
COMPUTER $2.95

LANGUAGE
TTTT" ......M»M OCTOBER 1984
VOLUME 1, NUMBER 2

THE EVOLUTION
OF ZCPR

} A PERSONAL VISIT WITH
DONALD KNUTH

BATCH-A POWERFUL
IBM "LANGUAGE"

COMPUTER LANGUAGE
NOW ON COMPUSERVE!



WEVE GOT YOUR PACKAGE!!

We offer you the most flexible, cost efficient means of introducing your
programming staff to the Ada Language. You can choose the level of

Support you need, when you need it! These Janus/Ada packages are
customer-tested and available now.. .

(C-Pak) Introductory Janus/Ada Compilers

(D-Pak) Intermediate Janus/Ada Systems

(S-Pak) Advanced Janus/Ada Systems

(P-Pak) Janus/Ada Language Translators

Janus/Ada "Site" Licenses

Janus/Ada Source Code Licenses

Janus/Ada Cross Compilers

Janus/Ada Maintenance Agreements

Coming Soon: New Computer and Operating Systems Coverage

Selected Janus/Ada packages are available from the following:

National Distributors International Distributors

Westico, Inc.

25 Van Zant St.

Norwalk. CT 06855

(203) 853-6880

Soft-Net

5177 Richard, Suite 635

Houston, TX 77056

(713) 933-1828

AOK Computers

816 Easley St., Suite 615

Silver Springs, MD 20910

(310) 588-8446

Micronix

11 Blackmore St.

Windsor 4030

QLD. Australia

(07) 57 9152

Progesco

155,rue du Fauburg

St. Denis

75010 Paris

(1) 205-39-47

Trinity Solutions

5340 Thornwood Dr., Suite 102

San Jose, CA 95123

(408)226-0170

Compuview Products, Inc.

1955 Pauline Blvd., Suite 200

Ann Arbor, MI 48103

(313) 996-1299

Lifeboat of Japan

S- 13-14, Shiba

Minato-Ku

Tokyo 108 Japan

03-456-4101

CopV..ghl 1983 RH Softer

OFTWARE, INC.

P.O. Box 1512 Madison, Wisconsin 53701

(608) 244-6436 TELEX 4998168

CIRCLE 58 ON READER SERVICE CARD

specialists in state of the art programming



This is THE PASCAL COMPILER

You've Been Hearing About

VERSION 2.0

"It's almost certainly better

than IBM's Pascal for the PC...

Recommended."

Jerry Pournelle

Byte, May 1984

49.95
'If you don't have CP/M [for

your Apple], Turbo Pascal is

reason enough to buy it."

Cary Ham

Softalk Apple, May 1984

"If you have the slightest interest in Pascal... buy it."

Bruce Webster, Softalk IBM, March, 1984

And Now It's Even Better

Than YouVe Heard!
• Windowing (IBM PC, XT, jr. or true compatibles)

• Color, Sound and Graphics Support (IBM PC, XT, jr. or true compatibles)

• Optional 8087 Support (available at an additional charge)

• Automatic Overlays

• A Full-Screen Editor that's even better than ever

• Full Heap Management—via dispose procedure

• Full Support of Operating System Facilities

• No license fees. You can sell the programs you write with Turbo Pascal without extra cost.

Yes. We still include Microcalc . . . the sample spreadsheet written with Turbo Pascal. You can study the

source code to learn how a spreadsheet is written . . . it's right on the disk.* And, if you're running Turbo

Pascal with the 8087 option, you'll never have seen a spreadsheet calculate this fast before!

*Excepi Commodore 64 CP/M.

Order Your Copy of TURBO PASCAL8 VERSION 2.0 Today

For VISA and MasterCard orders call toll free: 1-800-255-8008

In California: 1-800-742-1133

(lines open 24 hrs, 7 days a week) Dealer &. Distributor Inquiries Welcome 408-438-8400

Choose One (please add $5.00 for ship

ping and handling for U.S. orders. Shipped

UPS)

Turbo Pascal 2.0 $49.95 + $5.00

Turbo Pascal with 8087 support

$89.95 + $5.00

Update (1.0 to 2.0) Must be accom

panied by the original master $29.95

+ $5.00

Update (1.0 to 8087) Must be

accompanied by the original master

$69.95 + $5.00

Check

VISA

Card//: _

Exp. date:

Money Order

Master Card

BORIPHD
D) INTERNATIONAL

Borland International

4113 Scotts Valley Drive

Scotts Valley. California 95066

TELEX;172373

My system is: 8 bit . . . 16 bit

Operating System: CP/M 80

CP/M 86 MS DOS PC DOS-

Computer:

Disk Format: ———

Please be sure modd number & format ate correct.

Name:

Address:

City/State/Zip:

Telephone:

CIRCLE 6 ON READER SERVICE CARD

California residents add 6% sales tax- Outside U.S.A. add S15.00 (If

outside of U.S.A. payment must be by bank draft payable in the U.S.

and in U.S. dollars.) Sorry, no C.O.D. or Purchase Orders. F20



WHY DEBUG YOUR PROGRAM IN

ASSEMBLY LANGUAGE WHEN

YOU WROTE IT IN

ONE OF THESE...

ATRON Announces

Source Level Software

Debugging

Without source level debugging, the

programmer must spend time mentally

makinc translations between assembly

language and the C. PASCAL, or

FORTRAN source code in which the

program was written. These tedious

translations burn up valuable time

which should be spent making critical

product schedules. The low level hex

and symbolic debuggers available

today are superceded by ATRON'S

solution — Source Probe.

HOW TO SINGLE STEP YOUR

SOURCE CODE AND KEEP

CRITICAL DATA IN VIEW

With Source Probe, you can step your

program by source code statements.

While stepping, a window which you

define can display critical high level

data structures in your program. The

next several source code statements

are also displayed to give you a pre

view of what the program will do

HOW TO DISPLAY DATA IN

MEANINGFUL FORMATS

Why look at program data in hex when

you defined it to be another data type

in your program. Source Probe pro

vides a formated print statement lo

make the display of your variables

look like something you would

recognize. You can specify data

symbolically too.

FIND A BUG - FIX IT RIGHT

NOW

Source Probe provides an on-line

text editor to allow you to log program

corrections as you find them while

debugging. With on-line display and

editing of source files, the time lost

printing and looking through program

listings ^^^M^^^^^,,
can be M

elimina- £
ted.

SNAP SHOT

OF REAL TIME

PROGRAM EXECUTION -

BY SOURCE CODE !

When Source Probe is running on

ATRON'S PC PROBE hardware, the

real time execution of the program is

saved. You can then view your source

code as it executed in real time —

including all the changes the program

made to your data variables.

HOW TO

FIND A BUG WHICH

OVERWRITES MEMORY

When running on PC PROBE, the

Source Probe can trap a bug which

overwrites a memory location.

Because complex pointers are

normally used in high level language

programming, this bug occurs fre

quently and is very difficult to find.

BULLET PROOF

DEBUGGER

What good is a debugger that can be

wiped out by an undebugged pro

gram? With Source Probe running on

PC PROBE, the software is write

protected and cannot be changed.

ATRON PROVIDES THE

DEBUGGING TOOLS WHICH

FIT YOUR PROBLEM

PC PROBE - A hardware aid

to symbolic

software debugging

SOFTWARE PROBE - A symbolic
debugger, runs

without PC PROBE

SOURCE PROBE — A source level

debugger, versions run with

or without PC PROBE

PERFORMANCE AND

TIMING ANALYZER - For finding

where your program

spends its time

WE HAVE HUNDREDS OF

HAPPY CUSTOMERS

ATRON produced the first symbolic

debugger for the PC and the first

hardware aided debugging tool — PC

PROBE. We have hundreds of happy

customers who have made their

schedules because of ATRON

debugging tools. Why waste more

time — call us today1

20665 FOURTH STREET

CIRCLE 4 ON READER SERVICE CARD

a debugging company

SARATOGA. CA 95070 • (408) 741-5900

COMPUTER LANGUAGE*OCTOBER 1984



COMIPUTiR

LANGUAGE
CL PUBLICATIONS

ARTICLES
COMPUTER

An Implementation Demonstrating C Portability
by David Harry, Ph.D.

C is often claimed to be the best language for writing code to be moved

from one processor to another. Using one particular programming task

as an example (writing a set of symbol table utilities that implement

non-standard data structures), this author explores some of the realities
involved in writing portably.

Batch—A powerful IBM "language"
by Darryi E. Rubin

Many IBM PC owners have yet to discover that along with their

PC-DOS 2.0 comes a powerful utility called Batch. Like many well

established computer languages, this utility can perform procedure
calling, recursion, argument passing, string manipulation, looping,

case selection, and even file and console I/O.

The Evolution of ZCPR, Part I
by Richard Conn

Over the past few years, CP/M programmers have been replacing the

Console Command Processor (CCP) on their systems with a more
powerful CCP replacement called ZCPR. In Part I of this two-part series,
the founder of ZCPR— Richard Conn —reveals many of the powerful

modifications he's made in the latest version, 3.0.

MNSNUS (or. Using Mnemonic Atoms in
Symbolic Naming)
by Ron Gutman

When writing long, complex code, it's often helpful to design a

systematic method for naming things like variables and subroutines.

The author of this article demonstrates a useful technique he's

developed for structuring and organizing all user-defined symbolic

names, regardless of the language used.

Low-level Assembly Interface on the IBM PC
by Jeri Girard

Improve the speed and memory utilization of BASIC on the IBM PC by

implementing some common assembly subroutines in a machine-level

interface.

21
LANGUAGE

31

37

43

47

DEPARTMENTS
Editor's Notes

Reader Feedback

Back to the Drawing Board

Designers Debate
Creative programming vs. disciplined design

ComputerVisions

A personal visit with the legendary Donald Knuth

Public Domain Software Review

Exotic Language of the Month Club
John Starkweather discusses the language he founded, PILOT.

The Code Swap Shop

Software Reviews
Telesoft's Ada, Volition's Modula-2, Catspaw's SNOBOL4 +

Advertising Index.

5
7

11

13

17

51

55

63

64

80



We Do

Windows! FORGET
OPTIONAL

8087
SUPPORT

EVERYTHING YOU THOUGHT YOU KNEW ABOUT PROGRAMMING IN BASIC.

introducing:

BefterBASIC offers;

Support of large memory (to 640K}.

Extensibility [Make your own BASIC!!]

Speed. Sieve of Erastosthenes Benchmark:

- BetterfiASIC: 31.9 seconds.

- IBM PC BASIC: 191.1 seconds.

Program Block Structures.

User defined Procedures and Functions.

Local and Global Variables.

Shared Variables.

Recursion.

Argjment type validation.

Optional arguments

Arguments passed by-value or by-address.

Separately compiled program Modules.

Simple interface to Assembly Language

Procedures.

Support for OEM hardware through

extensibility.

Useful set of Data Types:

- Byte. Integer

- Real (variable precision BCD]

Ideal tor Dusme&s matn

- String [up to 32768 characters)

- Record Variables & Structures

- N-dimensional Arrays of any type

- Arrays of Arrays

■ Pointer [of ariy type)

BASIC
"It combines the best

points of interpreted Basic,

Pascal, Forth and Assem

bler... It's the first piece of

software I'd spend my own

money on."

Technical Editor

PC Tech Journal

We are so sure you will like Better-

BASIC, we will give you a 30-day

money-back guarantee. Order

BetterBASIC now!

BelterBASIC: $199.00

8087 Module: S99.00

Not convinced? Then try the Better-

BASIC Sample end you will find that

BetterBASIC is truly a major break

through in computer programming.

Sample disk: S10.00

General Information:

Interactive programming language based on an

incremental compiler.

Syntax checked immediately on entry, with

concise error reporting.

Built-in Screen Editor allows on-line editing.

Full IBM Graphics Communications Support

Built-in Linker for separately compiled program

Modules.

Built-in Cross Reference Lister

Built-in WINDOWS support!!

8087 math support

Computer Requirements:

IBM PC, IBM PC/XT or compatible.

PC/DOS 1.1, 2.0. 2.1

192K to 640K memory

Usable on plain MS-DOS machines with reduced

functionality,

(no Editor, Graphics or Windows)

OEM & Dealer Inquiries Invited.

BetterBASIC is a trademark of Summit Software

Technology, Inc.

IBM PC, IBM PC'XT and PC DOS are trademarks of Inter

national Business Machines Corp.

MS-DOS is a trademark of Microsoft Corp.

CALL YOUR DEALER OR SUMMIT SOFTWARE AT 617-235-0729

Summit Software Technolo3y " P.O. Box 99 Babson Park Wellesley, MA 02157
MasteiCharge. Visa. P.O.. Checks.

Money Orders and CO D. accepted

CIRCLE 62 ON READER SERVICE CARD

*UNIX System III POWER and sophistication are yours.

Let THE SOLUTION turn your micro into all you

dreamed it could be, bringing the Ultimate

programming environment as close as

your modem. Just a local call
from over 300 cities

nationwide via Telenet.

EXPANSIVE SOFTWARE DEVELOPMENT FACILITIES including Language and Operating System design.
• LANGUAGES: C, Fortran 77, RATFOR, COBOL, SNOBOL, BS, Assembler + Artificial Intelligence

programming via LISR

• USENET Bulletin Board System—800 + international UNIX sites feeding over 190 categories,
typically bringing you more than 160 new articles per day.

• Interuser and Intersystem mail + 'chat' capability.

'■ ^ • UNIFY: Sophisticated data-base management system.

" UNIX & System enhancements from U.C. Berkeley and Korsmeyer Electronic Design Inc.
• Online UNIX manuals + Expert consultation available.

• SOLUTION-MART: Hardware/Software discount shopping database.
• LOW COST and FAST response time.

(as low as $8.95 hr. connect time + $.05 cpu sec. non-prime)

• $24.95 = 1 hr. FREE system time + SOLUTION News subscription + BYTE
BOOK (Introducing The UNIX System 556 pp.).

Payment via VISA or Master Card
—ELECTRONIC DESIGN, INCjF
CIRCLE 34 ON READER SERVICE CARD

UNIX Is a trademark of Bell Labs.

5701 Prescott Avenue

Lincoln, NE 68506-5155

402/483-2238

10a-7p Central



Editor's Notes COMPUTER

LANGUAGE

w
'e need a bigger

mailbox! When

we started

COMPUTER LANGUAGE six months ago.

we had absolutely no idea chat reader

response would be so enthusiastic and

supportive. I'd like to take this brief

opportunity to thank all of you who wrote

in with ideas, comments, and criticisms

about our new magazine.

With this issue. COMPUTER LANGUGE

goes monthly, incorporating all of the

feedback we've received since the premier

issue. Now that we know more accurately

what readers want to see in COMPUTER

LANGUAGE, we can begin to focus on

those technical issues and trends that you

have asked us to cover.

The big news this month is that you can

now participate in an interactive, elec

tronic COMPUTER LANGUAGE forum by

dialing into the CompuServe Information

Service and typing "GO CLM" (see

advertisement on page 50).

The possibilities are endless! We're

very excited about the concept of provid

ing you with more information than any

other printed magazine can offer. In addi

tion to an elcctronic-niail-bascd reader

forum. CompuServe gives us a way to

start the largest public domain code swap

ping service ever, and all the material that

couldn't fit in the magazine (like product

reviews and program listings) will be

there waiting for you.

We hope you'll use this electronic

medium to keep us honest. We need and

enjoy your feedback.

The COMPUTER LANGUAGE BBS

(415-957-9370) has already become our

own mini-CompuServe for those people

who don't mind the long distance tele

phone call. So far, there are over 1.200

users on the system, answering their

own electronic mail and downloading

files. We'll soon be adding a hard disk to

the system and will then have even more

room for public domain code, software

reviews, etc.

One special feature this month is

COMPUTER LANGUAGE'* visit with

Donald Knuth—the world famous Stan

ford University computer science pro

fessor and a man whose ideas have helped

shaped our understanding of program

ming as we know it today.

Regarded as the world's uip scholar in

computer science. Donald Knuth is also

an extraordinary mathematician, accom

plished musician, composer, teacher,

and inventor. Computer scientists today

agree that Knuth's legendary Vw An of

Computer Programming scries (published

over 15 years ago) introduced order,

clarity, and depth to a young, fragmented

discipline.

In this month's ComputerVisions depart

ment. Knuth reveals some of his personal

and professional thoughts about program

ming and life in general.

Next month. COMPUTER LANGUAGE

visits with Gary Kildall, head of Digital

Research Inc. and designer of the CP/M

operating system.

Many people have written in suggesting

that COMPUTER LANGUAGE sponsor a

column for people who want to distribute

programs and source code they've writ

ten. The new Code Swap Shop department

is a place for people to show off their code

to the readers of COMPUTER LANGUAGE.

If you've written a program that you

would like to sec distributed through our

account on CompuServe or through our

bulletin board computer, write us a note

describing what your program is about and

why other readers may be able to use it.

Once again, my hearty thanks for all the

reader support we've gotten in the past

three months. If you'll keep writing, we'll

keep listening.

Craig LaGrow

Editor

EDITOR

Craig LaGrow

MANAGING EDITOR
Regina Starr Ridley

TECHNICAL EDITOR

John Halamka

EDITORIAL ASSISTANT
Hugh Byrne

CONTRIBUTING EDITORS

Burlon Bhavisyat,

Tim Parker, Ken Takaro

ADVERTISING SALES
Jan Dente

CIRCULATION COORDINATOR

Renato Sunico

ART DIRECTOR

Jeanne Schacht

COVER PHOTO

Dow Clemen! Pholography

PRODUCTION/ART

Anne Doering

TECHNICAL CONSULTANT

Addison Sims

MARKETING CONSULTANT
Sieve Rank

ACCOUNTING MANAGER

Lauren Kolkslein

CIRCULATION FULFILLMENT

Vincenl Ridley, Mary Belh Fausiine

PUBLISHER

Carl Landau

COMPUTER LANGUAGE is published monthly by COM

PUTER LANGUAGE Publishing lid , 131 Towmend St.,

Son Froncisco, CA 94107. (415) 957-9353.

Advertising: For information an ad rates, deadlines, and

placemen!, contact Carl landau or Jan Denfe of (4)5)

957-9353, or write to: COMPUTER LANGUAGE, 131

Townsend St., San Francisco, CA 94107.

Editorial: Please address all letters and inquiries fo.- Craig

'□Grow, Editor, COMPUTER LANGUAGE, 13! To*nsend

St., San Francisco, CA 94107.

Subscriptions: Contact COMPUTER LANGUAGE, Sub

scriptions Dept., 2443 Fillmore St., Suite 346, Son fron

cisco, CA 94115. Singfe copy price: S2.95. Subscription

prices.$24.00 per year JUS.); $30.00per year (Canada

and Mexico). Subscription prices for outside the U.S.,

Conoda, and Mexico: S36.00 (surface mail), $5400 fair

mail) —U.S. currency ortly. Please allow si* weeks for new

subscription service to begm.

Postal information; Second-c/oss postage rate is pending

at San Francisco, CA ond additional mailing offices.

Reprinti: Copyright 1984 by COMPUTER LANGUAGE

Publishing Lid. All rights reserved. Reproduction of mate

rial appearing in COMPUTER LANGUAGE is forbidden

wilhoul written permission.

Change oladdress: Please allow six weeks lor change of

address to take effect. POSTMASTER: Send change ofad

dress (Form 3579} to COMPUTER LANGUAGE, 13)

Townjend St., San Francisco. CA 94107.

COMPUTER LANGUAGE is □ registered trademark

owned by the mogoiine's parent company, CL Publica

tions. AlVmarena/published in COMPUTER LANGUAGE

is copyrighted c 1984 by CL Publications, Inc.



THE FORTH SOURCE

MVP-FORTH

Stable - Transportable - Public Domain - Tools

You need two primary features m a software development package a

stable Operating system and the ability to move programs easily and

quickly to a variety of computers MVP-FORTH gives you both these

features and many extras. This public domain product includes an editor,

FORTH assembler, tools, utilities and the vocabulary (or the best selling

book "Starting FORTH". The Programmer's Kit provdes a complete

FORTH for a number of computers. Other MVP-FORTH products will

simplify the development of your applications.

MVP Books - A Series

D Volume 1, All about FORTH by Haydon. MVP-FORTH

glossary with cross references to fig-FORTH, Starting FORTH

and FORTH-79 Standard. 2n" Ed. $25

Z Volume 2, MVP-FORTH Assembly Source Code. Includes

CP/M® . IBM-PC* , and APPLE8 listing for kernel $20

□ Volume 3, Floating Point Glossary by Springer

□ Volume 4, Expert System with source code by Park

□ Volume 5, File Management System with interrupt security by

Moreton $25

MVP-FORTH Software - A Transportable FORTH

Z MVP-FORTH Programmer's Kit including disk, documen

tation. Volumes 1 5 2 of MVP-FOPTH Senes (All About

FORTH, 2na Ed. & Assembly Source Code), and Starting

FORTH. Specify O CP/M, □ CP/M 86. CCP/M + , DAPPLE,

Z IBM PC. □ MS-DOS. G Osborne, D_Kaypro, D H89/Z89.
D Z100, D Tt-PC, D MicroDecisions. C Northstar.

^ 3 Compupro. Z Cromenco, □ DEC Rainbow. □ NEC 8201,

^ 3 TRS-80/100 $150

Z MVP-FORTH Cross Compiler for CP/M Programmer's Kit.

Generates headerless code for ROM or target CPU $300

□ MVP-FORTH Meta Compiler for CP/M Programmer's kit. Use

lor applicatons on CP/M based computer. Includes public

domain source $150

Z MVP-FORTH Fast Floating Point Includes 9511 math chip on

board with disks, documentation and enhanced virtual MVP-

FORTH for Apple II, II+, and He. $450

[ . MVP-FORTH Programming Aids for CP/M. IBM or APPLE

Programmer's Kit Extremely useful tool for decompiling,

callfindmg, and translating. $200

D MVP-FORTH PADS {Professional Application Development

System) for IBM PC. XT or PCjr or Apple II. II+ or He. An

integrated system for customizing your FORTH programs and

applications. The editor includes a bi-directional string search

and is a word processor specially designed for fas;

developmeni. PADS has almost triple the compile speed of

most FORTH's and provides fast debugging techniques.

Minimum size target systems are easy with or without heads.

Virtual overlays can be compiled in object code. PADS is a

true professional development system. Specify

Computer. $500

^ 0 MVP-FORTH Floating Point & Matrix Math for IBM or

Apple $85

^ G MVP-FORTH Graphics Extension for IBM or Apple S65

t#a MVP-FORTH MS-DOS file interface for IBM PC PADS $80

gH D MVP-FORTH Expert System for development of knowledge-

based programs for Apple. IBM, or CP/M. S100

FORTH CROSS COMPILERS Allow extending, modifying and compiling
for speed and memory savings, can also produce ROMable code.

Specify CP/M. 8086.68000, IBM, Z80, or Apple II. II + S300

FORTH COMPUTER

Z Jupiter Ace $150

Ordering Information: Check. Money Order (payable to MOUNTAIN VIEW PRESS.

INC }. VISA. MasierCard, American Express. COD'S $5 extra Minimum order $15

No billing or unpaid PO's California residents ado" sales tan Shipping costs in US

included in price Foreign orders, pay m US funds on US Dank, include lor handling

and snipping by Air $5 tor each item under S25. $10 lor each item between $25 and

199 and S20 lor each item ouer Si 00. All prices and products sut|ecl to change or

withdrawal withoul notice. Single system andtor single user license agreemenl

required on some products.

FORTH DISKS

FORTH with editor, assembler, and manual

APPLE by MM. 83

APPLE by Kuntze

ATARI' valFORTH

: CP/M- by MM, 83

□ HP-85 by Lange

Z HP-75 by Cassady

."" IBM-PC^ by LM. 83

$100

$90

$60

$100

$90

$150

$100

$100

$100

$250

': ZBOby LM. 83*

8086/88 by LM. 83

68000 by LM, 83 ^
n VIC FORTH by HES, VIC20

cartridge $50

□ C64 by HES Commodore 64

cartridge $60

□ Tlmex by HW S25

Enhanced FORTH with: F-Floating Point, G-Graphics, T-Tutorial,

S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking, X-Other

Extras, 79-FORTH-79. 83-FORTH-83.

i Z APPLE by MM.

F. G, &83 $180

□ ATARI by PNS, F,G, & X. $90

I 3 CP/M by MM. F & 83 £1 40

; : NOVA by CCI 8" DS/DDS175

Z Apple, GraFORTH by I $75

u Multi-Tasking FORTH by SL,

CP/M. X S 79 $395

Z TRS-80/I or III by MMS

F. X. &79 $130

Q Tlmex by FD. tape G,X,

8.79 $45

a Victor 9000 by OE.G.X $150

C64 by ParSec. MVP. F. 79 .

£** G & X $96

D FDOS for Atari FORTH's $40

Extensions for LM Specify

IBM. Z80. or 8086

Cl Software Floating

Point 5100

D 8087 Support

(IBM-PC or 8086) S!00

D 9511 Support

(280 or 8086) $100

□ Color Graphics

(IBM-PC) £100

Z Data Base

Management $200

_ fig-FORTH Programming Aids for decompiling, callfinding,

and translating. CP/M. IBM-PC, Z80, or Apple

FORTH MANUALS, GUIDES & DOCUMENTS

$200

£*

I ALL ABOUT FORTH by

Haydon. See above $25

FORTH Encyclopedia by

Denck & Baker $25

□ The Complete FORTH by

Wmfield $16

□ Understanding FORTH by

Reymann S3

."; FORTH Fundamentals,

Vol I by McCabe $16

C FORTH Fundamentals,

Vol. II by McCabe $13

Z FORTH Tools, Vol.1 by

Anderson & Tracy $20

G Beginning FORTH by &
Chirlian $17

FORTH Encyclopedia

Pocket Guide

□ And So FORTH by Huang. A

college level text. $25 r

I. FORTH Programming by

Scanlon $17 —

□ FORTH on the ATARI by E.

Floegel $8

Starting FORTH by Brodie

Best instructional manual

available (soft cover) $18

□ Starting FORTH (hard

cover) $23

D 68000 fig-Forth with

assembler $20

D Jupiter ACE Manual by

Vickers $15

□ 19B0 FORML Proc. $25

D 1981 FORML Proc 2 Vol S40

□ 1982 FORML Proc. $25

□ 1981 Rochester FORTH

Proc. $25

Z 1982 Rochester FORTH

Proc. $25

_: 1983 Rochester FORTH

Proc. $25

□ A Bibliography ot FORTH

References, 1st. Ed. $15

The Journal of FORTH

Application & Research

□ Vol. 1, No. 1 $20

VoL1, No. 2 $20

□ A FORTH Primer $25

Threaded Interpretive

Languages $23

METAFORTH by

Cassady S30

□ Systems Guide to fig-

FORTH $25

□ Invitation to FORTH $20

I : PDP-11 User Man. $20

LJ FORTH-83 Standard $15

□ FORTH-79 Standard $15

□ FORTH-79 Standard

Conversion $10

□ Tiny Pascal fig-FORTH $10

NOVA fig-FORTH by CCI

Source Listing S25

D NOVA Dy CCI Users

Manual $25

$15. . Installation Manual for fig-FORTH,

Source Listings of flg-FORTH, for specific CPU's and computers. The

Installation Manual is required for implementation. Each $15

□ 1802 □ 6502 :: 6800 □ AlphaMicro

' 8080 P 8086/88 □ 9900 G APPLE II

C PACE □ 6809 G NOVA G PDP-11/LSI-11

68000 Eclipse VAX G Z80 Z IBM

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW, CA 94040 (415)961-4103

CIRCLE 43 ON READER SERVICE CARD

COMPUTER LANGUAGE ■ OCTOBER l<?B4



FEEDBACK

A FORTRAN sort

Dear Editor:

Congratulations on an excellent first

issue. As the vast majority of the material

is worth reading, I won't use up space

here trying to be too specific.

Richard Larson's article prompted me

to follow up some of my thoughts on

sorts. Certainly, his random number tests

arc fairer than previous articles, which

are rigged to support the author's favorite

algorithm. The random number gener

ators supplied on many computer systems

are questionable when used to support

such comparisons (another subject for an

article!).

I have tested sorts by odd tricks

such as initializing the data tox(i) =

imfsin(float(i))), which gives a repeatable

and possibly more representative test

datum.

Larson's version of the Quicksort is the

first readable one I have seen published

and will save your readers some anguish.

Standard FORTRAN Quicksort Partition

(C uses scratch array TEMP for temporary copy of segment)

Z = X(I)

LEFT = 1

RIGHT = J - I + 1

DO 1 KP = I , J

Y = X(KP)

IF ( Y .GT. Z ) THEN

TEMP(RIGHT) = Y

RIGHT = RIGHT - 1

ELSE

TEMP(LEFT) = Y

LEFT = LEFT + 1

ENUIF

1 CONTINUE

RIGHT = RIGHT +1-1

KT = 1

DO 2 KP = I , J

X(KP) = TEMP(KT)

KT = KT + 1

2 CONTINUE

C Now X and Right are same as Larson's

Second Modification of Quicksort Partition replace DO 1

for< kp=2 ; kp<=j ; kp = kp+1 ){

Y = xjkp]
temp[left] = y

temp[right] = y

incleft = y <= z

left = incleft + left

right = incleft - 1 + right

}
temp[right] = z

However, it is not designed for a

FORTRAN-oriented machine, which

most fast computers are. The main virtue

is the ability to sort in place, which is

done at the expense of code length. I have

enclosed a two-step modification of the

partitioning algorithm to show some alter

native techniques (Listing 1).

My code performs redundant copies

that are later overwritten by the correct

data. Elimination of branching allows

"optimizing" compilers and pipelining

hardware to go to work. In the absence of

these factors, the code will be signifi

cantly shorter than the original version

but may take as much as 7% longer to run.

Yes, we do need sorts in FORTRAN pro

grams and they work!

Tim Prince

Marblehead, Mass.

Thanks and good luck

Dear Editor:

I do not remember ever writing a letter

to the editor before, but I really wanted to

say "thank you" for your first issue. I

receive more than a dozen computer mag

azines. I write articles for two or three of

them, but I have never before picked up a

magazine and read it from cover to cover.

Every article in your premier issue

compelled me to read it. I wish you the

greatest of success and hope that success

does not somehow spoil you. Keep it up!

Allen A. Watson

Hackensack, N.J.

Forth rebuttal

Dear Editor:

Your column Designer's Debate: Forth

vs. C compels me to write. While the pro

ponents and moderator presented a great

deal of information very well, some fun

damental issues were missing, vague,

and/or incorrect.

I've been a productivity proponent for

my 15 years with computers. I've tried

both languages as you suggested, as well

as most other high-level languages, and

numerous assemblers. A thrust of the

modern languages (Pascal, Modula-2,

Ada, UNIX. andC) is the detection of

Listing 1.



We're looking
for a few good
subsc ers.

Computer Language is

written for people who can

program in two or more

computer languages.

Let's face it, that leaves out most

people. Programming is a rigor

ous, intellectual discipline and

Computer Language magazine

is the first and only publication

dedicated exclusively to this field.

Your source for the latest

technical skills and methods

used by software specialists.

We cover the major develop

ments in the software design field,

from theory to implementation.

Computer Language focuses on

the most important and useful

language design information

available in the fast-moving

microcomputer industry.

Written for the person who

takes computing seriously.

We're talking about you — the

experienced software author,

programmer, or engineer who

routinely programs in two or more

high-level languages. A person

who understands the creative

nature of programming and ap

preciates the beauty of efficient

code in action.

COMPUTER

LANGUAGE will constantly

challenge your abilities.

The foremost industry experts will

discuss: • Algorithmic Approaches

to Problem Solving • Language

Portability Features ■ Compiler

Designs ■ Utilities ■ Artificial

Intelligence ■ Editors ■ New

Language Syntax ■ Telecommuni

cations ■ Language Selection

Criteria ■ Marketing Your Own

Software ■ Critical Software &

Hardware Reviews

Plus, columnists and reader

forums that will put you in touch

with the latest developments in

the field.

Send to:

COMPUTER

LANOM3E
2<M3 Fillmore Street Suite "346

San Francisco. CA94115

YES! Start my charter subscription to

Computer Language. My 1 year charter

subscription is just S-19 95, a 515 savings

under the single copy price. Guarantee:

can cancel my subscription at any

lime fora full refund.

D $19,95 U Bill me.

Payment Enclosed



obviously incorrect programs. These lan

guages validate a program by detecting

errors just inserted by an on-line text edi

tor. Thus errors are found immediately

upon input, near the beginning of the

project.

This thrust is misguided. There are

more costly errors which these languages

do not address.

More can be accomplished by avoiding

time-wasters which crop up near project

deadlines. When a project is late, testing

is always sacrificed to more immediate

matters, and quality suffers. In most lan

guages, changing the specifications or

package program can waste months, as

can ill-conceived interfaces or mis

understood operating software. These

problems are better addressed by Forth.

Why Forth? It is a clear channel of ade

quate expressive power. It is flexible. It is

effective communication.

Forth fits the language to the problem.

It is an extensible language, and various

layers of the implementation can each be

written in an appropriate notation. The

notation can be optimized for readability

and conformancc to existing documen

tation. By demonstrating the top control

code and other areas of interest with the

user, project specifications can be agreed

upon early; the project looks complete lo

the user before most of the work is done.

A pervasive benefit of Forth is speed.

Development speed, final system speed,

debugging speed, and response time

speed. These all contribute to hardy

interfaces. Interfaces can be discussed

and tested from the beginning. During a

meeting or review, the program can some

times be changed on the spot to forge

agreement.

Forth stimulates testing, retesting. and

automated testing. Forth doesn't waste

time, doesn't require short lunch breaks

or several coffee breaks. In this respect,

C is no better than FORTRAN. COBOL.

or Pascal. They all take noticeable compile

time. They all run only one program,

lacking Forth's ability to combine or

blend programs as needs dictate. Forth's

flexibility stands on two legs: speed and

the ability to blend programs.

A programmer who understands one

portion of a Forth system can decipher the

rest. One uniform language is employed

for source code, copy statements, editor,

preprocessor, job control language, linker

control, automated test control, parameter

libraries, symbolic debugger, device

drivers, macro assembler, and operating

system. Of course, when Forth is run on

top of some host operating system, the

host is a factor.

The Forth language is standard. The

"different" versions of Forth are actually

the same: FIG. PolyForth of Forth Inc..

Forth-79, and Forth-83. They differ in

their adaptation to different environ

ments, such as varying sets of underlying

operating system features or applications.

The translation from one language version

to another is practical, manageable,

and straightforward, just like LISP trans

lation. This is an advantage of exten

sibility. Future tinkering with the lan

guage may be an advantage to existing

users because they won't be forced

through the costly conversion process

the c5BOL shop's face.
For example, I recently got a modem

for my newest computer and began to

transfuse information with an associate.

We each keyed in and debugged a protocol

of only nine lines of code. Your system

would be the same, after making file

assignments forAKEY, PR1NT2, and

ME. Being Forth to Forth, we quickly

agreed to send blocks of 1,024 bytes. It

was useful to take each line of code, just

one definition or word, and test it exhaus

tively as it was entered. This verified the

integration and understanding from the

beginning. Within half an hour we were

sending Forth screens of programs back

and forth.

After lunch, my associate called back

with a more elaborate protocol which

allowed for unattended operation. It

loaded into my machine without great

effort. Now cither machine can be con

trolled remotely, or control the other, or

make remote file or program requests, or

be a file server. Very standard, runs under

Forth multitasking, and so on.

In Designer's Debate last month, it was

noted that C allows the programmer to

specify register optimizations. C pro

grammers have observed improved pro

gram speed with this feature. This type of

optimization . . . is regaining favor.

Forth supports a whole spectrum of

optimizations. It is a myth that Forth pro

grams are inherently slow. When a pro

gram is nearly complete, and speed is the

issue, then maximum machine speed can

be crafted with a choice of documented

techniques, such as assembling those few

lines of code within inner loops. Forth

also supports local variables, either by

name or absolute stack location.

An important Forth advantage is its

development speed, and hence its ability

to deal with unknowns. UNIX and C

apply to fixed hardware configurations,

as on VAX or AT&T hardware. Forth

applies well to custom hardware or the

integration of boards from different man

ufacturers. Thus it can be found in

embedded controllers, instruments, auto

mated testing equipment, and spacecraft.

Forth screens seem incomprehensible

to some, but I believe screens are supe

rior. Screens encourage the creation of

small comprehensible programs. Each

screen can be accessed, compiled, or sur-

YOUR CODE MAY BE WASTING ITS TIME!

THE PROFILER™ CAN HELP . . .
• Statistical Execution Profiler • Time critical code optimization

• Works with any language • Abnormal code behavior tracking

• Completely configurable • Graphic presentation of results

• Up to 16 partitions in RAM/ROM • Easy to use menu interface

THE PROFILER is a software package which gives you, the programmer, a powerful tool for locating

time consuming functions in your code and allows you to performance tune your program. With

the THE PROFILER you can determine where to optimize your code for maximum benefit, then measure

the results of your efforts.

Using THE PROFILER, you can answer questions like:

Where is my program spending its time?

Why is my program so slow? What is it doing?

Is my progam I/O bound? CPU bound? Are data buffers large enough?
How much improvement did my changes make?

THE PROFILER is completely software based and consists of a system resident driver and a monitor
program. The memory partitions can range from 1 byte to 1 megabyte in size and can be anywhere

in the address space.

NO ADDITIONAL HARDWARE IS REQUIRED!

Requires an IBM PC or compatible system with a minimum 64k

and one drive.

THE PROFILER is available for S175.00 from DWB Associates or

ask your software dealer. To order or for more information, call
or write DWB Associates. VISA/MC accepted. Dealers welcome.

IBM is a trademark Ol IBM Corp. MS00S is a trademark ol Microsoft Corp.

THE PROFILER is a trademark ol DWB Associates.

00
dwb

Atcoollta*

P.O. Bo* 5777

Beaverion. OfftQon 97006

(503) 629-9645

CIRCLE 20 ON READER SERVICE CARD



8086/8

CP/M-86

MP/M-86

MS-DOS

TURBODOS

MEGABASIC™ reduces progrom

development time and memory

requirements dramatically, executes

up to 6 times foster than MBASIC

interpreter, is highly portable among

virtually all microcomputers, and

is supported by outstanding
documentation.

BENEFITS:

• Large Memory—Up to 1 Mb

programs and data.

• Fast execution—as fast as
mony compilers.

• Easy program development-
advanced TRACE and EDIT
functions.

• Rounding errors eliminated—

BCD arithmetic.
• Simpletouse—Nocomplicated

field statements.
• Source code protection—

"scramble" utility.

THE COMPLETE PACKAGE:
—Developmental version of MEGABASIC |

in precisions up to 18 digits.

—Run-time semi-compiler version.

—Compaction utility reduces program)

: size.

—Cross-reference generator thai lists all |
variables, arrays, subroutines, functions, etc.

—Function library with fast sorts, yes/no |

prompt routines, matrix manipulation and

many more routines ready to plug into your |
progams.

—Configuration program.

—350 page manual with more than 2,0001
index entries.

Complete package: $400

Dealer inquiries invited.
VISA or MasterCard accepted.

AMERICAN
PLANNING
CORPORATION
4600 Duke St.

Suite 425

Alexandria, VA 22304

1-800-368-2248

(In Virginia, 1-703-751-2574)1

veyed by the eye in a second. The editor

begins and responds in less than 1 sec.

Dala storage is provided for, as is a faster

editor, a file system, a fast idca-edit-

compile-test-think cycle, hence quick

product development.

Idon't know where I'd be without

Forth.

Gary Nemeth

Cleveland. Ohio

Keeping us honest

Dear Editor:

I really like your new magazine, but

we've been in the business an aggregate of

30 years and have seen magazines come,

get good, and then turn into expensive

books of advertising. So far, you've

thrown out the power incentive to us. the

readers, to keep you honest —we like thai.

This BBS is just one example of that kind

of incentive.

M. K. Sargent

New Jersey

A language junky

Dear Editor:

At last: a magazine for all us language

junkies! I thought your first issue was

great.

Keep it up and bring on the weird lan

guages (especially liked your SNOBOL

piece).

Doug Clapp

infoWortd

COBOL attack

Dear Editor:

I would like to say a few words about

Robert Wagner's article. "COBOL: Pride

and Prejudice."

Why do companies prefer COBOL.

Wagner asks? Could the answer simply be

that COBOL is the most maintainable lan

guage, based upon traditional prejudice.

and that it is the only language which

management knows?

Let us not forget that most of the DP

managers and others went through the

system when COBOL programs were on

punch cards. Wagner attempts to support

the maintainability theory by presenting

three programs written in COBOL. C.

and Forth.

COBOL programs may be easy to read

but that does not mean they are easy to

understand. I had 10 desk check the

COBOL program in the article twice

before I was able to understand what the

program was doing. Let us consider

something simple, the statement

ML'TIPLYA BYB. One would expect^

to be multiplied by B and the result stored

in A . This is the exact opposite of what

happens.

Wagner points with pride to the

statement:

MOVE ZEROSTO PRIME-COUNT,

FLAGS

and proclaims "aren't we clever and

fast?". I am not impressed. Observe the

same programming logic in APL:

PRIMECOUNT < - +/ FLAGS < -

8191SRO0

Now. in BASIC:

DIMFLAGS(8191)

where PRIMECOUNT has a default value

ofO.

In Pascal,

FILLCHAR(FLAGS,8191,CHR(0));

PRIME_COUNT:= 0;

I know of only one language that took

anything from COBOL—PL/I. If COBOL

is as great as Wagner wants us to believe,

why haven't more new languages taken

ideas from COBOL?

I have to disagree with Mr. Wagner's

opinion that "big people" will become an

important factor on the PC scene in two or

three years. If what I have been reading

about the corporate resistance to the PC is

correct, it will take a major corporate rev

olution fof this to happen-

Finally. Mr. Wagner claims that

COBOL is technical enough to do any

thing and informal enough to be easy to

understand. The program segment

presented with the article docs not support

these claims. My own view is that

COBOL is not suitable for most program

ming tasks.

Keith A. Van Wagner II

Dundee. N. Y.

Problem solving

Dear Editor:

Yes, I think that there is a need for a

magazine for people who need languages

to solve a broad range of problems. Per

haps if more people who were engaged in

problem solving were to become involved

in language development, we would be

beyond the fifth and up to some succeed

ing generation by now (if you believe that

generation has any meaning to begin with).

Lynn Maxson

10 CIRCLE 3 ON READER SERVICE CARD



$ BACK
TO THE
DRAWING BOARD

High tech, high touch

just got through

reading John

VX\XXX\> I Naisbitt's
MegaTrends, and I'm inspired and

impressed.

I'm not as much impressed with the

conclusions he draws or the social, politi

cal, or economic trends he reports as with

the way he got his facts.

Content analysis. His outfit monitored

6.000 local newspapers every month and

analyzed the action to isolate current

trends. His book is a report on the trends

of the past few years with some predic

tions about the future, based on real,

down-to-earth facts.

I don't really need to tell you that he

found the U.S. is growing away from

being an industrial society and toward

becoming an information society. Not

exactly hot news, right? But he also has a

few things to say that are not so obvious.

He makes the point that whenever a

new technology is introduced into a soci

ety, there must be a counterbalancing

human response—that is. "high

touch"—or the technology is rejected by

the members of that society. The more

high tech, the more high touch.

thc pre~

Fd like to

introduce Bhavisyat's way to bring some

high touch to the high-tech world of

COMPUTER LANGUAGE.

Remember those times when you threw

up your hands in frustration trying to fig

ure out just what the *%$ is going on with

a particular programming problem that

you've been wrestling with? Wouldn't you

have loved to be able to call upon a friend

who just so happened to be an expert in

the field?

Now you can. Let me explain . . .

Back to thc Drawing Board is meant to

be a reader-feedback column. And indeed

it is. But more than that, we've got the

facility and opportunity to do a lot more

than just send letters to one another.

COMPUTER LANGUAGE has a Bulle

tin Board Service set up and a special

account on CompuServe that serves the

same function but in a more national con

text (i.e.. local phone bills!).

These systems let you communicate

directly with the editors of COMPUTER

LANGUAGE and the authors of its articles

and departments. That's high touch! If

you haven't tried it yet, please do—you'll

have a pleasant surprise.

In the first two weeks after the premier

issue of COMPUTER LANGUAGE was

released, over 900 people called the BBS.

And. as of this second issue, CompuServe

is ready for those people hesitant to make

thc long-distance computer call to San

Francisco. Calif. We've got even bigger

ideas in store for the future of our own

electronic village, so watch and sec.

"m sure you've

seen in other mags

VWWWI those columns
whose writers answer questions submit

ted by readers. Haven't you noticed that,

in some cases, you could have done a

better job answering those questions than

the author writing thc column? At

COMPUTER LANGUAGE, we'll give

you the chance to do just that.

Thc old fashioned process is when

readers send me a letter with their ques

tions, and I select some people from

our expert audience to take a shot at

answering. This works (and we want to

keep on doing it), but it's slow. Here's a

quicker way . . .

If you think you're knowledgeable in

some area, and you might enjoy answer-

By Burton Bhavisyat

ing questions posed by people who are

eager to know what you know, either

leave a note on thc BBS message system

addressed to me. or send me a letter with

your name and phone number (or a mail

ing address, if you'd prefer to get feed

back that way). Include a list of what

areas you're up on, and I'll get together a

big list of such persons, sorted by state

and expertise.

This listing will be available on the

BBS (and occasionally in COMPUTER

LANGUAGE). If anyone has a nagging

problem in your field, they can get in

touch with you to ask you. This could

easily become a fun way of getting new

ideas from curious people as well as a way

to help people over their own technical

hurdles.

Alternatively, ifyou have a problem,

you'll know where to go to for help.

That's not the end of it. either. Since

COMPUTER LANGUAGE is now avail

able on CompuServe, you will soon be

able to get immediate on-line help with

your problems (especially if you include

your CompuServe handle in your address

data).

To get involved, dial up the COMPUTER

LANGUAGE BBS at (415) 957-9370 or

call your local CompuServe node and use

the message system to send your mail to

Burton Bhavisyat. Or, if you like, you can

send thc same information in a letter to

COMPUTER LANGUAGE, c/o Bhavisyat,

131 Townsend St., San Francisco. Calif.

94107.

I've already got my expert list going,

and you'll see it when you cat! in. You'll

also be watching it grow over the coming

months and years.

High tech. high touch. Let'sgo

for it! H



Multi-Basic
The BASIC compiler that compiles

both MBASIC and CBASIC"

Now you don't have to give up the features you

like about MBASIC to obtain the powerful

capabilities of CBASIC. Multi-Basic gives you

both.

Multi-Basic works with your existing programs

so your current software investment is protec

ted. But just as important, Multi-Basic opens

the door to a whole new way of programming.

With Multi-Basic you can write very readable,

modular and structured programs. Multi-Basic

makes program maintenance as easy as it is

with Pascal.

in addition to understanding the two most

popular dialects of BASIC, Multi-Basic allows

you to extend the language even further. You

can add your own statements and functions as

needed.

Multi-Basic is also compatible with our Pascal

and C compilers. This allows your BASIC

programs to use routines written in Pascal or

C.

In today's fast changing computer business,

you need a language as versatile as Multi-

Basic. Investalitttetimetodayandsavealotof

time tomorrow. You owe it to yourself to see

what a difference Multi-Basic can make.

Multi-Basic is available for the TRS80 models

I, il, III, 4 and 12; Tandy 2000, IBM PC, and

CP/M. It is compatible with TRSDOS, LDOS,

NEWDOS, DOSPLUS, MSDOS, PCDOS, CP/M

and CP/M plus.

Alcor Multi-Basic $139

Other Products:

Advanced Development Package $ 69

Blaise I Text Editor (Mod 1 or 3) $ 49

Blaise !! Text Editor (all others) $ 79

Multiprocessor Assembler $ 69

Alcor C $139

Alcor Pascal

(for CP/M, MSDOS, PCDOS) $139

Complete Development System $250

includes compiler, text editor and advanced

development package

Shipping U.S.A. $6.00

Shipping Overseas $28.00

13534 Preston Road. Suite 365

Dallas, Texas 75240

(214)494-1316

Multi-Basic is a trademark of Alcor Systems

TRS80 is a registered trademark of Tandy Corporation

CP/M. CBASIC are trademarks of Digital Research

MSDOS. MBASIC are trademarks of Microsoft

;iRCLE 1 ON READER SERVICE CARI

Communications Software Can Be a Real

Headache. For FAST RELIEF, use COMMX!

It's Simple to Operate and Provides the

Best Features Available for Both Personal

and Business Communications:

• Easy to Use Menu Selections and Prompts

• Auto-Dial-Logon and Unattended Controls

• Dial Directory Handles up to 700 entries

• Install Utility for Intelligent Modems

• Programmable Terminal Emulation!

• Linkup with Information Services like

WU Telex, TWX, USPS ECOM, CompuServ,

NewsNet (free subscription included)

• Micro to Micro and Micro to Mainframe

multiple File Transfer Protocols:

— Text Upload/Download with Options

— Text and Binary Upload/Download with

proprietary Error-free COMMX protocol

mainframe Versions available for VAX,

CompuServe, DEC 10, IBM 370,

HP3000, PRIME

— MODEM7 Batch and Single file Send/Recv

• Direct Link High Speed Data Transfers

• Electronic Mail Management Software

upgrade Available for Organizations

• InfoWorld Report Card A + + + + Dec 1981

COMMX is priced from $195 (micro CP/M

or MS-DOS) to $900 (mainframe).

OEM and multiple licenses available.

HAWKEYE

™ GRAFIXInc
818-348-7909 / 213-634-0733

23914 Mobile, Canoga Park, CA 91307

CIRCLE 30 ON READER SERVICE CARD



DESIGNERS DEBATE

Creative programming

vs. disciplined design

A
s programmers,

many of us have

icertain

reservations about the subject of program

ming itself. We are warned about the dan

gers of "hacking," yet many of us have

suffered through long and unproductive

design sessions where several vociferous

individuals have dictated the course of a

software project despite their obvious

ignorance of the abilities and limitations

of the computer.

In this month's debate, Peter Nau, soft

ware engineer, defends the design process

against some of the more common crit

icisms. It is hoped that some miscon

ceptions about program design may be

clarified. On the other hand, many mis

conceptions about hacking still linger. In

an upcoming column we'll look at the fine

art of hacking and try to obviate the

numerous misunderstandings that have

evolved there also.

Q

A

What is

hacking?

Well, to me,

hacking is when

iyou throw

something together then try to debug it

until it works. It's useful when you're

exploring—in fact, it's an excellent way

to try something out just to see how it

works. You can learn a lot that way. It can

also be useful sometimes when you're try

ing, for example, to improve a subroutine

or a small module. At some point, every

one ends up doing some hacking to make

that piece of code work a bit better.

The problem with hacking is that it's a

local activity. You generally take a very

restricted view of what you're doing. It's

not conducive to looking at the global

scope of the project. When you design,

you approach the project as a whole,

which you plan out before actually trying

to build anything. Imagine a carpenter

nailing beams together to build a house

without having some sort of plan to start

from.

Software development is analogous to

hardware design. I once knew a hardware

hacker who "designed" by sketching out

what he thought a circuit should look like.

Then he wired the components together

and interactively tested and modified it

until it worked.

Sure, eventually it ran, but it was

impossible to figure out what it was

doing. You never knew what that thing

hanging on the side did, but if you

removed it, the circuit would cease to

operate-. Of course, he learned a lot by

doing it this way, but it was often difficult

to fix it when it failed.

Q

A

What does soft

ware design

involve?

Software design

is a method by

which you take a

problem, analyze it, then build a software

solution. There are several steps you typi

cally go through. The first thing is to find

out what the problem is—this is what sys

tems analysts do. Then, assuming you're

going to write a program, you specify its

requirements. You then design and struc

ture the program, dry testing it. The last

thing you do is build it.

When someone asks for a program, you

usually start by interviewing them. You

want to understand the nature of the

problem—first by starting at a general

level, then getting into more detail. Often

while I'm trying to understand the prob

lem, I draw diagrams. It's easier for me to

think pictorially, and I can show it to the

requester and ask, "Is this how it works?"

Q
Suppose you are

writing the pro

gram for your

self. Do you really need to go through all

this interviewing and diagramming?

Wouldn't a programmer have a pretty

good idea what he or she wants as weil as

how to get there already?

A
That sort of

thing can really

bring out the

By KenTakara

hacker in me! Yes, I know what I want and

can think of all sorts of things to add to it

and various ways to make parts of it par

ticularly clean and efficient. This really

gets into the nature of my own creative

process. What I do is "interview" myself

and keep notes on all the ideas I come up

with along the way. It's important to know

what I really want and what is just a nice

frill. It becomes a matter of creative

energy vs. discipline. Maybe you can

think of a hacker as a person full of cre

ative energy but lacking discipline.

By the way, there is a fine art to trim

ming off the non-essentials that you ini

tially imagine are so important. I find it

interesting that the non-essentials I scrub

seldom come back. Of course, I try to

design so that I can put them in later if I

decide I want them.

Q

A

What kinds of

diagrams do you

like to use?

I've been using

dataflow dia

grams (Figure

1) during analysis. They're useful when

ever you are following the flow and trans

formation of information—as in business

software or in industrial automation,

where you follow actual physical entities.

Architecture diagrams (Figure 2) are

good for designing asynchronous tasks.

The semaphores can be treated as inter

task messages; tasks talk to each other

cither to send information or to pass

control.

I sometimes use state diagrams (Figure

3) when designing the logic of modules

that control sequential machines. And

structure charts (Figure 4) are useful to

show the calling relationships between

modules in a single-task environment.

Then there are such things as the Warnier/

Orr diagrams, HIPO (Hierarchical Input-

Process-Output) charts, and so on.

Q
I remember a

fellow who

would get into

13



complex discussions on the importance of

rounded corners on the process boxes of

data flow diagrams. I thought [hat this was

quite overdone. Just how important are

these diagrams?

A
The whole point

of the diagram is

ito provide a pic

ture of your understanding of the prob

lem, and of how the system works or is

supposed to work. It is just a step in the

transformation from problem to solution,

not an end in itself. It is more important

for the diagram to be consistent and clear.

Once the analysis is completed, you

should be able to come up with a set of

requirements that specify what the pro

gram should do. You design the program

so thai it will meet these requirements.

You may also want to have a list of

desirables that you might consider for

inclusion once the requirements are met.

Specifying the requirements can be tricky

because you don't want to over-specify

them.

Q
I have seen

cases where the

specifications

got into the implementation detail. This

brings up another set of questions. In 77;c

Mythical Man Month (published by

Addison-Wesley, copyright 1982), Fre

derick Brooks suggests having an "archi

tect" who is responsible for design. Is it

such a good idea having a designer who

doesn't code or who is out of touch with

the nature of the computer?

A
Well, the

designer defi-

mitcly should be

familiar with the medium. Frank Lloyd

Wright would visit the site on which he

was designing a building. He wanted to

keep in touch with the medium with which

he dealt. I remember a designer who

insisted on designing for a "virtual"

machine. His designs were quite awkward

for the programmer.

Brooks also suggests keeping the duties

of programmers and designers separate.

One engineer I know found the idea prac

tically dictatorial —an autocracy of archi

tects with coders slaving away doing just

grunt work.

I certainly wouldn't want to be a pro

grammer who just cranked out code.

Maybe there are people who wouldn't

mind it. Perhaps we should have software

technicians, just as there are hardware

technicians who just put circuit boards

together. Anyway. Brooks was suggesting

a solution to the problem of organizing

complex design projects. I think he is

essentially correct, though his approach

may be a bit simplistic.

I think what Brooks wants is design

coherence or conceptual integrity. Having

14 COMPUTER LANGUAGE ■ OCTOBER 1984

Dataflow diagram

Speedometer

Current speed

Engine

status

monitor
Engine

status

Speed

setting

Gear

selection

I I Source or sink

\ I Process

Dataflows

Clutch/shifi

Requested

speed

Engine/clutch

timing and

control

request

Clutch

controller

Accel/decel

request

Engine

controller

This dataflow diagram is for an automobile cruise control system. The

square boxes along the perimeter of the diagram represent entities external

to the system. The system of interest to us consists of the two process boxes

(with rounded corners) and the set of connecting dataflows. The sources

and sinks, external to our system, remain as "black boxes" to us.

Process 1 (gear selection) gets the current speed and engine status and tries

to select the appropriate gear. If a gear change is desired, it sends this

information to Process 2. For example, if the engine is laboring, it may

request a downshift. Process 2 (engine/clutch timing and control) gets cur

rent speed and engine status as well as the requested speed, which it

attempts to maintain by correcting the RPM. It also tries to prevent engine

laboring by reducing RPM if necessary. If it receives a shift request, it

handles the shifting process.

Note that the dataflow diagram only handles the flow of information. It

does not necessarily show transfer of control or sequencing.

Figure 1.

Architecture diagram

c I \ Current speed
speedometer 1 r

Engine/clutch

timing and

control

Tasks — Inter-process messages

In this figure, the cruise control system is described as a set of asynchronous

tasks. The paths describe interprocess messages between the tasks. You can

think of these tasks as running simultaneously, synchronized by the intertask

messages. This architecture seems to correspond nearly exactly to the

dataflow diagram. At a more detailed level, however, it can become more

complicated. Each task should have an accompanying document that

describes how that task reacts to messages and what messages it sends out.

Figure 2.



a single person responsible for the project

as a whole would reduce the problem of a

fragmentary program in which the various

parts are conceived independently and

may or may not work together.

But the idea of separate architects and

programmers must be tempered if it's to

work at all. The designer and the pro

grammer have to maintain communica

tion; you need those feedback loops.

Who should be

responsible for

the overall

design of the program?

A
Somebody

should be

l responsible for

the overall design, but the designer will

also depend upon constant feedback. In a

large project, it is very difficult for an

individual to handle all the technical

detail. So eventually everyone ends up

being involved. This continues as you get

into the coding too. Things tend to show

up, even if you've been careful.

I think this is where we get into the

infamous design review, where everyone

argues about the best way someone else

should do something, and the manager

with the most clout or the loudest voice

gets his or her way.

The purpose of the design review is to

set up the feedback loop so the designer or

programmer can get the benefit of other

people's experience. Many engineers do

this informally when they talk to their

coworkers about their projects.

Unfortunately, these design reviews can

be abused.

Q
I notice that

some of the

more formal

methodologies have very detailed rules

concerning which managers should be

present, or whether the original software

author should attend at all. Is all that

necessary?

A
Most of those

kinds of rules

lexist to prevent

the misuse of the review. But you can get

carried away with the rules and totally

miss the point of the review session. What

you want to do is catch possible design

errors early, preferably before you've

started coding.

You've really got to use judgement with

reviews. It isn't necessary to review

everything that comes along. The work of

a trusted, senior software engineer or the

design of a simple module might not

require a review. If it's not cost effective,

then you shouldn't bother.

A lot of programmers make caustic

comments concerning design-by-

committee programming vs. software

design done by one creative individual.

In the case of a small project, it's easy

State diagram

Minor speed variance Engine laboring

Change RPM| Cruising ) Change RPM

(reduce)

Shift

completed,

restore

speed?

This state diagram shows the clutch/engine timing and control process (Process 2) of Figure 1. Each balloon represents a
state and each path is a state change. The caption above a path is the trigger that causes the change. The caption below
it is the action than accompanies the change.

For example, in state 1, cruising, the process is constantly monitoring the speed. If there is a variance from the requested
speed, a control message is sent to the engine manager to change the RPM. In this case, the next state remains as state
1. However, if a shift request arrives from Process 1, then a state change occurs, and control messages are sent to the
clutch and engine managers. This diagram has been greatly simplified; many triggers and states have been ignored.

Figure 3.



for one person to do most of the work.

When things get bigger, though, it's diffi

cult for one person to know everything

about all aspects of the project. In indus

trial automation, you may be concerned

about the properties of motors, position

control, data bases, sequencing logic, and

so on. And they've all got to work

together. Even though one person needs to

watch over the whole thing in general, you

still have to get feedback from the various

specialists.

Q
Pseudocode and

Structured

English are

often used when designing software. But

pseudocode often looks something like

Pascal with loose syntax. Why not just do

it in real-code and save the bother of

translating?

A
I prefer to use

Structured

kEnglish over

pseudocode since it's easier to think in

English than in any procedural language.

You use pseudocode or Structured English

when you're laying out the structure of the

program, usually at a high level. With

Structured English, you can describe the

program at an abstract level easily without

being concerned with the specifics of the

programming language. Pseudocode does

the same thing at a lower, module or sub

routine level.

If the logic of the program or module is

obvious, then there isn't much need to

spend time pseudocoding. After all, its

purpose is to help you lay out the structure

of a complex module before you code it.

Or you can use it also to explain the log

ical structure of the program to someone

else.

Q

A

And what about

when you're

finished?

You should have

a well-designed.

Lwcll-documented.

efficient, and easy to maintain software

product—more or less.

The philosophy of software design

is to aid in the transformation of an amor

phous problem to a specific software solu

tion. The steps of the design process

include an analysis of the problem, speci

fication of the software requirements,

then design of the program—from the

overall structure on down to the design of

the modules. The process consists of

numerous iterations including reviews to

make sure that you're doing what you

intend to do, and that what you*re doing

will work.

How you approach design, what

method you use, and how completely you

adhere to any formal method is a matter of

judgement. Sticking slavishly to a meth

odology excessively strict for a project

that is small or simple can stunt the

project altogether. Omitting the major

steps of design on a larger or more com

plex project can lead to chaos.

Design reviews are useful, even if it

simply means talking to another program

mer or engineer about your project. On

the other hand, a module that is relatively

simple may not deserve so much

attention.

Diagrams provide a pictorial descrip

tion of the problem or of the general struc

ture of the program. Structured English

and pseudocode are used when laying out

the logic of a program or module. For

mality is not important—consistency and

clarity are. After all. the final product is a

program that works, works correctly, and

does what it is supposed to do.

If you happen to be interested in soft

ware design, there are a couple of books

you might want to look into. Software

Engineering: A Practitioner's Approach by

RogerS. Pressman (McGraw-Hill) gives

a practical overview of methods and tools

of software design. A more formal

approach is found in Structured Systems

Analysis: Tools & Techniques by Chris

Gane and Trish Sarson (MCAUTO/IST).

Also of interest is Structured Design by

Edward Yourdon and L. Constantine

(Prentice-Hall). H

Structure chart

A Speed/en

Monitors for

speed, shift,

and engine

Clutch/engine

timing and contro

jine status/A gear

Change RPM

Calculate

change

ofRPM

Jlf

Handle

shift

request

Notify

clutch/engine

managers

Clutch/dec utch

Data

Control

This figure is an example of a structure chart, showing the relationships of

the modules that compose the clutch/engine timing and control process. This

diagram is a picture of the subroutine linkages within a larger routine.

Each subroutine or collection of subroutines is represented by a box. Each

path represents a subroutine call. Only a few of the passed parameters
have been drawn here, and some of the boxes represent several sub
routines. Again, this was done for the sake of simplicity. A full scale

structure chart can be very complicated.

Note that data and control parameters are distinguished by the open or
closed dot on the flow arrows. Note also the shored subroutines at the
bottom of the chart. A structure chart is useful for showing the linkages
between routines in a single task environment, while the architecture
diagram is useful in a multitasking environment.

Figure 4.

COMPUTER LANGUAGE ■ OCTOBER 1984



COMPUTERVISIONS

A personal visit with Donald Knuth

■he tall, gawky

tuba player has

tened across

campus, avoiding the indignity of an all-

out sprint. His efforts, however, were

wasted. The band bus had already pulled

out when he huffed inio the parking lot

behind the music building, his breath

billowing clouds in the frozen Cleveland

winter.

The Case Institute of Technology

sophomore was conscience stricken at

oversleeping but began to perk up at the

ihought of an entire day to do with as he

pleased. And what he pleased on that win

ter morning in 1957. trudging back across

campus to the old building with the com

puter rooms stuck in a corner, was to try

to solve a problem that his math teacher

said had never been solved in the centuries

since it was posed. The teacher had prom

ised an automatic A to any student who

could answer the problem.

He found a room. Sat down. Concen

trated. Figured. Concentrated. Figured.

Blinked. Checked the figures. Yes. He'd

done it.

He was 19 years old.

find a new solu

tion to that

problem every

few years," Donald Knuth, Stanford

University's resident computer science

and mathematics genius, says today. "I

mail them to my old professor. He didn't

tell us at the time, but actually the prob

lem had been solved once or twice

before—only we didn't know that."

When Knuth solved that math problem

he was a suffering physics major—

"terrified," he says, of the required weld

ing labs with their thousands of volts of

electricity arcing about. "I was too tall

for the equipment. My glasses wouldn't

fit under the safety goggles so I couldn't

see."

By Jan C.Shaw

After solving the problem, he switched

his major to math and began to spend

more time with computers—against the

advice of a few teachers who insisted

computers were a dead-end business.

Today, at 46. Knuth is regarded as the

world's top scholar in computer science.

In addition to being an extraordinary

mathematician, he is an accomplished

musician, composer, teacher, and in

ventor. He was awarded the National

Medal of Science four years ago—the

nation's highest scientific honor—and it

sits in his home office amidst a profusion

of other awards. His articles have

appeared in scores of scientific journals

and computer magazines, although the

one that makes him grin fondly is his first

publication as a college freshman—in

MAD magazine.

Knuth's monumental Vie An of Com

puter Programming, a series of volumes

that arc computer science's standard of

reference works, made his name 15 years

ago. Computer scientists and mathe

maticians agree that Knuth's work intro

duced order, clarity, and depth to a young,

fragmented discipline. He is regarded as

the fountainhead of his field, its great

pioneer—and he has completed only three

of Vie An ofComputer Programming* s

seven projected volumes.

I lashbulbslend

I glamour to the

tumult of the

international typography conference at

Stanford. The crowd's exuberance and the

cheers are for Don Knuth. At the podium,

his 6-foot-4 frame looking a bit rumpled,

he lectures 150 typographers from North

America, Europe. Japan, and India on his

printing inventions.

Four years ago, Knuth strayed from his

work on Vic An of Computer Program

ming when the second edition of one of his

books, computer-printed, left him aghast.

"Ugly." he recalls, grimacing. The book

offended all of his rather acute aesthetic

senses. At first outraged and then curious.

he delved into why the printing job was so

unappealing. Solutions replaced ques

tions. His subsequent applications of

computer science and mathematics to the

ancient arts of typeface design and type

setting revolutionized the printing world.

He set forth his inventions in two publi

cations. METAFONTand TEX. META-

FONT is a system that uses classical

mathematics to design alphabets. TEX

introduces a standard computer language

for computer typography—a creation the

importance of which has been compared

with Gutenberg's invention of movable

type. Knuth put both works in the public

domain; neither he nor Stanford will col

lect a cent on them. "Proprietary stuff

was holding back the field and it needed a

push." Knuth says. "Besides, I just did it

for the love of it."

17



"You know, a lot of people think the [computer]
language is the important thing, but really, it's the way
it's been implemented, the way it's been put on their

computers that makes all the difference/'

At the typography conference, Knuth

leavens his discussion of the theory, back

ground, and technical aspects of his work

with some self-depreciating humor—an

apology to the artists present who proba

bly don't like math or computers even

though Knuth finds great joy in bringing

art to scientists and science to artists.

There are wry chuckles from those artists.

Pre-Knuth, these cognoscenti took

years—sometimes decades—designing a

new typeface. With his computerized

system, they can design a new typeface in

six months.

In the second row, sitting about eight

feet from Knuth and listening attentively.

is a white-haired, elegantly dressed

German. His name is Hermann Zapf, and

he is the world's leading typographer.

"Well," Zapf says in his precise,

slightly accented English, "in a word,

Knuth's a genius. It was he who intro

duced science into alphabet design. He

invented a system which is, in my opin

ion, so flexible that it will bring back

creative design to typography. I think

METAFONT will become a tool in

designers' hands to express our feeling

and our thinking in the 20th century. I

think METAFONT will get away from

copying historical faces. I think Knuth's

name will be recognized in the history of

all the great masters."

Knuth doesn't think of it quite in those

terms. Fame? Well he likes it. Remem

bered as a master? Well, he likes that, too,

and keeps his notes for posterity. ("His

torians need to know about your original

mistakes," he says.)

But fame is not what motivates him. It

is more basic than that: he enjoys his work

and he feels obliged to do it. Take the

book on Bible study he wants to write.

"There is quite a need for scientists to say

something about religion," he explains.

Finishing Tlie Art ofComputer Program

ming series? He. well, he should finish the

books sketched in his mind to do what

God—in creating intelligence—designed

him to do. Knuth's quiet Christianity is

the foundation, the essence, of his life.

He actively participates in the Bethany

Lutheran Church in Menlo Park, Calif.—

organ recitals, choir committees. He

takes the choir to the Dutch Goose, a local

beer joint, after the practice. The church's

pastor, the Rev. Bob Nicholus, doesn't

mind that one of the baritones sometimes

gets distracted during the third move

ment. Pastor Nicholus doesn't care that

Knuth wears Birkenstock sandals with

socks, instead of wing tips, to Sunday

services. Pastor Nicholus would like to

clone Don Knuth.

Knuth leans back in a comfortable,

cushioned chair in his corner campus

office, his worn-stockinged feet pro

truding from the side of the desk.

"There's a special kind of person called

a computer scientist," he says looking up.

"And they're going to be using computers

at a higher level than most other people

just because they have this special talent

for it."

Knuth has commented that he some

times can feel a shift within him between

computer science and mathematics as he

moves from one area to another and the

spaces in between.

And computer scientists, he doubts,

will probably only rarely use expert

systems.

"But as they develop those systems,

they will develop tools for computer sci

ence. But I doubt I would ever go to a

computer and ask it to write a program for

me. But the people who arc developing

programs that write programs are also

developing techniques that I would use

when I write programs myself. I don't use

the products of the research but I use the

ideas, the fruits of the research they

generate."

He talks rapidly; his hands, incongru

ously graceful, move. Even when he is

searching his way through a subject, he

talks in final drafts. If he heard a startling

remark, he wouldn't just blurt out.

"That's the most incredible thing I've

ever heard." He'd pause, think, and then

say, "That's the third most incredible

thing I've ever heard."

He sits forward.

"You know, a lot of people think the

[computer) language is the important

thing. But really, it's the way it's been

implemented, the way it's been put on

their computers that makes all the differ

ence, not the fact that it's a good or bad

language. What's important is how the

language fits into other things on your

computer."

Knuth's opinions are strong and defi

nite when he has them. And he has very

strong ideas on literate programming.

"The ideal traits of programmers in the

coming years—well, the first thing is the

ability to communicate with human

beings. That means writing ability. Enthu

siasm comes next. Then you have to have

the ability to keep track of separate levels

of abstraction. And a prerequisite to all of

it is a good understanding of algorithms."

The ability to write. The ability to com

municate with human beings. Familiar

and important themes with Knuth.

To this pioneer, programs should be

works of literature.

For starters, it's more fun, more

exciting that way, he says. The programs

are explained better and are better

because writing literate programs encour

ages the programmer to do a better job.

He calls it literate programming and he

recently wrote an article for a British

computer journal with just that name.

In it, he writes that his ideas of literate

programming have been embodied in a

language and a suite of computer pro

grams he developed over the last few

years called WEB. It is chiefly a combina

tion of two other languages: a document

formatting language and a programming

language. He uses TUX and Pascal but

said that Ada, ALGOL, LISP, COBOL,

FORTRAN, APL, C or even assembly

language could be used.

"I believe that 1 have stumbled on a

way of programming that produces better

programs that are more portable and more

easily understood and maintained," he

writes. WEB grew out of his typography

work. That pleases him because his

typography work, which at first appeared

to be a digression, ended by coming full

circle to apply to "the heart of computer

science."

But it's not for everybody, he says. It's

for the "subset of computer scientists who

like to write and to explain what they are

doing."

1 8 COMPUTER LANGUAGE ■ OCTOBER 1984



Knuth wouldn't mind, someday, seeing a Pulitzer prize
awarded for a computer program.

"My hope is chat the ability to make

explanations more natural will cause more

programmers to discover the joys of liter

ate programming because I believe it's

quite a pleasure to combine verbal and

mathematical skill."

"But." he says, "perhaps I'm hoping

for too much."

But Knuth wouldn't mind, someday,

seeing a Pulitzer prize awarded for a com

puter program.

utsidehis win-

Idow, the trees

and red tiles of

the roof reflect the light of the Monday

morning.

Don Knuth doesn't like Mon

days. Monday is mail day. It's also the day

he reserves for saying "no" to requests to

lecture, to teach, to write—many

involving all-expenses-paid trips to exotic

locales. He doesn't like saying no. And on

this Monday morning, at his desk, wispy

hair and pale eyes reflecting the light from

the window, Knuth's mail is piled very,

very high. Sometimes, he says, it takes

the whole day just to separate the mail into

"easy to answer" and "hard to answer."

Leaning back in his chair, Knuth docs

not look like a man driven to perfection.

But what he's saying is another matter.

He's talking about a favorite place of his—

the sculpture-filled Frogner Park in Oslo,

Norway.

"Gustav Vigelund was a sculptor. You

go into the park, and it is filled with the

fantastic monuments he sculpted. He

started about 1910 and ended in the

40s when he died. And all his life he

worked on monumental sculptures. What

impresses me in the park is that here are

these monuments in granite and bronze.

more than 100, and they form a complete

set. He finished his life's work."

When Knuth describes Frogner Park,

his voice, in the stillness, has an edge of

longing to it.

"So sometimes I feel a strong

compulsion—that I have ideas inside of

me that I want to get out. It is almost too

strong a compulsion."

For years, day in and day out, Knuth

made a list each morning of what to do

that day and he accomplished everything

on the list, no matter how late into the

night he had to work. In 1967. as he

worked on the second volume of Vie An

of Computer Programming, that regimen

put him in the hospital with a bleeding

ulcer. And although he still works con

tinuously, the brush with serious illness

changed the way he works.

"I resigned from all kinds of obliga

tions. It was then I began to appreciate

beauty. I started to read great books that

weren't assigned to me. It just dawned on

me—why shouldn't I be more human?"

His large, contemporary home on the

Stanford campus is filled with art-

original paintings, sculptures, and hang

ings, a few done by Don or his wife, Jill.

The two of them designed the house, from

her big art studio to his big book-and-file-

lined study. They met at the Case Institute

of Technology when she was a student at

nearby Western Reserve University. They

married in 1961 after she took her last two

years at the Cleveland Institute of Art.

They have two teen-age children. John

and Jenny.

Knuth schedules his weeks ("no's" and

mail on Monday, meetings on Tuesdays,

privacy on Wednesdays, doctoral students

on Thursdays, research on Fridays) for

the express purpose of having time for his

family. On his next sabbatical, to "make

up a bit for all Jill has done," he will

spend his time doing the housework,

shopping, laundry, and cooking. It seems

only fair to him.

Sitting at the dining room table, drink

ing a large glass of iced Mountain Dew,

Knuth is reminiscing about Vie Art of

Computer Programming. In 1962, when

he was a young, newly married doctoral

student at the California Institute of Tech

nology, a publisher approached him to

write a little computer book. He agreed,

and began the project that was to make

him famous.

"There was a lot being written about

computers at the time." Knuth says, "but

half of it was wrong and other things were

in places you couldn't find. It was all very

new and there weren't any accepted stan

dards of quality. There wasn't even such a

thing as computer science. What was pub

lished was so bad that no one bothered to

read it."

"It was very important at the time in

my own thinking to summarize everything

that was known about computer program

ming," he says.

He succeeded beyond his wildest

dreams. About 2,200 of the volumes are

sold each month, for about $25 to $30

each. They have been translated into Rus

sian, Japanese, Chinese, Romanian, and

Spanish. A Portuguese translation is

under way.

The resultant fame has some awkward

aspects for Knuth. "It's harder to find

friends who see me as an ordinary guy,"

he says. It was nice when I knew in my

heart I was better than most thought I was.

I could surprise them. Now it's the

opposite. I'm worse than they think."

As he gets up to go to the music room

he has to step over the family dog whom

he eyes suspiciously. The little animal

eyes him warily back. They have reached

an accommodation: mutual distrust.

In the music room at the front of the

house are two pianos (he and Jill play

ducts), a viola, a small antique pump

organ, built-in shelves jammed with sheet

music, and a custom-made pipe organ that

Knuth designed.

Knuth almost went into music instead

of science. Now, the music gives him his

moments of contentment.

Knuth's pipe organ fills one end of the

room. It is a massive instrument, towering

16 feet in the air. Barefoot, Knuth seats

himself on the high, wide bench. Light

cascading from an immense translucent

window throws him into silhouette. In the

silence he stills himself. And then he

plays the opening notes of a Bach prelude

in C minor. When he finishes, the last

whispers of the music echo through

the house.

Knuth looks up, smiling, content—the

gawky tuba player no longer. H

Jan C. Shaw is a reporterfor the Business

Journal in San Jose, Calif.

19



helps compare, evaluate, find products. Straight answers for serious programmers.
SERVICES

• Programmer'! Referral Liri ■ Oealer'i Inquire

■ Compart Product! ■ Hmletter
■ Help find ■ Publisher ■ Hush Order

■ Evaluation Literature Iree ■ Over 3QQ products

■ BULLETIN BOAflD 7 PM to 7 AM 61T-B26-40S6

LIST OUR

PUBLIC DOMAIN Research-Free
6 months paid research gives you leverage, learning. We found, com

bined, added 10 the bes!. All run. have source in C or ASM. Order S150 -

get one free Database. Editors, Modems. MSDOS RAMdisks & ulils.

Games in C

BRIEF Programmer 5 Editor is terrific for PCDOS

Worth effort to switch. Powerful, flows well.

Macros, reconfigure Contest 5195

EDITORS Programming

MSDOS 086-8087, reliable

Desmet with debugger

Lattice21 -improved

MicrosortC2 x

Williams • N EW. debugger

CPM80 EcosoftC-nowsolid.fi

BDSC- solid value
MACINTOSH-: .•-;:■

LJNT-like for C86, Lattice
Soura-lewlProfiler C86,Lat

MACINTOSH: Fill, ASM

PRICE PRICE

S395 call BRIEF-Intuitive, flexible
159 145 CScreenwrtfisource

500 call

500 349

PMATE-powerful500

250
150

NA

NA

NA

NA

PCDOS NA

308d'86 NA

FNAL WORD- for maw* 3Q8G86 30G
MINCE-He EMACS CPM.PCOOS175

CPM 195
8086 225

Compare, evaluate, consider other Cs

|:r:VU1 ENVIRONMENT

BASCGM-86-Microsoft 8086 395 279

C3l:

225
125 VEDrr-rd.lted

385

400
150

385 COHERENT-for"C"users
VENIX-'tnieWw.TTN

XENIX-"true S3"-nch

CPM PCOOS 150

8086 200

CtorJBASEinterface

CTools 1-Strairj, Screen

C Tools I -OS interface
GRAPHICS GSX-80

HALO-fast, full

Greenleaf for C - full
ISAM C Into +-no royaltes
BTRIEVE- marry languages

PHACT-wrthC
PASCAL TOOLS-Blaise

80flaS5 S150

PCDOS NA

PCDOS NA
CPM80 NA

PCDOS 200
PCDOS NA
MSDOS NA
PCDOS 245

PCOOS NA
PCDOS NA

PChke S500 475

PCIike 800 775

PC 135G 1285

PANEL-B6-manylartgijages
WINDOWS forC

PCDOS
PCDOS

295

NA

S140

115

92
75

175

165

400

215

250

115

265

139

PASCAL MT-r 86

MS PASCAL B6

PASCAL 64 -neartytul

LIST OUR

ENVIRONMENT PRICE PRICE

CPMWIBM S400 S279

MSDOS 300 215

COM54 99 89

BASIC Dev'i System

SASICAComrJer-
Betffir6ASIC-640K

CB-86-DRI
Prof BASIC Compiler

MACINTOSH COMPILER

wthBASICA syntax

Ask atom run-dmes, applcatwns. DOS compatrtil- fek about many others for FTN. BASIC, PASCAL, C-ISAM
PCDOS 79 72 rty. oth« aftematTwes UNIX is a trademari: of 6eH Labs Screen. Stat, Graphics

PCOOS - 199
CPM86 600 439

PCDOS 345 325

MAC NA 325y

Ask about ISAM, other addons for BASIC

Graphic C with full source - scientific clots.
4096 res Optional 8087X86. Desmet S195

PflOLOG86 Interpreter lor MSDOS includes

tutorials, reference and good examples Learn

n first (w hours For Prototyping,. Natural
Language or AI. 5125

Call for a catalog, literature, and answers

800-421-8006
THE PROGRAMMER'S SHOP™

128-1 Rockland Street. Hanover, MA 02339

Visa Mass 800-442-8070 or 617-826-7531 MasterCard

CIRCLE 52 ON READER SERVICE CARD

AKAALIAS-mprcwDOS
AssembleriTools-ORI

CODESMITH-86-debufl
Disk Mechanic-rebuild
lOLISP-fulMOOOKRAM

HBPCobol-66-lBil

MicroPROLOG

Microsoft MASM-86

MS Fortran-improvements
Multilink-Muftitasking

PL11-86

PLINK-86-overlays
Poryfibrarian- thorough

PRORLER-86-easier

PROFILER-flexible
ProgrammersTlklw.'source

REAOCPMBetromPCDOS
READPCDOSonanlBMPC
TRACE86debuggerASM

PCDOS
8086

PCDOS

MSDOS

PCDOS
6086

PCDOS

MSDOS

MSDOS
PCDOS
8086

8086

MSDOS

MSDOE

MSDOS
8086

PCDOS
CPM86
MSDOS

NA 60
200 159
149 139

70 65
175 call

750 695
NA 265
100 85

350 255

295 265
750 495

350 315

99 89

NA 125
NA 175
NA 135

55

55

125 115

Note: All prices subject to change wrthout notice.

Mention this ad. Some prices are specials.

Ask about COD and POs.

All formats available.

PR0L0G-86
Learn Fast, Experiment

1 or 2 pages of PROLOG would require 10 or 15 pages

in "C."

Be familiar in one evening. In a few days enhance

artificial intelligence programs included like:

• an Expert System

• Natural Language (generates(ihasemspiay)

Intro Price: $125 for PCDOS, CPM-86.

Full Refund if not satisfied.

CONTEST: "Artificial

Intelligence Concepts"
$1,000 Prize, Recognition for applications in PROLOG-

86'" that teach, are clear, illustrate. Call for details.

Deadline 11/31/84

TM

20

SOLUTION SYSTEMS
45-D Accord Park, Norwell, MA 02061

617-871-5435
■■■ CIRCLE 60 ON READER SERVICE CARDI

COMPUTER LANGUAGE ■ OCTOBER 1984

DIFF and CMP ^■1&'M'$&<ei\k$&\f ;ft|e'comparisons.
XREF-cross references variablesby function and line.

C Flow Chart- shows vttial funcJioris call each other.

C Beautifier - make source more regular and readable.

GREP - search for sophisticated patterns in text.

There are several other utilities that help with converting

from one C compiler to another and with printing

programs.

C Helper is written in portable C and includes both fuM

source code and executable files v

for$135forMS-DOS,CPM-80 w

or CPM-86. Use VISA,

Master Card or COD.

Call: 617-659-1571

-Solution
<Systems
335-L Washington Street

Norwell. MA 02061

CIRCLE 61 ON READER SERVICE CARD



An Implementation
Demonstrating

Portability
How to implement non-standard
data structures with symbol table utilities

The rising im

portance of C as

the standard

development

language for 16-and 32-bit systems is due

largely to the ease with which programs

may be moved from one processor to

another. Software developers who are

interested in quickly transporting soft

ware from one machine to another are

advised to write their code in C and to

write it in a portable fashion.

Therein lies the trick and the subject of

this article.

Writing ""portable" is easier said than

done, especially when complex data

structures are involved. I encounter this

problem frequently, most recently while

converting a set of FORTRAN B-trcc util

ities to UNIX-C.

I reflected upon how much time I had

spent over the last 10 years converting

code from one machine to another,

browsed through my most recent copy of

Computer Design, considered the bewil

dering array of new processors on the

way. and resolved to write portable from

now on.

Between resolution and implementation

came the realization that I might have to

give up some of those elegantly com

pressed data arrays containing many dif

ferent types, all appearing rather ran

domly. No C compiler, or any other for

that matter, can cope with multiple data

types dynamically stored into common

arrays in any random order and do so in a

machine-independent way.

Consider an example to clarify the

point:

By David Harry, Ph.D.

functl (cptr)

char *cptr;

float i« 1.0;
*cptr+ + ='

*({float*)cptr) = i;
Cptr+ =4;

This function should compile without

error but will it work? If it depends upon

the processor, then this is decidedly not

portable code. Consider what could hap

pen on a Motorola 68000-based system.

On entry to the functionyj/nc;, the charac

ter pointer cptr could point to an even or

odd byte boundary with equal probability.

The code, as written, will execute without

error if cptr contains an even address.

However, if it is odd, it will not execute

because the 68000 requires that all floats

be stored only at even byte boundaries.

The complications continue. It is neces

sary to explicitly increment cptr four

character storage units past the float

rather than state cptr+ + . The dynamic

interchange of data types that arc not spe

cifically understood by the compiler

forces the programmer to do all the record

keeping.

Given that potentially disastrous and

non-portable consequences arise from

such practices, why not just avoid them?

Most applications where such data struc

tures might be contemplated can be

avoided by using a structured data type.

Situations occur, however, where struc

tured data types will not suffice, particu

larly when the occurrence of data types

cannot be predefined.

This article describes a system of sym

bol table utilities based upon the digital

searching algorithm. They serve as a good

example of how to implement non-

standard data structures in a portable fash

ion. Those not interested in the particulars

of non-standard data structures may still

use the symbol table utilities to their

advantage since they represent a complete

system of symbol table management that I

have used in several compilers and com

piler writing systems.

A table set up for digital searching may

be thought of as an in-core B-tree. The

symbols are entered into the table charac

ter by character. The first level of the digi

tal searching tree contains all the unique

first characters of all table entries, the

second level contains all the unique sec

ond characters, and so on down the tree.

Figure 1 illustrates a digital searching tree

with a depth 3 and containing eight sym

bols having a maximum length of 3.

Each level contains a list of all possible

alternate characters that can be found at

the given position in the entered symbols.

The first level contains all possible alter

nates found in the first position in the

entered symbols, and so on. The horizon

tal arrows represent pointers between suc

cessive alternate choices. Vertical lines

represent inter-level (successor) pointers,

and the asterisks mark the end of a

symbol.

To search such a table, the first charac

ter of a token is compared with the first

entry in Level 1 of the table. If a match

occurs, the successor pointer is followed

down to the next level where the second

character of the token is compared.

As long as successful comparisons

occur, one continues descending in the

21



table until the entire token is matched

(symbol found) or the table terminates

(failure). If a character comparison is

false, the current alternate pointer is fol

lowed and the same token character is

compared to the next alternate at the cur

rent level. Since the alternates are

arranged in ascending order, unsuccessful

testing of alternates may be terminated as

soon as the current token character is less

than the current alternate.

Several modifications can be made to

the digital searching table to reduce its

size and to improve its performance. One

important simplification can be made by

observing that after descending through

the first few levels of the table, only a few

choices remain to be tested (i.e., little

benefit is derived by continuing the digital

searching process out to the last character

of each of its entries).

It is far more frugal to terminate the

digital searching process after the major

ity of the entries have been eliminated and

to perform a linear search of the few

remaining choices. Figure 2 illustrates

this concept. In this example, the digital

searching table is truncated after a depth

of three and the remaining fractional

tokens are entered as a sequence oflinked

lists.

With structured data types it is possible

to implement the digital searching method

described quite efficiently. Available on

the COMPUTER LANGUAGE Bulletin

Board Service are two program listings

which contain data definitions and various

utilities that create and search in-core dig

ital searching tables. I will refrain from a

detailed explanation of their operation. (If

the reader is interested in obtaining a copy

of these two listings, they can be down-

Level 1

Level 2

Level 3

Figure 1.

\, QA

N -> R

> T

A > U

B*-> R* T:

0*

ABILITIES > ABILITY

Figure 2.

LEVEL

NODE

NODE

NODE

1

1

2

3

(FLAG -

(FLAG -

(FLAG -

"A"

"C"
limit

- SYMBOL # -

- ALT. INDEX)

- ALT. INDEX

ALT. INDEX)

- "END OF LEVEL 1")

Figure 3.

loaded from the COMPUTER LANGUAGE

BBS remote RCP/M computer at (415)

957-9370. The listings arc placed on disk

as PORTC1 .LTG and PORTC2.LTG.)

Listing 1 (printed here and also avail

able on the BBS as CPORT1 .LTG) con

tains a short main program that exercises

all major features of the utilities. With

minimal study their use should be clear.

Consideration of Figure 1 confirms that

very few of the nodes (character posi

tions) in the digital searching tree are

completely full (i.e.. many of the pointers

don't point to anything). Also, most of the

symbol designators (*'s) are empty. In

short, a lot of empty space is in the table.

This is an obligatory consequence of hav

ing to provide for insertion of a new sym

bol into the table at any point.

There are certain applications, how

ever, where all symbols arc entered into

the table in advance and searched repeat

edly thereafter. An example would be a

reserved word table for a compiler. In

such cases it is possible to compress the

digital searching table into a much more

compact form, eliminating the unneces

sary pointers and empty symbol

designators.

Specifically, it is possible to eliminate

successor pointers entirely. By including a

status Hag in each node, it is also possible

to selectively exclude alternate pointers

and symbol designators. A further com

pression of the table may be performed by

converting all remaining pointers to

indexes relative to a base address of zero

and define them as data type short

unsigned. This allows compressed tables

of a maximum size 64K on the 68000.

which is more than adequate for any prac

tical reserved word table.

An additional benefit of converting to

indexes rather than pointers is that the

table is independent of its address in

memory and may even be written to exter

nal stores and subsequently used within

other program modules.

As a consequence of all this ambitious

byte pruning, several things have

occurred. First, the possibility of con

tinuing to express each table node as a

structured data type has been eliminated.

Second, the order in which individual data

elements of differing types will appear in

memory is no longer fixed. Thus, the

2 2 COMPUTER LANGUAGE ■ OCTOBER 19Bd



problems of memory alignment ami non-

portability have crept in. Figure 3 may

better illustrate this point.

The structure of each node in the first

level of a compressed digital searching

tree, based upon the table illustrated in

Figure 1, is schematically depicted.

Observe that no empty data elements arc

present in any node. Also note that there

is no standard order of occurrence of data

elements within the nodes. Since each

subsequent data element may have a dif

ferent data type (int, char, short) than its

predecessors, the problem with memory

alignment and subsequent portability

should be clear.

Any routines that build such tables must

contain provisions for aligning the next

data clement properly, subject to the con

straints of the target processor. Further

more, the routine that searches tables

must also contain provisions for antici

pating the presence of filler space that has

been inserted to maintain memory align

ment and to appropriately index pointers

around it. Normally this happens invisibly

when standard data structures are

employed. Use of compressed data struc

tures has created the need for detailed

coding of provisions. Those interested in

C trivia may wish to investigate why a

statement such as: *ilgn(u)-i- + =5; is ille

gal and must be written as stated.

In the case of the 68000, the program

must insure that the appropriate pointers

are adjusted to an even byte boundary

whenever the data type changes from char

to any other. Other processors have more

restrictive alignment requirements than

the 68000, so it is certain that a routine

specifically coded for that processor may

fail to execute properly on many others.

The concomitant problems of align

ment and portability may be solved by use

of a simple mechanism that takes advan

tage of C's lackofcontraints regarding

the use of "union" data types. As Brian

Kernigan and Dennis Ritchie's book Vic

CProgramming Language states, "It is

the responsibility of the programmer to

keep track of what type is currently stored

in a union; the results are machine

dependent if something is stored as one

type and extracted as another."' To see

how this provision may be used to an

advantage in solving the alignment/

portability problem, consider the follow

ing short routine which contiguously

stores three identical data blocks—each

composed of a single character, an

integer, and a float—into a character

array.

The routine in Listing 2 will compile

without error and should also run on any

processor regardless of alignment

restrictions. One should now refer to List

ing 3 (printed here and available on the

BBS as disk file CPORT3.LTG). which

contains algnm. h. This demonstrates

what an align data type is and also reveals

that ilgn() andflgnf) are simply macro

expansions that operate on align data

types. Observe that align is type defined

as a union capable of containing a pointer

to every legal C primitive data type.

In the routine in Listing 3 it was possi

ble to insert differing data types into the

character array in any order simply by

changing the current value of "u" from

one pointer type to another (just as the C

specification declares that we may) sub

ject to one crucial restriction. It becomes

the programmer's responsibility to insure

that the alignment is correct for the next

data type. The macro expansions given in

algnm.h perform this function for every

legal data type. When one switches from

one data type to another, the appropriate

macro is invoked, which insures align-

ment is always maintained. Routines such

as the previous one will correctly compile

and execute on any processor for which

compatible algnm. h macros (or functions)

have been provided. For most processors,

production of the seven necessary macro

definitions should be straightforward.

It is now possible to return to the prob

lem of creating compressed reserved

word tables from digital searching trees

and to consider routines that use this data

alignment technique in a less trivial fash

ion. On the COMPUTER LANGUAGE

BBS I've provided a program listing

called PORTC3.LTG. This listing pro

vides a set of routines thai create and

search a reserved word table using the

previous algnm.h memory alignment

macros. They accept (as input) digital

searching trees that are created by the rou

tines in the PORTC2. LTG disk file on the

COMPUTER LANGUAGE BBS and create

(as output) a reserved word table that is

compressed in all respects as described

previously. The table is indexed and there

fore memory-address independent, so it

may be saved externally and subsequently

read (or permanently loaded) into other

programs.

The searching routine contains two

compilation options. If £^C7~is true.

only exact matches will be found; if false,

the longest partial matches found will also

be reported. This searching routine is

quite efficient and will identify tokens

with an efficiency approaching that of a

truly deterministic finite automation, such

as the UNIX-based lex.

Several caveats are in order concerning

the use of the algnm.h macros. If non-

standard data structures are moved in

memory or stored on an external device

and subsequently re-read, the base

address of the data array must have the

same memory alignment in all cases. For

example, if the data structure base address

falls on a word boundary when created,

then it must always be constrained to

reside at a word boundary. It is possible to

create some truly spectacular errors using

algnm, h, errors that the C compiler would

never allow to propagate into run-time

code. For example, a misplaced or miss

ing alignment macro may cause a memory

fetch instruction with an improperly

aligned operand address. And this may

result in some strange error message. On

my DUAL Systems 83/201 get a cryptic

"buserror!" message.

Finally, I must admit that the digital

searching routines presented here do not

implement the atgnm.h macros in the most

bullet-proof fashion. This is due to the

implicit assumption that character data

types require no special alignment.

Although this is true for most processors,

it is by no means true for all. The Honey

well 6000. for example, has a different

23



format for character pointers than for Reference David Harry has a Ph.D. in physical bio-

other data types. To be completely safe, l.Kernigan. Brian and Ritchie, Dennis. 1978. chemistry and is director ofcomputer sup-

one should invoke the clgn() macro when The CProgramming Language. Prentice- por! services at the Univ. of Texas Medical

switching from any other data type to type Hall, Inc. Inglewood Cliffs, N.J. Branch in Galveston, Texas.

char. n

/* dgt2.c - test the dgsm.c and dgsx.c routines */

#include <stdio,h>

#include "dgsdefs.h"

#define NULL 0

#define MAXLEN 50

#define DEPTH 5

main()

f
FILE *fopen(),*fp;

struct tblctrl *tctrl;

struct xtbctrl *xctrl;

char fname[30],str[MAXLEN],*malloc();

int nsym;

for(;;)

{
fprintf(stdout,"Enter file name: ");

if(fscanf(stdin,"%s",fname) != 1)

fprintf(stderr,"Syntax error on file name entry!");

else if((fp=fopen(fname,"r")) != NULL)
break;

else

fprintf(stderr,"Invalid file name!\n");

)
/* Initialize the control table */

tctrl=galloc();

intdgs(tctrl,DEPTH);

/* Read the tokens into the dgs */

nsym=0;

while(gtstr(fp,str,MAXLEN) != EOF)

{
fprintf(stdout,"%s\n'\str);

nsym++;

if(dgs(tctrl,str,nsym) != nsym)

{
fprintf(stderr,"Error on # %3d, %s\n",nsym,str);

exit(l);

)
/* "Rewind" the input file */

fclose(fp);

if((fp=fopen(fnameI"r")) == NULL)

{
fprintf(stderr,"Unable to reopen input file!\n");

exit(l);

Listing 1.

24 COMPUTER LANGUAGE ■ OCTOBER 198-J



Your CP/M-80 becomes THE definitive 8-bit Operating System

FREE!ZCPR3 SETS YOU

1 Command Line IF-ELSE-GOTO, Job Flow Control Automation

• File, Disk, Memory, and System Status Utilities, all online

• Named Directories, each with optional password access

• Dynamically loadable Resident Command Packages

• Error Hand ling Packages, graceful recoveries

• Screen-oriented Menu Generators

• CompleteonlineHELPsystem

• SHELLS, with shell variables

• File Search Paths, organize your system

• Multiple Commands per Line, program chaining

• Aliases, eliminates complex keystroke entries, nestable

• Shell generator, make any application program a SHELL

• Terminal Install utility, uses UC Berkeley TERMCAP database

ZCPR3 permits highest productivity while providing flexible system

control and maximum usability. It's terrific! The utilities create a

tool-set environment that's hard to beat even by large main-frame

machines. You are free to do what you want in the way you want.

Try it and see if you don't agree. Newsletter, User Group and

24-hour bulletin board report ZCPR3 community activities.

1. CORE CP/M CCP REPLACEMENT MODULE
Starter-kit utilities on 2 disks, plus 173-page

SAMPLER documentation only S39.00

2. ZCPR3 UTILITIES

Complete, full source on 8 disks S89.00

3. Z3-DOT-COM

Auto-install ZCPR3. Load-and-go, complete full-up

ready-to-run system on 4 disks S149.00

4. ZCPR3: THE MANUAL

Lavish, typeset, over 300 pages S19.95

5. SYSLIB3 MACRO LIBRARY

Used to write most ZCPR3 utilities, documention

and full source on 4 disks $29.00

6. DISCAT

Menu-driven disk and file catalog system under ZCPR3 ... S49.00

VISA/MASTERCARD, check

or money order accepted.

Specify disk format desired.

Add $3.00 shipping and

handling. Calif, add 6.5%

sales tax. Phone or send

order now to Echelon, Inc.

— your single source for

ZCPR3 related software,

support and documentation.

We market programs taking

full advantage of ZCPR3

capabilities; send us yours

for evaluation and report.

:■■ ■■ ■-

Trademarks;

CP/M, Digital Research

ZCPR3. SYSLIB3. Richard L Conn

Z3-Dot-Com, Alpha Systems Corp.

DISCAT, Echelon. Inc.

. L01 First Street • LosAltos, QK 94022 • 415 9-48-3820

J

CIRCLE 21 ON READER SERVICE CARD



Six Times Paster!
Super Fast Z80 Assembly Language Development Package

Z80ASM

• Complete Zilog

Mnemonic set

• Full Macro facility

• Plain English error

messages

• One or two pass

operation

• Over 6000 lines/minute

• Supports nested

INCLUDE files

• Allows external bytes,

words, and expressions

(EXT1 * EXT2)

• Labels significant to 16

characters even on

externals (SLR Format

Only)

• Integral cross-reference

• Upper/lower case

optionally significant

Conditronal assembly

Assemble cooe for

execution at another

address (PHASE &

DEPHASE)

Generates COM, HEX,

or REL files

COM files may start at

other than 100H

REL files may be in

Microsoft format or

SLR format

Separate PROG, DATA

&. COMMON address

spaces

Accepts symbol defini

tions from the console

Flexible listing facility

includes TIME and

DATE in listing (CP/M

Plus Only)

Links any combination

of SLR format and

Microsoft format REL

files

One or two pass

operation allows output

files up to 64K

■ Generates HEX or COM

files

• User may specify PROG.

DATA, and COMMON

loading addresses

SLRNK
• COM may start at

other than 100H

• HEX files do not fill

empty address space.

• Generate inter-module

cross-reference and

load map

• Save symbol table to

disk in REL format for

use in overlay

generation

• Declare entry points

from console

• The FASTEST Micro

soft Compatible Linker

available

o

For more information or to order, call:

1-800-833-3061

In PA, (412) 282-0864

Or write: SLR SYSTEMS

1622 North Main Street. Butler, Pennsylvania 16001

Complete Package Includes: Z80ASM, SLRNK. SLRIB

- Librarian and Manual for just $199.99. Manual only, $30.

Most formats available for Z80 CP/M. CDOS. &TURBODOS

Terms: add $3 shipping US, others $7. PA add 6% sales tax

CIRCLE 59 ON READER SERVICE CARD

S" L
COMMODORE 64 GETS AWAY FROM BASICS

with

ttt

Commodore 64 is a trademark ol Commodore Electronics , Inc.
'PETSPEEO is a trademark ol Oxfoid Computer Systems (Software). U0

26 COMPUTER LANGUAGE ■ OCTOBER 1984 CIRCLE 38 ON READER SERVICE CARD



nsym=O;

while(gtstr(fp,str,MAXLEN) != EOF)

nsym++;

if(srdgs(tctrl,str) != nsym)

fprintf(stdout,"Symbol #%3d not found!\n",nsym);

fclose(fp);

fprintf(stdout,"# entered: %3d\n",tctrl->nentry);

fprintf(stdout,"table size in bytes: %d\n",mtrsiz(tctrl));

fprintf(stdout,"# nodes: %3d # links: %3d #chars: %3d\n",

tctrl->nnodes,tctrl->nlinks,tctrl->nchars);

xctrl=xalloc();

if(!cdgx(tctrl,xctrl))

fprintf(stderr,"Error in cdgx module!\n");

exit(l);

/* print the compressed tree nodes
xprt(xctrl);

*/
if((fp=fopen(fname,"rn)) == NULL)

{
fprintf (stderr, "Unable to reopen input file'!\n");

exit(l);

Listing 1 (Continued).

NEW Ver. 2.2

Easier— More Power c

WINDOWS

FOR CM
FOR THE IBM PC + COMPATIBLES

Lattice C, CI-C86, MWC86

DeSmet C, Microsoft C

ADVANCED SCREEN MANAGEMENT

MADE EASY

IMPROVE

• Help files

ADVANCED FEATURES

• Unlimited windows and text files

• Word wrap, auto scroll

• Horizontal and vertical scroll

• Fast! + No flicker or snow

• No memory in screen buffers

• Complete color control

• Auto memory management

• Save and move window images

• Easy overlay and restore

• Format and print with windows

• Highlighting

WINDOWS++

Much more than a window display

system, Windows for C is a video

display toolkit that simplifies all

screen management tasks.

SIMPLIFY

Menus

Data screens • Editors

Form printing • Games

ALL DISPLAYS

C SOURCE MODULES FOR

pop-up menus, multiple window

displays, label printer, cursor

control, text mode bar graphs.

plus complete

building block subroutines

DESIGNED FOR

PORTABILITY

FULL SOURCE AVAILABLE

NO ROYALTIES

WINDOWS FOR C $150

(specify compiler & version)

Demo disk and manual S 30

(applies toward purchase)

Dealer Inquires welcome

A PROFESSIONAL SOFTWARE TOOL FROM

CREATIVE SOLUTIONS

21 Elm Ave, Box L10, Richford, VT 05476

802-848-7738
Master Card & Visa Accepted

Shipping $2.50

VT residents add 4% tax

CIRCLE 15 ON READER SERVICE CARD 27



nsym=O;

while(gtstr(fp,str,MAXLEN) != EOF)

nsym++;

if(sgx(xctrl.str) != nsym)

fprintf(stdout,"Symbol #%3d not found in compressed tree!\n",nsym);

fclose(fp);

fretre(tctrl);

fprintf(stdout,"Size of compressed tree: %d\n",xctrl->size);

/* GTSTR

Return a non-null line from the requested input device. Any line longer

than 'maxlength-l' is truncated. The length of the line is normally

returned. EOF is returned on eof or error.
*/

gtstr(fp,str,maxlength)

char *str;

int maxlength;

FILE *fp;

int c=0,i=0;

while(i==0 && c!=EOF)

{
while((c=getc(fp))!=EOF && c!='\n' && i<maxlength-l)

{
*str++=c;

}
*str='\O!;

return(c==EOF ? EOF : i);

Listing 1 (Continued).

#include "algnm.h"

pfunct(cary,one_char, int__num,float_nura)

char one_char, *cary;

int int_num;

float float_num;

i
int i;

ALIGN u; /* u is a union of pointers */

u.cptr=cary; /* refer to it as a char pointer */

fpr(i=Oj i<3; i++) {

*u.cptr++=one_char;

*ilgn(u)=int_num; /* convert u to an integer pointer */

u.iptr++;

*flgn(u)=float_num; /* convert u to a float pointer */

u.fptr++;

Listing 2.

28 COMPUTER LANGUAGE■ OCTOBER 1984



/* algnm.h - vers. M68000-1.0

Memory alignment routines. NOTE: These defs are highly machine-dependent

*/

typedef union Ignm

{
int *iptr;

short *sptr;

float *fptr;

double *dptr;

char *cptr;

unsigned int *uptr;

unsigned short *usptr;

} ALIGN;

#define __lg(p) (((int)p.cptr) & 1 ? ++p.cptr : p.cptr)

#define clgn(p) p.cptr

#define ilgn(p) ((int*)_lg(p))

#define slgn(p) ((short*)_lg(p))

#define flgn(p) ((float*)_lg(p))

#define dlgn(p) ((double*)JLg(p))

#define ulgn(p) ((unsigned*)_lg(p))

#define uslgn(p) ((unsigned short*)_lg(p))

Listing 3.

(LISP)
UO-LISP Programming Environment

The Powerful Implementation

of LISP for MICRO COMPUTERS

Featuring: The LEARN LISP Package

Complete with LISP Tutorial Guide, Editor Tutorial Guide, System Manual with Usage

Examples, Full LISP Interpreter, On Line Help and other Utilities. LEARN LISP

fundamentals and programming techniques rapidly and effectively for S39.95.

UO-LISP Production Power

The Usual LISP Interpreter Functions, Data Types, Structure Editor, Screen Editor with

Mouse Support option. Compiler and LAP Assembler, Optimizer, LISP & Assembly

Code Intermixing, Compiled Code Library Loader, Numerous Utility Packages,

Hardware and Operating System Access, Session Freeze and Restart, Comprehensive

350 Page Manual with Usage Examples, and much more is available in the UO LISP

Programming Environment. Configurations start at $100.00. Manual may be purchased

separately ■ $40.00.

Other UO-LISP products include Utlle META a translator writing system, RUSP a

high levei language, and L1SPTEX, a text formatier.

REQUIRES: The UO-LISP Programming Environment runs on most ZSO computers

with CP/M or TRSDOS. The 8086 version available soon.

Visa and Mastercard accepted.

Northwest Computer Algorithms

P.O. Box 90995, Long Beach, CA 90809

Phone Orders Accepted ■ (213) 426-1893

SMALL FOR IBM-PC

Small-C CompilerVersion

2.1 for PC-DOS/MS-DOS

Source Code included

forCompiler& Library

New 8086 optimizations

Rich I/O & Standard Library

CBUG SOURCE LEVEL DEBUGGER FOR SMALL C

Break, Trace, and Change

variables all on the

source level

Source code included

Datatight
11557 8rh Ave. *^N.E.
Seattle, Washington 98125

(206)367-1803

ASM or MASM is required wirh comD'ier
include ais< size I i6GW320k)r and DOS version with order
visa a MasterCard accepted include card no 4 expiration date

Washington state residents include 7 9% sales tax
IBM-PC& PC-DOS are trademarks of international Business Machines

M5-DO515 a trademark of Microsoft Corporation

CIRCLE 46 ON READER SERVICE CARD CIRCLE 19 ON READER SERVICE CARD

29



ROBOTICS
=AGE=
A Real-Time Experience

Learning how to program was the easy

part. Now, what are you going to do

with your knowledge? How about

writing a check balancing program?

Maybe you could start developing that

wonderful data base to keep track of

everyone's birthdays. However, there

are more interesting challenges.

Computers are very useful for track

ing and filing information. There's

more to computing than just manipu

lating data. There's walking, talking,

singing, listening, touching, and con

trol. The computer's most powerful

function is control.

Real-time computer techniques can

control factories and machinery, mon

itor your home environment and pro

tect it from intruders, and operate lit

tle mechanical friends which will take

out the garbage.

The near future will show us ma

chines which respond to human voice

controls, are capable of finding their

own way around a house or factory

floor, and are able to make their own

decisions. Robotics Age teaches you to

design and work with the practical

real-time applications of state-of-the-

, art microcomputer technology. Robots

are simply machines which respond to

their environments and can act on

their own. Computers make these ma

chines possible.

After all, many people claim their

computers are user friendly—but how

can your computer be user friendly if

it doesn't come when it's called?

It's time for you to experience

Robotics Age. Explore the frontiers of

microprocessor applications. Use the

subscription form below to start the

flow of vital technical information you

need.

Sign me up TODAY for my personal

subscription to Robotics Age,

The Journal of Intelligent Machines.

US Subscriptions

U 12 issues

□ 24 issues

G 36 issues

Canada & Mexico

C 12 issues

D 24 issues

n 36 issues

S24

$45

S63

528

$53

S75

Foreign

D 12 issues (surface]

D 12 issues (Air Mail)

D 24 issues (surface)

n 24 issues (Air Mail)

□ 36 issues (surface)

f] 36 issues (Air Mail)

$32

S68

Sfcl

SI33

187

SI9S

Non US Subscription Rates:

Payable in US funds, drawn on a US bank.

Subscription length will be adjusted down

ward on a pro-rata basis for any currency

conversion charges, foreign subscription

orders may be paid in US dollars via Easier-

Card or VISA.

McntftrCrard VISA

RETURN WITH PAYMENT TO:

Robotics Age, Box 358

Peterborough, NH 03458

CLP-1

Name

Company

Address

Town

State Zip. Postal Code

□ Bill Me

Credit Card Information

[ j MasterCard

VISA

Card Number

Expiration Date

Country

Signature

Total amount Enclosed or Charged S

J

30 COMPUTER LANGUAGE■ OCTOBER 1984 CIRCLE 57 ON READER SERVICE CARD



A powerful IBM
"Language"

T
|he IBM PC-DOS

manual is a mar

vel of under

statement. It

takes more than one reading before you

really realize that PC-DOS Version 2 puts

at your command a simple but extremely

useful computer language called Batch.

Batch? A language? Indeed. With a lit

tle ingenuity, you can make this IBM util

ity play tricks you thought only Pascal or

PL/I could provide—procedure calling,

recursion, argument passing, string

manipulation, looping, case selection,

even file and console I/O. And even bet

ter. Batch is an extensible language. You

can add to it as you go along.

Let's look at just a few of the surprising

capabilities of Batch. I will also explain a

powerful but undocumented feature of the

language and give you some handy Batch

programs that you can put to immediate

use. To save some finger work, you can

download all these programs from the

COMPUTER LANGUAGE Bulletin Board

Service by calling (415) 957-9370 and

looking for the files marked

BATCH.LTG. Note: Examples in text use

an indent to show that text should be on a

single line.

Let your files do the typing

To begin with, what qualifies something

to be a programming language? Most

books on programming languages will tell

you that every language is founded on

three primitive constructs: sequence,

selection, and repetition. These happen to

be the three primitive constructs of Batch.

The sequence construct lets you specify

a set of statements to be executed one after

By Darryl E. Rubin

another. In Pascal you do this by sur

rounding the statements with the reserved

words BEGIN and END. In Batch you

simply put the statements in a file and

specify the file with the extension .BAT.

Typing the name of a Batch file as a com

mand causes PC-DOS to execute each

statement in the file.

Batch statements include every PC-

DOS command and program name plus

some special commands that arc unique

only to the Batch language. For example,

writing this article was a lot easier by cre

ating a Batch file called WRITE.BAT:

EDITARTICLE.TXT

SPELLARTICLE.TXT

FORMATARTICLE.TXT

PRINTARTICLE.DOC

Listing 1 shows another, more soph

isticated Batch file called BUILD.BAT.

This one will turn an assembly language

source file into an executable .COM file

and erase the intermediate .OBJ and .EXE

files. To use it, just type BUILD PROG

NAME, where PROGNAME is the name

of the source file (without the extension).

Note, however, that your source file must

conform to the PC-DOS convention for

.COM programs.

BUILD also demonstrates two other

Batch features: argument passing and

string concatenation.

To perform argument passing, Batch

assigns each word in your command line

an argument name in the range %Q

through %9. When you type BUILD

PROGNAME, %Q is set to BUILD and % 1

to PROGNAME.

Wherever an argument name appears in

a Batch file, Batch substitutes it with that

argument's value and concatenates the

substituted value to any neighboring

strings. For example, typing BUILD

PROGNAME causes line 1 of

BUILD.BAT to become MASMPROG-

NAME: and line 4 to become DEL PROG

NAME.OBJ.

masm %1;

link %1;

exe2bin %1

del %l.obj

del %l.exe

del %l.com

ren %l.bin %l.com

Listing!.

For a more complete demonstration,

let's use one of Batch's special commands

called ECHO. ECHO simply writes every

thing following it on the command line to

standard output (except if you say ECHO

ON or ECHO OFF— these have special

meanings). You can use ECHO to put

argument passing and concatenation

through theirpaces (see Figure 1).

You might ask, what's the use of the %0

argument if its value is always the name of

the Batch file being executed? We'll see

shortly.

Constructs of choice

The second primitive language construct

is selection. Selection lets you specify a

choice between sets of statements to exe-

31



culc. Pascal provides the IF and CASE

statements for this purpose.

Batch also has an IF statement that uses

the simple format, IF < condition >

<statement > . Very streamlined. For

conditions, your choices are:

■ String comparison:

IF < string] > = = <string2>

■ File existence:

IF EXIST <filename >

■ ERRORLEVEL checking:

IF ERRORLEVEL n

(0 < = n < = 255)

■ Optional NOT:

IFNOT < condition >

ERRORLEVEL is a PC-DOS system

variable that can be set by any program.

Saying IF ERRORLEVEL n really means

IF ERRORLEVEL < = n. IBM meant for

this to be used in programs that return

error status to the PC-DOS shell, but

more creative uses abound, as we'll see.

First though, let's play with IF. What

does the following Batch file do?

MYSTERY.BAT:

CD %0

IFEXISTAUTOEXEC.BAT

AUTOEXEC

The file connects you to a subdirectory

called MYSTERY and executes a file called

AUTOEXEC.BAT if it exists there.

Notice our use of the %0 parameter. If

you named the file WORKDIR.BAT

instcadofMYSTERY.BAT, it would con

nect you to a subdirectory called WORK-

DIR. NameitWP.BATorTOOLS.BAT

or ANYTHING.BAT and it will connect

PARR0T.BAT:

Arguments

You type:

You see:

Table 1.

you to those subdirectories. As you can

see, CD %0 is one versatile command.

To see another side of the Batch IF

statement, look at the ATTR.BAT file in

Listing 2. This command lets you play

with video attributes. For example, A TTR

REVERSE puts the screen into reverse

video mode, ATTR BOLD puts il into

highlighted mode, and ATTR NORMAL

goes back to normal mode. You can even

combine certain attributes. Try ATTR

BLINK USCORExo sec what blinking

underscored characters look like!

ATTR.BAT introduces two other Batch

commands—SHIFT and GOTO.

Shifty arguments

SHIFTmakcs each argument equal to its

successor, which means it performs the

sequence of assignments %0 : = % 1, % I

:= %2, %2:= %3, etc. It has two uses:

accessing command line arguments

beyond the tenth one and processing a

variable number of arguments. Lines 8-9

of ATTR. BAT demonstrate the second of

these uses. We shift the arguments and

test whether % 1 becomes null. If not, we

GOTO the start of the Batch file to process

the next attribute.

Pay attention to the tricky way we test

for null arguments. It doesn't work to do

the obvious IF %I = . (Do you know

why?) However, saying IF %II = = /

works because when % 1 is null we end up

with/F/ = = /.

/Fis not the only way to do selection in

Batch. GOTO offers an alternative akin to

the C45£" statement of Pascal. For exam

ple, GOTO %I branches to a label whose

value was passed as an argument. My first

version of ATTR. BAT used this construct

for jumping to the labels :NORMAL.

:BOLD, :REVERSE, and soon.

ECHO %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

ECHO %0: %1%2 %3 th%4%t *%5%6* %7%8%9!

%0 %1 %2 %3 %k %5 %6 %7 %8 %9

A>PARR0T Th is is a te st

PARROT Th is is a te st

PARROT: This is that *test* !

Taken fora loop

I sneaked one in on you. Did you notice

that ATTR.BAT also demonstrates

repetition—the third primitive construct

of programming languages? Yes, the good

old GOTO plus the correct use of the IF

statement is one way to execute a set of

statements several times.

Another way is to use the FOR state

ment. Pascal has one and so does Batch. It

looks like this:

FOR%%VIN(<list>)DO

<stalement>

Rather than get wordy, let's try some

examples. The statement,

FOR %%E IN (Testing 1 2.) DO

ECHO %%E

is equivalent to the sequence

ECHO Testing

ECHO1

ECHO 2.

And the statement.

FOR %%F IN (JUNKFIL *.BAT) DO

ERASE %%F

is the same as, say.

ERASEJUNKFIL

ERASEBUILD.BAT

ERASEATTR.BAT

You can do some imaginative things

with FOR loops. The following will verify

thai the argument % 1 has one of the val

ues 1, 2, or 3:

FOR%%AIN(1 2 3) DO

1F%1 = = %%AGOTOOK

ECHO %1 is not a valid value.

GOTO EXIT

:OK

And this line will print five copies of a

file named by %1:

FOR%%NIN{1 2345) DO

PRINT %1

32 COMPUTER LANGUAGE ■ OCTOBER 1984



Teaming up with PC-DOS

Useful stuff but we're just beginning to

warm up to Batch's most powerful capa

bilities. Surprisingly, the most powerful

stuff arises not from features of Batch

itself but from the combination of Batch's

primitive constructs with PC-DOS's facil

ities for I/O redirection, filters, nested

shells, and the string environment.

Let's start with I/O redirection. Pro

gram output under PC-DOS defaults to

the display, but you can redirect it to

another device or file by putting

>outname on the command line, where

outname is the desired device or file.

Remember the ECHO command? Try

this:

REDIRECT. BAT: ECHO This is a

test>junkfil

ECHO This is a test>lptl:

This Batch file actually creates another

file (junkfil) and writes to the printer too.

Using ECHO like this, you could make a

Batch file like ATTR.BAT which sets

your printer to a desired font. Or you

might try:

MAKEDIR.BAT:

CD%1

ECHOCD%0>%1.BAT

ECHO IF EXIST AUTOEXEC.BAT

AUTOEXEC»% 1 .BAT

This command creates a subdirectory

for you plus a Batch file of the same name

that contains the MYSTERY.BAT state

ments described earlier. Try MAKED1R

JUNK, ihcn type JUNK.

Notice the use of > > in MAKE

DIR.BAT. It causes PC-DOS to append

rather than overwrite to the standard out

put file. In other words, to create a multi

line file, use normal redirection f >) for

the first ECHO operation and appending

redirection (> >) for all subsequent

ones.

Commanding procedures

PC-DOS has an inscrutable little com

mand called—of all things— COMMAND.

It invokes a nested shell. What use is this

without multitasking? Most people

haven't the foggiest idea. But it is your

key to calling Batch procedures.

This is trickier than it might seem. You

can't just call a Batch file by name, as in

WONTWORK.BAT:

ECHO Aboufto call.

PROC I'm a procedure.

ECHO I'm Back!

PROC. BAT:

ECHO%1%2%3

What goes wrong here is that PC-DOS

invokes PROC.BAT but never returns.

Sorry, but that's the way PC-DOS works.

One Batch file cannot call another; it can

simply GOTO another. Look at MAKE

DIR.BAT again. It uses this feature to

transfer to the AUTOEXEC.BAT file if it

exists. There's no need to return in this

case because calling AUTOEXEC is the

last thing that MAKEDIR does.

Fortunately, when you do need to

return, the COMMAND command will

save the day:

WILLWORK.BAT:

ECHO About to call.

COMMAND/CPROC

I'm a procedure.

ECHO I'm Back!

That's really all there is to it—just put

COMMAND/C before the statement. Let's

see what we can do with this:

M.BAT:

ECHO OFF

FOR%%FIN(%2)DO

COMMAND/C X

X.BAT:

ECHO OFF

REM This is a procedure

calledbyM.BAT

CONFIRM %1 %2%3?

IFNOTERRORLEVEL1

%1 %2%3

To use this pair of files, you'll need the

CONFIRM.COM program, which you

can download from the BBS. The program

displays its command line arguments as a

prompt, waits fora Y/N answer, and

returns ERRORLEVEL 0 for Y and 1 for

N. This is one way to do keyboard input

from a Batch file—though not the most

powerful way, as we shall see.

So what does M.BAT do? Well, "M"

stands for "Multi" and you use it like

this:

echo off

rem To use this command, put DEVICE=ANSI.SYS in

rem your CONFIG.SYS file.

:start

if %1 == normal echo <esc>[0m

if %1 == bold echo <esc>[lm

if %1 == uscore echo <esc>[4m

if %1 == blink echo <esc>[5m

if %1 == reverse echo <esc>[7m

shift

if not %1/ == / goto start

Note: "<esc>" in the above listing represents the

ASCII escape character (decimal 27).

Listing 2.

33



mm^mm^m

MCOPYA:*.'B: or

M ERASE'.BAT or

MTYPEMXT

For example:

A>MCOPYA:".'B:

COPYA:COMMAND.COM B:?n

COPY A:DEBUG.COM B:?y

1 File(s) Copied

COPYA:LINK.EXEB:?y

1 File(s) Copied

Recursive Batch

If you're ready for one of Batch's biggest

surprises, check out a disk file called

MAKEREM.LTG I've placed on the

COMPUTER LANGUAGE BBS

(415-957-9370), which was too long to be

printed here. This quartet of Batch files

expands on the idea behind MAKEDIR,

giving you both a MAKE subdirectory

command, MKS.BAT, and a remove sub

directory command, RMS.BAT.

The surprise is that RMS.BAT will

remove not just the named subdirectory

but also the entire sub-tree below that sub

directory, using recursion. This is one

supercharged way to clean up your disk.

The secret of the recursive algorithm is

on line 5 of MKS.BAT. Each time you

invoke MFCS, it makes a record of the sub

directory it creates for you by appending a

line to a file called #DIRLOG.BAT. An

instance of this file will be created in any

subdirectory from which you execute

MKS.BAT.

Just what does MKS record in

0DIRLOG.BAT? Quite simply, it records

the command that will later be needed to

remove the directory you just created. By

running the #DIRLOG.BAT file, you can

remove all subdirectories created by

MKS.BAT.

Let's see how this works. To remove a

sub-tree you call RMS.BAT, as in RMS

JUNKDIR. RMS first calls 0RMS0.BAT,

which connects to the root node of the

requested sub-tree and runs

0DIRLOG.BAT if it exists. In turn, this

file removes all child nodes by calling

#RMS#. BAT once for each child node.

Here is where the recursion happens.

When #DIRLOG.BAT returns,

#RMS#,BAT deletes all remaining files in

the root node of the sub-tree and removes

that node. Control then returns to

RMS.BAT. Having removed a sub-tree,

RMS must now update the current

0DIRLOG.BAT file to delete the entry for

that sub-tree. It uses the PC-DOS FIND

filter to do this.

Study this use of FIND carefully. It lets

a Batch file delete a desired line from a

file. This is a good example of how com

bining Batch files with filters amplifies

the power of both.

Environment control

Having made it this far, you are becoming

a true Batch initiate. You are ready for one

of Batch's greatest secrets— The

Undocumented Feature. But first some

background.

PC-DOS has a command called SET

that lets you create string variables and

assign them values. Saying SETX=AHA

creates a variable X whose value is AHA.

But PC-DOS makes almost no use of this

capability. Is the environment just a

gimmick?

Not at all. What IBM didn't tell you is

that Batch files can refer to environment

variables much like command line argu

ments. To refer to a variable X, simply put

%X% in your Batch file. This expression

will be replaced by the string value ofX if

X has a value, otherwise it will be

replaced by the two-character string X%.

Right off the bat we can do something

useful with this. Put the statement PATH

%I;%PATH% in a file called

ADDPATH.BAT Typing ADDPATH

C: 'A WORKDIR will append that path

name to the current search path. This

works because PC-DOS records the cur

rent search path in an environment vari

able called PATH.

We can also use the string variables for

true intrafile subroutines:

SETRET= L1

GOTO SUB

:L1

SETRET = L2

GOTO SUB

:L2

(etc.)

:SUB

ECHO I'm a subroutine

GOTO%RET%

echo off

rem This file demonstrates the intrafile subroutine checksub.

rem To call it, do:

rem SET ARG = value to check

rem SET VOC = vocabulary list to check against

rem SET RET = label to return to if check is OK

rem SET ERR = label to return to if check fails

rem Example:

set VOC=one two three 1 2 3

set ARG=%1

set ERR=EXIT

set RET=L1

goto CHECKSUB

Echo %1 is valid.

goto exit

rem Here is the subroutine

:CHECKSUB

for %%a in (%VOC%) do if %%a == %ARG% goto %RET%

echo "%ARG%" is invalid, try one of "%V0C%"

goto %ERR%

:EXIT

for %%v in (ARG VOC RET ERR) do set %%v=

Listing 3.

COMPUTER LANGUAGE ■ OCTOBER 1984



Listing 3 shows a more useful sub

routine that validates a passed argument

against a passed vocabulary.

Talking back to Batch

Now for the finishing stroke. String vari

ables are the gateway to true interactive

input to Batch files. The program SET-

VAR.COM, available on the BBS, makes

this possible. SETVAR reads a line from

standard input and assigns this as the

value to the string variable named on the

SETVAR command line. Basically, it lets

you talk back to your Batch files.

For example, the following will prompt

you for a file name and assign that name

to a variable F:

ECHO Enter a file name.

SETVAR F

The complete Batch

By now 1 hope you're hankering to try

your hand at Batch programming. Maybe

you've even got some ideas for programs

like CONFIRM'-and SETVAR that you'll

write yourself.

This is perhaps the nicest feature of

Batch. Every program you add to your

system becomes a verb of the Batch lan

guage. More than most others, you can ■

truly make Batch your language.

To give you that extra dash of inspira

tion, I have another trio of Batch files to

offer that constitute a menu generator (see

the file MENUGEN.LTG on the BBS).

Type MAKEMENUand you will be asked

a set of questions that will lead to the cre

ation of a brand new Batch file that imple

ments a personalized menu.

You will specify the name of this menu

file, the caption for each menu item (there

are always nine), and the sequence of

commands to be run for each item. You

can specify any PC-DOS or Batch com

mands that don't use the equal sign

(another quirk of PC-DOS). When you

finish, you'll have an interactive menu of

your own design to play with.

Batch files that write other Batch files?

Is this artificial intelligence? An expert

system? A fifth generation language?

Hardly. It's just a little surprising. M

Darryl Rubin is the network products sec

tion manager at Rotm.

And the following will let your Batch file

prompt for a missing command line

argument

SETARG = %1

IF NOT%ARG% = - ARG%%

GOTO OK

ECHO (Your prompt for the missing

argument)

SETVAR ARG

:OK

The next line will set a variable CURDIR

equal to the path name of the current

directory:

CHDIR ISETVAR CURDIR

Notice how we use the PC-DOS piping

capability to feed the output from CHDIR

to SETVAR. With pipes ( | ) you can take a

program's output and assign it to a string

variable, provided your environment has

the room.

What if you'd like to check in advance

whether there's sufficient room? Then

simply SisTyouryour variable to a test

value and check whether that value was

S£Tsuccessfully:

SETMYVAR = 0123456789

IFNOT%MYVAR% == 0123456789

GOTO NOROOM

ECHO There's room for at least a

10-char value

For still more error checking, you can

test the ERRORLEVEL after calling SET

VAR . It will contain the length of the value

string assigned by SETVAR, or it will con

tain 0 if the value string was null or

couldn't be assigned.

Is your software

easy to use?

Maybe YOU think so.

Despite what you may

think, there may be times

when your software is hard tci

use. But what if your soft

ware could loll users exact

ly what to do every time

they were confused? Then

people would start to agree

with you about "easy to use".

And when everyone agrees with you,

prospective customers become eager buyers,

first-time users turn into confident users,

reviewers give you high marks, and sales

people enjoy demonstracing your software.

Quite simply, when everyone agrees

your software is easy to use, il sells.

SoftDoc™ is a module

which provides your software

with instantaneous context-

sensitive help, on-line refer

ence facilities and interactive

tutorials. SoftDoc'" is com

patible with windowing,

networking, touch screens,

mouse control and other

interface technologies.

Call or write Learning Tools today.

Find out how your software can btcome

easier to use, demonstrate, learn, document,

maintain, distribute, network, support,

review and sell. And ask for a SoftDoc"1

demonstration disk.

SoftDoc" will get people to agree with you.

SoftDoc
by LEARNING

TOOLS l§

II

LEARNING TOOLS 686 Massachusetts Ave. CambridEe, MA02139 Tel. (617)864-8086

CIRCLE 37 ON READER SERVICE CARD

35



1



ZCPR's founder reveals the technical

design behind this CP/M

CCP replacementThe .

Evolution

tfirstaZCPR3

System appears

to operate like

1CP/M2.2.The

CP/M commands seem to work cor

rectly—a DIR command wilt display the

directory and a TYPE command will print

a file out on the console. WordStar,

dBASE II, BDS C, PASCAL/MT + , and

all CP/M-compatib!e programs can run on

it.

You may have heard about ZCPR3 on a

local bulletin board system, in a chat with

some friends at the last computer club

meeting, or in a magazine article. Maybe

ZCPR3 sounded like something special,

something that could perform a variety of

functions vanilla CP/M could not. And

since it's been virtually free, you may

have thought, "Why not try it—what's

there lolose?"

Perhaps some time—after all, there are

fourteen 8-in. disks of software to wade

through, a 150-page installation manual,

and a 500-page book (which should be

available in October 1984), so it would

take a little time to figure out what you

have.

Is all this worth it? I think the answer is

yes, but I'm prejudiced—I wrote ZCPR3

and use it ail the time, including in the

writing of this article.

The ZCPR3 System (Z80 Command

Processor Replacement, Version 3) is a

coilection of tools based around the

ZCPR3 command processor, which is a

program that replaces the console com

mand processor of CP/M.

ZCPR3 is an environment both

upwardly compatible with CP/M 2.2 and

extensible and adaptable to a variety of

uses. It is an environment that can be used

By Richard Conn

for software development and applica

tions, and its tools can serve to increase

programmer and user productivity. Its

toolset, containing over 100 commands,

provides a number of conveniences not

available under CP/M and raises the user

to a higher level of abstraction, further

from the details of the machine and able to

concentrate on the problem at hand.

The ZCPR3 System has been a source

of excitement to many CP/M owners, but

some of them still view ZCPR3 from the

point of view of CP/M 2.2 or ZCPR2, its

predecessor.

In some cases the philosophy of ZCPR3

is being missed, which is understandable

with the current lack of documentation. In

order to obtain the greatest benefit from

using a ZCPR3 system, the philosophy of

ZCPR3 should be understood.

Part I of this article will compare CP/M

and ZCPR3"s memory maps and cover the

major ZCPR3 concepts. Part II, which

will be in the November issue of

COMPUTER LANGUAGE, will carry an

in-depth technical discussion of the

ZCPR3 front-end processor philosophy as

a sample of some of the detail in ZCPR3

concepts, a brief overview of the tools

available in the ZCPR3 distribution, and a

section on where to look for more

information.

CP/M and ZCPR3 memory maps

Figure 1 shows the memory maps of a

conventional CP/M 2.2 system and a

ZCPR3 system. From the point of view of

a program designed to run under CP/M

2.2, both CP/M 2.2 and ZCPR3 look the

same. From the point of view of a pro

gram designed to run under ZCPR3,

ZCPR3 offers many more capabilities to

this program than CP/M 2.2, and some

programs intended to run under ZCPR3

simply cannot run under CP/M 2.2.

ZCPR3 is upwardly compatible with

CP/M 2.2.

Major ZCPR3 concepts

The sacrifice in scratch area for programs

and data made by using ZCPR3 is

rewarded by an increase in functionality

and utility over CP/M 2.2. Some of the

features added to the ZCPR3 System

include:

■ Extensions to the CP/M directory

concept

■ Extensions to the CP/M command pro

cessing algorithm

■ Multiple commands on a single line and

chaining

■ A command search hierarchy

■ A command search and directory

search path

■ Command scripts

■ An integrated command file monitor

■ An Environment Descriptor.

Directories. ZCPR3 allows the user to

reference directories by disk letter, user

area, disk and user area, or by name in the

same way CP/M allows the user to refer

ence disks. Two forms of directory

reference—the DU (Disk/User) and DIR

(named DIRectory) forms—are

permitted.

The DU form is simply a specification

like A: (for disk A, current user), 15: (for

current disk, user 15), and A15:. The DIR

form is a name that has been assigned a

disk/user area, like JEFF: being assigned

to B5:. The DIR form incorporates pass

word protection as well as a directory ref

erence, and when a DIR form is used as a

prefix to a command or prefix to one of



the two file name tokens, a check is made

to see if an associated password has been

defined, and the user is forced to provide

this password before the reference is

resolved.

Figure 2 illustrates some ZCPR3 com

mands using the available directory refer

ence forms. The prompt is the full ZCPR3

prompt, which indicates disk, user area,

and name of the current directory.

Commands. In a ZCPR3 system, com

mands can be found in four places:

■ Within the ZCPR3 command processor

itself

■ Within memory-based resident com

mand packages

■ Within memory-based flow command

packages

■ Intheformof.COM files on disk.

Like the CP/M 2.2 CCP, the ZCPR3

CP (Command Processor) contains some

resident commands. It can contain all of

the CCP commands (except USER, which

is not needed anymore), but all of the

ZCPR3 resident commands are different

in one way or another from their CP/M

counterparts. For example, the TYPE

command stops after filling a page and al

lows the user to strike any key to con

tinue, and the ERA command has an in

spection option.

Commands may also be found within

resident command packages. An RCP is a

file (containing one or more commands)

that is loaded into memory by the LDR

tool of ZCPR3. Commands in an RCP are

executed directly by the ZCPR3 CP with

out the need for disk references to locate

and load the command. Each command ir

an RCP looks and acts like a .COM file,

and a header exists at the front of each

RCP which tells the ZCPR3 CP the names

CP/M 2.2 and ZCPR3 Memory Maps

Address CP/M System

High ■

Memory

2CPR3 System

BIOS

CP/M 2.2 BDOS

CP/M 2.2 CCP

Scratch Area

for Programs

and their Data

100H -

CP/M Buffers

OH ->

Various

Modified

CP/M 2.2

Packages and Buffers

BIOS

BDOS

ZCPR3 Command Processor (CP)

Scratch Area for Programs

and their Data

(1K-5K smaller than under

CP/M 2.2)

ZCPR3 Buffers

Figure!.

Figure 2.

Some Directory Reference Examples

log into user 5 on disk B

log into the directory named TEXT

obtain a directory display of ROOT:

ROOT has a password on it

run DEM0.COM from directory COMS:

B7:TEXT>5:

B5:BASIOTEXT:

B7:TEXT>DIR ROOT:

Password? MYSYS

( display follows )

B7:TEXT>C0MS:DEM0

( program runs )

B7:TEXT>PRINT B5:*.*,SCR:*,* print all files in B5: and SCR:

( printout occurs )

38 COMPUTER LANGUAGE ■ OCTOBER 1984



of the commands in the RCP and their lo

cations. RCPs offer several advantages:

■ Disk space can be saved because a

number of small commands can be

grouped together in one file and loaded

for execution as a group.

■ Time is saved because RCP-loadcd

commands are memory-resident once

their RCP has been loaded, so no disk ac

tivity is involved in locating and loading

them.

■ Commands normally found in the

ZCPR3 CP, like DlRov TYPE, can be

placed into an RCP, freeing up the CP for

more system-oriented functions and giv

ing more room to add more features to the

resident commands.

■ Commands residing within an RCP do

not affect the transient program area as a

rule, so debugging facilities can be placed

into RCPs to look at the TPA after a pro

gram has executed there.

Several standard RCPs are included in

the ZCPR3 distribution files, and some of

the commands they provide include:

■ CP —Copy a file. Example:

CP ROOT.NEWFILE. TXT= B5: T. TXT

■ MU—Memory utility, a screen-

oriented memory editor that allows the

user to display and change memory with

out affecting the TPA by its invocation

■ P—Dump memory (Peek) without af

fecting the TPA. Example: PJ002FF

■ POKE—Change bytes in memory. Ex

ample: POKE 10FA 12 to change the

bytes at lOFHtolllH

■ PROT—Set file protection. Example:

PROT *.*R for making all files in the cur

rent directory read-only

■ TYPE—Improved TYPE. Example:

TYPE*. TXT.

A third source of commands is a flow

command package. An FCP is very simi

lar to an RCP in that it is a package of

commands loaded by LDR and executed

directly from memory by the CP.

Commands that control the flow state of

the ZCPR3 System (like IF and ELSE) are

located here since these commands will be

executed regardless of the status of the

flow state (see the command search hier

archy). The ZCPR3 CP is aware of the

flow state of the system; if this state is

TRUE, the CP will allow any accessed

command to execute. If the flow state is

FALSE, only commands resident within

an FCP may be executed, and all other

commands are flushed without error.

Nine flow states may exist at any one

time in a ZCPR3 System—the empty state

(which is TRUE) and the IF Levels 1 to 8.

The IF command is used to raise the sys

tem to the next flow state and set this state

to TRUE or FALSE. The FI (EndIF)

command is used to drop down to the pre

vious flow state. The ELSE command tog

gles the value (TRUE/FALSE) of the cur

rent flow state. And the XIF {Exit all IFs)

command terminates all //■" levels (forces

the TRUE empty state) if the current IF

ASM $1.BBZ

IF INPUT

LOAD $1

ERA $1.HEX

ELSE

ERA $1.HEX

FI

ERA $1.BAK

The File ASM.SUB

assemble

load and cleanup

else just cleanup

end of IF

cleanup more

Figure 3.

Running the Command "SUBMIT ASM MYFILE"

ASM MYFILE.BBZ

IF INPUT

LOAD MYFILE

ERA MYFILE.HEX

ELSE

ERA MYFILE.HEX

FI

ERA MYFILE.BAK

Figure 4.

assemble a program

raise to the next flow state

and allow the user to set

it to TRUE or FALSE

run LOAD MYFILE and erase

MYFILE.HEX if TRUE

.., otherwise ...

just erase MYFILE.HEX

done with IF

erase backup file

MCL Examples (Spaces Added for Clarity)

B4:PASCAL>

B7:TEXT>

B0:SCR>

Figure 5.

PASCAL MYFILE; LINK MYFILE

FORMAT MYFILE.TXT; PRINT MYFILE.FRM

B:; ERA *.BAK; DIR; C7:; PRINT *.TXT

39



level is TRUE and docs nothing other

wise. Since there arc eight IF states, IFs

may be nested up to eight levels deep (Fig

ures 3 and 4).

The fourth command source is the

standard .COM file, for example,

WordStar (WS.COM) or dBASE II

(DBASE.COM). ZCPR3 handles the exe

cution of .COM files like CP/M does, but

ZCPR3 locates .COM files by searching

for them unless the user explicitly tells it

not to.

Multiple command lines. The MCL is

a third major feature of ZCPR3. ZCPR3

allows the user to specify a sequence of

commands, separated by semicolons, to

be executed on one line (Figure 5). This

feature buys the ZCPR3 user two major

advantages:

■ A sequence of commands can be issued

at one time, and the user can go off and do

something else while they execute.

■ One program can invoke another by

placing a command line into the MCL

buffer, setting a pointer to the first charac

ter of this line and returning to the oper

ating system.

Command search hierarchy. Each

time a command is processed, the ZCPR3

CP follows a sequence of steps in search

ing for the source from which the com

mand will run. This is the command

search hierarchy, and the hierarchy is:

1. Input and parse the next command in

the MCL buffer

2. Check the current FCP for the com

mand and run it if the FCP contains the

command

3. Check the flow state: if TRUE, con

tinue, or, if FALSE, flush the command

and advance to the next one (return to

step 1)

4. Check the current RCP for the com

mand and run it if the RCP contains the

command

5. Check the ZCPR3 CP for the command

and run it if the CP contains the com

mand

6. Search along the command search path

for a .COM file, logging into direc

tories until either the file is found or the

bottom of the path is reached; load and

run the .COM file if found

7. If an extended command processor has

been specified (at installation time),

load it and pass the command to it for

execution

8. If steps 4-7 fail, invoke an error handler

if one has been installed: if none in

stalled, print the COMMAND? error

message.

The ZCPR3 CP follows these steps

each time a command in the command line

buffer is resolved. Thanks to the fact that

steps 1 -5 involve the use of memory-

resident facilities and step 6 incorporates

an efficient directory search algorithm.

the procedure of following the command

search hierarchy takes very little time.

For the sake of space, extended com

mand processors and error handlers will

not be discussed in this article. The reader

is referred to the book ZCPR3: Vic Man

ual to learn more about these topics (see

section on where to look for more infor

mation in Part II of this article, appearing

next month).

Command search path. A path under

ZCPR3 is an expression of a sequence of

directories, and a command search path is

the directory sequence to be followed

when the ZCPR3 CP is looking for a

.COM file. Paths are implemented as a se

quence of DU forms, where the dollar

sign (S) is used to extend the DU form to

indicate the current disk or user area. For

example,

S$S0A$A15

indicates the path from (1) the current

disk and user area to (2) user area 0 on the

current disk to (3) the current user area on

disk A to (4) disk A and user area 15. If

the user is logged into B7, this path is

translated into

B7-> B0-> A7-> A15

The PATH command under ZCPR3 is used

to define the command search path and

change it while the user is running the sys

tem (Figure 6).

Scripts. In many situations, the user

ends up issuing the same sequence of

commands, perhaps with minor vari

ations, over and over again. For instance,

the user may want to assemble a program,

check for errors, and, if no errors, link it

and create a .COM file. If ASM were the

assembler and ASM were the file, then

the command sequence might be:

ASM$1.BBZ

< if no errors > LOAD

ERA$1.HEX

The ZCPR3 System provides a con

venience to assist the user in cases like

this—the script or alias , An ALIAS is a

.COM file created by the alias tool which

contains a command sequence that is exe

cuted when the alias is called. Continuing

the above example, the following ALIAS

could be created:

Path Command

PATH A$ ROOT

PATH A$ $2 C7 ROOT

Figure 6.

40 COMPUTER LANGUAGE ■ OCTOBER 1984

Sample PATH Commands (Current Dir is B12)

Description Example

set path from current user on A12 -> ROOT

disk A to the directory ROOT

set path from current user on

disk A to user 2 to current

disk to disk C, user 7 to

ROOT

A12 -> B2 ->

C7 -> ROOT



ASM80:

ASM $1 .BBZ; assemble program

IF INPUT; allow user to ap

prove continue

LOAD$1; convert HEX to
COM

Fl; end of IF

ERASl.HEX

By issuing the command ASM80MYFILE,

this sequence of commands is run:

1. ASMMYFILE.BBZ

2. IF INPUT

3. LOADMYFILE

4. Fl

5. ERAMYFILE.HEX

An alias can be employed in four ways un

der ZCPR3:

■ An alias is usually run on cold boot to

execute a series of programs that initialize

the system.

■ The CD command, which is another

way lolog into a directory, will auto

matically run the alias ST.COM if one is

found in the directory being logged into.

For instance, CD ROOT:w\\\ log the user

into ROOTand run the command

ST.COM if one is located in the directory

called ROOT, thereby establishing an en

tirely new operating environment. Issuing

the command CD ROOT: is the same as is

suing a sequence such as.

ROOT:;

< if ST.COM exists in ROOT > ST

■ Commonly-used command sequences,

like the ASM80 example above, can be

stored in the directory at the end of the

command search path for execution from

any directory on the system. The last path

element, which is recommended to be the

ROOTdirectory, should contain an abso

lute directory reference, like A15 or AO.

■ Command sequences used over and

over for a particular need at a particular

time may be quickly placed into an

ALIAS and the alias command may be run

over and over rather than repeatedly typ

ing the command sequence. For example.

if the user is making several copies of a set

of files on different disks and printing a

directory listing for each disk, an ALIAS

containing the command sequence

MCOPYBACKUP: = *.*;

XDIR BACKUP: P

would copy the files to the directory

named BACKUP and then print a directory

display on the printerofthisdi.sk. If this

sequence was set up as an ALIAS named

CPY, then five disks could be copied by

issuing the command CPY five times

rather than issuing the above sequence

five times. The same kind of thing could

be done with SUBMIT files, but an

ALIAS has certain capabilities that SUB

MIT does not (seethe references).

ZEX command file processor. ZEX,

which stands for Z80 Executive, is an in

tegral part of the ZCPR3 System, and it

provides a memory-based command file

facility similar to SUBMIT but stores the

commands in a memory buffer and exe

cutes them directly from the buffer via the

memory-resident ZEX monitor.

Unlike SUBMIT. ZEX is integrated

into the system, and a program (like a

.COM file loaded into the TPA) can com

municate with ZEX directly, looking at

the commands it is about to issue and

changing the command flow within the

ZEX command file (implementing a

GOTO statement).

ZEX provides information about its

stale to the ZCPR3 System through the

Environment Descriptor, and a program

can read this information and find out and

change where the next character ZEX is

going to input comes from, where the first

character in the command file is, and how

to turn the ZEX monitor on and off to con

trol ZEX operation.

Environment Descriptor. Under CP/M

2.2, a few simple features of the design

(like the BIOS and BDOS entry points and

the FCB and 80H parser buffers) allow

the very useful capability of trans

portability of binary files between differ

ent CP/M systems to be possible. With

this capability, the door for the develop

ment of the CP/M world was opened.

Software engineers and programmers

could create software that would run on

any CP/M system regardless of the hard

ware configuration. A market was created

by this virtual machine of CP/M.

In remaining compatible with CP/M

2.2, these simple features were retained in

the design of ZCPR3 in their entirety with

NGS FORTH

A FAST FORTH

OPTIMIZED FOR THE IBM

PERSONAL COMPUTER

AND MSDOS COMPATIBLES.

♦79 STANDARD

♦FIG LOOKALIKE MODE

*PC-DOS COMPATIBLE

*ON-LINE CONFIGURABLE

♦ENVIRONMENT SAVE

&L0AD

♦MULTI-SEGMENTED

♦EXTENDED ADDRESSING

♦AUTO LOAD SCREEN BOOT

♦LINE AND SCREEN EDITORS

♦DECOMPILER &

DEBUGGING AIDS

♦8088 ASSEMBLER

♦BASIC GRAPHICS & SOUND

♦NGS ENHANCEMENTS

♦DETAILED MANUAL

♦INEXPENSIVE UPGRADES

♦NGS USER NEWSLETTER

A COMPLETE FORTH

DEVELOPMENT SYSTEM.

PRICE: $70
PLEASE INCLUDE $1 POSTAGE A

HANDLING WITH EACH ORDER.

CALIFORNIA RESIDENTS :

INCLUDE 6.5% SALES TAX.

fl?
■™

NEXT GENERATION SYSTEMS

P.O.BOX 2987

SANTA CLARA, CA. 95055

(408) 241-5909

CIRCLE 45 ON READER SERVICE CARD 41



few changes. ZCPR3, however, offers the

Environment Descriptor as an additional

feature that opens many doors to the soft

ware developers and extends the virtual

machine of CP/M. With the Environment

Descriptor, the following additional infor

mation is made readily available to any

program running under ZCPR3:

■ Attributes of the user's CRT terminal,

as in the width of the screen in characters

and number of lines on it

■ Attributes of the user's printer, includ

ing a flag indicating if it can form feed,

the number of lines on the printer, and the

maximum width of the lines

■ The locations of the FCPs, RCPs, mes

sage buffers, ZEX control buffers, named

directory buffers, and other ZCPR3- spe

cific buffers

■ A terminal capabilities data record that

describes the sequences used to clear the

CRT screen, position the cursor, enter

highlight mode. etc.

Under ZCPR3, transportable programs

such as screen-oriented editors are possi

ble, and these programs can be moved

from one ZCPR3-based computer to an

other as binary images, with the only in

stallation requirement being for the place

ment of the address of the Environment

Descriptor at a standard location within

the program.

The utility Z3INS is provided to per

form this installation, which it does very

fast. Installation of the 58 .COM files in

the first phase of the ZCPR3 release takes

about three minutes via Z3INS. The full

ZCPR3 distribution includes several

screen-oriented tools that dramatically il

lustrate the power of this extension to the

CP/M concept.

Next month, I'll elaborate further on

the features of ZCPR3. For more immedi

ate information and access to ZCPR3 pro

grams and documentation, call the

COMPUTER LANGUAGE BBS

(415-957-9370) and leave me a message.

See you next month! H

Richard Conn has a B. S. and M. S. in com

puter science. His current interests include

operating systems, Cand UNIX, and the

Ada programming language.

TOTAL CONTROL
FORTH: FOR Z-80®, 8086, 68000, and IBM® PC

Complies with the New 83-Standard

GRAPHICS. GAMES. COMMUNICATIONS. ROBOTICS
DATA ACQUISITION • PROCESS CONTROL

• FORTH programs are instantly

portable across the four most popular

microprocessors.

• FORTH is interactive and conver

sational, but 20 times faster than

BASIC.

• FORTH programs are highly struc

tured, modular, easy to maintain.

• FORTH affords direct control over

all interrupts, memory locations, and

i/o ports.

• FORTH allows full access to DOS

files and functions.

• FORTH application programs can

be compiled into turnkey COM files

and distributed with no license fee.

• FORTH Cross Compilers are

available for ROM'ed or disk based ap

plications on most microprocessors.

TiaOemarks IBM. International Business Uacnines

Corp CP'M. Oigiial Research Inc PCiPorth* and

PC/GEN. LaDoratoiy Microsystems. Inc

FORTH Application Development Systems

include interpreter/compiler with virtual memory

management and multi-tasking, assembler, full

screen editor, decompiler, utilities and 200 page

manual Standard random access Mes used for

screen storage, extensions provided for access to

all operating system functions.

Z-80 FORTH lor CP/M- 2 2 or MP/M II. S100 00.

8080 FORTH (or CP/M 2 2 or MP/M II. S100 00.

8086 FORTH for CP/M-86 or MS-DOS. $100.00.

PC/FORTH for PC-DOS. CP/M-86. or CCPM.

$100.00. 68000 FORTH for CP/M-68K. $250.00

FORTH + Systems are 32 bit implementations

that allow creation of programs as large as 1

megabyte. The entire memory address space of

the 68000 or 8086/88 is supported directly

PC FORTH + $250.00
8086 FORTH + for CP/M-86 or MS-DOS $250.00

68000 FORTH + forCP/M-68K S400 00

Extension Packages available include, soft

ware floating point, cross compilers. INTEL

8087 support. AMD 9511 support, advanced col

or graphics, custom character sets, symbolic

debugger, telecommunications, cross reference

utility. B-tree file manager. Write for brochure.

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA9029S

Phone credit card orders to (213) 306-7412

Professional

Access All The

Memory Of Your PC!

Professional BASIC™ - the first of it's kind: a

powerful programming language for the 16-bit

microcomputer. You can simultaneously view
program execution and see the change in

variables, the code being executed, file buffers,

or an "instant replay" of execution within the

multi-window environment

"The real magic of Professional BASIC' is its weallh o)

windows'into an executing progfam."Tm frankly amazed.

My hat is off to Dr Bennelt.An elegant piece ol coding

indeed"

Personal Computer Age Dan Rollins. Feb. 1984

"Professional BASIC", .cranked out a timing and absolute

error result competitive with the best compilers, while

simply blowing the doors off every other known micro

computer interpreter."

Dr. Dobb's Journal Ray Duncan. Aug 1934

FEATURES
Interpreter language.

Runs most IBM- PC BASIC programs.

8087 numeric coprocessor support

Have a 200x200 array (160k).

Semi-compiles for immediate error check

ing and faster execution.

Character-by-character syntax checking.

More than 18 trace (half/full) windows.

BCD arithmetic option, with 8087 (16 digit

accuracy).

Labeled lines. Use of 'GOTO label' state

ments.

Save programs (or subroutines) without
line numbers.

Cross referencing of variables.

'SEARCH text'command.

Large real numbers (103C- to 10"3J8).

Large integers (over 2 billion).

Large files (over 4 billion records).

Complete-sentence error messages.

Runs on the IBM8 PC and other

compatibles.

Professional BASIC
only $345

See Your Local Dealer

Demo Disk $5

CIRCLE 35 ON READER SERVICE CARD

42 COMPUTER LANGUAGE ■ OCTOBER 1984

Morgan

Computing Co.
10400 N. Central Expwy., Suite 210

Dallas, Texas 75231

(214)739-5895

CIRCLE 42 ON READER SERVICE CARD



oo oo oo oo The four commandments

MNSNUS
(or, Using

Mnemonic Atoms
in Symbolic Naming)

o o

o o

o o

o o

o o

0
o

o A
ssembly lan

guages and

high-level pro

gramming

languages free us from using numbers to

tell our computing machines what to do.

These languages also require us to devise

many names—for variables and sub

routines, for instance—ourselves. We

typically choose mnemonic names derived

from our human languages so that the

names remind us of the activities they

stand for.

Programmers appreciate this freedom

to devise names to their own liking. But

the freedom can be a burdensome

responsibility, especially when writing a

large program that contains hundreds or

even thousands of user-defined names or

symbols. How does a programmer select

symbolic names that describe the objects

to which the names are given?

Before inventing the technique this

article describes, I struggled to choose

names in a consistent fashion so that I

could subsequently recognize the names

and the objects they referred to. This took

a lot of programming time, and the results

were not the best. Often I would end up

with the same name for two different

things. Other times I could not recognize

the name or mistook it for something else.

Could I expect anybody else to understand

the names I chose?

Contributing to the problem, the assem

bler I used allowed only six characters to

form each symbolic name. A limitation

that severe is not uncommon in assembly

languages and comparably severe lim

itations exist in some compilers for high-

level languages.

How does a programmer describe an

object in six characters? I often felt that I

needed six words. It doesn't help much

that the assembler or compiler allows you

to tag on extra characters beyond those it

uses to distinguish one symbolic name

from another. You still have to insure that

each name you choose is distinguished

from all others in the program you are

writing.

My story does have a happy ending,

though. I overcame the problem by

inventing a technique using "mnemonic

atoms," as I call them.

If readers find themselves in a situation

similar to mine—having to write a large

program containing a lot of somewhat

abbreviated symbolic names—the tech

nique I will describe may be invaluable to

their projects. This is particularly the case

if readers use assembly language because

its programs can have large numbers of

symbol definitions. There are fewer facil

ities (like GOTO-less control structures)

that help avoid the use of symbols. My

technique would also be useful where

storage limitations demand a terse source

code. Since mnemonic atoms provide a

degree of documentation, they can reduce

the need for comments in the code.

Of course, one solution to the problem

is to use programming systems that are

less restrictive with regard to user-defined

symbols. COBOL programmers can use—

and usually do use—long-winded names

like "monthly-income-avcrage." A

COBOL programmer can select a few

words of English or computer jargon that

describe the thing he or she is naming and

put them together with hyphens.

o o o o o o o o o °o° °o° °oc
oo°oo°oo oo oo oo oo

By Ron Gutman

When a programmer is limited to six

characters, he or she will do the same

thing but will abbreviate each word and

omit the hyphens. So instead of

"monthly-income-average" the program

mer might use MOINCA . Or, perhaps

unsatisfied with such short abbreviations.

the programmer might choose to leave out

one of the components, arriving at

MO1NC0 for •■monthly-income1' MO

seems like an adequate abbreviation for

"month" because it is generally accepted

as such, but INCO is more recognizable as

"income" than/A'C, which could be

confused for other words such as

"increment".

Now let's pretend we are browsing

through a source listing and see how we

do at recognizing some abbreviations. We

see a reference to a subroutine called

SRTBL. That could be an abbreviation for

"search-table". Or is it "sort-block"? Of

course, the context or the comments will

tell us, but recognition does not come

quickly.

Suppose SRTBL searches a table that

contains names and phone numbers for a

given name, and suppose we find that we

also need the capability to search the table

for a given phone number. So we write a

new routine that we will call SRTBLP to

search by phone number (P for "phone").

The existing routine we rename SRTBLN

to make it clear that it searches by name

(jVfor "name").

Later we find that we want to sort the

table and print it out either in alphabetical

43



o o o o

uo owo o
oo oo c

o o o o

o °°
o o

o o _ o o

o o
3 o oo
o°o o
o o . c

o o

o

o o

3on

o o

o o

3 " O O
o o ° c

o
o o o o

o o ° o o
o _ o o _ o

o o

o o

o o

o o

' o oo o °
o o o o

o o o o
u O

o o o o o

oo ° oo ° o
O O O O 0

) o oo oo

o o o o o

oo ° oo o o
o

00o00o00
o o o o o o

order by name or numerical order by

phone.If SRT'is our abbreviation for

"son", then we ought to call our new rou

tines SRTTBLN and SRTTBLP. But now

our assembler, which only recognizes six

characters of each name, considers these

two names to be identical or just plain ille

gal . We can't use SR for "sort" because

we have already used the names SRTBLN

and SRTBLP for our search routines. We

finally settle on SRTTBNand SRTTBP,

using TB for "table". Having two abbrevi

ations for "table" is a little disconcerting,

however. Maybe we should rename our

other routines to use the new abbreviation

for "table".

Some fiddling around would yield more

solutions—each requiring some kind of

compromise—but the reader may now

have a feel for some of the problems

involved in choosing names. After our

efforts at solving this naming puzzle, how

well will our solution serve us? Will we be

able to recognize SRTBLN and SRTTBN

and be able to say readily which is which?

How about a month from now, when we

might have to modify the program?

It would be difficult, primarily because

the abbreviations are sometimes one,

sometimes two, and sometimes three

characters long. How will our eyes divide

these names into their components? By

trial and error. Remember that SRTBLN is

divided SR-TBL-N. while SRTTBN is

divided SRT-TB-N, or did you forget

already? Seeing the SRTin SRTBLN will

certainly distract us from its correct

division.

Don't think these issues are too trivial.

They matter in all but the smallest pro

gramming projects.

So how can we put some order into this

naming business where there is now

confusion?

At this point I think our resistance to

applying some kind of disciplined scheme

to the problem has broken down, so I will

now offer my rules for constructing mne

monic names. The first two are com

mandments to be followed religiously.

They will make all the difference in the

world. The other two will help, but they

need not be followed religiously because

sometimes a given situation just won't

oblige us in our efforts to follow them.

The First Commandment

All abbreviations shall be composed ofthe

same number ofcharacters. These equal-

length abbreviations are called mnemonic

atoms.

All mnemonic atoms have the same

numberof characters. Fine, but what is

that number? You have to make a trade-off

between the number of possible mne

monic atoms you can invent and the num-

beryou can use to form one name. You

want both of these numbers to be as large

as possible. However, your programming

language limits the number of characters

in a name, so if your atoms contain too

many characters your symbolic names

won't contain very many atoms. On the

other hand, if your atoms contain too few

characters, there won't be many combina

tions of characters to form atoms.

Suppose names are limited to six char

acters, and suppose you decide that all of

your atoms will be two characters long.

Then you can combine up to three atoms

to form a name and, assuming you use

only alphabetic characters, there will be

26x26, or 676. sequences of two charac

ters you can choose from to form atoms. I

think two characters per atom is optimum

given a limit of six characters per name.

If pressed for a formula, I would ven

ture that the number of characters per

atom should be the square root of the

character limit rounded down to the near

est whole number. By that formula, two-

character atoms would be used with any

limit from four to eight characters, and

three-character atoms would be used from

nine to 15. Above 15, you might prefer to

use another scheme altogether and form

your names in the COBOL fashion using a

delimiter to separate the components.

The Second Commandment
Each mnemonic atom shall be entered into

a "dictionary" ofmnemonic atoms. This
dictionary shall be in alphabetical order

and must give the meaning ofeach.

Perhaps the word "dictionary" implies

too much tedium. But my dictionaries

have been just a few pages long. I include

my dictionary in the source code as a sec

tion ofcomments, or I maintain the dictio

nary in a separate text file that later be

comes part of the documentation in the

software package.

In any case, use the computer to main

tain the dictionary. You won't invent all of

your atoms at one time. You might start

with a few atoms in the dictionary, but you

will be adding them as you go along. One

of the main purposes of the dictionary is

to tell you those combinations of charac

ters that you have already used before you

attempt to add new ones. When I add an

atom, I just pencil it into my dictionary

listing with an arrow to show where it

goes. Periodically I edit the dictionary on

the computer to get a clean, up-to-date

listing.

Your dictionary must be alphabetized

by mnemonic atom. Otherwise it will be

intolerably tedious for you to determine

what new atoms you can add or find out

what an unfamiliar atom means.

Now for an advanced lesson. Divide

your dictionary into two dictionaries. One

dictionary will contain atoms that you are

likely to use in future projects. Most of

these atoms will be abbreviations for com

mon programming terms like "table",

"stack", "pointer", "index", "move", or

"error". The other dictionary will contain

atoms that are specific to your current

project. These atoms will be abbrevi

ations for terms used in the specific appli

cation you are working on. When you go

on to your next project, you can start out

with the dictionary of common atoms,

leaving your application-specific dictio

nary behind. The big pay off comes when

you use atoms you have already become

familiar with.

A brief example of a typical dictionary
appears in Table 1.

The Third Commandment
Do not create two mnemonic atoms with

identical meanings, such as SRfor

"search " in some cases and SEfor

"search " in others. Conversely, avoid us
ing one mnemonic atomfor more than one

one meaning, such as SRfor "search " in

some cases and "sort" in others.

There are two purposes in not creating

two atoms with the same meaning. One is

to keep to a minimum the number of at

oms your mind has to deal with—thereby

increasing your facility with them. The

44 COMPUTER LANGUAGE ■OCTOBER 1984



oooo

3 O O O
o o

oo " oo o o
u 0 0

o.o o _ o o o o_o

o o

o

oo"oooo

o _ o o_o oo

o

o
°
00

o
) (

o o

o
) 0

o o

other is to keep to a maximum the number

of unused combinations of characters

available for new atoms. Often the combi

nation you want for a new atom has been

used, making it hard to follow the second

part of the commandment. This will hap

pen less often if the first part is kept in

mind.

It's not hard to see the benefit reaped

when each mnemonic atom has only one

meaning: less ambiguity in deciphering

symbolic names in your source code. But

it is hard to achieve this. Often the most

mnemonically satisfying abbreviation of a

term is already being used for another

term (more on this matter later). Use the

dictionary to check whether an abbrevi

ation is already in use.

The Fourth Commandment

Be conservative about inventing new mne

monic atoms. Use an existing one if

possible.

Put no frivolous atoms in the dictio

nary! This has the same purpose as The

Third Commandment. A frivolous atom

might be one you really can't use or one

that serves virtually the same purpose as

another atom. Also, avoid creating atoms

for vague terms with broad meanings like

"number", "process", or "data" unless

you have a specific meaning for them in

your application. You are trying to pack as

much meaning into your atoms and the

names built on those atoms as you can. In

that respect, atoms for vague terms just

don't carry enough punch.

An example

The second part of the dictionary in Table

1 contains atoms that might be used in a

mailing list program. As the project

progressed, this part of the dictionary

would grow considerably as would the

first part if the programmer were starting

a dictionary from scratch.

Notice that some atoms are not defined

by just one word. DW stands for "day of

week". PH stands for "phone number".

Do not think of atoms as having single-

word definitions—though they often

will—because that concept is too

restricting.

Many atoms come in pairs that repre

sent complementary concepts such as MN

and MX for "minimum" and "max

imum" or RD and WR for "read" and

AK -

CL -

CP -

CR -

CU -

cv -

DA -

DB -

DC -

DL -

DW -

DT -

EA -

EO -

ER -

EX -

FI -

FL -

FP -

IC ■

IP -

IR *

IS -

IV -

IX ■

IZ ■

LN

LS ■

ME

The

to

AD

NA

Sample mnemonic atom

acknowledge

clear, reset

copy

create

current

convert

■ disable

■ debug

■ decrement

■ delete

■ day of week

• date

- enable

■ end of

- error

- exit

- file

- flag

- floating point value

- increment

- input

- interrupt

- insert

- interval, span of time

- index

- initialize

- length

- list

- menu

following atoms stand for

the specific application of

- address

- name

ML - mailing

dictionary

MN - minimum

MO - mode

MS - message

MV - move

MX - maximum

OP - output

PK - pack

PN - pointer

PR - prompt

PV - previous

QU - queue

RC - receive

RD - read

RE - record

SE - set

SK - stack

SO - sort

SR - search

SV - save

TB - table

TD - time of day

TK - task

UP - unpack

WR - write

WT - wait

XM - transmit, send

terms and concepts related

a mailing list program:

PH - phone number

PU - purge

label

Table 1.

45



Software

Development

PCDOS/MSDOS

Complete C Compiler
• Full C per K&R

• Inline 8087 or Assembler Floating

Point, Auto Select of 8087

• Full 1 Mb Addressing for Code or

Data

• Transcendental Functions

• ROMableCode

• Register Variables

• Supports Inline Assembler Code

MSDOS 1.1/2.0

Library Support
• All functions from K&R

• All DOS 2.0 Functions

• Auto Select of 1.1 or 2.0

• Program Chaining Using Exec

• Environment Available to Main

c-window™

Symbolic Debugger
• Source C^pde Display

• Variable Display & Alteration

Using C Expressions

• Automatic Commands

• Multiple Breakpoints by Function

& Line Number

8088/8086 Assembler
• FAST — Up to 4 times Faster than

IBM Assembler

' Standard Intel Mnemonics

• Compatible with MSDOS Linker

• Supports Full Memory Model

8088 Software Development

package $ig900
Includes: C Compiler/Library,

c-window, and Assembler, plus

Source Code for c-systems Print
Utility

I
P.O. Box 3253

Fullerton.CA 92634

714-637-5362

"write" or DA and EA for "disable" and

"enable". EO, for example, could be used

in combination with FI or RE for "end-of-

file" or "end-of-record".

Now we can apply mnemonic atoms to

the hypothetical problem we tackled

above. Those subroutines needed to

search the table by name and by phone

number (which we named SRTBLN and

SRTBLP) can now be called SRTBNA and

SRTBPH. The corresponding sort rou

tines can be called SOTBNA and SO-

TBPH. This is a consistent and elegant

scheme for naming these routines. We

have given up TBL as an abbreviation for

"table" for the consistent use of 73. It is

no loss because as long as we must get

used to TB. the use of TBL only adds

confusion.

Of course, the atoms could be com

bined in a different order. I'm going to

permit the issue of order to be decided by

the reader. However, I will say that the or

dering of atoms should be exploited to put

more information into symbolic names, so

the programmer should devise some or

dering scheme.

Using my own personal scheme, the

routine to search by name would be called

TBNASR. That is because I like the last

atom to reveal what kind of thing is being

named. For variables and data structures,

my final atom acts as a noun, as in

TBSRPN for "table-scarch-pointer". For

routines, my final atom is a verb. In the

case of TBNASR. SR stands for the verb

"search", which tells us that the thing be

ing named is a routine that searches. The

remaining atoms in the name are mod

ifiers of the verb or noun. TBSRPN is a

pointer. The atoms TB and SR modify the

word "pointer" by telling how the pointer

is used (it is used in the table search).

Similarly, if I had a name for the string

variable that holds the name TBNASR is to

search for, then the name would be

TBSRNA. This last example shows how

the order of atoms can be used to impart

information. TBSRNA is just a per

mutation of atoms of TBNASR, but the or

der allows me to distinguish between the

two.

This last example illustrates the ability

of each atom to be used in different ways

as a noun, verb, or modifier—an im

portant feature of mnemonic atoms be

cause it allows each atom in your dictio

nary to do more for you. This is possible

because the atoms can be permuted in any

fashion without affecting the way names

arc divided into atoms. That, in turn, is

possible only because the atoms are equal

in number of characters.

If the atoms were unequal —some one,

some two, and some three characters—

they could be permuted at the expense of

having inconsistent division of names, or

the names could be consistently divided

into unequal atoms, but each atom could

only serve in a particular position in any

name. The advantages of consistent di

vision and permutability arc only

achieved with equal atoms.

Often my first atom identifies a module

with which the object being named is as

sociated. I might have, for instance, a

module that handles all of the operations

on a table. Then TBNASR, TBSRNA ,

TBPHSO, etc. are all identified as being

associated with that module by their initial

atom, TB.

Again, the wise strategy is to devise a

scheme that uses the order of atoms to

convey information.

I'm going to leave one issue open be

cause it is bcyondjhc scope of this article

and probably best left to personal prefer

ence. That is the nasty issue of selecting

abbreviations to use for atoms. It is partic

ularly hard to avoid conflicts when your

atoms arc only two characters. Some

combinations of characters, such as IN

and 57", just cry out to be used over and

over. //Vcould be an abbreviation for'"in

put", "index", "initialize", and many

other terms. STcould stand for "status",

"stack", or "store". Notice that the dictio

nary in Table I avoids these abbreviations

altogether.

But the good news is that it doesn't

matter much what abbreviations you come

up with or how inappropriate they seem.

If you use them consistently, they will be

come old familiar pals that couldn't seem

more appropriate, just as "lbs." is a very

familiar abbreviation for "pounds".

Use your imagination. The abbrevi

ation doesn't have to be the first two let

ters of the word being abbreviated. Even

the first letter does not have to be used.

AT has mnemonic value as an abbrevi

ation for "integer" because the sounds

agree when we pronounce the abbrevi

ation (in-tee) and pronounce the word

"integer". And there is XM for "trans

mission" because "trans" means

"cross". Also try to abbreviate a different

word with the same meaning. CL can be

used for "clear" instead of RE or RS for

"reset".

One handy rule of thumb: when you

have the choice, rely on the more uncom

mon letters tf's, <)'s, A"s, andZ's) in

your abbreviations. They will present

fewer future conflicts and will more

readily bring to mind the terms for which

(hey are abbreviations.

No doubt there is an article to be writ

ten on the art of abbreviation. If adopting

mnemonic atoms causes the reader even

tually to write such an article, I promise to

read it. B
■■

Ron Gutmon has a B. S. and M. S. in com

puter sciencefrom the Unto ofCalif, at

Berkeley. He has been designing and

implementing softwarefor seven years and
is now workingfor GRiD Systems Corp. in
Mountain View, Calif

46 CIRCLE 16 ON READER SERVICE CARD



Low-level
Assembly

Interface
Speed up

your BASIC

and improve

memory utilization

with common

assembly

subroutines
on the IBM PC

'hen high-

level lan

guages like

BASIC,

COBOL, and FORTRAN were invented,

the average programmer was able to

speed up his or her writing of code by a

good 50%. The programmer, no longer

needing to worry about inspecting bytes

one by one or flipping bit switches, could

concentrate on building program logic

and interpreting problems instead.

The development of high-level lan

guages in general, and BASIC in particu

lar, was one of the major steps in making

home computers acceptable to the pro

grammer and hobbyist.

BASIC is easy to understand, simple to

use, and relatively transportable between

machines. But as everyone knows,

"There's no such thing as a free lunch."

There had to be a trade-off somewhere,

and the trade-off was in speed. Inter

pretive BASIC is notoriously slow.

This speed problem doesn't matter

much in most applications since a com

puter spends a lot of its time waiting for

information. As Crayne's Law says, "All

computers wait at the same speed,"

regardless of the language they're using.

The speed inefficiency of BASIC is

most noticeable in game programs, where

there is continuous action. The typical

shoot-'em-down video games tend to run

like slugs in BASIC. Text adventures,

which do a lot of data base searching,

need several seconds to respond to player

commands.

Another problem with BASIC is its

inability to use available machine

memory. As implemented on the IBM PC,

BASIC uses the first 64K above DOS. It is

limited to that amount of memory and

incapable of handling any BASIC pro

gram larger than 64K. Even if you've got

a machine with 512K you're still stuck

with BASIC'S 64K work area (at the

present time).

In order to get around time and space

limitations, a lot of programmers arc

going back to machine language—at least

for part of their code. By writing common

subroutines in assembly language they are

getting the speed and memory utilization

of the low-level code while preserving the

ease and familiarity of BASIC.

If you have worked with assembly lan

guage before, you've probably considered

this approach yourself, but you may have

gotten discouraged when you tried to

develop the BASIC/assembly language

interface. IBM's BASIC manual devotes

an entire 18-pagc appendix to the subject,

but the suggested procedures are cum

bersome and require a lot of manual inter

vention by the programmer.

Although the systems shown in the

manual will certainly work, one of them

calls for converting each line of the sub

routine into machine code, translating it

into hex, and then using POKE to insert

the instructions one by one into memory.

This is a lengthy and time-consuming pro

cedure. Another suggested way of loading

a routine is to use DEBUG to load it into

high memory, where it overlays the tran-

By Jeri Girard

sientportionofCOMMAND.COM. This

requires you to reset the system registers

and use the DEBUG N command to initial

ize the parameter passing area.

Besides the actual program load,

another problem that has to be dealt with

is deciding exactly where in memory to

locate the new code. You have your choice

of inserting it within the 64K BASIC work

space or, if the BASIC program is too

large to allow that, putting it somewhere

else in memory. In either case you have to

determine the end of BASIC itself, which

can vary depending on the device drivers

installed in DOS.

Using relative addressing

Fortunately there is a relatively easy pro

cedure that will let you load assembly sub

routines via interpretive BASIC without

resorting to POKE and without having to

use DEBUG to find the end of the inter

preter work area. This procedure loads

the code from within the BASIC program

and allows you to invoke it from anywhere

in the program with a simple CALL

statement.

Let's take as an example a subroutine

that converts an input text string to upper

case. This procedure is done in countless

programs to let the user enter either upper

or lower case letters. Without it the user is

either limited to all upper case input, or

the BASIC program has to make two

checks for each character entered. For the

sake of this discussion let's assume you

have written a program called SUB-

RTN.ASM, which includes the routine

47



AZ/47"(Listing 1). As you can see, this is a

straightforward and simple routine.

It is invoked from BASIC with the com

mand CALL XLAT (A$), where A$ is the

name of the string to be translated. This

command puts the address of the string

header onto the stack. The characters are

processed one by one and written back

into the variable for return to BASIC.

Before BASIC can load the compiled

program, it has to have some information

about the file: type, segment, offset, and

length. Type is a one-byte field, segment

and offset are two-byte (word) addresses,

and length is a two-byte field.

One quick and dirty way to pass this

information to BASIC is to set up a seven-

byte prologue at the beginning of the

CALLed program which contains the nec

essary information. Program length is

determined by setting up an EQU state

ment to trap the starting address (BOF)

;Translate String to

XLAT

XLATO:

XLAT3:

XLAT6:

XLAT9:

XLAT

Upper Case

PROC

PUSH

MOV

MOV

MOV

CMP

JZ

XOR

MOV

MOV

LODSB

CMP

JC

AND

STOSB

LOOP

POP

RET

ENDP

FAR

BP

BP.SP

SI,[BP+6]

CL,[SI]

CL.O

XLAT9

CH.CH

SI,[SI+1]

DI.SI

AL.'a1
XLAT6

AL.ODFH

XLAT3

BP

2

;String header

;String length

;Null string?

;Yes - exit

;Clear MSB

;String address

;Lower case char?

;No

[Convert to upper case

;Replace in string

Listing 1.

and subtracting that address from EOF,

which is defined at the program end. File

type is defined as OFDH which is

BASIC'S convention for a data file.

The lines of prologue information

presented in Listing 2 establish the seg

ment, offset, and program length vari

ables that will be stripped off by the

BLOAD command. The JMP command at

the bottom opens an entry point to the

translate routine. (You would typically

include several assembly language rou

tines in one program, in which case there

would be an additional JMP command for

each routine.) An end of file marker {EOF

DB 1AH) is written at the end of the pro

gram just prior to the COMSEG ENDS

statement so that the program length can

be calculated.

Because the assembler does not know

that BASIC will strip off the seven-byte

prologue when the program is loaded, you

cannot use absolute jumps or addresses in

the remainder of the program. All

addressing must be relative, or the

instruction pointer will be off by seven

bytes and wind up in some nebulous

never-never land, causing unpredictable

results.

The subroutine code can now be assem

bled into a binary file and linked, after

which it is ready to be loaded into

memory. (Binary files are created from

EXE files by running EXE2BIN against

wy^x^v^v^v^v^y^^^

"[Wilensky's LlSPcraft] offers
a comprehensive tutorial in

Franz LISP. .. .It fills the
vacuum created by the lack of

books in Franz LISP It can
also be used as a textbook to

learn other dialects of LISP

... .It is well worth its price."

—Duvvuru Sriram.

Carnegie-Mellon University
From a review in

The Sigart Newsletter

Please send me. . copies of LlSPcraft by Robert Wilensky

@$19.95 each/paperbound (NY and CA residents please add

sales tax.)

Name

Address

City

Check enclosed

State Zip_

VISA MasterCard

Account No. Exp. Date

W. W. Norton & Company, Inc.. 500 Fifth Avenue,NY,NY 10110

WRITE

The Writer's Really Incredible Texl Editor lives up to its

name! It's designed (or creative and report writing and
carefully protects your text. Includes many features
missing from WordStar, such as sorted directory listings,
fast scrolling, and trial printing to the screen. All editing

commands are single-letter and easily changed. Detailed
manual included. Dealer inquiries invited. WRITE is
S239.00.

BDS's C Compiler

This is the compiler you need for learning the C language
and for writing utilities and programs of all sizes and

complexities. We offer version 1 5a. which comes with a

symbolic debugger and example programs. Our price is
(postpaid) $130.00.

Tandon Spare Parts Kits

One door latch included, only S32.50.
With two door latches $37.50.

Door latches sold separately for S7.00.

All US orders are postpaid. We ship from stock on many
formats, including: 8", Apple, Osborne, Kay Pro, Otrona,

Epson, Morrow. Lobo. Zenith, Xerox. Please request our
new catalog. We welcome COD orders.

Workman & Associates

112 Marion Avenue

Pasadena, CA 91106

(818) 796-4401

CIRCLE 69 ON READER SERVICE CARD

48 COMPUTER LANGUAGE ■ OCTOBER 1984

CIRCLE 68 ON READER SERVICE CARD



;Build file prologue

BOF

for BASIC

DB

DW

DW

DW

EQU

JMP

loader

OFDH

OF77H

0

EOF-BOF

$
XLATO

[File type

;Default segment

;Default offset

jProgram length

;Start of code

;Upper case translate

Listing 2.

the compiled code and specifying a .BIN

extension for the output.) The actual load

is done in the CALLing BASIC program,

using BLOAD, and depends on using

PEEK to retrieve the correct loading

address:

100 'Load machine language sub

routines

110DEFSEG = 0

120

MLSEG

= PEEK(&H510)

+ 256'PEEK(&H511) + &H1001

130DEFSEG = MLSEG

140XLAT = 0
150 BLOAD "SUBRTN.BIN",0

The success of this routine depends on the

fact that DOS maintains the beginning

segment address of BASIC'S work area at

hex 510-511. Adding hex 1000 (64K) to

this address provides the ending address

of BASIC in segment notation. An extra

16 bytes is then added to account for the

memory management block that follows

BASIC. The result of these calculations is

an address in free memory above BASIC.

Notice that the entire program, SUB-

RTN.BIN, is loaded into memory. The

translate routine, XLAT, is shown as entry

point 0. If there were additional routines

in the program they would be numbered

with an offset of 3 for the byte length of

the JMP command so that the second one

would be equal to 3, the third to 6, and so

on.

The absolute addressing approach

As mentioned previously, this system

requires you to use relative addressing. A

tidier solution is to write the machine lan

guage program as you normally would,

omitting the load information, and then

append those seven bytes to the beginning

of the compiled and linked code. This

scheme allows you to use absolute

addressing since the seven load bytes are

not present when the program is

assembled.

I've written a routine called BAS-

FMT.ASM to create the necessary load

information for BASIC and insert it at the

beginning of a binary (.BIN) assembly

language program. If you'd like to obtain

this rather long listing, I've placed in on

the COMPUTER LANGUAGE Bulletin

Board Service (415 957-9370) for you to

download. You can also pick it up on

COMPUTER LANGUAGE'S account on

CompuServe. This program, however,

must be compiled into an .EXE file and

linked before it can be run.

Either of these schemes—adding a pro

logue and using relative addressing or

inserting the load information ahead of

the finished code—will let you load and

call machine language subroutines via

BASIC with a minimum of trouble. If

you've been looking for a way to get

faster response out of interpretive BASIC,

try converting some of your common sub

routines to assembly language and inter

facing them with one of these methods.

You'll be amazed at the difference in

response time. H

Jen Girard, who has been a computer ana

lyst for about 10 years, writes articles and

reviewsfor several computer magazines.

Her book. The Essential User's Guide to

the IBM PC and PCjr, published by Baen

Enterprises, is due out this month.

GOOD NEWS!

for the

6809

L
CORPORATION

847 \V. Virginia St.

Milwaukee, WI 53304

(4141 276-2937

BETTER!
INTR0L-C/6809,Version1.5

Introl's highly acclaimed 6809 C

compilers and cross-compilers are now

more powerful than ever!

We've incorporated a totally new 6809

Relocating Assembler, Linker and Loader.

Initializer support has been added, leaving

only bitfield-type structure members and

doubles lacking from a 100% full K&R

implementation. The Runtime Library has

been expanded and the Library Manager is

even more versatile and convenient to use.

Best of all, compiled code is just as

compact and fast-executing as ever - and

even a bit more so! A compatible macro

assembler, as well as source for the full

Runtime Library, are available as extra-cost

options.

Resident compilers are available under

Uniflex, Flex and OS9.

Cross-compilers are available for PDP-

11/UNIX and IBM PC/PC DOS hosts.

Trademarks:

Introl-C, Introl Corporation

Flex and Uniflex, Technical Systems Consultants

OS9, Microware Systems

PDP-11. Digital Equipment Corp.

UNIX, Bell Laboratories

IBM PC, International Business Machines

For further information, please call or write.

CIRCLE 32 ON READER SERVICE CARD

49



COMPUTER
LANGUAGE now on

CompuServe
and our own

Bulletin Board
Service

Now you can communicate with
COMPUTER LANGUAGE electronically!

Participate in an interactive, reader-

feedback forum
Download program listings and public

domain code

Upload a technical paper or program

code that you've written

Write an instant Letter to the Editor

Read material that was not published
in the magazine because of space
constraints (e.g., articles, software
reviews, etc.)

Communicate with any one of the

editors or columnists at COMPUTER

LANGUAGE personally by private

electronic mail

Ask or answer questions posed by
other readers of COMPUTER
LANGUAGE

Join the Back to the Drawing Board

department's Expert's Forum for
Problem Solving

Request subscription and advertising

information

And more!

JUST CALL INTO
YOUR LOCAL

COMPUSERVE NODE
AND TYPE "GO CLM"!

CALL (415) 957-9370
TO REACH THE

BBS

—300/1200 BAUD—
After you receive the "connect"
signal, type (return) several

times and answer "0" to the

nulls question. Then, you're in!

Important Note: On your

first call into the system, you will
not be able to download or

upload files. Simply request
CP/M privileges by <e>ntering a

note to "SYSOP" containing

your name and address.



PUBLIC DOMAIN SOFTWARE REVIEW

neofthc prob

lems I encounter

when writing

this column is that with the wealth of ma

terial available it's very difficult to decide

what to include and exclude each month.

Also, the audience that this public domain

code is intended for is diverse, as the

readership of COMPUTER LANGUAGE

varies from professional programmers to

industry newcomers.

First I'd like to thank those people

who've written me with their ideas on

worthwhile public domain software. Your

enthusiasm and criticism will add greatly

to the effectiveness of this forum in the

coming months.

And remember, the COMPUTER

LANGUAGE Bulletin Board Service is the

ideal medium for you to communicate

with any of the columnists, including me!

You can leave electronic messages to any

user on the system, as well as download

most of the code I've mentioned in this

column.The BBS phone number is (415)

957-9370.

A
s promised in the

last issue, we be

gin with a look

at extended directory programs. The spe

cific examples used in the next few para

graphs are for CP/M 80 (i.e., 8080) oper

ating systems, although analogous

programs exist for CP/M 86 and MS-

DOS. (No, I have not forgotten all the six

teen biters: read on!) Usually the pro

grams arc called the same thing as in the

CP/M 80 version to maintain a systematic

catalog.

The directory programs are intended to

replace the CP/M DIR command with a

more powerful instructionscl that also

gives much more information. Using stan

dard CP/M programs, the only method to

get the sizes of all the files on a disk is

with a STAT *. * command. STAT, of

course, takes a little while to load, and the

listing is in a vertical column. Hardly con

venient if the disk has a lot of files.

To combine the two-program function.

a number of public domain software re

leases are available. Many doing essen

tially the same task even have a variety of

names. Forcxample, DD.COM,

SD.COM. D.COM, DIRR.COM,

DF.COM. S.COM andXDIR.COM all

display an alphabetically sorted listing of

the files in a three- or four-column for

mat, with the file size displayed next to

each file name.

Each program has variations. Some dis

play sizes as both records and kilobytes,

some display the system attributes, some

allow access to all user areas, and some

allow the operator to set the display

formats.

The most flexible of the group is

XDIR.COM. which is part of Richard

Conn's ZCPR (Z80 Command Processor

Replacement) System (see Part I of his ar

ticle on ZCPR3 in this issue and Part II in

the November issue). Once this command

processor replacement has been used, it

becomes very difficult to return to CP/M.

XDIR.COM displays the name of a

file, its size in kilobytes, the file attribute

(Read/Only, Read/Write, or System), the

sum of the file sizes displayed, the num

ber of files on disk, the remaining space,

and the drive/user area being checked. (It

also has other features, such as allowing

named directories, similar to UNIX, and

logging files to the disk for scanning

changes, which should be implemented

with the ZCPR system.)

XDIR.C0M allows a number of differ

ent display formats to be chosen by tog

gles appended to the XDIR command. The

format of the XDIR command is XDIR afii

XXX where afn is the ambiguous filename

to be matched if required, and the.v's are

optional toggles. (The default toggles can

be set within the ZCPR program, so they

don't have to be specified each time.)

Help with the XDIR command is always

available by typing XDIR //as the

command.

File attributes to be displayed are tog

gled with an An command, where n is the

By Tim Parker

attribute: S for system files, N for non-

system files, and A for both. The D toggle

sends output to the screen and a diskfile

named XDIR.DIR, while a P will send it

to the printer (allowing a comment line to

be added). One usually overlooked use for

the XDIR P command is the printing of la

bels for disk jackets that list the disk's

contents. This is usually easier than using

one of the available disk cataloging

systems.

The G toggle allows grouping by either

name-type or type-name. So an alphabet

ical listing by cither filctype or filename is

available. This is of immense value for

language users, who can see all .REL

files, .INT files, etc.. grouped together,

instead of scattered throughout the listing.

The //toggle changes from vertically to

horizontally displayed alphabetic format

(i.e., alphabetical displays either down

the three columns or across them). Fi

nally, the N toggle negates or com

plements the selected ajh by displaying

those files that do not match the ambigu

ous filename. Other toggles are available

but most require ZCPR to be used, so will

not be covered here.

XDIR.COM, while useful, is some

times just too much information to be

quickly digested when scanning disk di

rectories. Also, it is a relatively large file,

compared with others, such as DD.COM

(lIKvs.3K). DD.C0M. when invoked,

displays a sorted directory in columnar

format (sorted by filename and user num

ber) showing file sizes and disk status.

Switches can again be employed but must

follow a dollar sign, as \nDDafii $x,

where afn is an ambiguous filename if

51



required and the x is a toggled command version is XDIR3.COM, part of the sec-

option, ond version of ZCPR. This program is on

DD.COM supports four toggles. An F Volume 102 of the SIG/M disks (the

produces a fast listing with no file sizes .MAC file is on Volume 101) and on

displayed. An S lists those files with sys- several other disks also. (ZCPR2 is on

tern attributes, while Kproduces a ver- SIG/M Volumes 98 through 108, although

bose listing giving file attributes and user not all are required.)

numbers. Finally, a U lists files in all user

areas (very handy). :: ^phose who are new

As mentioned earlier, these programs I to CP/M are in-
have a number of variations, but I variably
XDIR.COM and DD.COM have been se- somewhat confused by the syntactical re-

lected as representative of the two ends of quirements of the system. Therefore,

the spectrum. XDIR.COM is available in "front-end" programs that uncomplicate

several user disks, but the most recent the various tasks arc becoming popular.

The public domain abounds with such

programs, most of which do a very good

CP/M-80 C Programmers ...

save time
... with the BDS C Compiler. Compile, link

and execute faster than you ever thought

possible!

If you're a C language

programmer whose patience is

wearing thin, who wants to spend

your valuable time programming

instead of twiddling your thumbs

waiting for slow compilers, who

just wants to work fast, then it's

time you programmed with the

BDS C Compiler.

BDS C is designed for

CP/M-80 and provides users with

quick, clean software

development with emphasis on

systems programming.

BDS C features include:

Ultra-fast compilation, linkage and

execution thai produce directly

executable 8O6CVZ8OCPM command

files.

A comprehensive aeauo.net that

traces program execution and

interactively displays both local and

external variables by name and

Draper type.

Dynamic overlays thai allow (or run

time segmentation of programs too

large to til into memory.

• A 120-function library written in both

C and assembly language with full

source code

Plus . ..
• a thorough, easy-to-reao, 181-page

user's manual complete with

tutorials, >uii'. error messages and

an easylc-use index — it's the

perfect manual lor the beginner and

the seasoned pro less lonal.

An attractive selection of sample

programs, including UODEM-

compatible telecommunications.

CPfW system utilities, games and

more.

A nationwide BDS C Use^S Group

($10 membership fee — application

included with package) that offers a

newsletter. BDS C updates and

access to public domain C utilities.

Reviewers everywhere have

praised BDS C 'or its elegant

operation and ootirnal use of

CP/M resources. Above all, BDS C

has been hailed for it's remarkable

speed.

BYTE Magazine placed BDS

C ahead of all other 8080/280 C

compilers tested lor fastest

object-code execution with all

available speed-up options in use.

In addition, BDS C's speed of

compilation was almost twice as

fast as its closet competitor

(benchmark for this test was the

Sieve of Eratosthenes!.

'I recommend both the

language and Ihe implementation

by BDS very highly '

Tim Pugh. Jt.

"Performance: ExcellenL

Documentation: ExctUenl

East of Use ExctUtnl"

tnfoWorid

Software Report Card

"... a supmor buy .. ."

Van Court Hare

in Lifthnts/Thr So/tu«n>

Dont wastn another minute on

a slow language processor. Order

your BDS C Compiler today!

Complete Package (two 8" SSDD disks,

181-page manual!: S150

Free shipping on prepaid orders inside

USA

VISA/MC. COD'S, rush orders accepted.

Call lor information on other disk

formats.

BDS C is designed lor use win CP.v-ec

operaling systems, ve^-on 22 or higher IT is

not currently svulaijle leu CPW-86 w MS-

DOS

BD Software, Inc.

P.O. Box 2368

Cambridge, MA 02238

{617} 576-3828

job of their tasks. The problem with all of

them is that for anyone who knows CP/M

to even a minor degree, the programs tend

to become frustrating as they are slow,

somewhat redundant, and in the occa

sional case, imbecilic.

In general, such programs will display

a list of the files on a disk and a menu that

allows various files to be tagged for one of

several functions, such as 7YP£ing to the

console, £&4seing, RENaming, or PIP-

ing to another disk. For those who do not

want to learn the five basic commands of

CP/M, I suppose that these programs will

be of use. However, I have yet to meet a

serious programmer who uses them. The

time taken to load the programs and pro

ceed through the sequences to get any

thing done always seems to be much

longer than the brute-force method.

For those who are curious, however, a

few such programs should be looked at.

The two most frequently encountered pro

grams are SWEEP.COM and

WASH.C0M, both of which have been
through many versions. Another program

called DISK.C0M is still in its infancy,

compared to the other two. Both SWEEP

and WASH do boast impressive documen

tation and do their claimed tasks ex

tremely well. One version of SWEEP

(SWEEP37) is available on SIG/M Vol

ume 110.

With these programs, mass renaming

can be accomplished, such as REN

*.BAS= *.PAS, which CP/M would re

spond to with an error. Also, files can be

streamed for some function, such as print

ing out 10 files in a row. This can cer

tainly be of use, however, I still maintain

that these programs offer more frustration

than comfort. Undoubtedly I'll get mail

on that point! (Incidentally, ZCPR does all

of this with no fuss at all... and it's the

same price.)

Now, quickly, a

look at a few of

the more

interesting recent releases from the public

domain libraries. The addresses of the

groups are listed at the end of this column.

For those with a curiosity about that ar

tificial intelligence language LISP, there

is a CP/M 86 version available on SIG/M

Volume 153 and a CP/M 80 version on

SIG/M Volume 118. Called XLISP: An

Experimental Object Oriented Language,

52 CIRCLE 5 ON READER SERVICE CARD



it implements a good number of the stan

dard (if such a thing exists) LISP

capabilities.

The system was originally written for

CP/M 80 by David Betz, and the SIG/M

disk contains the .COM file, a .DOC file,

and a whole bunch of .C files. (Guess

what language this one was written in!) A

couple of assembly files and other useful

material are included. The CP/M 86 ver

sion was modified by Harry Van Tassell

and is essentially the same package. They

both function identically as far as I have

been able to tell.

The document file (29K) is readable,

although only so much can be covered in

such a file. Experimentation or supple

mental reading will be of benefit to most

users.

No serious bugs were found with either

version, and they performed as they

should have. This is definitely recommen

ded for the curious and those who'd like to

have a taste of another higher-level lan

guage. (No debates on that point, please.)

The media as a whole seems to tout LISP

as the closest thing possible to an artificial

intelligence programming language, and

for those who don't want to shell out the

hundreds (or even thousands) of dollars

for commercial versions, this is priced

perfectly.

While on the subject of languages,

probably the most controversial of all was

released in a new version last year. Forth

Version 8.3 (or Forth-83) is on SIG/M

Volume 154. (Sorry, but I couldn't find a

new version in either CP/M 86 or MS-

DOS.) Forth-83 is supplied as a .COM file

(no installation or assembly) occupying

24K. If memory serves correctly, this is

less than the previous version, so whether

a more efficient code has been used or

some features have been dropped remains

to be discovered.

A short .DOC file accompanies the

.COM file, with a .HEX file of the kernel

supplied. Squeezed files for assembler,

debugging, multitasking (!), extension

screens (!!) and direct BIOS I/O are in

cluded. Also, a CP/M interface is sup

plied as is a file labeled "Meta source and

F83 screens".

Improvements over previous releases?

Some of the less useful words of the ear

lier versions have been dropped or re

placed with more powerful instructions.

DO loops have been overhauled rather ex

tensively and new words introduced.

Many modifications have been made to

the existing control words. Forth-83 at

tempts to come as close as possible to the

proposed new Forth standard. I haven't

had much opportunity to play with it, but

it certainly looks interesting.

For those with a 68000, Forth 68000 is

available on SIG/M Volume 151 along

with several utilities for the DEC Rain

bow, including a version of M0DEM7.

Aversion of Small-C was released on

SIG/M Volume 149 late last year for

CP/M 86 implementations, along with an

XMODEM written in FORTRAN for the

VAX and one for the Zenith 100.

The Small-C is functionally identical to

the CP/M 80 version and performs flaw

lessly. It is supplied as a .LBR file, taking
114K of space. A IK documentation file

is tacked on. Get a book on C to go with

it.

To end the languages, the CBASIC

Users Group Volumes 1 and 2 are avail

able together on SIG/M Volume 163. This

disk contains a potpourri of programs—

For your IBM/PC

Hlbp COBOL:
4times fester;
andnowwith
SOKT&CHAIN.

$750.mbp COBOL can be

summed up in one

word: fast.

Because it generates

native machine language object code, the

mbp COBOL Compiler executes IBM/PC

programs at least 4 times faster (see chart)

GIBSON MLX Benchmark Results
Calculated S-Profllc

(Representative COBOL statement mix)

Execution time ratio

mbp

COBOL

1.00

12HK system «iili hi

Level IV

c:obol

4.08

id ili%k rct|U

R-M—

COBOL

5.9B

rciA ■DM/PC (1111

Microsoft""

COBOL

6.18

IDMTM, "Level II

AMinnsoftTM

allow source & object

code, map & cross-

reference checking; CiSA

Certification to ANSI '74

Level II; mbp has it all.

It's no surprise companies like BechteL.

Chase, Citicorp, Connecticut Mutual, and

Sikorsky choose mbp COBOL; make it

your choice, too. mbp is available at

Vanpak Software Centers, or direct.

For complete information, write mbp

Software & Systems Technology,

Inc., 7700 Edgewaier Drive, Suite

360, Oakland, CA 94621, or phone

415/632-1555

-today

raitn?
Fast also describes our new SORX which

can sort four-thousand 128-byte records in

less than 30 seconds. A callable subroutine

or stand-alone, 9 SORT control fields can

be specified. And our new CHAIN is both

fast and secure, conveniently transferring

control from one program to another, pass

ing 255 parameters. Plus, new extensions to

ACCEPT & DISPLAY verbs give better, faster

interactive programming.

The complete COBOL. An Interactive

Symbolic Debug Package included standard;

Multi-Keyed ISAM Structure; listing options

CIRCLE 39 ON READER SERVICE CARD



some useful, others not —forCBASIC

users.

A representative sampling of the disk

includes directory calls from CBASIC

(useful). CBASIC data file creation rou

tine (very useful), and a demonstration of

the GETcommand (yawn). An MEMTEST

function, console I/O capture, and sample

data bases are also included. For those

who use CBASIC as a primary language,

this disk will have some interesting pro

grams, although chances are the heavy-

duty CBASIC users will have imple

mented the required functions

themselves.

Finally, following up on the assemblers

last month, a few cross assemblers are

available for the Motorola family of pro-

Thunder Software

• TheTHUNDER C Compiler- Opernws iml'i th.- APK.KiW.ill 1 i^MH^svfle»tCreatefa*tnmiv,'t).%02 programs lei run

<15 stand alony programs nr ,is sijbr mimes to Paautl programs. A maior whn-t of Ihv C rlefin.'.i hy K .1 K Includes a 24 p.iyy users

guide, newsletters Macro preproasisOE nwft nn APPLE M Tt*. //«. //c Source code for Iibrarcs is included Only $49.95

• AS5YST: The Asaem&ier System- A comptew 6602 editor/assembler and iisrurfor APPLE DOS3 3 Menu diiuen excellent
error trapping 24 p users guide, liemo program* in'jfce code for all programs* Gro.i: fnr beginners Only $23.50

• THUNDER XREF ■ A cross reference utility for APPLE Pascal 1 1 XREF g<?n.-r.ite*C!Ws reference for.'.nh procedjre Source
code and dnrum.'ntolinn pmnticd Only 519.95

Thunder Software POB 31501 Houston Tx 77231 713-728-5501

Include S3.00 shipping. COD. VISA and MASTERCARD accepted

CIRCLE 65 ON READER SERVICE CARD

A general purpose programming

language for string and list

processing and all forms of

non-numerical computation.

SNOBOL4+ -ihowui™
SNOBOU longuoge wilh 111 superb pattern.matching

facilities * Siring; over 33 000 byte* in lengih • Integer

ond (loo ling point uiing 8087 or supplied emulator ^j

• ASCII binary, sequential, and random- jfF

access I O • Assembly Language inter- ^i'* i I, <*

lace • Compile newcode during ^fi>' ^ /■ • *

program execution • Create tv^ /%l ^\ jfi'

SAVE files-Progror

onddaio space up

!o300KbylM jj**'

RAM tfif* 1

With

■v"> ELIZA Saver
100sample pro-

s ona tun^Irons

□ 118086 BBPC MS-OOSor

5'.1 DSDD ipecityDOS CPM format

Jp Send check. VISA M C to $95

' Catspaw, Inc. p>«'3^
P O.Bo. lt!3*SQlida.CO8l20t * 303 531 3884

microSUB:MATH

(or use with your FORTRAN programs.

Fun C1 ions

integration

mithiqes

NOH UNE«n SYSTEMS

IINEJH SYSTEMS

POLYNOMIALS

IHFFFHENTIAL EO

LICENSE. S250.

with SOURCE CODE. S600.

(Manual alone, S25.)

CIRCLE 9 ON READER SERVICE CARD

Elegance

Power

Speed

CIRCLE 23 ON READER SERVICE CARD

€
C Users' Group

Supporting All C Users

Box 287

Yates Center. KS 66783

CIRCLE 17 ON READER SERVICE CARD

54 COMPUTER LANGUAGE ■ OCTOBER 1984

exchanger

CP/M-* ►ISIS

and your Inlel StlhU I oi II «DSP The ICX package ptoddd

illowi eiecullsn of IS S II pruyumi undci CP M uling iht

ICX A Dflu*e DiduedionJI 'ilr convpr^ion ulihly *hich

«orhsi*i[hyoufCP'M sysem flnd an 6 (loppy dn*t id provide

delete* files, and ev*n initializes a blank disk wllll trie I51S lilt

si r u cl u re Co ra p l( 11 C »ur ce i n c I ud ed (89

on ony 19ifi BO iiutrr Suppoil lor all 1515 II ii Mr-n ind

ComplelelCXPi(k«He(ICX(,ISE| 1(73

ltippl>#d on lln>» 6*n«ny *■" fMA ■

estern LUares
BoxC

Norwood CO 81423

(303)327-4898

CIRCLE 67 ON READER SERVICE CARD

cessors. (Those mentioned function from

CP/M 80 to the target.)

A 68000 and a 6800 cross assembler

are on the same disk: SIG/M Volume 140.

Another 68000 cross assembler is on SIG/

M Volume 92, with a "Little ADA" set for

a Polymorphic system. None of them have

been tried by your intrepid reporter. Any

one wanna give me a Sage to try them? I'll

even settle for a 68K board for a Com-

pupro! As for a Polymorphic, it sounds

more like a crustacean than a computer.

(Just kidding, guys!)

And THAT IS THAT, at least for

another month!

Coming up in the next issue: another

language for you to play with (but I won't

say which till then). Also, some general

utilities of a useful variety,

Don't forget that you can quickly get a

note to me if you want something dug up

from my archives (a tottering pile of disks

and paper on my desk), want to scream

insults in my direction, or (heavens) say

something nice through the COMPUTER

LANGUAGE BBS. I check it every couple

of days, so feel free to use it to its fullest.

Naturally, there is always the post office.

The editors forward everything to me,

although anything that ticks will be sub

merged first.

Most of the programs mentioned in

these columns will be placed online in the

CP/M facility of the BBS. Even more pro

grams will be available Real Soon Now

(don't sue me, Jerry) on the COMPUTER

LANGUAGE section of CompuServe. I'll

be sysoping CompuServe for

COMPUTER LANGUAGE, so check it

out.

Till next time, remember: "Real Pro

grammers Don't Use Read/Write Tabs!"

Useful addresses: SIG/M is at P.O.

Box 2085. Clifton. N.J.. 07015-2085.

CP/MUGisat 1651 Third Ave.. New

York. N.Y.. 10028. ■

Developed

in England

by Southern

Z80 / 8088 (8086 / 80186 / 8087)

machine-code development sys

tem. With latest Reduced Instruc

tion-Set philosophy.

"SBE/TRS 80 (All DOS) 5100 - $3 s/h
"SBE/PC (PC-DOS/MS-DOS'160

Allen Gelder Software

(415) 681-9371

Box 11721 San Francisco, CA 94101

CIRCLE 28 ON READER SERVICE CARD



EXOTIC LANGUAGE
OF THE MONTH CLUB

PILOT: A specialized language for
conversational scripts

By John A. Starkweather

P
jILOTisawideiy

used author lan

guage for the

creation of computer-assisted instruction.

It is a collection of specialized program

ming tools for the creation of computer

dialogs.

PILOT is not an authoring system with

pre-arranged formats ready for instruc

tional use, though it can be used to create

a variety of such formats. The language

was designed to have an exceedingly sim

ple entry level and immediate feedback

for a novice program author who wishes

to present information and evaluate a

user's response. Because of this, it has

been used as an introductory program

ming environment, especially successful

with young children.

PILOT gets its name not only from the

general goal of helping a novice become a

computer pilot but also as a reminder of

just some of the uses to which it has been

put: the letters begin the words Pro

grammed Inquiry Learning Or Teaching.

Because the PILOT system has been

developed to be interactive and con

versational, it allows the computer to play

the role of a human helper. A PILOT pro

gram can act as though it is an individual

tutor or a consultant. It can be the giver of

tests and examinations, it can ask ques

tions and prompt the collection of data,

and it can describe and assist with the

learning of other computer systems.

The features of PILOT can be com

bined with the advantages of other pro

gramming languages. Sometimes there

are problems that require a good deal of

explanation, questioning, and collection

of data as a preliminary to extensive com

putation. PILOT can be combined with

other systems to make it easy to program

such an introductory section.

Major computational tasks can be

turned over to other systems at the proper

lime after data has been collected.

Improvement of the interactive portion of

such a system is important, and PILOT

makes it easier for the computer to prompt

the user and explain what is desired.The

user feels helped but still is in direct

control.

While all this is possible with other

computer languages, it is usually much

more difficult and takes greater thought

and effort on the part of the developer to

program conversational interaction with a

general purpose computer language.

M
ost con

versations

I between two
people involve an alternation of sonic sim

ple basic elements. Each person needs to

present information or ask questions.

Each needs to listen and accept answers.

As a third and more complex element,

each person needs to evaluate what is seen

or heard and respond differently as a

result of that evaluation.

These three elements describe the

major core mechanisms of PILOT. In

order to remove any ambiguity about what

the computer is expected to do, code let

ters followed by a colon are used to indi

cate when the computer is to perform one

of these functions. These are called

PILOT statements.

PILOT can present information or ask a

question.

T: is followed by text (information or a

question) that is to be typed or displayed

by the computer. For example, the follow

ing line in a PILOT program:

T: Hello there, whoever you are.

will cause the computer to type or display:

Hello there, whoever you are.

Everything following the colon is dis

played. There is no functional difference

involved in arranging for the computer to

ask a question. Thus, the following:

T: What is your name?

will cause the computer to type or display:

What is your name?

exactly copying the line of text that fol

lows 7?.

The T: (Type) statement is simply

repeated in order lo display more than one

line of text. For example:

T: Two tractors can together plow a

T: field in eight hours.

T: How long will it take three tractors to

T: plow a field of the same size if all
T: tractors operate at the same speed?

will cause the computer to display

Two tractors can together plow a

field in eight hours.

How long will it take three tractors to

plow a field of the same size if all

tractors operate at the same speed?

PILOT can accept answers and try to

find meaning.

A: directs the computer to accept an

answer from the user. M: is followed by

words or elements of text for which a

match will be attempted within the text of

the latest answer. For example:

A:

M:FRED

will cause the computer to accept an an

swer from the console keyboard and to

look for a match with "FRED".

PILOT can react differently to different

answers.

In order to take different actions in re

sponse to different answers, the letters Y

or N may be added to the code letters in

PILOT statements. These letters are con

ditioners that cause Ihe statement to be ef

fective or not depending upon the success

of the last attempted match. If a match

was found (YES), then a statement such as

TY: will operate, while TN: will not. If a

match was not found (NO), then the re

verse will be true. In PILOT, such condi

tioners can be added to affect the oper

ation of any statement.

L
et's look at an ex

ample of PILOT

Icoding fora

conversational interchange. For the mo

ment, assume that PILOT is in operation,

and you have created and stored a brief

PILOT program within the memory of the

55



1. Character set

A. Alphabetic characters (A-Z)

B. Numeric characters (0-9)

C. Special characters ("'()#$.,:; +-*/<>=?!©&)

2. Constants

A. Numeric constants—Core PILOT handles constants written as integers.

B. String constants—A sequence of alphabetic, numeric, or special characters.

3. General statement syntax

<PILOTSTATEMENT> ;: =

[<LABEL>] <INSTR> [<CONDITIONER>] [<RELAT1ONAL>]:
[<OBJECT>]

A. LABEL (optional) consists of a name with the prefix *.

§B. 1NSTR (required) consists of a single alphabetic character for core PILOT

statements.

C. CONDITIONER (optional) is a single alphabetic character Kor Nappended to

the PILOT instruction. The conditioner causes a test of the results of the latest

attempted match (the most recently executed M statement). If the conditioner is

true, the current statement is executed. If the conditioner is false, the statement

§ is skipped. The conditioner Y is true if the latest match was successful. The

conditioner N is true if the latest match was unsuccessful.

As an example, the statement TY:HELLO will display the word "HELLO"

if an item of the last M statement matches with an element of the last input

preceding it.

D. RELATIONAL (optional) is a conditional expression enclosed in parentheses

and following the PILOT instruction (and any conditioner). If it is evaluated to

be true, the statement is executed; otherwise the statement is skipped. The

conditional expression is of the form:

< numeric expression > <rel.op> < numeric expression>

where rel. op (relational operator) refers to the symbols <. > . or = with the

usual meaning for numeric expressions.

Numeric expressions may be formed using the operators + ,-,*, and /,

interpreted as addition, subtraction, multiplication, and integer division

respectively.

As an example, the statement T(A >B):HELLO w\\\ display the word

"HELLO" if the value of variable^ is greater than the value of variables.

T(X):HELLO will display the word "HELLO" if the numeric value ofX is

greater than zero.

E. The colon (:) is required.

F. OBJECTcomcs after the colon, and its syntax depends upon the statement type.

4. Names and references

A. Labels begin with * and continue until the first blank. Labels must come first

on a line and have at least one blank between the label and the code which may

follow. The label may appear alone on a separate line, as in the following:

•LABEL

T:DISPLAYTHIS

Labels are used in the body of a J or U statement to refer to the place in the

program sequence where the label occurs. Thus, J:*LABEL would cause a jump

to the above sample program.

Core PILOT handles labels of at least four characters.

B. Numeric variable names are single letters of the alphabet. They are preceded by

#when in the context of a character string, When a numeric variable name

appears in the body of an A statement, the input must be numeric. Its numeric

value is stored and may be referenced by the name. Such references may appear

in T, Y, or N statements and cause the number to be retrieved and displayed.

Table 1.

computer. PILOT displays the word

"READY", indicating that it is wailing

for a command. If you type the command

list, PILOT will display the program.

That means that you will see the sequence

of PILOT instructions already prepared.

If you type the command run, PILOT will

run the program. That means that the

computer will obey the sequence of in

structions, and you will see the effect of

their operation.

What the PILOT user types will be

shown in bold face to distinguish it from

what is typed by PILOT. Here is the pro

gram, as it would be displayed by the CP/

M version called Nevada PILOT.

list

T: Is it usually colder in the summer

: or in the winter?

A:

M: winter

TY: That's frue most places.

TN: You must be thinking of an unusual

: place.

Here is the result of running the program:

run

Is it usually colder in the summer

or in the winter?

In the winter.

That's true most places.

READY

We can run the program again and pro

vide a different response:

run

Is it usually colder in the summer

or in the winter?

I'll say summer.

You must be thinking of an unusual

place.

READY

Let's review the listed program and see

what caused the computer to respond as it

did. A T: statement prompts the computer

to type (display) whatever follows the co

lon. In this case it is a question. Next, the

A: statement accepted an answer from the

user. Following that. M: attempted to

match the word "winter" with any por

tion of the response. If a match was

found, then the response "That's true

most places." was typed because TY:

causes display only when a match has oc

curred. If a match is not found, then the

alternate response occurred because 77V;

causes display only when a match has not

occurred. The simple codes (7?, A:, and

M:) at the front of each line indicate the

basic conversational elements, and the ex

tra letter Yov N conditions the operation

according to whether or not a match has

occurred.

56 COMPUTER LANGUAGE ■ OCTOBER 1984



A:#X

T-.THE VALUE IS #X

Numeric variables are automatically scl to a value of zero when the program

is started. They may also be defined and set to a value by the content of a C

statement that contains an expression such as Y=X-I0.

C. String variable names begin with $. When a string variable name appears in the

body of an A statement, the texl which is entered is stored and may be refer

enced by that name.Such references may appear in 7", Y. or Nstatements and

cause the text to be retrieved and displayed.

A:$NAME

TtHELLO, SNAME

In the above example, if "ROBERT1 is entered at the A statement, then

"HELLO, ROBERT" will be displayed.

A T, Y, or N statement containing a string name without previously entered text

will display the name.

T:THIS IS SUNKNOWN will cause

"THIS IS SUNKNOWN" to be displayed

5. Core PILOT statement types

PILOT core statements are used in all versions of PILOT and are abbreviated to a

single letter. They are:

T: (Type)

A: (Accept)

M: (Match)

R: (Remark)

J: (Jump)

E: (End)

U: (Use)

C: (Compute)

A. T (Type)

<TObject>

<T Argument List>

<T Argument>

:= [<T Argument List>]

:= <TArgument> [<TArgument>

:= < String Constant >

:= < Numeric Variable>

:= < String Variable>

The T: (Type) statement will display whatever is typed after the colon. If the

Type Object is null (nothing after the colon), the statement produces an empty

line. String constants are typed as is with no surrounding quotes. Variables are

recognized by the variable prefix ($ or ft) in the object. Variable names are

terminated by the first non-alphanumeric character following the prefix. When

a variable appears in the TObject its name is replaced by its value. Items in the

T Argument List are concatenated in the order they appear. For example:

T: HELLO $NAME, I UNDERSTAND YOU ARE #N YEARS OLD.

li$NAME= "FRED" and #N = 15. then the above statement would produce

the following:

HELLO FRED, I UNDERSTAND YOU ARE 15 YEARS OLD.

Two additional forms of the Type statement are YandN, which are exactly

equivalent to 7Yand TN respectively. A colon by itself can be used for

continuation lines.

B. A (Accept)

<AObject>

<A Argument>

::= <AArgument>

::= < Numeric Variable>

::= <String Variablo

The A: (Accept) statement is used to receive input from the keyboard. The

response is edited, replacing any or no leading and trailing spaces with one

space at each end and compressing multiple spaces between words into single

spaces, and then kept in a buffer. If a variable name is present as an argument.

the variable is set to the accepted value. In addition, many PILOTs provide

a statement that can retrieve what is stored in a variable and place it in the

accept buffer.

Table 1 (Continued).

PolyFORTHII
the powerful multitasking/

multi-user operating system

is now available for most

micro-computers running—

CP/M-80

and

CP/M-86
Offers CP/M users:

• An ability to run multiple

terminals

• Unlimited control tasks

• Concurrent printer

operation

These advanced features combine

with FORTH, Inc.'s powerful ver

sion of the FORTH programming

language to offer CP/M users the

ideal environment for all interactive

and real-time applications.

Featuring speed of operation, shor

tened development time, ease of

implementation and overall cost-

effective performance, this system

is fully supported by FORTH, Inc.s:

• Extensive on-line documen

tation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493

RCA TELEX: 275182

Eastern Ssles Office

1300 N. 17th St. #1306.

Arlington. VA 22209

703/525-7778

■CP.M is a registered trademark o! Digital Research

CIRCLE 24 ON READER SERVICE CARD 57



C. M (Match)

<MObject> ::

<M Argument List> ::

<MArgument> ::

= <M Argument List>

= <M Argument>,<M Argument>

= < String Constant>

= < String Variable >

The March statement is used to compare a list of items with the contents of the

accept buffer. For each argument, a scan is made of the accept buffer until a

match occurs or the end of the string is reached. The match is successful if at

least one argument was successfully matched. A match of any item causes a

YES condition to be set. and if no item matches a NO condition is set. Follow

ing statements ending in Kare obeyed only if the YES condition is set and

statements ending in N are obeyed only if the NO condition is set.

Arguments arc separated by commas and may be string constants without

quotes or string variables. Multiple spaces in match arguments are compressed

to single spaces before matching, and leading and trailing spaces are signifi

cant. A comma that terminates the last item is ignored but can serve to indicate

the presence of a trailing blank or blanks.

D. J (Jump)

<J Object > ::= *< Label >

The J: (Jump) statement always has a label name after the colon and the name

matches a label somewhere in the program. If the label is on a line by itself,

execution continues with the first statement following the label. The J Object

may be a label name with or without the label prefix (*).

E. C (Compute)

<C Object >

<Assignment>
::= < Assignment>

::= <Variable> = <Expression>

The Compute statement is used to assign values to numeric and string variables.

The C statement was designed as one means of extending the language, and

specific syntax was left undefined so that it might match that of an available

general purpose language. Extensions of PILOT have in general followed

BASIC-like syntax. Some have required prefixes to denote type for all variables

and some have required this only for string variables, allowing statements such

as C:X=A+B. The concatenation and assignment of string variables allows the
development of responses that make use of elements of user interaction.

F. U(Use)

<U Object > ::= *<Label>

The Use statement transfers control to the subroutine whose first statement is
labeled with the U Object. The Use statement pushes the return location (the
immediately following statement) onto a push-down stack of at least seven
levels.

G. E(End)

The End statement is used to return from a subroutine or to terminate the

PILOT program. The £ statement pops the push-down stack, removing the
return location from the stack.

H. R (Remark)

<RObject> ::= <Anything>

The Remark statement is used for any comments that the author wishes to

include in the program. The statement is ignored during execution. R state
ments may be labeled and may be the target ofJ or U statements.

I. : (Continuation of Type statements)

A colon at the beginning of any line will continue the object part of the pre
ceding statement only if it was a Type statement (7\ Y, or N). Labels, condi
tioners, and relational are not allowed on continuation lines.If a conditioner or
relational prevents execution of a statement, none of its continuation lines will
be executed.

Table 1 (Continued).

58 COMPUTER LANGUAGE ■ OCTOBER 198a

As can be seen from these examples,

PILOT relies on simple character string

matching and does not have mechanisms

for complex parsing of free-form input. It

was designed as a practical tool of modest

aims and not as a research device for arti

ficial intelligence.

Knowing that PILOT would necessarily

need changes from our first ideas, we de

cided to describe a required core to the

language and indicate specific ways that

extensions should be added. The features

presented in Table 1 form a description of

core PILOT as a minimal basis for the lan

guage, using standards developed by the

major users of PILOT in 1973. Most ver

sions of PILOT have additional features.

While core statement types were to use

single letters, it was expected that the Ian-

Cursor and screen controls:

CA:

CH:

CL:

CE:

Cursor address to set row

and column

Clear and home

Clear to end of line

Clear to end of screen

Various other aids to conversation:

FOOT:

PA:

VNEW:

XI:

CALL:

XS:

(Foot of screen halt and

prompt)

(Pause)

(New Variables)
(Execute Immediate)

(Call existing program)

(Execute from the System)

The FOOT: statement places a prompt

ing line at the bottom of the screen and

waits for a response before proceeding.

The PAUSE: statement halts program

operation for a specified length of

time, and then continues.

The VNEW: statement erases string or

numeric variables.

The XI: statement obeys the contents

of a string variable, which should be a

valid PILOT statement. Such a string
can be created as the result of prior

interaction.

The CALL: statement provides a way

to call upon the operation of a separate

program that exists in the computer

memory external to PILOT

The XS: statement calls upon the

computer operating system to initiate

operation of another program. This
can be a useful linkage in using PILOT

for an interactive front end lo other
operations.

Table 2.



guage would be extended by the addition

of other multi-letter names for new func

tions. This would indicate that they might

not be the same in different versions of

PILOT. Some common additions are

presented in Table 2.

Most versions of PILOT have file man

agement and data collection facilities with

statement names that relate to the oper

ating system in use. Recent versions have

graphic facilities that depend on specific

hardware.

T
'he PILOT lan

guage developed

as a result of

experience with an interactive computer

system called COMPUTEST', developed

at the Univ. of California in San Fran

cisco. Calif., and in a local elementary

school district in 1962.

This system ran on a small IBM 1620

computer and was able to carry out inter

active programs with one user at a time by

means of its console typewriter. In early

versions the COMPUTEST system oper

ated with program information (the pro

gram written in COMPUTEST) stored in

a deck of punched cards and read into the

computer a few at a time when the pro

gram was executed. Later, extended ver

sions of the system had greatly increased

capabilities by using disk storage units

that allowed random access to the pro

gram material.

When an IBM 360 model 50 computer

with time-sharing capability became

available at the UCSF campus, a new

computer-assisEed instruction system

called PILOT2 was developed. The lan-

cuaiie features of the PILOT system were

patterned after those of COMPUTEST

and stressed easy entry of instructional

material by the program author.

It was felt that a teacher should not have

to become a computer expert in order to

develop a computer-assisted instructional

program. The PILOT system began to be

used for traditional frame-oriented

instructional programs as well as provid

ing practice with simulated clinical situ

ations, self-evaluation testing, and simu

lated interviewing1'"1 with natural

language input from the students.

Not long after the original version of

the PILOT language was written for the

IBM 360 computer, several versions of

the language were programmed to run on

other computers, some of them translating

PILOT to a more general purpose lan

guage such as BASIC. SNOBOL, or an

assembly language specific to the com

puter. Some were called PILOT, and some

had derivative names such as PYLON and

NYLON.

Partly because of the requirements of

different computer systems and partly

because of individual preferences, each

version of the language was somewhat dif

ferent from the others. In early 1973, rep

resentatives of six of the major versions of

the PILOT language met together and

agreed on a set of core language specifica

tions to be common among all the sys

tems. This language represented the

experience of many workers in computer-

assisted instruction at that time.

Recognizing that differences would

undoubtedly arise, there was also agree

ment on a standard means of describing

functions outside the core language.

Because many of those involved had

applications in elementary and secondary

school settings, the resulting standard,

called PILOT 73. was intended to be a

language that would be easy for the pro

gram author to learn.

Although this was prior to the avail

ability of microcomputers, the Datapoint

1200 desktop computer provided a means

to investigate self-contained operation and

avoid the problems of communication

with early time-sharing systems5.

This machine had a built-in mini

computer, two magnetic cassette tape

drives, a keyboard, and a CRT for charac

ter display. The memory capacity of the

first of these machines was 8,000 bytes.

About three-quarters were used for the

PILOT system, which left room for about

2,000 characters of program material at a

time.

This was enough to hold a number of

instructional frames in active memory and

additional material was read from tape

when it was needed. The tape could con

tain about 100,000 characters of program

material and was sufficient for the devel

opment of modest adjunct elements of

interactive instruction.

A major dialect of PILOT that departed

from some of the PILOT 73 guidelines for

core PILOT was developed by George

Gerhold and Larry Kheriaty at Western

Washineton State College in Bellingham,

Wash. It is called COMMON PILOT and

has extensions and additional functions to

handle more complex programming

needed in college level instruction, partic

ularly in mathematics and science. This

version of PILOT has formed the basis of

PILOT for the Apple microcomputer", for

Radio Shack microcomputers7, forC-
Pilot on UNIX systems", and for PC/

PILOT for the IBM Personal Computer".
PILOT 73 for the Datapoint computer

became the basis of versions for an early

microcomputer, the Processor Tech

nology Sol. Before the company went out

of business, it published a cassette version

of PILOT and aversion for its Helios disk

system was in preparation. These were

distributed by PROTEUS (The Processor

Technology Users Group)"1.

PolyFORTHII
the operating system and

programming language for

real-time applications involving

ROBOTICS, INSTRUMENTATION,

PROCESS CONTROL, GRAPHICS

and more, is now available for...

IBM PC*
PolyFORTH II offers IBM PC

users:

• Unlimited control tasks

• Multi-user capability

• 8087 mathematics co

processor support

• Reduced application

development time

• High speed interrupt

handling

Now included at no extra cost;

Extensive interactive GRAPHICS

SOFTWARE PACKAGE! Reputed

to be the fastest graphic package

and the only one to run in a true

multi-tasking environment, it

offers point and line plotting,

graphics shape primitives and

interactive cursor control.

PolyFORTH II is fully supported

by FORTH, Inc.'s:

• Extensive on-line

documentation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493

RCA TELEX: 275182 —

Eastern Sates Office

1300 N. 17th St.

Arlington, VA 22209

703/525-7778

•IBM PC is a registered irademark of International

Business Machines Corp.

CIRCLE 25 ON READER SERVICE CARD 59



The- , .-
C Compile

".. .C86 was the only compiler we tested that

ran every benchmark we tried and gave the

expected results... Computer Innovation

C86 was the compiler that our staff

programmers used both before and six

months after we conducted the tests"

J. Houston, BYTE MAGAZINE - February 1984

•FAST EXECUTION ■

of your programs.

•FLJLL& STANDARD

IMPLEMENTATION OF C- :

includes all the features described bv

K & R. It works with the standard
MSDOS Linker .ind Assembler; many

programs written under UNIX can

often be compiled with no changes.

8087 IN-LINE -

highly optimized code provides SG#7

performance about as fast as possible.

POWERFUL OPTIONS -

include DOS2 and DOS1 support and
interfaces; graphics inti-rfacc capability;
object code; and librarian.

•FULL LIBRARY WITH SOURCE -

6 source libraries with full source code

the "large" and "small" models, soft
ware and 8087 floating point. DO52

and DO5ALL

•FULL RANGE OF SUPPORT

PRODUCTS FROM COMPUT
INNOVATIONS -

includinj; Halo Graphics, 1'hatl File

Management, Pane! Screen Manage

ment, C Helper Utilities dnd our

newest C_to. dBase development
tool.

•HIGH RELIABILITY -

lime pruven through thousand
users.

•DIRECT TECHNI

SUPPORT -

oin The Professional Programmers Who

For Further Information Or To Order Oil

800-922-0169
Technical Support: 1201) 542-5920

from 9 a.m. to 6 p.m.

Agree C86™ iler Of Choice

980 Shrewsbury Avenue

Suite PW509

Tinton Fails, NJ 07724

Computer Innovations, Inc.

CIRCLE 13 ON READER SERVICE CARD

60 COMPUTER LANGUAGE ■ OCTOBER 198d

Atari Inc. has developed PILOT for its

microcomputer in a version that is easy

i for elementary students to use". It con
tains graphic extensions providing the

! kind of "turtle" graphics found in LOGO.
! Although PILOT itself does not use line

numbers, the Atari version requires them

for program entry and editing, using the

same mechanisms as provided for BASIC.

PILOT for microcomputers using the

CP/M operating system was developed to

provide the standard version for users of a

wide range of equipment having disk stor

age. It is made available under the name

Nevada PILOT by Ellis Computing in San

Francisco, Calif. '2 This version contains a
built-in screen editor that can be config

ured for operation with many different

terminals.

In addition to its primary use for

computer-based instruction or testing,

PILOT has proven to be a useful tool

for the rapid development of interactive

menus that are sometimes useful for data

entry or in assisting users with the opera

tion of complex programs. When applied

to instruction and training, the addi

tion of graphics seems quite necessary—

particularly a rapid line drawing capabil

ity to produce the equivalent of a teacher's

blackboard diagrams.

One can, and should, write PILOT pro

grams in a modular, top-down fashion,

but the global nature of all variables is

sometimes a limitation in extensive pro

grams. An ability to pass arguments to

subroutines having local variables could

be useful, but it would not assist the

novice user for whom the language was

initially designed. H

References

1. Starkweather, J.A. "Computest: A Com

puter Language for Individualized Test

ing, Instruction, and Interviewing."

Psychological Reports, 1965, 17:227.

2. Starkweather, J.A. "A Common Lan

guage for a Variety of Conversational

Programming Needs." Readings in

Computer-Assisted Instruction, H.A. Wil

son and R.C. Atkinson (Editors), New

York: Academic Press. 1969, p. 269.

Starkweather, J.A.. Kamp, M., and

Monto, A. "Psychiatric Interview Simu

lation by Computer." Methods ofInforma

tion hi Medicine, 1967,6:15.

4. Kamp, M. "Evaluating the Operation of

Interactive Free-Response Computer Pro

grams ." Journal of Biomedical Systems,

1971,2:33.

Kamp, M. and Starkweather, J.A.

"A Return to a Dedicated Machine for

Computer-Assisted Instruction." Comp.

Biol. Med., 1973,3:293.

Apple Pilot and Apple Super Pilot, Apple

Computer Inc. 10260 Bandley Dr., Cu

pertino, Calif. 94017.

TRS-80 Pilot. Radio Shack Education

Div. 1600 One Tandy Center. Fort Worth,

Texas 76102.

Sumner, T. C-Pilot Language Reference

Manual, AlamonviHe, Ltd., P.O. Box

27186, Concord, Calif. 94527.



9. PC/PILOTLanguage Reference Manual,

Washington Computer Services, 3028

Silvern Lane, Bellingham, Wash. 98226.

10. Processor Technology Pilot, PROTEUS,

1690Woodside Road, Sui(e219, Red

wood City, Calif. 94061.

] I. Atari Pilot, Atari Inc. 1272 Borregas Ave

nue, Sunnyvale, Calif. 94086.

12. Nevada Pilot, Ellis Computing, Inc. 3917

Noriega Street, San Francisco, Calif.

94122.

John Starkweather and his colleagues at

the Univ. ofCalifornia at San Francisco

originated the PILOT language. Stark

weather is a professor ofmedical psychol

ogy in the Univ. ofCalifornia School of

Medicine and aformer director ofthe

Computer Center at UCSE Portions ofthis

article are adaptedfrom A User's Guide to

PILOT, to be published by Prentice-Hall.

The C Interpreter:

Instant-C
Programming in C has never been Faster.

Learning C will never be Easier.

Instant-C is an optimizing interpreter for the C language that can
make programming in C three or more times faster than when using
old-fashioned compilers and loaders. The interpreter environment
makes C as easy to use and learn as Basic. Yet Instant-C is 20 to 50
times faster than interpreted Basic. This new interactive development

environment gives you:

Instant Editing. The full-screen editor is built into Instant-C for im
mediate use. You don't wait for a separate editor program to start up.

Instant Error Correction. You can check syntax in the editor. Each
error message is displayed on the screen with the cursor set to the
trouble spot, ready for your correction. Errors are reported clearly, by
the editor, and only once.

Instant Execution. Instant-C uses no assembler or loader. You can
execute your program as soon as you finish editing.

Instant Testing. You can immediately execute any C statement or
function, set variables, or evaluate expressions. Your results are
displayed automatically.

Instant Debugging. Watch execution by single statement stepping.
Debugging features are built-in; you don't need to recompile or reload
using special options.

Instant Loading. Directly generates .EXE or .CMD files at your re
quest to create stand-alone versions of your programs.

Instant Compatibility. Follows K & R standards. Comprehensive stan
dard library provided, with source code.

Instant Satisfaction. Get more done, faster, with better results.
Instant-C is available now, and works under PC-DOS*, MS-DOS*,
andCP/M-86*.

Find out how Instant-C is changing the way that programming is
done. Instant-C is $500. Call or write for more information.

Rational
(617)653-6194

P.O. Box 480

Systems, Inc. Natick, Mass. 01760
Trademarks. US-DOS (Microsoft Corp.). PCDOS(IBM),CP'WB6(Digi!al Research, Inc.). I nstani-C (Rational Systems, Inc.)

CIRCLE 56 ON READER SERVICE CARD

PolyFORTHil
the operating system and
programming language for

real-time applications involving

ROBOTICS, INSTRUMENTATION,

PROCESS CONTROL, GRAPHICS

and more, is now available for...

DEC* PDP-11*
and

LSI-II* Systems
The PolyFORTH II high

performance features

include:

• Multiple users (30

terminals on a LSI-II)

• Unlimited control tasks

• High speed interrupt

handling

• Reduced application

development time

PolyFORTH II software will run

on any standard PDP" or LSI-II

with RX02 disk (RSX* optional),

Micro/PDP-11* and PROFES

SIONAL* 350 and is fully

supported by FORTH, Inc.'s:

• Extensive on-line

documentation

• Complete set of manuals

• Programming courses

• The FORTH, Inc. hot line

• Expert contract programming

and consulting services

From FORTH, Inc., the inventors

of FORTH, serving professional

programmers for over a decade.

Also available for other popular

mini and micro computers.

For more information contact:

FORTH, Inc.
2309 Pacific Coast Hwy.

Hermosa Beach,

CA 90254

213/372-8493 -

RCA TELEX: 275182.=

Eastern Sales Office

1300 N. 17th St.

Arlington, VA 22209

703/525-7778

'Registered trademarks of Digital Equipment Corp.

CIRCLE 26 ON READER SERVICE CARD 61



MicroMotion

MasterFORTH
It's here — the next generation

of MicroMotion Forth.

• Meets all provisions, extensions and experimental

proposals of the FORTH-83 International Standard.

• Uses the host operating system file structure(APPLE

DOS 3.3 & CP/M 2.x).

• Built-in micro-assembier with numeric local labels.

• A full screen editor is provided which includes 16x

64 format, can push & pop more than one line,

user definable controls, upper/lower case key

board entry, ACOPY utility moves screens withinfit

between lines, line stack, redefinable control

keys, and search & replace commands.

• Includes all file primitives described in Kernigan

and Plauger's Software Tools.

• The input and output streamsare fully redirectable.

• The editor, assemblerand screen copy utilities are

provided as relocatable object modules. They

are brought into the dictionary on demapd and

may be released with a single command.

• Many key nucleus commands are vectored. Error

handling, number parsing, keyboard translation

and so on can be redefined as needed by user

programs. They are automatically returned to

their previous definitions when the program is

forgotten.

• The string-handling package is the finest and

most complete available.

• A listing of the nucleus is provided as part of the

documentation.

• The language implementation exactly matches

the one described in FORTH TOOLS, by Anderson

& Tracy. This 200 page tutorial and reference

manual is included with MasterFORTH.

• Floating Point & HIRES options available.

• Available for APPLE ll/ll+/lle & CP/M 2.x users.

• MasterFORTH - $100.00. FP& HIRES-$40.00 each

• Publications

• FORTH TOOLS - S20.00

• 83 International Standard - $15.00

• FORTH-83 Source Listing 6502, 8080, 8086 -

$20.00 each.

Contact:

MicroMotion
12077 Wilshire Blvd., Ste. 506

Los Angeles, CA 90025

(213)821-4340

Fortran Scientific Subroutine Package

Contains Approx. 100 Fortran Subroutines Covering:

1. Matrix Storage and Operations

2. Correlation and Regression

3. Design Analysis .

4. Discriminant Analysis

5. Factor Analysis

6. Eigen Analysis

7. Time Series

8 Nonparamelric Statistics

9. Distribution Functions

10. Linear Analysis

11. Polynomial Solutions

12 Data Screening

Sources Included. Microsoft 3.2 compatible.
$295.00

FORLIB-PLUS™
Contains three assembly coded LIBRARIES plus support.

FORTRAN coded subroutines and DEMO programs.

The Ihree LIBRARIES contain support lor GRAPHICS. COMMUNICA
TION, and FILE HANDLING/DISK SUPPORT An additional
feature within the graphics library is the capability of one fortran program

calling another and passing data to it. Within the communication library,

there are routines which will permi! interrupt driven, buffered data to be

received. With this capability, 9600 BAUD communica

tion is possible. The file handling library contains all the required software

to be DOS 3.0 PATHNAME compatible.

$69.95
Strings & Things™

Character Manipulation and Much More!

569.95

P.O. Bos 2517

f» ;u.V e Cypress,CA 90630 (714) 894-6808
California residents, please add &'■ i sales lax

CIRCLE 2 ON READER SERVICE CARD

DESIGNER SCREENS
"A 100 to I Productivity

Increase Over Coding "

Provides full-screen editing of ter

minal screen design images. And, a

linker lhat generates self-relocating.

8080 machine language, run-time

support.

Makes it easy to implement on-screen forms, menus, help

screens, boiler-plate notices, and even simple animation.

Run-time support for input includes: data type control, dec

imal alignment, a type ahead buffer, end-user edit commands,

and everybody's favorite, "Fred's Magic Window."

Fred's Magic Window can display field-by-field input instruc

tions as needed, automatically.

Can be used with any computer language that allows pro

grammed calls to CP/M 2.2. Great with assembly language or

BDSC.

Runs on 80 x 24 or larger ASCII terminals. Supports five dis

play attributes and line drawing. Designs are transportable

between installed terminals.

Manual only: S 10.00 (Check it out!)

Software: 185.00 (Supplied on: 8" SSSD CP/M

____ or call.)

Complete: $195.00

(Calif, residents add sales tax)

Austin E. Bryant Consulting

P.O. Box 1382, Lafayette, CA 94549

[4151 945-7911

CP/M is a traOe mark of Digital Research

BDS C is a trade mark ol BD Soltware

CIRCLE 7 ON READER SERVICE CARD

62 CIRCLE 40 ON READER SERVICE CARD



THE CODE SWAP SHOP

Editor '& Note: AHprograms referred to in

this reader-inspired, public domain col

umn will always be availablefor down

loading when you call the COMPUTER

LANGUAGE Bulletin Board Senice at

(415) 957-9370-300/]200baud-or

when you dial into CompuServe and invoke

our account by typing "GO CLM ".

A complete data base
management system

For the price of a telephone call to our

bulletin board computer or to our account

on CompuServe, you can download a fast,

flexible, easy-to-use, and transportable

data base management program called

The Creator. Written in Microsoft

BASIC by Bruce Tonkin of Round Lake,

III., this DBM program can manage over

10,000 records and is completely

expandable.

Now in its 1 Oth version since 1980, The

Creator will not require that sorting be

done when you want to do simple data

entry, update, or retrieval; consequently,

unless and until you want sorted reports, it

avoids wasted time incurred while waiting

for the computer to sort or index your data

file before you begin entering data.

Tonkin claims the product is "'bug-free,

fully supported, and completely docu

mented." A 100-page manual featuring a

full table of contents, a complete index,

and also containing examples, hints, and

explanations, can be obtained by sending

to T.N.T. Software Inc., 34069 Haines-

villc Rd., Round Lake, 111. 60073.

A calendar program

written in Forth

Would you like to have a program that

prints out any month in any year and also

displays an attractive Rorschach-type pat

tern at the top of every month?

Adaptable to any machine running

Forth, this program is not only attractive

and useful, it's a good example of a

cleanly written Forth program, and it's

FREE. Well, almost. You have to call into

our BBS or into CompuServe to get it.The

author, Anthony T. Scarpelli of Portland,

Maine, has offered it up to the public

domain for us all to play with.

A text fife listing
program in C

How many times have you used TYPE to

display a text file on your screen, only to

have the display go scrolling off the

screen before you could stop it with a

Control-S?

A program called LIST has been writ

ten for those people without a TYPE-like

program that has a screen pause feature

built in. Written with DeSmet C for MS-

DOS, this text file listing program will

display a file sequentially and pause

between every 23 lines. At each pause,

LIST will display "Strike any key to con

tinue ..." and wait for your input. Like

TYPE, when a Control-C is entered, the

program is aborted.

LIST was contributed for use by the

readers of COMPUTER LANGUAGE by

Michael D. O'Quin from Medford, Ore.

Controlyour home
with a timing program

Want a program that controls the "things"

(appliances, lights, etc.) inside your

house? Dennis Cashton of Wantagh, N.Y.,

has written a Home Control Program for

his Heath BSR X-10 computer. If you look

at the way Cashton designed the code for

his system, you might be able to extract

the ideas from his source code listing for a

similar project of your own.

Z-80 assembly language
debugging utilities

John P. Comiskey of Staten Island, N.Y.,

offers the readers of COMPUTER

LANGUAGE two Z-80 assembly programs

which, when called as subroutines by a Z-

80 program, display the contents of the

active registers, flag register, stack

pointer, registers IX and IY, and the pro

gram counter on the screen and on the

printer.

Written on the TRS-80 Model III, the

programs are loaded into memory with

the (TRSDOS) LOAD command and

called with the CALL command. Each

program begins by saving register A, then

saving registers H and L, and popping the

stack into HL to obtain the program coun

ter. The programs then print headings and

the contents of the registers before

returning to the calling program.

A guessing game

program that cheats!

OK, here's something you can't overlook.

Contributed by Anton Dovydaitis of Santa

Cruz, Calif., this program is simply

called Marvin. The author did provide a

subtitle, though—"a user-abusive guess

ing game."

If you're in the mood to download a

program that may insult you . . .

The author wrote the program to illus

trate a programming philosophy he calls

"disciplined laziness." Dovydaitis uses

Marvin to exemplify a well-written, top-

down, structured programming style.

"Programming is an art," he says, "and

should reflect the artist." As an example

of structured style, while playing with (or

maybe, against) Marvin, puns actually

have practical value in a program when

written as mnemonics.

Do you have code
for the Swap Shop?

If you've written a program that you'd

like to see distributed free of charge to

COMPUTER LANGUAGE readers, send

us a two- to four-paragraph summary of

what the program does, how you can

make the program electronically available

to our magazine (e.g., bulletin board

transfer, disk format, CompuServe, etc.),

and whether you'd like your name,

address, and/or telephone number

included in the magazine.

Address all correspondence to: Craig

LaGrow, Editor, 131 TownsendSt., San

Francisco, Calif. 94107. Or call us up on

CompuServe or the BBS! H

63



SOFTWARE REVIEWS Product reviews on CompuServe
and the COMPUTER LANGUAGE

Bulletin Board Service

Telesoft Ado

Hardware Requirements:
IBM PC or PC/XT with a min
imum of 256K (8087 numeric
co-processor chip optional
required for floating point
applications); DEC VAX
(under VMS or UNIX); IBM
370 (under MVS or CMS); or,
Motorola 68000-based sys
tems (UNIX orTelesoft's pro
prietary ROS)

Price: $1,200 (IBM PC and PC/
XT), $3,400 (68000 UNIX),
$4,435 (68000 ROS),
$10,905 (VAX UNIX and
VMS); $11,065 (IBM 370
MVS and CMS)

Available from: Telesoft,
10639 Roselle St., San Diego,
Calif. 92121,(619)457-2700

Support: 3-month support

free, annual maintenance fee
of$150forthelBMPCand
PC/XT

The US. Department of Defense

(DOD) is the driving force behind the

development of the Ada language. Last

year an Ada "83 standard was established,

upon which commercial compilers will be

validated.

Telesoft is among the first companies to

produce a full Ada for minicomputers.

This company has also created an Ada

language subset for the IBM XT. The IBM

subset version is the product reviewed

here.

The package comes with 12 diskettes

and a huge three-ring binder manual.

Inside, the manual contains sections on

the following:

■ Run-time operating system (ROS) shell

commands

■ Ada utility packages to enhance the

language

■ Filer manual

■ Text editor manual

■ MC68000 macro assembler manual

mbp COBOL

DRI'sDRFORTRAN-77

Systems Guild's CGRAPH

Creative Solutions's MacForth
Waltz Lisp

Nevada COBOL
Bendorf's Professional Programming Environment

Hendrix's Small-Tools
Borland's SideKick

Bellesoft's ESP

System/Z'sBASIC/Z

Trio System's C-INDEX +

■ Filer manual

■ Text editor manual

■ MC68000 macro assembler manual

■ Native-code linker user's manual

■ Run-time kernel manual (MC68000

version)

■ Ada compiler user's manual

■ Pascal compiler user's manual

■ Module and package composer user's

manual

■ Installation and operator's guide for

Telesoft software on the IBM PC/XT.

The Telesoft package comes with its

operating system—the run-time operating

system (ROS). The latter resembles ear

lier versions of the UCSD p-system. This

is not a coincidence since Dr. Kenneth L.

Bowles, president of Telesoft, had pre

viously organized the UCSD Pascal

project in 1974.

The operating system differs from the

UCSD p-system by the absence of a rigid

main menu. Instead. ROS prompts the

user with the " > " symbol. This allows

the user to choose from the many shell

commands available. In addition, on-line

help is available. The user first encoun

ters a general help menu from which a

topic can be selected. When a user needs

help on a specific subject, the display will

show a copy of those manual pages that

pertain to the area of difficulty.

The advantage in having shell com

mands is the flexibility gained by the user.

The majority of these commands allow

switches, file names, and other options

that greatly enhance the power and ver

satility of the system. The available com

mands offer a variety of functions and

utilities. A list of an example selection is:
■ Invoking the Telesoft Ada and Pascal

compilers

■ Assigning volumes to unit numbers-

very similar to the UCSD p-system

■ Filtering standard input to standard

output

■ Date inspection and setting

■ Creating and defining shorthand com

mand line tokens

■ Comparing different files

■ Dumping a file's contents in

hexadecimal

■ Invoking the interactive screen editor

(which is the same editor as in the earlier

versions of the UCSD Pascal compiler

packages)

■ Invoking the file system manipulations

(similar to the filer in early versions of the

UCSD Pascal compiler packages)

■ Searching for a character pattern in a

text file

■ Invoking the form document generator

used to produce letters and documents

■ Listing file and volume information

■ Inspecting a file's content on the

screen, one page at a time

■ Printing the content of a text file

■ Invoking the text formatter and print

ing utility program

■ Removing one or more files from a

directory

■ Running a pseudo-code program

■ Non-destructive disk scanning

■ Sorting the contents of textual files on a

line oriented basis

■ Transferring files by replication (wild

cards arc allowed following the same

UCSD convention)

■ Remote communication

■ UNIX-like piping capabilities.

The reader who is familiar with the

UCSD p-system will notice that some of

the above commands are available as an

option presented by the UCSD filer. The

same is true about the Telesoft filer. It

seems the operating system designers at

Telesoft chose to allow for the user to also

access these utilities from the shell

directly.

Installing Telesoft ROS was quite

intriguing. Initially I expected ROS to

reformat my already PC-DOS-formatted

hard disk—as is done in the UCSD

p-system. It didn't! ROS simply over

wrote my PC-DOS files and established

its own directory. This was done via script

files (or bench files as they are known to

PC-DOS users). These script files make

use of a Pascal-like shell language that

uses 1F-THEN-ELSE, COTOs. and labels

to control the sequence of events.

I had few problems with the script file

operations. At one stage, while trying to

copy an Ada demonstration program to

the hard disk, something went wrong and

I found myself back to earlier stages,
which forced me to transfer the ROS Ada

files again. To solve the problem, I had to

decline transferring the demo programs,

as the script file prompted me. I used the

transfer utility from the shell to success-

64 COMPUTER LANGUAGE ■ OCTOBER 198d



fully copy the demo and other programs to

the hard disk.

The Tclcsoft interactive editor is identi

cal to the one with Apple UCSD Pascal

(version 1.1). I had no problem using the

editor except that I currently happen to

use more powerful ones that run under

PC-DOS. Telcsoft's editor is a typical

screen-oriented program that possesses

the ability to add, insert, delete, and

change text, as well as the ability to find

and replace text.

The editor uses the top line to display a

menu and the current mode you arc in. To

go from one mode to another you must

press Control-C, which initially puts you

back in the main editing menu. You can

then move into another mode (e.g., dele

tion, change, etc.). This can become frus-

tratingly slow after some time working

with the system, though.

The Telesoft filer is easy to use because

it is modeled after the Apple UCSD

Pascal filer. This incorporates file trans

fer, removal, name change, on-line vol

umes listing, file listings from within

specific volumes, date alteration, and the

ability to initiate a volume that will also

check for bad blocks. Telesoft has not

incorporated the enhancements that are

available with version IV. 1 and later—

such as the capability of creating sub-

volumes (i.e. sub-directories) as well as

mounting and dismounting them. I found

it easier to transfer files by using the "T"

utility program from the shell.

As mentioned earlier the Telesoft Ada

compiler for the IBM PC/XT is only a

subset of the Ada language. The manual

devotes 14 pages to those unimplemented

features in Ada's full syntax and to the

restrictions placed upon the user for these

features being absent. Among the missing

features arc:

■ The floating point patch docs not

implement mathematical functions like

SIN, COS, TAN, and EXP

■ Only the LIST and SUPRESS pro

grams are supported

■ Derived types

■ Floating point attributes

■ Fixed-point types

■ Dynamic, open arrays.

The Telesoft Ada package, however,

does include a library of utility sub

routines like:

■ Direct I/O package for random-access

file manipulation

Directory access from Ada programs

Heap manager package

Minimum/maximum package for

integers, floats, characters and strings

Cursor control package

Sequential I/O package for general file

manipulation

■ Text_Io package (a very important

Eco-C Compiler
Release 3.0

We think Rei. 3.0 of the Eco-C Compiler is the
fastest full C available for the Z80 environment.

Consider the evidence:

Benchmarks*
(Seconds)

Benchmark

Seive

Fib

Deref

Matmult

Eco-C

29

75

19

42

Aztec

33

125

CNC

115

o/c

40

99

31

N/A

"Times courtesy o! Dr. David Clark

CNC - Could Not Compile
N/A - Does not support floating pom!

We've also expanded the library (120 func
tions), the user's manual and compile-time

switches (including multiple non-fatal error

messages)- The price is still S250.00 and

includes Microsoft's MACRO 80. As an option,

we will supply Eco-C with the SLR Systems

assembler - linker - librarian for S295.00 (up to

six times faster than MACRO 80).

For additional information,

call or write: .

.cd.d.t«Wc (317) 255-6476

6413 N. College Ave. • Indianapolis, Indiana

CIRCLE 22 ON READER SERVICE CARD

(TM)

'■- r a m

-■' ■»■■* ■ ■■

ss

WALTZ LISP
The one and only adult Lisp system for CP/M users.

Woltz Lisp is a very powerful and complete implementa

tion of the Lisp programming language. It includes

features previously available only in large Lisp systems. In

Fact, Waltz is substantially compatible with Franz (the Lisp

running under Unix), and is similar to Maclisp. Waltz is

perfect for Artificial Intelligence programming. It is also

most suitable for general applications.

ich foster than other microcomputer Lisps. ■ Long integers (up to 611 digits). Selectable radix ■ True dynamic
character strings. Full siring operations including lost matching/extraction. • Fleiibly implemented rondom file access.

■ Binory files. • Standard CP/M devices. • Access to disk directories. • Functions of type lombda |eipr), nlambdo
(fexpr), lexpr, macro. • Splicing ond non-splicing character macros. ■ User control over oil aspects o( the interpreler.
• Built-in prettyprinting and formatting Facilities. • Complete set of error handling and debugging Functions including
user programmable processing of undefined function references. • Virtual function definition!, • Optional automatic

loading of initialization file, • Powerful CP/M command tine parsing. • Fast sorting/merging using user deFmed
comparison predicotes. • Full suite of mopping Functions, iterators, etc. • Assembly language interlace. • Over 250

(unctions in total. • The best documentation ever produced lor a micro Lisp (300+ Full sire pages, hundreds of
illustrative examples).

Waltz Lisp requires CP/M 2.2, Z80 and 48K RAM (more recommended). All common 5'

and 8" disk formats available.

Version 4.4
(TM) P*J

$169
ODE

INTERNATIONAL—

15930 SW Colony PI.

Portland, OR 97224

Unix- Bell Laboratories.

CP/M' Digital Research Corp.

ncludes Tiny Prolog

written in Walti Lisp.)

Manual only: $30 (refundable with order). All
foreign orders: add $5 for surface mail, S20 for
airmail. COD add S3. Apple CP/M and hard sector

formats add $15.

Coll free 1 -800-LI P-4000 Dept #13
In Oregon and outside USA call 1-503-684-3000

CIRCLE 53 ON READER SERVICE CARD

65



package) allowing I/O for characters,

strings, integers, long integers, and floats

■ UCSD strings package (which offers

string manipulation routines similar to

those found in UCSD Pascal)

■ Unit_Io package for low level I/O.

Using the Telesoft Ada compiler is very

easy. First, the editor can be used to create

and edit a program file, which can be

stored in any on-line volume. Afterward,

the user exits the editor back to the com

mand shell where the compiler is invoked.

Switches and compile options are also

available, and the compiler will inform

you of any errors with the option to con

tinue compiling.

On occasion when an "unimplemented

feature" error appeared, however, I

requested to continue compiling. The

result was that the system hanged. The

compilation for the examples I used was

fairly quick, though.

The manual states that the user pro

grams are compiled into p-code instead of

native code. I tested the speed of pro

grams running with p-codes. Listing 1

shows the sieve program test, and Listing

2 shows the speeds derived from a pro

gram that sorts an array of 1,000 integers.

(The array itself is created by the program

such that the content of each member

equals its array index. This yields a per

fectly ascending sorted set. The Ada pro

gram's job is to reverse the order, treating

the array as if the members had random

values.)

Listing 3 shows an example when using

floating point math. The program inverts

a 50-by-50 matrix with all non-diagonal

elements equal to one and the diagonal

elements equal to two.

It is important to note that the initial

configuration that I set up did not allow

the Ada compiler to handle real number

calculations. I had to use a script file that

upgraded the compiler and established a

link between the latter and the 8087 chip.

Figure 1 shows the timing results for each

program.

I also include for comparison ihe timing

for the same programs as compiled by the

Janus/Ada compiler (version 1.4.7). The

result shows the advantage gained by

using the Janus/Ada compiler, which pro

duces native code. The lead is decreased

for the matrix inversion problem since

both compilers arc using the 8087 chip for

floating point math.

Overall, the Telesoft Ada package

works fine—but it is expensive. It is not

meant for the beginner who wants to learn

Ada. However, I am disappointed at the

missing features, specifically the lack of

dynamic arrays. The compiled p-code is

slow, yet the package has a lot of useful

utilities and few bugs. H

By Nomir Clement Shommas

WITH TEXT_I0; USE TEXT_I0, INTEGER_IO;

PROCEDURE SIEVE IS

— Program to perform the sieve test

SIZE : CONSTANT INTEGER := 8190;

TYPE FLAG_TYPE IS ARRAY(0..SIZE) OF BOOLEAN;

I, PRIME, K, COUNT, ITER : INTEGER;

FLAGS : FLAG_TYPE;

BEGIN

PUT_LINE("START");

NEW__LINE;

FOR ITER IN 1..10 LOOP

COUNT := 0;

FOR I IN 0..SIZE LOOP

FLAGS(I) := TRUE;

END LOOP;

FOR I IN 0..SIZE LOOP

IF FLAGS(I) THEN

PRIME := I + I + 3;

K := I + PRIME;

WHILE K <= SIZE LOOP

FLAGS(K) := FALSE;

K := K + PRIME;

END LOOP;

COUNT := COUNT + I;

END IF;

END LOOP; — End of inner for-loop

END LOOP; — End of outer for-loop

PUT(COUNT);

PUT(" Primes");

END SIEVE;

Listing 1.

Program

Sieve

Sort

Matrix Inversion

Figure 1.

Telesoft Ada

5

1

3

'22

'18

'59

Janus/Ada

0'41

0'6

ri3

66 COMPUTER LANGUAGE ■ OCTOBER 19S4



WITH TEXT_IO; USE TEXTJO , INTEGER_IO;

PROCEDURE MYSORT IS

— Program will test the speed of sorting an integer array.

— The program will create an array sorted from smaller to larger

— integers, then sort them in the reverse order.

— The Shell-Metzner sorting algorithm is used.

MAX : CONSTANT INTEGER := 1000;

TYPE NUMBERS IS ARRAY(1..MAX) OF INTEGER;

DONE : BOOLEAN;

SKIP, I, J, TEMPO : INTEGER;

A : NUMBERS;

BEGIN

PUT_LINE("Initializing integer array");

FOR I IN 1..MAX LOOP

A(I) := I;
END LOOP;

SKIP := MAX;

■PUT_LINE("Beginning to sort");

Listing 2.

FREE

LITERATURE

ON MUMPS,
ONE OFTHE

BEST-KEPT

SECRETS

IN THE

COMPUTER

INDUSTRY.

UNTIL NOW.

MUMPS is one of an elite circle of languages -
like COBOL, FORTRAN and PL/1 -that meets

ANSI standards.

Except MUMPS typically outperforms these

languages. In speed, lines of code needed, and

manipulation of data.

Some 10,000 MUMPS installations exist

worldwide. In business, industry and medicine.

Find out howMUMPS can work for you by

calling the MUMPS Users' Group or mailing the
coupon below for free information packet.

MUMPS Users' Group, Suite 510,
4321 HartwickRoad,

College Park,MD 20740 301-779-6555.

Please send me a free information packet on MUMPS.

NAME

COMPANY.

STREET_

CITY STATE ZIP.

CIRCLE 44 ON READER SERVICE CARD

67



WHILE SKIP > 1 LOOP

SKIP := SKIP / 2;

LOOP — Open loop equivalent to Repeat-Until in Pascal

DONE := TRUE;

FOR J IN l..(MAX - SKIP) LOOP

I := J + SKIP;

IF A(I) > A(J) THEN

DONE := FALSE;

TEMPO := A(I);

A(I) := A(J);

A(J) := TEMPO;

END IF;

END LOOP;

IF DONE THEN EXIT; END IF;

END LOOP; — End of open loop

END LOOP; — End of while-loop

PUT_LINE("Finished sorting!11);
FOR I IN 1..MAX LOOP

PUT(A(I)>;

PUT(" ");

END LOOP;

END MYSORT;

Listing 2 (Continued).

Discover Forth

Join the FORTH Interest Group

The FORTH Interest Croup (FIG) is a non-profit member-sup

ported organization, devoted to the Forth computer language.

Join our 4700+ members and discover Forth. We provide our

members with the information and services they need, including:

Over fifty local FIG chapters (general and special

interest) meet throughout the world on a regular

basis.

Forth Dimensions magazine is published six times a

year and addresses the latest Forth news. A one

year subsc ription to FD is free with FIG membership.

The FIG-Tree is the FIG-sponsored, on-line

computer data base that offers members a wealth

of Forth information. Dial (415) 538-3580 using a

modem and type two carriage returns.

Forth publications: a wide variety of high quality and

respected Forth-related publications (listings,

conference proceedings, tutorials, etc.) are available.

The FIG HOTLINE (415) 962-8653, is fully staffed to

help you.

The Job Registry helps match Forth programmers

with potential employers.

All this and more for only S1 5.00/yr. (S27.00 foreign)

Just call the FIG HOT LINE or write and

become a FIG member.(VISA or MC accepted.)

Don't miss our upcoming

6th Annual Forth Convention

November 76-77, 1984 at the

Hyatt Palo Alto in Palo Alto, CA

Call or write lor details.

(415) 962-8653

PO Box 1105

San Carlos

CA 94070

CIRCLE 27 ON READER SERVICE CARD

68 COMPUTER LANGUAGE ■ OCTOBER 1984

THE

MOST

EXTENSIVE

THE GREENLEAF FUNCTIONS

Library for C Programmers

Total Access to IBM PC and XT

Compatible with DOS 2.0, 1.1, CI C86,

Lattice, and Microsoft C - Versions 1 and 2

Add S7.00

for shipping.

Specify Compiler

MC/VISA Accepted

Prices subject to change

without notice

Dealer Inquiries Welcome.

(214) 446-8641

PARTIAL

CONTENTS

• DOS 2.0 - over 25 functions • Complete

Video Access for Text and Graphics

•Over 60 String Functions • Rainbow Series

Color Text • Time and Date • Over 40 Printer

Functions ♦ Function and Special Keys

♦ RS232 Async • All BIOS Functions ♦ Software

Diagnostics • Disk functions • Utility

functions • and more . . .

THE GREENLEAF FUNCTIONS , . .

Nearly 200 functions, 220 page manual,

3 Libraries, Extensive Examples of each

function. Full Source

Code

LIBRARY

ANYWHERE
FOR THE IBM AND PC XT

GREENLEAF SOFTWARE, INC. ♦ ZIOI HICKORY DRIVE ♦ CARROLLTON. TEXAS 75006

CIRCLE 29 ON READER SERVICE CARD

GRKKNLEAF
SOFTWARE.^



WITH TEXTJO; USE TEXTJO, INTEGER_IO, FLOAT_IO;

PROCEDURE INVERT IS

— Program to test speed of floating point matrix inversion.

— The program will form a matrix with ones' in every member,

— except the diagonals which will have values of 2

MAX : CONSTANT INTEGER := 50;

TYPE MATRIX IS ARRAY(1..MAX,1..MAX) OF FLOAT;

J, K,L : INTEGER;

DET, PIVOT, TEMPO : FLOAT;

A : MATRIX;

PROCEDURE SHOW_MATRIX IS

BEGIN

FOR J IN 1..MAX LOOP

FOR K IN 1..MAX LOOP

PUT(A(J,K));

PUT(M ");

END LOOP;

NEWSLINE;

END LOOP;

END SHOW MATRIX;

Listing 3.

Programming

Guidelines

C LANGUAGE PROGRAMMING
From Plum Hall...the experts in C training

Thomas Rum

Learning to

Program in

FREE
C LANGUAGE POCKET GUIDE!

A handy C language programming

pocket guide is yours free when you order
either (or both) of the manuals above.

A full 14 pages of valuable C language
informationi

Learning to Program in C 372 pp.^-xio". price S25.00

A practical, step-by-step guide for everyone acquainted with com
puters who wants to master this powerful "implementer's language"

Inside, you will learn how to write portable programs for the full

spectrum of processors, micro, mini and mainframe

C Programming Guidelines wo PP., iw x io», price S25.00

A compilation of standards for consistant style and usage of C
language. Arranged in manual page format for easy reference, it

presents time-tested rules for program readability and portability,

^_ OKI ^H ^H —— — ^H » n ^0M _M MH r— ^H MB ^H m ^H MX ■■■ KB ■

P T T TM HAT The experts in C and UNIX™ training.
I 1 LlUll linLJLJ phnne rtrriPr.v A09-927-3770

1 Spruce Av, Cardiff NJ 08232

Please send me:

Phone orders: 609-927-3770

informalion on C and UNIX Training Seminars

copies of Learning to Program in C @ S25.00/copy
copies of C Programming Guidelines @ $25.00'copy

NJ residents add 6% sales tai

NAME.

COMPANY

ADDRESS _

CITYiSTATEIZIP
Check American Express

CARD I

Masier Card

EXP DATE Signature.

FLJ

CIRCLE 50 ON READER SERVICE CARD

69



BEGIN

— Creating test matrix

FOR J IN 1..MAX LOOP

FOR K IN 1..MAX LOOP

A(J,K) := 1.0;

END LOOP;

A(J,J) := 2.0;

END LOOP;

— The test below will ensure that the user does not spend

— a lot of time looking at a rather obvious matrix when its

— size is large.

IF MAX <= 10 THEN

PUT_LINE("Matrix is ")';

SHOW_MATRIX;

NEWJJNE; NEW_LINE;

END IF;

PUT_LINE("Starting matrix invertion");

DET := 1.0;

FOR J IN 1..MAX LOOP

PIVOT := A(J,J);

Listing 3 (Continued).

SOURCE SOFTWARE

Are you tired of using inflexible software which you can't

modify? Here's the source code for a CP.'M-compatible Z-80

assembler of high reliability featuring —

• Standard Zilog mnemonics

• 19 pseudo-op's, including TITLE. XLIST and

nested conditionals with ELSE

• Source program can be read from multiple

input files

• Pnnis a sorted symbol table a! end of listing

• Modular structure allowing easy revision asa

cross-assembler

• Symbolic definition of all important para

meters makes it simple to hand-tailor lan

guage features as desired

The compiele source listing is contained m a 200-page

manual along with a full tutorial explaining top-down how an

assembler works Advanced algorithms such as expression

processing by recursive descent are fully explained with

illustrations in pseudo-code The complete source code is

also available on a standard format 8" SSSD diskette.

Z-80 Assembler Manual $25

Manual and Diskette $50

I Foreign orders add S3 for surface mail or $10 for airmail)

J j
PO Bo» 208

Red Bank N J 07701

1201) 530-7245

NJ residents please add 6a;0 sales tax

CIRCLE 33 ON READER SERVICE CARD

70 COMPUTER LANGUAGE ■ OCTOBER 19B<J

LATTICE,
C Compilers

"My personal preferences are Lattice C in the top category for its

quick compile and execution times, small incremental code, best

documentation and consistent reliability;.. ."

BITE AUG. !983

R. Phraner

"... programs are compiled faster by the Lattice C compiler, and it

produces programs that run faster than any other C compiler avail

able for PC-DOS."

PC MAGAZINE JULY 1983

H. Hinsch

"...Microsoft chose Lattice C both because of the quality of code

generated and because Lattice C was designed to work with

Microsoft's LINK program."

PC MAGAZINE OCT. 1983

D. Clapp

"Lattice is both the most comprehensive and the best documented of

the compilers. In general it performed best in the benchmark tests."

PERSONAL COMPUTER AGE NOV 1983

F Wilson

"This C compiler produces good tight-running programs and pro

vides a sound practical alternative to Pascal."

SOFTALKAUG 1983

P. Norton

"...the Lattice compiler is a sophisticated, high-performance pack

age that appears to be well-suited for development of major applica

tion programs."

BYTE AUG 1983

Houston, Brodrick, Kent

To order, or for further information

on the LATTICE family of compilers, call or write

■■■ LATTICE, INC.

I "g* ' P.O. Box 3072
^^" Glen Ellyn, IL 60138
(312)858-7950 TWX 910-291-2190

CIRCLE 36 ON READER SERVICE CARD



DET := DET * PIVOT;

A(J,J) := 1.0;

FOR K IN 1..MAX LOOP

A(J,K) := A(J,K) / PIVOT;

END LOOP;

FOR K IN 1..MAX LOOP

IF K /= J THEN

TEMPO := A(K,J);

A(K,J) := 0.0;

FOR L IN 1..MAX LOOP

A(K,L) := A(K,L) - A(J,L)

END LOOP;

END IF;

END LOOP; — End of inner for-loop

END LOOP; — End of outer for-loop

PUT_LINE("The inverse matrix is ");

SHOW_MATRIX;

PUT("Determinant = ");

PUT(DET);

NEW_LINE; NEW_LINE;

END INVERT:

TEMPO;

Listing 3 (Continued).

Scroll & Recall
Screen and Keyboard Enhancement

for the IBM - PC, XT and Compatibles

Allows you to conveniently scroll

back through data that has gone off

the top of your display screen.

Allows you to easily recall and edit

your previously entered DOS com

mands and data lines.

Very easy to use, fully documented.

Compatible with all versions of DOS,

monochrome & graphic displays.

S69 - Visa, M/C, Check, COD, POs

Phone orders accepted

Make Your Work Easier!

To Order or to Receive Additional

Information, Write or Call:

Opt-Tech Data Processing
P.O. Box 2167 • Humble, Texas 77347

(713} 454-7428

Dealer Inquiries Welcome

CIRCLE 47 ON READER SERVICE CARD

SUPER FORTH 64
TOTAL CONTROL OVER YOUR COMMODORE-64"

USING ONLY WORDS

MAKING PROGRAMMING FAST, FUN AND EASY!
MORE THAN JUST A LANGUAGE...

A complete, fully-imegroled program developmen! tyslem.

Home Uier Fost Gomel Gropnics, Do to Acquisition, Business

A Powerful Superset of MVPFORTH/FORTH 79 • Ex I for ihe beginner or professional

20 'o 600 > loiter Ihon Bane

} '4 ■ the programming time

Eosy full control of alt sound, hi re*

graphics, color, iprite. plotting line &

circle

Controllable SPLIT-SCREEN Display

Include* interactive interpreter 4 <ompiler

Forth virtual nemory

Full cunw Screen Editor

r'avmon tor dpplication program

FORTH eauivolen! Xemol Routmet

ConditiOnQP Macro Anembier

Meeti oil Forth 79 itandardi*

Source icreeni provided

Compatible with the book "Stortmg Forth"

by Leo Brodie

Acceii to oil I/O porii RS232. IEEE,

ROMABLE code generoior

MUSICEDItO?

SPRUE EDiTO«

Acre C-M penphe including 4040

Single disk drive backup utility

Diik t Coiietie baled Piik included

Full disk usage — 680 Sectors

Supports ol Commodore file *ypt* and

Forth Virtual disk

Atceis to 70K RAM underneath ROM

Vectored hemo! »oidt

TRACE lati'ity

DECOMPILER foc.lrry

Full Siring Handling

ASCII error mesiages

FLOATING POINT MAIH SIN'CO5 S 5QRT

'ided.

SUPER FORTH 64' ■-

* INTERRUPT routine) provide

of hordvare iimen, alarms

• USER Support

SUPER FORTH 64*

• SJPEOFOOIM61 ■

AbSEUBLER

A SUPERIOR PRODUCT

in every way! At a low
'..£i 11 . dro<t' (.■ H QoP'an Bock

(415) 651-3160 pySrSSS,1-

PARSEC RESEARCH [
Drawer 1776, Fremont. CA 9453B t^l, ^KF

CIRCLE 49 ON READER SERVICE CARD

71



DeSmet

C
8086/8088

Development $11)0
Package IU*f

FULL DEVELOPMENT PACKAGE
■ Full K&R C Compiler

■ Assembler, Linker & Librarian

• Full-Screen Editor

■ Execution Profiler

■ Complete STDIO Library (>120 Func)

Automatic DOS 1.X/2.X SUPPORT

BOTH 8067 AND

SOFTWARE FLOATING POINT

OUTSTANDING PERFORMANCE
• First and Second in AUG '83 BYTE

benchmarks

SYMBOLIC DEBUGGER $50
Examine & change variables by

name using C expressions

Flip between debug and display

screen

Display C source during execution

Set multiple breakpoints by function

or line number

DOS LINK SUPPORT $35
Uses DOS .OBJ Format

LINKS with DOS ASM

Uses Lattice1 naming conventions

Check: D Dev. Pkg (109)

□ Debugger (50)

□ DOS Link Supt (35)

SHIP TO:

ZIP.

C
W A R E

CORPORATION

P.O. BOXC

Sunnyvale, CA 94087

(408) 720-9696

All orders shipped UPS surface on IBM formal disks.

Shipping included in price. California residents add

sales tax Canada shipping add S5. elsewhere add

S15. Checks must be on US Bank and in US Dollars.

Call 9 a.m. - 1 p.m to CHARGE by VISA/MC/AMEX.

Volition System's Modula-2

Hardware required: IBM PC
or PC/XT with 2 double-sided
drives, 128K, and PC-DOS
2.0 or 2.1; Apple II, II + , lie,
Me, III (all require Apple
Pascal); Sage II and Iv

Price: $395 (IBM), $295
(Apple), $495 (Sage)

Available from: Volition
Systems, P.O. Box 1236, Del
Mar, Calif. 92014. (619)

481-2286

Support: No software
warranty, 30-day media war
ranty from purchase date,
updates available for
$25-$50 depending on
whether documentation is
necessary

Modula-2 by Volition Systems is con

siderably more than just a Modula-2 com

piler. It is a complete software develop

ment system for Modula-2 built on the

UCSD Pascal operating system. This sys

tem is based on ;m imaginary machine that

is an optimal environment for UCSD

Pascal.

Volition's Modula-2 comes with ASE.

the Advanced Systems Editor, which is a

screcn-orientcd text editor that edits files

that are as large as the available disk

space, in contrast with the standard p-

system editor. ASE has many powerful

features and supports user-defined

macros.

Volition's Modula-2 is a full imple

mentation of the standard Modula-2 as

defined by N. Wirth and supports the fol

lowing features: interrupts; one-pass

compiler: erroneous source code dis

played with syntax error messages; condi

tional compilation, no linking necessary;

source code compatabil ity between

Apple, IBM, and Sage; comprehensive

module library and library manager util

ity; full set of program development util

ities; and complete documentation includ

ing Wirth's Programming in Modula-2.

Since this Modula-2 runs under the p-

system, the compiler produces an object

program coded to run on the pseudo

machine called the p-machine. Volition's

system is constructed with an emulator

program for the p-machine, which inter

prets the p-machine object code into spe

cific machine code instructions for the

particular machine environment.

Because the interpretation process

requires processor time, its programs

have a slower execution time compared

with native-code Modula-2 compilers. An

example of this is provided by the Sieve of

Eratosthenes benchmark execution tim

ings on the Volition System compiler (185

sec). For comparison,the time on Log

itech's native-code Modula-2 compiler is

16 sec.

Naturally, there is a price to pay for

increased execution speed by using a

native-code compiler: increased effort to

compile programs. Logitech has a four-

pass compiler, and you must explicitly

link to your program libraries. Other con

siderations must be taken into account

also such as the relative ease of source

code syntax error correction and the gen

eral nature of the development system

environment.

Volition's Modula-2 requires 64K or

more of RAM memory. 2 double-sided

disk drives for the IBM PC. and 128K and

PC-DOS 2.0 or 2.1 for the PC XT. Com

piled Modula-2 programs can be trans

ported in most cases to or from both

Apple and Sage systems from the IBM

PC. Modula-2 for the IBM PC and XT

runs as a subsystem under PC-DOS 2.0

and allows programs to transparently

access DOS data files. Modula-2 pro

grams can be configured to operate as

DOS applications.

A separate Modula-2 package is avail

able for IBM PCs with single-sided disk

drives. This system runs as a stand-alone

operating system and docs not provide

DOS access.

Data space is limited to 64K bytes and

code space is limited only by memory

size. RAM disk support is included along

with double precision floating point arith-

72 CIRCLE 18 ON READER SERVICE CARD



metic via the 8087 numeric co-processor.

This review was done using the IBM

PC version of Modula-2, Release 0.3, on

a two-disk-drive IBM PC with 256K

RAM. Installation for the PC is done by

making back-ups of the distribution disk

ettes and providing work disks for com

pilation and intermediate files. After pre

paring work copies, you must rearrange

the system disk files to provide for effi

cient disk storage space.

Sections in the manual give instructions

on how to reconfigure your Modula-2 sys

tem for faster disk I/O. RAM disk. larger

memory spaces, or different peripherals.

A caution is given that this recon

figuration should only be attempted by

those with a fair amount of programming

knowledge.

Sample programs are also supplied in

source code form on ihe distribution disk

ettes to get started compiling quickly.

The first step in compiling is to com

pose your source code with the text editor

ASE. The Modula-2 system is invoked

from the operating system prompt (>) by

typing:

> m2 vs\ system

As a DOS subsystem. Modula-2 stores its

files on virtual disk volumes (i.e.. DOS

data files that contain a file directory ant!

a number of Modula-2 files). After start

up, the system displays the names of all

on-line disk volumes and the current sys

tem date. The system prompt line then

appears across the top of the screen:

Xecute, Batch, Shell, Run, File, Edit,

Comp, UsrRst, Init

The following explains the prompt line:

■ (X)ecute executes the specified code

file. The following prompt appears:

Execute what file?

■ (B )atch invokes the batch command

interpreter. The batch command inter

preter is the code file SYSTEM.BATCH

on the system volume

■ (S)hcll invokes the shell command

interpreter, which is the code file

SYSTEM.SHELL on the system volume

■ (fi)un executes the work file, which is a

special file used as a "work" area for

developing programs

■ (F)He invokes the filer, which manages

disk files and volumes

■ (£)dit invokes the editor, which is the

ASE text editor

■ (C)omp invokes the Modula-2

compiler

■ UrRst rc-executes the last program

executed

■ (/)nit causes the system to reinitialize

its state information.

The Linker utility is used to link

together an interpreter skeleton and

drivers into a complete interpreter file.

Linking is not normally required for Voli

tion's Modula-2 programs because mod

ule binding is performed at run-time.

The program is executed from the sys

tem prompt line and is interpreted by the

prc-configured interpreter, which can be

tailored to your own desires.

Many other functions of Modula-2 are

available to handle process control as well

as other programming tasks that require

concurrency. Modula-2 also includes fea

tures to set the compiler options, recon

figure the operating system interface, and

implement a large number of DOS stan

dard interrupts. This allows real-time pro

gramming in Modula-2, while the system-

dependent library modules provide access

to the UCSD Pascal file system and the

UCSD Pascal intrinsics.

The standard library modules that pro

vide Modula-2 with a standard operating

environment arc implemented as inter

faces to an underlying operating system.

Because all implementations present the

same module interfaces, programs that

use the standard library modules are port

able across all Modula-2 systems. The

standard module library allows the fol

lowing functions: console !/O, file I/O,

storage management, code management,

exception handling, process scheduling,

strings, decimal arithmetic, math func

tions, and dynamic module linking.

The Modula-2 one-pass compiler flags

syntax errors with a descriptive error

message and displays the program text

where the error was found. The com

pilation can either be continued or the

program text can be immediately edited.

The system also displays an explanatory

error message for execution errors, giv

ing the current module and procedure

name, the code offset of the error and a

procedure call chain. Run-time checks are

provided for value range errors, floating

point errors, string overflows, and stack/

heap overflow.

In summary, the Modula-2 system by

Volition is a fast program development

environment for the Modula-2 or Pascal

programmer. A number of features arc

provided for the software application

developer to handle many types ofjobs.

The speed of the compilation process cou

pled with the quick and easy error cor

rection process makes for rapid

development.

The ASE full screen program editor

provides powerful text editing capabilities

formerly only available on larger comput

ers. This complete programming package

includes an operating system, utilities

complete with documentation, as well as

the ASE manual. The documentation is

extensive and comprehensive. Volition

has created a superior development

environment. M
n

By Chris Jacobs

WHY
JOHNNY
CAN!
READ
HIS
OWN
CODE
Johnny's

A Good

Programmer, -

Even Brilliant,

Dill- johnny works in 8080/Z80assembly
language, with a conventional assembler.

That can make yesterday's brilliance

today's garble, a maze of mnemonics and

a jumble of meaningless labels. Johnny's

program is less than self-explanatory—

even tor Johnny.

Johnny could read his own code if he used

SMAL/80—the superassembler—and so

can you. SMAL/80 boosts your program's

clarity and your productivity by giving you:

■ Familiar algebraic notation in place of

cryptic mnemonics— "A = A-3" for example,

instead of "SUI 3" (if you know BASIC or
Pascal, you already know SMAL/80)

■ Control structures like BEGIN... END,

LOOP... REPEAT WHILE, and IF.. THEN...

ELSE... to replace tangled branches and

arbitrary label names (eliminating up to 90%

of labels with no overhead imposed)

■ Complete control over your processor—

because SMAL/80 is a true assembler, it

doesn't reduce execution speed or burden

your program with its own runtime routines.

SMAL/80, the assembler that handles like a

high-level language, lets you do it right the

first time, and lets you read and understand
your work afterward—the next day or a

year later. Users say SMAL/80 has doubled

and even tripled their output of quality code.

But don't take our word for it—TRY IT!

Use SMAL/80 for 30 days. If you're not

completely satisfied with it—for any rea

son—return the package for a full refund.

SPECIAL BONUS: Order before Dec. 31,

1984, and get Structured Microprocessor

Programming—a $25 book FREE!

SMAL/80 for CP/M-80 systems (all CP/M
disk formats available—please specify);
produces 8080 '8085 and 280 code. Now

supports Microsoft .REL.ONLY $149.95

SMAL/80 for CP'M-80 systems.

8080'8085 output only. SAVE S20: $129.95

NEW! SMAL, 80X65—for Apple II and lie
(requires Z80 card and CP/M); produces

Z80 and 6502 object code. $169.95

Mastercard GMAI /QQ We PaV
Visa %#i¥»«^/ ww shippingon

CODs CHROMOD ASSOCIATES prepaid
(201)653-7615 or<3eis

1030 Park Ave- Hoboken, N.J. 07030

CIRCLE 10 ON READER SERVICE CARD



For only S95. Q'C is a ready-to-use C compiler for CP M. You get

complete source code for the compiler and over 75 library functions.

Q'C is upward compatible with UNIX Version 7 C. but doesn't sup

port long integers, float, parameterized ^defines, and bit fields.

• Full source code for compiler and library.

• No license fees for object code.

• Z80 version takes advantage of Z80 instructions.

• Excellent support for assembly language and ROMs.

• Q'C is standard. Good portability to UNIX.

Version 3.2 of Q/C has many new features: structure initialization,

faster runtime routines, faster compilation, and improved ROM sup

port. Yes, Q'C has casts, typedef. sizeof. and function typing. The

QIC User's Manual is available for S20 (applies toward purchase).

VISA and MasterCard welcome.

theCODE
WORKS

5266 Hollister

Sui^e 224

Santa Barbara. CA 93111

(805) 683-1585

QC CPM Z80 and UNIX aro trademarks o( Quality Computer Systems Digital

Research Zilog Inc and Bell Laboratories respectively

CIRCLE 11 ON READER SERVICE CARD

1

\

COfiTPUTER RESOURCES „, WMm

** * EASY TO USE * * *

Macro Programs for

TM

We have been using and working with Spellbinder

since late 1981. We use computers extensively in the

day-to-day operation of our business and have devel

oped a number of programs which we tind usetul.

We recently formed a software development and mar

keting company ■ Computer Resources of Waimea, to

promote and market these programs, most being en

hancements and macro programs running under Spell

binder. Spellbinder's macro programming language

M-Speak is extremely versatile and in our opinion is

one of the best kept "secrets" in the world of micro

computers. We have a number of macro programs for

the end user, a number of utilities for the programmer,

and for those who want a more or less organized in

struction set for M-Soeak. our head nrnnrammRr has

compiled his personal notes into a booklet which the

M-Speak user should find very useful. It can be pur

chased for S10.DD. Send for our complete listing.

P.O. Box 1206 Kamuela, Hawaii 96743

(808)885-7905 J

CIRCLE 14 ON READER SERVICE CARD

UniPress

Product

UPDATE

LATTICE® C NATIVE AND CROSS COMPILERS
FOR THE 8086

AMSTERDAM COMPILER KIT

Outstanding software development tools

Lattice C Cross Compiler

to the IBM-PC

■ Highly regarded compiler

producing fastest and tightest code
for the 8086 family.

■ Use your VAX or other UNIX

machine to create standard Intel
object code for your 8086 (IBM-PC)

■ Full C language and standard

library, compatible with Unix.

■ Small, medium, compact and large

address models available.

■ Includes compiler, linker, librarian

and disassembler.

■ 8087 floating point support.

■ MS-DOS 2.0 libraries included.

■ Send and Receive communication

package optionally available.

Hosted On

Prices: VAX/UnixandVMS $5000
MC68000/8086 3000
Send and Receive 500

Lattice C Native Compiler

for the 8086

■ Runs on the IBM-PC under MS-DOS
1.0 or 2.0.

■ Produces highly optimized code

■ Small, medium, compact and large

address models available.

■ Compiler is running on thousands

of 8086 systems.

Price: $425

Plink (Optional)

■ Full function linkage editor
including overlay support.

Price: $395

Amsterdam Compiler Kit

■ Package of compilers, cross
compilers and assemblers.

■ Full C and pascal language.

■ Generates code for VAX, PDP-11,
MC68000, 8086 and NSC16000.

■ Hosted on many Unix machines.

■ Extensive optimization.

Price: Full system $9950

Educationallnstitution 995

OEM terms available • Much more
Unix software, too! • Call or write for
more information.

Mastercard and Visa

UniPress Software, Inc.
2025 Lincoln Highway, Edison, NJ 08817

201-985-8000 • Order Desk: 800-222-0550 (outside NJ) • Telex 709418

Lattice is a registered trademark of Lattice, Inc. Unix is a trademark of Bell Laboratories
MS-DOS is a trademark of Microsoft.

74 COMPUTER LANGUAGE ■ OCTOBER 198d

CIRCLE 66 ON READER SERVICE CARD



SNOBOL4

Hardware required: IBM PC

or other 8086-, 8088-, or
801 86-based computers. A
minimum of 128K and at least
one single-sided, double-
density 5%-in. disk drive are
also required

Price: $95, $3 additional for
shipping

Available from: Catspaw Inc.,
P. O. Box 1123, Salida, Colo.

81201,(303)539-3884

This is a review of a new product that's

been around well over two decades!

Contradiction? Not really. Mark

Emmer of Catspaw Inc. hasjust produced

a new and excellent 8086/88/186 imple

mentation of a language first introduced

in the early 1960s. Better yet. its price is

better than reasonable: S50.

If the programs you're writing are

loaded with string manipulation, general

text processing, and pattern recognition,

then read on.

Although primarily a review of a spe

cific implementation, this review will

very briefly examine the SNOBOL lan

guage, as defined by one of its origina

tors. Dr. Ralph E. Griswold (also see

"Discovering SNOBOL4" in the premier

issue of COMPUTER LANGUAGE. pp.

65-68). With this base definition. I'll then

try to "score" the Catspaw imple

mentation, giving my subjective pluses

and minuses for this specific product.

IBM PC compatibility is actually not

required; SNOBOL4+ will operate on

machines such as the TI Professional and

the Tandy 2000. (PC DOS or Microsoft

DOS Versions 1.10, 1.25, 2.00, or2.10

are supported.)

Catspaw also suggests that at least

I92K is needed for programs of a "rea

sonable size." and says that the compiler

will utilize available memory up to a max

imum of approximately 41 OK bytes. I'm

running the system on an IBM PC (with

PC DOS V2.0) with three double-surface,

double-density drives and 640K memory.

The primary file (the compiler itself) on

the distribution disk is about 73K. in size.

So unless you enjoy disk swapping, a two-

drive system appears extremely desirable.

An interesting, and to some of you,

critical point: the 8087 co-processor is

fully supported but not required!

Finally, the latest distribution package

includes a SNOBOL4 library of the pro

grams contained in Dr. Griswold "s String

and List Processing in SNOBOL4. This

provides many excellent examples of the

power of the language and the subtleties

of implementation.

So now that you know you can run the

product, what will it do for you? The

scope of this review cannot possibly cover

the full language. There are several excel

lent books available that give full details.

I've included two at the end of this article.

In this review I'll cover a few of the

unusual features; if these fit your needs,

get one or more of the reference books to

make your final decision on the language.

So what will it do? Here are some

examples:

Want to find literally any defined pat

tern in a text string? SNOBOL will do it.

in one simple function. Want to translate

from EBCDIC to ASCII? SNOBOL will

do it, in one simple function. Want to

manipulate, concatenate, extract, replace,

substitute, etc., any combination of

strings? SNOBOL will do it, typically in

one simple "built in" function.

The key to all of these things is the

phrase "one simple function." SNOBOL,

for this type of process, is one of the most

concise languages I've encountered. A

program to copy a straight ASCII text file

might readily be a single statement.

Although string manipulation is always

emphasized as the major strength of

SNOBOL. this emphasis effectively hides

many other very significant features.

SNOBOL may well be unique in its ability

to accept strings that are variable names

A POWERFUL 68000 DEVELOPMENT

ENVIRONMENT FOR YOUR Z80 SYSTEM

CO1668 ATTACHED RESOURCE PROCESSOR

68000 Assembler

C Compiler

Forth

Fortran 77

Pascal

BASIC-PLUS

CBASIC

APL. 68000

6 MHZ 68000 CP/M-68K 768K RAM

4 x 16081 MATH CO-PROCESSORS CPM80 RAM DISK

Develop exciting 68000 applications on your current E80 based CPM system using

powerful mini-frame like 32 bit programming languages. And then, execute them at

speeds that will shame many S100K plus minicomputer systems.

The CO1668 ATTACHED RESOURCE PROCESSOR offers a Z80 CPM system owner a

very low cost and logical approach to 68000 development. You have already spent a

small fortune on 8 bit diskette drives, terminals, printers, cards cages, power

supplies, software, etc. The CO1668 will allow you to enjoy the vastly more powerful

68000 processing environment, while preserving that investment.

COI668 ATTACHED RESOURCE PROCESSOR SPECIAL FEATURES:

68000 running at 6 Mhz

256K to 768K RAM luser partitioned between

CPU and RAM Disk usage)

Up to four 16081 math co processors

Real lime clock. 8 level interrupt controller

& proprietory I/O bus

Available in tabletop cabinet

Delivered w/ sources , logics. & monolithic

piogram development software

Easily installed on ANY Z80 CPM system

CP/M-68K and DRl's new UNIX V7 compatible

C compiler (w/ floating point math) - standard

feature

Con be used as 768K CPMS0 RAM Disk

Optional Memory parity

No programming or hardware design required

for installation

Optional 12 month warrantee

PRICES START AS LOW AS $899.00 (or a CO1668 with 256K RAM, CPM68K. C Complier. Sources.

Prints. 200 page User Manual. Z80 Interface, and 68000 System Development Software.

For further information about this revolutionary product or our Inle! 8086 Co-Processor, please send 11

[no checks please) or call:

Hallock Systems Company, Inc.

262 East Main Street

Frankfort. New York 13340

1315) S9S-7426

RESELLEHANDOEM

INQUIRIES INVITED.

CIRCLE 31 ON READER SERVICE CARD 75



QUALITY SOFTWARE AT

REASONABLE PRICES
CP/M Software by

Poor Person Software

Poor Person's Spooler $49.95
All ihe function of n hardware print buffer al .i fraction of the

cost. Keyboard control. Spools and prints simultaneously.

Poor Person's Spread Sheet $29.95
Flexible screen formats and BASIC-like language. Prepro

grammed applications include Real Estate Evaluation.

Poor Person's Spelling Checker $29.95
Simple and fast! 33.000 word dictionary. Checks any CP/M text

file.

aMAZEing Game $29.95
Arcade action for CP/M! Evade goblins and collect treasure.

Crossword Game $39.95
Teach spelling and build vocabulary. Fun and challenging.

Mailing Label Printer $29.95
Select and print labels in many formats.

Window System $29.95
Application control of independent virtual screens.

All products require 56k CP/M 2.2 and are available on 8" IBM and 5"

Northstar formats, other 5" format; add $5 handling charge. California

residenls include sales tax.

Poor Person Software
3721 Starr King Circle

Palo Alto, CA 94306

tel 415-493-3735

CP/M is a registered trademark of Digital Research

> Syntax —^—^ custom
) software

Constructs </

CIRCLE 51 ON READER SERVICE CARD

Get the power of your ZSO

and the elegance of direct access

to CP/M functions from your

high level programs with

SYNLIB
utility library

SYNLIB consists of MICROSOFT compatible object code

that may be called from any high level language that uses

MICROSOFT parameter passing conventions.

SYNLIB gives you extremely powerful array and buffer manip

ulation using the Z80 LDIR instruction; program access to the

CP/M CCP console command line; high speed disk block I/O;

a high quality random number generator; HEX to ASCII

conversion optimized by special ZSO instructions; program

chaining and more.

And, because our programmer abhors a vacuum, each 8"

floppy comes packed with MODEM? and other valuable

public domain software. We've included documentation and

available source, so that you too may join the free software

movement.

SYNLIB $50.00
8" SSSD CP/M format

SOURCE: S 100.00

Licensing for commercial use available.

SYNTAX CONSTRUCTS, INC.

14522 Hiram Clarke

Houston, Texas 77045

(713)434-2098

CP/M is a registered trademark of Digital Research, Inc. Microsoft is a registered trademark of

Microsoft Corp. ZSO is a registered trademark of Zilog.

CIRCLE 63 ON READER SERVICE CARD

Use ALL the Power of Your

MS-DOS, IBM PC-DOS, or CP/M-80 System

with UNIX-Style Carousel Tools

ch "CP/M" "MS-DOS" <doc>newdoc

diff newdoc doc I more

ed newdoc

kwic newdoc I sortmrg I uniq I unrot >index

make -f makdoc ndx

Carousel Tools and Carousel ToolKiis are trademarks of Carousel

MicroTools, Inc. CP/M is a trademark of Digital Research; IBM is a

trademark of international Business Machines; MS is a trademark of

Microsoft; UNIX is a trademark of Bell Laboratories.

CAROUSEL TOOLS are a proven set of over 50 programs

designed to be used with pipes, redirected I/O and

scripts. In the style of UNIX each Tool does one thing

well, and the Tools can be used together to do more

complex tasks.

YOU ACCOMPLISH MORE using Carousel Tools: better

programming and documentation support, simpler

data and file housekeeping, more general file

handling.

TOOLS FOR PC/MS-DOS 2.x AND CP/M-80 are available

now. The DOS ToolKit is $149. The CP/M ToolKit is $249

and includes a shell to provide pipes, redirected I/O,

and scripts. Source code is available for $100 more.

ORDER YOUR TOOLKIT TODAY.

CALL OR WRITE:

CilCAROUSEL MICROTOOLS, INC.
609 Kearney Street, El Cerrito, CA 94530 (415) 528-1300

76 CIRCLE 8 ON READER SERVICE CARD



or statement labels even in its input stream

and to use these strings in their syntactical

sense in program execution. This is the

"computed GOTO" with a vengeance!

How about indirect addressing? Quite a

number of years ago. hardware vendors

included this capability in the hardware,

but few compilers took advantage of it.

SNOBOL implements this ability as a nat

ural part of its syntax and extends it indef

initely in depth. For example, one can

assign data to a variable. But rather than

actually assigning to the variable, one

may choose to assign it to the variable

contained in the variable, contained in the

variable . . . for an indefinite depth of

iteration.

One more: have you ever had the need

to select common elements from a set?

For example, what is the frequency of

word usage in this article? Care to write a

program to do the count? I've written this

one several times. It's a useful tool to

determine overuse of pet phrases.

Typically, one is forced into a alpha/

beta tree or some other such structure,

with a fairdegreeof complexity implied.

Well, hold on to your hat... SNOBOL

does it almost "automatically". SNOBOL

has a structure called TABLE. It is proba

bly most easily thought of as a single

dimensioned array, but with one major

difference. The subscript used with the

array is the data itself! You don't even

have to know how many unique entries

you'll have.

By at least one definition, this is asso

ciative memory. Are you artifical intel

ligence types listening? The compiler

even includes a direct and simple method

of converting the resultant table into a true

multi-dimensioned array so more con

ventional processing methods can be

applied to the end result.

One architectural limitation of the lan

guage should be considered. As back

ground, it should be stated that the com

piler we're discussing is actually not a true

compiler in the sense of a product that

produces directly executable machine

code. Rather, this compiler produces a

dense, internal form of the program and

then executes this form by interpretation.

Conceptually similar to the Pascal com

piler and the p-machine structure, this

typically is a reasonable trade-off between

speed of execution, ease of modification,

portability, etc. It is, however, an "inter

pretive" execution and therefore slower

than a directly executable machine code

implementation.

How slow is slow? The standard answer

is, "depends on the instruction (function)

mix," and that is certainly true here. Sub

jectively, the implementation produces

results considerably faster than inter

pretive BASIC and seems roughly equiv

alent of the speeds realized from compiled

BASIC.

To be more specific, the attached pro

gram processed a text file of slightly less

than 16.000 characters in 222 sec. This

included the time required to list the

resultant word list on the display (60 sec).

The function was clearly "process

bound" since the disk was active only dur

ing a small portion of the total execution

time.

Because of the unique nature of the lan

guage, finding a comparison benchmark

that really makes a valid comparison is

difficult. It would be useless and mis

leading to make a comparison against a

"number crunching" application written

in FORTRAN, for example. Similarly, to

attempt to use FORTRAN to do the prim

itive text scan of the included program

would be totally unfair to FORTRAN.

I have written a C language program

that essentially performs the same func

tion as the included SNOBOL program.

This implementation uses the CI C com

piler and produces native object code for

direct execution. This program, run

against the same file, produces its results

in 93 sec.

This seems to be a criticism of

SNOBOL. But to understand the whole

issue, one must also know that the C pro

gram is composed of five relatively com

plex and considerably larger procedures

whose listing is about six pages of printer

output. When compared to the primitive

and simplistic program included with this

review, it may be that you will consider

this factor a major strength.

Now that you've been impressed by the

power, what about the weaknesses? Well,

the language does not possess even rudi

mentary structural forms. IF-THEN-ELSE

constructs, for example, are not

supported.

The syntax is simplistic, and you may

readily create completely readable code.

This and several other "rules" of the lan

guage arc carryovers from the very early

implementations. At worst, a few are

annoying, but none are truly severe

weaknesses.

Now let's look at Catspaw's imple

mentation of this language. Eminer, the

product's original designer, says:

"[This compiler] has all the features of

mainframe SNOBOL4, plus numerous

additional features. Compatibility with

mainframe SNOBOL4 is achieved by

basing this product on the Macro

Implementation used on such main

frames as the IBM 360 and CDC 6600.

Thus. SNOBOL4+ incorporates a thor

oughly tested implementation in its

entirety. This also ensures full com

patibility with subsequent mainframe

SNOBOL4 products and releases."

From the somewhat limited and cursory

use I was able to make of the product, I

would accept this statement as accurate

and fair.

All too often the personal computer

FOR TRS-80 MODELS 1,3 & 4

IBM PC, XT, AND COMPAQ

Train Your Computer

to be an

EXPERT!

Expert systems facilitate the reduc

tion of human expertise to simple,

English-style rule-sets, then use

them to diagnose problems. "Know

ledge engineers" are developing

many applications now.

EXPERT-2, Jack Park's outstanding

introduction to expert systems, has

been modified by MMS for MMS-

FORTH V2.0 and up. We supply it

with full and well-documented

source code to permit addition of

advanced features, a good manual

and sample rule-sets: stock market

analysis, a digital fault analyzer, and

the Animal Game. Plus the benefits

of MMSFORTH's excellent full

screen editor, super-fast compiling,

compact and high-speed run-time

code, many built-in utilities and

wide choice of other application

programs.

( Rule 1 - demo in EXPERT-2 )

IF YOU WANT EXPERT-2

ANDNOT YOU OWN MMSFORTH

THENHYP YOU NEED TO BUY

MMSFORTH PLUS EXPERT-2

BECAUSE MMSFORTH IS REQUIRED

EXPERT-2
in

FORTH
Another exciting tool for our

alternative software environment!

• Personal License (required):

MMSFORTH System Disk IBM PC $249.95

.■MMSFORTH System Disk TR£« 1.3 or 4 . . $129.95

• Personal License (optional

modules):

FOKTHCOM communications module .... $39.95

UTILITIES (3995

GAMES 13995

EXPERT-2axpensyswn $89.95

OATAHANDLffl $5935

DATAHANDLER-PLUS (for PC only) $99.95

FOHTHWRITE wort processor $175.00

• Corporate Site License
Extensions fromsi,ooo

Shipping/handling i tax extra.

Ask your dealer to sfiow you me worW of MMSFORTH, or

request our free brochure.

MILLER MICROCOMPUTER SERVICES

61 Lake Short Road, Natick, MA 01760

(617)653-6136

CIRCLE 41 ON READER SERVICE CARD 77



PROGRAMMER'S
DEVELOPMENT TOOLS

IBM Personal Computer Language

and Utility Specialists

List

E395

500

500

345

700

Ours

319

459

299

295

499

C-86 Computer Innovalions

C Programming System by Mark Williams

Lattice C Compiler

Professional BASIC Morgan Computing

ADA-86. + Tools Janus

Call for Microsoft and Digital Research Products.

■<h^li^.»^Ll^ii*»'i4ViHW|i«rii«|><iM|.<h«

***"C" Language Starter Kit •**

Package Consists of: List Ours

OeSmet C Compiler w/Dabugger 5159 145

Windows For C Creative Solutions 150 119

C Programming Language

book by K & R 25 20

Retail 5334. Priced Separately S284

Our Special Package Price! S269

Greenleaf Utilities available for OeSmet C.

Call for Details and Prices.

We have in-staff APL expertise!

"*• STSC APL*Plus/PC ****

This powerful, interactive, fourth-generation

language includes a tutorial, help system

and useful extensions. Comes with plug-in

APL character generator chip.

Retail S595 Our Normal Price S540

Special Sale Price! $469

Send for complete demonstration package $5

UTILITIES:

175

245

160

125

99

175

60
395

350

295

200

150

159

205

139

115

87

149

57

315

259

CALL

159

119

C Functions Library by Greenleaf

Btrieve by SoftCrafi

Communications Library

oy Greenleaf Hew

Trace-86 by Morgan Computing

OPT-TECH Soil

Htgti Performance Utility

Profiler by DWB & Associates

AKA ALIAS by Soil Shell Technology

Plink-86 Overlay Linkage Editor .

Panel Screen Design/Editing Dy Roundhill

FirsTime intelligent C Text Editor

Dy Spruce

Ha\Q Color Graphics tor Lattice. CI-86

Windows For C by Creative Solutions

••• A SOLID GOLD VALUE ***

CodeSmilh-B6 Debugger

Version 1 8 by Visual Age

Retail $145. Our Normal Price $129

Special Sale Price! $109

^<.4^-U^*l>«MiiM»i><V»<>«aftU1H

Prices are subject to change without notice.

Account is charged when order is snipped.

[f#j#i] ^"" Visa/MC

C3» mSSm» NO EXTRA CHARGE
CALL FOR LOW PRICES

1-800-336-1166

Programmer's Connection

261 Martinet Drive

Kent, Ohio 44240

(216)678-4301 (In Ohio)

'Programmers Serving Programmers"

versions of languages omit the more dif-

icult or costly features of the prototype

compilers. This is certainly not true in

this case. Catspaw has even added needed

functions aimed specifically at the per

sonal computer environment. The power

of the SNOBOL language plus this excel

lent (and large —73K) implementation are

clearly major strengths of the product.

To put the compiler in fair context,

however, a few of the representative limits

imposed by the implementation are listed

in Table I. These limits are generally

large enough to be ignored in most

applications.

The distribution disk also includes

several aids for the user. This compiler

can even permit the introduction of

assembler programs into its environment.

Compilation speed is fast—so fast, in

fact, that for the relatively trivial program

I've used to benchmark this product, I'm

forced to rely on the compiler statistics

for time. The program included with this

article compiles in less than 3 sec after the

compiler is actually loaded and in control

of the machine.

The DUMP and TRACE functions of the

compiler are useful, with particular

emphasis on the TRACE function for exe

cution time debugging. The program I've

included is sufficiently simple that my use

of TRACE was purely experimental, but it

appears conceptually that this will be a

very useful tool.

Emmcr stresses that his manual is not a

tutorial. He has done an excellent job of

writing a concise and definitive docu

ment, and he is also very correct. If

you're attempting to learn the language.

this manual is not the place to start!

Emmer is currently working on an

introductory section for his manual, along

with a demonstration program. This

should help, but I'm sure you'll still need

the reference manuals to really use the

product.

The program in Listing 1 is a trivial and

crude example of SNOBOL. This exam

ple is included purely to illustrate the

power of SNOBOL. Line I tells the com

piler to "trim" off trailing blanks from

input records. Lines 2 and 3 establish a

pattern of all of the valid alphabetic char

acters, while line 4 defines the use of this

pattern for extracting "words" from the

text.

In English, this definition simply

defines a word as being an alphabetic

character string bounded by non-alpha

characters. Line 5 defines a TABLE,

COUNT which is to have 100 entries ini

tially and is to grow 100 entries at a time.

Line 6 defines an external data file with

a record length of 80. The next three lines

(8-11) are really the total program. Line 8

reads a record. Line 9 replaces all upper

case characters with lower. Line 10

extracts the next "word", and Line 11

increments the count for that word in the

table.

Note that we have no idea what the

word is or how many different words

we'll encounter! The program flow is such

that we read a record and then NEXTW

extracts the next word from the record.

This word is placed in the table by line 11,

and control is returned to NEXTW. The

program loops between tine 10 and 11

until the word extraction "fails". Control

then takes the fail exit F(READ) and

returns to the READ statement to read the

next record. The process continues until

the READ statement fails (end of file), and

then control is transferred to PRINT.

The statement labeled /WATconverts

the TABLE to a normal two dimensional

array, and then the PRrestatement dis

plays the word and its count. Note the rel

atively primitive method for incrementing

the subscript variable.

Now you've had a very quick walk

through a very large and rich compiler. I

hope you have gained at least an intuitive

feel for the power of this unique language.

This particular implementation of

SNOBOL appears to be excellent. Its

strengths are many and its weaknesses are

relatively minor. H

References

1. The SNOBOL4 Programming lan

guage, 2nd Ed., Griswold, R.E., Poage,

J. F., and Polonsky, I, P., Prentice-Hall

Inc., 1971.

2. A SNOBOL4 Primer, Griswold, R. E.

and Griswold, M. T., Prentice-Hall, Inc.,

1973.

By Dan Daetwyler

Data types:

Integer

Real:

String:

Arrays:

Real to

Integer,, Real, String

: +/- 32767

+/- 9,

32767

32767

string:

,007,199,254,740

mantissa -

characters

elements

16 digits

,991 (53 bit

Intel)

Table 1.

78 CIRCLE 54 ON READER SERVICE CARD



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

READ

NEXTW

PRINT

PRTC

NONE

END

&TRIM = 1

LOWER = 'abcdefghijklmnopqrstuvwxyz'

UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ1

WPAT = BREAK(LOWER) SPAN(LOWER) . WORD

COUNT = TABLE(1OO,100)

INPUT(' IFILE1, 1,'SNO.REV1,^,80')

TEXT = IFILE

TEXT = REPLACE(TEXT,UPPER,LOWER)

TEXT WPAT =

COUNT<WORD> = COUNT<WORD> + 1

:F(PRINT)

:F(READ)

:(NEXTW)

:F(NONE)RESULT = CONVERT(COUNT,'ARRAY1)

OUTPUT = 'WORD COUNT'

I = 1

OUTPUT = RESULT<I,1> ' -> ' RESULT<I,2> :F(END)

OUTPUT = 'THERE ARE NO WORDS1

Listing 1.

LOWER

PROGRAMMING MAINTENANCE

AND DEVELOPMENT COSTS

{SET:SCIL}
The Source Code Interactive Librarian

for microcomputers.

• SCIL keeps a historical record ofall changes made to the

library.

■ SCIL maintains any source code regardless of language,

including user documentation and text material.

• SCIL allows software engineers to work with source

code as thev do now, using any ASCII tcxl editor.

• SCIL saves disk space by storing only the changes made

to the program.

■ SCIL provides a labeling capability for case of main

taining multiple versions and multiple releases.

• SCIL offers unlimited description in the program li

brary directory.

• High visibility displays with varied intensity for ease of

viewing insertions and deletions.

• SCIL is available on CP/M, MP/MII, MS-DOS,

PC-DOS and TurboDOS.

{SET}
Get {SET} for Success
(SKT:SCILM is a product ofSystem EngineeringTc

645 Arroyo Drive, Sin Diego. CA 92103

For more information call (619) 692-9464.

CIRCLE 64 ON READER SERVICE CARD

OPT-TECH SORT

SORT/MERGE program lor IBM-PC & XT

Now also sorts dBASE II files!

Written in assembly language for high performance

Example. 4.000 records of 128 bytes sorted to give

key & pointer file in 30 seconds. COMPARE!

Sort ascending or descending on up to nine fields

Ten input files may be sorted or merged at one time

Handles variable and fixed length records

Supports all common data types

Filesize limited only by your disk space

Dynamically allocates memory and work files

Output file can be full records, keys or pointers

Can be run from keyboard or as a batch command

Can be called as a subroutine to many languages

Eisy to use, includes on-iine help feature

Full documentation — sized like your PC manuals

$99 —VISA. M/C, Check, Money Order. COD. or PO

Quantity discounts and OEM licensing available

To order or to receive additional information

write or call:

OPT-TECH DATA PROCESSING

P.O. Box 2167 Humble. Texas 77347

(713)454-7428

Requires DOS 64K and One Disk Drive

CIRCLE 48 ON READER SERVICE CARD 79



ADVERTISER INDEX

Akor Systems

Alpha Computer Services..

American Planning Corp. ..

Atron

BD Software

Borland International

Austin E. Bryant Consuming

Carousel Microtools

Catspaw, Inc

Chromod Associates

The Code Works

., 2

.. 3

...4

.. 5

.. 6

.. 7

.. 8

.. 9

.10

.11

..12

.13

Computer Resources of Waimea 74 14

Creative Solutions 27

C Systems 46

PAGE

NO.

12

62

10

2

52

1

62

76

54

73

74

CIRCLE

NO.

... 1

PAGE

NO.

42

70

35

26

53

62

77

42

6

67

41

29

CompuPro Cover IV,

Computer Innovations 60

C User's Group

C Ware Corporation

Datalight

DWB Associates

Echelon, Inc

Ecosoft

54

72

29

9

25

65

Foehn Consulting 54

Forth, Inc 57

Forth, Inc 59

Forth, Inc 61

Forth Interest Group 68

Allen Gelder Software 54

Greenleaf Software 68

Hawkeye Grafix 12

HSC,lnc 75

Introl Corporation 49

King Software 70

Korsmeyer Electronics Design Inc 4

.15

16

,17

18

19

.20

21

.22

23

.24

25

26

.27

.28

.29

.30

31

.32

33

.34

Laboratory Microsystems Inc

Lattice, Inc

Learning Tools, Inc

Limbic Systems, Inc

MBP Software & Systems Technology ...

MicroMotion

Miller Microcomputer Service

Morgan Computing

Mountain View Press

Mumps Users' Group

Next Generation Systems

Northwest Computer Algorythms

Opt-Tech Data Processing 71

Opt-Tech Data Processing 79

Parasec Research, Inc 71

Plum Hall 69

Poor Person Software 76

The Programmers Shop 20

ProCode 65

Programmer's Connection 78

Quest Research, Inc Cover III

Rational Systems, Inc 61

Robotics Age 30

RR Software, Inc Cover II

SLR Systems 26

Solution Systems 20

Solution Systems 20

Summit Software 4

Syntax Constructs Inc 76

Systems Engineering Tools 79

Thunder Software 54

UniPress 74

Western Ware 54

Workman & Associates 48

WW Norton 48

The index on this page is provided as a service to our readers. The

publisher does not assume any liability for errors or omissions.

CIRCLE

NO.

...35

...36

...37

...38

.39

...40

.41

.42

.43

...44

...45

46

...47

...48

.49

.50

51

...52

.53

...54

.55

56

.57

.58

59

.60

.61

62

63

.64

65

.66

.67

68

69

ORDER THE PREMIER

ISSUE OF

COMPUTER LANGUAGE
The first issue of COMPUTER LANGUAGE was a great

success and nearly sold out in just one month. We still

have a few copies of this collectors edition available

now. Just fill out this coupon and mail if back with $4.00

per issue.

Please send me copies of COMPUTER LANGUAGE'S

premier issue at S4.00 per issue, S Total

NAME . _

COMPANY

ADDRESS.

CITY, STATE, ZIP

80

Send payment and coupon to: COMPUTER LANGUAGE

Premier Issue

131 Townsend St.

San Francisco, CA 94107

COMPUTER LANGUAGE ■ OCTOBER 198d

ADVERTISE

in the
November
issue of

COMPUTER

LANGUAGE
Reservation Deadline:

October 8th

Contact:

Carl Landau or Jan Dente
Computer Language

131 Townsend Street

San Francisco, CA 94107
(415) 957-9353



COMPUTER

SUBSCRIBE
TODAY!

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today!

Charter Subscription to COMPUTER LANGUAGE for only $19.95 — over 43% savings

off the single copy price.

D Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

□ Payment enclosed □ Bill me

Name

Company

Address.

City. State. Zip_

Offer expires 12/84. Please allow 6-8 weeks lor delivery of first issue. Foreign orders must be prepaid

in US. lunds. Outside the US., add $12.00/year for surface mail or $30.00/year lor airmail.

Canadian orders add $6.00 per yeor.

SUBSCRIBE

TODAY!

COMPUTER

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today!

Charter Subscription to COMPUTER LANGUAGE for only $19.95 - over 43% savings

off the single copy price.

D Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

□ Payment enclosed □ Bill me

Name

Company

Address .

City. Stale, Zip

Offer expires 12/84. Please allow 6-8 weeks for delivery of first issue. Foreign orders must be prepaid

in US. funds. Oulside the US., add $12.00/year for surface mail or $30.00/year for airmail.

Canadian orders add $6.00 per year.

SUBSCRIBE

TODAY!

COMPUTER

LANGUAGE
Subscribe to COMPUTER LANGUAGE at the Charter Subscription price today!

Charter Subscription to COMPUTER LANGUAGE for only $19.95 - over 43% savings

oft the single copy price.

D Yes, start my Charter Subscription to COMPUTER LANGUAGE today. The cost

is only $19.95 for 1 year (12 issues).

□ I want to increase my savings even more — send me 2 years (24 issues)

of COMPUTER LANGUAGE for only $34.95.

D Payment enclosed □ Bill me

Name

Company

Address . -

City. Stale, Zip . ■

Offer expires 12/84. Please allow 6-8 weeks for delivery of first issue. Foreign orders musl be prepaid

in US. funds. Outside the U.S., add $12.00/year for surface mail or S30.00/year for airmail.

Canadian orders add $6.00 per year

BI04



BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO, CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 22*61 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES



READER SERVICE CARD

Free information from the advertisers of

COMPUTER LANGUAGE.

1. Pleasefillinyournameandaddressonthe

card (one person to a card).

2. Answer questions 1-3.

3. Circle the numbers that correspond io

the advertisements you are interested in.

Name

Company.

Address _

City, Stale. Zip

Country Telephone number.

Ontotifi! issue Nnt gnod il mmlflfl alter February 28.1985.

Circle numben tor which you desire Information.

Please complete these short questions:

1. 1 obtained this issue through:

□ Subscription □ Passed on by associate

D Compotef Store D Othef

a Retail outlet

2. Job Title

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

37

53

59

60

61

62

63

64

65

66

0?

68

(■"■

70

71

72

73

74

75

76

77

78

79

SO

'■■

62

83

84

85

86

87

BB

H

90

91

92

93

94

95

96

97

99

100

3. The 5 languages that I am most interested in reading

about (list in ordet or importance).

Comments.

Attn: Reader Service Dept.

READER SERVICE CARD

Free Information from the advertisers of

COMPUTER LANGUAGE.

1. Pleasefillinyournameandaddressonthe

card (one person to a card).

2. Answer questions 1-3.

3. Circle the numbers that correspond to

the advertisements you are interested in.

Name.

Company.

Address

City. Slate. Zip

Country Telephone number.

October issue Noi good if mailed otter February 28.1985

Circle numbers for which you desire Information.

Please complete these short questions:

1. I obtained this issue through:

D Subscription □ Passed on by associate

□ Computer Store D Other

□ Retail outlet

2. Job Title

31

32

33

34

35

36

37

36

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

.'.

55

56

57

M

W

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

BO

81

B2

83

84

U

84

B7

U

89

9C

3. The 5 languages that I am most interested in reading

about (list In order ol importance).

Comments.

Attn: Reader Service Dept.

Editorial Response Card

Reader suggestions
We want to hear your comments and suggestions about this issue of

COMPUTER LANGUAGE. Your reader feedback will enable us to provide you with

the information you want. Thank you for your help!

Comments:

□ Yes, I have an idea for a manuscript:

D Yes. I'm interested in reviewing technical manuscripts.

□ Yes, I'm Interested in reviewing software.

Nome:

Company:

Address:

City. State, Zip: _

Phone Number:



BUSINESS REPLY CARD
FlfiST CLASS PERMIT NO 27346 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA. PA 19101

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 27346 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
PO. BOX 11747

PHILADELPHIA, PA 19101

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UN [TED STATES

A

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 22481 SAN FRANCISCO. CA USA

POSTAGE WILL BE PAID BY

COMPUTER

LANGUAGE
2443 FILLMORE STREET • SUITE 346

SAN FRANCISCO. CA 94115

NO POSTAOE

NECESSARY

IF MAILED

IN THE

UNrTED STATES



We thought about calling it MacSimplex . . .
after all it makes your IBM®PC behave like a

Macintosh™ and much more . . .
and with over two years in the making, the Simplex

Database Management System has features like

32-megabyte virtual memory and the most powerful

networked/relational database in the microcomputer

industry. Simplex was designed around how you

think and the Macintosh way, so that you can use

your favorite mouse to handle those mundane tasks

like menu selection and data manipulation. And, if

you don't have a mouse, you can use our keyboard

mouse simulator, MouSim™.

Pop-up and pull-down menus, dialog and alert boxes

are not just added features, they are the heart of the

Simplex way. In addition, Simplex gives you both a

software and a hardware floating point capability,

each with 19-digit accuracy. It permits login,

password, privilege, and can be used on a local area

network. Simplex has full communications and a

remote or local printer spooler. Above all, Simplex is

modular and grows with you! Simplex also has a

full-featured, English-like language which is simple

to use.

You can't buy Simplex r\ but it is now available as an integral part ot

it's my Business™ and will be used by it's my Word", it's my Graphics™

Businessmen! it's my Business will revolutionize the

way that you handle your business. It saves time,

money, and standardizes your system for all who use

it. it's my Business comos with applications like

accounting, interoffice or intraoffice mail, editing,

invoicing, inventory managment, mail list, calendar,

scheduler, forms and more. You can modify each of

these to create applications specifically designed for

you... maybe we should have called it "it's your

Business".

Professionals! it's my Business has over 200 pages of

examples and demonstrations to show you how to

solve your everyday professional problems. And it

these examples aren't enough, we give you a

complimentary one-year subscription to Questalk"\

our hands-on Simplex applications magazine.

System integrators and consultants, beware! If you

are not using it's my Business with Simplex to solve
your problems, don't be surprised when more novice

programmers solve that complex math, industrial

engineering, or business problem faster. We think

that you can cut your concept-to-development time

by an order of magnitude!

it's my Business (includes it's my Editor} - $695.00

it's my Business Demo Disk - $20.00

it's my Editor - $100.00.

Quest Research software is available through your local computer store or through mail

order from Quest Software Corporation at 1Z«5| 530H086. JOi Williams Avenue,

Huntsville. AL 35801.

Viilue added resellers and dealers please contact Quest Research, Incorporated M

(Hoo| 558-miHH. 3o:i Williams Avenue, Huntsville. AL. 35801.

iTM

Quest Research Inc.

IBM is a registered trademark of International Business Machines. Macintosh is a trademark of Apple Corporation, it's my Bmmbiemm, it's my Word, it's my Graphic*,

il's my Editor, it's my HoMe, it's my Voice, it's my Ear. Us my Stattmticm. .Simplex. MouSim. Questdlk. and the Quest lofco are trademarks of Quest Research. Incorporated,

CIRCLE 55 ON READER SERVICE CARD



HERE TODAY
E TOMORROW

When buying a computer, you can't limit yourself

to just satisfying today's needs. The best value in

a system comes from its productivity ... both for

today and tomorrow. CompuPro's System 816™

computer has that value. With all the power and

capacity to handle your needs now and down

the road.

System 816's longevity stems from top quality

components ... high storage capacity ... the flex

ibility to handle a large variety of applications ...

and the speed to get the job done fast. Upgrading

is easy, and when it's time to expand from single to

multi-user operation, it's as simple as plugging in

boards and adding terminals. Your system grows as

you grow.

CompuPro also provides a library of the most

popular software programs with your system and

because it's CP/M* based, you have more than

3,000 other programs to choose from.

Even our warranty is for today and tomorrow. It

spans 365 days —and includes the additional se

curity of Xerox Americare™ on-site service nation

wide for designated systems."

What's more. CompuPro is one company you

can count on to be around tomorrow. For more than

ten years we've been setting industry standards,

increasing productivity and solving problems.

For a free copy of our business computer

buyer's primer, and the location of the Full Service

CompuPro System Center nearest you, call (415)

786-0909 ext. 206.

CompuPro's System 816. The computer that's

just as essential tomorrow as it is today.

ompuPro
AGODBOUTCOMPANY -

3506 Breakwater Court, Hayward. CA 94545

"Available from Full Service CompuPro System Centers and participating

retailers only.

System 816 and The Essential Computer are Irademarks ot CompuPro.

CP'M is a regislered trademark of Digital Research Inc. Americare is a

trademark of Xerox Corporation.

System 816 front panel design shown is available from Full Service

CompuPro System Centers only. ©1984 CompuPto

The Essential Computer
CIRCLE 12 ON READER SERVICE CARD

CompuPro. I 11III1Hillmini


