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Vector quantization has been used in coding applications for several years.
Recently, quantization of linear predictive coding (LPC) vectors has been used
for speech coding and recognition. In these latter applications, the only method
that has been used for deriving the vector quantizer code book from a set of
training vectors is the one described by Linde, Buzo, and Gray. In this paper,
we compare this algorithm to several alternative algorithms and also study
the properties of the resulting code books. Our conclusion is that the various
algorithms that we tried gave essentially identical code books.

I. INTRODUCTION

The technique of vector quantization for LPC voice coding has been
in use for several years, and has been shown to be of great utility for
LPC analysis/synthesis systems."™ Recently, vector quantization of
LPC vectors has been applied to speech-recognition systems both in
direct applications®® and in conjunction with work on the application
of hidden Markov models (HMMs) to recognition.”®

The main idea of vector quantization is summarized as follows:
assume that a training set {T"} of I LPC vectors is given. It is desired
to find a code book of M* LPC vectors such that the average distance
of a vector in { T} from the closest code book entry is minimized. Thus
we wish to find a set {R} of reference vectors that minimizes the
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average distance D;(M*) given by

I
Di(M*) = min [1 2 min [d(Ti:Rm)]:| ’ (1)

iR |1 =1 1<meMe
where d(T;,R,:) is the LPC distance between training vector T; and
code book entry R,,.

The optimum code book is generated by a method similar to the K-
means algorithm. Starting with an initial guess of M* entries, each
vector of the training set is assigned to the closest entry. The centroids
of the M* subsets (clusters) obtained in this manner are used as new
trial entries in the code book, and the iteration is continued until some
stopping criterion is satisfied.

For large M*, the choice of initial guesses can be quite important,
and it is unlikely that a randomly chosen initial guess is a good one.
For this reason the splitting algorithm was devised in Ref. 1. In this
algorithm a code book of M = 2 entries is optimized, as described
above, starting with a random initial guess. Next, each optimum code
book entry for M = 2 is split into 2 and used as an initial guess for a
code book of size 2M. This process is used until M = M*. To
distinguish this algorithm from others considered later, we call it the
binary-split algorithm.

To the best of our knowledge, all speech-related applications of
vector quantization so far have used this binary-split algorithm. How-
ever, a priori, the requirement that every code word be split appears
to be too restrictive. For example, after optimizing an M = 2 code
book, if one cluster contains almost all the training set and the other
contains just a few elements, it might be argued that only the larger
cluster should be split. Thus it is of interest to consider “single-split”
algorithms in which a single cluster is split at each iteration.

For very large M* (e.g., 1024 or 2048) single-split algorithms might
require prohibitive amounts of computation. However, M* on the
order of 64 or 128 can be quite useful in certain applications.® In these
cases a single-split algorithm is quite feasible. In any case, it is of
interest to know whether or not a single-split algorithm yields a better
code book than the binary-split algorithm.

There are at least three reasonable ways of implementing the
splitting rule of a single-split algorithm for training the vector quan-
tizer. To describe these three splitting rules we need some definitions.
Let

{Tw(m)} = The set of training vectors represented by the mth code
book entry (cluster) in a size M vector quantizer

Cu(m) = The number of training vectors in Tas(m)
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dy(m) = The average distance (distortion) of the Cpy(m) vectors
from the mth code-book entry

Dy(m) = The total distance (distortion) of the Cp(m) vectors.
We then have the relationships

M
I= 3 Cu(m) @)
Cuim)
du(m) = s 3 d(Tu(m)yRa) ®)
Dy(m) = Cuu(m)-dae(m). @)

Using eqgs. (2) through (4) we can write the average distortion of eq.
(1) as

M
E Dy(m)
Di(m) = min | >F——— (5a)
" 5. Caelm)
T M
Y du(m)Cu(m)
=min | ™ . (5b)
" 3 Cul(m)

Based on the above definitions, the three splitting rules we have
considered are:

Rule 1: Split the cluster, m, with the largest number of vectors,
Cu(m). We denote the resulting (vector quantizer) VQ
code-word set as R..

Rule 2: Split the cluster, m, with the largest average distortion,
du(m). We denote the resulting VQ code-word set as Ra.

Rule 3: Split the cluster, m, with the largest total distortion,
Dp(m). We denote the resulting VQ code-word set as Rp.

The key issue is how do the different splitting rules affect the prop-
erties of the resulting vector quantizer—in particular the average
distortion [eq. (1)] and the coverage of the LPC space.

We have run a series of experimental evaluations of the single-split
and binary-split algorithms for training the VQ. We have found that
each of the different splitting criteria leads to a different reference
prototype set (VQ code book); however, all the VQ sets had essentially
the same average distortion. We were also able to show that the
coverage of the LPC space for all VQ sets was identical, and that the
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average distance of any one VQ set from another VQ set was smaller
than the average distortion of the training set. Hence, the different
implementations of the training algorithm for the VQ lead to equiva-
lent VQ reference sets. Thus for any practical application the simple
binary-split algorithm is effective for deriving the VQ code book
entries.

The outline of this paper is as follows. In Section II we review the
Linde et al.' implementation of the binary-split VQ training algorithm
and show how we modified it to handle the single-split case. In Section
III we discuss the results of several experiments on testing the different
implementations of the training algorithm. In Section IV we provide
a discussion and summary of the results.

Il. IMPLEMENTATION OF THE VQ TRAINING ALGORITHM

The implementation of the VQ training algorithm is essentially the
one proposed by Linde et al.’ A flow diagram of this procedure for the
binary-split case is given in Fig. 1a and for the single-split case in Fig.
1b. Given M code words, each vector of the training set T is assigned
to the code word closest to it. The average distortion D;(M) is
computed for this assignment of the I training vectors to M clusters.
M new code words are obtained as centroids (i.e., averaged normalized
autocorrelations) of each cluster, and the distortion D;(M) computed
again. This process is iterated until it converges, i.e., until the percent
change in distortion is less than a preset value ¢ (chosen to be 1
percent in our simulations). Once convergence is achieved, M is
doubled by splitting each code word into two. The entire process is
repeated until M = M*. The iteration is initialized by choosing two
arbitrary code words.

In our implementation, we made one modification to the VQ training
algorithm of Fig. 1. We inserted a check after the classification of the
training set vectors to see if any cluster is empty (i.e., contains none
of the training set vectors). In such a case the “largest” cluster is split
into two clusters, and the convergence test is bypassed (to ensure a
reclassification in which each cluster is nonempty). However, for the
data used in this experiment, an empty cluster never occurred. In
subsequent tests with larger M* we did encounter such cases.

For the single-split algorithm (Fig. 1b), only one modification is
required. After convergence, only the “largest cluster” is split. Here
largest can refer to the cluster with the largest average distortion, total
distortion, or count.

For a convergence criterion of e = 1 percent, typically it takes three
to six iterations of the classification loop to obtain a convergent set of
clusters and centroids. We also found that the algorithms of Fig. 1a
and 1b work extremely reliably over a broad range of types of training

2606 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1983



“upa08[e yds-afBurs oy, (q) "WYyH0S(e J[ds-Areuiq oy, (¥) ‘SWYIH0SE Suturex) Jeznuenb 103094 2y} JO SHBYD Mol I—T B1g

cHW =W

€ OLNI
QIOHLINID
HOV3 L17dS

(@)
—L+W=W
431SN10
NLELT g @
anli4 3> g Ig=010g |—
_n_._chrx.:h_ {w'g=010g
Z NI Q10d1N3D
15394V
1114S @] SOIOYLN3D
(miag ?_ ENGE o)
31NdWOD
SHOLD3A
{4}=—={ 135 oNINIVHL
A4ISSY1D
ATIHYHLIBHY
SHOLI3A Z
3S00HD
oo = 010g
Z=W

{4l

(wMg
31NdNOD

!

SHOLI3A
135 ONINIVHL
AdISSYID

()

(Wilg=a10g |—

(s} —]

SAIOHLN3D
31NdWO2

ATIHVHLIBHY
SHOLD3A Z
3IS00HD

|

00 =010g
c=w

VECTOR QUANTIZATION 2607



data (e.g., collected from a single talker, collected from many talkers,
collected from a corpus of isolated words, collected from sentence-
length material, etc.).

lIl. COMPARISON OF THE BINARY- AND SINGLE-SPLIT ALGORITHMS

To compare the performances of the binary- and single-split VQ
training algorithms of Fig. 1, several tests were run. The database
consisted of a set of 39,708 LPC vectors. The LPC analysis used a
6.67-kHz sampling rate and an eigth-order analysis of 300 sample (45
ms) frames of speech. The sample frames had been preemphasized
with a simple, first-order digital network (preemphasis factor of 0.95)
and windowed by a 300-sample Hamming window. Frames were taken
100 samples apart across the duration of each word of a series of 1000
isolated words (digits) spoken by 100 talkers (50 male, 50 female). All
recordings were made over dialed-up telephone lines through a local
PBX connection. All silence outside the spoken words was eliminated
by a word endpoint detector;® hence, all LPC training frames were
from within word boundaries.

Several aspects of the binary- and single-split training algorithms
were studied. The first question considered was whether the two
training procedures yielded identical results (i.e., whether the resulting
LPC code words and the clusters from which they were derived were
identical). Figure 2 shows plots of the cluster splitting for an M* = 8
solution for the binary-split algorithm (Fig. 2a) and the single-split
algorithm based on average distance splitting (Fig. 2b). It can be seen
that the resulting eight clusters in the single-split case come from very
different splits than those for the binary-split case. For example, in

(@) (b)

Fig. 2—Splitting charts for an M* = 8 vector quantizer with splits based on average
distortion. (a) The binary-split training algorithm. (b) The single-split algorithm.
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the single-split case, final clusters 6 and 7 come from four splits of the
original cluster 2, whereas final clusters 1 and 2 come from single
splits of original clusters 1 and 2. In the binary-split case all final
clusters come from two splits of original clusters 1 and 2. Similarly,
the actual clusters were grossly different for the three different criteria
for the single-split algorithm.

The next question we considered was how the different training
procedures differed in performance. Figures 3 through 5 show a series
of plots of statistics comparing some of the details of the individual
training procedures. For each of these plots, Parts (a) through (d)
show results for the binary-split case, the single-split case based on
count, the single-split case based on average distortion, and the single-
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Fig. 3—Plots of count ratio (maximum cluster count divided by minimum cluster
count) as a function of the size of the vector quantizer. (a) Binary-split training. (b)
Sin%le-s lit training based on count. (c) Single-split training based on average distortion.
(d) Single-split training based on total distortion.
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Fig. 4—Plots of average distortion ratio as a function of the size of the vector
quantizer. (a) Binary-split training. (b) Single-split training based on count. (c) Single-
split training based on average distortion. (Cﬁ Single-split training based on total
distortion.

split case based on total distortion. The statistics plotted are ratio of
maximum to minimum cluster count (Fig. 3), ratio of maximum to
minimum average distortion (Fig. 4), and ratio of maximum to mini-
mum total distortion (Fig. 5) versus size of the vector quantizer. These
statistics were chosen because each of them should ideally approach
1.0 for clusters that are of equal size according to the corresponding
splitting criterion. For example, we would expect the count ratio to
approach 1.0 for the split on count criterion but not necessarily for
the other splitting criteria.

Examination of Figs. 3 through 5 shows several interesting things.
As seen in Fig. 3, the count ratio for the binary-split case for M* = 64
(4.1) is actually smaller than the count ratio for the single split on
count case for M* = 64 (4.8). The count ratios for the other two split

2610 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1983



[ ()

[0 1 T |

rTT1TTT

I
1 111

TOTAL-DISTORTION RATIO (MAXIMUM/MINIMUM)
@

SIZE OF VECTOR QUANTIZER (M¥*)

Fig. 5—Plots of total-distortion ratio as a function of the size of the vector quantizer.
(a) Binary-split training. (b) Single-split training based on count. (c) Single-split
training based on average distortion. (d?Single-split training based on total distortion.

criteria are indeed larger than for the split on count, as expected.
Figure 4 shows that the average-distortion ratio is smallest (4.1) at
M* = 64 for the single split on average-distortion case; however, the
distortion ratios for the binary case (4.4) and the single split on total-
distortion (4.7) cases are only slightly larger. Finally, Fig. 5 shows a
similar set of results on the total-distortion-ratio statistic in which
the results for M* = 64 for the binary-split case (2.7) are only slightly
worse than for the single split on total-distortion case (2.6).

The results of Figs. 3 through 5 indicate that the binary-split case
seems to yield cluster training statistics that are almost as good as the
best statistics for any of the single-split cases in terms of count ratio,
average-distortion ratio, and total-distortion ratio. Hence, from the
point of view of cluster statistics, the binary-split cases appear to give
the best overall performance.
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Two gross performance checks were made on the training algo-
rithms. In the first test, the average distance between vector quantizer
sets obtained from the different training procedures was calculated as
a function of M*. The results of this test are given in Table I. It can

Table I—Average distance between code book entries of vector
quantizers designed on the basis of count (R.), average distortion
(Rq), total distortion (Rp), and binary splitting (Re)

M* d(R., Ra) d(R., Rp) d(R., Rs) d(R4, Rp) di(M*)t

4 0.384 0.019 0.047 0.270 0.707
8 0.1256 0.138 0.157 0.101 0.426
16 0.148 0.143 0.160 0.065 0.326
32 0.191 0.108 0.175 0.132 0.255
64 0.216 0.131 0.148 0.131 0.203

h + Average distance between the training vectors and the code words representing
them.

0.9

*)

Drim

2 4 8 16 a2 64
M*ON LOG SCALE

Fig. 6—Plot of average training set distortion J;(M*) as a function of the size of the
vector quantizer.
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be seen that the average distance between vector quantizer sets is as
small or smaller than the average distance of the training vectors to
the code book sets. Hence, the code book sets derived from the different
training algorithms are, on average, quite close to each other.

The second test we performed was to measure the average distortion,
Dy(M*) versus M* for the different training algorithms for values of
M* from 2 to 64. The results of this test are plotted in Fig. 6. On the
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Fig. 7—Plots of code-word coverage in the F,-F,, F,-Fs, and F,-F; planes for an M*
= 64 vector quantizer.
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scale of this plot, the differences in average distortion are indistin-
guishable among the different vector quantizers.

The third and final question we considered concerns the coverage
of the space of speech sounds by the optimum code books. A good way
of displaying this coverage is to look at the code books in the space of
formant frequencies. The formant frequencies (and bandwidths) for
each entry of the code book are given by the zeroes of the trigonometric
polynomial associated with it. Thus each code book may be displayed

m* = 1024 VECTOR QUANTIZER
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= 1024 vector quantizer.
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as a scatter plot in F-F,-F; space. Projections of this scatter diagram
on the F,-F,, F,-F;, and F,-F; planes are shown for a typical code book
in Figs. 7 and 8 for the code books obtained from the binary-split
training algorithm for M* = 64 (Fig. 7) and M* = 1024 (Fig. 8). It is
seen that the code words cover the expected regions in the formant
frequency planes fairly uniformly. The major difference between the
coverage of the M* = 1024 and the M* = 64 code books is the density
of coverage of the areas in the respective formant frequency planes.
The coverage of the single-split algorithms for M* = 64 was essentially
identical to that of the binary-split algorithm.

IV. DISCUSSION

Our overall conclusion from the tests that compared the fine and
gross differences in clustering LPC vectors via a VQ training algorithm
is that all the variations in the training procedure that we studied (i.e.,
different splitting procedures, different convergence criteria, etc.) lead
to essentially indistinguishable differences in the set of VQ code book
entries. Since the binary-split algorithm, as discussed by Linde et al.!
requires the least amount of computation, it is the best of the algo-
rithms considered.

In this paper we present the results of a series of experiments on a
training set of 39,708 vectors. More recently we have experimented
with the binary-split VQ training procedure on a number of different
training sets whose size varied from 10,000 to 600,000 vectors. We
found that the training procedure always rapidly and reliably con-
verged to a set of code book vectors whose properties were similar to
those described in this paper. We are currently using the VQ code
book sets in work related to speech recognition and speech coding.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge several fruitful discussions with
Fred Juang of Bell Laboratories concerning the characteristic prop-
erties of the VQ clusters. Juang’s insight into the training procedure
and the resulting properties of the code book vectors coincided with
the results we found in this study.

REFERENCES

1. Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantization,” IEEE
Trans. Commun., COM-28, No. 1 (January 1980), pp. 84-95.

2. B. Juang, D. Wong, and A. H. Gray, Jr., “Distortion Performance of Vector
Quantization for LPC Voice Coding,” IEEE Trans. on Acoust., Speech, and Signal
Proc., ASSP-30, No. 2 (April 1982), pp. 294-303.

3. A. Buzo, et al., “Speech Coding Based Upon Vector Quantization,” IEEE Trans. on
Acoust., Speech, and Signal Proc., ASSP-28, No. 5 (October 1980), pp. 562-74.

4. D. Wong, B. Juang, and A. H. Gray, Jr., “An 800 Bit/S Vector Quantization LPC
Vocoder,” IEEE Trans. on Acoust., Speech, and Signal Proc., ASSP-30, No. 5
(October 1982), pp. 770-80.

VECTOR QUANTIZATION 2615



5. A. Buzo, H. Martinez, and C. Rivera, “Discrete Utterance Recognition Based Upon
Source Codin%Techniques,“ Proc. ICASSP-82 (Mair| 1982), pp. 539-42.

6. J. E. Shore and D. Burton, “Discrete Utterance Speech Recognition Without Time
Normalization,” Proc. ICASSP-82 (May 1982), pp. 907-10.

7. R. Billi, “Vector Quantization and Markov Source Models Applied to Speech
Recognition,” Proc. ICASSP-82 (May 1982), pp. 574-17.

8. L. R. Rabiner, S. E. Levinson, and M. M. Sondhi, “On the Application of Vector
Quantization and Hidden Markov Models to Speaker Independent, Isolated Word
Recognition,” B.S.T.J., 62, No. 4 (April 1983), pp. 1075-105.

9. L. F. Lamel, et al. “An Improved Endpoint Detector for Isolated Word Recognition,”
IEEE Trans. on Acoust., Speech, and Signal Proc., ASSP-29, No. 4 (August
1981), pp. 777-85.

AUTHORS

Stephen E. Levinson, B. A. (Engineering Sciences), 1966, Harvard; M.S.
and Ph.D. (Electrical Engineering), University of Rhode Island, Kingston,
1972 and 1974, respectively; General Dynamics, 1966-1969; Yale University,
1974-1976; Bell Laboratories, 1976—. From 1966 to 1969, Mr. Levinson was
a design engineer at Electric Boat Division of General Dynamics in Groton,
Connecticut. From 1974 to 1976, he held a J. Willard Gibbs Instructorship in
Computer Science at Yale University. In 1976, he joined the technical staff at
Bell Laboratories, where he is pursuing research in the areas of speech
recognition and cybernetics. Member, Association for Computing Machinery;
Fellow, Acoustical Society of America; Senior Member, IEEE, editorial board
of Speech Technology; Associate Editor, IEEE Transactions on Acoustics,
Speech and Signal Processing.

Lawrence R. Rabiner, S.B. and S. M., 1964, Ph.D. (Electrical Engineering),
The Massachusetts Institute of Technology: Bell Laboratories, 1962—. From
1962 through 1964, Mr. Rabiner participated in the cooperative plan in
electrical engineering at Bell Laboratories. He worked on digital circuitry,
military communications problems, and problems in binaural hearing. Pres-
ently, he is engaged in research on speech communications and digital signal
processing techniques. He is coauthor of Theory and Application of Digital
Signal Processing (Prentice-Hall, 1975), Digital Processing of Speech Signals
(Prentice-Hall, 1978), and Multirate Digital Signal Processing (Prentice-Hall,
1983). Former President, IEEE, ASSP Society; former Associate Editor, ASSP
Transactions; former member, Technical Committee on Speech Communica-
tion of the Acoustical Society, ASSP Technical Committee on Speech Com-
munication; Member, IEEE Proceedings Editoral Board, Eta Kappa Nu,
Sigma Xi, Tau Beta Pi. Fellow, Acoustical Society of America, IEEE.

Man Mohan Sondi, B.Sc. (Physics), Honours degree, 1950, Delhi University,
Delhi, India; D.I.I.Sc. (Communications Engineering), 1953, Indian Institute
of Science, Bangalore, India; M.S., 1955; Ph.D. (Electrical Engineering), 1957,
University of Wisconsin, Madison, Wisconsin; Bell Laboratories, 1962—.
Before joining Bell Laboratories, Mr. Sondhi worked for a year at the Central
Electronics Engineering Research Institute, Pilani, India and taught for a year
at the University of Toronto. At Bell Laboratories his research has included
work on speech signal processing, echo cancellation, adaptive filtering, mod-
elling of auditory and visual processes, and acoustical inverse problems. From
1971 to 1972 Mr. Sondhi was a guest scientist at the Royal Institute of
Technology, Stockholm, Sweden.

2616 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1983



