
COMPUTER $2.95

VOLUME 1,

NUMBER 3

NOVEMBER 1984

PROCESSING AND LIS

OCCAM:
NEW LANGUAGE
FROM THE U.K.

INTERVIEW
WITH THE FOUND
OF CP/M

BUILDING
PORTABLE PROGRAMS

I 1MB

ENHANCING SOUR
UNDER UNIX

NTROL

WEVE GOT YOUR PACKAGE!!

We offer you the most flexible, cost efficient means of introducing your

programming staff to the Ada Language. You can choose the level of

Support you need, when you need it! These Janus/Ada packages are

customer-tested and available now.. .

(C-Pak) Introductory Janus/Ada Compilers

(D-Pak) intermediate Janus/Ada Systems

(S-Pak) Advanced Janus/Ada Systems

(P-Pak) Janus/Ada Language Translators

Janus/Ada "Site" Licenses

Janus/Ada Source Code Licenses

Janus/Ada Cross Compilers

Janus/Ada Maintenance Agreements

Coming Soon: New Computer and Operating Systems Coverage

Selected Janus/Ada packages are available from the following:

National Distributors International Distributors

Westico. Inc.

25 Van Zant St.

Norwalk, CT 06855

(203) 853-6880

Soft-Net

5177 Richard, Suite 635

Houston. TX 77056

(713) 933-1828

AOK Computers

816 Easley St., Suite 615

Silver Springs. MD 20910

(310) 588-8446

Micronix

11 Blackmore St.

Windsor 4030

QLD. Australia

(07) 57 9152

Progesco

155, rue du Fauburg

St. Denis

75010 Paris

(1) 205-39-47

Trinity Solutions

5340 Thornwood Dr., Suite 102

San Jose, CA 95123

(408) 226-0170

Compuview Products, Inc.

1955 Pauline Blvd.. Suite 200

Ann Arbor. MI 48103

(313) 996-1299

Lifeboat of Japan

S- 13-14, Shiba

Minato-Ku

Tokyo 108 Japan

03-456-4101

Copyright 1983 RK Sofiu,-

OFTWARE, INC. specialists in state of the art programming

P.O. Box 1512 Madison, Wisconsin 53701

(608) 244-6436 TELEX 4998168

CIRCLE 58 ON READER SERVICE CARD

The first compiler for dBASE II

SPEED

dB Compiler1*1 produces applications which execute substan

tially faster than under dBASE II® in 16-bit environments. Some

operations are even faster than under dBASE III®!

- INDEPENDENCE
Buy dB Compiler™ once and compile and distribute as many

applications as necessary with no additional cost. WordTech

imposes no licensing fees, and a compiled application will

execute without dBASE II or RunTime®.

SECURITY
Compilation is far better than encryption for protecting pro

gramming insights and procedures.

PORTABILITY
dB Compiler's™ cross-environment linkers make it easy to
generate executable code for several operating systems.

For CP/M-80®, CP/M-86®, PC-DOS®, and MS-DOS®.

Suggested retail price: S750; Cross-environment linkers: S35O.

Corporate/Multi-user licenses available.

dBCOMPILER™
WORDTECH SYSTEMS. INC. P.O. Box 1747 Orinda, CA 94563 [415] 254-0900

CP/M-80. CP/M-86 -, DRI PC-DOS \ IBM MS-DOS", Micro-Soft Corp., dBASE 11. RunTime. dDASE 111'. Ashion-Tate. Inc.

CIRCLE 41 ON READER SERVICE CARD

WHY DEBUG YOUR PROGRAM IN

ASSEMBLY LANGUAGE WHEN

YOU WROTE IT IN

ONE OF THESE..,

ATRON Announces

Source Level Software

Debugging

Without source level debugging, the

programmer must spend time mentally

making translations between assembly

language and the C, PASCAL, or

FORTRAN source code in which the

program was written. These tedious

translations burn up valuable time

which should be spent making critical

product schedules. The low level hex

and symbolic debuggers available

today are superceded by ATRON'S

solution — Source Probe.

HOW TO SINGLE STEP YOUR

SOURCE CODE AND KEEP

CRITICAL DATA IN VIEW

With Source Probe, you can step your

program by source code statements.

While stepping, a window which you

define can display critical high level

data structures in your program. The

next several source code statements

are also displayed to give you a pre

view of what the program will do

HOW TO DISPLAY DATA IN

MEANINGFUL FORMATS

Why look at program data in hex when

you defined it to be another data type

in your program. Source Probe pro

vides a formated print statement to

make the display of your variables

look like something you would

recognize. You can specify data

symbolically too.

FIND A BUG - FIX IT RIGHT

NOW

Source Probe provides an on-line

text editor to allow you to log program

corrections as you find them while

debugging. With on-line display and

editing of source files, the time lost

printing and looking through program

listings

can be

elimina

ted.

A

SNAP SHOT

OF REAL TIME

PROGRAM EXECUTION —

BY SOURCE CODE !

When Source Probe is running on

ATRON'S PC PROBE hardware, the

real time execution of the program is

saved. You can then view your source

code as it executed in real time —

including all the changes the program

made to your data variables.

HOW TO

FIND A BUG WHICH

OVERWRITES MEMORY

When running on PC PROBE, the

Source Probe can trap a bug which

overwrites a memory location.

Because complex pointers are

normally used in high level language

programming, this bug occurs fre

quently and is very difficult to find.

BULLET PROOF

DEBUGGER

What good is a debugger that can be

wiped out by an undebugged pro

gram? With Source Probe running on

PC PROBE, the software is write

protected and cannot be changed.

ATRON PROVIDES THE

DEBUGGING TOOLS WHICH

FIT YOUR PROBLEM

PC PROBE - A hardware aid

to symbolic

software debugging

SOFTWARE PROBE - A symbolic

debugger, runs

without PC PROBE

SOURCE PROBE — A source levei

debugger, versions run with

or without PC PROBE

PERFORMANCE AND

TIMING ANALYZER — For finding

where your program

spends its time

WE HAVE HUNDREDS OF

HAPPY CUSTOMERS

ATRON produced the first symbolic

debugger for the PC and the first

hardware aided debugging tool — PC

PROBE. We have hundreds of happy

customers who have made their

schedules because of ATRON

debugging tools. Why waste more

time — call us today!

A11 V
a debugging company

20665 FOURTH STREET • SARATOGA, CA 95070 • (408) 741-5900

CIRCLE 4 ON READER SERVICE CARD

2 COMPUTER LANGUAGE ■ NOVEMBER 1984

COMPUTER

LANGUAGE
ARTICLES

Enhancing Source Code Control under UNIX
by Luke C Dion and Alan Filipski

Organizing source files in a UNIX environment is not always easy. The

SCCS utilities currently provided with the UNIX operating system do not

solve certain problems posed when many people are trying to store and

access their files simultaneously. These authors present an enhanced

version of the SCCS utility set.

Natural Language Processing and LISP

by Richard Berman

The use of lists is vital to all current artificial intelligence research. Lists

enable dynamic manipulation of information and are often used to
simulate more structured information. Using examples of natural

language processing, this author explores the power of lists, the

representation of data, and recursion in LISP.

Building Portable Programs

by Mark Grand

Many complex issues arise when trying to write programs that can be

moved from a particular hardware and operating system environment

to another. Here the author addresses some of the fundamental hurdles

that must be overcome to write portably.

The Evolution of ZCPR, Part II
fay Richard Conn

The founder of ZCPR (Z80 Command Processor Replacement), Richard
Conn, picks up his discussion from last month by addressing the issues of

ZCPR3's enhanced toolset and shells.

Learn to Think in Ada
by Do-While Jones

Before the power of a well-written Ada program can be appreciated,

one must first learn to think m Ada. This author uses a simple problem—

how to tell if a number is odd or even—to illustrate some of the

advantages to using Ada.

25

28

35

43

47

DEPARTMENTS
Editor's Notes

Feedback

Industry Insight

A new column on issues and trends in the programming industry

Back to the Drawing Board

Designers Debate
Pascal: Just a teaching language?

Public Domain Software Review

Exotic Language of the Month Club

OCCAM: A powerful new parallel processing language from the U.K.

ComputerVisions

Gary Kildall, founder of CP/M

The Code Swap Shop .

Software Reviews.
DR FORTRAN-77, mbp COBOL, and Echelon's ZCPR3

Advertiser Index

5

9

13

17

21

51
55

61

65
66

80

Six Times Faster!
Super Fast Z80 Assembly Language Development Package

Z80ASM
• Complete Zilog

Mnemonic set

• Full Macro facility

• Plain English error

messages

• One or two pass

operation

• Over 6000 lines/minute

• Supports nested

INCLUDE files

• Allows external bytes.

words, and expressions

(EXT1 * EXT2)

• Labels significant to 16

characters even on

externals (SLR Format

Only)

• Integral cross-reference

• Upper/lower case

optionally significant

Conditional assembly

Assemble code for

execution at another

address (PHASE &

DEPHASE)

Generates COM, HEX.

or REL files

COM files may start at

other than 100H

REL files may be in

Microsoft format or

SLR format

Separate PROG. DATA

& COMMON address

spaces

Accepts symbol defini

tions from the console

Flexible listing facility

includes TIME and

DATE in listing (CP/M

Plus Only)

Links any combination

of SLR format and

Microsoft format REL

files

One or two pass

operation allows output

files up to 64K

Generates HEX or COM

files

■ User may specify PROG,

DATA, and COMMON

loading addresses

SIRNK
• COM may start at

other than 100H

• HEX files do not fill

empty address space.

• Generate inter-module

cross-reference and

load map

• Save symbol table to

disk in REL format for

use in overlay

generation

• Declare entry points

from console

•The FASTEST Micro

soft Compatible Linker

available

For more information or to order, call:

1-800-833-3061

In PA, (412) 282-0864

Or write: SLR SYSTEMS

1622 North Main Street, Butler. Pennsylvania 16001

• Complete Package Includes: Z80ASM. SLRNK. SLRIB

- Librarian and Manual for just $199.99. Manual only, $30.

• Most formats available for Z80 CP/M. CDOS, &TURBODOS

•Terms: add $3 shipping US, others $7. PA add 6% sales tax

CIRCLE 59 ON READER SERVICE CARD

S" L R—Systems^

*UNIX System III POWER and sophistication are yours.

Let THE SOLUTION turn your micro into all you

dreamed it could be, bringing the Ultimate

programming environment as close as

your modem. Just a local call
from over 300 cities

nationwide via Telenet.

EXPANSIVE SOFTWARE DEVELOPMENT FACILITIES including Language and Operating System design.

• LANGUAGES: C, Fortran 77, RATFOR, COBOL, SNOBOL, BS, Assembler + Artificial Intelligence

programming via LISP.
• USENET Bulletin Board System—800 + international UNIX sites feeding over 190 categories,

typically bringing you more than 160 new articles per day.

• Interuser and Intersystem mall + 'chat' capability,

k, • UNIFY: Sophisticated data-base management system.

UNIX & System enhancements from U.C. Berkeley and Korsmeyer Electronic Design Inc.

Online UNIX manuals + Expert consultation available.

1 SOLUTION-MART: Hardware/Software discount shopping database.

• LOW COST and FAST response time.

(as low as $8.95 hr. connect time + $.05 cpu sec. non-prime)

• $24.95 = 1 hr. FREE system time + SOLUTION News subscription + BYTE

»BOOK (Introducing The UNIX System 556 pp.).

_. *UNIX is a trademark o(Bell Labs.

Payment via VISA or Master Card -^ELECTRONIC DESIGN, INC -

CIRCLE 34 ON READER SERVICE CARD

■ 5701 Prescott Avenue

Lincoln, NE 68506-5155

— 402/483-2238

10a-7p Central

Editor's Notes COMPUTER

LANGUAGE

o
fall the things

happening in the

computer

magazine market today, one thing just

doesn't quite make sense. Why are we

growing so quickly while others arc drop

ping like flics all around? A curious irony.

Our industry is going through what I

call a "period of insecurity." Not only are

magazines like Microsystems and Micro

computing now out of business, but large

and small hardware and software compa

nies are also hitting the skids. In the mag

azine world, though, it's sad to see so

many historically important journals get

ting bought up by large publishing houses

and then getting closed down when their

profits arc judged to be too low.

Integral to the success we've had so far,

I feel, is the fact that our product performs

a specific service for a specific audience.

Because we started out small, we can

afford to focus on editorial quality and

avoid becoming just another expensive

book of advertising.

In the coming months, you'll see

COMPUTER LANGUAGE cover many

of the same topics that Microsystems used

to cover. We're not going to ignore the

CP/M and S-100 communities, which

seems to be the fashion these days. Our

two-part scries on ZCPR is evidence of

that concern.

But the programming worid has

changed since 1976, and the popular

machine to program for today is the IBM

PC. Our goal is not to focus on the PC in

particular, but to cover programming

issues in context of all the different oper

ating system and hardware environments

popular today.

What makes COMPUTER LANGUAGE

different from other system or software-

specific journals is that it is composed of

many audiences at the same time. You

might say that our magazine fits in that

huge, untouched grey zone between

the academic and hobbiest journals.

COMPUTER LANGUAGE is for the pro

fessional software author who is looking

for practical solutions and creative tech

nical ideas.

This month I'd like to introduce Bruce

Lynch as our new Industry Insight col

umnist. A person with much experience

and wherewithal in our industry, he will

be writing a bi-monthly news column on

the evolving issues and trends (and some

times . . . gossip) in the programming

world.

Also of interest this month is our exclu

sive interview with the founderof CP/M

and chairman of Digital Research Inc.,

Gary Kildall. Our managing editor, Reg-

ina Starr Ridley, flew down to Monterey,

Calif., to meet with this reknown tech

nical figure. As you'll see, Kildall has

some interesting things to say about the

past, present, and future of our industry.

I'd like to propose that COMPUTER

LANGUAGE is actually not a magazine at

all. As a genuine computer forum, we're

actually using these infernal machines to

produce an electronic COMPUTER

LANGUAGE. After only two weeks, our

CompuServe Special Interest Group has

become literally swamped with enthusi

astic supporters. In just two days, we had

171 people sign up for our SIG! The arti

cles, software reviews, and public domain

code that is distributed there would take

up at least five times the space in our

printed magazine.

Check it out! Or, if you can't call in

through CompuServe, call our remote

BBS (415 957-9370) and get immediate

access to our data base of public domain

languages and programming utilities for

many different operating system environ

ments. As a computer magazine, it just

makes sense to us that we should be reach

ing out to you with computers!

Craig LaGrow

Editor

EDITOR

Craig LaGrow

MANAGING EDITOR

Regina Starr Ridley

TECHNICAL EDITOR

John Holomka

EDITORIAL ASSISTANT

Hugh Byrne, Lorilee Biernacki

CONTRIBUTING EDITORS

Burton Bhavisyat, Tim Parker,
Anthony Skjellum, Ken Takara

INDUSTRY NEWS CONSULTANT

Bruce Lynch

ADVERTISING SALES
Jan Dente

CIRCULATION COORDINATOR
Renato Sunico

ART DIRECTOR

Jeanne Schacht

COVER PHOTO
Dow Clement Photography

PRODUCTION/ART

Anne Doering

PRODUCTION

Barbara Luck, Steve Campbell, Kyle Houbolt

TECHNICALCONSULTANT

Addison Sims

MARKETING CONSULTANT

Steve Rank

ACCOUNTING MANAGER

Lauren Kolkstein

PUBLISHER
Carl Landau

COMPUTER LANGUAGE ii published monthly by COM

PUTER LANGUAGE Publishing Lid., 131 Townsend St.,

San Francisco, CA 94107. (415) 957-9353.

Advertising: For information on ad rales, deadlines, and

placemen!, contact Carl Landau or Jon Dente at (415J

957-9353, or write to: COMPUTER LANGUAGE, 131

Townsend St., San Francisco, CA 94107.

Editorial: Pleote address all letters and inquiries to: Craig

toGrow, Editor, COMPUTER LANGUAGE, 131 Townsend

SI., Son Francisco, CA 94107.

Subscriptions: Contact COMPUTER LANGUAGE, Sub

scriptions Dept., 2443 Fillmore Si., Suite 346, San Fran

cisco, CA 94115. Single copy price: $2.95. Subscription

prices: S24.00 per year f U.S.); $30.00 per year (Canada

and Mexico). Subscription prices lor outside the U.S.,

Canada, and Mexico: $36.00 (surface mail), S54.00(air

mail) —U.S. currency only. Please allow si* weeks for new

subscription service to begin.

Postal information: Second-class postage rate is pending

a> San Francisco, CA and additional mailing offices.

Reprints: Copyright 1984 by COMPUTER LANGUAGE

Publishing Lid. All rights reserved. Reproduction a! mate

rial appearing in COMPUTER LANGUAGE is forbidden

without written permission.

Change of address; Please allow six weeks /or chonge of

address to toie effect. POSTMASTER: Sendchange of od-
dresi (Form 3579J to COMPUTER LANGUAGE, J3I

TownsendSI., Son Francisco, CA 94107.

COMPUTER LANGUAGE is a registered trademark

owned by the magazine's parent company, CL Publica

tions. All material published in COMPUTER LANGUAGE

is copyrighted ■& 1984 by CL Publications, Inc. All rights

reserved.

NEW from BORLAND!

.

"TURBO is much better than the

Pascal IBM sells."

Jerry Pournelle.

Byte. July 1984

"TURBO PASCAL appears to violate

the laws of thermodynamics.

You won't find a comparable price

performance package anywhere. It

is simply put. the best software deal

to come along in a long time. If you

have the slightest interest in

Pascal.. .buy it."

Bruce Webster.

Softalk IBM; March 19S4

oofuflnp

BORLAND
INTERNATIONAL

GIFT PACK

$9995
A SAVINGS OF $30!

What a gift for you and your friends! The extraordinary TURBO PASCAL

compiler, together with the exciting new TURBO TOOLBOX and new TURBO

TUTOR. All 3 manuals with disks for $99.95.

PASCAL Version 2.0 (reg. $49-95). The now classic program
development environment still includes the FREE MICROCALC SPREAD SHEET

Commented source code on disk

• Optional 8087 support available for a small additional charge

NEW! TURBO TOOLBOX (reg. $49.95). A set of three fundamental
utilities that work in conjunction with TURBO PASCAL. Includes:

• TURBO-ISAM FILES USING B + TREES. Commented source code on disk

• QUIKSORT ON DISK. Commented source code on disk

• GINST (General Installation Program)

Provides those programs written in TURBO PASCAL with a terminal installation module

just like TURBO'S!

• NOW INCLUDES FREE SAMPLE DATABASE. . . right on the disk! Just compile

it, and it's ready to go to work for you. It's a great example of how to use TURBO

TOOLBOX and, at the same time, it's a working piece of software you can use
right away!

NEW! TURBO TUTOR (reg. $29.95). Teaches step by step how to use the TURBO
PASCAL development environment—an ideal introduction for basic programmers.

Commented source code for all program examples on disk.

30 DAY MONEY BACK GUARANTEE These offers good through Feb. 1. 1985

For VISA and MASTERCARD order call toll free: l-(800)-255-8008 l-(8OO)-742-1133

(Lines open 24 hrs.. 7 days a week) Dealer and Distributor inquiries welcome (408) 438-8400

CHOOSE ONE (please add $5.00 for handling and shipping U.S. orders)

All Three-Gift Pack $ 99.95 + 5-00SPICIAL! Turbo Toolbox $49.95 + 5.00

All Threes 8087 139-95 + 5-00SPECIALI turbo Tutor 29-95 + 5.00

Turbo Pascal 2.0 49.95 + 5.00 Turbo 8087 89.95 + 5.00

Check Money Order VISA MasterCard

Card #:

My system is: 8 bit 16 bit

Operating System: CP/M 80 _

Computer:

CP/M 86

. Exp. date: _

. MS DOS _

Disk Format:

Shipped UPS

PC DOS

Please be sure model number & format are correct.

NAME: .

ADDRESS:

CITY/STATE/ZIP: __^

TELEPHONE:

California residents add 6% sales tax. Outside U.S.A. add $15.00 [ifoutside of U.S.A. payment must be by bank draft payable in
the U.S. and in U.S. dollars). Sorry, no C.O.D. or Purchase Orders. G20

g> BORlflflD
W INTERNATIONAL

4113 Scotts Valley Drive

Scotts Valley, California 95066

TELEX: 172373

CIRCLE 6 ON READER SERVICE CARD

H 1 ' j I

We're looking
for a few good
subsc ers.

Computer Language is

written for people who can

program in two or more

computer languages.

Let's face it, that leaves out most

people. Programming is a rigor

ous, intellectual discipline and

Computer Language magazine

is the first and only publication

dedicated exclusively to this field.

Your source for the latest

technical skills and methods

used by software specialists.

We cover the major develop

ments in the software design field,

from theory to implementation.

Computer Language focuses on

the most important and useful

language design information

available in the fast-moving

microcomputer industry.

Written for the person who

takes computing seriously.

We're talking about you — the

experienced software author,

programmer, or engineer who

routinely programs in two or more

high-level languages. A person

who understands the creative

nature of programming and ap

preciates the beauty of efficient

code in action.

COMPUTER

LANGUAGE will constantly

challenge your abilities.

The foremost industry experts will

discuss: ■ Algorithmic Approaches

to Problem Solving ■ Language

Portability Features ■ Compiler

Designs ■ Utilities ■ Artificial

Intelligence ■ Editors ■ New

Language Syntax ■ Telecommuni

cations - Language Selection

Criteria ■ Marketing Your Own

Software ■ Critical Software &

Hardware Reviews

Plus, columnists and reader

forums that will put you in touch

with the latest developments in

the field.

Send to:

COMPUTER

LANGUAGE
2M3Filimore Street Sulle'346

San Francisco. CA 94115

YES! Start my charter subscription to

Computer Language. My 1 year charter

subscription is just $24.00, a 33%

savings under the single copy price.

□ $24.00 D Bill me.

Payment Enclosed

State Zip

FEEDBACK

Turing and REXX

Dear Editor:

I read the premier issue of COMPUTER

LANGUAGE and was very impressed

with it. Please keep this magazine about

languages and don't get involved in oper

ating systems. Also try to keep it oriented

toward professional rather than amateur

programmers.

I would be interested in reading an arti

cle on the syntax and semantics of the pro

gramming language TURING, which was

developed at a Canadian university (Uni

versity of'Toronto. I think). The only

information I have encountered on this

language was various articles in Compitt-

erworld, where one of the creators of the

language claimed it had the power of Pas

cal and the case of use of BASIC. I would

like to know if these claims are true.

Another language that might be of

interest to readers is the new structured

interpretive language with release 3 of the

VM/SP operating system. This language,

called REXX. is extremely powerful and

has become my favorite where I work

especially since I work in a business as

opposed to a systems programming envi

ronment, and the only other languages

available are COBOL. RPGII, and

ASSEMBLER.

I look forward to the future issues—

keep up the good work!

Brook A. Everest

Forth Quicksort version

Dear Editor:

I was mystified by Richard Larson's

Quicksort sample program, so here is one

that I've found useful which is written in

Forth. It is complete and converted to

IBM/PC display management. Also, the

data dependent words COMPARE and

EXCHANGE are factored. The first line is

the machine-dependent part and thus must

be ported (debugged first). The rest of the

program will run on any Forth computer

(Listing 1).

Gary Nemeth

Cleveland, Ohio

Standard FORTRAN Quicksort partition

C uses scratch array TEMP for temporary copy

of segment

Z = X(I)

LEFT = 1

RIGHT = J - I + 1

DO 1 KP = I , J

Y = X(KP)

IF (Y .GT. Z) THEN

TEMP(RIGHT) = Y

RIGHT = RIGHT - 1

ELSE

TEMP(LEFT) = Y

LEFT = LEFT + 1

ENDIF

1 CONTINUE

RIGHT = RIGHT +1-1

KT = 1

DO 2 KP = I , J

X(KP) = TEMP(KT)

KT = KT + 1

2 CONTINUE

C Now X and Right are the same as Larson's

Second modification of Quicksort partition

Replace DO 1 ... 1 CONTINUE with:

for(kp=2 ; kp<=j ; kp = kp+1){

y = x[kp]

temp[left] = y

temp[right] = y

incleft = y <= z

left = incleft + left

right = incleft - 1 + right

}
temp[right] = z

Listing 1.

Listings on the BBS?

Dear Editor:

While your Bulletin Board can be helpful,

don't frustrate us by placing two listings

in an article, then sending us to the BBS

for the third! We can't always run to a

terminal and modem while reading the

journal.

Nicholas A. Nittler

Elkhorn, Neb.

Editor's Note: In the best of all possible

worlds, we at COMPUTER LANGUAGE

would prefer to publish all the code men

tioned in each and every article and

department.

But to do that would limit the number of

articles we could publish each month, and

we would not be able to achieve a repre

sentative cross sampling of the evolving

issues and ideas in the programming

industry today. (Some program listings

span over 15 to 20 pages!)

In as many cases as possible, we will

continue to publish those listings that sim

ply must accompany an article or depart

ment. We will also continue to maintain a

remote bulletin board computer and an

account of CompuServe to distribute code

that is mentioned in the magazine but

could not be printed for space reasons.

However, since the BBS is a long dis

tance telephone call and many people are

not subscribers to CompuServe. I would

like to offer to those who wish to acquire

any unpublished code to write to us, and

we'll send you reprints of the code in

question ai no charge.

A POWERFUL 68000 DEVELOPMENT

ENVIRONMENT FOR YOUR Z80 SYSTEM

CO1668 ATTACHED RESOURCE PROCESSOR

68000 Assembler

C Compiler

Forth

Fortran 77

Pascal

BASIC-PLUS

CBASIC

APL. 68000

6 MHZ 68000 CP/M-68K 768K RAM

4 x 16081 MATH CO-PROCESSORS CPM80 RAM DISK

Develop exciting 68000 applications on your current Z80 based CPM system using

powerful mini-frame like 32 bit programming languages. And then, execute them at

speeds that will shame many SlOOKplus minicomputer systems.

The CO1668 ATTACHED RESOURCE PROCESSOR offers a Z80 CPM system owner a

very low cost and logical approach to 68000 development. You have already spent a

small fortune on 8 bit diskette drives, terminals, printers, cards cages, power

supplies, software, etc. The CO1668 will allow you to enjoy the vastly more powerful

68000 processing environment, while preserving that investment.

CO1668 ATTACHED RESOURCE PROCESSOR SPECIAL FEATURES:

6S000 running at 6 Mhz

256K to 768K RAM (user partitioned between

CPU and RAM Disk usage)

Up to four 16081 math co-processors

Real time clock. 8 level interrupt controller

& praprjelory I/O bus

Available in tabletop cabinet

Delivered w/ sources . logics, & monolithic

program development software

Easily installed on ANY Z80 CPM system

CP/M-68K and DRI's new UNIX V7 compatible

C compiler |w/floating point math) - standard

feature

Con be used os 768K CPM80 RAM Disk

Optional Memory parity

No programming or hardware design required

for installation

Optional 12 month warrantee

PRICES START AS LOW AS S899.00 for a CO1668 with 256K RAM, CPM68K. C Compiler. Sources,

Prints, 200 page User Manual, Z80 Interface, and 680O0 System Development Software.

For further informalion abou! this revolutionary product or our Intel 8086 Co-Processor, please send SI

[no checks please] or call:

Hallock Systems Company. Inc.

262 East Main Streel

Frankfon, New York 13340

(315) 895.7426

CIRCLE 31 ON READER SERVICE CARD

RESELLER AND OEM

INQUIRIES INVITED.

Amplifications on Ada

Dear Editor:

Having been involved in the Ada world

for quite a while. I paid particular atten

tion to the article by Namir Clement

Shammas, "Exploring Ada and Modula-

2," in the premier issue of COMPUTER

LANGUAGE.

I offer the following corrections:

■ The declarations

My_Phone_Number : String : =

"(804)282-2294"

My_Address : String : =

"1533 F Honey Grove"

are incorrect as written. When declaring a

variable of an unconstrained array type,

bounds must be supplied. The following

represent one of many possible correct

declarations:

My_Phone_Number : String (1. .13)

:= "(804) 282-2294";

My_Adclres5 : String (1. .17) : =

"1533F Honey Grove";

The bounds may be omitted when declar

ing a constant, as follows:

My_Phone_Number \ constant String

:= "(805)282-2294";

It is hoped the exit statement will not be

used to exit nested loops. Basically, it is

poor programming practice to exit more

than one level at a time as this violates the

single entry-single exit principle of

structured programming.

■ There arc five predefined exceptions in

Ada: the fifth is Tasking_Error, which

deals with exceptions that occur during

inter-task communication.

■ The "new type"in Ada is technically

called a derived type as it derives its val

ues and operations from the parent type

(the type from which it is derived).

10 COMPUTER LANGUAGE ■ NOVEMBER 1984

Also I find this comparison doesn't

answer the questions I would ask when

first comparing two languages. The arti

cle selects small points to compare and

has not followed (he software engineering

principle of abstraction, which allows one

to focus on the most essential elements

and ignore the details until a more appro

priate time. As support for this statement I

pose the following two questions:

■ Question 1: Why is there no mention of

task types in Ada? Task types, in conjunc

tion with access types, permit dynamic

allocation ot'a task ... an extremely pow

erful facility. Does Modula-2 have a simi

lar capability?

■ Question 2: Why is there no mention of

Ada's user-defined numeric types, which

permit the designer and programmer to

include in the code the constraints put on

the problem by the real world? For exam

ple, in a text formatter we may want to

restrict the number of characters on a line

to 55. That requirement can be repre

sented in the code by writing a user

defined Integer type as follows:

type Character_Count_Type is
range 1. .55;

Any violations of that constraint will be

detected at compile time or run time

(depending on the kind of violation). Fur

thermore, a variable of type

Character_Count_Type such as

Char_Counr: Characer_Count_Type;

can never be mixed with a variable

Line_Count of type Linc_Count_Typc

type Line_Counf_Type is

range 1. .60;

Line_Count: Line_Count_Type;

Line_Count:= Line_Count +

Char_Counf;

--^ILLEGAL*'

The compiler will reject this assignment

statement as illegal. It is illegal because

variables of different types may not be

mixed in one expression (unless of course

type conversion is employed).

But the statement is also illogical. One

doesn't normally add line count to charac

ter counts. By implementing the two fea

tures as two distinct types the logical

inconsistencies arc made illegal in terms

of the language, and the compiler and run

time system will constantly check for

these illegalities/logical inconsistencies.

Does Modula-2 have a similar facility?

Putnam P. Texel

Wayside, NJ.

POSTAGE

16-Bit COMPUTER LANGUAGE

Be trendy and exotic!

Dear Editor:

In your premier issue Ron Jeffries men

tioned three languages I've never heard

of: ICON (a successor to SNOBOL.

which I love), COMAL (Europe's answer

to BASIC?), and Q'NIAL (which seems

to be an attempt to push forward a bit).

From the brief descriptions Jeffries gave,

they all seem interesting. I hope you are

planning articles on each of them.

I also hope you ignore the advice to

"try not to get lost in the trendy issues like

Ada and Forth" and "stick to to the hard

core stuff. I wonder what .some people

consider hard-core— FORTRAN,

COBOL, and BASIC? But they were

trendy once-upon-a-time, and Ada could

easily be hard-core 10 or 20 years from

now. Although you should not get hope

lessly lost in any issue, a magazine about

GOOD NE>VS!

CORPORATION

647 W, Virginia St.

Milwaukee, Wl 53204
(41-I) 278-2937

c
for the

6809
WAS NEVER

BETTER!
INTROL-C/6809,Version1.5

Introl's highly acclaimed 6809 C

compilers and cross-compilers are now

more powerful than ever!

We've incorporated a totally new 6809

Relocating Assembler, Linker and Loader.

Initializer support has been added, leaving

only bitfield-type structure members and

doubles lacking from a 100% full K&R

implementation. The Runtime Library has

been expanded and the Library Manager is

even more versatile and convenient to use.

Best of all, compiled code is just as

compact and fast-executing as ever - and

even a bit more so! A compatible macro

assembler, as well as source for the full

Runtime Library, are available as extra-cost

options.

Resident compilers are available under

Uniflex, Flex and OS9.

Cross-compilers are available for PDP-

11/UNIX and IBM PC/PC DOS hosts.

Trademarks:

Introl-C. Introl Corporation

Flex and Uniflex, Technical Systems Consultants

OS9. Microware Systems

PDP-11. Digital Equipment Corp.

UNIX. Bell Laboratories

IBM PC. International Business Machines

For further information, please cafl or write.

CIRCLE 32 ON READER SERVICE CARD 11

computer languages must keep up with the

trendy and the exotic languages.

I've been told that someone did some

research on the question of what makes a

good programmer and discovered that

knowledge of a variety of computer lan

guages consistently showed a strong cor

relation. (I'm sorry I don't remember any

of the details).

Leigh Jones

Lawrencevitle, N.J.

A hunger for quality

Dear Editor:

It is gratifying to see a publication such as

this one appearing at this point in the

stream of computer history. With so many

consumer-related magazines on the news

stands, and with so many of the magazines

that used to be directed to the computer

professional changing their format (e.g.,

InfoWorld), we have been hurting fora

quality publication to satisfy our hunger

for technical interaction.

May this periodical fill this need, and

prosper.

Byway of suggestion, may I request

some general programming articles that.

Advertise - or

so Jusl INSTRUCTIONS.

T/VKE OUT wod

the

12

Technical

Oder

LLl I MAGAZINE cm

COMPUTER LANGUAGE.

ai no uEDDCCc stLLuL

- or Yxrtl fEE YOUR

Computer LANGUAGE
131

9== =

41 ===

415Q957

12 COMPUTER LANGUAGE ■ NOVEMBER 1984

instead of promoting debate on the rela

tive merits of different languages, discuss

techniques to improve the quality of the

code that we write, whatever language we

choose {within the constraints of each lan

guage, of course).

Again, thank you for the obvious effort

and the high quality of this magazine.

William Weinman

MTR Systems Inc., Los Angeles, Calif.

COBOL rebuttal

Dear Editor:

I program on a microcomputer and I

don't think COBOL is a dinosaur. Person

ally, I feel that COBOL has found a well-

suited niche in the realm of data pro

cessing. 1160% to 70% of new application

code is written in COBOL, my guess is

that 60% to 70% of applications written is

also in the realm of data processing. And

that's the point which is overlooked in the

article "COBOL: Pride and Prejudice."

The article overlooks two very

important points. First. COBOL is func

tionally different from Pascal (which is

functionally different from C, etc.). Sec

ond, there are applications that have con

ceptual frameworks that are worlds apart

from each other. As an example. COBOL

is a good language for accounting and

payroll while C is a good language for

writing operating systems. Try to write

UNIX in COBOL!

A good programmer has no bias or

prejudice for one language but has the

ability to choose the best language for the

task at hand.

The author says, "There is no theoreti

cal or practical reason why COBOL

should be slower or bigger than any

other language. If anything, it should be

faster." More precisely, there is no reason

why it should be neither faster nor slower

than any other language. The speed of a

program has little if anything to do with

the number of lines of code in the source

language,

Whether a program performs a loop

implicitly with few lines or explicitly with

many, any compiler still has to generate in

machine code the loop explicitly. In fact,

a good compiler will recognize a loop

(implicit or explicit) and generate the

most optimum machine code.Voila! At the

machine level, the two types of loops can

not be differentiated.

I found the article's arguments to be

strongly opinionated on non-substantive

issues and appealing more to sensation

than to technical reason. I hope that

COMPUTER LANGUAGE will be a forum

for more objective analyses in the issues

forthcoming.

David Soderberg

Wethersfield, Conn.

INDUSTRY INSIGHT :<>■.•■ P.

T
'his bimonthly col

umn will act as a

forum and a guide

for programmers. Trends in program

ming methods and support products will

be discussed along with issues pertinent to

(he marketing of software and program

ming skills.

Your ideas and contributions are wel

come. They should be sent to: Bruce

Lynch, COMPUTER LANGUAGE, 131

Townsend St., San Francisco, Calif.

94107.

Though trends and implications of

trends in programming methods and soft

ware will be covered in each column,

other topics to include could range widely.

Your feedback will determine what is cov

ered. Here are some possibilities:

■ The impact of non-procedural

languages

■ Parallel processors and the related soft

ware challenges

■ Program generators—their status and

future impact

■ When should users program and how?

■ Forecasting demand and pricing a soft

ware product

■ Developing ideas for totally new rather

than me-too software

■ Estimating time and cost for large soft

ware projects

The microcomputer software business

continues to change and mature. Though

specific events cannot be accurately fore

cast, strong guesses can be made. They

should help you be more productive and

keep you from making substantial mis

takes. Trends and principles can make

clear what software development methods

to consider and what software will be

needed—how to increase the chance that

efforts invested now will be of value down

the road.

tcoplchave been

wondering when

• ■ S^W^^. ■ the shakeout will

begin in the microcomputer software

industry. It began some time ago. It

affects notjust commercial software orga

nizations but also end users, consultants,

and many others.

Companies don't need to go bankrupt

By Bruce Lynch

for a watchful observer to see a shakeout.

Consider what has happened at VisiCorp,

Sorcim. Digital Research, IUS, Perfect

Software, Select, and many other compa

nies that had a fair degree of leadership in

this industry not long ago.

■ Sorcim and IUS have both been

acquired. Neither of them has a product

that dominates a category.

■ MicroPro's grip on the word pro

cessing market is slipping while they con

tinue to succeed at marketing a strong

contender in another category.

■ VisiCorp has been battered badly by

Lotus, Microsoft, and by their develop

ment philosophy.

■ Perfect Software sunk huge efforts into

slick advertising and marketing material

and into OEM sales efforts while not pay

ing clear enough attention to feedback

from users.

Meanwhile, new successes continue,

like Spinnaker and MicroRim. Most new

companies that have introduced integrated

software packages seem to miss the

importance of several issues fundamental

to their success, such as program exe

cution speed, consistency of user inter

face, and clear, differentiated market

positioning.

Numerous companies are trying to

launch products without what I call a crit

ical mass. which consists of technical

quality of documentation and software,

scope of marketing effort, market posi

tioning, money, major account sales

efforts, manufacturing and quality con

trol, and a healthy combination of key

company employees. The inability to

meet a required threshold in any of these

categories can cause a fatal flaw.

The money needed to introduce a

broad-market business productivity prod

uct has gone from SI million to S6 million

in only 1 year. Expectations related to real

and also perceived quality and value have

risen. The size of almost all aspects of

critical mass has risen—for almost any

software product category. Not just soft

ware publishers are having trouble.

■ Softwarebanc and Discount Software

have both withdrawn from the discount

mail order software business.

■ Software Wholesalers, which was one

of the top distributors, has fallen.

■ At the same time companies like ITM

seem to be doing very well.

Marketing microcomputer software is

complicated. It requires careful attention

by publishers to all aspects of pricing—

not just the suggested retail price. Multi

user, local area network, and site-license

pricing have few norms. Reseller pricing

is not yet matched consistently with the

values being provided by participants in

the distribution channels.

Where is the magic? It is in under

standing the trends and developing a crit

ical mass.

ow for some

trends and

rumors in the

microcomputer industry . . .

Artificial intelligence characteristics

are showing up in products.

Local area networks and major account

sales efforts will be fundamental to the

success of numerous product categories

within six months.

Copy protection is getting increased

attention. The commercial software

industry will come up with a combined

stance soon. It is a very messy set of

issues.

Development tools are becoming more

flexible and make it possible to get more

done in the same amount of time. Screen

generators, ISAM packages, and other

support software products are becoming

more plentiful, more capable and lower in

cost. Compilers will become substantially

faster, code will be tighter, debuggers will

be integrated, editing will be integrated,

interpreters will be full and

compatible . . .

Hardware improvements will support

the improved development tools. Speed

up boards for the IBM PC should become

readily available within the next two or

three months. Hardware support for

debugging will be what it should be in the

next several months.

Standards for integration, user inter

face, and documentation will begin to

become dc facto within a year.

At this point, the IBM PC AT seems

like a nice machine for programming. It

will accelerate existing trends in micro-

13

computer software and will make possible

software in a new class. Assume that it

will soon have the following character

istics: multitasking, high-res graphics,

local area network support, broader

multi-user support, compilers to support

virtual memory and automatic

segmentation.

Look for opportunities for tightly, cou

pled user-to-user communication and

cooperation, sophisticated user inter

faces, shared data bases, low-cost CAD,

almost-viable expert system support, nat

ural language applications with commer

cial scope, voice input, proper interfaces

with videoclisks and . . .

Laser printers and high-resolution,

low-cost color graphics will have a seri

ous impact on software by next summer.

By 1990. for 53.000(1984 value) a user

will purchase a machine with 4MB of

RAM, 1,024 x 1,024 res color graphics.

600 meg of read-only storage, and inter

faces for local area networks, printers,

etc. Reasonable cost add-ons will include:

vidcodisk with 1 gigabyte, three dimen

sional memory, removable storage with

100MB, typesetting quality printers, fast

and hard-copy color printing, wide vocab

ulary voice output, tone input, voice

input, touch input.

Parallelism to a high degree {like 10 or

more processors cooperating together)

will receive aggressive experimentation in

1985 and will be incorporated in commer

cial products by 1987. Multiprocessor

intercommunication at memory-to-

memory speeds will be a part of this.

Microcomputers will have parallelism (10

to 20 CPUs) available in them for special

ized low-cost applications by 1990.

Nationwide telecommunications at 50K

will be practical for the typical business

user in 1990.

The 286 looks like it will continue to

have production and performance prob

lems. (The impact will probably hit

smaller companies that want 286s.) The

32032 looks appealing but will the com

puter manufacturers trust National

Semi? A souped-up 186 looks like a rea

sonable candidate for use when competing

with the PC AT. Becoming available for

the 8088/188 are 22-bit addressing,

address translation and other

enhancements.

The window still seems open for a com

pany to develop an operating system to

displace UNIX as the 2 to 5 user and local

area network OS, but if it ignores critical

mass the company will get slaughtered.

IBM is entering that window and certainly

understands the concepts behind critical

mass.

IBM has been making major invest

ments in the development of several oper

ating systems which arc targeted on

microcomputers. The operating environ

ment for trie 3270 PC is the first commer
cial result of that effort.

The characteristics of the operating

systems being developed are quite soph

isticated. Rumors indicate that at least one

of them will include local area networking

software within the OS: one will include

support for parallel processors. Support

for UNIX and MS-DOS applications

should also be assumed. Any company

developing operating systems or making

changes to existing operating systems

should tread with great care—do not "bet

your company" on UNIX.

The 186/188 seems to hold more prom

ise than indicated by the negative press it

has received lately. An outside manufac

turer for Intel has invested substantial

effort with success to create a souped-up

Announcing a

TOTAL PARSER GENERATOR
<Grm> :: = <ftflPJD> <CQNP1LEH> < DESIGN >

SLICE YOUR COMPILER

DEVELOPMENT TIME

An LR(1) parser generator and several sample compilers,

all in Pascal for your microcomputer.

Generates parser, lexical analyzer and skeleton

semantics

Universal, state-of-the art error recovery system

Adaptable to other languages

Interactive debugging support

Thorough documentation

TURBO PASCAL'" INCLUDED FREE OF CHARGE
Includes mini-Pascal compiler, assembler, simulator

in SOURCE

SPECIAL INTRODUCTORY OFFER $1995

tmoc* I5HA put»sreisl

. i' .:■ r

WRITE OR CALL FOR FREE BROCHURE

Technical details: call 408/255-5574 Immense delivery CALL TODAY1

SYSTEMS, INC.
"W Hyde Avo . San Jose. CA 95129

TOLL FREE: 800-538-9787
I Call lorma resiOenls call 40a'255-5574)

™ Turbo Pascal is a -egisiereO Iraflemark ol Bcrlano international

CIRCLE 23 ON READER SERVICE CARD

14 COMPUTER LANGUAGE ■ NOVEM9ER198-1

&&^J$&&& y

^ov <ra*v

<&Wi* JP rtP

MAONTOSH6A

HEGISTSK) mM*MAf*

Of APPLE COWUTEfi NC

CIRCLE 13 ON READER SERVICE CARD

version. It seems to have resulted in an

implementation that on balance delivers

more power than a similar 286. Virtual

memory will be a substantial issue for

some applications, but a souped-up 186

without virtual memory should be quite

viable for a broad base of single user

microcomputer applications. And virtual

memory on a 286 is slow.

COMPAQ and AT&T have both

recently announced PCs based on 8 Mhz

8086s. Though it seems a little late to be

basing a new system on an 8086 rather

than a 186 or 286, it seems likely (hat both

entries will sell fairly well.

COMPAQ has about one-third of the

market share for PC compatibles and

seems to have a very thorough and accu-

rate reading on the needs and reactions of

the marketplace. COMPAQ'S use of a

green light to indicate the incremental

speed when the 8086 is running at full

power is an example of the company's

marketing creativity. COMPAQ'S careful

attention to compatibility will also be a

major factor in the likely success of its

product line.

The AT&T micro has an interesting

feature called context switching, which

allows suspending of one task in order to

activate another and the ability to switch

back and forth. AT&T's advertising is so

comprehensive that media awareness

should be strong.

The HP 110 portable (and similar

machines from Sharp and others) looks

like a machine that could start the trend

some wildly optimistic market research

firms have been projecting. Think about

what applications people might want to

use almost any place they go or on a

whimsical but high-value basis.

product that is

comin8 soon
means that

development work calls for the product to

be marketable within six months. Such

efforts, however, may never really be

completed.

Languagc-to-language translators are

being developed to convert from each of

the following languages to the C Ian-

guage: BASIC, FORTRAN, and Pascal.

Another product should be commercially

available soon to accept dBase II pro

grams as input and produce C programs as

output.

Optimizing .COM and .EXE files using

a disassembler combined with generalized

routines for "peep hole" and other algo

rithms is the focus of other developments.

Though the developers have experience

with similar projects, such aggressive

work is subject to a lot of difficult issues.

Practically every producer of high-

quality C compilers for microcomputers

has an effort underway to develop a

source level debugger. (CWare and Wil

liams have source debuggers available

now.)

Developing libraries of C programs is

popular. Intriguing projects include:

■ A natural language front end that is

generalized

■ An expert system support program to

maintain facts and rules

■ Matrix manipulation routines.

Libraries with interfaces for FOR

TRAN, Pascal, BASIC, and C are being

developed in each of the standard applica

tion support categories like screen gener

ation, file management, and graphics.

The tendency is for new entries to make

products available with source and with

out run-time royalties. Graphic by Sci

entific Endeavors, CIndex-f- by TRIO

f SUPER FORTH 64 \
TOTAL CONTROL OVER YOUR COMMODORE-64"

USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JU5T A LANGUAGE...

A complete, fully-inregroled piogram development iy>lem

Homo Uie, Fait Gomel, Graphici. Data Acquisition, Business

Reo! Time P'ocew Control. Communkoiiom, Robotic!, Scientific. Artificial Intelligence

A Powerful Supenet of MVPFORTH/ FORTH 79 • Ext, for I he beginner or professional

20 !□ 600 « (oner than Basic

1/4 x the programming Time

Eow full control of oJI sound, ni res.

ofopnics, cole, sprite, plotting fine a

circle

Conirolloble SPLIT-SCREEN Deploy

Include! interarti.e inierpieier JL compiler

Forth virtuol memory

Full cunor Screen Editor

Provision for opplicaTion prog rem

FORTH equivalent Kernd Routines

Meets all Forth 79 standards*

Compatible with the boot "Starting Forth"

by Leo Brodle

Acceis to oil I/O pom RS232, IEEE,

including memory & interrupts

ROMABLE code generator

SPRITE-EDITOR

Access all C-64 peripherals including 4040

drive

Single disk drive backup utility

Disk 1 Cassette based. P»k included

Full disk usage — 630 Sectors

Supports all Commodore file types end

Forth Virtu o I diik

Access to 2CK RAM underneath ROM

Vectored kernel words

TRACE focility

DECOMPILES facility

MUSIC-EDITOR

SUPER FORTH 64"

Fufl S'ring handling

ASCII e,ior me«oge>

FLOATING POINT MATH SIN/COS 4 SORT

Conversational user defined Commands

Tutorial examples provided, in extensive

• INTERRUPT routines p.ovide aasy control

Or hoidwofc timsrs, Qlcsrms and devices

• USER Support

SUPER FORTH 64' 'w>«* •«>•

- SL'PEHFOSTufrl -

LISP

C

PASCAL

BASIC

ASSEMBLER

I

Powei oi Languages

A SUPERIOR PRODUCT
n every way! Ai □ low

& - P*BSfC -- ■

Conslfucis

(415)

PARS EC-
Drawer 1776,

Program 1

Call:

651-3160

RESEARCH
Fremont, CA 9453S

CIRCLE 49 ON READER SERVICE CARD

Source Code included

forCompiler& Library

New 8086 optimizations

Rich I/O & Standard Library

CBUG SOURCE LEVEL DEBUGGER FOR SMALL C

Break, Trace, and Change

variables all on the

source level

Source code included

Datalight
11557 8th Ave. *^N.E.
Seattle, Washington 98125
(206)367-1803

ASM or MA5M is required witn compiler
include disk 5ized60k/32O)<): and DOS version with order

VISAS. MasterCard accepted include card no & expiration date.

Washington state residents include 7.9% sales tax

IBM-PC & PC-D05 are trademarKs of international Business Machines
MS-DOS is a trademar< of Microsoft Corqoration

CIRCLE 19 ON READER SERVICE CARD

15

Systems, CBtree by Faircom, Windows

for C by Creative Solutions, and CView

by CompuCraft are all examples of this

trend.

New implementations of LISP. Prolog,

C. Logo. BASIC, FORTRAN are all in

the pipeline for MS-DOS.

By year-end the Macintosh should be

supported by several more C compilers, a

Modula-2, and more than one new Pascal

and Forth.

Several SORT packages and libraries

are being developed for integration with

practically every language under MS-

DOS. More than one company is

attempting to develop a true "program

mer's apprentice." Such a system would

function as if it were an interpreter with

intelligence. The intelligence would allow

program fragments to be incorporated by

indirect reference. Productivity gains

possible through such a system could be

substantial. However, such systems are

highly experimental. By early 1985 a sys

tem worth experimenting with should be

available from one company or another.

A low-cost C compiler that features

extremely fast compile times should be

available by late 1984 for use with MS-

DOS.By early 1985 a Macintosh look-

alike package should be available to hard

ware manufacturers. It is likely to include

a full implementation of both the oper-

The C Interpreter:

Instant-C"
Programming in C has never been Faster.

Learning C will never be Easier.

instant-C is an optimizing interpreter for the C language that can
make programming in C three or more times faster than when using

old-fashioned compilers and loaders. The interpreter environment
makes C as easy to use and learn as Basic. Yet Instant-C is 20 to 50
times faster than interpreted Basic. This new interactive development
environment gives you:

Instant Editing. The full-screen editor is built into instant-C for im
mediate use. You don't wait for a separate editor program to start up.

Instant Error Correction. You can check syntax in the editor. Each
error message is displayed on the screen with the cursor set to the

trouble spot, ready for your correction. Errors are reported clearly, by
the editor, and only once.

Instant Execution. Instant-C uses no assembler or loader. You can
execute your program as soon as you finish editing.

Instant Testing. You can immediately execute any C statement or
function, set variables, or evaluate expressions. Your results are
displayed automatically.

Instant Debugging. Watch execution by single statement stepping.
Debugging features are built-in; you don't need to recompile or reload
using special options.

Instant Loading. Directly generates .EXE or .CMD files at your re
quest to create stand-alone versions of your programs.

Instant Compatibility. Follows K & R standards. Comprehensive stan
dard library provided, with source code.

Instant Satisfaction. Get more done, faster, with better results.
Instant-C is available now, and works under PC-DOS*, MS-DOS*,
andCP/M-86*.

Find out how Instant-C is changing the way that programming is
done. Instant-C is $500. Call or write for more information.

Rational (617)653-6194ivauunai P0 Box 480

bystems, Inc. Natick, Mass. 01760
Trademarks MS-DOS (Microsoft Corp.). PC-DOS(IBM).CP/M-86(Dignal Research. Inc.), Ins!ant-C(Rational Systems, inc.)

ating system and the software in the Mac

intosh ROM.

Assembler-to-assemblcr conversion

between unrelated processors is a messy

issue that continues to receive attention.

Creating something maintainable in the

target environment is a tough challenge.

Additional program execution profilers

should be introduced in the next several

months. Some of them should be viable

for tight and easy control at the source

language level for C and Pascal.

Authors are busy adding 286 instruc

tions and MS-DOS 3.0 support to their

compilers and libraries because of the PC

AT. Syntax-sensitive editors are becoming

more common. The issues involved are

messy. ES/P by Bellcsoft and FirstTime

by Spruce Technology arc both available

for Pascal or C. PMATE by Phoenix and

BRIEF by Solution Systems are being

used by programmers to pick and choose

those syntax-oriented features they want

and to tailor them. There is a contest

with a $ 1,000 prize to add more of such
macros to BRIEF.

Support products for managing soft

ware projects are improving. Object mod

ule librarians, intelligent batch file prod

ucts, source code and release control

management are now available and more

are coming. Project estimating and spe

cialized documentation and graphics aids

arc also in the pipeline.

. In the premier issue of COMPUTER

LANGUAGE we mentioned that there are

currently three companies developing

SNOBOL4 compilers for (he IBM PC.

For your reference, here are the company

names and addresses: SNOBOL4, P. O.

Box441, Millwood, N.Y. 10546;

SNOBOL4 + , Catspaw Inc., P. O. BOX

1123, Salida, Colo. 81201; MACRO

SPITBOL, Robert B. K. Dewar. 73 Fifth

Avc.. New York, N.Y. 10003.

'he microcomputer

software business

is exciting. Yes, it

is maturing and becoming more costly and

difficult to succeed in. That just means

that you have to think things through more

and find the right total combination of

skills. Do not let anyone fool you into

thinking (hat you need millions to

succeed.

Watch the trends and take advantage of

them. Keep your eyes wide open and you

will improve both your market value and

the nature of how you spend your time.

Please send me your observations and

suggestions. Disagree. Take a stand. Or

let me know about new products. Some

what randomly I will send a pleasant sur

prise to those who take the time to

write. H

CIRCLE 56 ON READER SERVICE CARD

16 COMPUTER LANGUAGE ■ NOVEMBER 198i

SSBACK
TO THE
DRAWING BOARD

Action on the BBS

olutions! That's what you're looking for

hen you go Back to the Drawing Board,

'and that's what you're going to find in

this section of COMPUTER LANGUAGE. This department is ded

icated to helping you find what you need to know, and this month

you'll see positive proof of the process in action.

Even though COMPUTER LANGUAGE has only been around a

few months, already our Bulletin Board System is serving hun

dreds of readers nationwide, giving a new meaning to the term

user friendly.

Some of the friendliest users in the world are communicating

via the BBS. They simply toss a question up for grabs and the

answers come flying back at them, practically immediately. This

month we'll take a look at the activity on the BBS Tor the benefit

of those unfortunate readers not yet participating.

To give you some of the flavor of the BBS. messages and their

responses appear as seen on your computer screen.

Msg #571 posted 08/19/84 by Dickson Leung

To: ALL About: Prolog

I have been having trouble locating an interpreter for Pro

log under CP/M. I have found books on the subject and they

mentioned something called micro-Prolog (in fact, one of

the books is on micro-Prolog). Do you know where I can get

one? Also, I would like to see an article in your magazine on

artificial intelligence, especially comparing LISP and Pro

log. Do you think there's any chance?

Msg #573 posted 08/19/84 by Rik Berman

To: Dickson Leung About: PROLOG

Dear Dickson, Hello. I have a CP/M version of Micro Prolog

... to get a copy try: PROLOGIC, 15102 Albright, Pacific

Palisades, Calif. 90272, (213) 459-2047 or World Enter

prise Robot, 3463 State St. #270, Santa Barbara, Calif.

93105, (805) 632-1604. If this fails, you can try to get in

touch with the manufacturers, Logic Programming Associ

ates Ltd. They are ir: London, but I have no address. Good

Luck.

By Burton Bhavisyat

Msg #538 posted 08/16/84 by Michael Ham

To: Anso Forth About: Novix Forth chip

You might try giving a call to John Golden of Golden Associ

ates (22 Mar Monte, La Selva, Calif. 95076, (408)

688-6724). He is one of the principals and could probably

give you an up-to-date progress report.

Msg #610 posted 08/21 /84 by Frank Whaley

To: ALL USERS About:-PC-yacc

I am in possession of a copy of UNIXyacc source—enough

to build the program in a UNIX-like (read MS-DOS 2.0)

environment. I am looking for someone with enough time to

massage the source and build a usable copy. I am willing to

share my tools in order to facilitate the project (C compiler,

assembly language version of Unix standard library, latest

linkers, debuggers, etc.). Drop me a line through this system

and we can discuss arrangements.

Msg #690 posted 08/27/84 by Dan Miller

To: ALL USERS About: yacc, lex, and prep for the PC

Two messages have asked for yacc, a compiler compiler.

Scott Guthrey of the Austin Codeworks, 11100 Leafwood

La., Austin, Texas 78750, (512) 258-0785, makes available

yacc, lex and prep for the IBM PC. Price—$25 for yacc and
prep, $25 for lex. I met Scott at the Austin computer fair a
couple of months ago and was impressed. He seems knowl
edgeable and nice.

He also sources a Tiny-C, a beginner's intro to a C lan
guage interpreter with a nice manual on disk for $25, a mul

titasking executive, and C exception macros we, roff and

grep.

I've been enjoyingTiny-C but haven't tried my copies of

the yacc or lex disks so I can't give a product review yet. I

think the manuals are terse, though. Suggest purchasing the

manuals through Korsmeyer, a reasonably priced UNIX

timeshare service.

Msg #462 posted 08/13/84 by Anso Forth

To: ALL USERS About: NOVIX Inc.'s Forth chip

We're interested in any information on the Forth chip being

developed by NOVIX Inc. and Charles Moore. Can any

body help? Even the address in Los Gatos, Calif., would be
great. Thanx

Msg #479 posted 08/15/84 by Daniel Efron

To: ALL USERS About: C language

Hello, I am a C, Kernigan, Ritchie, and Plauger nut. If any

one has any interesting programs or words about C, leave

me a message, please. Thank you.

17

Msg #685 posted 08/23/84 by Frank Whaley

To: Daniel Efron About: C

In your message about the C language, you failed to note

what type of computer you areusingand whether or not

you already have a C compiler.

I am currently using:

8080/Z80 native: Whitesmith's
8088/8086: Latticev2.12

68000 native: UniPlus (UNIX port)

68000-Z800 cross compile: Vandata

If you are interested in some UNIX-like programs for

PC/MS-DOS, how about more, cat, Is, touch, rm, make,
head, and tail? You might also check out my previous mes

sage on PC-yacc.

I enjoy sharing code with other programmer types (the

big thrill is to have somebody else use my stuff), but a lot of
what I do is proprietary to the outfit I work for. Good luck.

Msg #143 posted 08/01/84 by Anthony Skjellum
To: ALL USERS About: PC-DOS BBS software needed

Dear ALL:

I am trying to set up a bulletin board on.an IBM XT com

puter, but I don't know where to acquire the standard bulle

tin software. If anyone knows where I might get such soft
ware or to whom I should speak, please send me mail on this
BBS (I log in regularly). Thanks.

Msg #228 posted 08/03/84 by Bryan Oakley
To: Tony Skjellum About: RBBS-PC software

Greetings from across the universe ... I saw your message

and wish to help you if I can. 1 am also in the process of
creating a BBS. I just recently got my software from a bulle-

ting board system in North Dakota. Whew! A long haul.

The software seems to be really good. 1 don't have the
address, but the BBS belongs to the FARGO users group

and the number is (701) 293-5977. Give them a call. For

eight bucks they will mail you a copy. The last update was

the middle of July, so they keep up with the times. Good

luck!

Msg #310 posted 08/09/84 by James Shields
To: Anthony Skjellum About: BBS Software for your XT

Tony—I've got a board in Seattle, Wash., called the Mid

night PC. I'm trying to sell the software to it. It's written in

assembly, but you need not know assembly to modify the
board as it's more of an interpreter than a BBS. It takes in

some text files and then runs the board based on the com

mands you've defined there. The price is considerably more

than the $8 for the other board, but I think you'd find it

worth it. If you are interested, give my board a call at (206)

367-7949. I'll put you on the list of people to be allowed in.
You'll find it a bit different as it is a "room-based" sys

tem. Besides in Seattle (where there are a half-dozen or so),

you'll only find two or three other room systems around the

country (to our knowledge).

Msg #386 posted 08/06/84 by Jim Sills

To: Anthony Skjellum About: PC DOS software

Lyn Long inTulsa, Okla., operates a BBS on an IBM-PC XT

computer. The number of his board is (918) 749-0714. He

has a complete BBS system you can download.

Msg #693 posted 08/27/84 by Dan Miller

To: ALL USERS About: etymology question

Does anyone know where the expression "the whole nine
yards" or "to go the whole nine yards" comes from? Cer

tainly it must predate football!

Msg #747 posted 09/01/84 by Dave Hilton

To: Dan Miller About: Nine yards

Hi, Dan. This is a guess only but I'll check some of my word-
game books. The "whole nine yards" comes from cloth and

carpet merchants. "Nine yards" meant the whole bolt of

material. Anybody else have a better guess???

Msg #771 posted 09/02/84 by Dan Miller
To: Dave Hilton About: Nine yards

[Reply to msg #747]

Thanks for the reply. That sounds like a good explanation.

Let me know if you find anything definite. I know the ques

tion isn't related to computers, but I suspect many persons

interested in this board, such as yourself, like language and

I could get a quick answer. Thanks again.

Msg #536 posted 08/16/84 by Rik Berman

To: Gary Zablackis About: LISP

Hello Gary. I am very willing and interested in helping any

one who wishes to implement LISP. As for LISP/Prolog

interpretation, Prolog is actually a child of LISP and could
be implemented in LISP (as is LOGO, SMALLTALK). I would

be interested in seeing an article. On the surface, it does not

sound so difficult... anyone can contact me. Address:
21219CommunitySt.,CanogaPark, Calif. 91304. Or I

have a computer up in E-Mail most all the time. It will accept

Christensen protocols (as used by MODEM, etc.) Please

send batch mode—use command MODEM SB fn. ext/

DT1-818-700-1764. Thanks.

Msg #361 posted 08/03/84 by Frank Warren

To: ALL USERS About: PC-DOS/MS-DOS

I see many of you believe it would be good to have a publi

cation devoted to MS-DOS and PC-DOS and the issues that

surround them. Such a publication is already in existence! It

is the SIG/86 newsletter published by SIG/86, the Inter

national MS-DOS Users Group. They've been in business

about two years now and have refined their publication

pretty well. Some of the recent topics covered

undocumented DOS systems calls (and why not to use

them), a random number generator with source, and so on.

SIG/86 is a pretty hot publication. The main authors

and programmers know their stuff, and they know it well.

These are some of the most experienced and seasoned

8086/8088 people around. Membership is $18 a year. To

18 COMPUTER LANGUAGE ■ NOVEMBER 1984

getaboard, write: Joe Boykin, 47-4 Sheridan Dr., Shrews

bury, Mass. 01545, (617) 845-1074. Their BBS number

(sounds like everyone's got one these days, doesn't it?) is

(617) 842-1435 at 300 baud and (617) 842-1712 for 1200
baud. Log on as GUEST.

\OMPUTER LANGUAGE
gets letters, too. In fact, the

\\\\\\\\\\\ ^^^ majority of readers don't use
the BBS (can you imagine 75,000 people trying to call one phone

number?), so letters are very much encouraged.

Recently Robbie Peele, a systems programmer from Atlanta,

Ga., wrote about the premier issue:

" 'BASIC Becomes a Structured Language' was fascinating. I

think better of the authors of BASIC knowing they have realized

the shortcomings of BASIC and have done something about it. I

think less of Microsoft for perpetuating the old BASIC dinosaur.

Can you get me any information on the availability of a True

Basic compiler for the IBM PC? If not, can you get me in contact

withKemeny and Kurtz?"

True Basic Inc. is located at 39 South Main St., Hanover, N.H.

03755. Ifyou'dliketo speak to Kemeny and Kurtz directly, you

can call (603) 643-3882.

Eric Schvartz, a language translator from Toronto, Canada,

wrote to tell of the word-processing program he is developing and

expressed a few opinions:

". . . my general impression is that software houses have never

bothered to study the products used on dedicated word-

processors. And if I, with my poor small machine with a fairly

primitive language and without any formal training, am able to

make a workable product, what couldn't they do!

"My motto is: Death to control sequences (WordStar) and for

matting environments (Perfect Writer). I can assure you, from the

reactions I get when I mention that I am writing a WP program, I

Only $95 with FULL SOURCE CODE!

"... an incredible learning tool." Byte

For only S95. Q/C is a ready-to-use C compiler for CPM with com

plete source code. Here s what BYTE (May 1984) said: "Q C ... has

a portable library and produces good code quality. If you want to

learn compiler construction techniques or modify the standard lan

guage. Q/C is the obvious choice."

Source code for compiler and over 75 library functions.

Strong support for assembly language and ROMs.

No license fees for object code.

Z80 version takes advantage of Z80 instructions.

Q/C is standard. Good portability lo UNIX.

Q/C has casts, typedef. sizeof. structure initialization, and function

typing. It is compatible with UNIX Version 7 C. but doesn't support

long integers, float, parameterized ^defines, or bit fields. Call about

our new products. Q/C profiler. Z80 code optimizer, and Z80 as

sembler and virtual linker, all with full source code!

theCODE
WORKS

5266 Hollister. Suite 224

Santa Barbara. CA 93111

(805)683-1585

QC.CPM ZB0 and UNIX are trademarks of Quality Compuler Systems Digital

Research Ztlog Inc and Bell Laboratories respectively

am not the only dissatisfied user. There is room for a lot of

improvements and innovations."

Schvartz also says, "I will applaud any article on operating

systems if they explain how to modify them (one can live with

CP/M, but it doesn't mean one has to like it!) and on alternates, if

any, to CP/M for Z80 machines."

You can get programs that make a "shell" around CP/M so that

the user need never know about CP/M. These shells can be very

convenient and make life a lot easier. Try contacting Echelon

Inc., 101 First St., Suite 427, Los Altos, Calif. 94022. They make

a product called ZCPR3 (for S39!) which could well be the

answer you are seeking.

Reaction to the High Touch Expert Forum (discussed in this

column last month) has been outstanding. COMPUTER

LANGUAGE has set up a data base of volunteers and their areas of

expertise. Anyone needing immediate solutions to a problem can

scan the list to locate someone who may know the answer. Also,

of course, friendly readers can put their name and expertise on the

list if they'd like to share with others. This listing can be accessed

on the BBS by calling (415) 957-9370 or on the CompuServe net

work for all of you with CompuServe IDs.

Who says computerization is the cause of impersonalization?

Our High Touch Expert Forum is about as personal as you can

get. It's very private, too. Only you and your contact know about

the issue being discussed.

Please don't forget the other readers, however. Just drop a line

to B. Bhavisyat on the BBS (or c/o COMPUTER LANGUAGE) and

describe what your problem was. Then tell us how you got it

answered. You surely aren't the only one in the world with that

problem, so you'll be doing a great public service by sharing your

knowledge. A rewarding experience for you will be a revealing

experience for us.

Let's go for it! ■■

1

COmPUTER RESOURCES „, __

* * * EASY TO USE * * *

Macro Programs for

TM

We have been using and working with Spellbinder

since late 1981. We use computers extensively in the

day-to-day operation of our business and have devel

oped a number of programs which we find useful.

We recently formed a software development and mar

keting company - Computer Resources of Waimea, to

promote and market these programs, most being en

hancements and macro programs running under Spell

binder. Spellbinder's macro programming language

M-Speak is extremely versatile and in our opinion is

one of the best kepi "secrets" in the world of micro

computers. We have a number ol macro programs for

the end user, a number of utilities for the programmer,

and for those who want a more or less organized in

struction set for M-Soeak. nur head nrnarammer has

compiled his personal notes into a booklet which the

M-Speak user should find very useful. It can be pur

chased for $10.00. Send for our complete listing.

P.O. Box 1206 Kamuela, Hawaii 96743

(808)885-7905 J

CIRCLE 42 ON READER SERVICE CARD CIRCLE 14 ON READER SERVICE CARD

19

MicroMotion

MasterFORTH
It's here — the next generation

of MicroMotion Forth.

• Meets all provisions, extensions and experimental

proposals of the FORTH-83 International Standard.

• Uses the host operating system file structure (APPLE

DOS 3.3 & CP/M 2.x).

• Built-in micro-assembler with numeric local labels.

• Afull screen editor is provided which includes 16x

64 format, can push & pop more than one line,

user definable controls, upper/lower case key-

board entry, ACOPY utility moves screens within&

between lines, line stack, redefinable control

keys, and search & replace commands.

• Includes all file primitives described in Kernigan

and Plauger's Software Tools.

• The input and output streams are fully redirectable.

. The editor, assemblerand screen copy utilities are

provided as relocatable object modules. They

are brought into the dictionary on demand and

may be released with a single command.

• Many key nucleus commands are vectored. Error

handling, number parsing, keyboard translation

and so on can be redefined as needed by user

programs. They are automatically returned to

their previous definitions when the program is

forgotten.

• The string-handling package is the finest and

most complete available.

• A listing of the nucleus is provided as part of the

documentation.

• The language implementation exactly matches

the one described in FORTH TOOLS, by Anderson

& Tracy. This 200 page tutorial and reference

manual is included with MasterFORTH.

• Floating Point & HIRES options available.

• Available for APPLE ll/IH-/lle & CP/M 2.x users.

• MasterFORTH- $100.00. FP& HIRES-$40.00each

• Publications

• FORTH TOOLS - $20.00

• 83 International Standard - $15.00

• FORTH-83 Source Listing 6502. 8080, 8086 -

$20.00 each.

Contact:

MicroMotion
12077 Wilshire Blvd., Ste. 506

Los Angeles, CA 90025

(213) 821-4340

CIRCLE 40 ON READER SERVICE CARD

20 COMPUTER LANGUAGE ■ NOVEMBER 1984

Multi-Basic
"The BASIC compiler that compiles

both MBASIC and CBASIC"

Now you don't have to give up the features you

like about MFJASIC to obtain the powerful

capabilities of CBASiC. Multi-Basic gives you

both.

Multi-Basic works with your existing programs

so your current software investment is protec

ted. But just as important, Multi-Basic opens

the door to a whoie new way of programming.

With Multi-Basic you can write very readable,

modularand structured programs. Multi-Basic

makes program maintenance as easy as it is

with Pascal.

In addition to understanding the two most

popular dialects of BASIC, Multi-Basic allows

you to extend the language even further. You

can add your own statements and functions as

needed.

Multi-Basic is also compatible with our Pascal

and C compilers. This allows your BASIC

programs to use routines written in Pascal or

C

In today's fast changing computer business,

you need a language as versatile as Multi-

Basic, invest a little time today and save a lot of

time tomorrow. You owe it to yourself to see

what a difference Multi-Basic can make.

Multi-Basic is available for the TRS80 models

I, II, III, 4 and 12; Tandy 2000, IBM PC, and

CP/M. It is compatible with TRSDOS, LDOS,

NEWDOS, DOSPLUS, MSDOS, PCDOS, CP/M

and CP/M plus.

Alcor Multi-Basic $139

Other Products:

Advanced Development Package $ 69

Blaise I Text Editor (Mod 1 or 3) $ 49

Blaise I! Text Editor (all others) $ 79

Multiprocessor Assembler $ 69

AicorC $139

Alcor Pascal

{for CP/M, MSDOS, PCDOS) $139

Complete Development System $250

includes compiler, text editor and advanced

development package

Shipping U.S.A. $6.00

Shipping Overseas $28.00

13534 Preston Road, Suite 365

. 3 Dallas, Texas 75240

(214)494-1316

Multi-Basic is a trademark of Alcor Systems

TRS60 is a registered trademark of Tandy Corporation

CP/M, CBASIC are trademarks of Digital Research

MSDOS. MBASIC are trademarks of Microsoft

ICIRCLE 1 ON READER SERVICE CARDl

DESIGNERS DEBATE

Pascal: Just a teaching language?

o
ur debate this

month concerns

Pascal, that

ubiquitous language now taught in nearly

every computer science curriculum.

The word "Pascal" has become almost

synonymous with the phrase "structured

programming," which in turn implies

better.

Is Pascal better? Considering the num

ber of shops that use it, it must be good. It

definitely has a most conspicuous position

among the many programming languages.

It is one of the first "designed" languages

and one of the first to become available on

microcomputers.

Even so, there seems to be a trend

toward Pascal shops migrating to the C

language. Why?

Pascal was designed as a language for

teaching programming, language design,

and compiler construction back in the

early 1970s, the days of the mainframe,

IBM, FORTRAN, and COBOL. It fol

lowed the path that was first laid down by

ALGOL, the granddaddy of the modern,

structured language world.

Pascal's wide acceptance among uni

versities led to students graduating with a

thorough foundation in its use. And, after

its initial exposure in the academic world,

it took a prominent position in the real

world of industry.

As with most languages, various ver

sions of Pascal are loose in the world. In

this debate, we refer primarily to the ISO

standard Pascal as defined by Kathleen

Jensen and Niklaus Wirth in Pascal User

Manual and Report.

The Pascal protagonist is Elbert

Hinson, a senior analyst. He also teaches

Pascal. On the offensive is Bruce Hunter.

writer.

I
et's start off

with the

Ibusinessof

Pascal's strict structuring . . .

Hunter: Actually, the ISO standard is

really just a proposed standard— it hasn't

been accepted yet. When Wirth came up

with Pascal, what he wanted to do was

By Ken Takara

introduce a structured teaching language

patterned more or less after ALGOL.

Incidentally, ALGOL is an interesting

language that most of our modern pro

gramming languages are patterned after

but which isn't itself in much use any

where.

Basically, Wirth knew he'd have to

write the compiler himself, and he wanted

to keep it as easy as possible.To do that,

he wanted to reduce the amount of parsing

necessary.

Hinson: The Pascal compiler is

designed to be a single pass compiler, so

there is a very rigid order for declara

tions. Not only do you have to declare

everything before you use it, they have to

be defined in a specific order—tables

first, then constants, types, variables, and

finally procedures and functions.

Hunter: This is nice for beginning

programmers. But, on the other hand,

when you're working with real applica

tions programs or when you're involved in

systems work you don't want to be tied to

that sort of thing. You want to be able to

lay them out in any order. They're neces

sary, but you don't want to have to bother

with them.

One of the big things at the time was the

concept of top-down programming. In

languages like PL/I or ALGOL, you deal

first with the main procedure, then the

second level, and so on. Now we' ve got

Pascal, which is totally upside down,

where the most trivial things appear first.

The last thing to appear is the most

important part: the program name and

main procedure.

The programmer has to write bottom up

rather than top down, defeating one of the

major points of emphasis.

Hinson: I disagree. I don't see how

that affects top-down programming.

With the editors available nowadays,

like WordStar, you don't have to actually

write the program in that order. You can

start by writing the main program first,

then adding the functions ahead of it.

Another method I've used is to build a

skeleton main program with stubs for the

functions and subroutines.

Even with PL/I, you need to create

these "dummy" routines while you check

out the main procedure. And then you

simply replace each dummy with the real

thing as you get to it.

Anyway, you're supposed to plan the

program before you code it.

Hunter: Because Pascal's a teaching

language, Wirth wanted it as compact and

lightweight as possible. In order to do

that, he minimized the number of data

types available.

He only included scalars—data struc

tures that can hold only a single value.

Consequently, niceties like strings are

nonexistent.

So you have to handle strings as arrays

of characters. Well, strings and arrays of

characters are very different things. A

string has a length associated with it and a

number of specialized operations.

Try to input an array of characters as a

string. For example, you normally use a

carriage return to end a string input. If the

carriage return is used to delimit the end

of the string, then you have lost the use of

that character by the program.

Hinson: That's not altogether true

either. Not all data types are scalar. Pascal

has the type record, with which you can

put together complex data structures with

mixed types. You can define a record with

an integer followed by an array of charac

ters to create a string, for example.

Sure, you have to create your own

string input routine that terminates condi

tionally when it sees a carriage return, but

this is hardly a problem solely with

Pascal.

And Pascal does have the set type,

which is very powerful for working with

non-numeric data items. You don't have to

simulate these items using integers as you

would with another language.

Hunter: Yes, the strong data typing

and the successor and predecessor func

tions allow you to work with sets exqui

sitely well.

I
"ve heard that I/O

and system access

in Pascal are not

very good, making real programming in

Pascal difficult. Would you comment on

this?

Hunter: Pascal I/O is very limited.

This particular language cannot do ran

dom I/O, it only can handle ASCII files,

and once you've closed a file it's closed

21

forever—you can't open and append to it.

Input is difficult enough, but output is

worse. For example, Wirth allowed for

only right justification. This means pro

grams that require precisely formatted

output are very difficult to write.

In my book, Fifty Pascal Programs, I

have an example of a little business pro

gram that prints out a report. I have to

actually count characters and append

blanks to get things justified. It gets to be

extremely painful.

Hinson: I don't think it's that bad.

You can specify the position for a deci

mal value with an instruction like write

(X:10:2), which gives you a 10-digit deci

mal value with two digits to the right of

the poini and very nicely aligned dollar

amounts.

Otherwise it will be right justified, as

you usually want it. And text is always left

justified, which is also as you would want

it.

But then, this is a problem common to

most scientific languages. If you want for

mat, you ought to be using RPG or

COBOL. The problem with files is very

real, though, and represents a major

drawback with standard Pascal.

Of course, the philosophy of Pascal is

to avoid hardware-specific constructs, so

I/O is left up to the programmer and is not

really part of the language.

Hunter: The Pascal compiler Wirth

designed is not really a compiler; it's

called a p-code generator. It compiles the

Pascal code into p-code which is then run

through an interpreter.

CP/M-80 C Programmers ...

Save time
... with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Uiiia-last compilation, linkage and

eiBCulion mat produce directly

executable 606O7S0 CP/M command

files.

A comprehensive decugger tfial

traces program eieculion and

interactively displays both local and

eilemai vanables Dy name and

proper type.

Dynamic overlays that allow tor run

time segmentation ol programs too

large to lit into memory.

• A 110-tunclion library written in both

C and assembly language with full

source code.

Plus .. .
• A thorough, easy-to-read. 181-page

usef's manual complete with

tutorials, hints, error messages and

an easy-to-use inden — it's the

perfect manual to' the beginner and

the seasoned professional.

An attractive selection of sample

programs, including MO0EM-

compatible telecommunications,

CPiM system utihiies. games and

more.

A nationwide BDS C Use's G'oup

($10 membership fee — application

inclined with package) that offers a

newsletter, BDS C updates and

access to public domain C utilities

Reviewers everywhere have

praised BDS C for its elegant

operation and optimal use ol

CRM resource's. Above all. BDS C

has been hailed for it's remarkable

speed.

BYTE Magazine placed BDS

C ahead of all other 8060/Z8O C

compilers tested for fastest

object-code execution with all

available speed-up options in use.

In addition, BDS C's speed of

compilation was almost twice as

fast as its closet competitor

(benchmark for this test was the

Sieve of Eratosthenes).

"1 recommend both the

language and the implementation

by BDS very highly."

Tim Pugh. Jr.

in Infoworld

"Performance Excellent

Documentation; Excellent

Eistof Use Excellent"

InfoWortd

Software Report Caid

1... ■ superior buy ..."

Van Court Hare

in UfetinezThe Softa-ore

Magazine

Dorif wasfs another minute on

a alow language processor. Order

four BDS C Compiler today!

Complete Package (two B" SSDD disks,

181-page manual): Si 50

Free shipping on prepaid orders Inside

USA.

VISAJMC, COD's. rush orders accepted.

Call fO' information on other disk

formats.

BOS C h denoted lor nit wiih CP/M-BO

operating systsms. vcraion 22 of nghor. IT is

nol currently ivalKCIe la CPIM« ex MS-

DOS

BD Software, Inc.
P.O. Box 2368

Cambridge, MA 02238

(617) 576-3828

BASIC, another teaching language, is

interpreted, and this means that you can

enter a few lines and try it out right away.

Sure, it's slow, but that's okay.

The Pascal compiler, however, is nei

ther here nor there. You don't have the

ease of execution provided by an inter

preter nor do you have the speed of a com

piled language.

You don't have separate compilation in

Pascal either, fora similar reason. It's just

too high a level of complexity for the

Wirth p-code generator.

Hinson: The p-code generator is not

specified in the language design. Wirth

never said how to implement Pascal. Ver

sions of Pascal are available fully com

piled to machine code.

There are also p-codc versions—some

of which, though not within the standard,

have separate compilation, The lack of

separate compilation in the standard is a

problem, no doubt about it.

Without the modularity you can't build

up function libraries. Of course, this is no

real problem for a teaching language. I

guess that's one of the reasons Wirth went

on to develop Modula-2.

C
an you make

any comments

about Pascal's

programming style?

Hunter: When you write a program.

you want it to be simple, clear, and

straightforward. With standard Pascal, in

order to do anything you have to be

clever, and clever code is not easy for any

one to read or understand.

Pascal programmers have built up all

sorts of tricks to get around the lim

itations, and many of these are very diffi

cult to follow. You have to know the tricks

yourself in order to know what the pro

grammer is doing.

A more complete language may be

more intimidating in the beginning

because of its size, but the programmer

tends to write clearer code because it's

much easier to write. You never have to be

clever, and it's far easier to read. Lan

guages like PL/1 or Ada or C are like this.

C, for example, is a very broad language,

with such an extremely rich set of instruc

tions available that you never really have

to kluge the language.

Hinson: I haven't seen that problem

very often. It's true that systems work is

generally difficult in Pascal because it

hides the computer from the programmer,

resulting in the need for various tricks.

But otherwise, you can create most of the

functions you need in a straightforward

manner. For example, Allan Miller's Pas

cal Programsfor Scientists and Engineers

CIRCLE 5 ON READER SERVICE CARD

22 COMPUTER LANGUAGE ■ NOVEMBER 1984

has a collection of all sorts of mathe

matical and engineering algorithms in

standard Pascal, and there is nothing

obscure in them.

As for clever or obscure code, you can

do that with any language. Look at C,

where you can put together a three-line

subroutine that is absolutely impossible to

figure out.

Writing clean, straightforward code

always requires discipline.

Hunter: Generally, when people

argue Pascal, they're talking about some

enhanced version. And you can't argue

for the enhancements for the simple rea

son that there is no standard enhanced set.

If I were to write a program in Oregon

Pascal, then try to port it to UCSD Pascal

or Pascal 68K, it wouldn't go. So with no

standards for the enhancements, you don't

have a portable language.

And this brings you back to the Jensen

and Wirth version which isn't going to do

the job.

Hinson: An ANSI committee has

been working on a standard enhanced set

for Pascal. Jerry Pournelle of Byte had a

forum on it at the last West Coast Com

puter Faire. Among other things, they

have instituted some changes such as the

ability to pass varying length arrays as

parameters to functions.

That standard may have been accepted

by now.

W
here do you

find Pascal

useful?

Hunter: When a programming firm

is recruiting young programmers right out

of school, they can be sure that, even if

they know nothing else in the world,

they'll know Pascal.

They can hire inexperienced program

mers, start them off in an extremely

robust set of Pascal, then retrain them in

Ada. For this sort of thing, Pascal can be

very useful since Ada is a natural

progression from Pascal.

Hinson: I like to use Pascal to

experiment.

It's easy to code algorithms in Pascal to

see how well they work and then convert

them to FORTRAN, which I use at work.

I find I can write very elegant, clean func

tions in Pascal. I don't have problems

with a limited set of operations.

P
ascal is obviously

an excellent lan

guage for

teaching programming style and tech

niques by virtue of its strong typing, sim

plicity, and clean and elegant structure.

However, these strengths metamor

phose into severe liabilities when it is

taken from its academic environment and

put to duty in the real world.

The use of Pascal for systems work is

contrary to its philosophy of hiding the

computer from the programmer, for

example. And the primitive I/O structure

can prove a hindrance to many data-

intensive programs. The result is many

enhanced versions, all different, con

tradicting the objective of portability.

The rise of Modula-2 and the existence

of the various structured languages like C

pay mixed tribute to the strengths and

weaknesses of Pascal. It appears, though,

that Pascal will be around for a very long

time.

The ultimate reference for Pascal is, of

course, the classic, Pascal User Manual

and Report by Kathleen Jensen and

Niklaus Wirth, published by Springer-

Verlag. Other books mentioned here were

Fifty Pascal Programs by Bruce Hunter,

published by Sybex, and Pascal Programs

for Scientists and Engineers by Allan R.

Miller, also published by Sybex. H

For your IBM/PC

mbpCOBOL:
4times faster;
andnowwith
SORT&CHAIN

mbp COBOL can be

summed up in one

word: fast.

Because it generates

native machine language object code, the

mbp COBOL Compiler executes IBM/PC"

programs at least 4 times faster (see chart)

GIBSON MIX Benchmark Results
CaUaitaWdS-Pnifik

(Reprvsviuaiitw C0B01 statement mix)

Execution lime ratio

mbp

COBOL

Levd II"

COBOL

4.08

R-M—

COBOL

5.98

Microsoft'

COBOL

6.18

allow source & object

code, map & cross-

reference checking; GSA

Certification to ANSI '74

Level II; mbp has it all.

It's no surprise companies like Bechtel,

Chase, Citicorp, Connecticut Mutual, and

Sikorsky choose mbp COBOL; make it

your choice, too. mbp is available at

Vanpak Software Centers, or direct.

For complete information, write mbp

Software & Systems Technology,

Inc., 7700 Edgewater Drive, Suite

360, Oakland, CA 94621, or phone

415/632-1555

-today

128K system with hard disk required "IBM/PC i> an IBM TM; "Level II

Is i Micro FociuTM; ""A Run McfariandTM: ""n Mlcrowfl TM.

Fast also describes our new SORT; which

can sort four-thousand 128-byte records in

less than 30 seconds. A callable subroutine

or stand-alone, 9 SORT control fields can

be specified. And our new CHAIN is both

fast and secure, conveniently transferring

control from one program to another, pass

ing 255 parameters. Plus, new extensions to

ACCEPT & DISPLAY verbs give better, faster

interactive programming.

The complete COBOL. An Interactive

Symbolic Debug Package included standard;

Multi-Keyed ISAM Structure; listing options

CIRCLE 39 ON READER SERVICE CARD

23

Total Support Packages

The GRAFMATIC (screen graph

ics) and companion PLOTMATIC

(pen plotter) libraries of modular

scientific/engineering graphics

routines let you easily create 2D

and 3D plots in customized or de

fault formats. Pen plot preview with

GRAFMATIC. Plot interactively or

in deferred mode. Others only pro

vide our "primitives" (mode, color,

cursor, character, pixel, line,

paint...). We follow through with:

auto-scaling, auto-axis generation,

auto-tic mark labeling, function

plots, tabular plots, auto-function

plots (complete plot in default for

mat with one easy call), auto-tabu

lar plots, log/parametnc/contour

plots, 3D rotation/scaling/transla-

tion, wire frame model (for old

time's sake), hidden line removal

for solid models (GBAFMATIC

only), cubic and bicubic spline in-

terpolants. least squares fits, bar

and pie charts, screen dump....

You name it. We have it' Best of all.

the clearest and most complete

documentation to be found in mi-

crocomputerland. User support? Of

course, call us1 We offer a no ques

tions asked money-back

guarantee.

- GRAFMATIC

and

PLOTMATIC

for the

IBM PC

Tandy 2000

Tl Professional

<M ■•-.■\^-. ■-■■■'■■ ■■■■ ■ ■' ■ ■
■ i'y'l-'"-'- ■ v>;-\>Y ■■'■■'■ '"■ ■

(.' ,. i'' ' ' Jf- ' '■ 1 1

m ■ •'

i ;■, ■ =■

FORTRAN

PASCAL

Screen and

Pen Plotter

Graphics

Tools

1
1
I

. MICROCQMPATIBLES

. l1443.OaK Leaf'.Dr
, ,> Silver Spring. MD 20901

■ ■';.; ;•'.-.(301) 593-0683
. ft '■' ViRflFl^lATlP''1 '■■''- .' tnc
_r. . ■ .onwTiyi/vjio< . r p. &ijj

■i.'V,,'PLOTMATIC; ' '.' 135
; BOTH-/-/ ; '/,,■■■ . '■ 240
'- Specify compijers:

:.(IBM/MS/SU(JerSoIt/Digilal
. Research) '

Plotters:.(H-P. HI, IBM)

GRAFMATIC is the

most imaginative and

well designed use of

FORTRAN I have yet

seen in a FORTRAN mi

crocomputer software

package."

James Creane,

Contributing Editor,

Personal Computer Age

CIRCLE 15 ON READER SERVICE CARD

Use ALL the Power of Your

MS-DOS, IBM PC-DOS, or CP/M-80 System

with UNIX-Style Carousel Tools

ch "CP/M" "MS-DOS" <doc >newdoc

diff newdoc doc I more

ed newdoc

kwic newdoc I sortmrg I uniq I unrot >index

make -f makdoc ndx

Carousel Tools and Carousel ToolKitsare trademarks of Carousel

MicroTools, Inc. CP/M is a trademark of Digital Research; IBM is a

trademark of International Business Machines; MS is a trademark of

Microsoft; UNIX is a trademark of Bell Laboratories.

CAROUSEL TOOLS are a proven set of over 50 programs

designed to be used with pipes, redirected I/O and

scripts. In the style of UNIX each Tool does one thing

well, and the Tools can be used together to do more

complex tasks.

YOU ACCOMPLISH MORE using Carousel Tools: better

programming and documentation support, simpler

data and file housekeeping, more general file

handling.

TOOLS FOR PC/MS-DOS 2.x AND CP/M-80 are available

now. The DOS TooIKit is $149. The CP/M ToolKit is $249

and includes a shell to provide pipes, redirected I/O,

and scripts. Source code is available for $100 more.

ORDERYOURTOOLKITTODAY. JTjT gg|

CALL OR WRITE:

CwCAROUSEL MICROTOOLS, INC.
609 Kearney Street, El Cerrito, CA 94530 (415) 528-1300

24 COMPUTER LANGUAGE ■ NOVEMBER 1984 CIRCLE 8 ON READER SERVICE CARD

Enhancing
Source Code Control

under UIMI/x pART,
■■■■■■«■■■■■

!■■■■■■■■■■■■■■■■■■■T
he UNIX Source

Code Control

System utilities

provide the

individual programmer with a mechanism

for the orderly updating of source files

under the UNIX operating system. But for

managing source files in the medium-to-

large software project world. SCCS is not

adequate.

It is possible, however, to provide an

acceptable source file management facil

ity for such a project by providing a front-

end interface to the SCCS utilities. This

article describes the SCCS utilities and

the creation of such an interface (known

as Project SCCS or PSCCS) for use in a

UNIX operating system port project.

What is a SCCS?

Organizing a programmer's source files

for easy retrieval is a not always an easy-

to-solve problem. When the files are gen

erated by an organization of program

mers, the problem is far worse. Not only

are there a large number of source files

(for example, the UNIX operating system

needs more than 5,000), but it's necessary

to maintain multiple versions of the

"same" file.

Work continues on a program after it is

released as a product, but it is important

to be able to generate the product as

released—for example, to verify bug

fixes sent to the field. The relationships

among files must be recorded somewhere.

By Luke C. Dion and Alan Filipski

Which source files must be compiled

and linked together to produce which

object files? Where is the documentation

related to these source files? How can we

prevent several programmers from simul

taneously editing the same file?

Some sort of data base is evidently nec

essary. A primitive first step in this direc

tion is the very existence of the hier

archical directory system available under

the UNIX operating system.

Utility source files, for example, can

all be kept under a single directory with

subdirectories for specific utilities or fam

ilies of utilities. This makes files quite a

bit easier to find but does not come close

to providing adequate structure to main

tain a project manager's sanity during a

task such as a UNIX operating system

port.

UNIX SCCS utilities

SCCS utilities furnished by the UNIX

operating system provide a next step in

source file organization. In particular,

they are an efficient mechanism for saving

the history of changes to a source code

file. This allows regeneration of any of a

series of released versions of an evolving

source file and provides a user-controlled

backup system.

If you realize that all of your source

code editing for the last three weeks was

based on some disastrous misconception,

you can quietly back up to the last good

version without bothering your system

administrator to retrieve files from

tapes, etc.

It is remarkable that this is accom

plished by the SCCS utilities without the

storage overhead of actually saving the

full text of each version—only the differ

ences between each version and its prede

cessor are saved. A side effect of the

SCCS mechanism is that a source file can

not be inadvertently edited by more than

one programmer.

The three principal SCCS utilities of

the UNIX operating system are admin,

get, and delta. There are a number of oth

ers, but these are the basic commands that

account for 99% of SCCS usage, admin is

used to create a basic SCCS source file

from an ordinary source file. For example,

admin -imyfile.c sioofram.c

takes the source from the file myfile.c and

creates an SCCS file named s.foofram.c.

(All such SCCS files must begin with

"s."). This file is an ASCII file which

contains the text of myfile.c along with

information about when it was created, by

whom, etc.

To retrieve the text stored in

s.foofram.c, it is necessary to use the get

command. The command

get s.foofram.c

creates a file in the current directory

called foofram.c containing the exact text

that was admin 'ed. If we want to update

the SCCS file, the "-e" option is used

with get. The command

get -e s.foofram.c

25

also creates a file in the current directory

called foofram.c. The difference is

that now foofram.c may be modified and

returned to the file s.foofram.c.

The delta command is used to return an

updated version of a file to its SCCS file.

The command

delta s.foofram.c

removes the file foofram.c from the cur

rent directory and replaces it into the file

s. foofram.c. The delta command also

prompts the user for commentary to be

stored in the SCCS file along with the

updated text.

To see how these commands work

together consider the following

sequence:

admin -imyfile.c s.foofram.c
get-e s.foofram.c

< edit foofram.c >

delta s.foofram.c

The files.foofram.c now contains both

versions of the source file—the original

and the edited version. To retrieve the

original, type

get-r 1.1 s.foofram.c

To retrieve the modified version, type

get-rl .2 s.foofram.c

The get /delta process may be repeated

as many times as desired, storing an entire

chain of versions of the original file in the

single file s.foofram.c The number after

the "r" in the get command is of the form

release.level. The level goes up by one for

each delta, while the release may be

incremented whenever desired, for exam

ple, after a major software release. Many

other variations are possible, such as

retrieving a file version based upon date.

It is also possible to create a branched,

tree-like structure within the SCCS file.

but we won't go into thai here.

An additional control feature provided

by SCCS is file locking. One of the known

deficiencies of the UNIX operating sys

tem is that there is no built-in mechanism

for coordinating several users who want

to write to the same file.

Typically, if two users edit the same file

simultaneously, neither will be notified of

the other and the first to write to the file

will lose his or her modifications when the

second writes over the work. SCCS pre

vents this by creating a lockfile called a

p-file in the directory containing the

SCCS file whenever a get with the -e

option is issued. As long as this p-file is

present, the source file may not be

checked out again for editing. When the

source file is delta* q6 back in, the p-file

disappears, enabling further gets for

editing.

The most interesting feature of the

operation of.the SCCS system is that a

sequence of revisions of a source file may

be saved in an SCCS file that is much

smaller than the sum of the sizes of all

files in the sequence. Each time a new

version tedelta'ed in. the SCCS system

uses the UNIX utility diffto generate a

sequence of editing commands to trans

form the previous top level version into

the new top level version. Only these

commands are saved in the SCCS file.

When it is time to get a file from the

SCCS file, these editing commands are

applied to the original (1.1) version until

the desired version is reached. This edi

ting is fast since it only deletes and adds

lines; no intra-linc editing is done.

Finally, the SCCS system provides a

control feature called "what strings".

When a file such as a C language source

program is put under SCCS control, it is

recommended (mandatory under PSCCS)

that it contain some construct such as the

following:

static char sccsid[] = "%W%%Q%";

The strings "%W%" and "%Q%" have a

special meaning to the SCCS system.

When the source file is retrieved via get,

the line is expanded as follows:

static char sccsid[] = "@(#)foofram.c

1.2 UNIX System V/68";

where " 1.2" is the release and level num-

bcrof the retrieved file, "UNIX System

V/68" is a string defined by the system

administrator, "foofram.c" is the name of

the file, and "©(#)" is a magic string of

characters whose use will be explained

later.

Suppose now that the retrieved C

source file is compiled and linked to cre

ate some executable file cailed, say, foof-

ram. A UNIX utility called what, when

applied to any file, searches the file for

all occurrences of the magic sequence

of characters "@(ft)" and returns what

ever characters follow, up to an ACSII

NULL or new-line character.

The file foofram contains, somewhere

in its initialized data section, the string

"@(#)foofram.c 1.2 UNIX System V/68".

Thus the command

what foofram

will return

@(#)foofram.c 1.2 UNIX System V/68

In this way, executable object files can

be easily examined to determine which

versions of which source files they came

from. (The string "©(#)" was chosen as

the magic string simply because it is a

string not likely to occur otherwise in a

program: even if it should occur, how

ever, no great harm is typically done.)

PSCCS enhancements

The SCCS utilities provide some assis

tance for an individual who needs to keep

track of his or her own software develop

ment work. However, it will not meet the

needs of a group of people working on the

same project.

In a software project, a large number of

source files must be kept in a common

area. This presents (at least) two prob

lems: first, programmers cannot remem

ber where files are or what they arc

called: second, programmers must be pre

vented from inadvertently destroying

■■■■■■■■■■■■■■■■■■■■■■■■■■•a

26 COMPUTER LANGUAGE ■ NOVEMBER 1984

work done by themselves or others.

To address these problems, we wrote a

project control user interface to the SCCS

commands. This interface provides con

trolled access to all the SCCS commands

via new commands pget, pdelta, padmin,

etc., analogous to the get, delta, admin,

etc., of SCCS.

Each PSCCS command provides a con

trolled interface to its associated SCCS

command. The PSCCS system must be

initialized by the project administrator

with a simple data base of SCCS file

names {actually complete path names).

This relieves the user of the burden of

remembering the complete path names of

all files in the system. If the user enters

pget string

thepget utility will search the data base of

path names for all names that contain a

string of characters as a substring. If there

is only one such path name, that SCCS file

is retrieved. If there is more than one

matching path name, each one is

presented to the user and the user must

choose which one he or she wants.

The system actually contains some

additional refinements. The user may

speed up the search by specifying in the

environment or on the command line one

of several general groups of utilities the

user is interested in. This solves the prob

lem of having the user remember the path

name of all files under the system—the

user need only remember some substring

of that path name. If the user wants

to retrieve a version of the SCCS file

/port/port/src/cmd/s.foofram.c,

he or she can execute pgetfoof, for exam

ple, Neither the location of the SCCS file

nor the full name needs to be specified.

The other problem—the problem of

control—is easily solved by the PSCCS

mechanism. In the normal SCCS environ

ment, the ability to update the file will

also give the user the ability to deliber

ately or inadvertently corrupt or remove

the file.

Each PSCCS utility has the setuid bit in

its permissions turned on. This means that

whenever the program is run, the effective

user ID is that of the owner of the pro

gram (the project administrator) rather

than the real user. The user can now,

through the PSCCS utilities, access files

to which he or she otherwise has no per

mission. Provided the files are properly

protected, the user cannot destroy the files

since these capabilities are not provided

through PSCCS.

The entire PSCCS interface consists of

about 630 lines of C code. This includes

code for the less frequently used routines

pede, pprs, and prmdel as well as pget,

pdeha, and padmin. Of this, 270 lines are

for routines that expand partial path

names given on the command line into

complete path names via the PSCCS data

base.

PSCCS and the V/68 port

This set of "project" SCCS tools was

used by Motorola Inc. on their

AT&T-sanctioncd port of the UNIX Sys

tem V operating system to the M68000

microprocessor family. In that project,

over 6,000 SCCS files were used without

a single incidence of corruption or loss

due to programmer errors.

Unlike many other projects of similar

size and complexity, almost no config

uration or version control problems

occurred. In the initial released product

which, at the time of this writing is still

the only AT&T approved microport,

every object code module was created

from the top "release 1" SCCS level.

Motorola's development of the UNIX

System V operating system, M68000 ver

sion, continues today with successive

releases for M68010 and M68020

machines all under PSCCS control.

Thanks to the PSCCS tools, any release of

the software can be regenerated at any

time, a feat that would have seemed

impossible just a few years ago.

From the programmer's point of view

also, working without PSCCS would have

been much more cumbersome. The pri

mary advantage to the programmer was

that it was not necessary to remember

where the source files were kept or

exactly what their names were in order to

work with them. We arc aware of no com

plaints or requests for enhancements to

make PSCCS easier to use.

The PSCCS advantage

The SCCS utilities provide the individual

programmer with a mechanism for the

orderly updating of source files under the

UNIX operating system. For management

of the source files of a medium-to-large

software project, SCCS is just not

adequate.

It is possible, however, to provide an

acceptable source file management facil

ity for such a project by providing a front-

end interface to the SCCS utilities. In the

form presented here, the interface pro

vides a way for the individual program

mer to retrieve or update source files

without having to remember their full

name or location. It also provides control

over which operations programmers are

allowed to perform on project source

files. Although much more elaborate pro

gram data bases may be constructed, we

found the PSCCS system to be exactly

what was needed for the management of

our6,000-file UNIX operating system

port project.

Note: Next month in COMPUTER

LANGUAGE we will present a more

detailed analysis of the design criteria

behind the C code used to implement

psccs. n

Luke C. Dion holds a B. S. in mathematics

and in computer sciencefrom the Unix: of

California at Berkeley and is part way to a

M. S. in computer sciencefrom Stanford

Univ. Last February Dion left Motorola,

where he was project manager and respon

siblefor Motorola's port of UNIX System

V, andfounded Palomino Computer Sys

tems Inc., specializing in UNIX operating

system consulting and porting.

Alan Filipski holds a Ph.D. in computer

sciencefrom Michigan State Univ. He has

taught at Central Michigan Univ. and Ari

zona State Univ. and is currently a prin

cipal staffengineer at Motorola Micro

systems in Tempe, Ariz., working on the

UNIX System V operating system.

27

Natural
Language

Processing

and LISP
By Richard Bermon

anguage pro

cessing is the

transformation

lofoneset of

finite symbols into another set of sym

bols. Right now you are processing the

symbols on this page into some form that

carries meaning and can be conveniently

stored (or not, as you wish) in your mind.

Even if you have eidetic memory, the

image of this page is not the same as the

meaning you assign to its content, and

therefore some kind of transformation

must occur.

In all cases of language processing, a

transformation takes place to restructure

the initial symbols into a structure that is

easier to manipulate and which comes

closer to representing the intent of the

original statement.

Any time you must accept input in your

programs some form of language pro

cessing occurs. The trivial case may be

the BASIC statement

INPUTA

in which characters typed in are trans

formed into a binary representation for a

28 COMPUTER LANGUAGE ■ NOVEMBER 19Bd

floating point number. On a larger scale,

the statement INPUTA itself is an ordered

set from the finite set of characters on

your keyboard. Your BASIC interpreter

or compiler must transform this into a

form that may be executed.

At worst, this transformation may be

done on the ily each time the statement is

to be carried out. This is closer to the type

of language processing that will be dis

cussed in this article. The article will also

cover some ideas about representation of

data as well as give some advice and

examples on the use of recursion to help

simplify the whole process. Simple cases

of natural language (e.g., English) pro

cessing will be used.

All programming examples are in LISP.

These examples are short and simple, yet

show the power of using lists as data

structures and recursion as a processing

technique. I will attempt to ease you

through these pieces of code with suf

ficient understanding so that all will be

clear.

Recursion in LISP

Recursion is a term that is receiving

increased mention in technical literature.

To be sure, it has always had a place in

mathematics, but it is only recently that

the concept has begun filtering down to all

levels of computer programming.

LOGO, a language for "kids," even

uses recursion in simple examples. In

Godel, Eschcr, Bach: an Eternal Golden

Braid1 Douglas Hofstadter has cooked up

an incredible synthesis of music, mathe

matics, logic, philosophy, art and arti

ficial intelligence. One of the basic cor

nerstones of the book is the notion of

"strange loops." This is really just a

cousin to recursion, in which the only way

to describe something is in terms of itself.

Actually, all we have in recursion is a

simple functioncall.lt is special only

because the function is catling itself. On

the surface, recursion may seem to be

promising an eternal loop. Typically,

early in a recursive function there will be

a check to sec if its given arguments meet

some kind of terminating criteria. If so,

the function returns to its caller, which

often is the same function. Not all lan

guages support recursion. Some forms of

BASIC do.

LISP is not an acronym for Lots of

Insipid Silly Parentheses, but it isn't hard

to see why this joke originated— LISP has

a lot of parentheses. LISP stands for LISt

Processor.

Most programmers have some famil

iarity with the concept of a list. It is just an

ordered grouping of items. On the surface

this may sound suspiciously like an array,

but there is more to a list.

Typically, anything may be an element

of a list. Most languages allow only num

bers or text (i.e., strings) to be the mem

bers of an array. You couldn't make an

element of an array a whole other array,

for example. In addition to this, a list is

linked.

A good analogy to a list is a train. Each

car of the train represents an element of a

29

list. Each one is linked up to other cars in

some particular order. I could change the

order by unlinking one car, or a group of

cars, and relinking them elsewhere in the

train. I could remove a car permanently or

insert new cars at any point.

Now. if I could get an entire train into a

car this would be more like a true list,

because any clement of a list can itself be

a list. For our purposes a list might look

like this

(WHEREISTHEBEEF)

and, in fact, this is what a list looks like in

LISP. This list has four elements with

WHERE as the first element.

The list

(WHERE (OH WHERE) ISTHE BEEF)

has five elements. The second element is

itself a list with two elements.

In LISP, all lists have two parts: the

first element and the rest of the elements.

The first element is called the CAR of the

list. This term originally comes from

Contents of Address Register. It is a relic

of the original computer upon which LISP

was developed. In both the above lists, the

CAR of the list is WHERE. The rest of

the list is called the CDR (Contents of

Data Register) of the list. The CDR of the

first list is

(ISTHE BEEF)

and of the second list it is

((OH WHERE) ISTHE BEEF)

and as you might guess, the CAR of this

last list is

(OH WHERE)

and its CAR is OH. Surprisingly, the CDR

of this list is not WHERE. It is the list

(WHERE)

and the car of this is WHERE. The CDR

of this list is a special item called NIL.

NIL is considered to be an empty list. It

has an important purpose, as it indicates

the end of a string of CDRs. Note that the

CAR of this list (in this instance) is not a

list—no parenthesis. In LISP parlance,

anything that is not a list is called an atom

because it is indivisible, at least by CAR

and CDR.

As an example of the use of NIL, sup

pose you were writing a simple program

to simulate a psychologist interrogating

the user2. The user has entered

(I HATE COMPUTERS)

and for the purposes of our program, we

wish to massage this text based on recog

nition of the key phrase I HATE. Perhaps

we want to ask a question like "What

bothers you about " where the

blank is filled in by the object of the user's

sentence, in this case (COMPUTERS).

In scanning this sentence, you might

first take the CARofthis list and find the

atom I. Recognizing it for a keyword, you

then pass the CDR of this list onto a func

tion to look for more. This function takes

the CAR of its given value and sees the

atom HATE. Another keyword! It puts it

all together for the key phrase (I HATE)

and passes the CDR of its list onto a func

tion to continue parsing. This means

giving the list (COMPUTERS) to this

function.

The function might get the CAR of its

argument and stick the atom COMPUT

ERS onto a new list to create the phrase

that will fill in the above blank. Then it

passes the CDR of this list to itself (rather

than looping) to continue this process. But

now the list is NIL (because taking the

CDR of a list with only one element will

give NIL—the empty list). At this point

you can see several aspects of recursion:

■ Recursion can be used in place of loops

■ There must be a condition to terminate

the recursive process.

In this case, the function checks for NIL

and returns rather than appending NIL

onto the list it is creating.

Listing I shows a sample set of func

tions to carry out a simple pattern-

directed parsing of a sentence like the pre

vious one. It is composed of three

functions. Before going into them, we

need to know more about LISP so that we

can understand these definitions more

clearly.

First off, you can clearly see by looking

at the first definition that there is some

kind of structure here. Certain lists line up

with other lists. In LISP, indentation is

used as it is with C or Pascal to indicate

the structure of an expression. Also, you

can see that a function in LISP is made up

of a list, just as the sentences given as

examples were.

LISP works in polish notation. For

example, to add two numbers you would

enter (PLUS 1 2) which would return the

result 3. The CAR of this list is the atom

PLUS. The CAR of each successive CDR

is an argument. That is, the CDR of the

expression is the list (2 3) and the CAR of

this is 2. The next CDR is (3) and the

CARofthis is 3. So 2 and 3 are arguments

to PLUS.

Just as there was a list as an element of

the sentence above, an argument of a

function may be a list rather than an atom.

For example,

(PLUS2(PLUS45))

would yield 11. The second argument to

PLUS is atist. The LISP evaluation pro

cess calls itself to get the result of this

argument so that it may be added to 2.

LISP is inherently very recursive in the

execution of lists.

Sentence processor example

Let's go back to our simple sentence pro

cessor in Listing 1. Remember the goal is

to take a sentence and, by recognition of

certain keywords or phrases, extract other

phrases that we can use to construct a new

output sentence and so simulate a patient/

psychiatrist dialogue.

By examining the first function, we can

see that it is a list whose CAR is the atom

DE. DEha function (remember, if a list

is to be executed, the CAR is a function)

used to define new functions. The first

argument is the name of the function

being defined. In this case we are defining

a function named PARSE-FORM. The

second argument to DE is a list of atoms

that represents the arguments of the new

function. This is similar in concept to

30 COMPUTER LANGUAGE ■ NOVEMBER 1904

the X in the BASIC expression

DEFFNA(X) = . . .

The arguments for PARSE-FORM are

FORM and SENTENCE. The SEN

TENCE will be a list, like (I HATE COM

PUTERS). The FORM will be used to

control the flow of the parse routines. For

the above example, the FORM might be (I

HATE *). This FORM might be one of

many in our program that will be used to

attempt to decompose the sentence. These

functions will try to match all the words in

the SENTENCE with the corresponding

words (atoms) of the FORM.

The functions shown will detect the

* atom in the FORM and use it to mean

"match any number of words and save

this phrase in a special place." In particu

lar we want the word COMPUTERS to

get extracted from the sample input sen

tence so that we may form an output sen

tence like WHY DO YOU HATE

COMPUTERS.

The remaining arguments given to DE

define the body of the new function. Let

us examine this more closely. From the

indentation, it is evident that the body of

PARSE-FORM is a function named

COND. This is the LISP version of//.. .

Hien . . . Else. It means "conditional."

COND takes a list of lists of the form

(COND (if-1

(if-2

(if-3

then-1)

then-2)

then-3)

(if-n then-n))

In sequence, if-1 is evaluated. If it

returns any non-NIL value, then-1 is eval

uated and its result is returned as the

result of the COND. If if-1 resulted in

NIL, then we skip then-1 and move onto

the if-2, then-2 pair. This goes on until

either a non-NIL "if" occurs, or until we

runout of expressions. COND will return

NIL if no "if" is satisfied.

If PARSE-FORM returns NIL, it will

mean that the given FORM did not match

the SENTENCE. In LISP. NIL is used to

indicate the false condition.

An atom named T is often used to mean

true, but in general any non-NIL value is

true. Now, back to PARSE-FORM.

PARSE-FORM will take the CAR of

FORM and check ifit is the atom*. If it

is, it calls another of our functions called

*PARSE. This will match all words up to

the next atom in FORM. For example, the

form

(I* YOU)

will match any of the sentences

(I LOVE YOU)
(IMUSTTALKWITHYOU)

(I CAN'T RECALL WHAT THEY SAID

ABOUT YOU)

(DE PARSE-FORM (FORM SENTENCE)

(COND ((NULL FORM) (NULL SENTENCE))

((EQ(CAR FORMX QUOTE *))

(*PARSE(CDR FORM) SENTENCE))

((EQ(CAR FORM)(CAR SENTENCE))

main parsing function.

termination check,

phrase matcher?

yes - parse phrase,

equal words?

(PARSE-FORM(CDR FORM)(CDR SENTENCE))))) yes - parse rest.

(DE *PARSE (FORM SENTENCE)

(SETQ PHRASE NIL)

(SETQ *END(CAR FORM))

(*PARSE* SENTENCE))

parse a phrase

initialize phrase.

*END = word that ends the phrase

parse up until *END.

(DE *PARSE* (SENTENCE) ; Parse until *END.

(COND ((NULL SENTENCE) ; More in sentence?

(PARSE-FORM FORM SENTENCE)) ; no - PARSE-FORM will assure FORM done

((EQ(CAR SENTENCE) *END) ; end of phrase?

(PARSE-FORM FORM SENTENCE)) ; yes - parse rest of sentence.

(T ; otherwise...

(SETQ PHRASE

(APPEND PHRASE(LIST(CAR SENTENCE)))) ; add word to phrase.

(*PARSE*(CDR SENTENCE))))) ; parse rest of phrase and sentence.

Listing 1.

31

ACTIVE TRACE

"Software that lives up to

its promises. When a Basic
program doesn't work the way you

want it to, this package... will help

you track the problem down...

Scope is a tool for the beginning,

advanced, or professional program

mer, and it begins where the cross

reference maps leave off. "

Howard Glosser, Softalk for

the IBM Personal Computer

July'84, pp 120-121

"Extremely useful program...

Anyone doing much programming

in Basic should appreciate Active

Trace a lot."

Jerry Pournelle, Byte Magazine

April '83, p 234

"A marvelous Basic programming

aid... It's just amazing to watch a

program you wrote run under Scope,

and debugging becomes if not trivial,

then at least doable"

Thomas Bonoma, Microcomputing,

Dec. '83, p 22

".. .a realty neat utility...

designed to untangle even the

most convoluted Basic

program.... The documentation is

almost worth the price of the

package."

Susan Glinert-Cole, Creative

Computing, July '84, p 210

Active Trace will lead you through your

program letting you know variable values

{all variables or just those you specify}

as they change. Your program's internal

activity is presented on your screen, or

printer, or it can be saved on disk. It's

simple, effective and works with the

BASIC you already own.

Active Trace $79.9F
Includes Scope. XREF mapping and dxumenlatton

ActiVB TracB is available for most MS-DOS and CPM

2.2 systems and supports the special features of

Brand specific versions of Microsoft Basic such as

Basics on the IBM-PC

WARECO
ctive Software

P.O. Box 695 Gualala. CA 95445

(707) 884-4019

800-358-9120(US) 800-862-4948(CA)

Active irace. Active soltware. arc ScoDe are traoemarks of

AWARECO-CPM is a HaOamark ol Digital Research-MS-DOS

ana MicrosoM are trademarks ot Microsoft Corporaiion—IBM-

PC is a iraOemark o\ IBM Coro

4

and in each case, our special cache (called

PHRASE) will contain the list of words

that appeared between I and YOU.

If the atom from FORM is not *, then

the CAR of SENTENCE must match it. If

this is not the case, we immediately return

NIL. For example, the FORM (I * YOU)

has a CAR of I. The SENTENCE

(WHERE IS THE BEEF) has a CAR of

WHERE. Since the CAR of FORM is not

*, (it is I) the CAR of SENTENCE must

match. Bui the CAR of SENTENCE is

WHERE, which does not. and PARSE-

FORM returns NIL indicating the given

FORM did match the SENTENCE.

If all is well so far, PARSE-FORM calls

itself using both the CDR of FORM and

the CDR of SENTENCE to continue

matching the rest of the list.

Now for the other functions used in

PARSE-FORM. The first "if" in theCCWD

statement is (NULL FORM). The NULL

function tests to see if its argument is

NIL. If so, it will return the atomT, else

NIL. You could consider NULL to be the

NOT function, because if the argument is

true (i.e. non-NIL) it returns NIL, and if

the argument is NIL it returns T.

Note that when all of FORM has been

matched, passing the CDR of FORM to

PARSE-FORM wiU pass NIL. So this first

"if" will be true when all of FORM is

matched.

The "then" clause for this is (NULL

SENTENCE). This is important in catch

ing the case where all of FORM has been

matched, but there is still more to the sen

tence. For example, the FORM ll * YOU)

without this check would match the sen

tence (I LOVE YOU BUT I MUST

LEAVE YOU), leaving everything after

the first YOU in the sentence unchecked.

So when FORM has all been matched,

PARSE-FORM will return T if SEN

TENCE is also NIL (i.e., has all been

matched). If there is anything left in SEN

TENCE, PARSE-FORM w\\\ return NIL

meaning the FORM was unacceptable.

This shows also that PARSE-FORM will

return T if the FORM and the SEN

TENCE are exact matches.

If there is still more in FORM, the

(NULL FORM) expression returns NIL,

and COND will skip to the next condi-

CIRCLE 3 ON READER SERVICE CARD

32 COMPUTER LANGUAGE ■ NOVEMBER 1984

tional. This is (EQ(CAR FORM)

(QUOTE *)). EQ is a function that com

pares two items. If they are identical, EQ

will return T, otherwise NIL. This "if" is

comparing the first element of FORM

with the atom *, the special phrase match

ing atom. The function QUOTE used here

prevents * from evaluating. That is, we

don't want to compare (CAR FORM) with

the value of the variable named *, we want

to compare (CAR FORM) with the literal

atom itself. QUOTE prevents the evalu

ation process.

If the special match is indeed found,

*PARSE is called to match up until the

next atom in FORM. As a matter of fact,

when *PARSE has matched up to that

point, it doesn't return to PARSE-FORM.

Instead it calls PARSE-FORM to continue

matching the remainder of FORM and

SENTENCE. If (CAR FORM) is not *,

the last "if" is tried. This simply com

pares the first element in both FORM and

SENTENCE. If they arc not the same,

there arc no more "if" clauses to try and

PARSE-FORM will return NIL. If the

match succeeds, then PARSE-FORM is

called to match the remainder.

As you can see. these functions form a

tightly knit recursive system. Each is

important to the other. They call each

other and tend to call back to an earlier

function rather than returning back, until

their terminating condition is met. It may

be illuminating to run through the process

manually on a piece of paper. Any com

plications should resolve—just be careful

to keep track of the current value of the

arguments to each function as they are

local to that function. Recursion actually

simplifies the parsing process.

These short and simple functions

replace a lot of looping and flag setting/

checking. Once the concept is clear in

your mind, functions like these become

more obvious as the solutions to certain

types of problems. Rather than describe in

detail what *PARSE and *PARSE*are

doing, I will give you the necessary

vocabulary to understand each and also

provide some hints. Consider it an exer

cise to fully understand them. Here is the

description of the remaining functions

used in these functions.

SETQ is like the LET statement in

BASIC. It takes two arguments. The first

must be an atom. In LISP atoms may be

"This is a beautifully

documented, incredibly

comprehensive set of

C Function Libraries."

— Dr.Dobb's Journal

used as variables. For example, in the

function PARSE-FORM the two arguments

FORM and SENTENCE, local variables,

are atoms. The second argument to SETQ

is an expression which is evaluated. The

result becomes the value of the atom. In

the expression

(SETQX1)

the first argument X is the atom whose

value is to be assigned. The second argu

ment is evaluated and is 1. So the value of

X will be 1. Any expression may appear

as the second argument to SETQ. For

example

(SETQ Y (PLUS X 2))

would assign 3 to Y.

APPEND takes any number of argu

ments and makes a single list from them

by concatenation. For example

(SETQ X(QUOTE(A BCD)))

(SETQY(GUOTE(1 2 3)))

(SETQZ(APPENDXY))

would cause Z to be given the value (A B

C D 1 2 3). This is similar to the concate

nation of strings.

LIST makes a list from its arguments

also but does not concatenate. Rather,

each argument becomes an element of a

list. Using X and Y from above,

(SETQZ(LISTXY))

would set Z to the list ((A B C D) (1 2 3)).

Note the difference. We do not have one

long list but a list of n elements, where n

is the number of arguments given to LIST.

If 1/57is given only one argument, it

still makes a list from it. (LIST 20) would

result in (20)—a list with one element.

That is all for the vocabulary. With this

and the following hints (and some persis

tence) you can understand the sample

functions.

Hints

Note that the atoms PHRASE and *END

in *PARSE and *PARSE* arc global by vir-

lue of the fact they arc not local argu

ments. This means any function that

changes the value of these variables

makes those values available to any other

function. No declaration of globalness is

needed.

We are using PHRASE as our cache for

the list of words matched by *. The func

tion *PARSE is used to initialize the cache

and calls *PARSE* to do the dirty work.

When PARSE-FORM returns, the value of

PHRASE will be the phrase matched (if

the form was a successful match of the

sentence).

Don't get confused because the func

tions use the same name for a local vari

able. The variable contains a unique value

for the function call. When PARSE-FORM

calls *PARSE, even though the argument

names are the same they are in different

areas. When *PARSE returns to PARSE-

FORM , no matter what *PARSE did to

FORM and SENTENCE they will be the

same in PARSE-FORM as when *PARSE

was called.

An important point: you may

notice that the definition of *PARSE has

the name, list of arguments, and body just

like PARSE, but that the body is not one

list but three complete lists. In this case,

each list is executed in sequence, and the

result of the last list is the result of the

function. This is useful for initializing

variables, as it is used here. Likewise

after the T "if" in *PARSE* there is a

multiple list for the "then" portion. Each

is executed in order and it is the value of

the last expression that is returned.

This feature is called implicit PROGN',

because PROGN is a LISP function that

takes any number of expressions and eval

uates them, returning the result of the

final expression.

Expert systems

There is much to know about lists, recur

sion, language processing and LISP. This

introduction only hints at the tip of the

proverbial iceberg. The modern emphasis

in language processing is to use the tech

nologies embodied in the field of expert

systems'.

In this approach, language processing

is broken into stages, such as typed-in text

to text broken up into annotated root

COMPLETE

SOURCES

PACK I: Building Blocks I
~ 250 Functions: DOS,

Printer, Video, Asynch

PACK 2: Database
100 Functions: B-Trees,
Variable Records

PACK 3: Communications

135 Functions: Smart-
modem"1. Xon/Xoff,
Modem-7. X-Modem

PACK 4: Building Blocks II

100 Functions: Dates,
Text Windows,
Pull-down Menus

Data Compression

PACK 5: Mathematics I

35 Functions: Log, Trig,

Square Root

PACK 6: Utilities I

Archive, Diff, Replace, Scan,
Wipe (Executable Files only)

Lattice™, Microsoft™, DeSmet™,
CI-86™ Compilers on IBM PC/XT/AT1

Small and Large Memory Models.

Credit cards accepted

(S7.00 handling/Mass, add 5%)

SOfTWflRf
HO&IZOfiS
inc.

165 Bedford Street

Burlington, Mass. 01803

■ (617) 273-4711

N0VUM 0RGANUM

CIRCLE 25 ON READER SERVICE CARD

33

TOTAL CONTROL
FORTH: FOR Z-8CF, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS* GAMES. COMMUNICATIONS. ROBOTICS

DATA ACQUISITION . PROCESS CONTROL

• FORTH programs are instantly

portable across the four most popular

microprocessors.

• FORTH is interactive and conver

sational, but 20 times faster than

BASIC.

• FORTH programs are highly struc

tured, modular, easy to maintain.

• FORTH affords direct control over

all interrupts, memory locations, and

i/o ports.

• FORTH allows full access to DOS

files and functions.

• FORTH application programs can

be compiled into turnkey COM files

and distributed with no license fee.

• FORTH Cross Compilers are

available for ROM'ed or disk based ap

plications on most microprocessors.

Trademarks IBM. International Business Machines

Corp.. CP/M, Digital Research Inc.: PC.'Fonh + and

POGEN, Laboratory Microsysiems, Inc

FORTH Application Development Systems

include interpreter/compiler with virtual memory

management and multi-tasking, assembler, full

screen editor, decompiler, utilities and 200 page

manual Standara random access files used (or

screen storage, extensions provided for access to

all operating system functions.

Z-80 FORTH lor CP/M1 2 2 or MP/M II. $100.00;

8080 FORTH for CP/M 2 2 or MP/M II. S100.00.

8086 FORTH for CP/M-86 or MS-DOS, $100.00;

PC/FORTH for PC-DOS, CP/M-86. or CCPM.

$100.00; 68000 FORTH for CP/M-68K. $250.00.

FORTH + Systems are 32 bi! implementations

that allow creation of programs as large as 1

megabyte. The entire memory address space of

the 6S00O or 8086/88 is supported directly.

PC FORTH + $250.00

8086 FORTH + for CP/M-86 or MS-DOS $250.00

68000 FORTH + for CP/M-68K $400.00

Extension Packages available include; soft

ware floating point, cross compilers, INTEL

8087 support, AMD 9511 support, advanced col

or graphics, custom character sets, symbolic

debugger, telecommunications, cross reference

utility. B-tree file manager Write tor brochure.

Laboratory Microsystems Incorporated

Post Office Box 10430, Marina del Rey, CA 90295

Phone credit card orders to (213) 306-7412

CIRCLE 35 ON READER SERVICE CARD

(TM)

WALTZ LISP
The one and only adult Lisp system for CP/M users.

Waltz Lisp is a very powerful and complete implementa

tion of the Lisp programming language. It includes

features previously available only in large Lisp systems. In

fact, Waltz is substantially compatible with Franz (the Lisp

running under Unix), and is similar to Maclisp. Waltz is

perfect for Artificial Intelligence programming. If is also

most suitable for general applications.

__lueh foster than other microcomputer Lisps. ■ Long integers (up to 611 digits). Selectoble radii • True dynamic

character strings. Full string operations including fast matching/en I raction. • Flexibly implemented random file access.

■ Binory files. ■ Standord CP/M devices. • Access to disk directories. • Functions of type lambda (expr), nlombda
(fenpr). le»pr. macro. • Splicing and non-splicing character mocros. • User control over oil aspects of the interpreter.

• Built-in pretlyprinting ond Formatting facilities. • Complete set of error handling ond debugging functions including
user programmable processing of undefined function references. • Virtual function definitions. • Optional outomatic

loading of initialization file. • Powerful CP/M command line parsing. • Fast sorting/merging using user defined

comparison predicates. • Full suite of mapping functions, iterators, etc. • Aisembly language interface. • Over 250
function! in total, • The best documentation ever produced for a micro Lisp (300 t full size pages, hundreds of

iliuilrotive examples).

(TM)

ODE

'INTERNATIONAL—

$169

Waltz Lisp requires CP/M 2.2, Z80 and 48K RAM (more recommended). All common 5'

ond 8" disk formats available.

Version 4.4
[Now includes Tiny Prolog

written in Waltz Lisp.)

'Manual only: $30 (refundable with order). All
foreign orders: add $5 for surface mail, $20 for
airmail. COD add $3. Apple CP/M and hard sector

formats add S15.

Call free 1 -800-LIP-4000 Dept #13
In Oregon and outside USA call 1-503-684-3000

15930 SW Colony PI.

Portland, OR 97224

Uni*' Bell Lcborotories.

CP/M" Digital Research Corp.

words. From there, the sentence is ana

lyzed syntactically. The next stage might

be to use dictionary information to repre

sent the meanings in the sentence. Then

another stage would be to carry out the

request or check the validity of the infor

mation.

Each stage is an expert system in itself,

utilizing a large amount of specialized

information about its own task. It will

transform its input set into the input set

for the next stage. In some systems, there

is no clear division between stages. Infor

mation from each is used to help the other.

It may be necessary to understand some of

the syntax of the sentence in order to

determine the root words. Before fully

deciding on the syntax, some under

standing of the meaning being conveyed is

needed. So there are interdependences.

The use of lists is vita! to all current

artificial intelligence research. They

enable dynamic manipulation of informa

tion and are often used to simulate more

structured information.

For example, you might make a

"frame" where each slot was filled by an

clement of a list. If the element was an

atom, that is the value for that slot (like a

field in a data base record). But if the item

is alist, it is evaluated to determine the

contents of the slot. So the slot has a run

time value that may (and probably docs)

depend upon other slots. This is like a

symbolic spread sheet.

As much thought is defined in sub-

terms of itself (e.g., you consider a goal

and break it up into sub-goals, etc.. until

do-ablc actions are discovered), recursion

is used as the most natural way to much

processing of information in intelligent

systems. And throughout all this, LISP

has remained the primary language for

experimentation. It has many simple and

powerful features that bring symbol

manipulation into the realm of the

computable. H

1. Hofstader, Douglas R. Godel, Escher,

Bach: an Eternal Golden Braid. Basic

Books, N.Y., 1979.

2. Weizenbaum, Joseph. "ELIZA." CACM9.

(1966) pp.36-45.

3. Hayes-Roth. Frederick, Waterman, Donald

A.. Lenat. Douglas B.. editors. Building

Expert Systems. Addison-Wesley. Reading,

Mass., 1983.

Richard Herman attended California State

Univ. atNorthridge, Calif., from 1974 to

1977, and has been doing artificial intel

ligence research since then. He is currently

workingfor Rising Star Industries.

CIRCLE 53 ON READER SERVICE CARD

34 COMPUTER LANGUAGE ■ NOVEMBER l°Bd

Building

^Portable
Programs

'hen building a

piece of soft

ware, fre

quently one

of the design goals is portability: the abil

ity to run a program with different hard

ware and/or a different operating system

than the program was originally devel

oped for. When porting software, differ

ences not originally anticipated will often

need to be smoothed over because there is

so much variation in the way CPUs and

peripherals work.

The purpose of this article is to point

out some of the pitfalls in writing portably

and ways to avoid them.

This article is written in terms of the C

language, yet most of the issues discussed

are also applicable to programs written in

other languages.

One of the strengths of C is that it

comes with a pre-processor that provides

macros and conditional compilation. If

you are using a language that does not

have a pre-processor with these features,

after reading this article you may want to

buy or build one.

The first impediment you may encoun

ter is a lack of standardization in the lan

guage you are using. There is no standard

BASIC. Even C, which is touted as pro

moting portability, is not totally standard.

Some implementations omit features

(float, separate compilation, and bit

fields, for example) specified by Brian

Kernighan and Denis Ritchie in The C

Programming Language. Features have

been added to the language since this book

was published. In general, try to stick to a

subset of the language you are working

By Mark Grand

with that is standard and universally

available.

A strategy that seems to work well in

dealing with this sort of problem is one of

abstraction. An application of this is illus

trated in Listing 1. By replacing the addi

tion of a\\ float numbers (x+v) with the

constructfadd (x, y), our problem

becomes readily solved. Iffloat is imple

mented, thcnfadd is defined as a macro

that expands to the standard addition con

struct. Iffloat is not available, it can be

defined by a suitable typedef. andfadd

becomes a subroutine call. We might also

want to mokefadd a subroutine even if

float is implemented so we can make use

of a co-processor not supported by the

compiler.

The biggest advantage to this abstrac

tion strategy is that we can define all our

environment-dependent abstractions in

header files. The body of our code can be

the same wherever we move it. The com

piler, machine, and operating system

dependencies can be confined to header

files plus whatever procedures need to be

written to support an abstraction in a par

ticular environment.

Keeping the compiler, machine, and

operating system dependencies in sepa

rate files further simplifies things. If we

havex different CPUs running_y different

operating systems then we need^+>> sepa

rate header files as opposed to jc*v com

bined header files.

It will generally be desirable to process

the header files in the following sequence:

■ Machine dependencies

■ Operating system dependencies

■ Compiler dependencies.

This sequence is recommended because

some operating system characteristics

may depend on the hardware, and some

compiler characteristics may depend on

both the hardware and the operating

system.

x, y) adds generality

#if FLOATJMPLEMENTED

^define fadd(a, b)

#else

extern float fadd();

#endif

float x,y,z;

x = fadd(x, y);

Listing 1.

35

The beginning of a machine-dependent

header file is shown in Listing 2. It

contains:

■ The type and model of the CPU

■ The direction in which stacks grow.

(Some machines have PUSH instructions

that increment a stack pointer; others have

PUSH instructions that decrement a stack

pointer. This information can be useful

when writing procedures that can take a

variable number of parameters)

■ Thenumberof bits normally used to

store characters

■ On some machines, if strings are

packed into integers the characters are

packed so that the character furthest to the

left occupies the most significant bits; on

other machines this character occupies the

least significant bits.

The beginning of an operating system-

Beginning of a machine dependency file

#define PROCESSOR NAME

#define PROCESSOR TYPE

#define PROCESSOR MODEL

#define STACK GROWS DOWN

#define BITS PER CHAR

#define CHARS PACKED LOW TO HIGH

#define FLOAT IMPLEMENTED

"VAX"

VAX

780

TRUE

8

TRUE

TRUE

dependent header file is shown in Listing

3. It contains the:

■ Name of the operating system

■ Version of the operating system

■ Character set in common use. Note that

ASCII and EBCDIC are not the only

possibilities

■ Radix that is generally used to print

addresses. It is annoying to have your own

debugging code printing addresses in hex

when ail the tools that come with the oper

ating system speak only octal.

Many operating systems organize main

storage into pages. Do not assume that the

page size will be a constant expression.

Some machines, such as the Burroughs

6000 and 7000 series, divide main storage

into pages of nonuniform size.

The sequence of characters (if any) cus

tomarily used to indicate the end of a line

of text varies with the operating system.

Typical end-of-line indicators are

< line-feed > (aka < new-line >),

< carriage-return > < line-feed >,

<carriage-return > andend-of-rccord.

Listing 2.

Beginning of an operating system dependency header file

#define OS NAME "VMS"

#define OS NUMBER VMS

#define OS MAJOR VERSION 3

#define OS MINOR VERSION 6

#define CHARACTER SET ASCII

#define USUAL_RADIX_FOR_ADDRESSES HEX

#ifndef PAGE_SIZE

#define PAGE SIZE

#endif

512

#define FILE NAMES ARE CASE SENSITIVE FALSE

#define HAS_FILE__VERSIONS TRUE

#define EOL

#define is_null(c)

"\n"

(c ==

/* for printing addresses */

/* may already have been

defined in machine

dependency file */

/* end of line */

P\0')

Listing 3.

36 COMPUTER LANGUAGE ■ NOVEMBER 198d

The implemented language

Most language standards are very specific

about how explicit control constructs such

as IF, WHILE and GOTO are supposed to

work. These can generally be relied upon

to be the same for most language imple

mentations. Implicit control structures are

less reliable.

The Pascal standard does not specify

whether or not both operands of the and

and or operators will always be evaluated.

If you are working with an imple

mentation of Pascal that docs not evaluate

the right operand of and unless the left

operand is true then the following will

work quite well:

if (pt < > nil) and (sucefpf .ss) On)

then ...

For implementations of Pascal that

always evaluate both operands of and,

this construct is likely to produce some

strange run-time errors.

Most languages do not guarantee the

order in which the actual parameters to

procedure call arc evaluated. After

foo(x = 2,x = 3), it is not defined

whether x will be 2 or 3. Some languages

do not define whether the right or the left

operand of a given operator is to be evalu

ated first.

If you are working in such a language,

do not assume that you will be able to

determine these details for a given com

piler by seeing what it does with simple

expressions. Optimizing compilers may

decide on an order of evaluation based on

such arcane things as a particular value

being available in a register. The deci

sions that optimizing compilers make on

these matters may even vary with the ver

sion of the compiler.

Arithmetic can be another problem

area. The range of integers varies with the

type of CPU. Some languages guarantee a

minimum range for integers. Other lan

guages provide a built-in function or con

stant that returns the maximum value

representable.

If not provided by the language we can

provide this information in a machine-

dependent header file (see Listing 4).

Even the representation of a binary

integer is not totally standard. Some man

ufacturers, such as UNIVAC, are building

computers that use ones complement,

rather than the more common twos com

plement notation.

Floating point is even worse. It varies

in both range and precision. Also the

radix of the faction is not necessarily two.

IBM's 370 architecture provides an inter

esting variation. The base of the exponent

is 16. The exponent can range from —65

to 63. The radix of the fraction is 16.

A file by any other name . . .

At least 98 % ofall the programs I have

ever written make explicit use of some

feature of the operating system it was

written within. The operating system fea

ture that seems to be most universally

used explicitly is file management (aka

BDOS, file system, etc.).

This feature has many names and even

more differences in the way it is imple

mented. File I/O is part of the definition

of many languages. This provides some

small amount of consistency from one

operating system to the next.

No I/O facilities are included in the

definition of the C language. There is a set

of procedures that is usually provided to

perform some of the higher level I/O func

tions. When C is implemented outside of a

UNIX environment, usually additional

routines try to provide lower level file ser

vices in a manner compatible with UNIX.

Depending on the particular operating

system, full compatibility may not be

possible.

The first operation we usually perform

on a file is to identify it to the operating

system. To identify a file, we generally

need to provide one or more of the follow

ing pieces of information.

Arithmetic machine dependencies

^define TVOS_COMPLEMENT

#define MAX_SHORT,MAX_INT

#define MAX LONG

#define

^define

#define

#define

#define

#define

Listing 4.

FLOAT_MAX_EXPONENT

FLOAT_MIN_EXPONENT

FLOAT_EXPONENT_BASE

FLOAT_FRACTION__RADIX

FLOAT_FRACTION_PRECISION

FLOAT DECIMAL PRECISION

1. On what device is the file located? For

some devices such as a terminal, this may

be the only information required.

2. For disks, there is usually some speci

fication to indicate a subset of the files. In

the terminology of many operating sys

tems, this is called a directory. CP/M calls

this a user number.

3. A file ID. On most operating systems

there is a provision for following a pri

mary file ID by one or more supplemental

IDs. The operating system terminology

may refer to these as qualifiers, types or

extensions. If the device is a tape then the

file ID may consist only of a number indi

cating the file's relative position on the

tape.

4. A version or generation number.

When a new file is created that has the

same name as an existing file, most oper

ating systems cause one of two things to

happen: the old file disappears and is

replaced by the new file or, if the oper

ating system (such as TOPS-20 or VMS)

supports version numbers, the old file

remains and the new file is assigned a

higher version number than the old file.

Most operating systems supply defaults

for items 1, 2, and 4. Most modern oper

ating systems allow all the listed items to

be specified as part of a file name. Some

operating systems insist on items 1, 2, or

4 being specified separately from the file

name. Some operating systems consider

TRUE

32767

2147483647

127

-127

2

2

23

6 /* really 6J3 */

37

\

Software

Development

PCDOS/MSDOS

Complete C Compiler
• Full C per K&R

• Inline 8087 or Assembler Floating

Point, Auto Select of 8087

• Full 1 Mb Addressing for Code or

Data

• Transcendental Functions

• ROMableCode

• Register Variables

• Supports Inline Assembler Code

MSDOS 1.1/2.0

Library Support
• All functions from K&R

• All DOS 2.0 Functions

• Auto Select of 1.1 or 2.0

• Program Chaining Using Exec

• Environment Available to Main

c-window™

Symbolic Debugger
• Source Code Display

• Variable Display & Alteration

Using C Expressions

• Automatic Commands

• Multiple Breakpoints by Function

& Line Number

8088/8086 Assembler
• FAST — Up to 4 times Faster than

IBM Assembler

• Standard Intel Mnemonics

• Compatible with MSDOS Linker

• Supports Full Memory Model

8088 Software Development

Package

$19900

Includes: C Compiler/Library,

c-window, and Assembler, plus

Source Code for c-systems Print

Utility

c-

P.O. Box 3253

Fullerton.CA 92634

714-637-5362

"myfile" and "MyFile" to be the same;

others do not. While most operating sys

tems place length restrictions on the pri

mary and supplementary file IDs, it seems

to be a safe assumption that a given oper

ating system will allow primary file IDs

up to six alphanumeric characters in

length.

What is one to do about this diversity in

file name formats? One solution is to

ignore the problem entirely and treat file

names as arbitrary strings. This may be

workable if all file names are either pro

vided by the user or are constant and can

be defined as macros in an operating

system-dependent file. A drawback to this

approach is that in many environments

users expect programs to supply defaults

for parts of file names: if I ask a

FORTRAN compiler to compile a file

named "crunch", I may expect it to know

that I really meant "crunch.for".

If ignoring the structure of file names

does not seem feasible, we need to be

aware of the components of file names.

This can be solved by adding two pro

cedures to the operating system

dependent header file. The purpose of the

first procedure would be to parse a file

name and fill a structure with the pieces of

information extracted from the file name.

It may be desirable to have this pro

cedure issue error messages about

improperly constructed file names. This

is useful when incomprehensible mes

sages would otherwise be produced by the

operating system. It also provides an

opportunity to comment on bad file names

without having to try to open a file.

A second procedure is needed to con

struct file names. This procedure would

be passed a structure from the sort pro

duced by the file name parser and return a

string containing a file name.

Given these file name structures, it

becomes a much simpler matter to deter

mine if part of a file name has been omit

ted and to supply a default value for part

of a file name.

What can we do with a file?

The three file organizations most com

monly supported are sequential, random,

and keyed.

Sequential files are the most universally

supported and are generally available on

all devices. The only thing to beware of

when dealing with sequential files is that

an end-of-file error may be encountered

while writing a file. Some operating sys

tems have the notion that the size of a file

is known before the file is created and will

allocate a fixed amount of disk space on

file creation. Other operating systems

allow you to create a file without knowing

how large it is going to be, but after the

file is closed the first time its size

becomes fixed, and you can't append to

the end of it. This is usually the case with

files on magnetic tape. These file size

CIRCLE 16 ON READER SERVICE CARD

38 COMPUTER LANGUAGE ■ NOVEMBER 1984

problems apply to all file organizations.

Random access files are supported

almost as universally as sequential.

Unfortunately, when you tell an operating

system that you want to read a random file

starting at an offset 300 from the begin

ning of the file, you will get different

results depending on the operating system

and possibly how the file was created.

Operating systems most commonly

consider files to consist of either a stream

of bytes, words, or multi-byte records,

Some operating systems support all three.

Some support only one of these. If a file is

considered to be a stream of records, then

the records may be fixed length (all the

same) or variable length (all different).

If a file has fixed length records, it is

possible to calculate which record the n th

byte or word is located in. If a file has

variable length records, the only way to

find the n th byte or word is to read the file

from its beginning, counting until you get

where you want to be. It is always possi

ble to access files created as random files

in a sequential manner. Not all operating

systems will allow files created as

sequential to be processed as random.

A number of operating systems allow

holes in random files. This means that if

you create a random file and write IK of

information at the beginning of the file

and another 1K starting at an offset of

300K from the beginning of the file, the

total disk space consumed by the file is 2K

rather than 30 IK. Unfortunately, many

operating systems do not support this

feature.

The keyed file organization is not as

universally available as the sequential or

random. The keyed file organization has

many synonyms (ISAM and B-tree, for

example). The type, number, and format

available for keys varies widely. One

thing to beware of is that some imple

mentations of keyed files either do not

allow sequential access or, if they do, the

records may not appear in any predictable

sequence.

There is an unfortunate lack of stan

dardization in what one can do with a file

on different operating systems. One way

to cope is to limit use of file system fea

tures to those most universally available.

Sometimes this approach can be too con

straining to be practical.

Another approach is to design a file

system that would be ideal for your pur

poses and implement it on top of existing

file systems. This can be something sim

ple, such as putting some macros or pro

cedures in an operating system

dependency file to guarantee that you will

always be able to use record offsets with

random files.

Your requirements may necessitate

something much more complicated. The

6666666666666566

most important guiding principle here is

to minimize the number of features that

you (rather than the operating system)

have to support. Remember, much of the

code for this will be operating system-

dependent.

Some pieces of information can be

obtained about a file that have absolutely

nothing to do with its internal organiza

tion. You may want to put procedures or

macros in an operating system

dependency file that, when passed a file

name, obtain a file's:

■ Full name—This may include device,

directory, and version information. Most

operating systems provide defaults for

these. If a file name typed by a user is

ambiguous and any of the file name

defaults change later on during execution,

the file identified by the file name that the

user typed may change.

■ Existence—A file's existence cannot

always be determined by whether or not

the file can be opened. Some operating

systems provide ways of limiting access to

a file to a limited set of users or allowing

only the owner of a file write access but

everyone read access. If you do not have

permission to access the file then you will

not be able to open the file. Some oper

ating systems allow users to temporarily

obtain exclusive access to a file. This

mechanism may also prevent successful

opening of a file even though it exists.

■ Permissions—Many operating systems

provide a way of specifying whether or

not a particular user or class of users may

have read, write, or delete access. The

procedure or macro that implements this

should be able to take a password as a sec

ond parameter and return an integer with

bits corresponding to the permissions

turned on or off.

■ Availability—This should determine

whether someone else has obtained exclu

sive access to a file. Since some operating

systems differentiate exclusive read

access and exclusive write access you may

want the result to have separate bits to

indicate whether the file is available for

reading or writing.

■ Creation date—Should return the time

and date of the file's creation or zeros if

this information is not available.

■ Modification date—Should return the

time and date the file was last modified or

zeros if this information is not available.

Frequently other pieces of information

are available about a file. The preceding

ones are just some of the most universally

available.

Special problems with text files

As noted before, a number of different

character sequences (including end-of-

record) are commonly used to indicate the

end of a line. It is not uncommon to want

to read a line of text and then process that

line of text without having to be con

cerned about what terminates the line of

text.

It is frequently helpful to have a pro

cedure that reads a line of text and strips

off any end-of-line characters. For the

sake of discussion, let's call this pro

cedure line_read. If we have defined what

generally constitutes an end-of-line in an

operating system dependency file, the

code for \ine_read can be reused for all

operating systems.

In some environments it is common

practice to put text in fixed length

records, one line of text to a record. This

way of doing things is a legacy from an

era when the keypunch was the primary

means of getting text into a machine.

(IBM and its competitors are still manu

facturing machines that put "card

images" on floppy disk and tape.)When

reading this sort of file it may not be prac

tical to treat just the end-of-record as the

end of a line. It may also be necessary to

consider trailing blanks a part of the end

of a line, in which case linejread must

strip off trailing blanks.

Some other generally unwanted charac

ters sometime pop up when dealing with

record-oriented text files. When text is

put into fixed length records by programs

(in FORTRAN, most commonly) the

records are usually padded out by nulls

("\0"), though sometimes an all-ones

character (ASCII " \ 177" EBCDIC

"\377")isused.

Occasionally, superfluous control char

acters will turn up in text files. There are

a variety of reasons for this—none of

them predictable. Most often though,

superfluous control characters seem to be

introduced when text is moved between

computers or from terminal to computer.

It may be attributable to random noise,

inconsistent assumptions about file for

mats, or even data communications

protocols.

If the probability of encountering ran

dom spurious control characters is consid

ered to be low, then it might suffice to

ignore null characters used to pad out

records. If files are to be read one charac

ter (as opposed to record) at a time, it will

be helpful to define a macro or procedure,

called isjudl, that returns true when

passed a padding character.

If the probability of encountering ran

dom spurious control characters is consid

ered worrisome, it might be appropriate

to filter all the control characters you are

not specifically interested in seeing. This

should be done by means of a macro in an

operating system-dependent file.

While it may be possible to come up

with a single expression that identifies

both ASCII and EBCDIC control charac

ters, there are some less common charac

ter codes that such an expression will

most surely not work for.

DeSmet

C
8086/8088

Development $100
Package lUw

FULL DEVELOPMENT PACKAGE

■ Full K&fl C Compiler

■ Assembler, Linker & Librarian

■ Full-Screen Editor

• Execution Profiler

■ Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT

BOTH 8087 AND

SOFTWARE FLOATING POINT

OUTSTANDING PERFORMANCE

■ First and Second in AUG '83 BYTE

benchmarks

SYMBOLIC DEBUGGER $50
Examine & change variables by

name using C expressions

Flip between debug and display

screen

Display C source during execution

Set multiple breakpoints by function

or line number

BOS LINK SUPPORT $35
Uses DOS .OBJ Format

LINKS with DOS ASM

Uses Lattice® naming conventions

Check:

SHIP TO:

□ Dev. Pkg (109)

□ Debugger(50)

□ DOS Link Supt (35}

C
WARE

CORPORATION

P.O. BOX C

Sunnyvale, CA 94087

(408) 720-9696

All orders shipped UPS surface on IBM format disks

Shipping included in price. California residents add

sales tax Canada shipping add S5. elsewhere add

S15. Checks must be on US Bank and m US Dollars

Call 9 am. - 1 p.m. to CHARGE by VISWMC/AMEX.

CIRCLE 18 ON READER SERVICE CARD

39

Applications Developers

"C" INTO THE FUTURE

WITH

db_Vl5TA
The first DBMS designed exclusively for the C language.

C is the applications development language chosen by manv of the

largest and most successful microcomputer software houses. Now with

db VBTA, C can be vour development language choice, too.

db VBTA is the database management system that helps you easily

define and manage databases — no matter how complex your

information structuring requirements. Features include:

* Written in C, under Unix.

* Minimal data redundancy using the network database model.
* Virtual memory disk accessing.

* Fast B'-tree indexing method for key files.

* Multiple key records — any or all data fields may be keys

* Unlimited run-time distribution license available for $795.

" Three month extended applications support included

* PC-Wrtte word processor/text editor included at no charge.

AVAILABLE NOW

For Lattice C. DeSmet C, or Computer Innovations' C86 under MS-DOS,

with thirty day money-back guarantee. Available soon for Unix'Fortune

32:16, Xenix/Altos 586, and CTOS/Convergent Technologies systems.

db_VISTA versions:

Lattice

DeSmet

Computer Innovations

db VISTA Documentation

S495

495

495

15

Development Packages:

Lattice C w/db_VI5TA

Lattice C only

DeSmet Cw/db_VISTA

$795

395

595

11717 Rainier Ave. South

Seattle, WA 98178

CORPO RAT I O N S 206/772-1515 •»

CIRCLE 24 ON READER SERVICE CARD

Once you choose Lattice,

our friends will C you through...

LATTICE INC.: LATTICE WINDOWS,
CURSES UNIX SCREEN CONTROL LIBRARY,

C-FOOD SMORGASBORD, dB-C ISAM

COMPATIBLE WITH dBASE II AND

III.. LIFEBOAT ASSOCI
ATES: FLOAT 87 8087 SUPPORT

PACKAGE, HALO GRAPHICS

PACKAGE, PANEL SCREEN LI

BRARY. .. GREENLEAF SOFT
WARE: THE GREENLEAF C

FUNCTIONS... C SOURCE:
EASICC C FUNCTIONS FOR BA

SIC USER... SOFTCRAFT:
BTRIEVE ISAM FILE SYSTEM,

BTRIEVE ISAM NETWORK FILE

SYSTEM .. BLAISE COMPUT

ING: TOOLS. TOOLS2, VIEW

MANAGER SCREEN PACK

AGE .. MORNING STAR

SYSTEMS: PROLIBRARY, PRO-

SCREEN .. CREATIVE SOLUTIONS:
WINDOWS FOR C ... NOVUM
ORGANUM: C POWERS PACKS. MATH

EMATICS POWER PACKS, ADVANCED POWER

RACKS, DATABASE POWER PACKS, TELE

COMMUNICATIONS POWER PACKS W

SOURCE... PHACT ASSOCIATES: PHACT
ISAM LIBRARY... RAIMA CORPORATION:

db. VISTA DBMS ... PHOENIX:

PLINK86, PFIX86 ... RELATION
AL DATABASE SYSTEMS: C-

ISAM FILE ACCESS METH

OD ... MINDBANK: V-FILH
VIRTUAL MEMORY/FILE SYS

TEM -.. HUNTER &

READY: VRTX C INTERFACE
LIBRARY... GRAPHIC

SOFTWARE SYSTEMS:

GSS DRIVERS, GSS TOOLKIT

KERNEL SYSTEM .. . OPT-
TECH DATA PROCESS
ING: OPT-TECH SORT...

ACCUDATA SOFTWARE:
C-TREE ISAM, C-SORT

SORT... TRIO SYSTEMS;

C-INDEX+ ISAM...

COMPU CRAFT: c VIEW
FORMS/WINDOW MANAGE

MENT... SCIENTIFIC ENDEAVORS:
GRAPHIC PRESENTATION SCIENTIFIC

GRAPHICS ... LEMMA SYSTEMS,
INC.: C LIBRARY.. - ESSENTIAL SOFTWARE,
INC.: C UTILITY LIBRARY. . . SOFTWARE

LABS: C UTILITIES PACKAGE ... FAIRCOM: C-
tree BY FAIRCOM ISAM WITH SOURCE

Contact Lattice to learn how we can help your C program development.

LATTICE
P.O. Box 3072

Glen Ellyn, IL 60138

312/858-7950

TWX 910-291-2190

However you choose to deal with

unwanted control characters, a small

wrinkle crops up when reading a file one

line at a time. Between the last char

acter of text in a file and the end of that

same file may be some pad characters. If

these pad characters are not processed

before testing for ihe end-of-filc. your

end-of-file test may return false when you

wanted it to return true. This can happen

even in byte-oriented files and is least

expected when it does.

I once had a program that seemed to

work perfectly except for blowing up on

one particular file. It turned out (hat this

had been produced by an editor that tried

to minimize the number of its write oper

ations by packing characters into integers

and then writing the integers. If the last

integer written was not full. there would

be trailing nulls.

Problems with character codes

Two character sets are most commonly

used in the U.S.: ASCII and EBCDIC.

ASCII is defined by ANSI standard X3.4.

(ANSI standards can be obtained by writ

ing to American National Standards Insti

tute. 1430 Broadway, New York, N.Y.

10018. ANSI will provide a list of avail

able standards and pricing information

without charge.)

So far there have been three versions of

this standard. The primary legacy of the

original 1963 version is that some very

old programs treat' - ' and ' | ' in a man

ner similar to escape. Also the character

code that now stands for the character '_'

stood for a left pointing arrow. This is

why some languages use '_' as an alterna

tive assignment operator.

A 1965 standard was officially ap

proved but not officially published. The

standard currently in use was approved in

1968. A revision in 1977 changed some of

the language to be consistent with inter

national standards. ("7-Bit Coded Char

acter Set for Information Processing

Interchange." ISO 646-1973, also avail

able from ANSI).

The ASCII standard provides for some

variations. The standard states that the

character code ' \ n' (referred to as line

feed) "advances the active position to the

same character position on the next line."

The standard also states that, alterna

tively, "this character may have the mean

ing "New Line", a format effector that

advances the active position to the first

character position on the next line." Simi

lar variations arc permitted for vertical

tab and form feed.

For those concerned about shipping

their software outside the U.S., ASCII

also conforms to an international stan

dard. The international standard provides

for some variation in the graphic rendition

of some character codes.

CIRCLE 36 ON READER SERVICE CARD

40 COMPUTER tANGUAGE ■ NOVEMBER 1984

The codes rendered by ASCII as *@','[',

' v '. Ti '{' ' I ' and '}' are designated as
being for "national use." That means

these character codes can be. and are,

used for letters in other countries' alpha

bets. The codes rendered by ASCII as 'A',

' ', and "" are designated as being for

"supplementary national use." That

means that in countries where the seven

"national use" character codes are not

sufficient (such as in Fed. Rep. Ger

many), these three characters are up for

grabs.

EBCDIC is defined by IBM. its main

proponent. While more than one version

of EBCDIC exists, most of the differences

do not affect conversion between ASCII

and EBCDIC. The main problem I've

encountered when converting ASCII to

different versions of EBCDIC is that there

arc two different ways to translate the

ASCII codes for'[' and ']' into EBCDIC.

Because of different versions of EBCDIC,

both translations are correct. If the char

acters cither do not print or ' [' prints as

■<C>' and ')" prints as'!' then you know

you've guessed wrong.

Some macros for manipulating charac

ter codes you may want to define are

found in Table 1.

Communicating with a terminal

Many programs concern themselves, at

varying levels of detail, with terminal I/O.

Most operating systems do a competent

job of managing the details involved with

printing terminals ancf glass teletypes
(non-display terminals).Usually, an appli

cation needs to know at most three (and

possibly zero) things about a non-display

terminal (displays can optionally be

treated as glass teletypes): the terminal

type, line width, and page length.

All three of these can be implemented

as macros or procedures in an operating

system-dependent file. If there is any pos

sibility that you will be writing something

that will communicate with more than one

type of terminal, these macros or pro

cedures should take a file as a parameter

so they can know which type of terminal

you are talking about.

The terminal type macro or procedure

should ideally return an indication of

whether the terminal is a printing termi

nal, a glass teletype, or a specific type of

display. Often it is enough to know

whether or not you are dealing with a

printing terminal. Most nonprinting ter

minals won't overstrike characters. Most

nonprinting terminals that can overstrike

characters won't unless told to.

These three pieces of information are

not provided by many operating systems.

If a piece of information describing the

environment is not available from the

operating system, an alternative is to put

the information in a file. Whatever format

you decide upon for an environment file,

it should be possible to extract a piece of

information quickly.

Procedures that extract data from an

environment file should have defaults that

can be used if the environment file is

missing. It would be a shame for an other

wise wonderful piece of software to

become totally nonfunctional just because

it wasn't sure of the page length.

Information from the environment

I use the term "environment" here

because on some smaller systems things

like the date are obtained directly from the

hardware and not through the operating

system. All the same, it is probably most

general to put macros or procedures to

implement these functions in an operating

system-dependent file so that they com

pile conditionally. That way you can still

define these things in a machine-

dependent file when appropriate (see

PAGE_SIZE in Listing 3).

Dates come in an incredible number of

formats. One of the things you will want

your date fetching procedure or macro to

do is provide the same format of date no

matter what environment you are in.

But what format to choose? I would

suggest one of two formats (or possibly

both) because they are already provided in

a number of environments. One format

consists of three integers: the year,

month, and date. This format is most use

ful if your primary interest in the date is to

be able to print it.

If you want to perform calculations

such as determining the difference

between two dates, adding a number of

days to a date, determining the day of

week a particular date falls on. orjust

comparing two dates, this second format

is easier to work with. It consists of a long

integer containing the number of days

since Nov. 17. 1858. (This is derived

from the Smithsonian Universal Astrono

mical Time Standard. Nov. 17. 1858. was

when the Greenwich. England, obser

vatory started maintaining the standard

for Greenwich meantime.)

The time of day is most commonly rep

resented as three (and sometimes four)

numbers (hours, minutes, seconds, and

possibly a fraction such as tenths or thou

sandths of a sec) or a single number. Sin

gle number representations of time gener

ally arc the number of some time unit

since midnight. The time unit is generally

no larger than 1 sec and usually smaller.

Varying time units can be dealt with in

two ways. One way is to write a macro or

procedure that produces the time, always

using the same time unit regardless of the

actual precision available. When selecting

a time unit, remember that the time may

not be available to greater than 1 whole

sec of precision. A 32-bit-long integer can

count in 1/1.000 of a sec but will overflow

if you try l/10.000of asec. A 32-bit

unsigned integer will work for 1/10.000

of asec.

If you need all the precision that is

available on any given hardware, things

become more involved. If you arc not

planning to execute on any hardware that

uses precision greater that 1/10,000 of a

sec (1/1,000 if your implementation lan

guage does not support unsigned

integers), the only additional thing you

need to do is to define a macro that indi

cates how many clock ticks there are in 1

sec. Note that this may not be a power of

10.

Some clocks are synchronized to the

frequency of the a.c. power giving 60 or

toJower If a character is an upper case letter, it produces its lower case coun

terpart. The relationship between upper and lower case alphabetics

varies greatly between character code schemes.

toupper The inverse of to_lower

is_alpha True for character codes that correspond to letters

is_upper case True for character codes that correspond to upper-case letters

is lower_case True for character codes ihat correspond to lower-case letters.

next__alpha Returns a letter of the same case os its parameter that lexi

cographically follows its parameter. This is needed because in many
character codes the letters ofthe alphabet are not all assigned con
secutive character codes.

prev_alpha The inverse of next_alpha.

is digit Will be "true" if its parameter is a character code for a decimal digit.
This is advisable because there may be some character code schemes

that do not assign the decimal digits consecutive character codes in

lexicographical order.

Table 1.

41

50 clock ticks per sec. If you arc planning

to run on machines that keep time to a

greater precision than will fit in any data

type provided by your implementation

language (this is not uncommon with

some of the larger minis and main

frames), things get more complicated.

You will need to define a structure that is

an appropriate size for containing the time

and macros or procedures to compare

times, add times, subtract limes, etc.

Run-time libraries

The list of portability issues covered here

is far from complete. I have not addressed

such issues as memory management, seg

mented address spaces, display terminals,

magnetic tape, and others because of

space limitations.

Some languages come equipped with

solutions to some of these issues built in.

In this respect. C is lacking in com

parison. The design of C necessitates that

many of the features built into other lan

guages be implemented as run-time librar

ies. This provides a great deal of freedom.

This freedom shifts the responsibility for

a number of features from the builder of

the compiler to the maintainers of run

time libraries.

The burden of supporting a run-time

library adequate to shielding most pro

grams from environmental idiosyncrasies

for a large number of environments is a

lot of work. Doing it for your own appli

cations is probably a duplication of effort.

While I am not aware of any company that

provides this son of run-time library fora

great many environments for use with the

C language, there is a company in Cali

fornia that provides a much more than

adequate run-time library for a language

called MainSail.

Programs written in MainSail tend to

be even more portable than programs

written in C. Unfortunately, programs

written in MainSail tend to be larger and

slower than those written in C. To date,

the smallest CPU they support is the

68000. They also support a number of

minis and mainframes with a variety of

operating systems. H

References

1. ANSI Standard X3.4 1977. Codefor

Information Interchange.

2. ANSI Standard X3.28 1976. Proce

duresfor the Use ofthe Communication

Control Characters ofAmerican '

National Standard Codefor Informa

tion Interchange in Specified Data

Communication Links.

3. ANSI standard X3.64 1978. Addi

tional Controlsfor Use with ASCII.

4. Kernighan, Brian W. and Ritchie,

Denis M. 77ie C Programming Lan

guage .Prentice-Hall, 1978.

5. IBM Systems. 370 Principles of

Operation, 1973.

6. Jensen, Kathleen and Wirth. Niklaus

1978. Pascal User Manual and Report,

second edition, Springer-Verlag.

7. MacKenzie, Charles E.C, 1980.

8. Mulders, H. "Some Observations on

the In- and Output in High Level Lan

guages." Sigplan Notices vol. 18, no. 9

(September 1983): 55.

9. VAX Technical Summary. Digital

Equipment Corp., 1980.

Mark Grand has a B. S. in computer sci

encefrom Syracuse Univ., Syracuse, N. K

He has done a lot of work with language

design, text editing, and man/machine

interfaces and is now workingfor a soft

ware house that produces afinancial mod

eling language.

0<XXX>0<><X><X>0<><^^

PR0L0G-86
Learn Fast, Experiment

1 or 2 pages of PROLOG would require 10 or 15 pages

in "C."

Be familiar in one evening. In a few days enhance

artificial intelligence programs included like:

• an Expert System

• Natural Language (generalesilBASEdisplay)

Intro Price: S125 for PCDOS, CPM-86.

Full Refund if not satisfied.

CONTEST: "Artificial

Intelligence Concepts"
$1,000 Prize, Recognition for applications in PR0L0G-

86'" that teach, are clear, illustrate. Call for details.

Deadline 11/31/84

TM

SOLUTION SYSTEMS
45-D Accord Park, Norwell, MA 02061

617-871-5435
■^■CIRCLE 60 ON READER SERVICE CARDI

42 COMPUTER LANGUAGE ■ NOVEMBER 1984

DIFF and CMP -for "intelligent" file comparisons.

XREF-cross references variables by function and line.

C Flow Chart - shows what functions call each other.

C Beautifier - make source more regular and readable.

GREP - search for sophisticated patterns in text.

There are several other utilities that heip with converting

from one C compiler to another and with printing

programs.

C Helper is written in portable C and includes both full

source code and executable files

for$135 for MS-DOS, CPM-80

or CPM-86. Use VISA,

Master Card or COD.

Call: 617-659-1571

<JUSC&ITI5
335-L Washington Street

Nofweil.MA0206l

CIRCLE 61 ON READER SERVICE CARD

The „ .

Evolution

artlofthisarti-

Icle, which
appeared in the

October issue of

COMPUTER LANGUAGE, discussed the

major concepts behind the evolution of

ZCPR3 and compared CP/M and ZCPR3

memory maps. Part II will coverthe

ZCPR3 toolset, ZCPR3 shells, and

sources to turn to for more information.

ZCPR3 toolset

A large part of the ZCPR3 system is a set

of programs from which the user can cre

ate software development and applications

environments. The ZCPR3 toolset has

several classes of tools:

■ Utilities, which perform basic func

tions such as erasing files and displaying

directories

■ Documentation, which supports the

documentation of the system for the user,

including an on-line reference aid (HELP

facility)

■ Programmer aids, which assist the soft

ware designer and programmer in

debugging software

■ Shells, which act as front ends to the

ZCPR3 command processor and provide a

different type of interface {such as menus)

between the user and the ZCPR3 system

■ Command file processors, which sup

port the processing of files containing

commands.

The ZCPR3 system contains over 70

programs in the form of .COM files and

well over 100 commands in various forms

(.COM files, FCPs, RCPs, etc.). For the

most part, these tools are consistent in

their syntax and use:

PART

■ When it is reasonable to accept one or

more lists of files in conjunction with the

function performed by a command, such

is permitted, the PRINTcommand is of

the form,

PRINT afnl,afn2,afn3,... options

(where each "afn" is an ambiguous file

reference, like *.TXT, or an unambiguous

form, likeMYFILE.DOC)

■ Most tools implemented as .COM files

provide built-in documentation to remind

the user in a brief format how to use the

command and what its syntax is

■ All tools in the toolset are documented

in 200K-p!us of on-line documentation

(*.HLP) files, and the user can quickly

index into these files and look up page

after page of information on every tool in

the toolset

■ All tools use the Environment Descrip

tor as required to obtain the extended

information they need to perform their

functions, such as PRINT, which needs to

know the size of the printer page—this is

why ZCPR3 tools cannot normally run

under "vanilla" CP/M.

Shells

Many features of the ZCPR3 system

require an involved explanation, and the

number of pages in this magazine would

not be adequate space to explain all of

ZCPR3. A ZCPR3 book, now being pub

lished, covers all of them in detail, but to

give you a feeling for the magnitude of

some of these features, let's focus in some

detail on one subset of the ZCPR3 toolkit:

shells.

The concept of the shell was incorpo

rated as an integral part of the design of

By Richard Conn

the ZCPR3 system. Having designed two

shells under UNIX previously. I saw

much value in the shell concept and

wanted to implement it in a single-tasking

environment like ZCPR3 so I could use it

with my CP/M 2.2 programs.

A shell as defined for ZCPR3 is a pro

gram that runs in place of a command line

interpreter <CLI) as a user interface to the

operating system.

Under CP/M, the CLI in the CCP

shows its execution by prompting the user

with the "d> " prompt and accepting the

user's command line. The CLI in the

ZCPR3 CP does the same type of thing

that the CLI in the CP/M CCP does, but

the ZCPR3 CP always checks for the

presence of a shell and runs it instead of

the CLI if it sees that a shell has been

specified.

Generally speaking, a shell can be

implemented in two basic ways:

■ As a program that executes its function

and then terminates, only to be reinvoked

later by the operating system before the

CLI is invoked

■ As a program that executes as a process

in a multitasking operating system, so that

rather than terminating between

invocations, the shell process is

suspended.

ZCPR3, having CP/M 2.2 com

patibility as one of its main design crite

ria, implements shells as programs that

are terminated (as in the first way), while

shells written under UNIX are usually

43

///
// /
// /

implemented as processes that execute

commands as subprocesscs and suspend

themselves between invocations.

In implementing a UNIX-like shell,

where process suspension is supported by

the operating system, the shell can be exe

cuted as a program from the default shell

(such as the Bourne Shell or the Berkeley

Shell).

The default shell itself becomes a sus

pended process, and the new shell pro

vides its CLI-replacement interface and

executes commands by spawning them as

subproccsses under itself, suspends itself

(allowing these subproccsses to run), and

resumes operation at the point of sus

pension when the subprocesses complete,

having been passed a return code from the

spawned subproccsses.

The complete state of the shell is pre

served by the operating system without

the shell having to be concerned with the

details of maintaining its state at the point

of subprocess invocation. Using the stan

dard library functions provided under the

/USR/INCLUDE directory in UNIX, pro

cess spawning and suspension become

trivial problems since the library provides

routines to perform these functions for the

software designer.

In implementing a ZCPR3-bascd shell,

the shell is re-executed as a program by

the ZCPR3 CP, where processes are ter

minated and then later reinvoked. A shell

stack is employed which allows the nest

ing of shells and acts as a message buffer

so that ihe state of the shell can be

recorded in a limited fashion and restored

when the shell is reinvoked.

It is the responsibility of the shell to

record and then restore its state. Other

message buffers arc also provided under

the ZCPR3 system to record shell-specific

information, but using the shell stack as a

recording mechanism insures that state

values set by a shell are not affected (nec

essarily) when a second shell is invoked

by the first shell.

When the ZCPR3 CP invokes a pro

gram as a shell, a message is set 10 indi

cate this action, thereby letting the shell

know that valid data on its previous state

is recorded in the appropriate message

buffers and it can access these buffers to

restore the previous state.

Message buffers arc also provided to

allow programs to communicate with

other programs which are executed at a

later time and with a shell when it is rein

voked. This provides the shell with infor

mation such as the success code associ

ated with a program's execution.

A variety of shells have been imple

mented under the ZCPR3 system. Since

the system's Environment Descriptor

includes a definition of the capabilities of

the user's terminal, most of these shells

are screen-oriented, issuing screen-

oriented command sequences to a package

of library routines which arc translated

into terminal-specific byte sequences for

interpretation by the user's terminal.

Shells under ZCPR3 range in function

from menu display-orienied command

processors to file manipulation utilities

with built-in menu facilities to dynamic

debugging facilities that can examine the

state of the computer's memory after a

program being debugged has executed.

In addition, a shell definition program

is provided in the ZCPR3 toolset so that

any conventional command sequence-

such as a word processor invocation fol

lowed by a compiler invocation on the file

that was just edited—can be installed as a

shell. A variety of shells and tools that

control shells and shell stacks is provided

under the ZCPR3 system, and full CP/M

2.2 compatibility is retained at all times.

Shell implementations, then, are made

in two different schemes under ZCPR3

and UNIX. The UNIX scheme is the sim

plest and most complete from the shell's

point of view—the entire state of the shell

is preserved by the fact that it is being sus

pended by the operating system. The

same state is restored once the sub-

processes have terminated.

The ZCPR3 scheme is more complex

and more incomplete from the shell's

point of view—each shell must contain the

code required to save and then restore its

state to a reasonable degree of detail

between invocations. The ZCPR3 library,

Z3LIB, provides routines that simplify

this process from the software designer's

point of view, but state preservation and

restoration must still be taken into account

in the design of the shell.

The ZCPR3 technique of shell imple

mentation provides some interesting addi

tional potential not found in the UNIX

technique. Since 2CPR3 is a single-

tasking system and the shell stale (and

shell stack) are provided as messages, a

tool that is executed under a shell may

modify the shell state, terminate the shell,

or invoke a new parent shell during the

tool's execution.

The UNIX operating system protects a

suspended process from being modified

by another process, so modification of the

shell state by a subprocess is not possible

under UNIX. The subprocess can only

return a result code or store a message in

the form of a file for the shell to read

when it is reinvoked.

Also. I am not aware of any technique

that a subprocess can use under UNIX to

terminate its parent process or switch to a

different parent process during the child's

execution. These capabilities have been

found useful in several applications of

shells under ZCPR3.

Both techniques are useful, having their

own sets of benefits from an imple

mentation point of view. From the per

spective of a shell programmer—a person

who programs environments into the lan

guage of the shell (such as the case when

the shell is a menu shell)—the design

techniques are different with these two

implementations.

From the perspective of the user—the

simplification of his or her perspective

being the principal reason for imple

menting shells—the higher level of

abstraction and greater ease of use of a

system are virtually identical under

ZCPR3 and UNIX.

Sources of information

.Many bulletin boards around the world

are carrying the ZCPR3 system in various

forms, and the Special Interest Group in

Microcomputers (SIG/M) of the Amateur

Computer Group of New Jersey is a cen

tral, public-oriented distribution point for

it. Several computer clubs are also offer

ing it to their members. For those who are

interested in acquiring ZCPR3 through

SIG/M. contact SIG/M, P.O. Box 97,

Iselin, N.J. 08830.

44 COMPUTER LANGUAGE ■ NOVEMBER 196-1

The first phase of the ZCPR3 distribu

tion is contained on 14 8-in. IBM 3740

disks (241K each) and includes source

code to the entire system. This distribu

tion includes 50 .COM files, a large num

ber of .HLP files for on-line documen

tation, the main system segments,

SYSLIB3 {the software components

library used to create the .COM files),

and the installation manual and user's per

spective.

The second phase of the ZCPR3 distri

bution was released in September and

covered five more disks.

The ZCPR3 system is supported by

Echelon Inc., which provides the follow

ing services to the ZCPR3 user

community:

■ A central distribution point for

ZCPR3. It can be purchased there, and

commercial firms may obtain licenses to

use it. The basic purchase price (without

source code) is $39. and a variety of addi

tional options are available, bringing the

price of all 14 disks to under $200. A self-

installing version of ZCPR3 is being mar

keted by Echelon for $149 (installation

without this can take up to four hours or

more and requires knowledge of assembly

language programming).

■ Hardcopy of the installation manual

and user's perspective document. Echelon

will be selling a ZCPR3 book (500 pages

long in draft form), which will be out

before the end of the year at an expected

price of S20.

■ A bulletin board service through which

information is distributed and users can

report problems

■ A user support service that is acces

sible by telephone

■ A newsletter

■ A marketing agent and service for

those users who wish to write commercial

ZCPR3 programs and sell them

■ A feedback mechanism to the author of

ZCPR3 (Richard Conn).

For more information on ZCPR3, write

or call: Echelon Inc., 101 First Street,

Los Altos, Calif. 94022, (415) 948-3820

or (415) 948-5321. Q

Richard Conn has a B. S. and M, S. in com

puter science. His current interests include

operating systems. C and UNIX, and the

Ada programming language.

'.. .C86 was the only compiler we tested that

ran every benchmark we tried and gave the

expected results... Computer Innovations

C86 was the compiler that our staff

programmers used both before and six

months after we conducted the tests"

J. Houston, BYTE MAGAZINE - February 1984

FAST EXECUTION -

of your programs.

ULL & STANDARD

MPLEMENTATION OF C -

includes all the features described by

K & R. It works with the standard

MS-DOS Linker and Assembler, many

program:; written under UNIX can

often be compiled with no changes.

•8087 IN-LINE -

high!)' optimized code provides 808/

performance about as fast as possible.

■POWERFUL OPTIONS -

include DOS2 and 13OS1 support and

interfaces; graphics interface capability;

object code; and librarian.

[oin The Professional Programmers Who

For further Information Or To Order Oil:

800-922-0169
Technical Support: (2C1) 542-5920

•FULL LIBRARY WITH SOURCE -

6 source libraries with full source code

the "large" and "small" models, soft

ware and 8087 floating point, OOS2

and DOSALL.

*FULL RANGE OF SUPPORT

PRODUCTS FROM COMPUTER

INNOVATIONS -

including Halo Graphics, Phact File

Management, Panel Screen M.inage-

rnent, C Helper Utilities and our

newest Cto. dBase development

tooi.

'HIGH RELIABILITY -

time proven through thousands of
users.

•DIRECT TECH!

SUPPORT -

from 9 a.m. to 6 p.m.

Agree C86[" (s The C Coi

980 Shrewsbury Aveni

Suite PW509

Tinton Falls, NJ 07724

Computer Innovations, Inc

TM

CIRCLE 11 ON READER SERVICE CARD

45

We Do

Windows!

FORGET
EVERYTHING YOU THOUGHT YOU KNEW ABOUT PROGRAMMING IN BASIC.

introducing:

OPTIONAL

8087
SUPPORT

BetterBASIC offers:

Support of large memory (to 640K).

Extensibility (Make your own BASIC!!)

Speed. Sieve ol Erastosthenes Bencnmark:

-BetterBASIC: 31.9 seconds.

- IBM PC BASIC: 191.1 seconds.
Program Block Structures.

User defined Procedures and Functions.

Local and Global Variables.

Shared Variables.

Recursion.

Argument type validation.

Optional arguments.

Arguments passed by-value or by-address.

Separately compiled program Modules.

Simple interface to Assembly Language

Procedures.

Support for OEM hardware through

extensibility.

Useful set of Data Types:

- Byte. Integer

- Real (variable precision BCD]

ideal for business math.

- String (up to 32768 characters]

- Record Variables & Structures

- N-dimensional Aravs ot any type

- Arrays of Arrays.

- Pointer (of any type)

■tier

BASIC
"It combines the best

points of interpreted Basic,

Pascal, Forth and Assem

bler... It's the first piece of

software I'd spend my own

money on." Susan Ghnen-Cole
Technicol Editor

PC Tech Journal

We are so sure you will like Befter-

BASIC, we will give you a 30-day

money-back guarantee. Order

BetterBASIC now!

BetterBASIC: S1°°.00

8087 Module: $99.00

Not convinced? Then try the Better-

BASiC Sample and you will find that

BetterBASIC is truly a major break

through m computer programming.

Sample disk: S10.00

General Information:

Interactive programming language based on an

incremental compiler.

Syntax checked immediately on entry, with
concise error reporting.

Built-in Screen Editor allows on-line editing.

Full IBM Graphics/Communications Support.

Built-in Linker for separately compiled program
Modules.

Built-in Cross Reference Lister

Built-in WINDOWS support!!

8087 math support

Computer Requirements:

• IBM PC, IBM PC/XT" or compatible.

• PC/DOS 1.1, 2.0, 2.1

• 192K to 640K memory

• Usable on plain MS-DOS machines with reduced

functionality.

(no Editor. Graphics or Windows)

OEM & Dealer inquiries Invited.

BetterBASIC is a trademark of Summit Software

Technology, Inc.

IBM PC. IBM PC/XT and PC/DOS ore Tademarks of Inter

national Business Machines Cotp.

MS-DOS is a trademark of Microsoft Corp.

CALL YOUR DEALER OR SUMMIT SOFTWARE AT 617-235-0729

Summit Software Technology - " P.O. Box.99 Bobson Park Wellesley, MA 02157
MasterCharge, Visa. P.O.. Checks.

Monev Orders and C O.D. accepted

CIRCLE 62 ON READER SERVICE CARD

UniPress

Product

UPDATE

LATTICE® C NATIVE AND CROSS COMPILERS
FOR THE 8086

AMSTERDAM COMPILER KIT

Outstanding software development tools

Lattice C Cross Compiler

to the IBM-PC

■ Highly regarded compiler

producing fastest and tightest code

for the 8086 family.
■ Use your VAX or other UNIX
machine to create standard Intel

object code for your 8086 (IBM-PC)
■ Full C language and standard

library, compatible with Unix.

■ Small, medium, compact and large
address models available.

■ Includes compiler, linker, librarian
and disassembler.

■ 8087 floating point support.

■ MS-DOS 2.0 libraries included.
■ Send and Receive communication
package optionally available to

communicate between Unix and

MS-DOS.

Hosted On

Prices; VAX/UnixandVMS $5000
MC68000/8086 3000
SendandReceive 500

Lattice C Native Compiler

for the 8086

■ Runs on the IBM-PC under MS-DOS

1.0 or 2.0.

■ Produces highly optimized code
■ Small, medium, compact and large

address models available.

■ Compiler is running on thousands

of 8086 systems.

Price: $425

Plink (Optional) for use with
native Lattice

■ Full function linkage editor

including overlay support.

Price: $395

Amsterdam Compiler Kit

■ Package of compilers, cross

compilers and assemblers.

■ Full C and Pascal language.

■ Generates code for VAX, PDP-11,

MC68000, 8086 and NSC 16000.
■ Hosted on many Unix machines.

■ Extensive optimization.

Price: Full system—source $9950
Educational Institution 995

OEM terms available • Much more
Unix software, too! • Call or write for

more information.

Mastercard and Visa

UniPress Software, Inc.
2025 Lincoln Highway, Edison, NJ 08817

201-985-8000 • Order Desk: 800-222-0550 (outside NJ) • Telex 709418

Lattice is a registered trademark of Lattice, Inc. Unix is a trade mark of Bell Laboratories.

MS-DOS is a trademark ot Microsoft.

46 COMPUTER LANGUAGE ■ NOVEMBER 1984 CIRCLE 38 ON READER SERVICE CARD

Learn to
Think in

Ada

T
he Dept. of

Defense is

encouraging the

use of Ada

because it expects to reduce software

costs by the selection and consistent use of

this particular programming language. It

is anticipated that at least part of the sav

ings will occur because programs written

in Ada will have fewer bugs and be easier

to maintain.

Can simply changing to Ada really

improve your own program? Yes it can,

but in order to write good Ada programs

you have to team to think in Ada.

Listing I shows two solutions to exer

cise 3.4B in S. J. Young's book, An Intro

duction to Ada. The first solution is writ

ten in BASIC and the second one in Ada.

Can you guess what the question was just

by looking at these two answers?

Suppose that the statements in Listing 1

are part of a program that you have to

maintain. Do you know what those lines

of code are supposed to do? Can you be

sure that you can change them without

creating a new problem?

Programs that are easy to understand

are said to be "maintainable" because a

competent programmer can make changes

to the program (either to fix a program

ming error or add a new feature) without

introducing errors. The DOD expects Ada

programs to be more maintainable than

programs written in any other language.

Is the program in Listing 1B any easier

to understand than Listing 1 A? 1 don't

think so. Listing IB tells us that / and J

should be integers, but that's about the

only difference I see in the two programs.

Now look at Listing 2. I'll bet you can

figure it out after reading it through just

once. Both Listings IB and 2 were written

in Ada. but Listing 2 is much easier to

understand.

The problem with Listing 1B is that it

By Do-While Jones

wasn't really written in Ada. The student

who wrote that program was probably

thinking of a BASIC or a FORTRAN

solution and simply translated that solu

tion into Ada.

10

20

30

40

50

60

70

INPUT

INPUT

K=(I+]

PRINT

IF K =

PRINT

END

"WHAT IS THE FIRST NUMBER";

"WHAT IS THE SECOND NUMBER"

.) MOD 2 + J MOD 2

"THE ANSWER IS ";

= 0 THEN PRINT "TRUE." : GO

"FALSE"

I

;J

TO 70

Listing 1A.

with TEXT_I0; use TEXT_I0;

procedure EX_3__4_B is

package INT_I0 is new INTEGER_I0(integer);

use INT_I0;

I, J, K : integer

begin

put ("WHAT IS THE FIRST NUMBER? "); get(I); new_line;

put ("WHAT IS THE SECOND NUMBER? "); get(j); new_line;

K := (1+1) mod 2 + J mod 2;

put("THE ANSWER IS ");

if K = 0

then put("TRUE");

else put("FALSE");

end if;

new_line

end EX_3_4_B;

Listing IB.

47

Ada programs shouldn't be written the

same way that BASIC programs arc.

BASIC forces programmers to get into the

habit of thinking of a sequential solution

to the problem and then writing the solu

tion as a series of steps in a particular

order. If the programmer discovers that

something was left out, he or she has to

renumber the program and insert the steps

where they belong or add the steps to the

end and change the program flow using

goto*.

Ada doesn't have to be written from

beginning to end. and it is easier not to

try. In fact, the last line in an Ada program

is always the third line I write. That's

because it is easier to write an Ada pro

gram from the top to the bottom rather

than from the beginning to the end. Here's

how I wrote the program in Listing 2.

First I wrote the skeleton:

procedure Solve_Exercise_3_4_B is

begin

end Solve_Exercise_3_4_B;

Next I wrote a sequence of statements

expressing a general solution to the prob

lem and put it between the begin and end

statements (Listing 3).

Even if you have never seen an Ada

program before, you probably figured out

thatpur in Ada is just like PRINT in

BASIC, and get is the equivalent of

INPUT. The semicolons mark the end of a

statement just like the colon does in

Microsoft BASIC. Ada ignores carriage

returns and line feeds, so you can put mul

tiple statements on one line or break one

statement into several lines if it makes the

meaning clearer.

I chose to put three statements on one

line because those three statements go

together logically. The put prompts the

user, the get gets the user's response, and

newjine sends a carriage return and line

feed to the CRT screen after the user has

entered the data.

put. get, and newjine are procedures I

use often. It would be wasteful to rewrite

them and recompile them every time I

needed them. They arc all in a general

purpose I/O package called TEXTJO,

but ihcpui procedures for integers and

Booleans are generic and have to be

"instantiated" before they are used. (List

ing IB shows how the INTEGERJO

package is instantiated.)

I find it a nuisance to instantiate

INTEGER_I/O every time I need it. so I

have written my own I/O packaac called

CONSOLEJO, which contains all the 10

routines I need, ready to run. I can tell

Ada to use these routines by placing a

"context clause" at the beginning of the

program:

with CONSOLEJO; use

CONSOLEJO;

CONSOLEIO has get procedures for

characters, strings, integers, and Boolean

variables. I had to tell Ada (and

CONSOLEJO) to treat / and J as

integers, not character strings:

with CONSOLEJO; use CONSOLE_IO;

procedure Solve_Exercise_3_4_B is

I, J : integer;

TEST_RESULT, I_IS_ODD, J_IS_EVEN : boolean;

begin

put ("Please enter an integer ""I"" "); get(I); new_line;

put ("Now enter another integer ""J"11 "); get(J); new_line:

if I mod 2 = 1

then I_IS_ODD := TRUE;

else I_IS_ODD := FALSE;

end if;

TEST_RESULT :I__IS_ODD and JJSJEVEN;

put("the test turned out "); put (TEST_RESULT); new_line;
end Solve_Exercise_3_4_B;

Listing 2.

put("Please enter an integer ""I"" "); get(I); new_line;

put("Now enter another integer ""J"11 "); get(J); new_line;

TEST_RESULT := I_IS_ODD and J__IS_EVEN;

put("The test turned out "); put(TEST_RESULT); new_line:

Listing 3.

I, J : integer:

I wrote the solution to the problem

without worrying about how I was going

to do it. I just wrote the answer I wanted:

TEST_RESULT:= l_IS_ODDand

J_IS_EVEN;

If you've never seen an Ada assignment

statement, the colon might have confused

you. Ada has two kinds of equal signs.

The assignment operator (: =) means

"Make it equal." The equality test { =)

means "Is it equal?"

TESTRESULT, I_IS_ODD, and

JJSJLVEN are Boolean variables. They

can have values ofTRUE or FALSE.

TESTRESULTwill be TRUE if

I IS ODD is TRUE and JJSEVEN is

TRUE. Ada needs to know what kind of

variables these are, so they arc declared

near the beginning of the program:

TESTJ*ESULT, IJS_ODD,

J_IS_EVEN s Boolean;

JJSEVEN may seem like a long name

for a variable. Ada variable names are

theoretically limited to the number of

characters that fit on one line, and all the

characters (including the underscores) are

significant. In practice, variable names

are limited by the programmer's desire to

type as little as possible.

When I wrote the solution the problem

automatically broke itself down from one

problem to two smaller problems. Then I

had to figure out if /was odd and if J was

even. Those were easy problems to solve.

The modulus operator (mod) tells if a

number is evenly divisible by two:

if I mod 2= 1

then I_IS_ODD:= TRUE;

elselJSJ3DD: = FALSE;
end if;

if J mod 2 = 0

then JJS_EVEN:= TRUE;

elseJ_IS_EVEN:= FALSE;

end if;

The program in Listing 2 is longer than

the program in Listing 1A if you measure

length by number of lines. If you measure

length by the time it took to write the pro

gram it was probably shorter. The

statement.

iflmod2 =
TRUE;

thenlISODD: =

is a simple definition that required no

great mental effort to conceive. The cal

culation,

48 COMPUTER LANGUAGE ■ NOVEMBER 1984

K=(I + 1)MOD2 +JMOD2

required several ihoughl processes. First

the student had to realize that K—0 should

represent TRUE. Then he had to realize

that he wanted to use the + operator to do

ihc AND function. Then the programmer

had to figure out how to get an odd num

ber to yield a zero result.

In the process, the student might have

considered using the * operator (which is

usually used for logical AND) but couldn't

figure out how to get a zero result with it.

If he had thought to let K - 1 represent

TRUE, he could have done it. (That's left

as an exercise for the reader.) It probably

took more time to write the one line equa

tion for K than it did to write both IF state

ments in Listing 2.

Early in this article, I was careful to say

that Listing 1 shows two solutions to the

problem. I never said they were correct

solutions. Look at them carefully. Will

they work for all cases'? (Hint: Try / =

-6and./ = 5.)

You might argue that the program in

Listing IA could be improved by adding

remarks. Of course, you are right. It

would help a great deal to add the follow

ing statements:

1 REM-THEUSERMUSTENTER

TWO INTEGERS, I AND J.

2 REM-THEPROGRAMTHENTESTS

TOSEEIFIISODDANDJIS

EVEN.

3 REM-THETESTRESUUSARE

PRINTEDONTHESCREEN.

This relieves the maintenance program

mer of figuring out what the program is

supposed to do. But that is only part of the

problem. The maintenance programmer

still has to figure out how it works. That

ean be difficult when the logic is tricky.

By the way, the programs in Listing 1

are correct. I tried to bluff you into think

ing that —5 mod 2 was — I, so/ = -6 and

J =5 would yield -1 + 1=0. which

would cause the program to print TRUE

(which is the wrong answer).

Maybe I confused you, and maybe I

didn't, but if you had to think twice, I

made my point. It is hard to follow the

logic in Listing 1, but the logic in Listing

2 is straightforward. That makes Listing 2

easier to maintain.

Will programs written in Ada have

fewer bugs and be easier to maintain?

They will if they arc written like Listing

2. Unfortunately, anyone who can write a

bad program in any other programming

language can also write a bad Ada

program.

Ada isn't a miracle cure. Ada is simply

a language that makes it easy to write

good programs if the programmer can

break away from constraining his or her

mind with old program limitations. The

student who wrote program IB didn't use

Boolean variables because he was used to

using a language limited to integers, real

numbers, and strings.

Of course Ada has other advantages

that will lower software costs, User-

defined enumeration types, packages,

tasking, exceptions, information hiding,

and separate compilation all make pro

gramming easier. In future articles I hope

to share some of these advantages with

Do-While Jones graduatedfrom the Univ.

ofNebraska in 1971. Since that time he has

been designing weapons.

c

Programming

Guidelines

C LANGUAGE PROGRAMMING
From Plum Hall...the experts in C training

Thomas Pium

Learning to

Program in

mmmmmmm

FREE
C LANGUAGE POCKET GUIDE!

A handy C language programming

pocket guide is yours free when you order

either (or both] of the manuals above.

A lull 1d pages of valuable C language

information!

Learning to Program in C 372 pp.. iw x 10", Price S25.00

A practical, step-by-step guide for everyone acquainted with com

puters who wants to master this powerful "implementer's language"

Inside, you will learn how to write portable programs for the full

spectrum of processors, micro, mini and mainframe

C Programming Guidelines mo pp., iw x 10-. price $25.00

A compilation of standards for consistant style and usage of C

language, Arranged in manual page format for easy reference, it

presents time-tested rules for program readability and portability.

r "plum" hall The experts in C and UNIX training.

. . . Phone orders: 609-927-3770
1 Spruce Av, Cardiff NJ 08232

Please send me: _ information on C and UNIX Training Seminars

_ copies of Learning to Program in C @ $25.00/copy
_ copies of C Programming Guidelines @ $25.0Q/copy

NJ residents add 6% sales 101

COMPANY _

ADDRESS

OTYISTATE/ZIP
American E>press Master Co'd

EXP DATE Signature.

CIRCLE 50 ON READER SERVICE CARD

49

"C/80. . . the best software buy in America!"

Other technically respected publications like Byte

and Dr. Dobb's have similar praise for The Software

Toolworks1 $49.95 full featured 'C compiler for CP/M >

and HDOS with:

I/O redirection

command line expansion

execution trace and profile

initializers

Macro-80 compatability

ROMable code

and much more!

"We bought and evaluated over S1500

worth of 'C compilers. . . C/80 is the one

— Dr. Bruce E. Wampler

Aspen Software

author of "Grammatih"

-MICROSYSTEMS

In reviews published worldwide the amazing $49.95

C/80 from The Software Toolworks has consistently

scored at or near the top — even when compared with

compilers costing ten times as much!

The optional C/80 MATHPAK adds 32-bit floats and

longs to the C/80 3.0 compiler. Includes I/O and trans

cendental function library all for only $29.95!

C/80 is only one of 41 great programs each under

sixty bucks. Includes: LISP, Ratfor, assemblers and

over 30 other CP/M ' and MSDOS programs.

For your tree catalog contact:

cT}\e SoftWare ^oolwdrk^
15233 Ventura Blvd., Suite 1118,

Sherman Oaks, CA 91403 or call 818/986-4885 today!

CP'M is a registered trademark of Digital Research.

CIRCLE 26 ON READER SERVICE CARD

Fortran Scientific Subroutine Package
Contains Approx. 100 Fortran Subroutines Covering:

Matrix Storage and Operations

Correlation and Regression

Design Analysis

Discriminant Analysis

Factor Analysis

Eigen Analysis

7. Time Series

8. Nonparametnc Statistics

9. Distribution Functions

10. Linear Analysis

11. Poiynomial Solutions

12. Data Screening

Sources Included. Microsoft 3.2 compatible.

$295.00

FORLIB-PLUS™
Contains three assembly coded LIBRARIES plus support.

FORTRAN coded subroutines and DEMO programs.

The three LIBRARIES contain support forGRAPHICS, COMMUNICA

TION, and FILE HANDLING/DISK SUPPORT. An additional

feature within the graphics library is the capability of one (orlran program
calling another and passing data to it. Within the communication library,

there are routines which will permit interrupt driven, buffered data to be

received. With this capability. 9600 BAUD communica

tion is possible. The file handling library contains all the required software

to be DOS 3.0 PATHNAME compatible.

$69.95
Strings & Things'"

Character Manipulation and Much More!

$69.95

%_PHA P.O. Bos 2517
? ? 5u. V', Cypress,CA 90630 (714)894-6808

California residents, please add 6'^ sales tax

CIRCLE 2 ON READER SERVICE CARD

DESIGNER SCREENS
t'A 100 to 1 Productivity

Increase Over Coding "

Provides full-screen editing of ter

minal screen design images. And, a

linker that generates self-relocating,

8080 machine language, run-time

support.

Makes it easy to implement on-screen forms, menus, help

screens, boiler-plate notices, and even simple animation.

Run-time support for input includes: data type control, dec

imal alignment, a type ahead buffer, end-user edit commands,

and everybody's favorite, "Fred's Magic Window."

Fred's Magic Window can display fie!d-by-(ield input instruc
tions as needed, automatically.

Can be used with any computer language thai allows pro

grammed calls to CP/M 2.2. Great with assembly languaqe or

BDS C.

Runs on 80 x 24 or larger ASCII terminals. Supports five dis

play attributes and line drawing. Designs are transportable
between installed terminals.

Manual only: S 10.00 (Check it out!)

Software: 185.00 (Supplied on: 8" SSSD CP/M

or call.)

Complete: $195.00

(Calif, residents add sales tax)

Austin E. Bryant Consulting
P.O. Box 1382, Lafayette, CA 94549

[415| 945-7911

VISA CP/M is a Irade mark of Digilal Research

BDS C is a irade mark of BD Software

50

CIRCLE 7 ON READER SERVICE CARD

J
COMPUTER LANGUAGE ■ NOVEMBER 19Bd

PUBLIC DOMAIN SOFTWARE REVIEW

This month we're

going to begin by

filling in some

gaps for the 16bit-ers.

Specifically, we'll concentrate on the

Big Blue machine and its clones, com

patibles, look-alikes, etc. (Other

machines will follow, though I'm still

waiting for a Sage to appear on my desk!)

The IBM PC has brought a lot of new

owners to the personal computer market,

but I have not found one machine in the

past few years that has generated more of

a love-hate relationship than this one.

There is a lot good and a few major

annoyances. But then, I'm not here to

voice my opinions of the IBM, just to tell

you what you can run on it. (But why the

silly keyboard?)

As we concentrate on public domain

software for the IBM PC. it must be

pointed out that there is one minor prob

lem that crops up occasionally. Naturally,

as the programs were developed on the

IBM, they were written under PC-DOS.

Some are in Version I.I, while others are

2.0. And therein lies the crunch.

In many cases, the DOS 1.1 stuff will

not run on DOS 2.0 and vice versa. Most

do but be warned! Generally, the early

stuff is the most suspect as the existence

of DOS 2.0 was not even contemplated at

the time.

As for compatibility, most of the soft

ware will run fine on the look-alikes as

long as they maintain some standard of

IBM compatibility in their structure.

Some programs require screen addressing

or memory addressing that the com

patibles don't all have.

Unfortunately, there's no way to be cer

tain whether a program will work or not

until it's tried. The best guess one can

make is that if the machine is a close clone

(such as the Compaq) then it probably will

work, while more distant clones that have

changed screens or other essentials

(whether for better or worse) may not.

Finally, as these programs were mostly

developed on IBMs, they are all PC-DOS.

Whether they work under MS-DOS

depends on the way the program is set up.

Again, that is unpredictable to any great

extent. And so, with that preamble out of

the way, we'll take the first of a number of

quick walks through the IBM PC public

domain software library.

IBM public domain

software can be

located in several

places scattered throughout the country.

One organization that has impressed me

by its standards of organization is the PC

Software Interest Group (PC-SIG). (Its

address is at the end of the column.)

PC-SIG publishes a smallish book that

lists the contents of the public domain

library it handles. Last time I checked, it

was almost at 200 disks, so it has probably

exceeded that by now. PC-SIG's disks arc

very reasonably priced at $6.00 each,

with a $4.00 postage and handling sur

charge ($10.00 outside the U.S.), and they

offer telephone support for service and

ordering.

PC-SIG supports both the true public

domain software and the newer "user-

supported program" concept. Simply

stated, a user-supported program is one

that the authors have released for general

distribution through the usual channels

such as public domain houses, bulletin

boards, etc., but they expect a donation in

return from the user if the software is

appreciated.

The donations are usually between

SI0.00 and $30.00. Naturally, there is no

obligation on the part of the user to pay

anything, but it is hoped that since many

of these programs are of extremely good

quality, there will be a streak of gener

osity in the user to recompense the author

for the effort.

The idea of user-supported software is

not really new. Programs with a tag that

asked for donations if deserved have been

■ around as long as public domain software

has existed, but this seems to be an orga

nized effort to target the IBM PC market

for a structured exainination of the

concept.

Some of the software available through

this scheme is very good indeed. Gener

ally, it is above the usual quality of public

domain "freebie" software and on par

with the commercial material (although

there is quite a range in the quality from

some of the authors).

The beauty of the idea, of course, is the

"try it before you buy it" aspect. If the

By Tim Parker

software is worthwhile Ihcn there will

probably be little reluctance on the part of

the user to pay out S20.00 or S30.00 com

pared to the hundreds of dollars that have

to be laid out in advance with no guaran

tee for commercial products. It will be

interesting to see how the PC SIG organi

zation of this concept proceeds.

Back to business.

PC software:

where to begin?

Probably with a few of the more useful

utility disks and then a quick jump around

some of the volumes. Some of the pro

grams mentioned have been covered in

greater detail in previous columns, and so

they should be referred lo when neces

sary. While the 8-bit version may have

been discussed specifically, there arc

minor (if any) changes to the PC/MS-

DOS environment. (If anything major is

changed, it will be pointed out.)

Most of the programs mentioned are

executable directly, either as .COM or

.EXE files. Some are .BAS files and

require the standard BASIC program to

run them. Many of the files are supplied

as .BAT (BATch files) and arc thus list-

able on the console or other output

devices.

PC-SIG Disk 185 contains a version of

DD (a directory sort program) along with

other directory programs such as DIR2.

SDIR. and CATALOG. This version of

DD, however, sorts by date, and so is not

the same program as the 8-bit DD.COM

discussed last month.

The assembler source for one of the

directory programs is included for cus

tomization, examination, or modification

as required. Included is a squeezer-

unsqucezer pair called SQIBM/USQIBM

and ZSQ/ZUSQ. respectively, which are

essentially the same as the SQ/USQ files

discussed earlier. Both have documen

tation files included on the disk. A pro

gram called SEC&BYTE prints a table of

the diskette sectors and bytes.

PC-SIG Disk 186 is a collection of CRT

and Epson (IBM) printer utilities. A pro

gram called NOCOLOR switches the

color graphics card to black and white

mode quickly. Two scroller programs are

included to provide screen scrolling con-

51

trol that the standard machine doesn't avowed dislike of cataloging systems

offer. One of them includes the source (for reasons that will not be gone in to

code (assembler). A print spooler pro- here), this seems to do all that Ward

gram is included that can also be used for Chrisiensen's XCAT/NCAT system did

data communications. forCP/M 80.

Several Epson utility programs round There are also about 14 disks crammed

out the disk to allow rapid setting of the with utility programs pulled off bulletin

Epson for different type fonts, spacing, boards and the like, ail grouped loosely

graphics, lines per page, etc. These pro- together under the "utility" title. As can

grams all seem to offer only one feature be expected, there is the usual assortment

each. I wrote a menu program that can of useless stuff but also a few goodies,

reside in high memory and allow toggling PC-S1G Disk 111 has a program called

of the features all from one program, BIGCALC that functions as a 100-digit

instead of loading a new program every precision calculator. (Thanks, but my HP

time. (All those disk accesses take so 41CV works just fine. But there is the

many microseconds!) However, different possibility that my debts may overflow the

strokes . . . precision! I'll keep this one on file just in

One disk cataloging program set can be case.) The usual calendar program is on

found on PC-SIG Disk 106. This disk has the same disk and can print out any

a cataloging system that can be imple- month/year as required. A couple of other

mented with or without BASRUN. Docu- programs that are of use round out the

mentation is available interactively or disk, but you begin to get the idea.

through a document file. Although the

document is short at five pages, it seems :;:!iiii::S!:::::::ii: ^BB nough of utilities,
to cover all that is required. The usual I:::::::!::!:::::::::: f* (Check PC-SIG's
cataloging features arc available: com- ;::::::::::::::::::::: k italog for all the
plete disk catalogs can be printed, specific utility programs you'll ever need.) Now

files searched for and displayed, and all for the good stuff!

programs sorted as required. CHASM (cute name) stands for CHeap

The DISKCAT system worked with no ASseMbler and is one of the afore-

problems at all, and although I have an mentioned user-supported software pro

grams. CHASM is an assembler written

entirely in BASIC and includes a tutorial

on the 8086 assembly language. It was

interesting to look it over, and it does the

job remarkably well. (The disk is avail

able as usual from PC-SIG. as Disk 10.

They suggest a donation of S20.00 from

all users who are so inclined to donate.)

PC-SIG Disk 31 has the Mountain View

Press public domain version of Forth.

MVPFORTH is a good version of Forth (I

can't say it's the best, but then I'm not

sure what is) and for a first Forth it is very

highly recommended. A documentation

file is on the disk, but as with all Forths

I've seen, the best bet is to go out and buy

Starting FORTH by Leo Brodie.

MVPFORTH can be brought up cither

from a cold boot (usual) or from inside

DOS (not so usual but nice to have). The

Forth screens for MVPFORTH are on

PC-SIG Disk 32. (Note that this is not a

DOS disk and can't be copied by DOS!

Errors will be reported at every step. The

directory is on screen 11.)

An IBM version of the infamous and

irreplaceable CP/M 80 XMODEM

(AMODEM. MODEM7) is available

on PC-SIG Disk 54 with copious

notes about using IBM asynchronous

communications.

Three disks arc devoted to Pascal Tools

(PC-SIG Disks 130, 131, and 132), with

good documentation, manuals, source

files, and other goodies. Most of the Lit i I -

THE

MOST

EXTENSIVE

THE GREENLEAF FUNCTIONS

Library for C Programmers

Total Access to IBM PC and XT
Compatible with DOS 2.0, L.I, Cl C86.

Lattice, and Microsoft C - Versions 1 and 2

S175<
Add $7.00

for shipping.

Specify Compiler

MC/V1SA Accepted'

Prices subject to

without, notice.

Dealer Inquiries Welcome,

(214) 446-8641

PARTIAL

CONTENTS

'• DOS 2.0 - over 25 functions • Complete

Video Access for Text and Graphics

•Over 60 String Functions • Rainbow Series

Color Text • Time and Dace • Over 40 Printer

Functions • Function and Special Keys

» RS232 Async ♦ All BIOS Functions • Software

Diagnostics • Disk functions • Utility-

functions • and more . . .

THE GREENLEAF FUNCTIONS . . .

Nearly 200 functions, 220 page manual,

3 Libraries, Extensive Examples of each

.function, Full Source

Code

GREfcNLEAF

SOFTWARE©

LIBRARY

ANYWHERE
FOR THE IBM AND PC XT

GREENTE^F SOFTWARE, INC. ♦ 2101 HICKORY DRIVE • CARROLLTON, TEXAS 75006

CIRCLE 29 ON READER SERVICE CARD

52 COMPUTER LANGUAGE ■ NOVEMBER 1984

(LISP) FOR A.I.
UO-LISP Programming Environment

The Powerful Implementation of LISP

for MICRO COMPUTERS

LEARN LISP System (LLS.l)
(see description below X39 95

UO-LISP Programming Environment

Base Line System (BLS.l) $49.95

Includes: Interpreter. Compiler,

Structure Editor, Extended Numbers,

Trace, Pretty Print, various Utilities,

and Manual with Usage Examples.

(BLS. 1) expands !o support lull system

and products described below.

UO-LISP Programming Environment; The Usual LISP Interpreter Functions.
Date Types and Extensions. Structure & Screen Editors. Compiler, Optimizer. LISP &

Assembly Code Intermixing, Compiled Code Library Loader. I/O Support. Macros.

Debug Tools. Sort & Merge. On-Lne Help, Other Utility Packages. Hardware and

Operating System Access, Session Freeze and Restart, Manual with Examples expands to

over 350 pages. Other UO LISP producls include: LISPTEX tew (ormatier, LITTLE

META translator writing system. RLISP high level language. NLARGE algebra system.

Prices vary with configurations beyond (BLS.l) please send jor FREE catalog.

LEARN LISP System (LLS. 1): Complete with LISP Tutorial Guide, Editor Tutorial
Guide, System Manual with Examples, Full LISP Interpreter. On-Line Help and other

Utilities. LEARN LISP fundamentals and programming techniques rapidly and effectively.

This system does not permit expansion to include the compiler and other products listed
above.

LISP Tutorial Support (LTS.l): Includes LISP and Structure Editor Tutorial
Guides, On line Help, and History Loop. Tins option add? a valuable learning tool to the
UOLISP Programming Envnonment (BLS. 1|. Order fLTS.l) for S19.95.

REQUIRES: UO USP Products run on most Z80 computers with CPM, TRSDOS or

TRSDOS compatible operating systems. The 8086 version available soon.

TO ORDER: Send Name, Address, Phone Nu., Computer Type. Disk Formal Type, Package

Price. 6.5% Ta» (CA residents only), Ship & Handle fee of S3.00 inside U S & CN. S10 outside

U.S , Check. Money Order. VISA and MasterCard accepted. Wilh Credit Card include exp dale

Other configuranons and producls are ordered rhru our FREE coldfog.

Northwest Computer Algorithms
P.O. Box 90995, Long Beach, CA 90809 (213) 426-1893

CIRCLE 46 ON READER SERVICE CARD

ities included are created by a batch file. PC-CHESS is available on PC-SIG

One program allows access to the FCB Disk 120. It plays a good game, although

(file control block) for those who like to as with most chess programs, when the

get their feet right into their operating sys- more advanced look-ahead features are

terns. Pascal is also supported on other required, it becomes fairly time con-

disks in the library, such as Disk 36, suming. It comes in two versions, one for

which is filled with utilities. two players and the other the more tradi-

A screen editor written in C is available tional player vs. computer. Both .EXE

on Disk 137. This is the same program as files are supplied in squeezed format (the

the CP/M 80 editor called ED—not Digi- unsqucezer is on the disk), which raised

tal Research's ED.COM. (If there are any an eyebrow when first seen. The reason

CP/M 80 readers still with me. these are for squeezing executable code still

available on SIG/M Volume 76, along remains unsolved to this observer!

with some utilities from Software Tools of Ignoring the mass of basic games from

Australia.) I can't say I'd take ED over the current book literature, there are ver-

WordStaroroneof my other word pro- sionsof Star Trek all over the place

cessors, but I am very impressed with it as (example—PC-SIG Disk 178), as well as

a programming effort, and some people arcade-like games (PC-SIG Disk 177).

use it as a primary programming editor. Pacman (in a monochrome version) is on

XLISP (mentioned a month or two ago PC-SIG Disk 173 with an ESP testing pro-

forCP/M 80 and CP/M 86 machines) is gram. No comment on the latter: if you

on PC-SIG Disk 148. I'm glad to sec that believe in ESP you'll know what I feel!

this made the transition to PC/MS-DOS, As for the rest of the games, check the

and the transfer has been done with total catalog,

integrity. Both source files (written in C)

and documentation arc included. ::::::::::::!:::::::: ^^ o much for this
Finally, to wrap up the IBM stuff—boy ijjjjjjjjjjjjjjjjjjjj ^^ month's IBM dis-

are there ever a lot of games! Most are I:::::::::::::!::!::: +J course. I'll cover
translations of the usual (ho hum) games more of the available public domain mate-

from BASIC programs in the CP/M 80 rial for PC/MS-DOS in future columns,

world, but there are a few that would tend Meanwhile, on to the language I'd prom-

to be looked at more than once. ised to look at. The language this month is

PISTOL, partly because of the previously

mentioned release of Forth-83 and also

because of the apparent boom in stack-

oriented languages.

PISTOL (Portably Implemented STack

Oriented Language) was written by Ernest

E. Bergmannof Lehigh Univ. In many

ways it resembles Forth and other stack-

oriented languages such as STOIC (on

which it was modeled), but it stands alone

because of many unique features.

Stack-oriented languages are somewhat

difficult to explain quickly. Anyone who

has used a Hewlett-Packard calculator is

acquainted with RPN (Reverse Polish

Notation), which is stack oriented. Essen

tially, any numbers input into the system

are maintained on a pile that allows oper

ations on the last one or two items

entered. Stack manipulation is readily

accomplished.

The overall effect of stack systems is a

vastly increased computing power over

standard implementations because of the

speed and flexibility of the stack concept.

Too much to delve into here . . . take my

word for it: when one of these languages

is used, it tends to become addictive and

often replaces other languages. A great

many operating systems have been written

in stack-oriented languages.

Bergmann developed PISTOL instead

QUALITY SOFTWARE AT

REASONABLE PRICES
CP/M Software by

Poor Person Software

Poor Person's Spooler $49.95
All the function of .1 hardware print buffer at a fraction of the

cost. Keyboard control. Spools and prints simultaneously.

Poor Person's Spread Sheet $29.95
Flexible screen formats and BASIC-Iike language. Prepro

grammed applications include Real Estate Evaluation.

Poor Person's Spelling Checker $29.95
Simple and fast! 33,000 word dictionary. Checks any CP/M text

file.

aMAZEing Game $29.95
Arcade action for CP/M! Evade goblins and collect treasure.

Crossword Game $39.95
Teach spelling and build vocabulaiy. Fun and challenging.

Mailing Label Printer $29.95
Select and print labels in many formats.

Window System $29.95
Application control of independenl virtual screens.

All products require 56k CPAM 2.2 and .ire available on 8" IBM and 5"

Northstar formats, other 5" formats add S5 handling charge. California

residents include sales tax.

Poor Person Software

3721 Starr King Circle

Palo Alto, CA 94306

tel 415-493-3735
CP/M is a registered trademark at Digital Research

CIRCLE 51 ON READER SERVICE CARD

LOWER

PROGRAMMING MAINTENANCE

AND DEVELOPMENT COSTS

{setscil}
The Source Code Interactive Librarian

for microcomputers.

■ SCIL keeps a historical record ofall changes made ro the

library.

SCIL maintains any source code regardless oflanguage,

including user documentation and text material.

■ SCIL allows software engineers to work with source

code as they do now, using any ASCII text editor.

■ SCIL saves disk space by storing only the changes made

to the program.

■ SCIL provides a labeling capability for case of main

taining multiple versions and multiple releases.

■ SCIL offers unlimited description in the program li

brary directory.

1 High visibility displays with varied intensify for ease of

viewing insertions and deletions.

■ SCIL is available on CP/M, MP/MII, MS-DOS,

PC-DOS and TurboDOS.

{SET}
Get {SET} for Success

{SETiSCIL™} is a product ofSystem EngineeringTi
645 Arroyo Drive, San Dicgo/CA 92103

For more information call (619) 692-9464.

CIRCLE 64 ON READER SERVICE CARD

53

For the first time, a
programmer's editor that is

both intuitive and powerful
.. .and configurable to suit your style

The New Standard. No longer does an Editor have to be "in your way" to provide full

power. By combining power with natural flow, the new advanced BRIEF is in a class

by itself.

BRIEF lets you concentrate on programming. Your thoughts flow smoothly, intuitively.

15 minutes is all you need to become fully productive. You can then do precisely what

you want quickly, with minimum effort and without dull repetitions.

BRIEF adapts to your style. You can use BRIEF without modification, because it's

distributed with an "ideal" configuration. Or you can make any change you want, add

any feature of your own. Reconfigure the whole keyboard or just the Function Keys.

Change the way the commands work or just the start-up defaults.

Availability: PCDOS-compatible systems with at least 192K and one floppy drive are

required. Though your initial copy is protected, an unprotected version is available

when you register BRIEF.

Pricing: Only $195... with discounts for volume end-users. A demonstration version is

available for only $10 and can be available towards any Solution Systems purchase.

Win $1,000 and substantial recognition for the Outstanding Practical BRIEF Macro.
Other awards will also be given.

BRIEFS PERFORMANCE IS NOT EQUALLED IN MICROS, MINIS AND MAINFRAMES

Full UNDO (N Times)

Edit Multiple Large Files

True Automatic Indent for C

Exit to DOS Inside BRIEF

Uses All Available Memory

Intuitive Commands

Tutorial

Repeat Keystroke Sequences

Windows (Tiled and "Pop Up")

Unlimited File Size

Reconfigurable Keyboard

Online Help

Search for Complex Patterns

Mnemonic Key Assignments

Horizontal Scrolling

Comprehensive Error Recovery

PLUS a Complete, Powerful, Readable, Compiled MACRO Language

Try BRIEF. Use the Demo...

or the full product for 30 days.

Call or write us ...

617-659-1571

BRIEF is a trademark ol UnderWare.

Solution Systems is a trademark ot Solution Systems.

-Solution
(Systems

of settling for Forth or STOIC on the

assumption that such languages should be

transportable between mini- and micro

computers with minimal transposition

problems. Thus, portability was a major

design problem, especially when instruc

tion sets and word lengths had to be con

sidered. Also, as Bcrgmann points out in

one of ihe accompanying document files,

user friendliness was essential.

Many readers will undoubtedly ask

"Why bother?" with another Forth-like

language. PISTOL differs from Forth in a

number of ways. Strings are as easily

manipulated in PISTOL as numbers arc

and can be easily defined.

The prompt in PISTOL is different than

the one in Forth. Like STOIC, it displays

the number of elements in the parameter

stack, the current number base in use. and

ihe nesting depth, if applicable.

PISTOL lacks the interpretive mode

that Forth has, but this is more of a bless

ing than a hindrance. Everything goes into

a compile buffer, which simplifies learn

ing the language and also the coding of the

thing. Thus, for immediate execution of a

statement, it does not have to be struc

tured as a definition. Along the same

lines, the disassembler, editor and tracer

are all kept in resident memory and do not

have to be loaded when required.

PISTOL was written, it seems, in C,

thus allowing the kernel to be increased to

include as many primitives as required for

increased speed or versatility. Naturally,

this would require quite a bit of knowl

edge, not only of machine language and

operating system uses, bui also of the PIS

TOL ideology and implementation.

PISTOL is available in CP/M 80 from

SIG/M Volume 114 (Version 2.0). When

compared to Forth, it is difficult to say

which would be the eventual favorite. I

use both, and really treat them as two sep

arate, although related, languages. They

tend to complement each other very well.

Check it out. and sec whether it is of any

interest to you.

That, unfortunately, is all the space I

have. I want to remind you to check out

the COMPUTER LANGUAGE Bulletin

Board and the new section on Compu

Serve, SYSOPed by your humble nar

rator. If you want to leave a message on

CompuServe, my user ID is 76703,762.

Both should be chocked full of goodies by

the time you read this! (Otherwise I'm out

of ajob.) Till we meet again . . .

Useful addresses: SIG/M is at P.O. Box

2085, Clifton, N.J. 07015-2085. CP/

MUG is at 1651 Third Ave., New York,

N.Y. 10028. PC-SIG is at 1556Halford

Ave., Suite 130, Santa Clara, Calif.

95051, (408) 730-9291. H

335-l Washington St., Norwelf, MA 02061

CIRCLE 27 ON READER SERVICE CARD

54 COMPUTER LANGUAGE ■ NOVEMBER I98d

EXOTIC LANGUAGE
OF THE MONTH CLUB

Occam: A parallel processing language
from the U.K.

T
he idea of parallel

computation is not

new to the

computer field. Large computers such as

the Cray-1 often incorporate a pipelined

architecture to improve performance for

vector-oriented operations. Other com

puters offer floating point accelerators,

which operate along similar lines.

Both of these concepts revolve around a

central processor with a parallel-

processing attachment. An alternate

approach would be to eliminate the single,

fast, expensive central processor and

design a computer with many small,

slower processors.

With advances in microprocessor and

VLSI (very large scale integration)

design, it is becoming feasible to create

such computers. However, three major

problems exist. The first is the need for

convenient processors to use in building

the parallel processor. The second prob

lem is the need for a convenient medium-

level language for managing the resources

offered by such a computer. Finally, only

programs that take advantage of the paral

lel design can hope for enhanced perfor

mance compared to a traditional algo

rithm run on a serial computer.

Inmos Ltd.. a UK.-based company, is

dedicated to creating parallel-computer

chips. The company's current version is

known as the IMS T424 transputer. These

chips contain a microprocessor, random-

access memory, external memory inter

face, and high-speed inter-processor com

munication channels on a single die.

While the transputers are not yet in pro

duction, they will soon be available.

When available, design of parallel com

puters will be greatly simplified. Further

more, Inmos has arrived at a means for

solving the software requirement men

tioned previously. It has done so by defi

ning and creating a language called

Occam.1"

Occam is a medium-level language that

incorporates inter-processor communica

tion and parallel processing as part of its

structure. Its inherent generality could

make it thede facto standard. This article

explores Occam in detail and includes

By Anthony Skjellum

parallel programming examples. Informa

tion about Inmos, Occam evaluation prod

ucts, and related matters is included at the

end of this article.

I
magine the follow

ing problem: mul

tiply A'pairs of

numbers all of which are known initially.

This is an inherently parallel task. We

consider a very traditional approach to the

problem at the following hypothetical

company.

If we had N clerks multiply one pair

each, the whole job would be completed

in the time required for the slowest clerk

to do the arithmetic. In Occam notation,

this operation would be requested as

follows:

PARi = [OFORN]

Assuming that clerks demand high

wages for this mindless multiplication

task, we find it more economical to use a

serial computer instead of clerks. How

ever, we notice immediately that the com

puter program we must write incorporates

serial evaluation of the multiplications.

Despite our initial reservations, we use

the computer because it handles the whole

serial task faster than our fastest clerk can

perform a single multiplication. Time is

saved as well as money. The serial oper

ations could be presented in Occam as

follows:

SEQi = [OFORN]

[b[]*[]

Eventually our hypothetical company

grows and the quantity Ngrows too. Soon

the original computer system proves too

slow for the task of multiplication. Man

agement concedes this point and buys a

second computer. Now the task is divided

equally between the two systems: they

have discovered rudimentary parallel pro

cessing. The Occam representation of the

new procedure is:

PAR —(assume N is even)

SEQ i = [OFORN/2]

SEQj = [N/2FORN]

a[i]:=b[i]*c[fl

Clearly, this procedure uses half the time

required by the single computer.

Alternatively, a single larger computer

could have been purchased. However,

when N gets very large, no computer will

be fast enough to do the job in the time

required by our rather fussy managers.

Realizing this limit, the company buys a

parallel computer that can actually handle

the operations:

PARi = [OFORN]

b[]*[]

in parallel. Now, the only way to gain

additional speed is for the single pro

cessors involved to work faster. No addi

tional benefit can be gained by dividing

the problem between two parallel comput

ers as depicted by the following Occam

blurb:

PAR - (assume N is even)

PARi- [OFORN/2]

a[i]:-b[i]*c[i]
PARj = [N/2FORN]

[[]

We have used the multiplication exam

ple to introduce the idea of parallel pro

cessing and also to exhibit some of the

elements of Occam. The SEQ and PAR

keywords are called constructs, while

sequences like

var = [low FOR high]

are called replicators.

It should be noted that Occam uses

indentation as part of the grammar, with

indentation quantized to two-space

increments. (Continuation lines arc also

permitted and must be indented more

deeply than the initial line.) Furthermore,

any operation such as an assignment or

procedure call is known as a process.

Finally, Occam keywords must always be

55

capitalized. Conversely, variables and

constant names may be of mixed case and

include numbers and periods, except for

the first character, which must always be

alphabetic.

O
ccam allows

procedures sim

ilar to

traditional languages. It does not support

functions or recursion as part of the fun

damental language. Defining an actual

procedure will illustrate many additional

Occam features. Such a procedure is

presented in Listing 1.

Let's review the many features used in

the listing. First, we defined the

procedure:

PROCpoly(VARx,VALUEretn) =

Arguments to a procedure arc either

passed by value (VALUE) or address

(VAR). The latter variety allows for trans

mission of information to the calling rou

tine. Arguments denoted as VALUEs can

not appear on the left-hand side of an

assignment.

Next, we have a single constant defini

tion, followed by two variable

declarations:

DEFLIM -5:

VARi:

VAR temp:

In the current incarnation of Occam

(known as proto Occam), the only vari

able types arc (32-bit twos complement)

integers, arrays of integers, byte arrays,

channels and arrays of channels. Channel

variables permit inter-processor commu

nication and are discussed fully later in

this article. (A new Occam version that

includes general daia types is

anticipated.)

Let's digress a moment to discuss scope

rules. As might be expected, the scope of

variables is restricted to the "block" of

code in which they arc defined. Thus the i

and temp variables arc defined throughout

the poly () procedure, while num and fact

are defined only within the WHlLE\oop.

After the variable declarations. a SEQ

construct is present. As before, this indi

cates a series of processes that arc to be

performed sequentially. The next two

lines arc assignment processes:

i :=0

temp :- 0

They perform the obvious operations of

assigning zero to i and temp. These lines

are noteworthy for two reasons. First,

": = "is used in Occam for assignment

and " = " is used in logical expressions.

Second, we cannot assume any automatic

initialization (e.g., zeroing) of variables

will be performed by Occam.

After the initialization steps, the pro

cedure invokes a WHILE construct. The

syntax of the construct is as follows

WHILE <expr>

<process>

— compute sura of (x"n)/n! and return in retn

PROC poly(VALUE x,VAR retn) =

DEF

VAR

VAR

SEQ

i

LIM

i:

temp

temp :

WHILE

VAR

VAR

SEQ

IF

= 5:

;

= 0

= 0

i < LIM

num:

fact:

(i = 0)
SEQ

fact :

num :

TRUE

SEQ

= 1

= 1

— terms in polynomial (a constant)

— looping variable

— holds partial sum.

— temporary for numerators

— factorials temporary

fact := fact * i

num := num * x

temp := temp + (num/fact) -

i := i + 1

retn := temp:

- add in next factor

- increment loop

- store return value

where <expr> is a valid Occam expres

sion, and < process > is cither a single

process line or a construct followed by a

series of processes.

Expressions deserve some independent

comments. First, there is no hierarchy in

Occam expressions. Grouping with

parentheses is necessary for an expression

like

a + b * c

to be legal. Thus, it must be written as

either

(b

to be accepted at compile time. In addi

tion to the standard arithmetic operators.

Occam provides the logical operators A

(or). \l (and), and > < (exlusiveor) as

well as modulus <S). Logical NOT, the

boolean OR and AND operators arc

included as are shifting operators (< <),

Before abandoning the example in List

ing 1, three more kems'need to be cov

ered. The first is the IF construct. Occam

makes efficient use of IF by making it a

combined conditional and case statement.

IF is followed by a set of logical expres

sions, only one of which is executed. If

none are true, the process is stopped.

Therefore. IFs normally include a TRUE

condition that acts like the default clause

of a case statement. Formally, the//7 state

ment has the following form:

IF

<exprl >

<processl >

<exprN>

<processN>

The final items arc comments and pro

cedure termination. As you've probably

already noticed. Occam comments arc ini

tiated with two dashes (—). Second, all

procedures must end. In Occam they arc

terminated by a colon. This colon appears

at the end of the last process in the pro

cedure. In our example, the colon appears

at the end of the assignment process

n : — temp: — store return value

Since procedures can be defined within

other procedures, the terminating colon

turns out to be necessary.

Listing 1.

56 COMPUTER LANGUAGE ■ NOVEMBER 1984

w
hen we dis

cussed the

hypothetical

company, we used Occam blurbs to

describe parallel operations. Then we

turned to Listing 1. which was completely

serial. Now that we've introduced some of

the traditional aspects of the Occam lan

guage, we can explore parallel operations

and communication.

Communication is the key to parallel

processing, and Occam supports inter-

processor dialogs through channels.

Channels are one-way streams that send

synchronized information from one pro

cessor to another. For example, the fol

lowing procedure squares the data read

from the channel "input" and transmits it

to the channel "output".

PROCsquare(CHANinput,output) =

VARx,y:

SEQ

input? x

y : = x*x

output!y:

- read x

-- compute y

- write output

About channels: they arc physical or

logical connections between processes,

and only two processes reference a spe

cific channel—one reads from it and the

other writes to it. The operators ? and !

perform channel reading and writing

respectively. Colloquially they are often

referred to as grab and bang, but these are

not there official names. Note that the unit

of channel transmission is the byte, how

ever, current Occam versions work

strictly with 32-bit data chunks.

Now let's talk about parallel oper

ations. We want to consider a parallel ver

sion of the algorithm presented in Listing

1. The parallel version is presented in

Listing 2.

You may find Listing 2 to be somewhat

of a shock. Initially I couldn't sort out

anything when I looked at an Occam rou

tine. Let's examine the whole procedure

carefully so that the important points

become clearer.

The procedure polyO is defined within

poly(). Thus, the first code we must con

sider occurs at the end ofpol\() (Listing

3).

Figure 1 shows an illustration of the

processes involved and the channels they

own.

Within/jo/yO, some concepts need

examination. First, the operation

PARi = [0FORL1M]

< process >

defines a set of independent processes,

each with its own local variables. The i

variable is unique for each of the pro

cessors {0, 1, 2, 3. or4 in our case).

Occam doesn't require us to define vari

ables used in replicators: in the polyO rou

tine, we never define/.

Second, how does communication

degrade performance? Each processor

must wait for its predecessor before it can

compute its term of the sum. Therefore.

the whole parallel operation takes as long

as a single processor working by itself.

However, five partial problems can be

in progress at any time, so the pipeline of

processors presented in Listing 2 handles

one calculation only as fast as a single

processor, but it also handles five calcula

tions as fast as a single processor. Thus,

we have found a way to gain speed but

only through careful use of the pipeline.

Earlier we looked at parallel multi

plication. There was no communication

between processors, so an /V-pair multi

plication completed in the time needed for

a single multiplication. This arrangement

offers /V-fold improvement for a single

calculation. This is conceptually distinct

from the type of improvement offered by

thepoly() pipeline arrangement.

— compute polynomial in parallel

PROC poly(VALUE x.VAR retn) =

DEF LIM-= 5:

CHAN common[LIM+l]:

— workhorse routine

PROC polyO =

SEQ

PAR i = [0 FOR LIM]

VAR xx:

VAR temp:

VAR num:

VAR fact:

SEQ

common[i] ? xx;temp;num;fact

IF

(i <> 0)
SEQ

fact := fact * i

num := nura * xx

TRUE

SEQ

fact := 1

nura := 1

temp := temp + (num/fact) — new temporary

common[i+l] ! xx;temp;num;fact: — write new values

PAR

polyO — perform the operations

common[0] ! x;0;0;0 — feed initial input

common[LIM] ? x;retn;ANY;ANY: — extract output

— means for transmitting data

copy of x

partial sum

numerator temporary

factorials temporary

— read last values

Listing 2.

[1]
[2]

[3]

[4]

PAR

polyO

common[0] ! x; 0; 0;0

common[LIM] ? x;retn;ANY;ANY:

— perform the operations

— feed initial input

-- extract output

Line [1] causes the three subsequent processes to be executed in parallel.

Line [2] activates polyO, while line [3] provides initial data to the zeroth

channel of common[]. This data will be picked up within polyO. Line [4]

extracts the result when it filters into common[LIM]. Since the inputs and

outputs are synchronized, the last line waits until the last process of polyO

is complete. Note that the ANY variable is defined by Occam as a sink for

information.

Listing 3.

57

(Assume LIM = 5)

Trivial Write:

Trivial Read:

common[0] ! .

comraon[5] ? ■

> (polyO #0| ... > jpolyO U\ >

Owns:

Read 5

|Read 0 |

Write 0 | > jWrite 1 |

|Read h \

> [Write 5 | >

Notes: Read/Write numbers indicate subscript of commonf] array

The indication polyO #3 indicates that i = 3 for this process,

etc.

Figure 1.

VAR copy.number:

SEQ

copy.number := 1 — initially 1 copy

WHILE TRUE

SEQ

copyno ! copy.number — tell copier

ALT

plus ? ANY — using ANY means we dump the value

SEQ

copy.number := copy.number + 1

ninus ? ANY

SEQ

copy.number ;= copy.number - 1

reset ? ANY

SEQ

copy.number := 1

Listing 4A.

VAR copy.number:

SEQ

copy.number := 1 — initially 1 copy

WHILE TRUE

SEQ

copyno ! copy.number — tell copier

ALT

(copy.number < 20) & plus ? ANY

SEQ

copy.number := copy.number + 1

(copy.number > 0) & minus ? ANY

SEQ

copy.number := copy.number - 1

reset ? ANY

SEQ

copy.number := 1

Listing 4B.

58 COMPUTER LANGUAGE ■ NOVEMBER 198d

s
ometimes a pro

cess must wait for

the first input

from one of several channels. The ALT

(alternative) construct offers a means for

this selection.

Imagine that we have a photocopier

with three buttons. The first is "plus,"

which means add one to the copier count.

Analogously, a "minus" button exists and

subtracts one from the copier count. The

third button is "reset," and resets the

count to one. The copier isn't interested in

making zero copies and cannot make

more than 19 at a time.

Our goal is to design an Occam process

that controls inputs from the three buttons

and modifies a variable called

copy.number accordingly. We must also

output any change in copy, number to the

output channel "copyno" so that the copy

machine itself will be properly set. To

begin, let's ignore operating limits. The

simple-minded program that works with

out limit checks is presented in Listing

4A.

Ignoring the operating limits is not

truly a satisfactory arrangement. To

incorporate these limits, we use Occam

Guards. Guards are conditions that must

be satisfied in order for an ALT condition

to be executed. A Guard has the form:

condition & channel ? variable-list

where condition is a logical expression.

Making use of this new feature, we design

a new blurb in Listing 4B.

Next we want to be more fancy. We

want to set up a priority to the alternative

selection process. If the reset button is

pushed at the same time as plus or minus,

we want the reset to occur first. Occam

supports this through prioritized alterna

tives. Listing 4C is a prioritized version of

Listing 4B.

In Listing4C, reset has the highest pri

ority and minus has the lowest. We would

actually prefer plus and minus to have

equal priority. This change is reflected in

Listing 4D. Evidently, the guarded

sequence (TRUE) & SKIP (or just SKIP)

always executes whenever selected.

I
n addition to PRI-

oritizedAZ.7con-

structs, Occam

supports prioritized PAR constructs. This

allows transputers and other processors to

give different priorities to time-shared

processes that run on the same processor

unit. For example, a background process

might exist on every processor. It would

have to have highest priority in order to

provide its services most effectively. Such

an arrangement could be handled as

follows:

PR I PAR

background

PAR

foregroundl

foregroundN

where background has the highest priority

and the others have equal (but lower) pri

orities than background. One use fora

background processor would be high-

level data packet transfer between arbi

trary processors in a system.

A
special channel

called TIME is

available to all

processes. When read, it provides a pro

cessor with a value derived from a freely

running clock. A process can wait for a

specified time interval using a sequence

like:

VAR now:

SEQ

TIME ? now

TIME?AFTERnow+10

which waits for 10 clock units. The time

out sequence may be used in a Guard to an

/ILrprocess. In this connection, con

venient time-out capability is afforded.

In a real system, physical control over

channels and processes must be possible.

Occam defines the PLACED PAR con

struct to permit specific location of pro

cesses on physical processors. The infor

mation needed to complete a physical

specification depends on the system used,

so I won't elaborate further on PLACED

PAR and its parameters.

O
ccam is a

medium-level

language that

provides powerful parallel programming

constructs. Its philosophy is dictated by

Occam's Razor: the simplest complete

solution to a problem is the correct one.

Occam does not incorporate myriad

features. It concentrates on the basics and

is successful. Its one great flaw is a lack of

data types such as real numbers, but I

expect that Inmos will upgrade the lan

guage to overcome this intentional omis

sion. Expect Inmos to concentrate on sil

icon; Occam is merely Inmos's means to

bridge the hardware-so ftware gap.

For those users who want to learn about

parallel processing, the OPS system

offers a professional means to begin pro

gramming in Occam. It is actually possi

ble to produce usable transputer software

with the OPS. When they become avail

able, transputer systems may very well

VAR copy.number:

SEQ

copy,number := 1

WHILE TRUE

SEQ

— initially 1 copy

copyno ! copy.number - tell copier

PRI ALT

reset ? ANY

SEQ

copy.number

(copy,number <

SEQ

copy.number

(copy.number >

SEQ

copy.number

- handle as priority

:= 1

20) & plus ? ANY

:= copy.number + 1

0) & minus ? ANY

:= copy,number - 1

Listing 4C.

Eco-C Compiler
Release 3.0

We think Rel. 3.0 of the Eco-C Compiler is the
fastest full C available for the Z80 environment.

Consider the evidence:

Benchmarks*
(Seconds)

Benchmark

Seive

Fib

Deref

Matmuft

Eco-C

29

75

19

42

Aztec

33

125

CNC

115

Q/C

40

99

31

N/A"

■ Times courtesy of Dr. David Clark

CNC - Could No/ Compile
N/A - Does no! support floating point

We've also expanded the library (120 func
tions), the user's manual and compile-lime

switches (including multiple non-fatal error

messages). The price is still S250.00 and

includes Microsoft's MACRO 80. As an option,

we will supply Eco-C with the SLR Systems

assembler - linker - librarian for $295.00 {up to

six times faster than MACRO 80).

For additional information,

call or write: M ^__

(317)255-6476 t^^fl

6413 N. College Ave. • Indianapolis, Indiana 46220

CIRCLE 22 ON READER SERVICE CARD

59

VAR copy.number:

SEQ

copy.number := 1 — initially

WHILE TRUE

SEQ

copyno ! copy.number —

PRI ALT

tell

reset ? ANY — handle as]

SEQ

copy.number : = 1

(TRUE) & SKIP

ALT

(copy.number < 20)

SEQ

copy.number :=

(copy.number > 0)

SEQ

copy.number :=

1 copy

copier

priority

& plus \NY

copy,.number + 1

& minus ? /

copy. number - 1

Listing 4D.

THE PUOC.IMMMI RS SHOP

helps compare evaluate and find products. Get answers.

-SERVICE: FINDING PRODUCTS

Don't know of a product or want a belter one? If

Ihe need is for developing micro software, we

usually can suggest or find alternatives.

'C" Language

MSDOS: C86-8087, reliable

Desmet by CWare with debugge'

Lattice 2 1 ■ improved ■ 30 addons

Microsoft C2.x

Williams - NEW, debugger

instant C Interpreter, last, lull

CPM8D: Ecosoft C-now solid, lull

LIST OUR

PRICE PRICE

S395 call

159

500

500

500

NA

250

145

call

349

call

500

225

Recent Discovery

SCIL-Manage versions, change to source code,

documentation. Minimize confusion, disk space

Interactive. CPM 80. MSDOS $349

Runson LIST OUR

PRICE PRICE

MS Fortran - Improved MSDOS 350 255

Intel Fortran - 86 IBMPC NA 1<tno

DR Fortran-86 • lull 77' 8086 500 349

PolyFORTRAN-XREF.Xtract PCDOS NA 165

Runson

COHERENT-forTJ11 users PCIike

COHERENT-NCI-tailored, fast MSDOS

VENIX-1'irueV7'1w/FTN PCIike

XENIX-"trtieS3'1-rich,C-MSD0S PC

BRIEF-Intuitive, flexible

PMATE- powerful

VEDIT-lull, liked

Prolog-86-Learn quickly,

experiment with this

Al language Examples.

MSDOS. $125.

PCDOS

S500 475

NA 695

800 775

1350 1285

NA 195

225 195

150 119

LANGUAGES: IQ LISP PCOOS 175 call

MicroProlog MSDOS NA 285

HS/FORTH - fast MSDOS 220 210

LIBRARIES. BTRIEVE ISAM PCDOS 245 215

Greenleal C - thorough MSDOS NA 165

HALO Graphics-fast, full PCDOS 200 175

TOOLS: Disk Mechanic-rebuild MSDOS 70 65

MULTILINK - multitask PCDOS 295 265

Polylibranan-thorougn MSDOS 99 89

PolyMAKE-compiles PCDOS 99 89

Proliler-86-easy to setup MSDOS NA 125

XShell-add IF-THEN-ELSE MSDOS 225 215

Call for a catalog and solid value

800-421-8006
THE PROGRAMMER'S SHOP™

Note: All prices subject to

change without notice.

Mention this ad. Some prices

are specials.

All formats available.

Ask about POs, COD

already have a large body of software

available for them because of OPS.

While OPS really screams for a support

library, the job of writing support routines

is in itself an instructive introduction to

the language. I have not yet acquired any

of the user group offerings, but I expect

that they will be very helpful to anyone

planning to use Occam.

I've discussed most of Occam's fea

tures, but some items have received only a

small degree of attention or none at all.

For example, Occam has a convenient

way to handle constant tables, and it han

dles strings of characters in a reasonable

way. I chose to concentrate on the more

important aspects of Occam: its ability to

provide a parallel programming

environment.

I'd also like to make a few comments

about Inmos and provide some related

information.

Inmos is a company owned by the Brit

ish government. I first heard about it

through a short article in the May 12 issue

of Fortune. The British Consulate in San

Francisco, Calif., provided the company's

U.S. and U.K. addresses. They are: Inmos

Inc.. P.O. Box 16000, Colorado Springs,

Colo. 80935, U.S.A., tel. (303)

630-4000. telex 910 920 4904 and Inmos

Ltd.. Whitefriars. Lewins Mead. Bristol

BS1 2NP, U.K., tel. (0272)290861. telex

444723.

I had the opportunity to discuss Occam

with Colin Whitby-Strevens from the

Bristol office of Inmos, who visited me at

the California Institute of Technology

(Caltech) early in September. He

answered many of my questions and was

very helpful. I'd like to thank him for his

assistance and input.

Whitby-Strevens informed me that an

Occam users group exists and is sup

ported by Inmos. The secretary for the

group is Michael Poole, who may be

reached at the Bristol address. He can be

contacted concerning the group's offer

ings. I understand that a floating point

package is one of the available items.

I look forward to hearing from other

Occam users. Mj
m

Anthony Skjellum graduatedfrom Caltech

withaB.S. in physics. He is now pursuing

graduate studies in chemical engineering,

exploring the use ofparallel computers

and distributedprocessingfor chemical

engineering applications.

CIRCLE 17 ON READER SERVICE CARD

60 COMPUTER LANGUAGE ■ NOVEMBER 198d

COMPUTERVISIONS

A chat with Gary Kildall, founder of CP/M

ary Kildall,

I inventor of

CP/ M and

founder and chairman of Digital Research

Inc., is a soft-spoken, unpretentious man.

His office is rather ordinary and looks

like it belongs to someone who works

hard. Computer hardware is strewn about

and numbers are scrawled on a black

board on one wall.

Large windows face a hill covered with

pine trees—unlike many of his peers, Kil

dall chose to build DRI's headquarters in

Monterey, one of California's most beau

tiful coastal towns and a few hours drive

from less aesthetically appealing Silicon

Valley.

Kildall is one of the few individuals to

whom the cliche "he revolutionized the

microcomputer industry" actually

applies. But looking at the 42-year-old

Kildall—trim, tanned, freckled, and

dressed in casual clothes—it's easier to

imagine him as an outdoorsman than a

.computer scientist.

But he is indeed quite a computer sci

entist. He also is a major force behind the

direction Digital Research is taking in the

current, tempestuous market. The course

he is steering reflects one man's insights

into what the future in software and oper

ating systems may hold.

Originally Kildall's primary interest

was in computer languages, and his goal

was to teach computer science. He

received a B.S. in numerical analysis and

an M.S. and Ph.D. in computer science

from the Univ. of Washington. His thesis

work was on compiler code

optimization—theoretical approaches to

doing optimal code generation. While at

school he did maintenance work on Bur

roughs' ALGOL compiler.

After receiving his Ph.D. in 1972. Kil

dall went on to teach general computer

science and compiler courses at the Naval

Postgraduate School in Monterey. During

the one day a week and one quarter a year

allotted for consulting work, Kildall

worked for Intel.

"During that time at Intel I became

interested in microcomputers." said Kil

dall . "Micros were just starting out and

they didn't have any software at all—just

By Regina Starr Ridley

really very basic software. I started to do

some universal software tools for Intel,

simulation of their machines on the bigger

computer and various things that were

needed to get things off the ground."

Kildall became interested in trying to

get a high-level language around micro

computer software development, not for

end users but for people who were trying

to write software.

That interest prompted the development

of PL/M (Programming Language for

Micros), a derivative of a XP/L, a com

piler writing language. His work on PL/M

led directly to the development CP/M

(Control Program for Micros).

"CP/M was actually a follow-on prod

uct in support of PL/M and not intended to

be a product in its own right," Kildall

chuckled. "We needed to have some kind

of an operating system to be the founda

tion for running a program that would

support PL/M. That's why the name is the

same basically."

"At that time I didn't think much about

CP/M other than it was nice people were

interested in it," said Kildall. "The peo

ple who I was working with sort of real

ized that there was something there but

that it was going to take some time before

it actually caught on."

Kildall worked for about a year trying

to get PL/M on a microcomputer, one of

the Intel development systems. "It was

going along pretty well," said Kildall,

"but Intel was going off in its own direc

tion." Intel had started its own PL/M

compiler development internally, separate

from Kildall's work. Intel had also started

its own operating system development

called Isis. which, said Kildall, was very

much like CP/M.

"Intel decided that its big philosophy

in selling software was that it would use

that software to sell its little blue boxes.

Intel said, "we don't want to unbundle our

software because that way somebody else

could come along with a look-alike blue

box and then undercut us in price,'" said

Kildall.

"Intel was selling those development

systems for S25,000 a piece and doing

really well with them. So if it had sold

Isis, which was essentially equivalent to

CP/M, with what originally was a S60 to

$70 price tag, it could have completely

wiped out the blue box sales."

RI was founded

(in 1976 because
of interest in

CP/ M. "Some people had used it and, you

know, people liked it." Kildall said

modestly. "There were a lot of different

operating systems with different tan

gential kinds of features, and they all had

a variety of faults. CP/M just happened to

be simple but useful." It took about nine

months to put together CP/M itself and

about a year to complete the programs

that had to go with it. Kildall officially left

the Postgraduate School in 1978.

About that time, the PL/I standard

ization committee was meeting in Carmel,

Calif., and had just finished the first PL/I

ANSI standardization specification. The

committee was trying to produce two sub

sets, subset G for general purpose and

another subset for real time.

"PL/M was a dialect of XP/L, and

XP/L had been a dialect of PL/I, and they

were all intermixed as far as the syntax

and their general appearance," Kildall

said. "But there was very little else that

was similar besides the common family

tree. I did realize at that point that the

people working on the PL/I subset G were

doing a really nice thing. They knew that

the full language was not going to be

supported on a small computer—it just

wouldn't fit, that was all."

Kildall began to fee! that PL/I subset G

61

NGS FORTH

A FAST FORTH

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER

AND MSDOS COMPATIBLES.

♦79 STANDARD

*FIG LOOKALIKE MODE

♦PC-DOS COMPATIBLE

*ON-LINE CONFIGURABLE

♦ENVIRONMENT SAVE

&. LOAD

♦MULTI-SEGMENTED

♦EXTENDED ADDRESSING

*AUTO LOAD SCREEN BOOT

♦LINE AND SCREEN EDITORS

♦DECOMPILER &

DEBUGGING AIDS

♦8088 ASSEMBLER

♦BASIC GRAPHICS & SOUND

♦NGS ENHANCEMENTS

♦DETAILED MANUAL

♦INEXPENSIVE UPGRADES

♦NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICE: $70
PLEASE INCLUDE S2 POSTAGE &

HANDLING WITH EACH ORDER.

CALIFORNIA RESIDENTS :

INCLUDE 6,5% SALES TAX.

NEXT GENERATION SYSTEMS

P.O.BOX 2987

SANTA CLARA, CA. 95055

(408)241-5909

was a reasonable language for doing work

with small computers. And CP/M needed

to have an applications language of some

sort. So he decided to do an implementa

tion of PL/I subset G. That's where the

Digital Research PL/I compiler started off.

Kildall thought the compiler wouldn't

be too difficult to do and would lake about

nine months. But. he said ruefully, it

wound up taking two years.

The project also didn't have the impact

he thought it would on the applications

users. "The difficulty we had was that the

machines we were working wilh still had

relatively small memory systems. And the

difference between high-level code vs.

assembly language code was still signifi

cant to people," Kildall said.

"I think it was a good project and defi

nitely worthwhile, but I sort of felt that

the 8086 chip was going to be more popu

lar sooner than it was," he added. "It was

out in about 1978 and showed real prom

ise, but it just didn't get picked up. And

we really couldn't sell the idea of high-

level language coding on small computers

until we had a bigger memory system. So

now that the 8086 and that whole family is

popular, there's not such an emphasis on

compactness of approach and people are

writing applications using high-level lan

guages now."

ince coming out

with CP/M in

1978, DRI has

introduced CP/M 86, CP/M fora 16-bit

computer; MP/M 86, multi-user CP/M

fora 16-bit computer; Concurrent CP/M,

which has multitasking, networking, real

time, and windowing capabilities; and

Concurrent PC-DOS, which has the same

capabilities as Concurrent CP/M but can

be used on IBM micro systems.

MS-DOS and PC-DOS hit CP/M 86

pretty hard in the marketplace. The prob

lem was, according to Kildall, CP/M 86

was not meant to be DRI's primary prod

uct—it was to be used as a stepping stone

to MP/M and Concurrent CP/M.

"I misjudged the timing somewhat—it

wasn't really until this year that people

started thinking multitasking was

important," said Kildall. "Now IBM has

announced Top View with multitasking,

emphasizing that multitasking is an

important concept. So most people say

'Oh, IBM says that multitasking is an

important concept, so it must be an

important concept,'" Kildall laughed.

Kildall didn't feel that the high price of

CP/M 86 compared with MS-DOS was an

important issue. "If we had been prepared

with a CP/M 86 strategy we would have

been able to do the pricing right, and we

would have been prepared for the IBM

phenomenon. We were prepared for a

multitasking phenomenon."

"We figured," he said, "we have a

megabyte of memory, what are we going

to do with that megabyte of memory?

Most applications were not going to use a

million bytes of memory. We figured that

people wanted an operating system with

more functionality than you had in 8-bit

computer operating systems."

"So now we've reached a situation

where IBM has endorsed multitasking and

multi-users. But they're saying, "we're

going to give you these things, but we

don't have the tools right now.* The best

thing for them would be to have a PC-

DOS that had multitasking and multi-user

capabilities. And if they had that they

wouldn't announce anything else. Top

View gives you multitasking, real time,

networking, and multi-using."

"The thing is that's exactly the product

that we were building," said Kildall.

"IBM's endorsement has caused a lot of

OEMs to come back to us and say, 'I can

now endorse your product because

I've realized the importance of Concur

rent CP/M."'

"This is the basis for the interest in

Concurrent CP/M and Concurrent DOS.

And we have other products beyond this

that haven't been announced. Then there

are follow-on products that are just kind

of progressive steps, adding facilities. I

want to be careful of what I say, because I

don't want to say anything about some

thing that hasn't been released yet."

According to Kildall, Concurrent

CP/M and Concurrent DOS are doing

very well at the OEM level, which he feels

is the most important indicator. He con

siders earnings from Concurrent to be a

very significant part of DRI's revenue.

"We really believe in Concurrent,

there's no question about that," said Kil

dall. "But it does come back entirely to

the fact that you can be successful only if

you have the backing of the large manu

facturers nowadays. And that's exactly

what we're working on doing."

Concurrent is actually the sixth genera

tion of the CP/M operating system, Kil

dall pointed out. "When you take a look at

some things like Top View and UNIX and

so forth, you see they're sort of half-

baked in a micro sense because they can't

really perform those low-level functions

as effectively as Concurrent."

ildall breaks

down UNIX into

..three important

elements: the operating system, the C lan

guage, and the standard run-time library.

He feels the major contribution UNIX has

made has been in the standardization of

the run-time library and the C language.

"If you're careful and write C source

code in a machine-independent way, and

you set up your library so that it matches

the UNIX standard run-time subroutines,

then you can get transportation from one

processor or one operating system to

62

CIRCLE 45 ON READER SERVICE CARD

COMPUTER LANGUAGE ■ NOVEMBER 1984

many different processors or many differ

ent operating systems without any major

recoding," he said.

Kildall is not nearly so supportive of the

UNIX operating system, which he said is

pretty well known in the industry as being

"loosey-goosey"—not a very tight sys

tem. He has also experienced many prob

lems with it in terms of reliability and

clarity of the user interface.

"You talk to anybody who's a UNIX

user, and they will say 'UNIX is great but

it has a lot of problems in terms of com

mercialization of the operating system.1

You can go to the C language and say, yes,

there's lots of things I would have done

differently. But the fact of the matter is

that in spite of its shortcomings, the C lan

guage and the run-time library give you

transportation, and that's something

which is very, very valuable."

"There are lots and lots of operating

systems around. The UNIX operating sys

tem itself doesn't have any inherent new

technology. And that's why I'm not as hot

on the operating system as I am on the lan

guage and the standardization of the run

time system."

"We certainly are working with the

UNIX phenomenon in the sense that we

are offering portable software. And this

goes back to my original comment about

C and the standard run-time library. Our

software now will run on virtually any

operating system we choose, and one of

the targets is UNIX. Now, as UNIX

becomes popular with various people, we

can offer our software products on UNIX.

Now that's where the money is."

"The intention is to make all of our

products portable through C and its run

time library, which of course makes them

immediately portable to UNIX because

that's C's original home. Our initial sup

port of UNIX is through what we call the

UNIX application library that we've con

structed for AT&T."

Transportation of a high-level language

like PL/I or the C compiler itself is a

much more difficult task than porting over

applications like DR Logo, for example,

said Kildall. DR Logo transports very,

very rapidly because there are few

machine dependencies.

RLogoisDRI's

(main product on
the education

market. Kildall saw Logo come around

and was very interested in it because of

the way the language used LISP con

cepts—recursion, list processing and

homogeneity.

"I personally never really liked BASIC

at all," said Kildall. "It was a language

that came from FORTRAN, the early days

of FORTRAN. It was not intended to be a

general language used by the masses."

Kildall has always felt that BASIC was

not a good learning model because the use

of numbers is a very limited concept that

in turn enforces a limited style of pro

gramming. "It's very difficult to make

leaps from that into something with more

general concepts."

Kildall prefers using LISP to teach pro

gramming because it has the most general

concept of what programming should be

because it's all symbolic. "You can liter

ally do almost any kind of operation that

you want very quickly and easily," he

said.

The problem with LISP, said Kildall, is

its very user unfriendly syntax. He didn't

want to bring LISP to microcomputers

because its unfriendly nature would turn

people off to using it.

Logo was originally intended to get rid

of some of the unfriendly nature of the

front end and still get all the power of

LISP. Graphics were added. Kildall said,

because you could use them for a kind of a

bait and switch. First people would be

tempted with the graphics, and then they

could discover all the other things that

could be done with LISP.

The push behind DR Logo was "let's

get in there and try to do a personal com

puter Logo and get people away from the

concepts of BASIC as much as we can.

Let's get rid of BASIC and go with a lan

guage that actually gives people a tool to

think with. rather than make a person first

learn concepts that have little to do with

the problem they're solving," Kildall

said.

Support of Logo has been slowly build

ing, said Kildall. "It takes a year or two

before you can really tell if something is

taking off or not. DR Logo has moved

very nicely and sales through OEMs are

picking up."

DRI has pulled back somewhat from

the education market. "We have closed

up a lot of things at the retail level. For

example, with DR Logo we're not offer

ing anything more than our original ver

sion on the retail level basically because

price cutting at the consumer level has

been so dramatic that we can't make any

money on it. We decided to put all our

efforts into OEMs."

"We tried to get the consumer business

going. What we're getting is that every

time we came up with a product like DR

Logo in the consumer division, our OEM

interest in it was so much greater that

retail was of little interest. We take three-

quarters of our people working on retail

and one-quarter on the OEM level, and

the one-quarter makes 10 times as much

as the three-quarters. So we just decided

to slack off a bit."

Kildall sees the principle market for

DRI as being the high-end commercial

market. "It's unfortunate but it goes back

Pascal and C
Programmers

Your programs can

now compile the

FirsTime-

FirsTime is an intelligent editor that

knows the rules of the ianguage being

programmed. It checks your statements

as you enter them, and if it spots a

mistake, it identifies it. FirsTime then

positions the cursor over the error so

you can correct it easily. FirsTime u-ill

identify all syntax errors, undefined

variables, and even statements unth

mismatched variable types. In fact, any

program developed with the FirsTime

editor will compile on the first try.

Unprecedented

FirsTime has many unique features

found in no other editor. These powerful

capabilities include a zoom command

that allows you to examine the

structure of your program, automatic

program format! ing. and block

transforms.

If you wish, you can work even faster

by automatically generating program

structures with a single key-stroke. This

feature is especially useful to those

learning a new language, or to those

who often switch between different

languages.

Other Features: Full screen editing,

horizontal scrolling, function key menus,

help screens, inserts, deletes, appends,

searches, and global replacing.

Programmers enjoy using FirsTime. It

allows them to concentrate on program

logic without having to worry about

coding details. Debugging is reduced

dramatically, and deadlines are more

easily met,

FirsTime for PASCAL S245

FirsTime for C $295

Microsoft PASCAL Compiler $246

Microsoft C Compiler

Demonstration disk $25

Get an extra $100 off the compiler when

it is purchased with FirsTime.

(N..I. residents please add 6% sales tax.)

Spruce
Technology Corporation

110 Whispering Pines Drive

Lincroft, N.J. 07738

(201) 741-8188 or (201) 663-0063

Dealer enquiries welcome. Custom versions

for computer manufacturers and language

developers are available.

FirstTime :s a trademarK olspruce Technology

Corporal Inn.

CIRCLE 33 ON READER SERVICE CARD

63

Thunder Software

• TheTHUNDERCCompiler■ Operate";unJeriheAPPLEP.isr.ill lofwianngwMeiryCreaepg

as srnnd alone programs or ,is subroutine u> PaieatpjOgrami. AnrtwB'W of itw C dJWd hy K & R Includes a 24 page users
guide, newsletters Macro preprosm* turn on APPLE ff]'* /'«- //c Source code for libraries is included Only $49.95
• ASSYST:TheA««mW«Sjp«WB-Acomptee&502eJi;nr'-iisemblerfl!idl:sit'rlorAPPLEDOS3 3 Mmidrlven.ssieeBen!

error trapping 24 p users gude. demo programs source ctxte (or a!! programs! Grwi for beginners Only SZ3.5O
• THUNDERXREF- A crow reference utility for APPLE Pascal 1 1 XREFgeni'rat»*CToe¥sd«we«^jr each procedure Source

code and documentation provided Only 519.95

Thunder Software POB 31501 Houston Tx 77231 713-728-5501

Include S3.00 shipping. COD. VISA and MASTERCARD accepted

CIRCLE 65 ON READER SERVICE CARD

A general purpose programming

language for string and list

processing and all forms of

non-numerical computation.

SIMOBOL4+ -lh.«.fln

5NOBOU language with its superb pattern-matching

facilities • Strings over 32,000 bytes in length • Integer

and floating poini using 8087 or supplied emulator

• ASCII, binory, sequential and randar

access I O • Assembly Language inter

face • Compile new code during

With

ELIZA 8 over

100 sample pro-

is ond functions

*< \ (\^ ■ fi *1°0 FOF °" a086 88 PC MS-D0S °'
Y* U*T-«(^ CP M-86iyitemi. 12BK minimum

y^ 5'. DSDD specilyDOS CPM f

(■'* Send ch
.<.<

heck. VISA. M Cto $95

Catspaw, Inc. ■*-«•*
P.O. Box 1123* Solida. CO81201 '303 539-3884

CIRCLE 9 ON READER SERVICE CARD

and tour Intel Series I or II MDS1 The ICX package provides

complele bjdjtpctional III* conveflfon capability, and even

• llo»i tittutlon of 131S. El plogrimj under O' ■■■ unnQ (>■-

1SE emulBlor Tht ICX Paikagr U compoMd o[Iht lollo»mg

two progrflmi-

1CX *. Dciute tiiciirfOlonal Me tonverilon utility i-hicti

wstki with your CP'M i>it(m and an 8 (loppy anvr is prondi

structure CompleieC Murce included »99

I8E An 1SIS1I Emulator which Mewl I5IS programi l , run

mnniloi coll! makes jour CPlM micro look like an MDS1
Supporu bonked mtmor> Compile r.«.C source Lncli>de0 »S9

SuppKH sn ungu IWMln 1" nil

LUestern LUares
BoxC

Norwood CO 81423

(303)327-4898

CIRCLE 67 ON READER SERVICE CARD

YOUR CODE MAY BE WASTING ITS TIME!

THE PROFILER™ CAN HELP . . .
• Statistical Execution Profiler • Time critical code optimization

• Works with any language • Abnormal code behavior tracking

• Completely configurable • Graphic presentation of results

• Up to 16 partitions in HAM/ROM • Easy to use menu interface

THE PROFILER is a software package which gives you, the programmer, a powerful tool for locating

time consuming (unctions in your code and allows you to performance tune your program. With

the THE PROFILER you can determine where to optimize your code for maximum benefit, then measure

the results ot your efforts.

Using THE PROFILER, you can answer questions like:

Where is my program spending its time?

Why is my program so slow? What is it doing?

Is my progam I/O bound? CPU bound? Are data buffers large enough?

How much improvement did my changes make?

THE PROFILER is completely software based and consists of a system resident driver and a monitor

program. The memory partitions can range from 1 byte to 1 megabyte in size and can be anywhere

in ttie address space.

NO ADDITIONAL HARDWARE IS REQUIRED!

Requires an IBM PC or compatible system with a minimum 64k

and one drive.

THE PROFILER is available for S175.00 from DWB Associates or

ask your software dealer. To order or for more information, call

or write DWB Associates. VISA/MC accepted. Dealers welcome.

IBM is a trademark of IBM Corp. MSOOS is a iraflemark ol Microsoft Core.

THE PROFILER is a trademark of DWB Associates

B
dwb
AKDCllCl •

PO Bo«5777

Baaverton. Oregon 97006

(503) 629-9645

to when you try to keep a business going

and the profit level at a reasonable rate,

the products that arc bringing in the most

revenue are the ones people will gravitate

toward. The difficulty in concentrating in

educational products—which I'd like to—

is that there is a much larger margin in

commercial software."

Kildall seems to have found an equi

librium between the computer scientist,

the businessman, and the human being.

Having leadership with this kind of bal

anced outlook makes DRI's future look

promising. |j'

Regina Starr Ridlex is the managing editor

of COMPUTER LANGUAGE.

Interested in writing,

reviewing software,
or refereeing

manuscripts for

COMPUTER

LANGUAGE
For information contact:

Craig LaGrow/Editor
131 Townsend St.
San Francisco, CA 94107

(415) 957-9353
BBS#: (415) 957-9370
CompuServe Acct: GO CLM

EASY
To Use!

Developed

in England

by Southern

Software

280 / 8088 (8086 / 80186 / 8087)

machine-code development sys

tem. With latest Reduced Instruc

tion-Set philosophy.

□ SBE/TRS 80 (All DOS) sI0O - S3 s/h

D SBE/PC (PC-DOS/MS-DOS *160 + 3!h

Allen Gelder Software

(415) 681-9371

Box 11721 San Francisco, CA 94101

CIRCLE 20 ON READER SERVICE CARD CIRCLE 28 ON READER SERVICE CARD

64 COMPUTER LANGUAGE ■ NOVEMBER 1964

THE CODE SWAP SHOP

Ediwr 's Note: All programs referred to in

this reader-inspired, public domain col

umn will be availablefor downloading

when you call [he COMPUTER

LANGUAGE Bulletin BoardSenice at

(415) 957-9370-300/1200 baud—or

when you dial into CompuServe and invoke

our account by typing "GO CLM".

A disassembler
from New Delhi

All the way from New Delhi. India,

comes a disassembler that is more power

ful than SID-like disassemblers such as

REZ, which have the basic problem of not

separating the data area from the instruc

tion area.

Ravindra Kumar Agrawal sends us his

own improved version of a disassembler

he wrote to solve this problem. "The

renaming of labels and the insertion of

comments," he said, "can easily be done,

and the program's natural aesthetics can

be preserved by using a word processor in

addition to the disassembler."

On the COMPUTER LANGUAGE BBS

and on CompuServe are his original

source code and the .OBJ file. He also

included some DEMO programs and a file

DETAILS. DSM, which explains more

completely the features of the

disassembler.

Accounting system is

written with UNIX tools

Richard A. Bilancia. an accountant from

Littleton, Colo., wrote in with a program

that touches upon the potential application

of the relational data base tools included

with the UNIX operating system.

The simple accounting system is writ

ten in the UNIX shell programming lan

guage (the same interactive command

interpreter that you use to execute simple

UNIX commands) and uses the following

UNIX relational data base tools: awk. cat,

echo, join, Ipr, pr. rm, sed, sed, and sort.

A .DOC file is also presented on the

BBS und on CompuServe which will

explain the design criteria behind the pro

gram itself.

Perform math functions

v/hile 'word processing

The capability to perform mathematical

calculations while writing a document

enhances the usability of a word pro

cessor. For those people with an Eagle

computer running Spellbinder,

EagleWriter, or Word/125. this may be a

very useful tool.

Paul Loughridge Jr. of Kamuela,

Hawaii, has written a math function pro

gram called MATHII.WPM in M-

SPEAK. a programming language avail

able with Spellbinder. For S25 plus

postage, you can acquire [his program on

5'4-in. Eagle II-formatted diskette by

writing to P. O. Box 1206, Kamuela,

Hawaii 96743. However, the author has

also given his permission for us to place it

on the BBS and on CompuServe.

Use capsules to

create programs

Programming styles can range from

highly unstructured to rigid and top down.

End users, however, may occasionally

wish to actually design a program of their

own to do one specific task—e.g., com

pile a mailing list.

Namir Shammas. Richmond, Va.. has

designed a way for programmers to pro

vide these end users with a simple tool for

letting them expand upon the features of a

given software package. The idea is to

provide capsule or skeletal abbreviations

of more intricate, lengthy programs. In

th is way, the end users can mimic the

design of the semi-pseudocode and go

ahead and write their own programs.

To demonstrate how this idea really

works. Shammas has provided two sam

ple capsules—one written in Ada. the

other in Microsoft BASIC—for

COMPUTER LANGUAGE readers to

consider.

Try the

ACTIGRAM approach

The early stages of software development

employs careful planning of the data

objects to be manipulated and the activ

ities involved. One can map ihese activ

ities in a way similar to a menu and sub

menu tree.

Once again, Namir Clement Shammas

provides us with the source code to a pro

gram called ACTIGRAM, in which he

demonstrates one method of designing

code from the top down. By identifying

the macro activities first and the micro

activities later, the ACTIGRAM is an

example of one person's approach to

coding.

Written in Turbo Pascal, this program

will allow the user to manage a system of

inter-linked activities.

Do you have code

for the Swap Shop?

If you've written a program that you'd

like to see distributed free of charge to

COMPUTER LANGUAGE readers, send

us a two- to four-paragraph summary of

what the program does, how you can

make the program electronically available

to our magazine (e.g., bulletin board

transfer, disk format, CompuServe, etc.),

and whelher you'd like your name,

address, and/or telephone number

included in the magazine.

Address all correspondence to: Craig

LaGrow. Editor, 131 Townsend St., San

Francisco. Calif. 94107. Or call us up on

CompuServe or the BBS! I

lustration: Anne Docm 5

65

SOFTWARE REVIEWS

DR FORTRAN-77

Hardware required: IBM PC
and PC/XT with 192K

memory, or any 8086- or

8088-based microcomputer

running PC-DOS 2.0+ and
CP/M-86.

Price: $350
Available from: Digital

Research Inc., 60 Garden
Ctv P. O. Box DRI, Monterey,
Calif. 93942, (408) 649-3896

Support: 8087 math-
coprocessor chip support

included, update notices free,
minimal charge for bug fixes

In 1965, back when most engineers

were still using slide rules, I was intro

duced to FORTRAN II on an old IBM

1620. Punched cards were the order of the

day. The entire instruction set could be

written on the inside of amatchbook

cover, and anything larger than a trivial

program had to be segmented in order to

run.

To give you an idea of how primitive

FORTRAN II really was, there was no

logical //construct. The only (/"construct

available was an arithmetic //:

IF (EXPRESSION) LABEL!, LABEL2,

LABEL3

This //expression evaluates three val

ues: a positive, non-zero value, a negative

value, and 0. If the value is negative, the

program execution goes to LABEL I. IfO,

it goes to LABEL2. If a positive, non-zero

value, it goes to LABEL3.

Fortunately, FORTRAN has changed a

lot since those days.

On April 3, 1978. FORTRAN-77 was

certified by the American National Stan

dards Institute. This version of FOR

TRAN is extremely powerful, not only

because of its unbelievably potent

number-crunching abilities but also

because it incorporates string manipu

lation and the options of structuring the

code, using white space and indentation

for clarity, and using unformatted I/O.

Digital Research Inc. has now released

DR FORTRAN-77. which has been certi

fied as genuine ANSI FORTRAN-77. In

order to appreciate how significant and

timely this language release is, it would be

useful to briefly touch on the potential of

FORTRAN under UNIX and explore

some of the exciting, new philosophies

used in designing computer languages

today.

Evidence of FORTRAN'S importance

as a programming language is that it is

one of the three original programming

languages native to UNIX. (The other two

are C and RATFOR.) Called f77 under

UNIX, FORTRAN takes on quite a differ

ent flavor under this innovative operating

system. Because f77 can call programs

written in C, C also calls programs writ

ten in f77, and a mix of programs from

both languages can be linked.

UNIX gives FORTRAN a new dimen

sion and much more power. Even RAT

FOR demonstrates FORTRAN'S influ

ence. RATFOR (rational FORTRAN) is a

language cast in C's image that produces

FORTRAN as its output. However. UNIX

is becoming such a dominant influence in

the computer industry, it is my opinion

that FORTRAN'S future is assured partly

because f77 is part of UNIX.

The influence of UNIX can be seen in

the way DR FORTRAN-77 was written

by DRI. DRI's method of creating com

pilers involves a technique that goes back

to UNIX, which uses a lexical analyzer

(lex) in combination with a compiler com

piler (yacc) to define the lexicographic

conventions of the language first and cre

ate the necessary parse tables according to

the syntactic rules of the language second.

The syntax is created in a yacc file, and

it follows the conventions of BNF

(Backus-Naur Form) grammar. Upon

compiling the yacc source code, aC pro

gram is output. It too is compiled by cc.

and the result is a compiler.

In UNIX, compilers produced in this

manner, such as cc and f77. produce a c-

intermediate code that is translated into

native assembly and linked into exe

cutable machine code. The result is lan

guage source code that is portable from

one UNIX machine to another, regardless

of machine size or architecture. Under

UNIX, C can call programs written in

f77, f77 can call programs written in C,

and a mix of programs from both lan

guages can be linked. A C or f77 program

written on a IBM PC XT under PCIX

(single-user UNIX) can run on an IBM

370 or an Amdahl 580 under UTS UNIX

or vice versa.

UNIX gives hardware independence,

but ihc new DRI scheme goes a step

beyond and gives operating system inde

pendence. The DR FORTRAN-77 lan

guage compiler was created as two mod

ules, with a front end and a back end. The

front end carries the lexical analyzer (as

with UNIX's lex) and the parser. The

front end also produces the symbol table.

As a total entity, the front end produces

a common intermediate language similar

to cc and f77's c-intermediate code. Pres

ently only DR FORTRAN-77 utilizes this

method, but other DRI languages are

being rewritten in accordance with this

scheme. Snon 1 predict that all DRI lan

guages will produce the same inter

mediate code.

However, the code generation system

goes much deeper than a common inter

mediate language. Code optimizing

schemes arc part ofthe picture as well.

DRI has opted to use postfix notation

(reverse polish) when it converts mathe

matical expressions.

If you have ever had to deal with a

Hewlett-Packard calculator, you have

been exposed to reverse polish. Reverse

polish requires you to enter everything in .

reverse, more or less. The reason is to put

both the values and the operators in

"stack order." For example, 2 4- 3 is

entered as 2 3 +. because numbers must

be seen before operators as they are taken

off the stack.

A great deal of effort has gone into

standardizing the front ends. All the DRI

languages use the same IEEE data types.

All use the same passing conventions as

well. This effort produces a series of lan

guages that can interact with each other.

DR FORTRAN-77 will be able to call

routines written in C, PL/I-86, CBASIC

or Pascal MT+.

Presently, however, the cross calling is

limited to FORTRAN and C. Since each

66 COMPUTER LANGUAGE ■ NOVEMBER 1984

language has its own unique virtues and

there is no such thing as one perfect, do-

all language, the ability to cross call rou

tines allows the programmer to write rou

tines in languages best suited for the

operation at hand. A good example is

using FORTRAN for the numeric pro

cessing and calling C to do the "bit-

diddling" (bit manipulation).

If DR FORTRAN-77 and the other DRI

languages are to work with each other,

they must deal with the same data types.

The names do not have to be the same but

the data types must. DRI has isolated 19

data types used in its language imple

mentations. None of DRI's languages use

them all, but PL/I comes close. All data

types are IEEE defined (IEEE short, long,

etc.). As a result, they can be passed from

module to module without language con

vention restriction.

The magic does not stop with the lan

guage front ends. Common, universal

back ends are used as well. Whereas the

front ends bring separate languages into a

common intermediate language for uni

formity, the back ends generate code and

search run-time libraries for different

processors (and systems). As a result, the

same intermediate code can produce

object code for the 8086, 8088, 80286 and

the 68000 processors. Figure 1 illustrates

the concept of front and back ends in com

piler design.

In time, the common intermediate

language/universal back end system will

extend across the range of common pro

cessors and non-hardware-specific oper

ating systems. The implications are

incredible: several different programming

languages, all capable of talking to each

other and generating code for CP/M, MP/

M, Concurrent PC-DOS, MS-DOS, PC-

DOS, and UNIX for the 8086, 8088,

80286, and 68000 family of processors.

If DR FORTRAN-77 had to be summed

up in one sentence, that sentence would

be:

DR FORTRAN-77 is full ANSI

X3.9-1978 FORTRAN.

This implementation is the full set. The

name DR FORTRAN-77 also implies that

the language should be in accordance with

the UNIX definition of the language as

outlined by S.I. Feldman and P.J. Wci-

nbeger in UNIX Tutorial, vol. 4. DR

FORTRAN-77 is all of these and more. A

little has been added, but nothing has been

left out.

Like UNIX's f77, DRI's DR

FORTRAN-77 keeps Holcrith notation

(an anachronism of anachronisms) to

retain upward compatibility all the way

back to FORTRAN II. Even the rusty old

arithmetic (/and GOTO have been left

intact. All data types are included, includ

ing complex—the result of the square root

of a negative number combined with a real

number.

FORTRAN used to be the world's

worst string handler. However, like

DRI portable compiler design

FORTRAN-77

Common

intermediate

language

Figure 1.

FORTRAN-77, DR FORTRAN-77 can

deal with character data very well. It also

has a number of string functions. All data

types are available, including extended to

take advantage of the 8087's monumental

ability to handle huge numbers with blind

ing speed.

DR FORTRAN-77's enhancements

include 40-charactcr variable names,

including the underscore character and

the dollar sign. This results in ultra-

descriptive variable names like:

maximum_stress

and

undepreciated_usvalue_afier_taxes

These descriptive names allow assign

ments of expressions like:

stress - (8* o__d - wire_dia)* K * load

/(pi*wire_dia**3)

For those of us who remember old ver

sions of BASIC that allowed two-letter

variable names, maximum, this is a gigan

tic step forward. Code used to be hard to

read without a variable dictionary. DR

FORTRAN-77 is one of several modern

programming languages that is helping us

get away from all that.

The other side of the DR FORTRAN-

77 system is the linker. Don't expect any

thing likejlink oxforlink. The linker is

DRI's standard LINK-86. DRI's pro

gramming utilities, such as MAC.

RMAC, XREF, LIB-86, etc., are the same

for all their languages. That is how DR

FORTRAN-77 calls C and C calls DR

FORTRAN-77.

8086 8088

code

generator

—■

Run-time

library

286

code

generator

Run-lime

library

68000

code

generator

Run-time

library

Another benefit of DR FORTRAN-77

is the ability to overlay to mind-boggling

nesting depths. Because memory is get

ting cheaper and because paged memory

(virtual memory) is becoming more com

monplace, the need for using overlays

will gradually diminish. Until then, if

your program exceeds the memory space

of the machine and you do not have

demand-paged virtual memory, you have

to overlay. DRI linkers have always had

the ability to perform complex overlays

with relative ease.

Therefore, if overlaying is thrust upon

you out of necessity, DRI languages using

LINK-86 (C, PL/I-86, DR FORTRAN-

77) ease this task considerably. One effec

tive method is using a menu-driven pro

gram as the overlay root to call separate

program modules as overlays. In this way.

exquisite menu-driven trees can be con

structed. The structure of the program

then becomes self-imposing and the chore

of using overlays is made that much easier

to deal with.

Using overlays helps you put your soft

ware on a piece of hardware that other

wise couldn't be used. (If you think over

laying is a chore, in the old days we used

to have to segment FORTRAN programs

using card decks to pass data from one

execution to another in batch mode.)

Many people buy a 16-bit language

compiler and automatically assume that it

is capable of creating code that can effec

tively address all of the memory on a

16-bit machine. Nothing could be further

from the truth.

Unless a language compiler is capable

of creating programs with memory mod

els, it is not using memory efficiently. C,

DR FORTRAN-77, and PL/I-86 create

67

programs with memory models, and that

feature alone .sets them in a special class.

DR FORTRAN-77 creates programs with

both large and small memory models.

The initial version of DR FORTRAN-

77 is for the 8086 family of processors,

and it takes advantage of much more of

the available, addressable memory space.

Now with new processors that have ability

to deal with paged memory, such as the

80286, a meg of virtual memory from

256K of physical memory will be no prob

lem. Cheaper, cooler and faster memory

will make the ownership of integer mega

byte computers not only possible but prac

tical as well.

DR FORTRAN-77 supports Intel's

8087 math processor. The 8087 gives the

8086 much greater processing power by

increasing speed, accuracy and pre

cision.It brings the microcomputer much

closer to the math-processing capability

of mainframes. Compilers like DR

FORTRAN-77 are written to support the

8087. If the user doesn't have an 8087.

routines arc also written to emulate the

8087 math processor, giving the user the

same increased ability, without the speed

and extreme accuracy.

In order to qualify as ANSI

FORTRAN-77, DR' FORTRAN-77 must
be able to do perform complex mathe

matical operations. If you have ever had

to get into third-order determinants, let

alone determinants of an arbitrary order,

you already know that nothing short of

FORTRAN'S ability to do array manipu

lation will do. Serious programs get into

arrays of great size, and DR FORTRAN-

77's limit is 64K element arrays.

Imagine a matrix of 256 rows and 256

columns, for a grand total of 65.536 ele

ments. For those of you coming from

micro environments, a 64K element array

is unheard of. It's within your reach under

DR FORTRAN-77.

One of the best ways to judge a com

piler is to look at a program written in it.

The spring calculation program in Listing

1 was first written under UTS UNIX on

an Amdahl 470 using f77. This program

makes a call to an external routine written

in C to clear the screen. This may sound

like extra work, but linking a C program

to an f77 program is no more work than

linking an f77 program to an F77 program.

The following is the C program:

/*

*l
clear

/**/

clear.i

system ("asciiff");

The spring calculation program

(spring. 0 is written in f77, but it is also

top-down, structured, and modular. The

compact main block calls the three blocks

that comprise the action portion of the

program. The main block is trapped in a

"do-nearly-forever" because calculating

springs is a highly iterative process. By

program spring

c Spring program to calculate helical compression springs

c

c Bruce H. Hunter July 24, 1984

c

c

c

Note : link with clear.c

PARAMETER (maxint = 65535)

INTEGER itr

external clear

10

CALL clear

do 10 itr = 1, maxint

PRINT *, ' !

PRINT *, 'Helical compression spring program'

PRINT *, ! '

CALL input

CALL calc

CALL output

CONTINUE

END

SUBROUTINE input

COMMON /incalc/

g, wiredia, ncoils, load, height, od

DOUBLE PRECISION

g, wiredia, ncoils, load, height, od

PRINT *, 'input wire dia, od1

READ *, wiredia, od

PRINT *, 'number of active coils'

READ *, ncoils

PRINT * 'torsional modulus'

Listing 1 (Continued on following page).

68 COMPUTER LANGUAGE ■ NOVEMBER 1984

READ *, g

PRINT *, 'specified load at specified height1

READ *, load, height

END

SUBROUTINE calc

PARAMETER (pi = 3.1415927)

COMMON /incalc/

$ g, wiredia, ncoils, load, height, od

COMMON /calcout/

rate, freelen, mstress, coils, stress

DOUBLE PRECISION

$ g, wiredia, ncoils, load, height, od, stress,

$ c, k, rate, freelen, sumtrav, maxload, mstress, coils

INTEGER inputno

c Wahl Factor c

c = (od - wiredia) / wiredia

k = (4.0 * c - 1) /(4.0 * c - 4) + 0.613 / c

stress = (8.0 * od - wiredia) * k * load / (pi * wiredia**3)

IF ((stress) .GT. (200000.0)) THEN

WRITE (6, 140) stress

PRINT *, 'enter 1 to continue 0 to restart1

READ *, inputno

IF ((inputno) .EQ. (0)) GO TO 999

END IF

rate = g * wiredia**4 / (8.0 * (od - wiredia)**3 * ncoils)

freelen = load / rate + height

coils = ncoils + 2.0

sumtrav = freelen - coils * wiredia

maxload = sumtrav * rate

mstress = 8.0 * (od - wiredia) * k * maxload / (pi * wiredia**3)

140 FORMAT ('stress = \ f9.0)

999 END

SUBROUTINE output

COMMON /calcout/

$ rate, freelen, mstress, coils, stress

DOUBLE PRECISION

$ rate, freelen, mstress, coils, stress

INTEGER inputno

WRITE (6, 100) stress

WRITE (6, 110) coils

WRITE (6, 120) rate, freelen

WRITE (6, 130) mstress

PRINT *, 'enter 0 to exit'

READ *, inputno

IF ((inputno) .EQ. (0)) STOP

100 FORMAT ('stress at working height \ f9.0)

110 FORMAT ('total coils ', f5.1)

120 FORMAT ('rate \ f9.3, 'free length \f8.3)

130 FORMAT ('stress at closed height ', f9.0)

END

Listing 1 (Continuedfrom preceding page).

69

program spring

c Spring program to calculate helical compression springs

c

c Bruce H. Hunter July 24, 1984

c

c Note : link with clear.c

c

PARAMETER (maxint - 65535)

INTEGER itr

external clear

CALL clear

do 10 itr = 1, maxint

PRINT *, ' '

PRINT *, 'Helical compression spring program1

PRINT *, f '

CALL input

CALL calc

CALL output

10 CONTINUE

END

SUBROUTINE input

COMMON /incalc/

$ g, wire_dia, n_coils, load, height, o_d

DOUBLE PRECISION

$ g, wire__dia, n_coiIs, load, height, o_d

PRINT *, 'input wire dia, o_d'

READ *, wire_dia, o_d

PRINT *, 'number of active coils'

READ *, n_coils

PRINT *, 'torsional modulus'

READ *, g

PRINT *f 'specified load at specified height'

READ *, load, height

END

SUBROUTINE calc

PARAMETER (pi = 3.1415927)

COMMON /incalc/

$ g, wire__dia, n_coils, load, height, o_d

COMMON /calcout/

$ rate, free_length, max_stress, coils, stress

DOUBLE PRECISION

g, wire_dia, n_coils, load, height, o_d, stress,

c, k, rate, free_length, sum__travel, max_load, max_stress, coils

INTEGER input_no

c Wahl Factor c

c = (o_d - wire_dia) / wire_dia

k = (4.0 * c - l)'/(4.0 * c - 4) + 0.613 / c
stress = (8.0 * o_d - wire_dia) * k * load / (pi * wire_dia**3)

IF ((stress) .GT. (200000.0)) THEN

WRITE (6, 140) stress

Listing 2 {Combined on following page).

70 COMPUTER LANGUAGE ■ NOVEMBER 1984

140

999

PRINT #, 'enter 1 to continue 0 to restart'

READ *, input_no

IF ((input_no) .EQ. (0)) GO TO 999

END IF

rate = g * wire_dia**4 / (8.0 * (o_d - wire_dia)**3 * n_coils)

free_length = load / rate + height

coils = n_coils + 2.0

sum_travel = f ree_JLength - coils * wire_dia

max_load = sum_j:ravel * rate

max_stress = 8.0 * (o__d - wirejlia) * k * max_load / (pi * wire__dia**3)

FORMAT ('stress = ', f9.0)

END

100

110

120

130

SUBROUTINE output

COMMON /calcout/

rate, free__length, max__stress, coils, stress

DOUBLE PRECISION

$ rate, free__length, max__stress, coils, stress

INTEGER input_no

WRITE (6, 100) stress

WRITE (6, 110) coils

WRITE (6, 120) rate, free_length

WRITE (6, 130) max_stress

PRINT *, 'enter 0 to exit'

READ *, input_no

IF ((input_no) .EQ. (0)) STOP

FORMAT (

FORMAT (

FORMAT (

FORMAT (

END

'stress at working height ', f9.0)

'total coils ', f5.1)

'rate ', f9.3, 'free length \f8.3)

'stress at closed height ', f9.0)

Listing 2 (Continuedfrom preceding page).

hand, or even with a calculator, these cal

culations can consume an entire day.

Using a program to do the work reduces

the process to a few minutes.

The first subroutine in Listing 1 is the

input routine. It uses free format input and

output. Variables do not have to be

declared, but I am a structured program

mer at heart, and I just can't let variables

default to integer and real, or worse yet,

go unrecognized by anyone reading the

source code before they are encountered

in the program block. A common state

ment at the top of the block makes all the

variables input common to the input and

calculation blocks. Notice the white

space, free indentation, and the lack of

line numbers and labels. The dollar sign is

a continuation character. Any reasonable

character can be used as long as it is in the

sixth column.

The second subroutine is the calcula

tion block. Here is FORTRAN doing

what it docs best, grinding large and small

numbers into fine dust. Few languages

have more forms of the //statement than

FORTRAN. The if in this block is a block

form if, trapping all statements between

the then and the end if. The else and else if

are perfectly legitimate and can be nested

to extreme depths.

This subroutine has two common state

ments, incalc and catcout, to reflect the

two subroutines they service. The only

possible weakness in the common is the

inability to have the same variable in three

different commons. The variable ncoils

had to be changed to coils to have it shared

in three blocks.

The final subroutine is the output rou

tine. It utilizes the older formatted write

statements to present the data in the best

and most readable form, a strong advan

tage to any language that supports it.(PL/I

also has formatted and unformatted I/O.)

As mentioned earlier. DRI's FOR

TRAN implementation includes all of the

FORTRAN ANSI 77 and f77 features and

a few more, f77 supports eight-character

variable names but no underscore charac

ters or imbedded dollar signs. DR

FORTRAN-77 supports 40-charactcr

variable names as we! I as imbedded

underscore characters and dollar signs.

Now look at Listing 2. In this version of

the spring program, written for DR

FORTRAN-77, notice how much easier it

is to read and follow because of the

increased length of the variable names and

the use of the underscore character.

In conclusion, DR FORTRAN-77 is no

"me-too" project. It is a major step in

portable languages geared to multi

processor, multi-operating system, multi-

language interface applications. We will

sec it under PC-DOS, CP/M, and even

tually UNIX, running on the 8086, 8088

and 80286 as well as the 68000 family of

processors.

Today there is a need for a family of

languages that can address all three of

these operating systems as well as emerg

ing systems that will have UNIX with

PC-DOS emulation. DRI has nearly

accomplished this task, and DR

FORTRAN-77 is their first offering in

the new generation of multi-OS, multi

processor transportable languages. H

By Bruce Hunter

71

mbp COBOL

Hardware required: IBM PC,
XT, or AT

Price: $750
Available from: mbp Software
& Systems Technology, 7700

Edgewater Dr., Suite 360,
Oakland, Calif. 94621,(415)
632-1555.

You can discuss many things that arc sure

to start sin argument. Religion and politics

come to mind first, but I would like to add

a third: the choosing of a programming

language.

This review is not intended to convert

Pascal or C programmers over to COBOL

but is meant to show you why mbp

COBOL is currently the Cadillac COBOL

compiler on the microcomputer market.

First, no COBOL compiler now on the

market approaches mbp COBOL for

speed of execution. (Table 1 shows some

timings of program execution.)

However, while speed is indeed

important, it is not the only piece of the

pic. Ease of use, support, and documen

tation play an equally important role in

which computer language you pick to

complete a given task. This review deals

with the features and characteristics of the

mbp compiler that might have gone

unnoticed if we were to deal in terms of

speed of execution alone.

mbp COBOL has compromised the

software developer's position for speed of

execution. What this means is that while

the programs do indeed run very, very

fast, the programmer is saddled with the

overhead that makes this speed possible.

Nothing is wrong with this approach but.

speaking as a programmer, I would have

liked to have had a faster compiler and

retained speed of execution.

Execution speed comparisons (in seconds)

MBP on Microsoft Microsoft on Microsoft' on
Function performed IBM-XT on IBM-XT Zenith Z100 Zenith Z1OO

10,000 performs

10,000 goto's

10,000 adds and subtracts

Add integers 32,767 times

1,000 moves

10,000 If statements

Concatenate a string

10,000 times

Read a 100 element table

100 times by indexing

Read a 100 element table

100 times by subscripting

Sieve of Eratosthenes for

2 iterations

1

1

19

4

3

3

7

1

19

153

4

9

59

162

14

15

71

95

76

7123

7

14

65

192

10

15

71

108

86

704

4

8

37

111

6

9

46

62

49

403

1. Zl 00 running at 7.5 meg clock speed vs. 4.77 meg for standard Z100 machine.
2. Version 1.1 2 of MS-COBOL now allows SIEVE program to compile.

Table 1.

Object Module Comparison

Program

Name

MBP compiled

size (bytes)

Microsoft

compiled

size (bytes] Difference Percent

ISAMTEST

GIBSON

PCPERF

PCGOTO

PCADDSUB

PCMLTDIV

PCMOVE

PCSTRING

PC ILOOK

PCSLOOK

SIEVE

30,208

46,720

12,544

12,672

12,800

12,800

13,568

13,056

12,928

14,208

22,784

21,120

33,792

8,320

8,320

8,320

8,320

8,064

7,936

8,576

8,576

16,896

9,088

12,928

4,224

4,352

4,480

4,480

5,504

5,120

4,352

5,632

5,888

30.08

27.67

33.67

34.34

35.00

35.00

40.57

39.22

33.66

39.64

25.84

As you saw from Table 1, the compiler

produces very fast execution modules. I

re-compiled the sample programs under

the Microsoft COBOL compiler version

1.12. While the Microsoft compiler pro

duces smaller modules— from 25 % to

40% smaller—they execute rather slowly

when compared to mbp COBOL (Table

2). The size of the Microsoft modules do

not take into account the size of the RUN-

COB. EXE module since it only has to be

on the disk once.

As I mentioned earlier, speed is nice,

but in the real-world environment, most

programs will be waiting on operator

input from 80% to 90% of the time. Exe

cution speed, although important, is fur

ther down the list of desirable features in a

COBOL compiler—unless you're running

a stand-alone calculation program.

While it is true that the mbp compiler

requires 1.5MB of disk space to compile

and approximately 200K to 512K of addi

tional space for work files, most software

developers are running on a hard disk sys

tem anyway. The vendor does state that

you can compile using just two floppy

disks, but I don't know of anyone who

would be thrilled at the idea of spending

15 to 30 min changing floppy disks.

If you are doing much development on

fairly large systems, you may want to

have at least 20MB to save headaches. If

you arc running on a 10MB system, then

you should back up those files that are not

required and try to free up at least 5MB of

space for software development.

Aside from the rather large disk space

requirements, the compiler was only

about 50% slower than the Microsoft

compiler. I took the SIEVE of

Eratosthenes program and compiled it

with the object listing option turned on as

well as cross-reference and storage map

options. The output was sent to the hard

disk instead of the printer. Total compile

time was 5.5 min.

I then compiled the program under MS-

COBOL, and it required 2.1 min to com

pile. Remember, this is not necessarily a

fair test since Microsoft does not have any

options for a cross-reference or object

listing.

From a developer's point of view, the

output of the mbp compiler approaches

that of a mainframe system. The first page

of output shows you the source, object,

list file, work file, and all the options you

had working at the time of compile. The

storage map and the cross-reference list

ing alone make this compiler worth the

price.

While not required in smaller pro

grams, a cross-reference listing can save

many hours when looking for a data name

to change a program you wrote many

months ago. As you can see in Listing 1.

the cross-reference listing is easy to use

5inceboth systems use the same linker, namely the LINK program that comes wilh ihe IBM or Zenith
system, ihe difference is entirely within ihe compilers themselves.

Table 2.

72 COMPUTER LANGUAGE ■ NOVEMBER 1984

and can be turned on or off by an option

selection.

With the latest version of this compiler

(version 7.4), mbp has implemented a

COBOL sort as well as provided chaining

capability. The sort implementation is not

the standard sort implementation as

defined in COBOL. The familiar SORT

verb

SORTSORTWORKONACSENDING

KEY SORT-NAME,

SORT-AR

USING SORTIN,

GIVING SORTOUT.

would appear quite different when used

from within an mbp COBOL program. In

this compiler, you call the sort as a sub

routine, for example:

CALL"MBPSORT" USING INPUT-

FILE,

OUTPUT-FILE,

CONTROL-STATEMENT,

SORT-STATUS.

The CONTROL-STATEMENT data

name defines a 30-character alpha

numeric field that contains the specifics of

how you want the sort executed. While a

minor inconvenience is imposed by not

being a standard sort verb usage, the mbp

sort is very fast. It sorted 1,000. 128-byte

records in approximately 7 sec.

The CHAIN verb is also a callable rou

tine that allows you to pass and receive

parameters between programs. Parame

ters are passed as part of the CHAIN state

ment and arc not required to be set up in

the linkage section of the program.

The test of any new compiler from a

programmer's point of view is based on

how easy is it to use and whether ques

tions can be answered via the supporting

documentation, mbp COBOL gets flying

marks in both these areas.

The manual, which fills a2-in, 3-ring

binder, is not only well organized; it also

has menu tabs that help you easily find

specific sections of interest without a lot

of page searching. The compiler arrives

on five diskettes, and a sample program

disk shows examples of the SORTand

CHAIN features. Also included is a sample

program of the interesting way in which

mbp COBOL handles screen formatting.

Using the Screen Management System

(SMS) brought back shades of CICS

screen design. For those unfamiliar with

CICS, let me just say that CICS has

implemented a screen design system that

allows your screen to be a separate mod

ule not resident in the actual program, as

under Microsoft COBOL.

Well how does the mbp compiler fair in

the long run? I'd rate it excellent in speed.

from a user's point of view, and fair in

performance, from a programmer's point

of view. While I would like to sec it com

pile faster and produce optimized object

code, you just can't have everything. In

the next mbp COBOL version, to be

released during the first quarter of 1985.

some of the current shortcomings should

be correclcd.

Included in the initial price of the soft

ware is a licensing portion that allows you

to produce up to 50 applications before

incurring additional royalty charges. You

can opt to pay the vendor $2,000 for an

unlimited distribution of modules that you

would create using their compiler, but I

find this a little steep for most software

distributors. The current update policy

specifies thai you must pay the difference

between the amount that you paid for the

compiler and the current selling price for

the latest version.

If you are looking for an excellent com

piler offering user speed that is second to

none, look no further, mbp COBOL does

use a fair amount ofdisk space—but you

always wanted to upgrade to that 20MB

drive anyway. I am willing to sacrifice the

extra disk space and slightly increased

compile time for the features provided by

the mbp compiler. They are indeed well

worth the time and effort. H

By Chuck Ba I linger

SOURCE

LINE

73

66

59

37

27

21

22

16

49

17

15

19

18

25

26

69

56

24

42

30

31

33

32

29

DATA/PROCEDURE NAME

CALCULATE-ELAPSED-TIME

COMPARE-EXIT

COMPARE-ROUTINE

DISPLAY-MESSAGE

ELAP-TIME

FLAG-AREA

FLAGS

I

ITERATION-ROUTINE

K

MISC

PRIME

PRIME-COUNT

START-TIME

STOP-TIME

STRIK0UT

TABLE-FILL-ROUTINE

TEST-TIMES

TESTING-MODULE

TST-HRS

TST-MINS

TST-MSCS

TST-SECS

TST-SUB-TIME

REFERENCED BY STATEMENTS

46

53

53

60

NOT REFERENCED

86 88

NOT REFERENCED

57

51

60

44

62

60

52

61

63

NOT REFERENCED

61

50

43

45

63

51

62

64

74

75

NOT REFERENCED

NOT REFERENCED

80

79

77

78

76

85

84

82

83

81

70

53

61

70

71

89

76

81

54

62

71

77

82

57

86

86

Listing 1.

73

ZCPR3

Hardware required: Z80,

8080, 8085, NSC-800
machines

Price: $39 to $180 (depending
upon utilities purchased)

Available from: Echelon Inc.,
101 First St., Los Altos, Calif.
94022,(415)948-3820

Support: User support through
telephone and written
response

Over the years, since the origin of the

CP/M operating system, members of vari

ous CP/M user groups have attempted to

improve upon and ocrrect what some felt

were major shortcomings.

One of the most noted of these attempts

was a program called ZCPR (Z80 Com

mand Processor Replacement). Just as its

name implies, ZCPR was designed to

replace the console command processor

portion of CP/M. (For those readers not

familiar with the CP/M architecture,

CP/M is made up of three basic parts:

CCP, the console command processor;

BDOS. the basic disk operating system:

and BIOS, the basic I/O system.)

Since it was first developed in 1980,

ZCPR has gone through many revisions.

ZCPR3 is the latest and by far the most

powerful version of ZCPR now available.

All of the features of ZCPR2 have been

retained and many new ones added.

ZCPR2 may have given us a hint of what

was to come in that it had the bare bones

beginning of a modular configuration.

ZCPR3 is a completely modular sys

tem. Once the ZCPR3 package has been

installed (more about that later), desired

modules can be modified and loaded at

any time.

Figure 1 shows the ZCPR3 memory

image of the full featured system I

installed on my test system, a 64K ZS0

CCS S-100 system with a Soroc terminal.

Address

FFFF

F600

F5F0

F5C0

F500

F400

F3D0

F380

F300

F230

F200

EEOO

E400

D500

C700

BF00

100

0

Figure 1.

74 COMPUTER LANGUAGE i

ZCPR3

ZCPR3

ZCPR3

ZCPR3

ZCPR3

ZCPR3

ZCPR3

ZCPR3

Input/Output package (IOP)

External Path

External Stack

Command Line Buffer

Memory-Based Named Directory (S)

External File Control Block

Message Buffers

Shell Stack

ZCPR3

Environment

Descriptor (S)

Z3TCAP (S)

ZCPR3 Flow Command Package (S) (FCP)

ZCPR3 Resident Command Package (S) (RCP)

CCS3O0BIOS with modified Cold Boot Routine

to Initialize All Elements of the

ZCPR3 System Above

BDOS

ZCPR3 Command Processor

Transient

Program

Area

BDOS and ZCPR3 Buffers

2.5K

16 bytes

48 bytes

192 bytes

256 bytes

48 bytes

80 bytes

128 bytes

128 bytes

128 bytes

IK

2.5K

3.8K

3.5K

2K

48K

256 bytes

NOVEMBER]9Si

8087

$150whilequantitylasts.

Put the

speed and power

of the 8087 to work

for you.

We've got the Intel ceramic

8087-3 chip which operates at

5 MHz.

Order by phone and we ship the same day

for Visa or MasterCard customers. Oryou can send cash,

check or M.O. (Sorry, no COD's). Add California state

tax, if applicable and S3 for shipping in the USA. or

Canada; S15 for foreign air mail. (415) 827-4321

_ , VISA MASTERCARD

Steve Rank, Inc.

1260 Monument Blvd., Concord, CA 94518

CIRCLE 37 ON READER SERVICE CARD

WRITE

The Writer's Really Incredible Text Editor lives up to its
name! It's designed for creative and report writing and

carefully protects your text. Includes many features
missing from WordStar, such as sorted directory listings,

fast scrolling, and trial printing to the screen. All editing

commands are single-letter and easily changed. Detailed
manual included. Dealer inquiries invited- WRITE is
S239.00.

BDS's C Compiler

This is the compiler you need for learning the C language
and lor writing utilities and programs of all sizes and
complexities. We offer version 1.5a, which comes with a
symbolic debugger and example programs. Our price is

(postpaid) S130.00.

Tandon Spare Parts Kits

One door latch included, only S32.50.

With two door latches S37.50.

Door latches sold separately for S7.00.

All US orders are postpaid. We ship from stock on many
formats, including: 8", Apple, Osborne, KayPro, Otrona,

Epson, Morrow, Lobo, Zenith, Xerox. Please request our

new catalog. We welcome COD orders.

Workman & Associates

11 2 Marion Avenue

Pasadena. CA 91106
(818) 796-4401

CIRCLE 68 ON READER SERVICE CARD

PROGRAMMER'S

DEVELOPMENT TOOLS

IBM Personal Computer

Language and Utility Specialists

List Ours

Lattice C Compiler $500 295

STSC APL'Plus/PC Sale Priced 595 469

DeSmet C Compiler with Debugger ... 159 145

CB-86 by DRI 600 429

Instant-C by Rational Systems,

Interpretive C 500 469

8088 Assembler w/Z-80 Translator

2500 AD 100 89

C Programming System by Mark Williams 500 459

Call for Prices and Information about other Languages.

Special Holiday Season Sale Price!

Computer Innovations C-86 Compiler S278

Performance, Features and Low Price, make the

C.I. C-86 a Holiday Season Value. Save over $30

from our normal price of $309. Call for more

information and details.

•***C Functions Library Sale*'*'

C Utility Library for C36 and Lattice $149 119

New from Essential Software

Written 99% in C

The Greenleaf Functions for C-86,

Lattice, and Mark Williams C

Compilers 175 139

Each product features a full library of over

200+ C Functions. No Royalties. Both

include source code.

Communications Library

by Greenleaf New

Btrieve by SoftCraft

C-Food Smorgasbord
Trace-86 by Morgan Computing

OPT-TECH Sort High Performance Utility.

C Power Paks from Software Horizons.

Phact by Phact Associates

Plink-86 Overlay Linkage Editor

Panel Screen Design/Editing by Roundhill

Profiler by DWB & Associates

Halo Color Graphics for Lattice, CI-86

Graphic from Scientific Endeavors . ..

Windows For C by Creative Solutions .

I
A SOLID GOLD VALUE

CodeSmith-86 Debugger

Version 1.8 by Visual Age

Retail $145, Our Normal Price $129

Special Sale Price! S109

Sale Price effective until 11/23/84.

Prices are subject to change without notice

Call for our New Catalog consisting of

200+ Programmer's Development Tools

Exclusively for IBM PC's and Compatibles.

Account is charged when order is shipped.

~"S 1-800-336-1166 1"
Programmer's Connection
281 Martinel Drive

Kent, Ohio 44240

(216) 678-4301 (In Ohio)

"Programmers Serving Programmers'

CIRCLE 54 ON READER SERVICE CARD

75

The ZCPR3 modules can be in almost

any order you desire as long as they are

located above BIOS. As seen in Figure 1,

the trade-off for the implementation of

these features is a reduced TPA (transient

program area).

The following is a break down of the

ZCPR3 modules and buffers:

■ IOP (Input/Output package). As in

ZCPR2, this is a user supplied, redirec-

table I/O module. An example is provided

in the ZCPR3 package. This module must

be written by the user as it is hardware

dependent. The utility LDR.COM is used

to load this module and the utilities

REC0RD.COM, DEVICE.COM. and

DEV.COM are used to manipulate I/O

redirection.

■ External path buffer. This buffer is

as described for ZCPR2. The utility

PATH.COM is used to set up the desired

search paths.

■ External stack buffer. This is an

optional space saver for ZCPR3. By keep

ing the stack external, more features can

be included.

■ Command line buffer. Many of the

ZCPR3 utilities take advantage of this

buffer to initiate batch processes, in par

ticular, the command file processors

ZEX.C0MandSUB.COM.

■ Memory-based named directory.

Named directories are an alternate

method of identifying disk and user areas

under ZCPR3. The utility MKDIR.COM

3AAA Programmers
/Uvv depend on us

to find, compare, evaluate

p rod ucts a n d fo r solid value.
THE PROGRAMMER'S SHOP serves serious microcomputer

programmers . .. from giant institutions to small independents.

Specializing helps us provide 100s of programming products

. . . technical literature . . . specialized evaluations and more

to help you find and evaluate. Other services like . . . special

formats . . . rush delivery . . . payment options (POs, COD,

credit cards, etc.) . . . newsletters . . . and reports help you

save time, money, and frustration and get solid value.

Intriguing New Products

BRIEF1" THE PROGRAMMER'S

EDITOR for PCDOS is "Out of
the way", fast, windows, undo,

macros $195

HS/FORTH - fits professionals with

great doc, MSDOS interface, full

RAM, ASM, graphics, more.

Consider a solid FORTH. $210

"BASICA COMPILER", also

access all RAM, modules, struc

tured. BetterBASIC, PCDOS $195

ForCP/M-80

ECOsoftC is now complete, rich,

fast, has library source, trig $225

Edit programs with VEDIT ($119),

MINCE ($149)or"C"SE with
source ($75)

For a catalog, comparisons, prices, or for an info packet on AI. or Editors, "C,"

BASIC, PASCAL, FORTRAN, or COBOL—or just for straight answers—

CALL TOLL FREE 800-421-8006

Other Key Products

C86 by Cl ($339), Lattice ($359)

from Lifeboat or Microsoft, and

Williams C ($475) are in a tight

battle. Which is best for integra

tion with Fortran? 8087? support

libraries? speed? debugging?

FORTRAN-86from Microsoft

($259) is improving with libraries

for graphics ($175), screen ($265).

LISP by Integral Quality ($155) is

well rounded while GC Lisp ($465)

supports syntax closer to "Com

mon LISP." Or Prolog-86 ($125).

PROFILER-86 - find where any

program spends most of its time

quickly, easily. DOC nicely discovers

theory, key issues. MSDOS. $125

THE PROGRAMMER'S SHOP
Theprogrammer's complete source for software, services and answers

i 128-L Rockland Street, Hanover, MA 02339 In Mass.: 800-442-8070 or 617-826-7531

CIRCLE 52 ON READER SERVICE CARD

76 COMPUTER LANGUAGE ■ NOVEMBER \9Bt

is used to create named directory files,

and LDR.COM is used to load them.

PWD.COM displays the active named

directories, and CD.COM is used to move

from one named directory to another.

■ External file control block. As with

the external stack, it is a space saver.

■ Message buffer. Many of the ZCPR3

utilities have the capability of passing

information between each other. This is

their communication buffer.

■ Shell stack. Several of the ZCPR3 util

ities are actually shells that replace

ZCPR3 while they are running. The shells

have the ability of allowing the user to run

programs under them just as if the user

were communicating directly with CP/M.

To do this, an external stack area is

required. Some of shell utilities are

VFILER.COM, a file utility program,

and VMENU.COM, the ZCPR3 menu

system.

■ Environment descriptors and

Z3TCAP. This is the road map of the

ZCPR3 system. All ofthe ZCPR3 utilities

use this module to determine the config

uration of the ZCPR3 system. The envi

ronment descriptors contain pointers to

and information about all ofthe other

ZCPR3 modules. Z3TCAP is the terminal

definition portion ofthe descriptors.

Many ofthe utilities will take advantage

of your terminal's capabilities if this mod

ule is correctly installed. Both modules

are loaded with LDR.C0M

■ FCP (flow control package). This

package, when used with the command

file proccssorZEX.COM and the utility

G0T0.C0M. form a powerful batch pro

cessing facility. Many different condi

tional tests can be performed by the FCP.

For example, a test can be made to deter

mine the existence of a file. If the file is

present the batch processor could perform

some operation on it or if it doesn't exist

the processor could abort or go on to

another operation. The GOTO utility

allows jumping forward or backward to

labels within (he batch stream.

■ RCP (resident command package).

Because the CCP replacement must reside

within a fixed boundary range, the num

ber of additional features and commands

that can be added is limited. To get around

this problem ZCPR3 uses an externally

located module called the RCP to extend

the capabilities of the CCP replacement.

■ Modified BIOS. This is a user mod

ified version of the standard BIOS pro

vided with your system. The cold boot

routine in your BIOS must be modified to

initialize the areas of memory used by the

ZCPR3 buffers and packages. If the IOP

redircctable I/O package is to be imple

mented, the BIOS jump table will also

require modification. Some ofthe BIOS

calls arc redirected to the IOP.

The ZCPR3 package received for this

review consisted of 10 single-sided,

single-density 8-in disks and a pre

liminary sampler manual that included

installation instructions and examples.

THE FORTH SOURCE
TM

MVP-FORTH

Stable - Transportable - Public Domain - Tools

You need two primary features in a software development package a

stable operating system and the ability to move programs easily ana

quickly to a variety of computers MVP-FORTH gives you both these

features and many extras This public domain product includes an editor,

FORTH assembler, tools, utilities and the vocabulary (or the best selling

book "Starting FORTH" The Programmer's Kit provides a complete

FORTH for a number of computers Other MVP-FORTH products wi'l

simplify ihe development of your applications.

MVP Books - A Series

. ; Volume 1, All about FORTH by Haydon MVP-FORTH

glossary with cross references to fig-FORTH, Starting FORTH

and FORTH-79 Standard. 2na Ed. $25

P Volume 2, MVP-FORTH Assembly Source Code. Includes

CP/M£ , IBM-PC* . ana APPLE* listing for kernel $20

! Volume 3, Floating Point Glossary by Springer

Volume 4, Expert System with source code by Park $25

Volume 5, File Management System witn interrupt security by

Moreton $25

MVP-FORTH Software - A Transportable FORTH

□ MVP-FORTH Programmer's Kit including disk, documentation

Volumes 1 & 2 of MVP-FORTH Series {All About FORTH, 2nd

Ed. & Assembly Source Code), and Starting FORTH Specify
□ CP/M, G CP/M 86, D CP/M+ , □ APPLE,

^» D IBM PC/XT/AT, D MS-DOS, □ Osborne. D Kaypro
* □ H89/Z89, □ Z100. D TI-PC, D MicroDecisions.

□ Northsiar. D Compupro. D Cromenco, □ DEC Rainbow,
4. □ NEC 8201. □ TRS-3G7100, □ HP 110, 3 HP 150,

*v GSTMPC $150

MVP-FORTH Enhancement Package for IBM-PC/XT

. Programmer's Kit Includes full screen editor. MS-DOS

^- file interface, disk, disp'ay and assembler operators $110

__ MVP-FORTH Cross Compiler for CP/M Programmer's Kit

Generates headerless code for ROM or target CPU $300

MVP-FORTH Meta Compiler for CP/M Programmer's kit.

Use for apDlicatons on CP/M based computer. Includes
public domain source $159

" : MVP-FORTH Fast Floating Point Includes 9511 math chip

on board with disks, documentation and enhanced virtual

MVP- FORTH for Apple II. II+, and He. $450

□ MVP-FORTH Programming Aids for CP/M, IBM or APPLE
Programmer's Kit. Extremely useful tool 'or decompiling,

callfinding, and translating. $200

_ MVP-FORTH PADS (Professional Application Development

System) for IBM PC, XT or PCjr or Apple II, II + or He. An

integrated system for customizing your FORTH programs and

applications. Tne editor includes a bi-d'rectional string search

and is a word processor specially designed for fast

development. PADS has almost triple the compile speed of

most FORTH's and provides fast debugging techniques.

Minimum size target systems are easy with or without heads.

Virtua1 overlays can be compiled m object code. PADS is a

true professional development system. Specify

Computer $500

□ MVP-FORTH Floating Point & Matrix Math for IBM

with 8037 or Apple with Applesoft on Programmer's

Kit or PADS. $85

□ MVP-FORTH Graphics Extension for IBM or Apple on

Programmer's Kit or PADS. $65

MVP-FORTH MS-DOS file interface for IBM PC PADS $80

MVP-FORTH Expert System for development ol knowledge-

based programs for Apple. IBM. or CP/M. S100

FORTH CROSS COMPILERS Allow extending, modifying and compiltng
for speec and memory savings, can also produce ROMable code

Specify CP/M. 8086.68000, IBM, Z80. or Apple II. II + $300

Ordering Information: Check. Money OrOer (payable 10 MOUNTAIN VIEW PRESS.

INC), VISA. MasterCard. American Express COD'S $5 e"lra Minimum order Si5

No billing or unpaid PO's California 'esiCJenls add sales la* Shipping costs in US

included in pitce Foreign orders, pay in US funds on US bank, include lor handling

and shipping by Air $5 (or each item under S25. $10 lor each item between $25 ana

$99 and $20 for each item over $100 All prices and products subject to change or

withdrawal without notice Single sysiem and/or single user license agreemeni

required on some products

FORTH DISKS

FORTH with editor, assembler, and manual.

APPLE by MM. 83 $100 □ Z80 by LM, 83

ATARI' valFORTH $60 □ 8066(88 by LM. 83 $100

CP/M by MM. 83 $100 : 68000 by LM. 83

□ HP-85 by Lange $90 D VIC FORTH by HES.

□ HP-75 by Cassady $150 VIC20 cartridge $50

~ IBM-PC byLM. 83 $100 C C64 by HES Commodore

. NOVAbyeciS" $175 «4 cartridge o
Timex by HW $25

Enhanced FORTH with: F-Floalmg Point. G-Graphics. T-Tutorial.

S-Stand Alone. M-Math Chip Support, MT-Multi-Tasking. X-Other

Fxtras. 79-FORTH-79. 83-FORTH-83.

□ APPLE by MM, D Victor 9000 by DE.G.X $150

F. G, & 83 Extensions for LM Specify
□ ATARI by FNS. F.G, & X. $90 IBM. Z80. or 8086

" CP/M by MM, F & 83 $140 - Software Floaiing

Multi-Tasking FORTH

by SL CP/M, X & 79 $395 "' 8087 SuPDorl

_ F' x- & 79 $130
□ Timex by FD, tape G.X.

&79 $45

C64 by ParSec. MVP. F,
79, G & X $96

(230 or 8086) $100

□ Color Graphics

(IBM-PC) $100

LJ Dala Base

Management $200

I fig-FORTH Programming Aids for decompiling, callfinding.
debugging and translating. CP/M. IBM-PC. Z80

or AoDie. $200

FORTH MANUALS, GUIDES & DOCUMENTS

. D Thinking FORTH by Leo 1980 FORML Proc. S25

t* Brodie, author of best selling 1981 FORML Proc 2 Vol 540
■■Starting FORTH" $16 " 19B2 FORML Proc. 525

□ ALL ABOUT FORTH by 1981 Rochester F0RTH
Haydon. See above. $25 proc t25

D FORTH Encyclopedia by 1982 Rochester FORTH

Derick & Baker $25 Proc. $25

" The Complete FORTH by 1983 Rochester FORW

Winfiefd $16 Pr°c- $25
D Understanding FORTH by A Bibliography of FORTH

Reymann $3 "t'T"', Sdtu
n ,-«„,■.. - Tne Journal of FORTH

w? k Fundamentals, Application & Research
_ Vol. I by McCabe $16 vol. 1, No. 1 $15
D FORTH Fundamentals, Vol 1 No 2 $1S

Vol.llbyMcCabe $13 METAF0RTH Dy

i . FORTH Tools, Vol.1 by Cassady $30
Anderson & Tracy $20

□ Beginning FORTH by Threaded Interpretive

Chilian $17 Languages

_ FORTH Encyclopedia Q Systems Guide to fig-

Pocket Guide $7 FORTH by Ting $25

I And So FORTH by Huang A Q FORTH Notebook by

college level text $25 ^ Ting $25

I FORTH Programming by [Invitation to FORTH $20

Scanlon $17 T PDP-11 User Man. $20
D FORTH on the ATARI by E , FORTH-83 Standard $1 5

^J' cnoTUt. n I FORTH-79 Standard $15
Starting FORTH by Brodie. ,-„„,-., ,„ ,.
Best instructional manual FORTH-79 Standard
available (soft cover) $19 Conversion $10

Starting FORTH (hard Tiny PaSCal fi9"FORTH $10
cover) $23 NOVA fig-FORTH by CCI

Q 68000 fig-Forth with Source Listing $25

assembler $25 NOVA by CCI User's

Manual $25

Installation Manual for fig-FORTH, $15

Source Listings of tig-FORTH, for specific CPUs and computers.

The Installation Manual is required for implementaiion Each Si 5

111802 LJ 6502 I 1 6800 I] AlphaMicro □ IBM

1 1 8080 n 8086/88 I] 9900 LJ APPLE II

I 1 PACE Li 6809 U NOVA □ PDP-11/LS1-11

" : 68000 G Eclipse D VAX fl Z80

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415)961-4103

CIRCLE 43 ON READER SERVICE CARD 77

The complete ZCPR3 documentation is to

be released in the near future.

The installation of ZCPR3 requires a

good working knowledge of CP/M and

your system's BIOS. It also requires that

the installer be very familiar with assem

bly language programming. The installa

tion of this package is not ajob for the

novice.

To install ZCPR3 you will need the

Digital Research Macro Assembler MAC,

an editor, and the Digital Research

debugger ZSID. Robert Van Valzah's pub

lic domain RELS.UTL is needed to install

the command file processor ZEX.COM.

The latter utility was included on a update

disk sent later. Another public domain

utility that is used in the installation exam

ples but not provided is Ron Fowler's

ML0AD.COM. While this utility is not

mandatory its inclusion would have been

nice.

As with any project, the first step is

planning and organization. You must first

decide which of the many features avail

able you will want to implement. The

sampler manual was some help in my

selection of features. Having the full

ZCPR3 documentation should make this

much simpler.

It may be necessary to do a few experi

mental assemblies as the selection of fea

tures will effect the size of the various

modules. Remember that the more fea

tures implemented in memory the smaller

the TPA. My goal was to enable as many

features as possible and still retain at least

48Kof TPA. My reason for this was that

most commercial CP/M software is writ

ten to also run under MP/M which will

only support up to 48K per user bank.

After some experimentation I drew up

the above memory map to use as a guide

for setting up the system base library

module (Z3BASE.LIB). Once this file is

edited and the features of the other library

files selected, assembly of the individual

modules may begin.

The CCP replacement (ZCPR3) and the

modified BIOS hex files need to be placed

into the CP/M system image file created

by SYSGEN or MOVCPM.

After the external modules are assem

bled, the resultant hex files must be con

verted to object modules. The MLOAD

utility can be used for this. If you don't

have this utility. Digital Research's

DDT.COM can be used. If DD7"is used,

you will need to compute the offset

required to move the hex file to location

100H, making it a saveable file.

One of the modules created from the

preceding process is the system environ

ment module. Using this module and the

ZCPR3 installation program

Z3INS.COM, all of the~ZCPR3 utilities
can now be installed.

You now need only create a new system

disk using SYSGEN and copy the needed

modules and utilities to it. The resultant

disk should now be a bootable system

disk. Booting this disk will not. however,

78 COMPUTER LANGUAGE ■ NOVEMBER 1984

cause all of the needed modules to be

loaded. You need to create a startup pro

gram with the ALIAS.COM utility to

evoke the module loader program

LDR.COM to load the various modules.

As can be seen, this is not a project for the

novice.

But. . . take heart novice, you have

been saved! Late into this review I

received yet another disk from Echelon.

This disk contains a completely automatic

installation program called

Z3—DOT—COM. The disk includes

most but not all of the ZCPR3 utilities and

several relocatable installation modules.

All that is required to install ZCPR3 with

this disk is to first format and sysgen a

new CP/M disk, transferal! the files from

the Z3—DOT—COM disk and run the

supplied submit file with SUBMIT.COM.

I set up a disk for my second test sys

tem, a TRS-80 Model II with Pickels &

Trout CP/M, and ran the submit file. The

installation took less than 4 min from the

time the submit file was started. At the

end of the installation the ZCPR3 utility

TCSELECTis, loaded and a menu of termi

nals is presented for you to select from. If

your terminal isn't included in this menu

you can exit the program, proceed with

the installation, and at the conclusion use

the TCMAKEutility to configure your

own terminal descriptors.

If you copy only the contents of the

Z3—DOT—COM disk to your new disk

you will find that the install program will

report missing files during the installa

tion. If you wish to install these files you

will need to copy them from the original

ZCPR3 source disks and install them with

Z3INS.COM, using the supplied

ZCPR3.INS and newly created Z3.ENV

file.

Once the installation is complete, two

new files will be present on your disk—

Z3.COM and Z3X.COM. The Z3.COM

program is the ZCPR3 loader that brings

up ZCPR. The Z3X.COM program is

used to exit ZCPR and return (o standard

CP/M.

The Z3—DOT—COM version of

ZCPR3 is pre-configured to take advan

tage of all but the redirectabic I/O features

of ZCPR3. The configuration can be

changed by patching the Z3.COM file,

but this again takes us out of the novice

area of expertise.

The only real drawback I found with

the Z3—DOT—COM installed version is

that many of the Pickels & Trout system

utilities wouldn't run correctly while

ZCPR3 is active. The reason For this is

that the BIOS is not truly located where

the utilities think it is.

The BIOS is the one portion of the oper

ating system that is not relocated. Instead,

a copy of the BIOS jump table is placed at

the end of the relocated BDOS. This jump

table directs BIOS calls to the real BIOS.

Some systems, such as Pickels & Trout

CP/M, keep system configuration infor

mation in the BIOS module. Utilities

designed for this system may expect to

find this data at some displacement from

the base of BIOS. This is not as big a

problem as it may first seem to be since

real CP/M can be re-entered at any time

by running the Z3X program.

It is also interesting to note that when

the installation program makes a copy of

the BIOS jump table, it copies the entire

jump table and not just the normal 17

jumps required by standard CP/M. This is

important because some system BIOS

modules have extended capabilities built-

in.

Besides the 10 ZCPR3 disks supplied,

four more disks with systems library

source files were also supplied. These are

the modules that make up the SYS-

LIB.REL file used by most of the ZCPR3

utilities. While no hard documentation

was provided, there arc 21 help files on

one of the four disks.

However, the source code was not pro

vided for Z3LIB.REL (which contains

ZCPR3 specific routines), and

VLIB.REL (which contains routines to

take advantage of Z3TCAP environment).

The help file Z3TCAP.HLP gives an over

view of VLIB.REL usage but refers you

to the VLIB help file for specific informa

tion. Unfortunately, this file was not to be

found on any of the distribution diskeltes.

An addendum file is supplied for those

who already have documentation for

ZCPR2 SYSLIB. and a READ.ME file

refers you to other ZCPR2 documentation

for the ZCPR specific routines in the

Z3LIB.REL file. Since Echelon is look

ing forward to programmers writing

ZCPR3 programs. I would hope the com

pany intends to fill the documentation

void.

The method of moving around under

ZCPR3 is a vast improvement to the con

ventional CP/M method. Under CP/M, to

log into a Drive/User area you first have

to log onto the desired drive and then,

using the USER command. log into the

desired user area. UndcrZCPR3.

depending on the configuration options

you selected, you can log into a Drive/

User area by simply typing the drive letter

followed by the user number and a colon.

The following Iwo examples illustrate the

difference between ZCPR3 and CP/M in

logging into drive B: user area 12, the

area in which we have, for the sake of

demonstration, our Pascal compiler.

First the entries required by CP/M:

A>B:

B>USER 12

B>

Now the ZCPR3 entry:

A0.-BASE>B12:

B12:PASCAL>

Notice the difference in the prompts

displayed. While CP/M only displays the

letter of the logged in drive, ZCPR3 can

display the drive and user identity as well

as directory name we have chosen for this

area.

Under ZCPR3 there are two more ways

we could have logged into this area. Both

of these methods use the named directory

entry for the Drive/User area. The first

method is demonstrated as follows:

A0:BASE> PASCAL:

B12:PASCAL>

The other method is to use (he change

directory utility CD.COM as follows:

AO:BASE>CD PASCAL:

Logging Into B12:PASCAL:

B12:PASCAL>

The advantage of using the CD utility is

that when CD.COM logs into a user area

it looks fora programcalledST.COM. If

found, ST.COM is executed, if not, CD

just logs you into the specified user area.

The program ST.COM is a startup pro

gram that the user can create with the

ALIAS utility. The startup program can be

used for a number of purposes. For exam

ple, a new named directory could be

loaded and new paths invoked or one of

the ZCPR3 menu systems could be

invoked. As can be seen, this capability

lends itself to the construction of a very

powerful turnkey system.

Another advantage of using directory

names as the method of access is that each

named directory entry can have an associ

ated password assigned to it. When

ZCPR3 detects a directory entry in the

command line, it checks to see if a pass

word has been assigned. If one has,

ZCPR3 will prompt the user for the pass

word. If the user's response matches, the

operation proceeds, if not. ZCPR3 will

not allow access to that area.

Named directories are created with the

MKDIR.COM utility and loaded into

memory with the LDR.COM utility. AH

of the ZCPR3 utilities support the use of

directory names as Drive/User identifiers.

Besides passwords there is another

form of system protection under

ZCPR3—the wheel facility. The wheel

facility is the systems operator's safe

guard against unauthorized access of priv

ileged user areas and system utilities. A

flag called the "wheel byte" resides

somewhere in memory: its location is

determined at installation time. When off,

this flag will prevent the execution of

several of the ZCPR3 utilities.

System resident commands are those

commands that arc located in the ZCPR3

command processor or in the resident

command package. Fora list of com

mands that can be made resident, call the

COMPUTER LANGUAGE Bulletin Board

Service or dial into CompuServe and type

"GoCLM." A list of commands that

reside in the resident flow control package

are printed in this review (Table 1).

The use of the supplied ZCPR3 utilities

is fairly well covered in the supplied help

files. In addition, most of the utilities will

print their own help information if they

see a double / on the command line. A

brief description of most of the ZCPR3

utilities is on the BBS or CompuServe.

After many hours of trying out the dif

ferent commands and utilities of ZCPR3,

I found no obvious bugs or glitches in ihe

system. Butjust running systems utilities

isn't the true test of a system. So I spent

quite a few more hours testing the system

with off-the-shelf CP/M software and

achieved the same results. Because there

are so many utilities and such a large col

lection of help files. I highly recommend

the use of a hard disk system. I feel that

ZCPR3 goes a long way in improving the

CP/M work environment. My only reser

vation is the current state of the available

documentation. M

By Dennis L. Wright

IFT

Gives d true condition if the flow state is

set true

IFF

Gives a true condition if the flow state is

set false

IF EMPTY dir:filename.typ

Sets the flow state to true if the specified

file is empty or does not exist

IF ERROR

Sets the flow state to true if the ZCPR3

system error flag is SET

IF EXIST dir:filenamc.iyp

Sets the flow state to true if the specified

file exists

IF INPUT

The user is prompted for input and if he

responds with T, Y, <CR>, or <SP>

the flow state is set to true

IF NULL filename

If the second filename in a command is

blank the flow state is set true

IF n (register value) val (value to

compare to)

If the ZCPR3 register specified by (n)

equals the value specified by (val) the

flow state is set to true

IFTCAP

Sets the flow state to true if the ZCPR3

TCAP contains a terminal definition

IFWHEEL

Sets the flow state to true if the wheel

byte is set

IF filenamel =filename2

Sets the flow state to true if the two

specified file names are the same

These conditions can be negated by pre

ceding the condition with a tildo (~). If

the condition is FALSE, the flow state is

set to TRUE, and vice-versa.

Table 1.

WHY
JOHNNY
CAN'T
READ
HIS
OWN
CODE
Johnny's

A Good

Programmer,

Even Brilliant,

l- Johnny works in 8080/280assembly
language, with a conventional assembler.

That can make yesterday's brilliance

today's garble, a maze of mnemonics and

a jumble of meaningless labels. Johnny's

program is less than self-explanatory—

even for Johnny.

Johnny could read his own code if he used

SMAL/80—the superassembler—and so
can you. SMAL/80 boosts your program's
clarity and your productivity by giving you:

■ Familiar algebraic notation in place of

cryptic mnemonics—"A = A-3" for example,

instead of "SUI 3" (if you know BASIC or

Pascal, you already know SMAL/80)

■ Control structures like BEGIN... END,

LOOP... REPEAT WHILE, and IF.. .THEN...

ELSE... to replace tangled branches and
arbitrary label names (eliminating up to 90%

of labels with no overhead imposed)

■ Complete control over your processor—

because SMAL/80 is a true assembler, it

doesn't reduce execution speed or burden

your program with its own runtime routines.

SMAL/80, the assembler that handles like a
high-level language, lets you do it right the

first time, and lets you read and understand

your work afterward—the next day or a

year later. Users say SMAL/80 has doubled
and even tripled their output of quality code.

But don't take our word for it—TRY IT!

Use SMAL/80 for 30 days. If you're not

completely satisfied with it—for any rea

son—return the package for a full refund.

SPECIAL BONUS: Order before Dec. 31,

1984, and get Structured Microprocessor

Programming—a $25 book FREE!

SMAL/80 for CP/M-80 systems {all CP/M

disk formats available—please specify);
produces 8080/8085 and Z80 code. Now

supports Microsoft .REL.0NLYS149.95

SMAL/80 for CP/M-80 systems,
8080/8085 output only. SAVE $20: S129.95

NEW! SMAL/80X65 —for Apple II and lie

(requires Z80 card and CP/M); produces

Z80 and 6502 object code. S169.95

Mastercard SMAL/80 We pay
Visa •*•»■«••# *#W shippingon

cods CHROMOD ASSOCIATES prepaid
(201) 653-7615 orders

1030 Park Ave. Hoboken, N.J. 07030

CIRCLE 10 ON READER SERVICE CARD

79

ADVERTISER INDEX

PAGE CIRCLE

NO. NO.

Alcor Systems 20 1

Allen Gelder Software 64 28

Alpha Computer Service 50 2

Atron 2 4

Austin E. Bryant Consulting 50 7

Awareco 32 3

BD Software 22 5

Borland International 6&7 6

C Systems 38 16

CWare 39 18

Carousel Micro Tools 24 8

Catspaw 64 9

Chromod Associates .'.. 79 10

CompuPro Cover IV 12

Computer Innovations 45 11

Computer Resources of Waimea 19 14

DWB Associates 64 20

Datalight 15 19

Ecosoft 59 22

Greenleaf Software 52 29

HSCJnc 10 31

IntrolCorp 11 32

Korsmeyer Electronics Design Inc 4 34

Laboratory Microsystems, Inc 34 35

Lattice Inc 40 36

mbp Software & Systems Technology 23 39

Megamax, Inc 14 13

MicroMotion 20 40

Microcompatibles 24 15

Mountain View Press 77 43

Next Generation Systems 62 45

PAGE

NO.

52

15

... 49

... 53

... 34

75

76

Programmer's Shop 60

14

Northwest Computer Algorythms

Parsec Research, Inc

Plum Hall

Poor Person Software

ProCode

Programmer's Connection

Programmer's Shop

CIRCLE

NO.

...46

...49

...50

...51

...53

...54

...52

...17

...23

Cover III 55

Cover II 58

QCAD

Quest Research

RR Software

Raima Corporation

Rational Systems

SLR Systems

Software Horizons

Software Toolworks

Solution Systems

Solution Systems

Solution Systems

Spruce Technology

Steve Rank Inc

Summit Software

System Engineering Tools

The Code Works

Thunder Software

UniPress

Western Ware

Wordtech Systems

Workman & Associates

The index on this page is provided as a service to our readers. The

publisher does not assume any liability for errors or omissions.

40

16

4

33

50

42

42

54

63

75

46

53

19

64

46

64

1

75

24

56

59

.25

26

60

61

27

33

37

62

64

.42

.65

.38

.67

41

68

ORDER THE PREMIER

ISSUE OF
COMPUTER LANGUAGE
The first issue of COMPUTER LANGUAGE was a great
success and nearly sold out in just one month. We still
have a few copies of this collectors edition available
now. Just fill out this coupon and mail it back with $4.00
per issue.

Please send me copies of COMPUTER LANGUAGE'S
premier issue at $4.00 per issue, $ Total

NAME

COMPANY

ADDRESS-

CITY, STATE, ZIP

Send payment and coupon to: COMPUTER LANGUAGE

Premier Issue

131 Townsend St.
San Francisco, CA 94107

80 COMPUTER LANGUAGE ■ NOVEMBER 1984

ADVERTISE

in the
February

issue of
COMPUTER

LANGUAGE
Reservation Deadline:

December 3rd

Contact:

Carl Landau orjan Dente
Computer Language

131 Townsend Street
San Francisco, CA 94107

(415) 957-9353

COMPUTER

SUBSCRIBE
TODAY!

LANOM3E
Subscribe to COMPUTER LANGUAGE today for only $24.00 — over 33%
savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost is
_^ only$24.00 for 1 year (12 issues).

D I want to increase my savings even more — send me 2 years (24 issues)
of COMPUTER LANGUAGE for only $39.00.

□ Payment enclosed □ Bill me

Name

Company

Address .

City, Stale, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S. funds. Canada
orders $30.00 per year. Outside the U.S., $36.00/year for surface mail or $54.00/year for airmj

B1N4

COMPUTER

SUBSCRIBE
TODAY!

LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.00 — over 33%

savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost is
only$24.00 for 1 year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $39.00.

□ Payment enclosed D Bill me

Name „

Company

Address .

City, State, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S. funds. Canada

orders $30.00 per year. Outside the U.S., $36.00/year for surface mail or $54.00/year for airmail.

COMPUTER

SUBSCRIBE

TODAY!

LANGUAGE
Subscribe to COMPUTER LANGUAGE today for only $24.00 — over 33%

savings off the single copy price.

□ Yes, start my Subscription to COMPUTER LANGUAGE today. The cost is

only$24.00 for 1 year (12 issues).

□ 1 want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $39.00.

□ Payment enclosed D Bill me

Name

Company

Address

City, Stale, Zip

Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid in U.S. funds. Canada

orders $30.00 per year. Outside the U.S., $36.00/year for surface mail or $54.00/year for

B1N4

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22*81 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22*61 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

READER SERVICE CARD

ree informaiion from the advertisers of

JOMPUTER LANGUAGE.

. Pleasefillinyournameandaddressonthe

card (one person to a card).

. Answer questions 1-3.

- Circle the numbers that correspond to

the advertisements you are interested in.

Company.

Address _

Ciry. Stale. Zip _^__^

Counlrv Telephone number.

Please complete these short questions:

1 I obtained this issue through

i 1 Subscription D Passed on by associate

D Computer Store U Othei

f] Retail outlet

November issue. Not good if mailed ofter March 31, 1985.

Circle numbere for which you desJre Information.

2. Job Title.

3. The 5 languages thai I am most interested in reading

about (list in order of importance).

11 21

22

23

24

25

26

27

28

W

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

a

49

SO

51

52

S3

54

55

56

57

54

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

-.-

82

83

64

85

86

87

88

H

90

91

92

93

94

95

96

97

98

99

100

Comments.

Atln: Reader Service Dept. 1/3

READER SERVICE CARD

■ee information from the advertisers of

:OMPUTER LANGUAGE.

. Pleasefillinyournameandaddressonlhe

card (one person to a card).

. Answer questions 1-3.

. Circle the numbers that correspond to

ihe advertisements you are interested in.

Name

Company.

Address

Ciry. Stale. Zip

Country Telephone number.

November issue. Nol good if moiled afier March 31, 1985.

Circle numbers for which you desire Information.

Please complete these short questions:

1 I obtained this issue through:

LJ Subscription D Passed on by associate

D Computer Store Q Other. .

□ Reiail outlet

2, Job Title

3. The 5 languages thai I am most interested m reading

about (list in order ol importance).

Comments

Attn: Reader Service Dept.

Editorial Response Card

suggestions
We want to hear your comments and suggestions about this issue of

COMPUTER LANGUAGE. Your reader feedback will enable us to provide you with

the information you want. Thank you for your help!

Comments:

G Yes, I have an idea for a manuscript:

CZ Yes, I'm interested in reviewing technical manuscripts.

□ Yes, I'm interested in reviewing software.

Name: - . —

Company:

Address:

City, State. Zip: _

Phone Number:

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 PHILADELPHIA. PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 PHILADELPHIA. PA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22461 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

catting

your IBM®PC behave like a
Macintosh™ and much more . . .

and with over two years in the making, the Simplex
Database Management System has features like
32-megabyte virtual memory and (he most powerful
networked/relational database in the microcomputer
industry. Simplex was designed around how you
think and the Macintosh way. so that you can use
your favorite mouse lo handle those mundane tasks
like menu selection and data manipulation. And, if
you don't have a mouse, you can use our keyboard
mouse simulator. MouSimlv.

Pop-up and pull-down menus, dialog and alert boxes
are not just added features, they are the heart of the

Simplex way. In addition, Simplex gives you both a
software and a hardware floating point capability,
each with 19-digit accuracy. It permits login,

password, privilege, and can be used on a local area
network. Simplex has full communications and a

remote or local printer spooler. Above all. Simplex is

modular and grows with you! Simplex also has a

full-featured, English-like language which is simple
to use.

You can't buy Simplex™, but it is now available as an integral part ot

it's my Business71 and will be used by it's my Word™, it's my Graphics"

Businessmen! it's my Business will revolutionize the

way that you handle your business. It saves time,

money, and standardizes your system for all who use
it. it's my Business comes with applications like
accounting, interoffice or intraoffice mail, editing,
invoicing, inventory managment, mail list, calendar,
scheduler, forms and more. You can modify each of
these to create applications specifically designed for
you... maybe we should have called it ■'it's your

Business".

Professionals! it's my Business has over 200 pages ot
examples and demonstrations to show you how to

solve your everyday professional problems. And if
these examples aren't enough, we give you a

complimentary one-year subscription to QuestalkT\
our hands-on Simplex applications magazine.

System integrators and consultants, beware! It you

are not using it's my Business with Simplex to solve
your problems, don't be surprised when more novice
programmers solve that complex math, industrial
engineering, or business problem faster. We think
that you can cut your concept-to-development time

by an order of magnitude!

it's my Business (includes it's my Editor) - $695.00

it's my Business Demo Disk - $20.00

it's my Editor $100.00.

Quest Research software is available through your local computer store or through mail
order from Quest Software Corporation at (2051 53'1-HOHB. :i()3 Williams Avenu«.

Huntaville, At. 35801.

Value athled realtors unii doabrs plnas.! contact Quust Regard!. Inrorporatud at

(DOOj SfiH-UOBH. :t()3 Williams Avenue, Himtsville, AL. :>5H<J1.

■TM

Quest Research Inc.
S Macintosh is a trademark of Apple Corporation, it's my Busine**. its wV Word, B"a my Graphics,

imptftX. MouSim. Quests, and Iho Quest lags arc trademarks ot Quest fesenrcli. Incorporated.

CIRCLE 55 ON READER SERVICE CARD

HERE TOMORROW
When buying a computer, you can't limit yourself
to just satisfying today's needs. The best value in
a system comes from its productivity... both for
today and tomorrow. CompuPro's System 816™
computer has that value. With all the power and
capacity to handle your needs now and down

the road.

System 816's longevity stems from top quality

components ... high storage capacity ... the flex

ibility to handle a large variety of applications ...

and the speed to get the job done fast. Upgrading

is easy, and when it's time to expand from single to
multi-user operation, it's as simple as plugging in

boards and adding terminals. Your system grows as

you grow.

CompuPro also provides a library of the most

popular software programs with your system and

because it's CP/M:° based, you have more than

3,000 other programs to choose from.

Even our warranty is for today and tomorrow. It

spans 365 days — and includes the additional se

curity of Xerox Americare™on-site service nation

wide for designated systems/

What's more, CompuPro is one company you

can count on to be around tomorrow. For more than
ten years we've been setting industry standards,
increasing productivity and solving problems.

For a free copy of our business computer

buyer's primer, and the location of the Full Service
CompuPro System Center nearest you, call (415)

786-0909 ext. 206.

CompuPro's System 816. The computer that's

just as essential tomorrow as it is today.

ompuPro
AGODBOUTCOMPANY

3506 Breakwater Court, Hayward, CA 94545

'Available from Full Service CompuPro System Centers and participating

retailers only.

System 816 and The Essential Computer are trademarks of CompuPro.

CP/M is a registered trademark of Digital Research Inc. Americare is a

trademark of Xerox Corporalion.

System 816 froni panel design shown is available from Full Service

CompuPro System Centers only. ©1984 CompuPro

The Essential Computer
CIRCLE 12 ON READER SERVICE CARD

