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To implement an isolated word recognizer based on filter bank
technigues, decisions must be made as to how to condition the speech
signal prior to the filter bank analysis (preprocessing), how to con-
dition the feature vector at the output of the filter bank analysis
(postprocessing), and how to perform the time alignment in the
pattern comparison between an unknown test pattern and previously
stored reference patterns (registration and distance computation). In
the past most designers of such word recognition systems made
arbitrary choices about how the various signal processing operations
were to be carried out. This paper presents results of a systematic
study of the effects of selected signal processing techniques on the
performance of a filter bank isolated word recognizer using tele-
phone-quality speech. In particular, the filter bank analyzer was a
13-channel, critical-band-spaced filter bank with excellent time res-
olution (impulse response durations of from 3 to 30 ms) and poor
frequency selectivity (highly overlapping filters with ratios of center
frequency to 3-dB bandwidth of about 8 for each band). Among the
signal processing techniques studied were: preemphasis of the speech
signal; time and frequency smoothing of the filter bank outputs;
thresholding, quantization, and normalization of the feature vector;
principal components analysis of the feature vector; local and global
distance computations for use in the time alignment procedure; and
noise analysis in both training and testing. Each of the signal
processing techniques was studied individually; hence no tests were
run in which several of the techniques were used together. Results
showed that some fairly simple signal processing operations provided
the best overall performance in the noise-free case; in noisy conditions
performance degraded significantly for signal-to-noise ratios less
than about 24 dB.
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I. INTRODUCTION

To implement an isolated word recognizer based on a filter analysis,
decisions must be made as to how to preprocess the speech signal prior
to the filter bank analysis, how to postprocess the feature vectors
obtained at the output of the filter bank analysis, and how to perform
the time alignment and distance computation in the pattern compari-
son between an unknown test pattern and previously stored reference
patterns. Often such decisions are made arbitrarily based on experi-
ence, heuristic procedures, or sometimes a few brief tests with the
system. To our knowledge no one has attempted to systematically
examine the effects of various signal processing techniques on the
performance (as measured in word error rate) of a filter-bank-isolated
word recognizer. This paper provides such a comparison by examining
several of the most popular signal processing techniques and showing
how they affect the performance of a particular filter bank word
recognizer using telephone-quality speech.’

There are two inherent problems with any study that attempts to
find the best signal processing techniques for a system via experimental
means. The first is that the results presented are highly dependent on
the signal processing techniques that were studied. Hence, the
“optimal” way of processing the signal may not even have been
investigated (due to lack of knowledge, etc). With our limited knowl-
edge we know of no way to avoid this difficulty. The second problem
is that, of necessity, each of the various signal processing techniques
is studied independently of any other (thereby tacitly assuming inde-
pendence of the various methods). Hence, any interactions between
the techniques studied will go unnoticed. Again, we know of no
practical way of studying the interactions between signal processing
operations; the processing, assuming independence of operations, took
about four full months on a modern minicomputer system!

The results to be presented in this paper are an extension of a
previous study' that examined different filter bank structures and
compared their performance to that of a conventional linear predictive
coefficient (LPC) word recognizer.”® The key results of this earlier
work were:

(i) The best performance in word recognition tests was achieved
by both a 13-channel, critical-band-spaced filter bank, and a 15-chan-
nel, uniformly spaced filter bank. Both filter banks had composite
frequency responses without gaps at the band edges. The 13-channel
filter bank had highly overlapping filters; the 15-channel filter bank
had filters with almost no overlap.

(ii) There were significant performance differences between talkers
(especially female as opposed to male talkers).
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(tif) Performance of the LPC and the best filter bank recognizers
were comparable for a simple vocabulary of the 10 digits using tele-
phone-quality speech (with no extra noise degradation) over a dialed-
up telephone line using a local private branch exchange (PBX).

(iv) Performance of the LPC recognizer was superior to that of the
best filter-bank recognizers for a complex vocabulary of the alphabet,
digits, and three command words, again using telephone-quality
speech.

A key question arising from these results was whether any of the
proposed signal-processing techniques for the filter bank system could
bring up the performance to that of the LPC system for the complex
alpha-digits vocabulary. Unfortunately, we will see that none of the
proposed methods was able to significantly improve filter-bank per-
formance. (However, some were able to keep performance the same
while reducing required storage.)

Two other implementational aspects of word recognizers were stud-
ied. The first involves the use of the normalize-and-warp procedure
proposed by Myers et al.* In this procedure a fixed-length pattern is
created for both test and reference patterns prior to time alighment.
In this manner the largest warping area is obtained, and the compu-
tational aspects of implementing the time-warping procedure are
greatly simplified. Instead of considering just the word average length
for warping, we studied the effects (for both the filter bank and LPC
systems) of warping to prespecified lengths of various amounts. It was
found that a large amount of compression could be made before system
performance degraded by a significant amount.

The second implementational aspect studied was the effects of
additive noise on the performance of both the LPC and filter bank
recognizers. We considered cases in which both the training and testing
occurred in the noisy background, and when only the testing occurred
in the noisy background. It was found that far superior performance
was obtained, at all signal-to-noise ratios, when both training and
testing occurred in the noisy background. Furthermore, performance
of both types of recognizers degraded for signal-to-noise ratios less
than or equal to 24 dB. Also, for signal-to-noise ratios greater than 6
dB, the LPC recognizer outperformed the filter bank recognizer.

An overview of the work presented in this paper is as follows. In
Section II we review the general implementation of the filter bank
isolated word recognizer. In Section III we discuss the signal processing
methods that were studied in conjunction with the filter bank. In
Section IV we discuss the noise studies. In Section V we describe the
experiments performed and give word error rates for the various tests.
Finally, a discussion of the results is given in Section VI.
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Il. THE FILTER-BANK-ISOLATED WORD RECOGNIZER

Figure 1 shows a block diagram of the overall filter bank word
recognizer. The input speech signal is recorded off a dialed-up tele-
phone line, band-limited to 3200 Hz, and digitized at a 6.67-kHz rate.
The digitized speech signal, s(n), is first sent to a preprocessor to
condition the signal for the filter bank analyzer. Preprocessing is
basically a spectra-shaping operation (e.g., linear filtering) for in-
creased immunity to finite word-length processing in the remainder of
the system.? The preprocessed signal, §(n), is then sent to a filter bank
analyzer whose structure is shown in Fig. 2. The filter bank contains
a set of @ parallel bandpass filters that cover the speech band of
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Fig. 1—Filter bank word recognizer with both preprocessing and postprocessing
operations.
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Fig. 2—Structure of filter bank analyzer.
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interest (100 to 3200 Hz for telephone speech). Each bandpass filter is
followed by a nonlinearity (NL), a low-pass (LP) filter, a sampler, and
a logarithmic compressor. The output of the filter bank at time m is a
vector

X(m) = [Xi(m), Xz(m), - - -, Xo(m)], (1)

whose components X;(m) represent the energy in the speech signal in
channel i at time m.

In our previous work' we studied the effects of different types of
filter banks on recognizer performance and found that the highest
accuracy was obtained with two types of filter banks, namely:

(i) A 13-channel, critical-band-spaced filter bank with higher over-
lapping channels. This filter bank had excellent time resolution (on
the order of 10 ms) but poor frequency resolution.

(ii) A 15-channel, uniformly spaced filter bank with essentially no
overlap between channels. This filter had poor time resolution but
excellent frequency resolution. The composite spectrum of this filter
bank was flat to within fractions of a dB.

Both of these filter banks used a magnitude nonlinearity and a 3-
pole, Bessel, low-pass filter with a 30-Hz cutoff frequency. The sam-
pling rate of the output feature vector was 67 Hz—i.e., adjacent feature
estimates were spaced 15 ms in time.

The output of the filter bank was sent to a postprocessor, which
performed one or more of the following operations:

(i) Time smoothing of feature vectors

(ii) Frequency smoothing of channels within a feature vector

(Zif) Normalization of the feature vector

(iv) Thresholding and/or quantization of the feature vector

(v) Principal components analysis of the feature vector.

The output of the postprocessor was the input pattern to either the
training mode (a robust training procedure®), or to the testing mode.
In the training mode a set of word reference templates were created
based on consistent matches of tokens of a word to previously analyzed
tokens of the same word. In the testing mode the test pattern, T,
consisting of the sequence of feature vectors

T = {R(1), X(@), --- , X(M)) (2)

was compared to the reference pattern, R’, for the ith vocabulary word
using a dynamic time-warping alignment procedure.” For the ith
reference pattern, a total average distance, D;, between it and the test
pattern was computed, and simple decision logic was used to make the
word choice for recognition.

To implement the word recognizer of Fig. 1, one has to choose the
types of processing to go into the preprocessor, the filter bank analyzer,
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the postprocessor, and the dynamic time-warping algorithm. Based on
the earlier study' we limited the filter bank to the 13-channel critical-
band filter bank. However, for each of the remaining signal-processing
blocks we tried to choose one or more possibilities and then did
experiments to evaluate its usefulness to the overall word recognizer.
We discuss our choices in detail in Section III. In addition we chose to
study the effects of both noise addition and length quantization of
both reference and test patterns on overall performance. These exper-
iments are described in Section IV.

1l. SIGNAL PROCESSING CHOICES IN THE RECOGNIZER
3.1 Preprocessor

The function of the preprocessor is to spectrally shape the speech
signal to achieve some desired gross spectral shape. The most common
form of preprocessing is simple preemphasis, which is used to compen-
sate the inherent 6-dB per octave falloff in the speech spectrum. In
such a case a simple first-order network of the form

H(iz)=1-oaz"" (3)

has been found adequate® for recognition purposes. Thus, the differ-
ence equation relating §(n) to s(n) is of the form

§(n) = s(n) — as(n — 1), (4)

where a value of o = 0.95 has been used previously.

3.2 Postprocessing

We denote the output of the gth channel of the filter bank at frame
masX,(m),m=12,--- ,M,g=12, --., Q. All of the postprocessing
operations can be expressed in terms of signal processing on X,(m) to
give the signal X,(m). We have considered the operations in Sections
3.2.1 through 3.2.5.

3.2.1 Thresholding and energy normalization

The purpose of channel thresholding is to clamp low-level noise
signals from channels at times when essentially no speech signal is
present. This is done by applying a threshold so that channel signals
below threshold are clamped at the threshold value. In this way much
less sensitivity to background noise is achieved. In particular, this is
achieved by determining X}#*, the peak signal level for the gth
channel, for each word as:

X3 = max [X,(m)]. (5)
1=m=M
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Then the threshold for the gth channel is set at
T = X% - T*, (6)

where T'* is a parameter of the recognition system. A typical range of
T* is from 30 to 50 (dB).! The thresholded channel signal is then given
as

X,(m) = max[X,(m), T4 (7)

for all ¢ and m.

The purpose of frame energy normalization is to compensate for
variations in speech level from utterance to utterance. We have con-
sidered two distinct normalization methods, which we call average and
peak normalization. For average normalization we calculate the frame
average, X(m), as

_ 18
X(m) == ¥ X,(m), (8)
Q q=1

and for peak normalization we calculate the peak as

X(m) = max [X,(m)]. (9)
l=g=Q

The energy-normalized feature vector is then given as'
X,(m) = X,(m) — X(m). (10)

It can readily be shown that both peak and average normalization
have the property that if a feature set T is derived from the speech
signal s(n), then the feature set 7" derived from

s'(n) = ys(n) (11)

will be identical to T after the normalization of eq. (10) is carried out.
Hence, gain variations are normalized out of the processing as desired.

3.2.2 Time smoothing of feature vectors

The purpose of time smoothing of feature vectors is to reduce the
variability in channel outputs by averaging adjacent time frames. The
cost of such smoothing is a decrease in time resolution achieved by the
recognizer. If we assume that M * adjacent frames are to be overlapped
and smoothed, then time smoothing can be expressed as

Xq(m) = E . Xq(rﬁ), m= M*s Tty M- (12)

* The reader is reminded that the channel signals are logarithmically encoded. Hence,
normalization takes the form of subtraction.
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It should be noted that the first (M * — 1) frames are eliminated and
are used as initial conditions for the smoothing.

3.2.3 Frequency smoothing of channel outputs

As in time smoothing, the purpose of frequency smoothing is to
reduce the variability in channel outputs by averaging adjacent chan-
nels for a given time frame. Again, the cost of this smoothing is a loss
in frequency resolution. If we assume that @* adjacent channels are to
be overlapped and smoothed, then frequency smoothing can be ex-
pressed as

1 q
— X Xim), q=@%---,Q (13)

QF -9+

Xq(m) =

It should again be noted that the first (@ * — 1) channels are eliminated
and are used as initial conditions for the smoothing.

3.2.4 Quantization of channel outputs

The purpose of quantizing the channel outputs is to reduce the
storage requirements of the recognizer both for reference patterns and
for the test pattern. If we use a B-bit quantizer, and we assume the
channel signals are in the range [0, —7"*] because of the thresholding
and energy normalization operations, then with a uniform quantizer
we have a quantization width of

=25 (14)
and we can express the quantized output signal as
X,(m) = | X,(m)/AE |- AE, (15)

where [x] is the greatest integer less than x, and it is assumed that
X,(m) is already thresholded and energy normalized.

3.2.5 Principal components analysis

The last form of postprocessing that we considered was a principal
components analysis’ in which the @-dimensional filter bank feature
vector is transformed into a new P-dimensional feature vector, where
P < @, such that all the important information in the original vector
is retained. The purpose of reducing the feature dimensionality is to
reduce the required storage for reference and test patterns. This
method has also been used by Pols’ to recognize vowels with good
success.

The way in which the principal components analysis was performed
was as follows. The first step is to collect a large number of filter bank
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feature vectors and to compute the covariance matrix, A, between
dimensions as

¥ [X(-) = X)X (+) = X, ()]

Ayj= (16)

731
{Z [Xi(-) — X)) LX) = Xj(-)]z}

where the summation is over the training set of feature vectors. The
principal components analysis then determines a new dimension,
which is a linear combination of the original @ dimensions, that
contains as much of the total variance as possible. Then a second new
dimension is determined such that it is orthogonal to the first new
dimension and contains as much of the remaining variance as possible.
This new dimension is again a linear combination of the @ old dimen-
sions. This process is continued until we have P new orthogonal
dimensions, all of which are linear combinations of the original @
dimensions. Hence, if we denote the transformed set as X.g(m), the
transformation to the new dimensions is of the form

Q
Rim) = ¥ Be@X,m), G=1,2,---,P, (17)
g=1

where 8;(q) is the coefficient vector for dimension 4.

The resulting P-dimensional space of the principal components
analysis contains as much of the total variance of the original space as
is possible in P dimensions. The new space is obtained formally by
doing an eigenvector analysis of the original covariance matrix, A. The
resulting eigenvectors are the coefficient vectors for the transformation
of eq. (17).

3.3 Dynamic time-warping considerations

Once the feature vectors have been obtained, the recognizer must
compare the unknown test pattern, T, to each word reference pattern,
R,i=1,2 ..., V, for a V-word vocabulary. For this comparison the
technique of dynamic time warping (DTW) is used.*®® If we denote
the test pattern, T, as

T={TQ1),T®),-.--,TM)} (18)
and the ith reference, R;, as
R'= {(R'(1), R'(2), ---, R'(N))}, (19)
then the DTW algorithm determines a warping path
n = w(m) (20)
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such that the total distance, D(T, R’), defined as

. 1 M .
D(T,R") = u E_l d{T(m), R'[w(m)]} (21)

is minimized, where d(T, R) is the local distance between test and
reference frames.

We have considered several variations on the conventional DTW
algorithm. First we have modified the global distance of eq. (21) to
include a time weighting of the form

M
Y WTm)d{T(m), RTw(m)]}
DT, R =" : )
Y W(m)
m=1

where W7(m) is the weight applied to the local distance at frame m.
It should be noted that in eq. (22) the weight is a function of only the
test pattern, 7.

We have also considered a variety of types of local distance calcu-
lations of the form

@ ;
{ S (WIVTI T(@) - Rig) |"]}

g=1

d(T,R) = (23)

Q 1 ’
£ o)
q=1
where WY is a frequency weighting curve dependent only on the test
pattern, 7', and p is the distance power for emphasizing the frequency
variations. Typical values for p are 1 (magnitude distance), 2 (squared
distance), and 1/2 (square root distance). Again, it should be noted
that the frequency weight of eq. (22) is only a function of the test
frame.

An alternative form of distance weighting was suggested by Silver-
man and Dixon'® and is of the form

19 L
d(T,R)=§E |T(g) — R(g) — f(|T — R))|, (24)
g=1
where
f(3) =1——s (25)
yMAX

and yMA¥ is the largest value that y can attain. The form of eq. (24) is
similar to that of the average normalization [eq. (8)] discussed earlier
in that the means of T and R (over channels) are essentially subtracted
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from each T'(g) and R(g) component. However, this is only the case
when |7 — R| = 0, in which case f(|T — R|) = 1. For cases in which
|T — R| is large (i.e., close to the maximum difference of 7T*), then
f(| T = R|) = 0 and no mean correction is used. Thus, the weighting of
eq. (24) places extra emphasis on regions of high average energy
difference, and less emphasis on regions of low average energy differ-
ence. We denote the distance measure of eq. (24) as the Silverman-
Dixon (SD) distance measure.

The last variation on the conventional DTW algorithm that we have
investigated is the relaxation of the endpoint constraints on the warp-
ing path. Normally we use the simple constraints that

w(l)=1 Initial Point (26a)
w(M) = N; Final Point, (26b)

i.e., the first test frame is mapped to the first reference frame and the
last test frame is mapped to the last reference frame. We have consid-
ered relaxation of both endpoint constraints of eq. (26) to the form

1 < w(Mg) < 8gkG, 1< Mp =< 8Brg (27a)
N; — 6gnp < w(MEg) = N;, M— Senp =< Mg <M. (27b)

The new endpoint constraints say that the warping path can begin
anywhere within a square of size 8gec X Ogrc at the origin of the test-
reference plane, and end anywhere with a square of size dgnp X Senp
at the upper right-hand corner of the test-reference plane. This situa-
tion is depicted in Fig. 3. By using local path constraints, which keep
the slope of the warping path greater than 1/2 and less than 2, the
warping path becomes constrained to lie within the shaded area of the
test-reference plane.

3.4 The normalize-and-warp procedure

The conventional DTW algorithm works quite well for most cases
of interest. However, in cases when the length of the test pattern, M,
is significantly different from the length of a reference pattern, N, then
the region in the test-reference plane in which the warping path can
lie often becomes very small. To handle such cases the normalize-and-
warp procedure was devised,' and it basically consists of linearly
prenormalizing both the test and reference patterns to a fixed length,
N, and then performing the DTW on these equal length patterns. In
this manner the area in the test-reference plane in which the warping
path can lie is maximized; hence we have the best chance of finding a
good time-alignment path.

The normalize-and-warp procedure has been successfully used in a

number of tests with an LPC recognizer*''""? with very good results.
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For all these systems the fixed length to which all patterns were
warped was the average duration of all words in the vocabulary. In
this study we consider use of the normalize-and-warp procedure with
the fixed length parameter a free variable.

3.5 Summary of signal processing choices

In this section we have enumerated a number of ways of imple-
menting the signal processing of a filter bank isolated word recognizer.
These factors include

(i) Spectral preemphasis
(ii) Thresholding of channel signals
(iti) Energy normalization of channel signals
(iv) Time smoothing of feature vectors
(v) Frequency smoothing of channel outputs
(vi) Quantization of channel signals
(vii) Principal components analysis
(viii) Time weighting of local DTW distances
(ix) Frequency weighting of channel signals in DTW computation
- (x) Local distance metric for DTW computation
(xi) Loosened endpoint constraints in DTW computation
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(xii) Use of the normalize-and-warp procedure for DTW compu-
tation.
In Section V we give the actual choices that were studied for each of
the above factors. First, however, we describe the tests of the noise
immunity of both filter bank and LPC word recognizers.

IV. NOISE STUDIES WITH THE ISOLATED WORD RECOGNIZER

Almost all tests of isolated word recognizers are made in a laboratory
environment with a high signal-to-noise ratio on the recordings (e.g.,
greater than 35 dB is typical). There are a wide variety of applications
(namely those of the military) in which the word recognizer is required
to operate in noisy environments [e.g., signal-to-noise ratios (s/n)
around 0 to 20 dB]. Thus, an important consideration in the evaluation
of an isolated word recognizer is how the performance degrades as the
background goes from laboratory conditions to highly noisy conditions.

When a word recognizer must operate in high-background-noise
environments, an important issue arises, namely, whether it is better
to train the system in a noise-free environment (and test in the noisy
background), or to train and test in the noisy background. We have
attempted to study these questions by artificially adding uncorrelated,
zero mean, white noise to the speech signals at a specified signal-to-
noise ratio, and then performing the required word recognition tests
on both the filter bank and LPC word recognizers. A discussion of the
test conditions and the results is given in the next section.

When one is concerned with using a word recognizer in an environ-
ment with a poor signal-to-noise ratio, another important consideration
is whether one would “cancel” any of the noise by using a noise
spectral estimation technique and subtracting the noise spectrum out.
These techniques have been investigated in the context of voice
coding'*'® and have achieved various degrees of success. For suffi-
ciently stationary noise backgrounds it seems reasonable to expect
that a high degree of noise cancellation could be obtained. For such
cases it would be of interest to understand how such noise cancellation
algorithms work in the context of word recognition.

V. EXPERIMENTAL RESULTS ON ISOLATED WORD RECOGNITION

To evaluate the effects on performance (word error rate) of each of
the recognition system factors of Sections III and IV, a series of tests
were run with the following specifications:

Vocabulary — 39 word alpha-digits

Number of talkers — 2 male, 2 female

Training — 7 replications for each word
Testing — 10 replications for each word.
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Table I—Word error rates for filter bank and LPC
word recognizers
Candidate Position

Talker 1 2 3 4 5

(a) Rates for baseline filter bank recognizer as a function of talker
and candidate position

1 (Male) 9.0 4.1 0.5 0.5 0.0
2 (Male) 5.4 2.3 1.0 0.5 0.3
3 (Female) 13.1 2.8 0.5 0.3 0.3
4 (Female) 18.7 8.5 4.4 2.1 1.3
Average 11.6 44 1.6 0.9 0.5
(b) Rates for LPC recognizer as a function of talker and candidate
position
1 (Male) 5.1 0.5 0.0 0.0 0.0
2 (Male) 4.1 2.3 0.8 0.3 0.3
3 (Female) 10.3 23 1.3 1.0 0.5
4 (Female) 11.8 6.7 3.3 1.3 0.8
Average 7.8 3.0 14 0.7 0.4

All recordings were made over dialed-up telephone lines, and the test
and training replications were obtained in different recording sessions.
The speaker-dependent training used the robust training method® to
give a single reference pattern for each vocabulary word.

The filter bank used was the 13-channel, critical-band spacing sys-
tem that gave essentially the best performance in earlier tests.! A
“baseline” filter bank recognizer was defined that had the following
signal processing options:

(i) No preemphasis—a = 0.
(i) Channel thresholding at 7* = 50 dB below the peak in each
channel.
(iii) Average energy normalization.
(iv) No time smoothing—M™* =1
(v) No frequency smoothing—@* = 1.
(vi) No quantization of channel signals (i.e., floating point accu-
racy)—B = oo.
(vii) No principal components analysis.
(viii) Uniform time weighting of local distances—W7(m) = 1, all m.
(ix) Uniform frequency weighting of local distances— W} = 1,
all g.
(x) Magnitude local distance—p = 1.
(xi) No opening up of DTW endpoint regions—&gec = enp = 1.
(xii) No length prenormalization prior to the DTW.

(xiii) No additive noise—s/n(Test) = s/n(Train) = .

The performance results of this baseline system are given in Table Ia
and are shown plotted in Fig. 4a. Both the table and the figure show
the word error rate as a function of candidate position for all four
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Fig. 4—Plots of word error rate versus candidate position for each of the four talkers
and thg average for (a) the baseline 13-channel filter bank system, and (b) the LPC word
recognizer.

talkers (the solid curves in Fig. 4a) and the average (the dashed curve).
These results show an average error rate of 11.6 percent in the top
candidate position, with a high degree of variability in error rate across
talkers. For comparison purposes, Table Ib and Fig. 4b show similar
results on the LPC word recognizer. The average error rate for the top
candidate position is about 4 percent lower for the LPC recognizer
than for the 13-channel filter bank recognizer. Again we see a fair
degree of variability in error rate scores across talkers for the LPC
recognizer.

In the following sections we present results of tests designed to
measure changes in performance of the filter bank recognizer as the
factors noted above are varied. As discussed earlier we have been
forced to use the expedient of only varying one parameter at a time;
hence all information about interactions between two or more param-
eters is unavailable.
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5.1 Effects of simple preemphasis

Only one value of the preemphasis constant, a, was studied, namely,
a = 0.95. This is the value used in previous work on the LPC recog-
nizer.’ The results of recognition with the use of the preemphasis
network are given in Table Ila (only results for top candidate position
are included). It can be seen by comparing these results to those of the
baseline system that a small improvement in average accuracy was
obtained. This improvement was not statistically significant at the 0.9
confidence level.

5.2 Effect of clipping threshold

The values studied for the clipping threshold were T* = 40 and
T* = 30 (dB). The resulting recognition scores are given in Table IIb
for the top candidate position. The results for 7* = 40 are comparable
to those for T* = 50 in the baseline system, whereas for T* = 30 a
significant loss (2.4 percent) in word accuracy is obtained. Hence, a 30-
dB range is deleterious to the channel signals in that useful recognition
information is lost by clamping the signals at too high a level.

5.3 Effects of peak energy normalization

The results of using peak (rather than average) energy normalization
of the channel signals are given in Table Ilc." The results show a large
increase in word error rate for all talkers, thereby indicating a lack of
stability of the peak in each frame and therefore its inappropriateness
to be used as an energy normalization aid.

5.4 Effects of time smoothing

The value used for the smoothing duration, M*, were 2 and 3
(frames). The recognition results for this condition are given in Table
I1d for the top candidate position. For M* = 2 an insignificant increase
in average error rate occurred, while for M* = 3 there was a very
significant increase in error rate. The results show that time smoothing
produced far worse scores for female talkers (3 and 4) than for male
talkers (1 and 2). This was undoubtedly due to the high variability in
channel signals for the females (due to the high pitch frequency),
which often led to smearing a “good” frame with a “bad” adjacent
frame. The results indicate that time smoothing should not be done.

5.5 Effects of frequency smoothing

The results of smoothing across @* = 2 adjacent frequency channels
are given in Table Ile. It can be seen that a uniform increase of about

tRecall that average normalization is one of the standard options used in the
recognizer.
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Table Il—Word error rates for several signal processing techniques in

the filter bank recognizer

Talker
(a) Rate with preemphasis (a = 0.95)

a 1 2 3 4 Average
0.95 7.7 7.7 11.8 174 11.2

(b) Rates as a function of threshold parameter, T* (dB)
T 1 2 3 4 Average
40 8.7 6.9 13.3 174 11.6
30 9.5 85 17.2 21.0 14.0

(c) Rates for peak energy normalization

Method 1 2 3 4 Average
Peak 23.1 19.5 14.4 40.5 24.4

(d) Rates as a function of number of frames over which
smoothing occurred, M*

M* 1 2 3 4 Average
2 79 5.6 13.1 21.3 12.0
3 7.7 5.6 26.9 29.7 17.6

(e) Rates as a function of number of fre uency channels over
which smoothing occurreqd

Q* 1 2 3 4 Average
2 12.6 74 15.4 20.5 14.0

(f) Rates as a function of B, the number of bits used to
quantize the channel signals

B 1 2 3 4 Average
6 6.7 5.6 144 174 11.0
4 11.3 7.2 16.9 18.7 13.5
(g) Rates as a function of P, the dimensionality of the
principal components analysis
P 1 2 3 4 Average
12 11.3 9.9 25.1 295 18.7
6 11.3
4 115
2 18.7
(h) Rates using a nonuniform time weighting in the DTW
algorithm
1 2 3 4 Average
9.2 6.5 14.5 19.5 124
(i) Rates using a nonumform fre glmncy weighting in the DTW
algori
Welght 1 2 3 4 Average
Fig.5 8.7 8.7 16.2 21.3 13.7
SD 8.2 74 16.4 174 124
(j) Rates as a function of p, the power in the local distance
computation
P 1 2 3 4 Average
2 12.3 71 214 23.1 16.0
% 10.0 6.2 13.1 20.8 125
(k) Rates as a function of the opening region parameters 8gec and denp of the DTW
algorithm
8rEG SenD Region 1 2 3 4 Average
2 0 Square 8.7 5.6 13.1 223 124
0 4 Square 79 54 13.8 21.5 12.2
2 4 Square 8.5 5.6 14.4 22.8 12.8
2 4 Line 8.9 6.2 24.6 22.1 155
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2.5 percent in word error rate is obtained for all four talkers. Thus we
conclude that smoothing across channels leads to a loss in information
for recognition and therefore should not be used.

5.6 Quantization of channel signals

The results on channel signal quantization are presented in Table
IIf. It can be seen that quantization of the channel signals to 6 bits
actually decreases the average error rate by 0.6 percent; however, a
further reduction to 4 bits leads to a 1.9-percent increase in error rate
over the baseline system. Hence the results indicate that 6-bit quan-
tization is adequate for the channel signals.

5.7 Results using principal components analysis

The results obtained using the principal components analysis for a
single talker are presented in Table IIg. It can be seen that for P = 12
a 7.1-percent increase in average error rate is obtained; however, small
increases in error rate were attained for reductions in P down to 4. In
fact, for talker 1 the word error rate increased by 0.2 percent in going
from 12 to 4 principal components.

An explanation of why the P = 12 principal components analysis led
to such large increases in error rate is as follows. The transformation
of the feature vector used in the principal components analysis has the
property that it is invariant to a quadratic distance measure. The
distance measure used in the baseline system was an absolute value
distance; hence a significant decrease in accuracy resulted. We will
show in Section 5.10 that using a quadratic distance measure gave
much worse recognition accuracy than the absolute distance. Thus it
would appear that the principal components analysis is not a useful
tool, at least for this particular filter bank word recognizer.

5.8 Results using time weighting in the global distance for DTW

The results using nonuniform time weighting in the DTW global
distance calculation are given in Table ITh. The actual weighting
function, W7, was a function only of the energy in the test pattern, of
the type shown in Fig. 5. The test energy, E”, was estimated as the
sum of the individual channel energies. A high correlation (=0.94) was
measured between this estimate of test energy, and the actual test
energy (as computed from the raw speech samples). For frames in
which the test energy was within 20 dB of the peak energy (suitably
normalized to 0 dB), the frame weight was 1.0; for frames with Er less
than 40 dB below the peak, the weight was set to 0.01; a linear
interpolation of the weight was used for frames with —40 < Er < —20
dB.

The results in Table ITh show a small increase in word error rate for
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Fig. 5—The nonlinear weighting function, WT, on the local distance as determined
from the test energy, E”, estimated from the sum of channel outputs.

each talker. Hence we conclude that the addition of time weighting
(of the form of Fig. 5) in the DTW distance calculation is unnecessary.

5.9 Results using frequency weighting in the local distance for DTW

The results of using a nonuniform frequency weighting for local
distances in the DTW algorithm are shown in Table IIi. The frequency-
weighting characteristic was identical to the time-weighting character-
istic of Fig. 5, except that the abscissa was the individual channel
energy (relative to the peak channel energy for the word) and the
ordinate was frequency weight W,. It can be seen from Table IIi that
a 2.1-percent increase in average word error rate is obtained using the
nonuniform frequency weighting. Hence we again conclude that such
weighting should not be used for this particular filter bank recognizer.

The results of using the SD weighting proposed by Silverman and
Dixon (based on both reference and test frame energies) are also
shown in Table ITi. Although the average word error rate is lower than
for the nonuniform weighting of Fig. 5, it is still about 0.8 percent
higher than obtained using simple uniform weights.
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5.10 Effects of different local distance computations

The results of using different local distance computations in the
DTW algorithm are given in Table IIj. Values for p of 2 (squared
distance) and 1/2 (square root distance) were considered. It can be
seen that for p = 2 a 4.4-percent increase in average word error rate is
obtained; for p = 1/2 the increase in average word error rate is 0.9
percent. These results indicate that the magnitude distance (p = 1) is
the best compromise between giving extra weight to very different
channel energies (p = 2) and giving a small weight to very different
channel energies (p = 1/2).

5.71 Results of opening up the DTW starting and ending regions

The results of opening up the beginning and/or ending region of the
DTW speech regions are given in Table ITk. Results are given for an
initial or final square search region, as well as for an initial or final line
search region (i.e., the path had to begin or end at the first or last
frame of either the test or reference; it could not begin or end at a
noninitial or nonfinal frame of both). It can be seen that all the cases
studied led to a small (for square regions) or a large (for the line
region) increase in average word error rate. This result is anticipated
from previous results, which have shown that opening up the DTW
search region consistently aids false matches (reference and test dif-
ferent) as much or more than true matches (reference and test the
Same)_s,4,17

5.12 Results using length normalization prior to DTW

The results of using fixed-length word normalization prior to the
DTW (the normalize-and-warp procedure) are given in Table III and
Fig. 6. Table IIla and Fig. 6a show results for the 13-channel filter
bank and Table IIIb and Fig. 6b show results for the LPC-based
recognizer. The results show that for a broad range of warping lengths
(from 20 to 45 frames) the average word accuracy does not change
significantly. Significant degradation in performance is obtained only
for the shortest warping lengths considered (i.e., 10 and 15 frames).
Hence the results indicate that the normalize-and-warp procedure is
suitable for a sizeable range of warping lengths so long as the length
used does not become too small.

5.13 Results on noise studies

The results of the noise studies are given in Table IV and plotted in
Fig. 7. Results are given for three cases:
({) Signal-to-noise ratio (s/n)(Test) = s/n(Train), where s/n varied
from o down to 0 dB (Table IVa, Fig. 7a).
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Table IIl—Word error rates for the normalize-and-warp procedure
applied to both the filter bank and LPC word recognizers
Length of Reference and Test

(a) Rates as a function of warping length of reference and test prior to DTW for the
13-channel recognizer

Talker Variable 40 30 25 20 15 10
1 9.0 8.7 9.5 8.7 8.7 10.3 12.6
2 5.4 5.6 5.4 5.9 5.6 6.9 115
3 13.1 13.1 14.6 14.1 14.6 16.4 19.5
4 18.7 21.8 20.8 21.8 20.8 22.8 23.3
Average 11.6 13.1 12.6 12.6 12.7 139 16.7

(b) Rates as a function of warping length of reference and test prior to DTW for the
LPC-based recognizer

Talker Variable 45 40 35 30 25 20 16 10
1 5.1 4.9 6.2 4.6 4.6 5.1 4.9 8.5 11.8
2 4.1 4.6 3.8 4.9 5.1 4.9 5.6 6.9 74
3 10.3 8.2 9.0 79 8.5 10.0 10.5 12.6 12.8
4 11.8 11.3 12.1 12.6 11.6 12.6 12.8 14.1 20.0
Average 7.8 7.3 7.8 7.5 74 8.2 8.5 10.5 13.0
25 T T T T T T T
T (a)

FILTER BANK

WORD ERROR RATE (PERCENT)

Oq 15 20 25 30 35 40 a5 © " VARIABLE
FIXED DURATION OF WARP

Fig. 6—Plots of word error rate versus fixed frame duration for linear prewarp prior
to DTW alignment for (a) the filter bank system, and (b) the LPC system.

(ii) s/n(Train) = oo, s/n(Test) variable from c« down to 0 dB (Table
IVb, Fig. 7b).

(iif) s/n(Test) = 18 dB, s/n(Train) variable from o down to 0 dB
(Table IVc, Fig. 7c).
The first case represents the situation when both training and testing
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Table IV—Word error rates for noise studies
s/n (dB)

(a) Rates for filter bank (FB) and LPC word recognizers as a function of s/n for case
when noise added to both test and reference signals

System o 30 24 18 12 6 0
FB 9.0 9.5 11.0 13.1 13.6 16.7 21.0
LPC 5.1 3.8 6.2 7.4 11.3 16.7 23.6

(b) Rates for filter bank (FB) and LPC word recognizers as a function of s/n for the
case when noise added to test only—i.e., s/n of reference for training was o

System o 30 24 18 12 6 0
FB 9.0 14.4 17.3 32.6 61.0 82.3 92.3
LPC 5.1 10.0 17.4 37.2 65.1 76.9 90.8

(c) Rates for filter bank (FB) and LPC word recognizers as a function of s/n for case
when noise added to reference at variable s/n, and with test s/n set to 18 dB

System o 30 24 18 12 6 0
FB 32.6 12.3 11.8 13.1 14.1 18.5 89.5
LPC 37.2 10.3 72 7.4 10.0 17.2 31.6

(d) Rates for filter bank (FB) and filter bank with noise removal (FB/NR) for case
when noise added to reference at variable s/n, and with test s/n set to 18 dB

System o0 30 24 18 12 6 0
FB 32.6 12.3 11.8 13.1 14.1 18.5 89.5
FB/NR 26.2 12.6 11.8 13.1 14.4 18.7 28.2

of the word recognizer are done in the same noisy background; case
(1Z) represents the situation when there is “clean” training (no noise)
but the test words are spoken in the noisy background; case (i)
represents the situation when there is noise in both training and
testing; however there may be a mismatch in s/n.

The results in Table IV and Fig. 7 show that:

() For case (i), the LPC system performs as well as or better than
the filter bank (FB) system for s/n = 6 dB. The filter bank (FB)
system outperformed the LPC system only at a 0 dB s/n.

(it} For case (i), there was little degradation in performance down
to s/n’s of close to 24 dB for either the FB or LPC recognizer.

(iii) For case (if) the performance of both the FB and LPC recog-
nizers was significantly worse at all s/n’s than for case (i). Hence we
see that using clean training data with noisy test data leads to badly
degraded system performance for s/n = 30 dB.

(iv) For case (iii) the results indicate that when s/n(Test) and
s/n(Train) differ by as little as 6 dB (or more) degraded performance
results.

The results of Table IV and Fig. 7 indicate that it is mandatory that
both the training (reference) and testing data be obtained in the same
background noise conditions for best word recognition performance.

A test was also conducted on the filter bank recognizer to determine
whether the effects of additive (background) noise could be lessened
by subtracting out an (estimated) average noise spectrum prior to
recognition. A one-second average was calculated for each channel
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Fig. 7—Plots of word error rate (for a single talker) versus signal-to-noise ratio
for both the LPC and filter bank recognizers for, (a) s/n(Test) = s/n(Train); (b)
s/n(Train) = o, s/n(Test) variable; and (c) s/n(Test) = 18 dB, s/n(Train) variable.

signal of the filter bank when only the additive white noise was present
at the input. Each of these 13-channel average noise values was then
subtracted from the corresponding channel signal to form a new
channel signal, which was used in the recognition processing. For these
tests the signal-to-noise ratio for the test data was held constant at 18
dB, and the noise level in the reference data was varied to give signal-
to-noise ratios between 0 dB and cc.

The results of this experiment are given in Table IVd. These results
show that the effects of this simple noise-cancelling arrangement are
to broaden the range of signal-to-noise ratios over which the filter
bank recognizer can operate. It can be seen that recognizer perform-
ance is not changed significantly between 30-dB and 6-dB signal-to-
noise ratios from that obtained without the noise cancellation. How-
ever, for signal-to-noise ratios of c and 0 dB, a considerable reduction
of error rate is obtained with the noise cancellation method. The
conclusion from this test is that noise cancelling is useful for reducing
the effects of variations in noise level between reference and test data.

VI. DISCUSSION AND CONCLUSIONS

The results presented in Section V lead to the following conclusions:
(i) Essentially none of the proposed signal processing techniques
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for use in the filter bank word recognizer led to an improvement in
performance of the system (i.e., reduced word error rate). At best any
single technique led to a small (insignificant) increase or decrease in
word error rate; at worst it led to a significant increase in word error
rate.

(if) The filter bank coefficients (for telephone inputs) needed only
about 6 uniform bits for a representation with no increase in word
error rate. Hence, the storage requirements on the @ = 13 channel
recognizer were about 78 bits per frame using this 6-bit coding scheme.

(iti) The normalize-and-warp procedure was an effective method
for reducing storage and processing requirements in the DTW com-
putation in that fixed duration linear prewarps of size as small as 20
frames per word did not increase word error rate significantly for either
the LPC or FB recognizers.

(iv) The best strategy for using a word recognizer in a noisy back-
ground was to both train and test the recognizer in the same noise
background.

(v) The LPC word recognizer gave error rates the same or lower
than the FB word recognizer for s/n = 6 dB.

Our initial goal was to find signal processing techniques to enhance
the performance of the FB word recognizer so as to come closer to
that of an existing LPC word recognizer. Our results indicate that we
have not succeeded in attaining this goal. Hence our main question is
whether we failed because we tried the wrong things, or because there
is no way of doing consistently better with the FB limitations. There
is no simple answer to this question. Perhaps our best response is that
we tried a wide range of techniques that encompassed those methods
previously proposed and studied in other FB recognizers. The lack of
any significant improvement in performance for any of the proposed
techniques indicates to us that perhaps the only way to improve
accuracy is by some heuristic based on linguistic knowledge of the
vocabulary words. We have meticulously avoided such techniques as
they change the nature of the recognizer from a vocabulary-independ-
ent system to one that depends on the specific words to be recognized.

Another possible objection to the conclusions as drawn from the
results given in Section V is that we studied each proposed signal
processing technique independently. As such we avoided interactions
between techniques that could have led to improved accuracy. Again
we iterate our speculation that since no individual technique led to a
real performance improvement, we are skeptical that combinations of
techniques would lead to real improvements. Of course we have no
concrete evidence that this is indeed the case.

Our noise analysis results dispel the common notion that LPC
recognizers “fall apart” in noisy backgrounds while FB recognizers
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degrade gracefully. Our results show that with proper training the LPC
system outperforms the FB system at all reasonable signal-to-noise
ratios. )

Finally, the noise results show that training and testing should
always be done in the same acoustic backgrounds. If there are gross
differences in acoustic backgrounds, significant degradation in per-
formance results.

VIl. SUMMARY

We have presented results of a study to measure the effects of
selected signal processing techniques on the performance of a filter
bank word recognizer. We have shown that a fairly simple set of signal
processing techniques led to the best overall performance of the word
recognizer in the noise-free case. In noisy conditions the performance
of the recognizer degraded significantly for signal-to-noise less than
about 24 dB.
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