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This paper presents a method for computing the propagation modes of a
circular optical fiber. Finite element analysis reduces Maxwell’s equations to
standard eigenvalue equations involving symmetric tridiagonal matrices. Rou-
tines from the Eigensystem Package (EISPACK) compute their eigenvalues
and eigenvectors, and from these the waveforms, propagation constants, and
delays (per unit length) of the modes are obtained. An extension allows loss
of leaky modes to be calculated. Examples indicate that the method is reliable,
economical, and comprehensive, applying to both single and multimode fibers.

I. INTRODUCTION

This paper presents a method for calculating the propagation modes
of a circular optical fiber. The modal quantities, essential for telecom-
munications, include the waveforms (which describe the radial distri-
bution of propagating power), the propagation constants (which de-
termine cutoff conditions), and the delays per unit length (which
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determine pulse dispersion along the fiber). The technique combines
the Finite Element Method (FEM) and routines from the Eigensystem
Package (EISPACK)' to achieve an efficient calculation of these modal
quantities for both single and multimode fibers.

The most popular approach to modal calculations for multimode
fibers has been the Wentzel, Kramers, Brillouin (WKB) method,
where Maxwell’s equations are approximated by an easily integrated
first-order differential equation.? WKB analysis provides a simple
model for understanding optical transmission through a fiber® and has
guided fiber design.*

For fibers with index of refraction profiles described by a power law,
the WKB method is equivalent to geometric optics and to the model
of a fiber with unlimited radial extension.® For such fibers the effect
of the outer cladding is missed by the WKB and equivalent methods,
and the bandwidth capability is often overestimated.®

Accuracy of the WKB method declines substantially with the num-
ber of propagating modes. For single-mode fibers the WKB method is
not suitable, and instead, various analytic and numerical techniques
have been used.

Analytic calculations have centered about the step-index profile and
the infinitely extending parabolic profiles. Modal quantities have been
expressed in terms of Bessel functions for the single step’ and, also,
the double step.? Parabolic profiles, analyzed by analogy with the
harmonic oscillator,® have well-known expressions for their modal
quantities. Coupled with perturbation analysis,"” these results cover a
broad range of profiles. But numerical approaches permit an even
more comprehensive treatment.

Several numerical procedures have extended the analysis of the
step-index profile. The solution in the core comes from a numerical
integration; the solution in the cladding (where the index is assumed
constant) is well known. Boundary conditions at the core-cladding
interface link the two solutions and lead to a set of linear equations
involving the propagation constant as a parameter. A search of the
corresponding determinant for zeroes gives the propagation constants
and, subsequently, the waveforms and delays.

In Ref. 11 this procedure is applied to Maxwell’s first-order vector
equations, and important results have been obtained for multimode'**?
and single-mode'*"® fibers. A similar scheme'® deals with two coupled
second-order differential equations equivalent to Maxwell’s equations.
The second-order scalar wave equation approximates Maxwell’s equa-
tions by neglecting the relatively small gradient index terms. In Ref.
17 the basic procedure is applied to the scalar wave equation, and a
variety of results have been obtained for single-mode fibers.’®"

In Ref. 20 the FEM is developed in terms of a variational principle
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for the vector equations. Approximate solutions in the core and clad-
ding are matched at the interface by performing a determinant search,
as described before. The FEM has also been applied® to diverse single-
mode waveguides by approximating the index profile by piecewise
constant functions and then enforcing boundary conditions across the
numerous interfaces. The result is a matrix eigenvalue equation in
generalized form. Both of these FEM approaches seem limited to a
small number of modes for economical operation.

The approach in this paper is characterized by a sequence of three
steps. First, Maxwell’s equations are transformed to ordinary differ-
ential equations in eigenvalue form. In one case, gradient index terms
are neglected, and in the second, they are considered to first order so
that their effect can be monitored. Next, finite element analysis, using
the Galerkin technique,® reduces these differential equations to matrix
equations in standard eigenvalue form. The matrices are symmetric
and tridiagonal, and their positive eigenvalues correspond to the
propagation modes. The routine BISECT in the EISPACK' library
delivers the eigenvalues and TINVIT, also in EISPACK, delivers the
corresponding eigenvectors. The eigenvalues give the propagation
constants of the modes, the eigenvectors give the waveforms, and a
combination of the two give the delays.

Like many other numerical techniques, this method can treat any
uniform, circular fiber and meet usual standards of accuracy. Also, the
effect of gradient index terms can be monitored. But by casting the
equations in standard eigenvalue form, modern techniques of compu-
tational linear algebra (as used in EISPACK) can achieve substantial
cost advantage over other numerical approaches. Typically, this
method will process for a multimode fiber 25 modes per second on the
Cray-1* computer.

The calculation procedure is derived in the next section. Effects of
material dispersion are incorporated into the analysis, and calculation
of loss for leaky modes is also considered. Results are given in Section
III for a variety of single and multimode examples. These results, as
discussed in Section IV, illustrate the reliability, economy, and scope
of the method.

Il. ANALYSIS

This section derives from Maxwell’s equations an algorithm that
computes the propagation modes of an optical fiber. The algorithm is
straightforward and can be carried out on any computer that has
access to the EISPACK! or similar routines.

* Registered service mark of Cray Research, Inc.
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2.1 Reduction of Maxwell’s equations

The fiber is assumed perfectly straight and circular, and uniform
along its length. The cylindrical coordinate system (r, 6, z) is defined
so that the z-axis coincides with the fiber axis. The index of refraction
can then be expressed by the function n(r), the index profile. The
profile can be any bounded function in the core (r < R;), but it is
constant (n,) in the cladding. The geometry is shown in Fig. 1.

The permittivity is

e = e,n(r), (1)

where ¢, denotes the free-space permittivity. The permeability u is
assumed throughout to be y,, the free-space value.
Maxwell’s equations relate the electric field E and the magnetic

field H by
curl E = —iwuH
curl H = iweE, (2)

where w denotes the frequency of excitation (in rad/s). Taking the
curl of the second equation eliminates E to give

VH + Vg x (V X H) + k*H = 0, (3)

where
g = In(k?), (4)
and the wave number k has the forms
k= w(pe)'’? = wn(u.e,)’? = wn/e = 2mn/\, (5)

with n the index of refraction, ¢ the velocity of light in vacuum, and A
the free-space wavelength of the excitation.

CORE nlr)—

T T ==CLADDING [n{r) = ngl

Fig. 1—Geometry of a uniform circular fiber with index profile n(r).
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Propagation modes are solutions of the form
H = H,exp(ifz), (6)

where H, is a vector field independent of z, and 8 is the propagation
constant of the mode. Substituting this into the field equation gives,
in cylindrical coordinates,

1 g d 2 g\ ad

9 _ L 40 &0 (2  &)\O
A r2+k ror’ (r2+r)68 0 /Hos Ho

(7
24 1

“Fw VU ogtE ) o[ He | =6 He

d

- 0 158 Vz_grg"'kz_ 0z He. /,

where g, means dg/dr. The transverse (i.e., r and #) components of H
are uncoupled from the longitudinal (i.e., z) component and satisfy an
eigenvalue equation with eigenvalue 3°. The corresponding operators
are indicated as a 2 X 2 submatrix in the full 3 X 3 matrix.

The angular dependence of the transverse field is given by

H\ _ [hecos m’6 or hgsin m’#
H,]  \hsin m’6 h,cos m’8
for m"=0,1,2,---, (8)

where the functions h; and h, depend only on r. The two forms
correspond to different polarizations. Substituting these into eq. (7)
gives

2
(2,2 84, m71 ), (2,0

rar’ dr_ radr r r r
+g_m'_’ liri_miz-t.l.{_k?
- r rdr dr r
hy hy
'_‘62 ] (9)
h, h,

where the + sign depends on the polarization.
The case where m’ = 0 reduces to two uncoupled equations:

_______ 8r 2 — Q2
(rdrkzdr r? r+k)ha B°he (10)
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for the Transverse Magnetic (TM) modes for which H, is identically
zero, and
1d d 1 . L pg

(rdrrdr r2+k)h,—,8h, (11)
for the Transverse Electric (TE) modes for which E, is identically
zero. Often, gradient index terms (those involving g,) are neglected on
the basis that profile variations are relatively small.* The difference
or splitting in 8% for the TM and TE modes measures the accuracy of
this practice.

When m’ # 0, eq. (9) is expressed as

(8@ A L))ol w

where
1d d m?*+1 , @ g d
A=ia’ar g TRty e=-TgT
B= 12—":—+9, b=+18 (13)
r 2 r

The initial term has eigenvectors of the form,

(fi)’ (14)
f
(_ fz), (15)

where (A — B)f: = B%. The second term of eq. (12) is neglected
because its first order perturbation contribution is zero, as in general

(_ab __ba) ( if f) is orthogonal to ( i’_r f)’ (16)

respectively. If two eigenvalues are equal or nearly equal, a degenerate-

perturbation calculation may be required.
To first order, the modes when m’ # 0 are either the EH,, with

transverse H fields of the form
_[fsinm’d fcos m'0
Ho = (f cos m'f and —fsin m’8)’ an
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where by eqgs. (14) and (15) f satisfies

kdrd (m’+1)2 (m' +1) y
(r dr k dr r? &tk (18)
or the HE,, , with
_ [fcosm’f fsin m’0
Ho = (f sin m’B) and (—f cos m'0) (19)
where [ satisfies
kdrd (m'-17* (m -1) 2)p _ a2
(r dr k dr r? + or & +E)f = 87 (20)
With m = m’ = 1, egs. (18) and (20) can be combined as
kdrd m>_m 4 )
(rdrkdr_r2+2rg'+k)f_‘6f' (21)

The modes are indexed by the angular parameter m. For m = 0
there are two polarizations for each HE;, mode. This group includes
the fundamental mode HE,,, which propagates in single-mode fibers.
For m = 1 there are two polarizations for the HE,, modes, also the
TM modes and the TE modes. For m > 1 there are two polarizations
for the HE 1, modes and two for the EH,,—; , modes.

When gradient index terms are neglected, eq. (9) reduces to the
scalar wave equation

1d d m* L\, _
(r ar dar P +k )f =67 (22)
For m = 0 each solution represents two polarizations, i.e., two modes;
for m # 0 each solution represents two polarizations and two angular
harmonics, m’ = m * 1, i.e., four modes.

The scalar wave equation and its counterparts [eqs. (10) and (21)]
assume the form of a time-independent Schroedinger equation in two
dimensions. In particular, the scalar wave equation can be expressed
as

m?
(1 d i - =+ (B - kfl))f = (8* — KA f, (23)
r dr r

where
kc[ = 21!'1’1.:1/& (24)

The quantity (k* — k34) plays the role of a potential that is 0 in the
outer cladding and beyond; (5? — k%) is an eigenvalue.
Results on Schroedinger’s operators® imply that the propagation
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modes correspond on a one-to-one basis to the positive eigenvalues
and the number of such modes is finite (see Ref. 23, p. 366). This fact
implies that increasingly accurate estimates of the propagation modes
can be obtained by ever finer discretization of the equations. By
contrast, finer discretizations introduce ever more negative eigenval-
ues corresponding to the continuum of radiation or unbound modes.

2.2 Finite element reduction

The Finite Element Method (FEM) can solve to desired accuracy
the differential equations just derived. The present discussion special-
izes to the scalar wave equation [eq. (23)]; modifications needed for
the equations containing gradient index terms are indicated in the
appendix.

The solution function f(r) is approximated by a piecewise linear
function. This can be expressed in terms of interpolation functions
(shown in Fig. 2) as

L+1

f(r) = Eo frONi(r), (25)

where ;=15 forl=0, 1, - .-, L + 1 are evenly spaced sample points.

The first and last terms of the series are affected by end conditions
on f(r). At the center (r = 0) of the fiber f(r) and its radial derivative
must be bounded and well defined; so f(0) = 0 when m > 0 and df/dr
(0) = 0 or equivalently f(0) = f(3) to first order in 6 when m = 0.

At the other end, R = LJ represents a truncation radius in the
cladding, and R + 6 represents the truncated part in a way that will
now be explained. Assuming that the cladding extends indefinitely,
the solution there is

f(r) = aKn(nr), (26)

where K,, denotes the mth order modified Bessel function of the
second kind,? @ is an unknown coefficient,

n = (8°— k&) (27)

and m denotes the azimuthal mode number used in the scalar wave

1 1

Fig. 2—Linear interpolation functions: hat functions.
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equation [see eq. (23)]. It follows that the end condition for f at
truncation is

f'/f = nKn(nR)/Kn(nR). (28)
A Taylor’s expansion of f to first order about r = R yields
f(R + 8) = f(R) + of"(R)
= f(R)(1 + nKn(nR)/Kn(nR)). (29)

Most modes of a multimode fiber are unaffected by the end condition
in eq. (29) because their waveforms are negligibly small beyond the
core. But the waveform of a single-mode fiber can extend beyond the
core and then the end condition needs to be enforced.

Sample values of f(r), the coefficients in eq. (25), are estimated by
the Galerkin weighted residual method.?? Although a piecewise linear
approximation cannot satisfy the scalar wave equation, it can satisfy
weighted averages of the equation. In the Galerkin technique the
weightings are chosen as the basis functions N;(r) j=1, .--, L. In
terms of inner products, defined for any functions p(r) and q(r) as

R+
(p,q) = _£ p(r)g(r)rdr, (30)

Galerkin’s technique yields

(4, 29 - (5, ) + (0 - o )

dr’ dr
= (B*—k4)(f, N;) (31)

for j=1, ..., L. The first term comes from an integration by parts.
Substituting the piecewise linear approximation of f [from eq. (25)]
into the Galerkin equations gives L equations for L + 2 sample values,
but the end conditions eliminate two of these values. The result is L
equations in L unknowns, expressed as the matrix equation,

(A — m’B + O)f = §*(8* — k2)Df. (32)
The column vector f denotes the sample values,
f=[f(r), ---, f(ro)]- (33)
The L X L matrix A has jl element
_ (N dN),
it = (dr ’ dr )6 (34)

for all j and ! except, to accommodate the end conditions, a;o must be
added to a;, when m = 0 and ar 1+ fr+1/fr must be added to az; for all
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m. The L X L matrices B, C, and D have jl elements

1

by = (F N, N,—) 82,

¢i = ((k — k)N, N;)8?, (35)
and

di = (N;, Nj).

The latter three matrices are evaluated by “lumping the masses,”

meaning that the integrals are evaluated numerically and the integra-
tion points are chosen as the sample points.”” The trapezoidal rule

then yields 0 for the off-diagonal elements and for the main diagonal
gives

by = 82/l cy = U[k*(r;) — KA]6* du = 16® (36)
forl=1, --., L. The matrix A can be evaluated exactly. It is symmetric
and tridiagonal (i.e., @y =0 if |/ — j| > 1) and has

ap = =206% a1 = (I + 4)8* (37)
forl=1,...,L. When m =0, a;; is —1.55°.

Eq. (32) converts to a standard symmetric eigenvalue problem by
multiplying both sides by the diagonal matrix D~/ and putting

g = D'T. (38)
The result is
Tg = D'2(A — m®B + C)D™ g = §*(8* — k28, (39)

standard form relative to the vector g.
The key matrix, T, is symmetric and tridiagonal. For m # 0

2
th= -2 — 2+ 82[k%(r) — K3

-7

1[ft+ 1\ 1\
b1y = by = 2 |:(_'£_ ) + (m) (40)

forl=1,---,L—1;form=0

tn = =% + 8*[R*(r) — k2l (41)
for all m
m.‘Z
try = —2 Iz + 82[k%(ry) — RA) + tri+18e1/8L (42)

The end condition in eq. (29) combined with eq. (38) gives
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L
Gun/8 = =7 [1+ SnK4(nR)/Kn(aR)] (43)

Equation (39) represents the FEM reduction of the scalar wave
equation. The other differential equations, as indicated in the appen-
dix, reduce to the same form, with T symmetric and tridiagonal. The
sample distance § is discussed in Section III.

2.3 Calculation of the propagation modes

The propagation modes are calculated by solving for the positive
eigenvalues (i) of T\ The associated propagation constants are

B = (u/8® + R4)'? (44)
with effective index of refraction
ne = B/(2x/\) = Blc/w). (45)

When the end condition is enforced, the T matrix depends on £ in its
(L, L) entry, but a simple iteration procedure yields the proper 8. The
associated waveforms are given by f or g.

The modal delays per unit length (7,) are the reciprocal of the group
velocities,

)
dw’

An efficient calculation of these uses the formula,

df _ ()(d6%) _ (c\ldka , 1 (dT
-Gl -Gl 3 (@Bee)

where g is assumed to be normalized (i.e., g-g = 1). This follows
standard procedure for taking the derivative of an eigenvalue with
respect to a parameter.?® Equations (40), (41), and (42) for T imply
that dT'/dw” is a diagonal matrix. Using the equivalence between w?d/
dw? and —A2d/d)\?, eq. (47) becomes

(46)

Tg

L dn2
Te= 2 [nz(r:) -\ e (r:)] gt/cn.. (48)
=1 A
To form the T matrix, the index profile n(r) must be available for
any excitation wavelength ()). Sellmeier expansions® of the form
3
nf=1+ 3 A/[1 - (I/N?F] (49)
i=1

have been fitted to measured values of refractive index over the range
of wavelengths 0.8 um to 1.5 um for bulk samples of pure Si0,, 13.5-
percent Ge doped Si0;, and 1 percent F doped SiO, (denoted here as
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a, b, and ¢, respectively). Also, results in Ref. 28 indicate that the
index is approximately linear with concentration. Therefore, the index
profile of an optical fiber having a graded Ge dopant is taken as

n(r, \) = a(\) + Ca(r)[b(N) — a(N)], (50)

where C,(r) denotes the concentration profile for Ge, relative to 13.5
percent. For dual dopants, Ge and F, the index profile is

n(r, A) = a(\) + Ca([bA) — aM)] + Ca(M)e() —a(N)],  (51)

where C,(r) denotes the concentration profile for F, relative to 1
percent.

The concentration profiles in these equations may be specified or
may be deduced from the index profile at a reference wavelength. Once
the concentration profiles are available, the index profile and its A2
derivative can be determined from eq. (50) or eq. (51) for any wave-
length.

The T matrix can be expressed in dimensionless form by replacing
the sample spacing by

6 = Ry/Ly, (52)

where R, denotes the core radius and L, the number of samples in the
core. This gives

8%[K2(r) — k3] = (2aRy/N)*(n?(r) — nd)/L%, (53)
and from eq. (50), (with a = nq),
n¥(r) — n4 = Cu(n? — nd) + (Ci = Co)(n1 — na)?, (54)

where now C,(r) represents the Ge concentration normalized with
respect to n,, the index at the center. The latter term in eq. (54) can
usually be neglected because n, ~ nq and often, C.(r) ~ 1 for most r.
Then the T matrix can be expressed in terms of the usual V number,

V = (2xR,/N(nf — nd)"* = Ry(Kf — k&))" (55)
and the effective V number,
Ve = (27R)/N)(nZ — nd)"? = R(B* — k)" (56)

for the (L, L) element. The FEM reduction becomes
T(V, V.)g = (V./L\)’g, (57)

where now an iteration on V, is required. A similar expression, involv-
ing three V numbers, holds for dual dopants.
The effective index (n.) is obtained from V., in eq. (56). The delay

2674 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1983



is

cdst_ 1 dvaav: a

I§] R? dV? do?  dw?

L _ e dna dnd V dv,
d)\2 1%

Tg

d8” _
d?

cn,

-[(n"l’ —nd) — N % (n? — nEu)]}. (58)

Matrix T is always symmetric and tridiagonal. The routine BISECT
in the EISPACK"' library computes the positive eigenvalues for such
matrices and TINVIT, also in EISPACK, computes the associated
eigenvectors g. These routines operate efficiently and reliably.

2.4 Leaky modes

When the index profile drops below n,, over part of its range, then
leaky modes may exist. These modes have n. < ny and complex prop-
agation constants. The corresponding attenuation accounts for radia-
tion loss as the waveform spreads out radially. As is well known, leaky
modes also can arise when m # 0 from the negative term, — (m?/r?),
in the propagation equation.

Leakage loss is calculated by truncating the waveform at the begin-
ning of the outer cladding and enforcing the proper end condition. In
terms of the complex propagation constant v, eq. (27) for n changes
to

n=(=v* - k)", (59)

and the end condition [in eq. (43)] becomes complex. Now, the T
matrix has a real (T;) and an imaginary (T;) part, but matrix T}
consists of all zeroes except the (L, L) diagonal element (call it x).
First-order perturbation theory estimates an eigenvalue of T as

p=p + ixgi = %% (60)

where p, is an eigenvalue of T, and g, is the Lth component of the
associated normalized eigenvector g. Again, an iteration is required
because T depends on 7.

1. EXAMPLES OF MODAL CALCULATIONS

In this section modal calculations based on the results of Section II
are illustrated in 10 examples. The next section summarizes and
evaluates the results.
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3.1 Infinite parabolic profile
The parabolic profile that extends without radial limit has index

n(r) = ni[1 — 2A(r/R)**? (61)

for all r, where R denotes the nominal radius of the fiber core. Under
the scalar wave approximation, its modal waveforms are Laguerre
Gaussian functions, its propagation constants are

Bum = (kARG — 2Qkan:(24)"?/R1%, (62)
and its modal delays (neglecting material dispersion) are
Tum = (Bum + RaN3/Bum) /20, (63)
where the mode number is
Q=2u+m+1 mu=0,1,---, (64)

with m the angular harmonic and g the radial harmonic. Each @
represents a group of modes that have the same propagation constant
and delay (see Ref. 9).

Modal delays were calculated assuming parameter values A = 0.013,
R = 25 pym, and A = 1.3 um. Convergence with respect to truncation
radius (TR) was complete (within 0.1 ps/km) for each mode for TR =
1.5R. Convergence with respect to the number (L,) of sample points
in the core was within 1 ps/km in the rms delay for L, = 400, as
indicated in Table I. An accuracy of 1 ps/km determines the bandwidth
within 5 percent for a 10-GHz X km fiber and 0.5 percent for a 1-GHz
X km fiber. The percent errors of the computed delays (with L; = 500)
are shown in Fig. 3.

The most accurately computed mode within a mode group had radial
number p = 0; their waveforms have no zero-crossings and are most
easily approximated by piecewise linear functions. The least accurately
computed mode (which was off by 5.5 ps/km) had the largest u. As
another measure of accuracy, the spread in the computed delays for
each @ is also given in Table L.

To test the single-mode case, the parameters were changed to A =

Table I—Convergence results for
infinite parabolic profile in units of

ps/km*

L, TRMS Spread (1) Spread (2)
100 144.0 136.1 96.5
200 129.4 33.9 23.7
300 127.1 15.1 10.5
400 126.3 8.5 5.9
500 125.9 5.5 3.8

*(A=0.013, R=25um, A = 1.3 um)
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Fig. 3—Computation errors in modal delays for infinite parabolic profile.

0.005 and R = 5 um, but again A = 1.3 um. The calculated effective
index of the HE,; mode was accurate to seven decimal places and the
delay to 0.1 ps/km when TR was 2.5R and L; was 300. This precision
translates to nm accuracy in the zero-dispersion wavelength. The
beam radius (BR) defined by the condition

fXBR) =f*0)/e (65)

was accurate to four decimal places, as indicated in Table II. The
number of samples in the core can be less in the single-mode case
because the HE,, waveform does not oscillate; the truncation radius
needs to be greater because the waveform extends farther into the
cladding.

3.2 Parabolic fiber
Power-law fibers have the index profile

i) = {nl(l - 2A(r/R)*)"* r<R

(1l — 24)Y2 r=R. (66)
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Assuming parameter values of A = 0.013, R = 25 ym, A = 1.3 um, and
« = 2 (the parabolic case), effective index (n.) and delay (r,) were
computed for each propagation mode under the scalar wave approxi-
mation. The rms delay (rrms) converged to 1.793 ns/km within 0.3
percent and the rms delay with the two highest-order-mode groups
deleted (7'rms) converged to 113 ps/km within 0.9 percent when L, =
300 and TR = 0.7R.

Figure 4 shows n. and 7, for each mode arranged by mode group.

Table Il—Modal quantities for HE;; mode of parabolic

profile*
L, TR n, 7z (us/km) BR (um)
300 3R/2 1.4531412 4.8581500 2.6561930
300 2R 1.4531608 4.8577068 2.6644067
400 2R 1.4531608 4.8577059 2.6644135
300 5R/2 1.4531609 4.8577024 2.6644397
Actual Values 1.4531609 4.8577025 2.6643516

*(A=0.013, R = 25 pm, A = 1.3 ym)
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Fig. 4—Plots of n. and 7, versus mode number for parabolic fiber.
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The delays spread almost 10 ns/km for @ = 14 and 3 ns/km for @ =
13, but less than 1 ns/km for the others. The spread in n, is negligible,
reaching a maximum of 0.01 percent.

Figure 5 shows n. and 7, plotted jointly on an expanded delay scale
with outliers excised. To compare with WKB results, n, and 7, for the
corresponding infinite parabola are indicated. The reference delays
exceed all in their mode group: by as little as 0.2 ps/km for each of
the first nine mode groups, but by more than 34 ps/km and 86 ps/km
for @ = 13 and 14, respectively.

3.3 Contribution of gradient index terms

Gradient index terms cause modal delays to spread still further.
Figure 6 shows the delay differences caused by these terms for each
mode of the parabolic fiber. Of the 112 modal delays only 14 differed
by more than 20 ps/km from the corresponding scalar wave values.
The TM mode nearest cutoff had the largest difference (33 ps/km).

4.8980
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EFFECTIVE INDEX
Fig. 5—Plots of 7, versus n, for cladded and infinite parabolic profiles.
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Fig. 6—Absolute differences in modal delays due to gradient index terms for parabolic
fiber.

The change in rrms was 5.9 ps/km and in 7'’rms it was less than 1.5
ps/km. The error is less than 1.5 percent in either case. In the examples
that follow gradient index terms are neglected.

3.4 Bandwidth of the parabolic fiber vs. X

Material dispersion causes the bandwidth of power-law fibers to
depend sharply on the excitation wavelength (\). Here and in the
following examples, the profile is assumed known at the reference
wavelength of A = 0.8 um; the concentration profile and the index
profile at other wavelengths are determined, as discussed in the
previous section.

Bandwidth is defined as the half-power frequency of the transfer
function over some distance. When intramodal dispersion is neglected,
the transfer function is
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G(w) = ¥ anexp(ior,), (67)
where 7, denotes the delay and a’, the power of the nth mode. Defining
the rms delay (rrms) by

1/2
TRMS = |:E an{Tn - Tav)z/z an] (68)

and the average delay by

Tav = 2 a,,'rn/z ap, (69)

then to second order in the w(r, — 74,), the bandwidth is
BW = 1/(277rms), (70)

in units of GHz X km for delays in ns/km.

Bandwidth was calculated on this basis over a range of wavelengths
for the parabolic fiber of example 2, assuming the tapered modal-
power distribution shown in Fig. 7. Lower-order modes are weighted
more heavily than the higher and the highest are omitted as the higher
modes are increasingly vulnerable to microbending and cladding ab-
sorption.

Figure 8 shows the spectral plot of bandwidth. The peak value
occurs at X = 0.963 um, compared to 0.983 um reported in Ref. 13.

The spectral plot is also shown for the case where material dispersion
is neglected. The figure shows that the bandwidth is lower and essen-

1

RELATIVE POWER

MODE NUMBER
Fig. 7—A plot of the tapered modal-power distribution.
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Fig. 8—Plots of bandwidth versus wavelength for parabolic fiber with and without
material dispersion, using tapered modal-power distribution.

tially constant except for small discontinuities associated with new
modes cutting in. Other calculation indicates that bandwidth increases
to a peak at 9.5 GHz X km for o = 1.98 compared to an optimum o« =
1.97 estimated by WKB analysis.*

3.5 Optimum o for power-law fibers

Material dispersion causes the optimum o of power-law fibers to
depend on excitation wavelength. Figure 9 shows bandwidth versus «
when A = 0.013 and R = 25 um for A = 0.82 pm and A = 1.32 ym. The
optimum «’s are 2.07 for the former and 1.88 for the latter, compared
to values of 2.081 and 1.884, respectively, reported in Ref. 13. The
peak bandwidths are 5.48 GHz X km and 6.02 GHz X km, respectively.

3.6 An alternate modal-power distribution

The fractional power that propagates in the cladding can be used to
derive an alternate modal-power distribution. Modes with more than
0.1 percent of their power in the cladding will lose most of their power
over 1 km for typical cladding losses of 1 dB/m. A realistic modal
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Fig. 9—Plots of bandwidth (in power-law fibers) versus « for A = .82 um and A =
1.32 um, using tapered modal-power distribution.

distribution would neglect these modes and for simplicity could weight
the others equally.

Figure 10 shows bandwidth versus « for the two cases of example 5,
assuming the new distribution. The optimum « is lower by 0.01 and
the peak bandwidth is increased by 40 to 50 percent in either case.
Table III indicates the modes neglected in the bandwidth calculation
when A = 1.32 ym and « = 1.88.

3.7 Layer structure

Layer structure in actual fibers perturbs the ideal profile. In this
example power-law profiles are approximated by steps that span equal
areas and match the ideal profile at the mid-area points of the layers
(see Fig. 11). Bandwidth at A = 1.32 um (using the modal distribution
in example 6) is shown versus « and the number of steps (NS) in Fig.
12. The graphs indicate that the optimum « is essentially independent
of NS, but the peak bandwidth and its sharpness decrease for smaller
NS.
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Fig. 10—Plots of bandwidth versus o for A = .82 um and A = 1.32 um assuming equal
excitation of modes having less than 0.1 percent power in cladding.

3.8 Delay vs. \ for a single-mode fiber

Delay (per km) of the HE;; mode was computed versus A for an
actual single-mode fiber based on its measured index profile. The
profile measurement was performed on the associated preform and is
shown in Fig. 13. The depression of the inner cladding is due to F
doping.

As the calculation presumes radially symmetric profiles, the right
and left sides were considered separately. About 750 sample points
were used in either case.

The radial scale of the fiber profile was assumed to depend linearly
on that of the preform. The fiber core radius (R) was estimated from
the preform core radius (RP), fiber diameter (DF), and preform
diameter (DP) as

R = 1.01(RP)(DF/DP), (71)

where the 1-percent addition estimates the SiO, loss in the outer
cladding during the draw process.

2684 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1983



Table Ill—Modes with less than
0.1 percent of their power in
cladding*

<0.1 Percent >0.1 Percent

Q m M m m
14 1 6
3 5
13 0 6 12 0
2 5
4 4
6 3
8 2
10 1
12 1 5 11 0
3 4
5 3
7 2
9 1
11 0 5 8 1
2 4 10 0
4 3
6 2
10 1 4 3 3
5 2
T 1
9 0
*(A=0.013, R =25 um, A = 1.32 ym,

o« = 1.88)

Figure 14 shows computed differential delay versus A for the right
and left profiles together with measurements. It was assumed that
measurement matched calculation exactly at A = 1.32 pm, because
only relative delays were measured. The zero-dispersion wavelength
(at the delay minimum) was computed as A, = 1.3127 um for the left
profile and A, = 1.3113 um for the right, compared to measurement of
Ao = 1.3114 pm.

3.9 Leakage loss vs. \ for a single-mode fiber

Leakage loss (in dB/m) of the TE mode of the single-mode fiber in
the preceding example was calculated for both sides of the profile as a
function of A and is shown in Fig. 15. The difference between the left
and right profiles becomes evident in this figure. A loss of 4 dB/m has
been identified® with effective cutoff, and corresponds to cutoff wave-
lengths, A, = 1.17 um for the left profile and A. = 1.23 um for the right,
compared to a measurement of 1.28 pm. This discrepancy is discussed
in the next section.

The equivalent step approximation (where the index of the core and
the inner cladding are area-weighted averages of the profile) gives
X = 1.308 um and A\, = 1.21 um. The A, value straddles the previous
calculated values, but the A, value is somewhat less.
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Fig. 11—A plot of a multilayered fit to an « profile (NS = 5, « = 1.90).

3.10 Design curves for single-mode fibers

The dimensionless formulation allows design curves to be generated
efficiently. Figure 16 shows V, versus V for the HE;; mode of three
power-law profiles. The specific parameters (R, A, ) determine V and,
hence, V, and dV,/dV. Delay versus A is computed according to eq.
(58) and A, is estimated at the minimum of the delay curve. Figure 17
shows A, versus R for two values of A for triangular profiles (a = 1).

IV. SUMMARY AND CONCLUSIONS

A method for computing modes of a circular optical fiber has been
presented. The finite element method reduces Maxwell’s equations to
the standard eigenvalue problem, involving tridiagonal matrices. Rou-
tines from EISPACK exploit the tridiagonal form to compute the
eigenvalues and eigenvectors efficiently. From these the modal quan-
tities are obtained.

Using a piecewise linear approximation of the waveform is necessary
to get tridiagonal form. Although piecewise quadratic and cubic ap-
proximations of the waveform can lead to smaller matrices, tridiagonal
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Fig. 12—Plots of bandwidth versus « at A = 1.32 um for four values of NS.

form is lost and the eigencalculations would be less efficient. Extension
to elliptical and other nonradially symmetric fibers leads to similar
difficulty in the eigen calculations.

The method applies to any circular fiber and can account for
gradient index terms to first order. As illustrated in the 10 examples
of Section III, the calculations can provide information on the radial
distribution of propagating power, on pulse dispersion (arising from
material, intermodal, and intramodal dispersion), and on leakage loss.

The accuracy of the method was tested for the infinite parabolic
profile of the first example. After convergence was established, the
modal quantities were compared with the actual values known through
analysis, Agreement was excellent for both a multimode and a single-
mode profile.

The WKB and scalar wave approximations were tested for the
parabolic fiber in the next two examples. The cladding of the fiber
altered the delays of the higher-order modes substantially, a facet
missed by WKB analysis. The gradient index terms contributed less
than 1.5 percent to the rms delay; and so, for most purposes the scalar
wave approximation suffices for this fiber. The validity of these
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Fig. 13—The preform profile for a single-mode optical fiber.

approximations may change in other fibers; the value of the method
is that it permits the test.

Material dispersion was incorporated into the calculation in the
remaining examples. The variation of refractive index with wavelength
and dopant concentration was modeled by Sellmeier expansions based
on measurements of bulk samples with certain dopant concentration.*”
A linear dependence of index on concentration was assumed, but is
not essential to the method. Irreversible thermal and stress effects®
might also be incorporated.

Bandwidth was estimated in examples 4 and 5 for power-law fibers
assuming a tapered modal-power distribution. With the higher-order
mode groups deemphasized, results essentially agreed with WKB
analysis. The usual sharp peak in bandwidth occurred in the spec-
tral plot for the parabolic (a = 2) fiber in example 4 and in the
a-dependence in example 5. Calculation of optimum « agreed reason-
ably well in these cases with other numerical work and WKB calcu-
lations.

The bandwidth calculation was repeated in example 6 using a
different modal-power distribution. Modes with more than 0.1 percent
of their power in the cladding were neglected, as being too lossy to
maintain power. The optimum «’s were essentially the same, but peak
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Fig. 14—Measurement and calculations for left and right profiles of differential delay
versus wavelength.

bandwidths were somewhat higher. This example could be expanded
to simulate differential mode attenuation, mode mixing, concatenation
of dissimilar fibers, and other longitudinal variations.

Perturbations of « profiles usually lower bandwidth. Example 7
concerned the effect of layer structure on bandwidth and showed the
expected decline with a smaller number of layers. Other perturbations
such as ripple can also be treated. As a measure of its efficiency, the
method used about two seconds per profile on the Cray-1 for this
example.

The last three examples concerned single-mode fibers. The first two
of these involved an actual fiber whose profile was measured in the
preform stage. Calculation of delay (per km) versus A matched meas-
urement extremely well, but calculated leakage loss exceeded meas-
urement, giving a 7-percent average underestimate of cutoff wave-
length (A.). Other calculations of leakage involving only slightly de-
pressed inner claddings, where A\, matches measurement to within 1
percent, suggest that the discrepancy may involve material changes in
the F-doped glass caused by the draw process (consistent with obser-

OPTICAL FIBER PROPAGATION MODES 2689



10° =
1025
10
s =
= —
m
g C
g »
a3 100
w E
(L] -
$ E O LEFT
x n O RIGHT
-
ID"E
10'25
o) AN N T T T Y Y
1.06 1.10 1.15 1.20 1.25 1.30 1.35

WAVELENGTH IN MICROMETERS
Fig. 15—Plots of computed leakage loss versus wavelength for left and right profiles.

a=2

Ve
w

Fig. 16—Plots of V, versus V for the HE;, mode of three power-law profiles.
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Fig. 17—Plots of computed zero-dispersion wavelength ()\,) versus core radius (R)
for two values of A, for triangular profiles.

vations in Ref. 31). Such changes need to be understood when pre-
dicting transmission performance from a preform profile. Similar
values for A, and A. were obtained for the equivalent step profile (with
depressed inner cladding), but the lower A, indicates the effect of
profile structure.

The dimensionless formulation permits the greatest efficiency in
getting design curves. Zero-dispersion wavelength (A,) for triangular
profiles is calculated in example 10 showing the expected shift* to
higher wavelengths. Spot size or cutoff wavelength can be obtained
with similar efficiency.

In summary, the calculation method is reliable, and relatively in-
expensive. In the context of circular fibers it is comprehensive, capable
of simulating diverse effects.
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APPENDIX
Gradient Index Terms

Gradient index terms, involving the quantity g, = d/drink? occur
in egs. (10) and (21). Although the index or its derivative may be
discontinuous, they can be approximated by smooth functions, so k2
and g, can be taken as well defined, continuous functions of r. This
appendix concerns the changes needed in the T matrix to accommo-
date these terms.

Equation (10) converts to symmetric form when h; = kf and both
sides are divided by k.. The result is

kdrd 1 g 2\ _ o2
(rdrkzdrk re r+k)f—ﬁf' (72)
Applying the Galerkin technique gives for the first term,
1 d d
dr (kNW), dr

dN AN\ 1 ey
(4% 28) 1 2 g, )

+1 (g dv, N,-) 2 (g,N;, @)]az (73)

A' ~ ﬂ,;‘g = —I:F (kN,):|52

2\°" dr’ dr

in place of matrix A specified in eq. (34). The first quantity is a; as
before, the second adds to the C matrix of eq. (35), and the last two
when evaluated by the trapezoidal rule contribute only to the first side
diagonals. The term g./r is handled in the same way as k2. Combining
these contributions gives a new T matrix that is symmetric and
tridiagonal.

Likewise, eq. (21) converts to symmetric form when k'/%f replaces f.
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The rest proceeds in the same way to give a symmetric, tridiagonal T
matrix.

Material dispersion is incorporated by expressing the index in terms
of concentration functions as before. Radial derivatives needed for the
gradient index terms themselves involve derivatives of the concentra-
tion function. The w? derivatives of these terms, needed for the modal
delays, are found by differentiating the coefficients of the concentra-
tion functions.
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