Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 3, March 1983
Printed in U.S. A.

Traffic Service Position System No. 1B:

System Description

By N. X. DeLESSIO and N. A. MARTELLOTTO
(Manuscript received June 30, 1982)

The Traffic Service Position System No. 1B (TSPS No. 1B) is the
first field application of the Bell System’s new 3B20 Duplex Processor
(3B20D) in the emulation mode. The 3B20D Processor replaces the
existing Stored Program Control No. 1A (SPC 1A), while retaining
the existing TSPS periphery and software. A key factor is the ability
to switch between the emulated software and the 3B20D native
software within a single process with a single instruction. This allows
the flexibility of adding software in either environment as appropri-
ate.

I. INTRODUCTION

The 3B20 Duplex Processor (3B20D), with its associated Duplex
Multi-Environment Real-Time (DMERT) operating system, meets
the objectives of Traffic Service Position System No. 1B (TSPS No.
1B)."® The 3B20D Processor is significantly faster than the Stored
Program Control No. 1A (SPC 1A) and provides the required increase
in processor capability. The ability of the 3B20D Processor to emulate
allows the retention of most of the existing TSPS No. 1 software and
peripheral hardware. In addition, the 3B20D Processor consumes
much less energy and is significantly smaller in physical size than the
SPC 1A.

Il. SYSTEM STRUCTURE

The 3B20D Processor replaces the existing SPC 1A (Fig. 1) while
retaining the existing TSPS No. 1 periphery and—through emula-
tion—preserving the existing TSPS software. This software preserva-
tion is accomplished by defining (through microcode) one of the four

765

J J

| |

| TSPS

| J PERIPHERAL PEHT,?;':%RY

| i BUSES (E.G., NETWORK)}

I SPC 1A

| PROCESSOR L ——

| |

| SPC 1A |

| PERIPHERALS |
(E.G., PROGRAM

F TAPE UNIT) |

N — |

| STORES |

| SPC 1A _Jf

-

SPC — STORED PROGRAM CONTROL
TSPS — TRAFFIC SERVICE POSITION SYSTEM

Fig. 1—Existing TSPS system structure.

3B20D instruction sets to be that of the SPC 1A, thus emulating the
old processor and allowing existing T'SPS software to be transported
to the 3B20D Processor almost intact. The ability exists to switch
between the emulated instruction set and the 3B20D native instruction
set within a single process with a single instruction. This allows the
flexibility of adding new software into either environment, as appro-
priate. For example, some new TSPS No. 1B software, generated to
take advantage of the new disk capability and to provide a new
interface to maintenance personnel, is written in the C programming
language,* which compiles into 3B20D native-mode assembly language.
Both emulated and native-mode software are run under the DMERT
operating system, allowing operating system services to be available to
both forms of software. The emulated SPC 1A assembly language code
is structured as a single process executing under DMERT.

The existing T'SPS periphery is retained and interfaced with the
3B20D Processor through the use of a Peripheral System Interface
(PSI) circuit. This unit is designed to interface the TSPS peripheral
buses with the 3B20D Central Control Input/Output (CCIO) bus via
an Application Channel Interface (ACHI). The PSI duplicates the
signals, timing, and error checking of the SPC 1A. This enables TSPS
peripheral units to remain unchanged. Future hardware can be added
to the existing T'SPS peripheral buses or can utilize the I/0 processor
of the 3B20D Processor to off-load the main processor and to provide
fast block data transfers through direct memory access.

The combination of the 3B20D, PSI, and microcode required to

766 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

emulate the SPC 1A is called the SPC 1B (Fig. 2) and is the entity
that replaces the SPC 1A. Because the processor replacement is
economically attractive both for new installations and for retrofits,
techniques have been developed to replace an SPC 1A with an SPC
1B in an in-service office. The resultant system provides significant
increases in call processing and main memory capacities, allows the
preservation and future growth of existing software and peripheral
hardware, and adds modern software and hardware architectures to
facilitate future feature introduction.

. PROCESSOR HARDWARE DESCRIPTION

The 3B20D Processor has been developed as the first member of a
family of processors designed for a broad range of Bell System appli-
cations. The DMERT operating system provides a comprehensive set
of functions associated with management of system resources such as
the real-time, memory, input/output, and software processes.

The control unit of the 3B20D (Fig. 3) uses a 32-bit architecture
throughout, including the memory buses to main store and an 8K-byte
cache. Extensive self-checking logic is employed to ensure immediate
detection of errors, thus supporting quick and graceful recovery mea-
sures. Hamming correction of all single-bit errors and detection of all
double-bit errors are performed by the main memory controller. In
addition, data parity is checked on every refresh operation required
for the dynamic random access memories (RAMs) used in main

P — 1
|
L SPC 1B |
| PROCESSOR ¥
TSPS
| | perIPHERAL PERIBHERY
PE;L';';EEAAL | BUSES (E.G., NETWORK)
: INTERFACE |
. - - _

l l N
| 1
| 38200 3B820D |
| CONTROL PERIPHERALS

UNIT [E.G., DISK) [
N I |
t MEMORY I
| spC 18 J
-

SPC — STORED PROGRAM CONTROL
TSPS — TRAFFIC SERVICE POSITION SYSTEM

Fig. 2—TSPS No. 1B system structure.

SYSTEM DESCRIPTION 767

MICROCONTROL
MAINTENANCE ALU REGISTERS CCI0BUS o
CHANNEL STORE DATA CONTROL L
MEMORY MANAGEMENT ACHI

STORE
BUS

MICROPROGRAM
STORE

TO OTHER — |10
PROCESSOR — DSCH ™" = pERIPHERALS

CACHE

DMA

DSCH

MEMORY
UPDATE —

CONTROL CONTROL

BM-BYTE 8M-BYTE
MEMODRY ARRAY MEMORY ARRAY

ACHI- APPLICATION CHANNEL INTERFACE OMA - DIRECT MEMORY ACCESS
ALU - ARITHMETIC/LOGIC UNIT DSCH - DUAL SERIAL CHANNEL
CCIO - CENTRAL CONTROL INPUT/QUTPUT

Fig. 3—3B Processor block diagram.

memory, thus ensuring that even infrequently used addresses are
periodically checked for integrity. The 3B20D Processor uses a 24-bit
virtual address, which is converted to a 24-bit physical address using
a paged segmentation scheme. The 16M-byte address space is divided
into 128 segments, each having up to 64 pages of 2K bytes each.
Memory protection can be provided on either a segment or a page
basis. Physical memory is growable in 512K-byte increments, to a
maximum of 16M bytes. The main-memory access time is 525 nano-
seconds, while the cache access time is 250 nanoseconds. Memory
communication provides a byte-addressing capability with byte, half-
word, full-word (32-bit), and move block options as part of the instruc-
tion repertoire. A memory management unit performs virtual-to-phys-
ical address mapping and main-store access protection. A high-speed,
two-way, set-associative memory called the Address Translation
Buffer (ATB) is provided to reduce the overhead associated with the
address translation function. The ATB is divided into eight sections
that are assigned to processes by software.

The Central Control (CC) is microprogrammable with the capability
of executing a variety of instruction sets. Up to four instruction sets
can be selected dynamically. The microstore uses a 64-bit word length
with up to 16K words of high-speed, bipolar programmable read-only
memory (PROM) or RAM available. A variable microcycle ranging
from 150 to 300 nanoseconds is employed to optimize execution times.
The native instruction set of the 3B20D Processor was designed to be

768 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

compatible with the C programming language. It optimizes the exe-
cution and memory-space utilization of the language while including
instruction-level support for all C-language data types and control
structures.

Figure 4 is a general block diagram of the 3B20D Processor. Two
basic connections exist between the duplicated Control Units (CUs).
One is an update connection that serves to keep the off-line CU’s
memory completely up to date. The second connection is a mainte-
nance channel over which diagnostics of the off-line CU are performed.
The Central Control and memory are duplicated and grouped as a
switchable entity. The I/0 and disk systems can be accessed by either
CU through duplex intelligent controllers. The Disk File Controllers
(DF(Cs) are normally both active in order to keep the data on the disks
identical. Thus, under trouble conditions, either disk can support
system operation. Unlike the SPC 1A Processors, the CUs are not run
in a synchronous matching mode. Instead, both stores (on-line and
standby) are kept up to date by the memory-update hardware concur-
rent with instruction execution. This is achieved by having the on-line
memory-update circuit write into both memories simultaneously when
memory data are written by the CC. Under trouble conditions, when
control is switched to the standby CU, its memory will contain up-to-

@ (DISK, TAPE, ETC.)

INTELLIGENT |_(DFC. 1OP)
CONTROLLER
1/0 DMA DMA 1/0
CACHE CACHE
CONTROL CONTROL
UNIT MAINTENANGE MAINTENANCE UNIT
CHANNEL CHANNEL
MICROPROGRAM MEMORY MEMORY MICROPROGRAM
STORE UPDATE UPDATE STORE
MAIN STORE MAIN STORE
8M BYTES 8M BYTES
MAIN STORE MAIN STORE
8M BYTES 8M BYTES
DEC - DISK FILE CONTROLLER 1/0 — INPUT/QUTPUT
DMA — DIRECT MEMORY ACCESS 10P — INPUT/OUTPUT PROCESSOR

Fig. 4—General block diagram of the 3B20 Duplex Processor.

SYSTEM DESCRIPTION 769

date information without performing a complete transfer from one CU
to another.

3B20D Processor peripheral units are connected to the CC via the
Direct Memory Access (DMA) unit. The DMA does not interface
directly with peripheral units, but rather communicates with two
intelligent subsystems, a Disk File Controller, and an Input/Output
Processor (I0OP). The CC builds job blocks for a peripheral unit that
in turn notifies the CC upon job completion. The parallelism afforded
by the autonomous processing capabilities of the DFC and IOP frees
the CC for other work. Communication to both the DFC and the IOP
is via Dual Serial Channels (DSCH) that allow any peripheral to
operate with either CC of a duplex pair. Each DFC is capable of
supporting 16 movable-head disk drives of 300M-byte capacity. Each
IOP is capable of supporting a wide variety of peripherals, such as
nine-track tape units, printers, synchronous and asynchronous data
links, maintenance terminals, scanner/signal distributors, and custom
network interfaces. Peripherals also may be connected to the Central
Control Input/Output (CCIO) bus via an interface such as the Appli-
cation Channel Interface (ACHI) used to communicate with the TSPS
No. 1 periphery that was retained.

IV. OPERATING SYSTEM DESCRIPTION

DMERT is the real-time operating system for the 3B20D Processor.
This operating system was developed concurrently with the hardware
and uses a multiple-environment approach where time-critical code
coexists with time-shared software.” That is, one environment supports
real-time response while another environment provides a time-shared
interface similar to that of the UNIX* operating system.® The archi-
tecture of the operating system is process oriented; this allows appli-
cations to write software at the level most productive for each task. A
process is an instance of a program executing on the processor and is
characterized by a separate virtual address space. The multiple envi-
ronments are implemented via a kernel that supports three levels of
processes, described below. The DMERT kernel provides the most
primitive virtual machine as it handles hardware interrupts, timer
interrupts, and operating system traps. In all cases, the kernel saves
the state of the interrupted process, provides whatever service is
requested, and then restores the state of the interrupted process. The
first level of process, known as a kernel process, is offered limited
services by the DMERT kernel and is dispatched because of real-time
events such as interrupts. The second level of process, known as

* Trademark of Bell Laboratories.

770 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

supervisor, is offered more services by the DMERT kernel in the area
of I/0 and dynamic memory allocation. Supervisor processes support
a third level of process called a user-level process. An example of this
is a UNIX operating system process controlled by a kernel-level
process. In order for processes to cooperate in accomplishing their
tasks, DMERT provides a set of interprocess communication and
synchronization mechanisms including messages, events, process ports,
interprocess traps, and shared memory. These interprocess communi-
cation primitives are fundamental to the DMERT structure.

1/0 is accomplished by a kernel process, known as a driver. A unique
driver is provided according to the type of 1/0 device, such as disk or
IOP. Drivers receive I/Q requests in the form of messages. When the
1/0 is completed, the message is returned to the requesting process.
An intermediate supervisor process known as the file manager stands
between disk users and the disk driver. This process implements a
logical file system on the disk for those processes that care to use it.
Files can be created, opened, closed, grown, and deallocated through
the file manager. Hierarchical directories of files such as those found
in the UNIX operating system are supported.

A set of processes and a special IOP peripheral controller provide a
modern craft interface for the 3B20D and the TSPS No. 1B. A split-
screen cathode ray tube (CRT) and a printer interface are utilized.
The top portion of the screen is the status and display portion. Various
status and display pages can be called upon demand. A special page
that provides basic machine-control features such as initialization
requests is provided by peripheral firmware. The lower portion of the
screen is utilized for terminal I/0 messages.

The continuous operation aspects of the 3B20D Processor are sup-
ported by a number of processes that are an integral part of the
DMERT operating system. These processes handle error interrupts,
control processor switches, and provide I/O to common peripherals
such as disks; they also run equipment diagnostics and audit key data
structures for consistency. Reference 7 contains a detailed description
of both the 3B20D Processor and DMERT.

V. SOFTWARE STRUCTURE

The software structure of the TSPS No. 1B system was governed by
three major design goals. First, the software architecture had to
maximize the call-handling capacity. Second, steps were taken to
maintain the SPC 1A programming environment as closely as possible
in order to allow maximum utilization of existing software support
utilities. Third, the existing TSPS software was to be emulated with a
minimum of modifications. This guideline precluded unnecessary rede-
signs or restructures of the current field-proven software.

SYSTEM DESCRIPTION 771

The emulation of the SPC 1A at the instruction level by the
microcoding of its instruction set and at the system level by the PSI
has allowed most TSPS programs to be executed on the 3B20D
Processor with minimal modifications. The TSPS emulated code has
been incorporated into a single, large, high-priority kernel process
under DMERT.

The single process structure was dictated primarily by the existing
tightly coupled nature of the TSPS software. As on the SPC 1A, all
TSPS data and programs share and have access to the entire address
space and communicate through data structures that reside in memory.
Retaining these structures maintained the goal of exact emulation and
avoided interprocess communication overhead detrimental to achiev-
ing the required performance gain.

In addition to the emulated code, the T'SPS kernel process contains
native-mode (C-language) code that provides several capabilities. First,
it provides a standard C-language data structure interface to the
operating system and to other processes. Native code resident in the
TSPS kernel process also works in conjunction with emulation micro-
code to implement system-level emulation of the SPC 1A interrupt
structure within the actual interrupt structure defired by the 3B20D
and DMERT. In addition, native code resident in the TSPS kernel
process has eliminated the need to introduce new instructions, such as
system calls, not available in the emulated instruction set.

All entries into the TSPS kernel process are through native code,
which then calls the emulated code as a subroutine with a single
instruction. Certain functions exist in the current T'SPS software that
would have required extensive modifications to emulate because of
machine dependencies. In these cases, new replacement native code
was written as subroutines that are called with a single instruction
from the emulated code. In cases where completely new functions were
implemented, native-mode processes separate from the TSPS kernel
process were generated. An example of this is the TSPS File System
Interface, which provides disk file system access as a replacement for
functions previously implemented using the program tape unit of the
SPC 1A.

The control structure of the TSPS call processing and peripheral
maintenance software, being emulated, is almost identical to what
exists on the SPC 1A. The major difference is that rather than running
continuously as on the SPC 1A, the high-priority T'SPS kernel process
voluntarily must give up control of the machine periodically to allow
lower priority processes to run. This is done by requesting periodic
time-outs from DMERT. After the specified time has passed, the
TSPS kernel process is reentered. The native code responds to the
event and causes the emulated code to resume where it had left off.

772 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

The real-time breaks are not noticeable to the emulated software. The
combined DMERT and TSPS priority structure is such that the TSPS
kernel process dominates control of real time.

The process structure of TSPS No. 1B is summarized in Fig. 5. The
DMERT operating system running on the 3B20D Processor provides
a high-level, multiprocess environment for TSPS application processes.
In this environment, the TSPS kernel process appears to the DMERT
operating system to be identical to other native-mode processes that
utilize the facilities of messages, faults, events, and interrupts in
communicating with the operating system and—through the operating
system—with other processes. The TSPS kernel process, in some
instances, also communicates with other TSPS application processes
through shared memory. An example, noted above, is the TSPS File
System Interface. Within the TSPS kernel process, the combination

3B20D PROCESSOR

DMERT OPERATING SYSTEM
MESSAGES, FAULTS,

’ EVENTS AND INTERRUPTS

TSPS APPLICATION
SOFTWARE

INTERRUPTS|~

TSPS KERNEL
PROCESS

SPC 1A
EMULATED

3B NATIVE

SHARED

MEMORY J

3B20D
NATIVE

PROCESS;

3B20D

e NATIVE

PROCESS;

3820D
NATIVE
PROCESSy

)

T
MESSAGES, FAULTS, EVENTS AND INTERRUPTS

SPC — STORED PROGRAM CONTROL
TSPS — TRAFFIC SERVICE POSITION SYSTEM

Fig. 5—TSPS No. 1B process structure.

SYSTEM DESCRIPTION 773

of emulation microcode, PSI, and native code creates an SPC 1A
environment, thereby shielding the emulated code from the details of
the specific machine and operating system on which it is running.

VI. SUMMARY

The processor capability was increased by replacing the existing
SPC 1A with the 3B20D Processor while retaining the existing TSPS
periphery and using emulation to preserve the existing TSPS software.
A key aspect in the software architecture is the ability to execute
either the emulated instruction set or the 3B20D native instruction
set, and to switch between the two within a single process with a single
instruction. Thus, it is possible to add new software to either environ-
ment and thereby increase the future flexibility of the system. Because
the processor replacement is economically attractive both for new
installations and for retrofits, techniques have been developed to
replace an SPC 1A in an in-service office.

VIl. ACKNOWLEDGMENT

The design of the 3B20D Processor and T'SPS No. 1B required the
cooperative efforts of a large number of people in Bell Laboratories,
Western Electric, and AT&T. The authors wish to acknowledge the
contribution of all of the team members whose work is summarized
here.

REFERENCES

1. R. E. Staehler, “Traffic Service Position System No. 1B: Overview and Objectives,”
B.S.T.J., this issue.

2. N. X. DeLessio, J. R. Kane, M. W. Rolund, J. M. Scanlon, and R. E. Staehler, “The
3B Duplex Processor System and Its Application to TSPS,” 10th Int. Switching
Symp. Proc., September 21-25, 1981.

. N. A. Martellotto, “An Operating System For Reliable Real-Time Telecommuni-
cations Control,” Fourth Int. Conf. on Software Eng. for Telecommun. Switching
Systems Proc., University of Warwick, England, July 20-24, 1981.

. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice-Hall, 1978.

. H. Lycklama and D. L. Bayer, “UNIX Time-Sharing System: The MERT Operating
System,” B.S.T.J., 57, No. 6, Part 2 (July 1978), pp. 2049-86.

. D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July 1978), pp. 1905-29.

. J. M. Scanlon, “3B20D Processor & DMERT Operating System: Prologue,” B.S.T.J.,
62, No. 1, Part 2 (January 1982), pp. 167-9.

W

e -2 I = B

774 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1983

