out switch to interrupt a running

program ... even when the system's

hung! Periscope supports Assembly,

BASIC, C and Pascal. In addition to the

usual debugging capabilities, some of

Periscope's features are:

Stop your system in

its tracks at any time.
■- .■

Use symbol names instead

of addresses.

Run a program on one monitor and

debug on another.

Monitor your program's execution

with Periscope's comprehensive

breakpoints.

Debug memory-resident programs.

Put your time to better use.

The Periscope system is $295. It carries a 30-day money-back

guarantee and includes the memory board, remote break-out

switch, debugger software, 100-page manual, and quick-

reference card. The memory board is warranted for one year. A

demonstration disk is $5.00.

System requirements for Periscope are an IBM PC, XT, AT or

Compaq, PC-DOS, 64K RAM, 1 disk drive and an 80-column

monitor. For MasterCard and Visa orders only, call 800/421-

5300 (ext. R96) 24 hours a day. For additional information, call

404/256-3860 from 9 AM to 5 PM Eastern Time.

Get your programs up and running;

up PERIS'
Data Base Decisions / 14 Bonnie Lane /Atlanta, GA

CIRCLE 30 ON READER SERVICE CARD

87

Megamax C

The Megamax C compiler is unique

among those tested in that it produces

linkable object modules directly from its

compiler without an intervening assembly

step. The system operates from the

Finder, but it is not MDS based-—

Megamax provides its own linker. Mega

max does ship prerelease versions of some

of the MDS utilities, including Edit and

RMaker.

Compilation takes place by double-

clicking the Megamax icon. When

loaded, the C compiler requests the name

of a file to compile. As the expanded

Sieve benchmark indicates, compilation

time (excluding loading of the compiler

from the Finder) is very fast. The first

time I ran Megamax, the compiler came

back so fast that I thought compilation had

failed, and I recompiled several times

before I figured out what was happening!

The linker works similarly (but more

slowly), taking a list of files.

Megamax supports in-line assembly, an

important feature since there is no assem

bler associated with the system. Megamax

also supports overlays—in fact, applica

tions compiled under Megamax always

have at least two code segments: an ini

tialization and a main (you don't have to

do anything to set this up). The initial

ization segment runs and then is replaced

by the main. (Incidentally, the code sizes

C Productivity Series—
The Professional's Edge

Blaise Computing has a

range of programming aids for

[he most popular C compilers in

[he IBM environment (hat no

serious system developer should

be without. These packages help

you lo easily access advanced

capabilities of [he hardware and

operating system, and lo finish

your projects with a substantial

savingof(imeandeffort. With

software development costs and

pressures as great as they are,

can you afford nol to take advan

tage of ihc finest tools available?

♦ C TOOLS" puts advanced

siring handling functions ai

your disposal and provides a

high-level interface (o all

BIOS funciions from your C

program. Complete screen

handling, graphics primi

tives, and a substantial group

ofuseful, general-purpose

functions are also featured. S125

♦ CTOOLS2"letsyourpro-

gram perform all the ad

vanced DOS 2.0 services.

Program chaining, software

intcrrupl handling, and dy

namic memory allocation arc

all done "right." Buffer and

file handling functions are

provided, as well as a gen

eral DOS gate. 5100

♦ C VIEW MANAGER" is

our display screen manage

ment system that makes

screen development and doc

umentation much faster. It

comes with a complete

library of C functions which

use the screens you have de

veloped (o recall and display

information, capture and

validate field data entry, and

provide context-relevant

help files. $275

♦ ASYNCH MANAGER is a

library of intcrrupt-driven

routines providing a general

interface lo both COM ports

for your asynchronous com

munications applications.

Introductory price of SJ7S

includes all source.

All of these products may be

used by developers with no

royalty payments to Blaise Com

puting. Source code cither

comes with the package, or is

available. We support Lattice.

Computer Innovations, and

Microsoft C compilers. To expe

dite your order or to obtain fur

ther information, call or write us

directly.

Btaite Computing i Programmer

Productivity serin is also available in

versions for the Pascal language.

BLAISE COMPUTING INC.

2034 Blake Street Berkeley. CA 94704

(415) 540-5441

in the chart combine both segments. In

our benchmarks [he initialization segment

was small, averaging 150 bytes.)

Besides the utilities already mentioned,

Megamax includes a disassembler (cur

rently undocumented), which is useful

since there is no other easy way to see

what kind of code the compiler produced.

Most intriguing of all is a code optimizer

called mmimp. I tried it on Matrix and

got an improvement of only 40 bytes, but

in a larger application it might well be

more useful.

Megamax has a librarian for creating,

listing, and appending to libraries. The

compiler supports the Mac ROM rou

tines. Documentation is good. A well-

organized three-ring binder includes

instructions, descriptions of the library

functions, full technical documentation

on library and object module formats,

and machine dependencies. The library

sources themselves are not included.

K&R seems to be fully supported.

I had to remove the void type from Fib

and include stdio.h in Matrix (it contains

the definitions of getchar and putchar).

After that everything compiled easily.

Like several of the compilers, Megamax

couldn't interpret the bell character and

printed instead the ubiquitous Macintosh

box character.

Softworks C

Softworks C is based largely on White

smiths C, whose implementation has

been around for a number of years on a

wide variety of systems. It runs under the

Finder and produces assembly code for

the Apple MDS. The MDS prerelease

system is shipped with the compiler.

Libraries are provided as several large

object files. Whitesmiths won't let Soft-

works provide source for its libraries, so

only Mac-specific source is provided.

Documentation consists of a machine-

independent Whitesmiths C manual, the

MDS documentation, and four sheets on

the compiler. The Whitesmiths manual is

not very useful since it mainly describes

the functions based on UNIX version 6,

while Softworks has wisely chosen to sup

port the version 7 functions, familiar to

K&R readers.

You will note in the benchmarks that

Softworks code is large. Softworks shares

with all the MDS-based systems the prob

lem that "dead" code is not detected by

the linker. That is, if you link in an object

module containing 50 routines, you are

stuck with all that code even if your appli

cation only calls one of the routines.

The problem is exacerbated in Soft-

works C, however, since the libraries

provided are quite large and the user can

CIRCLE 8 ON READER SERVICE CARD

88 COMPUTER LANGUAGE ■ APRIU985

ADVANTAGE*
At Programmer's Connection we listen to programmers

and we take the time to research and test our products.

We are confident in our knowledge of the software

market and that's why we welcome your inquiries. Our

goal is to help you make an informed decision when

purchasing a programming language or utility. Call us

today — you'll discover the difference. Programmer's

Connection will revolutionize the way you think about

software development.

Discover the advantages of buying from Programmer's Connection:

1. We offer the latest version of a product.

2. Most popular products are in stock ready to be shipped.

3. Receive same manufacturer's support as if buying direct.

4. Experienced professional programmers are on staff.

5. Choose from a large selection of the best software products available.

6. Knowledgeable and courteous sales staff.

7. Significant discounts off of retail prices.

8. No extra charge on prepaid orders, including major credit cards.
9. Reasonable charges for shipping and handling.

10. Toll free services from Canada and the Continental U.S.

Programmer's Development Tools:

C LANGUAGE: List Ours

Computer Innovations C-86 Compiler 395 299

DeSmet C Compiler with Debugger 159 145

Lattice C Compiler from Lifeboat 500 299

Mac C by Consulairfor Macintosh 295 259

Mark Williams C Compiler w/Source

Debugger 500 449

Xenix Development System by SCO 1350 1099

Special Combination Offer

Lattice C Compiler and

C-SPRITE Symbolic Debugger

Combined List Price $675 Our Price $429

OTHER LANGUAGES:

8088 Assembler w/Z-80 Translator 2500 AD . 100 89

APL*Plus/PC by STSC 595 499

BetterBASIC by Summit Software 200 169

Golden Common LISP by Gold Hill 495 439

Macro Assembler by Microsoft . New Release 150 119

Modula-2/86 by Logitech 495 439

Professional BASIC by Morgan Computing . 95 89

C UTILITIES:

Asynch Comm Library by Greenleaf 160 129

C Power Paks from Software Horizons Call Call

C-Sprite Symbolic Debugger for Lattice 175 159

C Utility Library by Essential Software 149 119

dBC dBase/C Interface by Lattice 250 219

DOS LINK Support for DeSmet C 35 35

English-to-C/C-to-English by Catalytix 100 100

ESP for C by Bellesoft 349 279

Graphic C by Scientific Endeavors 195 169

Greenleaf C Functions Library 175 129

Halo Graphics by Media Cybernetics 200 125

PANEL Screen Editor by Roundhill 295 234

Run/C Interpreter by Age of Reason 150 129

Introducing Pre-C by Phoenix Software

Complete lint-like utility that helps detect

logic errors by searching for inconsistencies

in functions and data types across multiple files.

List Price $395 Our Price $339

C UTILITIES:
Safe C Standalone Interpreter by Catalytix . 400 400

Safe C Dynamic Profiler by Catalytix 150 150

Safe C Runtime Analyzer by Catalytix 400 400
Windows For C by Creative Solutions 195 139

C-tree by Faircom

Full featured B-Tree functions for high speed ISAM

file management. Comes as C source code which

can be compiled on almost any system including

Macintosh. Wo royalties on generated code.

List Price $395 Our Price $359

OTHER PRODUCTS:

APL2C by Decision Images Interfaces APL toC

Btrieve by SoftCraft

Dr. Halo by Media Cybernetics

FORTRAN Libraries by Alpha Comp. Serv, ..

FORTRAN Scientific Subroutine Library . . .

Periscope Debugger by Data Base Decisions

Pfix-86 Plus by Phoenix

Plink-86 Overlay Linker by Phoenix

Pmate Macro Text Editor by Phoenix

Polytron Products We Carry a Full Line

Profiler by DWB Associates

Screen Sculptor by Software Bottling

XTC Text Editor by Wendin

Xtrieve by SoftCraft Sale!

150

250

95

Call

175

295

395

395

225

Call

125

125

99

139

199

79

Call

159

269

299

299

159

Call

89

109

89

195 149

CODESMITH-86 Symbolic Debugger by Visual Age

New version 1.9 provides dual-mode patching

assembler, branch-to-patch mode, stop-on-data

compare/mis-compare, dual monitor debug mode,

breakpoints and passpoints, machine state snapshot

and hotline technical support.

List Price $145 Special Price $119

CIRCLE 27 ON READER SERVICE CARD

Prices are subject to change without notice.

Account is charged when order is shipped.

Call for our new Spring Catalog ,n Canada:

1 -800-336-1166 1 -800-225-1166
Programmer's Connection
136 Sunnyside Street
Hartville, Ohio 44632

(216) 877-3781 (In Ohio)

"Programmers Serving Programmers"

89

('(V-J:<.

MICROTEC

RESEARCH
39?O F-ectioni Circle SuHe !Qt Sflila Oaia C" 96054

Vailing Ad&ess PO. Boy 60337. Sunnyvale, CA 94088

,408) 73.1 2919 • Telex lITT) 4990808

CIRCLE 49 ON READER SERVICE CARD

MDS-based systems

By the time you read this, Apple's

long-awaited Macintosh 68000 Devel

opment System (MDS) may well be

available. The Consulair and the Soft-

works C compilers reviewed here

depend on this system for their assem

bly and link and each is currently

shipped with a prerelease version of it.

This practice will be discontinued

when the release version is available.

The following is a short description

of development on the MDS systems.

You work under the Finder in the

conventional Mac environment. The

programmer prepares the C source

code using Apple's editor. Edit. This is

a text-only editor similar to MacWrite

without the font and graphics frills

and supporting up to four files open

at once.

The finished source is compiled by

clicking on the chosen company's C

compiler, which loads and puts up the

usual Mac file menu. The user selects

the file to be compiled and compilation

begins. The compiler invokes the

assembler in case of a successful com

pile, otherwise it calls up the editor on

the offending source and the error list

ing. The assembler can also be called

separately.

The developer needs to prepare for

the linker a short text file that lists the

modules to be linked and provides for

a number of listing options. The linker

is invoked similarly to the compiler

and assembler. It produces a .MAP file

showing the memory location of rou

tines and variables.

The MDS provides two tools that

can speed up your work. First, each

utility in the system (editor, assembler,

linker) has an entry "Transfer" in its

menu bar. From the pull-down menu

you can select one of the other utilities

and bypass a trip through the desktop

between, for example, the editor and

assembler.

The other timesaver will be the Exec

program, which is a batch file utility.

This is not in prerelease versions of

MDS, but it is a welcome sight on the

horizon for desk-bound developers

tortuously guiding the Mac through the

compile process when they could be

grabbing a snack. (Consulair is ship

ping its own Exec utility until Apple's

is ready. I did not test it for this review.)

The MDS also includes a resource

compiler called RMaker which can

produce resource files from a text file

that defines them. (Resource is Mac

parlance for data that can be shared

among various applications and/or has

a logically modular nature. Fonts are

perhaps the best known resource.) And

the system comes with a fine assembly

level debugger.

Incidentally, even the compilers that

don't use the MDS assembler and

linker are shipped with prerelease ver

sions of some MDS tools, usually

including the resource compiler. The

particular elements vary: if the entire

system is not yet commercially avail

able when you buy your compiler,

check with the manufacturer to see

which pieces are currently shipped.

Bundled software and essential information

Consulair

Hippopotamus

Software

Manx

Megamax

Softworks

MacC

Hippo-C

level 2

Aztec C

68000

level c

MegamaxC

Soflworks C

S425.00

S399.95

$499.00

S299.95

S395.00

1.0

1.0

1.06C

(D avail)

1.2

1.0

yes

yes

yes

(2)

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

no

no

no'

no

no

no

3

2

1

1

3

no

no

yes

yes

no

ASM

ASM

ASM

OBJ

ASM

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

1. Level 1 has a source level debugger.

Table 1.

91

SOFTWARE

DEVELOPERS!

V-FILE

THE VIRTUAL MEMORY

FILE MANAGER

Let V-FILE save precious development

nme & cost as you create efficient appli

cations with the power of VIRTUAL MEMORY.

DON'T RE-INVENT THE WHEEL

Why spend weeks or months coding and

debugging file and memory management

systems when you can order V-FILE today.

V-FILE is a library that you can link with

your code to provide sophisticated virtual

file and memory management — allowing

you to concentrate on developing your

application.

VIRTUAL DATA

OBJECTS SUPPORTED!

Data is referenced by using VIRTUAL

MEMORY DATA HANDLES. Your code

doesn't need to know whether the data

is actually on disk or in RAM. Swapping

between disk and RAM and updating files

on disk is handled automatically and trans

parently! Complex VIRTUAL DATA

STRUCTURES can be created by linking

with data handles instead of pointers.

CHECK THESE FEATURES!

Multiple, independent swap buffers

Multiple files per swap buffer

Highly efficient swap algorithm

Automatic file updating

Data prefetching supported

Data may be locked :n memory

Memory buffers may be flushed

Makes full use of extended memory on

IBM PC/AT

SOURCE CODE AVAILABLE

NO ROYALTIES REQUIRED

Supports Dos 2.00+ with

Lattice & Microsoft C compilers

Supports Microsoft windows

Conucr

MindBank. Inc.

4620 Herey Streei

Pittsburgh. PA 15213

412/683-9800TM

VISA/MASTER CARD ACCEPTED

CIRCLE 63 ON READER SERVICE CARD

92 COMPUTER LANGUAGE ■ APRIL 1985

neither recompile smaller ones (there's

no source for the standard libraries) nor

extract only the desired routines (no

library utilities exist in MDS, at least in

the prerelease). Softworks supports the

Mac ROM routines, and if you write your

code using only the ROM for I/O (no C

library functions), the executable will be

much smaller since you need not link all

the libraries. But of course it's not por

table C ifyoudothat.

Softworks is K&R compatible with a

few quirks. All globals must be in a single

file, and all globals must be initialized.

Local statics are not supported. You can't

initialize a pointer to a function at compile

time, and you must use a special function

to take a function's address at run time.

The last line in a source file must be

blank. Any routine that includes stdio.h

must also include a file called std.h.

Once I made the changes indicated, the

programs compiled without problem. The

size of the various utilities makes it almost

impossible to go through the entire com

pilation process without at some point

moving a file (either the .ASM or .REL)

from one disk to another—in fact, this is

what Softworks recommends. The extra

time this adds is reflected in the bench

mark charts (see especially the expanded

Sieve benchmark). Like several com

pilers, Softworks printed the bell charac

ter rather than ringing the bell.

In summary

For those of us who bought a Mac back in

the first months of its existence, it is an

indescribable pleasure to have all those

months of "Real Soon Now" products

finally coming through. Developers in

particular have had a hard time of it on the

Mac with only BASIC to satisfy creative

cravings.

Now, in a relatively short time span, we

Benchmark results1 (sec)

Sieve

Compiler

Consolatr
Hippo level 2

Manx

Megamax

Softworks

Fib

Compiler

Consulair

Hippo level 2

Manx

Megamax

Softworks

Compile/

assemble

86

42

20

21

174

Compile/

assemble

91

37

24

21

169

Link

66

60

29

93

107

Link

71

60

34

83

130

Total

152

102

49

114

281

Total

162

97

58

104

199

Mocptr (Levels of pointer reference in parenthesis)

Compiler

Consulair (40)

Hippo level 2 (26)

Manx (12)

Megamax (40)

Softworks (40)

Matrix

Compiler

Consulair

Hippo level 2

Manx

Megamax

Softworks

Compile/

assemble

88

38

19

27

170

Compile/

assemble

25

24

194

Link

74

59

37

97

120

Link

42

100

150

Total

162

97

56

124

290

Total

Run

load

10

3

2

8

10

Run

load

8

4

3

9

11

Run

load

10

3

2

10

12

Run

load

no floating point

no floating point

67

124

344

5

9

13

Run

10

13

7

7

9

Run

35

46

29

26

28

Run

6

5

4

5

3

Run

19

34

23

Size

(bytes)

17,654

30,648

13,274

13,816

46,914

Size

(bytes)

9,388

22,366

5,052

5,594

29,592

Size

(bytes)

9,494

22,454

5,106

5,684

29,646

Size

(bytes)

17,348

17,448

49,576

1. "Run load "is the time until the first priVir statement appears on the screen. "Run" is the time from
that point until the last print statement appears on ihe screen. The "Run" time thus lets you campore
the time spent executing the core of ihe program. For the Macptr program, "Run load" is ihe time until
the second print statement appears—the time to load the pointer array is included here, rather than in
the "Run" time. "Size" is a decimal number in bytes. It represents the total size of the program when
loaded inlo RAM and includes the size of uninitialized global and static data, which is not present in
the executable on disk.

Table 2.

have had at least five C compilers hit the

market (as well as implementations of

Pascal, Modula-2, and an improved

BASIC). Released from the torment of

waiting, many of us will surge lemming-

like into our nearest software shop and

buy the first C compiler we see. I know I

did, anyway!.

The good news is that if it's one of the

five I've reviewed here, you will have a

sound piece of software that works as

advertised. Of course there's always the

possibility that there's something radi

cally wrong with one or more of these

products that our benchmarks didn't turn

up, but I doubt it.

But, as the sane, conscientious, orga

nized, and superbly balanced sort of

human being who chooses programming

as a profession or hobby, you will proba

bly want to think a bit more carefully

about your choice. You might want to

consider three areas:

■ What sort of interface do you like? Are

you a traditionalist, who likes mneu-

monics cryptic and unintelligible to

those without special knowledge? Do

you think icons are best left in Eastern

churches? Then the Manx compiler might

be for you (it's got great benchmarks too).

Maybe, on the other hand, you think

the Mac interface is the greatest thing

since sliced toast and the computer for

the rest of them is also the computer for

us originals. If so, take a close look at

Consulair, Megamax, and Softworks

compilers.

Or maybe you're somewhere in

between. Check out Hippo-C, where you

can be Macish one day and UNIXish the

next. (Don't forget, they all support the

Mac interface in your application. What

we're talking about here is just the devel

oper environment.)

■ Do you put a premium on following the

Compiling the Sieve of Eratosthenes benchmark1 (sec)

Consulair Mac C (from the Finder)

Load compiler from Finder

Compile and assemble

Transfer to linker

Link

Return to Finder

16

70

15

32

19

Hippopotamus Hippo-C level 2 (from the Hippo operating system)

Compile pass 1

Compile pass 2

Assemble

Link

Manx Aztec C (from the Shell)

Compile and assemble

Link

Megamax C (from the Finder)

Load from Finder

Compile to object module (no assemble)

Load linker

17

9

16

60

20

29

15

7

9

Link

Return to Finder

Softworks C (from the Finder)

Load from Finder

Compile and assemble

Return to Finder

Copy . REL file to second disk

Load linker

Link

Return to Finder file to second disk

Load linker

69

15

25

109

15

25

17

72

18

17

1. For eachi compiler tested, (his chart specifies each step in compiling, assembling, and linking the
Sieve benchmark and reluming to a point where the resulting application could be run. Steps which
are user dependent (for example, selecting a file name or typing in a command line) are omilled. The
user is reminded that steps involving the Tinder con vary significantly (perhaps 5 sec either way)
depending on the complexity of the desktop and other factors.

Table 3.

"This is a beautifully

documented, incredibly

comprehensive set of

C Function Libraries."

— Dr. Dobb's Journal

COMPLETE

SOURCES

PACK I: Building Blocks I $149

~ 250 Functions: DOS,
Printer, Video, Asynch

PACK 2: Database $399

100 Functions: B-Trees,
Variable Records

PACK 3: Communications $149

135 Functions: Smart-

modem™, Xon/Xoff,
Modem-7. X-Modem

PACK 4: Building Blocks II S149
100 Functions: Dates,

Text Windows,

Pull-down Menus
Data Compression

PACK 5: Mathematics I S99
35 Functions: Log, Trig.

Square Root

PACK 6: Utilities I $99
Archive, Diff, Replace, Scan,
Wipe (Executable Files only)

Lattice"1', Microsoft1'-. DeSmet™,
CI-86IV Compilers on IBM PC/XT/AT"

Small and Large Memory Models.

Credit cards accepted
(S7.00 handling/Mass, add 5%)

SOfTWflRf

HORIOIS
inc.

165 Bedford Street

Burlington, Mass. 01803

(617) 273-4711

N0VUM ORGANUM
CIRCLE 25 ON READER SERVICE CARD

93

Manufacturer

Consulair Corp.

140 Campo Dr.

Portolo Valley, Calif. 94025

(415)851-3849

Hippopotamus Software

1250Ookmead Pkwy. Ste. 210

Sunnyvale, Calif. 94086

(408)730-2601

Manx Software Systems

P.O. Box 51

Shrewsbury, N.J. 07701

(800)692-1700

Product

MacC

v. 1.0

Hippo-C level 2

V. 1.0

Aztec C 68000

level c

Megamax Inc.

P.O. Box 851521

Richardson, Texas 75085-1521

(214)987-4931

Softworks Inc.

607 West Wellington

Chicago, III. 60657

[312)975-4030

Megamax C

v. 1.2

Softworks C

v. 1.0

ANNOUNCING . . . COMPUTER LANGUAGE'S

C Seminar/Workshop
Cambridge, MASS

September 1985

Plans are being set now for COMPUTER LANGUAGE'S C

Seminar. The 2'/2 day event will be held in the fall of I 985

in beautiful Cambridge.

Details concerning the topics, speakers and dates will be

announced soon. This seminar will be the most

comprehensive and practical session ever held about the C

programming language.

Become involved in this event from

the

coupon

e start by filling out this ****** 1

xjpon today: "aZ^^^^ »

- n P\eose se1 -is. . 0,. ^— \

Send to: COMPUTER LANGUAGE Seminar

31 Townsend Street • San Francisco, CA 941 07

guidelines the hardware manufacturer has

set up? If so. Consulair and Softworks

compilers, which are integrated with

Apple's own development system, should

get special attention from you.

■ If it's only speed and size you care

about, check out the benchmarks. But

read them with caution. Man docs not live

on numbers alone.

My list could go on: UNIX freaks

should look at Manx and Hippo com

pilers; beginners might like Hippo-C level

I (full tutorial on line, and it goes from

compile through link with one menu com

mand); Whitesmiths' compilerjunkies

should remember that it's the starting

point for the Softworks compiler; Mega-

max's has the best benchmarks for a

Finder-based system; etc., etc. In the end

it comes down to your application. I

hope we've given you enough information

to begin thinking about your choice.

If not, do what I did. Run out to your

nearest software store and buy the first

one you see! H

Michael Rothman is manager oftools pro

grammingfor Spinnaker Software, Cam

bridge, Mass. He has held a number of

positions in tools programmingfor mini

and microcomputers.

CIRCLE 98 ON READER SERVICE CARD

94 COMPUTER LANGUAGES APRIL 1985

Wi th
PROFESSIONAL PROCRBMMINC

ENU1RONMENT

ELIMINfiTES

LINE

NUMBERS

fiLLOWS

MULTI-LINE

CONDITIONALS

FCDOS/MSDOS

WORKS WITH

BfiSICfl

INTERPRETER

COMF1LER

FULL ERROR

LOGGING

PROGRAM

LISTER

BENDORF
ASSOCIATES
60B6 S. HA IN

P.O. BOX 5910

ROSWELL, NM

Bezel

505 347-5701

UISA/MASTERCARD

LABELED

PROCEDURES

MRCROS

SUB-ROUTINES

LIBRARIES

CIRCLE 6 ON READER SERVICE CARD

BYSO™ LISP
has features that will delight

both beginners and advanced

programmers. A fast, reliable

and complete interpreter for the

IBM PC and true compatibles.

$125 includes 100 pg. ref.

manual and application notes

that put you months ahead on

useful projects (making a hybrid

language with C, accessing

system functions and I/O ports,

building your own dialect, etcj.

LEVIEN INSTRUMENT CO.

P.O. Box 31G

McDowell, VA 24458

703-396-3345
IBM PC is .i trademark tit ihe IBM Corp.

A general purpose programming

language for string and list

processing and all forms of

non-numerical computation.

SNOBOL4+ -ihMinir,
SNOBOU language with Ms superb pollern matching

facilities-Strings over 33.000 bylm in length •Iniegt

nnd ilcQrinn poml usmc) 808' Of Supplied on^uloio' j

• ASCII bmary. sequential and random ^^* ^^

access I O" Assembly Language mier irf(#* k \+ r

SAVE files-

X^1 .A>

88 PC MS-DOS oi

5U DSDD spetily DOS CPMlormot

ji" Sendcheck, VISA M C 10. $95

' Catspaw, Inc. i*.i«ha
P.O. Box 1113' Solido. COBI50I • 303 5393884

CIRCLE 9 ON READER SERVICE CARD

Users'

Group
Over 40 volumes of public

domain software including:

• compilers

• editors

• text formatters

• communications

packages

• manyUNIX-liketools

Write or call for more details

TheC Users' Group
415E. Euclid-Box97

McPherson, KS 67460

1316)241-1065

PC BASIC PROGRAMMER'S UTILITIES

TRACE—COMPILE—COMPARE

AUTOTRACE powerful single-step or continuous

trace in COMPILE D or interpreter BASIC. BREAK

on variables or line numbers. Charge values at any

time. RECALL screen displays —save text that scrolls

off your screen. Full 80-column printout saves

paper; only CHANGED variable values printed.

Save trace to disk. This utility finds your logic errors

Fasti!

AUTOCPL precompiler system. Automates compile/

link process. No more manual editing to remove or

change code (or compilation. No more separate

versions to save. Include SLASH/N to remove line

numbers. Now compiling is easy, fast, automatic!!

AUTOCOMPARE fast compare of two programs or

ASCII files. Printj 132-column or 80-column record

of all differences, or save to disk. Includes utility to

compare WORDSTAR |R) files. NEW! will unformat

indented ASCII Files to allow easy editing with

WORDSTAR. Save hours of manuol reformatting.

$49.95 each (ench includes RAMdisk & SPOOLER)

AII3fcrS99.95;S/HS2.50ea.

TIMESHARE ASSOCIATES, INC. Dept. L

10202 Robinson

Overland Park, KS 66212

(913)642-7564

OPT-TECH SORT

SORT/MERGE program for

IBM-PC, XT & AT

Now also sorts dBASE II files!

• Written m <-,■-:. language tot high psriorminca

Example 4.000 records of '28 Dyies sorted lo give

Key & pointer tile in 30 seconds COMPARE!

• Sort ascending or descending on ld to nine f ems

• Ten input liias may De soled or merged at one time

• Supports many tile struciures & data types

• Fiiesize limited only Dy your disk space

• Output tile can be lull records, keys c pointers

• Can De run from keyDoard or as a Datch command

• Can De called as a subroutine to many languages

• Easy to use — Fully documented

• 199 - VISA. M/C. Ctieck. Money Order, COD. Of P0

Quantity discount and OEM licensing available

To order or to receive additional information

write or call:

OPT-TECH DATA PROCESSING

P.O. Box 2167 Humble, Texas 77347

(713) 454-7428

Requires DOS, 64K and One Disk Drive

CIRCLE 5 ON READER SERVICE CARD CIRCLE 80 ON READER SERVICE CARD CIRCLE 62 ON READER SERVICE CARD

FoxBASE™
Interpreter/Compiler

dBASE IIs source compatible

Runs 3-20 times faster than

dBASE II

8087 coprocessor support

14 digit precision

Up to 48 fields per record

Full type-ahead capabilities

Provides compact object code

and program security

Twice as many memory variables

as dBASE II

FOX SOFTWARE INC.
13330 Bishop Road. P.O. Box 269.

Bowling Green, OH 43402

419-354-3981
estern Wares 303-327-4893

B01C • Nor^ooo CO8W3

CIRCLE 29 ON READER SERVICE CARD CIRCLE 41 ON READER SERVICE CARD

Scroll & Recall'
Screen and Keyboard Enhancement

for the IBM-PCXTAT& Compatibles

Aliowsyou to convenientlyscro:lback

through data thathasgone oil the lop

olyour display screen. Upto27pages

of data can be recced or wntten to a

disk file.

AJows you to recall, edit and re-enter

your previously entered DOS com

mands anddata lines, without retyping

Very easy to use, fully documented.

Compatible with all versions of DOS.

monochrome S graphic displays.

$69 ■ Visa. MC, Check, COD. POs

Make Your Work Easier!

To Order or 10 Receive Additions

Informaiion. Write 01 Ca I

Opt-Tech Data Processing
P 0 Bo» 2167 ■ Hurrto. Texas 773^7

(7131454-7428

Dealer Inquires Welcome

CIRCLE 64 ON READER SERVICE CARD

95

ADVERTISER INDEX

PAGE CIRCLE

NO. NO.

Automata Design Associates 39 1

Amber Systems 25 2

Atlantis Publishing Corp 37 3

BD Software 60 4

Bendorf & Associates 95 6

Blaise Computing Inc 88 8

Borland International cover IV 10

C Systems 78 16

C Users Group 95 5

CWare 45 11

Catspaw Inc 95 9

Code Works (The) 54 42

CompuServe 69 7

Computer Helper Industries 77 12

Creative Solutions 38 14

DWB Associates 81 21

Data Base Decisions 87 30

Datolight 39 19

David Smith Software 48 36

Echelon Inc 42 22

Ecosoft 73 17

Edward Ream 96 ""

Entelekon 14 24

Essential Software Inc 71 18

FairCom 48 26

Fox Software 95 29

C Source Code

RED

Full Screen Text Editor

IBM PC, Kaypro, CP/M 80 and CP/M 68K systems.

• RED is fast! RED uses all of

your terminal's special (unc

tions for best screen response.

RED handles files as large as

your disk automatically and

quickly.

• RED is easy to use for writers

or programmers. RED's com

mands are in plain English.

• RED comes willl complete

source code in standard C.

RED has been ported lo main-

frames, mims and micros.

RED comes with a Reference

Card and a Reference Manual

that provides everything you

need to use RED immediately.

RED is uncondiiionally

guaranteed. If for any reason

you are noi satisfied with RED

your money will be refunded

promptly.

RED: S95

Manual: $10

edwardk ream

Call or write today for

for more information:

Edward K. Ream

1850 Summii Avenue

Madison, Wl 53705

(608) 231-2952

To order:

Either the BDS C compiler or the A/iec CM compiler is required for CfVMSO

Systems. Digital Research C compiler vl.l is required tor CP/M 6SK systems. No

compiler is required for IBM or Kaypro systems.

Specify both the machine desired (IBM, Kaypro or CP/M) and ihe disk formal

described (8 inch Cp/M single density or exact lype ot" 5VS inch disk).

Send a check or money order for S95 ISI05 U.S. fat foreign orders). Sony, I do

NOT accept phone, credit card, or COD orders. Please do not send purchase orders

unless a check is included. Your order will be mailed to you within one week.

Dealer inquiries invited.

Gimpel Software

Greenleaf Software

HSCInc

Harvard Softworks

Hippopotamus Software

76

58

49

73

39

Information Systems Inc 61

Inmos Corp

Introl Corp

KC Systems

Laboratory Microsystems Inc

Lattice Inc

Levien Instrument Co

Lifeboat

Lifeboat

Lugaru Software Ltd

mbp Software & Systems Technology

MEF Enviromental

MEF Enviromental

8

59

54

73

74

95

56

81

64

33

86

39

Manx Software Systems cover HI

Megamax Inc 77

Micro Focus 18

Micro Methods 77

Micro Software Developers 50

MicroTec Research Inc 90

Mtcromotion 64

Mindbank Inc 92

Nantucket 2

Next Generation Systems 52

Northwest Computer Algorithms 77

Op-Tech Data Processing 95

Op-Tech Data Processing 95

Phoenix Computer Products Corp 6, 7

Polytron 34

Poor Person Software 79

ProCode 80

Programmer's Connection 89

Programmer's Shop (The) 84

RR Software cover 11

RTL Programming 82

Rational Systems Inc 75

Realia Inc 85

SLR Systems 61

STSC

Seven Seas

Shaw American Technologies

Soft Craft Inc

Softaid Inc

Software Horizons

Solution Systems

Solution Systems

Solution Systems

Solution Systems

Spruce Technology Corp.

4

50

79

11

82

93

67

23

84

84

24

Systems Guild 12

Thunder Software 86

Timeshare Associates Inc 95

UniPress 79

Uniworks 1

Western Wares 95

Whitesmiths Ltd 40

Wizard Systems 82

Workman & Associates 82

Zeducomp 46

The index on this page is provided as a service to our readers. The

publisher does not assume any liability for errors or omissions.

.38

.44

31

.47

.39

.20

.40

.32

.45

35

.48

.85

.87

.51

.53

.15

.55

69

.13

.84

.52

.54

.49

56

.63

59

.61

.46

62

.64

66

.88

.67

.60

.27

.70

.58

.71

.72

.76

.73

.74

.28

34

.75

.78

.25

94

.37

.91

.92

.33

.89

.65

.80

.81

.82

.41

.43

.86

.68

.83

96 COMPUTER LANGUAGE ■ APRIL 1985

FREE INFORMATION

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22481 SAN FRANCISCO, CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

April issue. Not good if moiled ofier Augusl 31. 1985.

Circle numbers tor which you desire Information.

I obtained this issue through:

□ Subscription LJ Passed on by associate

□ Computer Stce J Other

! : Retail outlet

1 21 31 4! 51 61 71 61 91

2 22 32 42 52 62 72 82 91

3 23 33 43 53 63 73 83 93 103 113 123 133

i 24 34 44 54 64 74 B4 94 104 M4 124 134

i 25 35 45 SS 65 75 85 95 105 MS 125 135

D 26 3fl 46 56 66 76 86 96 106 116 126 13<S

7 27 37 47 57 07 77 87 97 10? 117 127 137

28 38 48 58 68 78 88 98 108 118 128 138

' 19 29 39 49 59 69 79 89 W 109 119 129 139

10 20 30 40 50 00 70 80 90 100 110 120 130 140 15C

101 11! 121 131

10? 112 122 132

Attn: Reader Service Dept.

FREE INFORMATION
NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATEfl

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 32481 SAN FRANCISCO, CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

City. Stale. Zip

Country . Telephone number.

Apnl litue. No! good II mailed after August 31. 1985.

Circle numbers tor which you desire Information.

I obtained this issue through:

171 Subscription I i Passed on by associate

D Computer Store : i Other

.: Retail outlei

Comments

11 II 31

12 22 32

13 23 33

14 2-4 34

15 25 35

16 26 36

17 27 37

51 61 71 81 91 101

52 02 72 82 92 102

3 S3 63 73 83 93 103

44 54 64 74 34 94 104

55 65 75 85 95 105

56 66 7t 86 96 106

7 57 67 77 87 97 107

8 18 28 38 48 58 68 78 88 98 108

9 19 29 39 49 59 69 79 89 99 109

10 20 30 40 50 60 70 80 90 100 110

111 121 131 141

112 122 132 142

113 123 133 143

114 124 134 144

115 125 135 145

116 126 136 146

117 127 137 147

1IB 128 138 143

tl9 129 139 149

120 130 140 ISO
Attn: Readef Service Dept. 2/4

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 PHILADELPHIA. PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

COMPUTER

SUBSCRIBE LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.95—over

30% savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost

is only $24.95 for 1 year (12 issues).

D I want to increase my savings even more—send me 2 years (24

issues) of COMPUTER LANGUAGE for only $39.95.

D Payment enclosed D Bill me

Name

Company

Address

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S.

funds. Canada orders $30.95 per year. Outside the U.S., $36.95/year for surface mail or

$54.95/year for airmail.

BIA5

NO POSTAGE

NECESSARY

IF WAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO- 27346 PHILADELPHIA, PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE

! SUBSCRIBE
COMPUTER

LANGUAGE

PO- BOX 11747

PHILADELPHIA, PA 19101

Subscribe to COMPUTER LANGUAGE today for only $24.95—over

30% savings off the single copy price.

D Yes, start my Subscription to COMPUTER LANGUAGE today. The cost

is only $24.95 for 1 year (1 2 issues).

□ 1 want to increase my savings even more—send me 2 years (24

issues) of COMPUTER LANGUAGE for only $39.95.

D Payment enclosed G Bill me

Name

Company

Address

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S.

funds. Canada orders $30.95 per year. Outside the U.S., $36.95/year for surface mail or

$54.95/year for airmail.

BIA5

>iztec The Most Powerful C
for the IBM AT • MACINTOSH • MS DOS • CP/M-80 • ROM APPLICATIONS

IBM PC/XT • APPLE // • CP/M-86 • TRSDOS • CROSS DEVELOPMENT

Why Professionals Choose Aztec C

AZTEC C compilers generate last, compact

code. AZTEC C is a sophisticated development

system with assemblers, debuggers, linkers,

editors, utilities and extensive run time libraries.

AZTEC C is documented in detail. AZTEC C is

the most accurate and portable implementation

of C (or microcomputers. AZTEC C supports

specialized professional needs such as cross

development and ROM code development.

MANX provides qualified technical support.

AZTEC C86/PHO

— for the IBM AT and PC/XT

AZTEC CB6/PRO provides the power, portabili

ty, and professional features you need to

develop sophisticated software for PC DOS, MS

DOS AND CP/M-86 based microsystems. The

system also supports the generation of ROM

based software for 8088/8086, 80186. and 80286

processors. Options exist to cross develop ROM
code for 65xx, 8080, 8085. and Z80 processors.

Cross development systems are also available

that target most micro computers. Call for infor

mation on AZTEC C86/PRO support for XENIX

andTOPVlEW.

POWERFUL — AZTEC C86/PRO 3.2 outper

forms Lattice 2,1 on the DHRYSTONE

benchmark 2 to 1 for speed (17.8 sees vs 37.1)

while using 65% less memory (5.8k vs 14k). The

AZTEC C86/PRO system also compiles in 10%

to 60% less time and supports fast, high volume

I/O.

PORTABLE — MANX Software Systems pro

vides real portability with a family of compatible

AZTEC C software development systems for PC
DOS, MS DOS, CP/M-86, Macintosh. CP/M-80.

APPLE //+ , lie, and lie (NIBBLE ■ 4 apple rating),

TRSDOS (80-MICP.O - 5 star rating), and Commo

dore C64 (the C64 system is only available as a

cross compiler - call for details). AZTEC
C86/PRO is compatible with UNIX and XENIX.

PROFESSIONAL — For professional features

AZTEC CB6/PRO is unparalleled.

■ Full C Compiler (8088/8086 - 80186 ■ 8Q286)

• Macro Assembler for 8088/8086180186/80206

• Linkage Editor with ROM support and overlays

• Run Time Libraries ■ ob|ect libraries + source

DOS 1.x; DOS 2.x; DOS 3.*; screen I/O: Graphics;

UNIX I/O; STRING; simulated float; 8087 support;

MATH; ROM; CP/M-86

• Selection of 8088/8086, 80186. or 80286 code genera

tion to guarantee best choice (or performance and

compatibility

Utility to convert AZTEC object code or libraries to

Microsoft format. (Assembly + conversion lakes

less than half the time as Microsoft's MASM to pro

duce MS object)

Large memory models and sophisticated memory

management

Support products for graphics, DB, Screen, & ...

ROMablecode + ROM support + separate code and

data - INTEL Hex Converter

Symbolic Debugger & Other Utilities

Full Screen Editor (like VI)

CROSS Compilers are available to APPLE //, Macin

tosh, CP/M-80, TRSDOS, COMMODORE C64, and

ROM based 65xx, and 8080/80S5/Z80

• Detailed Documentation

AZTEC C86IPRO-AT S500
(coniigured for IBM AT - options lor 80B8/8086)

AZTEC C86IPRO-PC/XT $500
(configured for IBM PC/XT ■ options for 80186/80286)

AZTEC C86/BAS includes C compiler (small model only),

8086 MACRO assembler, overlay linker, UNIX. MATH,

SCREEN, and GRAPHICS libraries, debugger, and

editor.

AZTEC C86fBAS S199
AZTECC86fBAS<CP/M-86i S'99
AZTEC C86/BAS (DOS + CP/M-86) S299
UPGRADE to AZTEC C86/PRO $310

C-TREE Database with source S399

CTREE Database (object) S149

CROSS COMPILERS

Cross Compilers for ROM, MS DOS, PC DOS. or CP/M-86

applications.

VAX->8086/80xxx cross $5000
PDP-11 ->8086/80xxx cross S20D0

Cross Compilers with PC DOS or CP/M-86 hesis are S750
for the first target and $500 for each additional target.

Targets: 65xx; CP/M-80: C64; 8080/6085/Z80; Macintosh;

TRSDOS; 8086I8088/80186/8Q286; APPLE II.

Mac C tree database S149
Mac C-1ree database with source $399

Lisa Kit (Pascal to AZTEC C68k object converter) ..$ 99

AZTEC C65

- ior the APPLE //

-...The AZTEC C-system is one of the finest software

packages I have seen..." NIBBLE review, July 1984.
The only commercial C development system available

lhat runs native on the APPLE II+ , He, and lie, the

AZTEC C65 development system includes a full floating

point C compiler compatible with UNIX C and other

MANX AZTEC C compilers, a 6502 relocating assem

bler, a linkage editor, a library utility, a SHELL develop

ment environment, a full screen editor. UNIX I/O and
utility subroutines, simple graphics, and screen func

tions.

AZTEC C65 (Apple DOS 3.3) S199
AZTEC C65/PRO (Apple DOS + ProDos} $350

(call for availability)

AZTEC C II/PRO

— lor CP/MS0

The first member of the AZTEC C family was the

CP/M-80 AZTEC C compiler. It is "the standard" com

piler for development on CP/M-80. The system includes

the AZTEC C II C compiler, an 8080 assembler, a linkage

editor, an object librarian, a full library of UNIX I/O and

utility routines, CP/M-80 run time routines, the SMALL

library (creates modules less than 3K m size), the fast
linker for reduced development limes, the ROM library,

RMAC and M80 support, library source, support for

DRI's SID/ZSID symbolic debugger, and more.

AZTEC C II/PRO S349
AZTEC CIUBAS $199
C-TREE Database with source S399
CTREE Database in AZTEC object form S149

AZTEC C68K

— for the Macintosh

For power, portability, and professional features

AZTEC C68K-C is the finest C software development

system available for the Macintosh.

The AZTEC C68K-C system includes a 68000 macro

assembler, a linkage editor, a source editor, a mouse

based editor, a SHELL development environment, a

library of UNIX I/O and utility routines, full access and
support of the Macintosh TOOLBOX routines, debug

ging aides, utilities, make, did. grep, TTV simulator with

upload & download (source supplied), a RAM disk (for

512K Mac), a resource maker, and a no royalty license
agreement. Programming examples ar included. (Over

600 pages of documentation],

AZTEC C68K-C requires a 128K Macintosh,

and two dish drives (frugal developers can make

do with one drive). AZTEC C68K supports the

512K Macintosh and hard disks.

AZTEC C68K-C (commercial system) .S500

AZTEC C68K-p (personal system) $199

AZTEC C68K-p to AZTEC C68K-C upgrade $310

MANX

AZTEC C80

- for TRSDOS (Radio Shack Model III 4 4)

"We had a lot of experience with different C compilers,

Out the Aztec C80 Compiler and Professional Develop

ment System is the best I've seen." 80-Micro, Decem

ber, 1984. John B. Harrell III

This sytem has most of the features of AZTEC C II lor

CP/M. It is perhaps the best software development

system for the Radio Shack Model III and IV.

AZTEC C80 model 3 (no floating point) S149

AZTEC C80 model 4 (full) S199
AZTEC C80/PRO (full for model 3 and 4) $299

To order or lor information call

800-221-0440
(201) 530-7997 (NJ and outside U S.A.) Or write: MANX

SOFTWARE SYSTEMS. P.O. Box 55. Shrewsbury, N.J.

07701

SHIPPING INFORMATION Standard U.S.

shipment is UPS ground (no fee). In the U.S.

one flay shipment is S20. two days is S10.

Canadian shipment is $10. Two days ship

ment outside the U.S. is by courier and is

Ireight collect.

TRS 80 RADIO SHACK TRS DOS is a trademark of TANDY

APPLE DOS MACINTOSH is a Irademark of APPLE

For Technical Support

(Bug Busters) call: 201-530-6557

CIRCLE 69 ON READER SERVICE CARD

They said it couldn'tbedone.
Borland DidItTurbo Pascal 3:0

The industry standard

With more than 250,000 users worldwide Turbo

Pascal is the industry's de facto standard. Turbo

Pascal is praised by more engineers, hobbyists,

students and professional programmers than any

other development environment in the history of

microcomputing. And yet. Turbo Pascal is

simple and fun to use!

TURBO

3.0

COMPILATION SPEED

EXECUTION SPEED

CODE SIZE

BUILT-IN INTERACTIVE EDITOR

ONE STEP COMPILE
(NO LINKING NECESSARY)

COMPILER SIZE

TURTLE GRAPHICS

BCD OPTION

PRICE

TURBO MS The best just got better:

2.0 PASCAL Introducing Turbo Pascal 3.0

We just added a whole range of exciting new
features to Turbo Pascal:

Portability

Turbo Pascal is available today for most computers

running PC DOS, MS DOS. CP/M 80 or CP/M 86. A

XENIX version of Turbo Pascal will soon be announced,

and before the end of the year. Turbo Pascal will be

running on most 68000 based microcomputers.

An Offer You Can't Refuse

Until June 1st. 1985. you can get Turbo Pascal 3.0 for

only $69.95. Turbo Pascal 3.0, equipped with either the

BCD or 8087 options, is available for an additional
S39.95 or Turbo Pascal 3.0 with both options for onfy

S124.95. As a matter of fact, if you own a 16 Bit

computer and are serious about programming, you

might as well get both options-right away and save
almost S25.

Update policy

As always, our first commitment is to our customers.

You buitt Borfand and we will always honor your

support.

So. lo make your upgrade to the exciting new version of

Turbo Pascal 3.0 easy, we will accept your original Turbo

Pascal disk {in a bend-proof container) for a trade-in

credit of $3955 and your Turto87 original disk for

$59.95. This trade-in credit may only be applied toward

the purchase of Turbo Pascal 3.0 and its additional BCD

and 8087 options (trade-in offer is only valid directly

through Borland and until June 1st, 1985).

C) Benchmaik run on an IBM PC using MS Pascal version 3.2 and
the DOS linker version 2 6. The 179 line program used is the "Gauss-

Seidel" program out ol Alan R. Miller's book: Pascal programs for
scientists and engineers (Sybex. page 128) with a 3 dimensional
non-singular matrix and a relaxation coefficient o! 10

• First, the world's fastest Pascal compiler just got
faster. Turbo Pascal 3.0 compiles twice as fast as
Turbo Pascal 2.0! No kidding.

• Then, we totally rewrote the file I/O system, and
we also now support I/O redirection.

• For the IBM PC versions, we've even added

"turtle graphics" and full tree directory support.
• For all 16 Bit versions, we now offer two addi

tional options: 8087 math coprocessor support
for intensive calculations and Binary Coded

Decimals (BCD) for business applications.
• And much much more.

The Critics' Choice.

Jeff Duntemann, PC Magazine: "Language
deal of the century. . . Turbo Pascal: It
introduces a new programming environment and
runs like magic."

Dave Garland, Popular Computing: -Most
Pascal comoilers barely fit on a disk, Out Turbo
Pascal packs an editor, compiler, linker, and run
time library into just 29K bytes of random-

access memory."

Jerry Poumelle, BYTE: "What I think the
computer industry is headed for: well

documented, standard, plenty of good features,
and a reasonable price."

RORlflflD
INTERNATIONAL

Software* Newest Direction
4H3ScoBs Valley Dt-ve
Scons VaUey tiifomA 95066
TELEX 172373

iistregisteredraitmjniofSffS.iJ(ntrnWojjl Inc

CIRCLE 10 ON READER SERVICE CARD

