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Operators use terminals to enter transactions into a system and
then wait for the system to respond. The system contains serially
reusable resources, and can hold a maximum number of jobs. Each
Job requires a total mean amount of service at each stage. We
calculate upper and lower bounds on the mean throughput rate and
mean delay as a function of model parameters, and present examples
that show these bounds are sharp, in the sense that they are achiev-
able given only mean values. We also present partial results for
closed queueing networks where the long-term, time-averaged distri-
bution of number of jobs at each node in the network obey so-called
product form separation of variable type of probability distributions.
Examples and data from actual systems illustrate the utility of the
work.

I. INTRODUCTION

At present there is great interest in modeling the traffic-handling
characteristics of computer and communication systems using
queueing networks."™ The change in cost of electronic solid-state
circuitry®® and rising personnel costs’® offers strong incentive to design
cost-effective digital systems.

Computer communications systems can often be modeled quite
naturally by a network of queues, where a job receives service at one
stage or queue and then migrates to another stage, until it is completely
serviced. Examples of actual systems and associated models are pre-
sented in later sections of this report. This class of models captures
several fundamental phenomena of such systems, including asynchro-
nous and concurrent execution of different jobs and different amounts
of service required at each stage of execution. T'o answer whether this
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type of model is valid, controlled experimentation and measurement
must be carried out, and goals or criteria must be set for judging
goodness of fit. Finally, one would like to use these models to predict
or extrapolate behavior into unknown regions of operation to guide
decision making.

Here we focus on one technique for bounding the mean throughput
rate and mean delay of an abstraction of a computer communications
system. This is only one factor among many others, such as cost,
flexibility, and reliability, that must be considered in choosing one
design over another for a given application. We drop these other
factors from consideration after this point in the interest of brevity.

Broadly speaking, there are two reasons for wanting to quantify the
traffic-handling capabilities in a computer communication system:

(f) Cost reduction of an existing service or product:

(a) In an existing system, it is often possible to modify existing
scheduling policies to improve performance at an acceptable
cost. An example would be to change from one memory
partition per application program to a memory pool shared
among all application programs.

(b) In a system handling a fixed set of job types, different
equipment configurations can accomplish these jobs at dif-
ferent costs. Which should be chosen? An example would
be to compare using two slow disks versus one fast disk.

(i) Comparisons are often desired between current operations and
wholly new modes of operations. An example would be using an
existing batch computer system for time sharing, using the existing
time sharing system for electronic mail, or using existing word proc-
essors for voice-annotated text services.

To quantify these issues, typically two stages are involved: the first
is synthesis, where goals are stated along with different alternatives
for reaching those goals, while the second is analysis, where the
performance (here the mean throughput rate of finishing jobs and the
mean delay for each stage of job execution) is quantified. Goals may
be either oriented toward the total system, such as total number of
jobs of a given type that are handled during an hour, or toward an
individual, such as the mean delay to handle one or more stages of a
job; along with goals such as these there should be some measure of
the sensitivity of the goals to different operating points, and so forth.

Analysis often begins by postulating a set of parameters that carry
or capture specific operational aspects, drawing inferences based on
these parameters (either by mathematical analysis or by discrete event
simulation),”! measuring actual or simulated operation, and then
repeating this process until it is felt that additional work is no longer
warranted.
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Our goal here is to demonstrate how to carry out part of this process
by a straightforward technique for obtaining bounds on mean through-
put rate and mean delay, given only mean value information for the
service required at each stage of job execution. In our opinion, there
are three principal contributions:

(i) A new technique for obtaining a Jower bound on mean through-
put rate and an associated upper bound on mean delay. Earlier workers
(e.g., Ref. 1, pp. 212-25) obtained an upper bound on mean throughput
rate and an associated lower bound on mean delay. Furthermore, we
present an example that shows that given only mean values for the
amount of service required at each visit to each stage in the queueing
network model, either bound can be approached arbitrarily close,
depending upon on the amount of fluctuation present about the mean
service times. This shows that these bounds are sharp, much as was
done earlier for loss systems.'’® The interested reader is referred to
related works.'*'®

(it) A new technique for calculating both upper and lower bounds
on the mean throughput rate and mean delay for a class of closed
queueing networks whose long-term, time-averaged distribution for
the number of jobs in system obeys a so-called product form or
separation of variables decomposition®® (for an application case study,
see Ref. 16). The upper bound on mean throughput rate is the recip-
rocal of the total mean time to execute the transaction plus the
average time spent in execution per node, while the lower bound on
mean throughput rate is the reciprocal of the total mean time to
execute the transaction plus the maximum mean time spent in exe-
cution per node. The tightness of these bounds will thus depend on
how close these factors are to one another (Zahorjan et al., developed
these results independently;'” our derivation is felt to be more straight-
forward).

(iz) Data from controlled experimentation on actual computer and
computer communication systems is presented to validate the ap-
proach presented here.

The examples presented are deliberately elementary, chosen for
tractability. Everything of interest can be represented by formulas.
Furthermore, this approach is a natural starting point for virtually any
study of traffic-handling performance, can be refined in a variety of
ways, used to check and bound much more complex analyses or
simulations, and can be immediately related to measurements in an
actual system. Often data are simply not available to describe the
arrival statistics and service required for each step of each job, such as
would be needed in simulation studies; this suggests using a mean
value (distribution free) analysis, rather than more stringent distribu-
tional assumptions, and then assessing performance sensitivity by
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varying the mean value, rather than investing effort in simulation
studies. We advocate synthesis via analysis of the performance of a
given configuration. The approach adopted here is not exhaustive, but
it is fundamental. The examples show that only two avenues are
available for improving computer communication system performance,
reducing the time to handle a given task (i.e., speedup) and handling
two or more tasks simultaneously [i.e., concurrency, either real (mul-
tiplexing multiple resources) or apparent (via scheduling a single
resource)].

Il. A MODEL OF A PROCESSOR AND DISK SYSTEM

In this section we deal with a mathematical abstraction of an on-
line transaction processing system.

2.1 Model description

Clerks at terminals spend a mean amount of time reading, thinking,
and entering the transaction, and then wait for the system to respond
before repeating this cycle. Each transaction requires a mean amount
of processor time and disk secondary storage access time to be com-
pletely executed. The system is configured with a finite amount of
memory, and hence can hold a maximum number of jobs at any one
time. Figure 1 shows a hardware block diagram of the system. The
cycle that a job or transaction follows can be described by a path
through a network of queues. The first stage or queue is associated
with operators at terminals entering each transaction. Next, each job
enters a staging queue, where it waits if there are already the maximum
number of allowable jobs in the system, and otherwise it immediately
enters the system. Once inside the system, a job will receive some
processing, then require accessing some data from secondary disk
storage, then some processing, and so forth until it is completely
executed. Finally, control will return to the operator at the terminal
and the process begins anew. Figure 2 shows a queueing network block
diagram for this system, consisting of four queues: one for operator
jobs, one for staging, one for processors, and one for disks.

The ingredients we need are

(i) The number of clerks, C, actively submitting transactions to
the system

(ii) The number of processors, P, and disks, D, connected by a
common switch. (The switch is assumed to be much faster than any
step of job execution involving either a processor or a disk, and is
ignored from this point on.)

(iii) The maximum number of jobs allowed inside the system at any
one time, M
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Fig. 1—Block diagram of the system hardware.

(iv) The mean time each operator spends reading, thinking, and

entering each transaction, denoted T'inink
(v) The mean processor time, Tprocessor, and mean disk access time,

Taisx, per transaction.
The outputs of the analysis are the mean throughput rate of executing
transactions and the mean response time (as seen by operators, in-
cluding both execution time plus waiting time) as a function of model
parameters. No job is assumed to be capable of executing in parallel
with itself. The operating system multiplexes available jobs among
available processors and disks to achieve some degree of concurrent
use of resources.

From the vantage point of an operator at a terminal, we see that
each transaction undergoes two stages of processing:

(i) A stage spent preparing the transaction for execution, with
mean time interval, Tinink

(i) A stage spent waiting for the transaction to execute, with mean
time interval, R.
For one operator at one terminal, the mean cycle time per transaction
is simply the sum of the mean preparation time and mean delay.
Hence, when C operators are active, the mean throughput rate equals
simply C times the mean throughput rate for one operator:

C

hput rate =A = ——«—.

mean throughput ra T T R

If we rewrite this equation to find the mean response time, we see
c

R= mean throughput rate -

Tthink.

These two relationships will be fundamental in determining feasible
operating regions for mean throughput rate and mean delay.
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Fig. 2—Block diagram of the system queueing network.

2.2 Mathematical problem statement
The system state space is denoted by {2, where

Q2= {(Joperator, Jst-lge: memmr, Jdmk)l
Jopetnwr + Jauge + Jproculor + Jaik = C; Jproceawr + Jaisk
= min[M, C — Joperator]}-

At any instant of time, the system is in a state given by (Joperator, Jstage,
eJorocessors Jaisk). Each component is integer valued, and refers to the
number of jobs or transactions either in execution or waiting to be
executed at that stage. The admissible state space is constrained
because

(i) There are at most C jobs being worked on at any one time

(if) The system can hold at most M jobs at any one time.
In a later section, we will show that the mean number of tasks in
execution with operators, processors, and disks, averaged over a suit-
ably long time interval, equals the mean throughput rate, A, multiplied
by the total mean execution time for that stage. This is summarized in
the following equations, where E(.) denotes a time average of the

argument:
E[min(Joperator, C)] = AT think
E[min(Jprocessor, P)] = ATprocessor
E[min(Jaisx, D)] = AT gisk.
In a later section, we show that A can be upper and lower bounded,
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given only this information, in terms of model parameters, as follows:

Alc::wel' = A = Aupper

Alowar = C C C
Tonink + ————————— Torocessor + ———————— T
ik T in(C, M, P)  © min(C, M, D) ~
A i min(C, M, P) min(C, M, D) _min(C, M)
upper = Torocessr Task  Torocessor + Taisk

C
Tt.hink + Tproceamr + Tdmk] )
Each of the upper bounds on mean throughput rate has a physical
interpretation, as follows:

({) The processors are limiting the maximum mean throughput
rate

min(C, M, P)

Tpmamor

Aupper

(if) The disks are limiting the maximum mean throughput rate

N _ min(C, M, D)
upper _——Td.mk
(iif) The clerks are limiting the maximum mean throughput rate
C

A =
upper Tt.h.mk + Tpruceaaor + Tdisk

(iv) Memory is limiting the maximum mean throughput rate
min(C, M)
Tpmcemur + Tdmk ’

Aupper =

The lower bound on mean throughput rate has the physical interpre-
tation of executing jobs one at a time on each processor/disk pair. The
upper bound on mean throughput rate is associated with the best
possible concurrency, while the lower bound on mean throughput rate
is associated with the worst possible parallelism. The upper bound on
mean throughput rate yields a lower bound on mean delay; the lower
bound on mean throughput rate yields an upper bound on mean delay:

¢ — Twinn <R =<

Aupper lower

- Tthjnk.

These bounds define an admissible or feasible region of operation and
are plotted in Figs. 3 and 4 for the case of one processor and one disk,
versus C = M.

Two regimes are evident: a lightly loaded regime, where the number
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Fig. 3—Mean throughput rate versus number of active terminals.

TtHink + Tproc * Toisk
MAX(Teroc, Toisk)

Fig. 4—Mean delay versus number of active terminals.

of clerks is directly proportional to the mean throughput rate and the
mean delay is independent of the number of clerks, so the clerks are a
bottleneck; and a heavily loaded regime, where the on-line computer
communication system is the bottleneck, with the mean throughput
rate independent of the number of clerks and the mean delay directly

proportional to the number of clerks.
If we vary the number of clerks, there is a natural breakpoint

between these two regimes:
breakpoint number of operators = Aupper] T'processor + Taisk + T'think].
As long as the number of clerks is well below this breakpoint, the
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clerks and not the system will be limiting the mean throughput rate,
and the mean delay per transaction will be approximately the mean
delay to execute a transaction with no contention. With the number of
clerks well above this breakpoint, the system will be limiting the mean
throughput rate, and the mean delay per transaction will be well in
excess of that time to execute a transaction with no contention.
Analysis suggests measurements to determine where these two regimes
lie; synthesis would involve choosing which regime we wish to operate
in (remember, we will always have some bottleneck!) and designing
the system accordingly.

2.3 Impact of memory constraint for one processor and one disk

Here are two possible scheduling policies for a system with one
processor and one disk:

(i) Only one job is allowed into the system to be executed at any
one time. This is called single-thread scheduling, and corresponds to
the maximum number of jobs in the system equal to one, M = 1.

(¢Z) More than one job is allowed in the system to be executed at
any one time. This is called multiple-thread scheduling, and corre-
sponds to M > 1. For M = 1 we see

C
=< Asingle thread

Tt.hin.k + C(Tpmeesaor + Tdmk)

= min ¢ 1 M=1
- Tthmk + Tpmemnr + Tdial:’ Tprocenor + Td:sk
If we allow multiplexing of the processors and disks amongst transac-
tions, then M > 1 is allowed, but now one or the other of the two
serially reusable resources will become completely utilized for M
sufficiently large:
c
Tt.hink + C(Tpmcessor + Tdmk)

=< Amultiple thread

C 1 1

Tt.hi.nk + Tpmeesanr + Td:ink, Tprocuunr' Tdmk

< min Ja>1

In either case, the lower bound on mean throughput rate is identical,
but the upper bound can be different, owing to different bottlenecks:
(z) The number of clerks is a bottleneck
C

Tthink + Tpmceasor + Tdmk

Aani.ngle thread, Am\llt;ip]e thread =

(it) The processor is a bottleneck
1

processor

Amu]tiple thread =
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(iii) The disk is a bottleneck
1

Amultiple thread = F7—
Taisk

(iv) Memory is limiting the maximum mean throughput rate

1
" <_______._-
Amngl.e thread = Tprocemr + Tdmk

Provided that the clerks or operators are not limiting the maximum
mean throughput rate, the ratio of the two different upper bounds is
an indication of the gain owing to scheduling or allowing more than
one job inside the system at any one time:
Amultiple thread _ Torocessor + Taisk
Asingla thread max(Tpmceuwn T disk) '

For one processor and one disk, this gain owing to scheduling can be
at most two, no matter what Tprocessor OF Taisk are! Moreover, this will
only be achieved when Tprocessor €quals Taisk, but in general these two
mean times will not be equal and hence the gain will not be as great as
a factor of two; for example, if Tuisx Were ten times as great as Tprocessor,
then the gain would be at most ten percent, and other factors ignored
in this analysis may swamp this.

2.4 Asymplotics

We close with an investigation of asymptotic behavior of this system.
One type of asymptotic analysis is to let all parameters be fixed except
one, and the final one becomes progressively larger and larger. Here a
natural candidate for such a parameter is the number of operators or
jobs circulating in the system C. As the number of operators or clerks
becomes large, C — o, we see

1

min(P, M) + min(D, M)
. ( P D M )
=< min ,C— o0,

Tprocmnr’ Td.iak, Tproeesaor + Td.\sk

=A

This in turn will yield upper and lower bounds on mean response time:

C — Tiwink | 20 =R=< ¢ — Twink | = 0 C — oo,
Alower A'I.lm:oel‘

In other words, the mean throughput rate lies between two finite
bounds, while the mean response time is infinite (will exceed any finite
threshold as we add more and more clerks).

A second type of asymptotic analysis is to fix the ratio of two
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parameters, and allow them both to become progressively larger,
holding all other parameters constant. Here, a natural candidate is the
ratio of the number of jobs over the mean think time per operator,
which we denote by «, which is a measure of the total offered rate of
submitting jobs:

a=—— C— o, Tip —> o,

Tthink
We allow the number of jobs or terminals to become large, as well as
the mean intersubmission time of jobs from each terminal, thus weak-
ening the contribution to the total offered rate of each terminal. In the
literature, an analogous procedure is called passing from the so-called
finite source to infinite source arrival process (e.g., see Ref. 18, pp.
102-3), granted certain additional distribution assumptions that we do
not make here (e.g., see Ref. 18, pp. 80-2). If we fix a while allowing C,
Tihink — o, we see

a

<A
1+a[ Toroosscr + T ]

min(P, M) min(D, M)

sm(P D M )

Tpmceunr, Tdisk’ Tprocemor + Td-llk

This in turn yields the following lower bound on mean delay:

o0 a> 1
Tptucullor Tdmk M
min(P, M)’ min(D, M)’ Tprocessor + Taisk
.R = Tprocu.nr + Tdmk
1
o< .
max Tproeeuor Tdmk Tpmceuur + lesk
min(P, M)’ min(D, M)’ M

The remaining case, an upper bound on mean delay or mean response
time, is trivial:
R < o, a fixed, C = o, Think —> .

Additional (distributional) information must be available to allow us
to handle the case where

1
“«= Tprocamor Td.mk Tpmcenor + Tdmk .
MAX | hin(P, M)’ min(D, M)’ M

Inituitively we see that if the total mean arrival rate is less than the
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upper bound on the mean throughput rate, then the system is capable
of having a finite lower bound for mean response time; when the total
mean arrival rate is greater than the upper bound on the mean
throughput rate, then the mean response time lower bound is infinite.
Note that the mean throughput rate lies between two finite limits,
while the mean response time can lie between a finite and infinite
value, given only mean value information, i.e., the mean response time
is not well bounded given only this amount of information. This is well
known in other types of queueing systems, such as the M/G/1 system
(e.g., see Ref. 18, pp. 189-92), where the mean delay depends not only
on the first moment of the service time distribution but also the second
moment of the service time distribution: mean value information does
not specify the mean delay in such systems by itself, but rather we
need the actual distribution of service time to deal with this issue.

ill. PROTOTYPE DIRECTORY ASSISTANCE SYSTEM CASE STUDY

Here is a case study in using these techniques. A prototype of an on-
line transaction processing system was built to handle telephone
number directory assistance queries. In a typical cycle of operation, a
person at a terminal would

(i) Receive a query from a customer via voice telephone
(ii) Enter the given information into a computer terminal while
talking to the customer

(iii) Wait for the system to respond with the answer to the query

(iv) Tell the customer over the voice telephone the reply

(v) Close out customer interaction

(vi) Wait to receive the next customer query.

The hardware configuration for the system consisted of C terminals,
a single processor, a single disk controller, and a single disk spindle.
An operating system coordinated scheduling and management of these
devices, while a set of prototype application programs handled trans-
action processing.

Measurements on the prototype system in operation showed that

(i) The mean time spent by a person talking, reading, and thinking,
denoted by Tinink, was twenty seconds
(ii) The mean processor time per transaction was broken down
into three sets of application programs
(a) The operator interface front-end programs consumed 180
milliseconds of processor time per query on the average
(b) The index manipulation application programs consumed
420 milliseconds of processor time per query on the average
(c) The data retrieval application programs consumed 330
milliseconds of processor time per query on the average
(d) Miscellaneous application programs that were invoked for
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accounting, system administration, and other purposes con-
sumed one hundred and forty milliseconds (140 ms) per
query
Hence, the total mean processor time per query, Tprocessor, Was 1.07
seconds

(zi7) The mean number of disk accesses per query was twenty six
(26), with the disk capable of making one access every twenty five
milliseconds (25 ms), which results in a mean time the disk is busy per
query, denoted T, of six hundred fifty milliseconds (650 ms).

The above measurements on total mean processor time and disk
access counts were based on examining the mean resources required
for one hundred different transactions to the system; the measurement
error on the processor time was felt to be under ten milliseconds, while
the measurement error on the number of disk accesses was felt to be
under one access. For this level of analysis, the upper and lower mean
value bounds on mean response time are given by

¢ - Tthink]

max(Tprocessors Taisk)

max [Tp,m, + Taisk,

=R= C(Tprocmnor + lesk):
while the associated upper and lower mean value bounds on mean
throughput rate are given by

C

=A

. C 1
=
=min [Tmmk + Torocessor + Taiskc’ max(Tprocessor, lesk)]

These bounds are plotted in Figs. 5 and 6, along with observed data
gathered over an eight-hour time interval with twelve C = 12 operators
and calculations based upon a closed queueing network model obeying
product-form-type solution. The goodness of fit of the closed queueing
network model to actual data was felt to be acceptable for the purposes
at hand; the mean value lower bound on mean delay and upper bound
on mean throughput rate were also felt to give an indication of
performance limitations at an early stage of development, which the
data gathering and refinement via a closed queueing network model
only strengthened further. Note that the system is achieving a great
deal of concurrency, because the actual mean throughput rate is much
closer to the upper bound, not the single-thread lower bound. Similar
observations hold for mean delay.

IV. PROTOTYPE DATA BASE ADMINISTRATION SYSTEM CASE STUDY
A transaction processing system administers the data base for a
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Fig. 5—Mean throughput rate (bounds and data) versus Tprocessor-

second system that switches telephone calls; hence this system is called
a front-end system to the back-end telephone call switching system.
Transactions involve additions, deletions, and changes to existing
telephone numbers in the switching system files. A prototype system
had a hardware configuration consisting of a single processor, a single
disk controller, and a single disk spindle, with a fixed number of
asynchronous terminals. This same prototype had an operating system
to coordinate and schedule these resources, while application programs
handled the transaction processing. The application programs were
structured into a front end for handling operator terminal interactions,
a data base management system, and a back-end communications
system for interacting with various switching systems.

The same formulas for upper and lower mean value bounds on mean
response time and mean throughput rate hold as in the previous
example, except for a change in the numbers.

Two sets of measurements were gathered, one at the start of per-
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formance analysis, labeled initial in Table I, and one after completing
two months of performance analysis, which involved recoding appli-
cation programs to take better advantage of operating system features,
with the same hardware configuration, labeled final in Table 1. Mea-
surements were carried out in a controlled environment where the
actual hardware, operating system, and application programs were
used, but the operator behavior was simulated by a second computer.
The behavior of each operator was modeled by a seript, involving a
time for reading, thinking, and typing, followed by a time waiting for
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the system to respond. After an initial startup transient the measure-
ments of response time were quite predictable for all operations, with
the measurement error being one second at most. Each operator
submitted tens of jobs, and the results were averaged over all operators
and all jobs, so the final statistics were felt to be statistically repro-
ducible, to within a fraction of a second.

Figures 7 and 8 plot the mean value upper and lower bounds as well
as data from these measurements for the mean response time and
mean throughput rate as a function of number of operators. The
goodness of fit to mean value bounds was felt to be acceptable for the
purpose. Unlike the first case study, the data here clearly shows that
a great deal of fluctuation was encountered in system operation under
load: for the initial system, the fluctuations were so great that the
system apparently was always executing only one transaction at a
time, while for the final system, as load built up, the system effectively
moved from a regime of two tasks making use of both serially reusable
resources to a regime where only one task at a time was in execution.
This is in contrast to the other set of data, where the system is always
achieving a great deal of concurrency under load. A closed exponential

Table |—Prototype system measurements

Quantity Initial (seconds) Final (seconds)
T ihink 15.0 15.0
Tprocessor 8.2 3.6
Taisk 5.0 0.5
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Fig. 7—Mean throughput rate (bounds and data) versus number of active clerks.
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queueing network model of this system would predict behavior that
closely tracked the upper bound on mean throughput rate and lower
bound on mean delay, and would simply not allow for sufficient
fluctuation to drive operation into a mode of operation of executing
one task at a time. In fact, this suggested a problem with memory
management that was forcing the system into this mode of operation;
an obvious test that was not carried out owing to lack of time was to
add more main memory to see if more concurrency might be achieved.

V. A MODEL OF FLOW CONTROL OVER A SINGLE LINK

An on-line communications system consists of operators at terminals
who send messages to one another. The system consists of a transmit-
ter and a receiver, with communication channels connecting the trans-
mitter and receiver. The receiver is capable of buffering only a maxi-
mum number of messages at any one time, which is a memory
constraint.

5.1 Model description

A communications system is composed of a transmitter processor,

a receiver processor, a set of buffers each capable of holding one

message at the receiver, and a noiseless communications link. Here

are the steps involved in sending a message from the transmitter to
the receiver:

(i) The transmitter processes a message. This step has a mean
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duration Trens at the transmitter, and it requires both the transmitter
and a buffer at the receiver.

(i) The message is sent over the link from the transmitter to the
receiver. This step has a mean duration T'trans-rec-

(iii) The receiver processes the message. This step has a mean
duration Trec.

(iv) An acknowledgment of correct receipt of the message is sent
from the receiver to the transmitter. This step has a mean duration
T'oc.trans At the start of this step, the receiver marks the buffer free.

(v) The transmitter processes the acknowledgment. This step has
a mean duration of Tcx.

At the end of this step, the transmitter marks the buffer free.

We assume from this point on that the time required by the trans-
mitter to process the acknowledgment is zero. Figure 9 shows a
hardware block diagram of the system. Figure 10 shows a queueing
network block diagram of the system. The system state is denoted by
{2 where

g = {(Jtrnna, Jt.rana—rec: JI'BC: Jrec-tra.nn) IJmn!
+ eJiransrec + Jrec + rec-trans = B}

At any instant of time, the system is in a state given by a four tuple,
(Jerans, Jiransrecs Jrec, Jrec-trans), Where each component is nonnegative
and integer valued, and the state space constraint is obeyed.

The mean throughput rate is denoted by A. The mean number of
jobs in execution in the transmitter and in the receiver equals the
mean throughput rate multiplied by the total mean execution time, as
shown in a later section. We denote by E(-) the time average of the
argument, and write:

ATrans = E[min(ferans; Prrans = 1)]

Our goal is to find upper and lower bounds on mean throughput rate,
subject to meeting state space constraints.

OPERATOR OPERATOR
| TERMINAL {a—s L LINK |—ed TERMINAL

: TRANS- .

: MITTER RECEIVER .
OPERATOR OPERATOR
el TERMINA L ottty LINK TERMINAL

Fig. 9—Hardware block diagram.
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Fig. 10—Queueing network model.

In a later section, we show
B

= =
BTomm + Tommree BT ¥ Toooim o= A
. 1 1 B
A S'A“PP‘“ =mn (Ttnns’T_rec’ Tt.rana + Ttrnm—rec + T:I'Bl: + Tm-tnna).

The physical interpretation of the upper bound on mean throughput

rate is as follows
(i) The transmitter is the bottleneck

1

Terans

Aupper =

(i) The receiver is the bottleneck
1
Aupper = f_I‘;
(iii) The number of buffers is the bottleneck
B

Auppln' =
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The physical interpretation of the lower bound is that at most one
message at a time is being handled by the system.

Figures 11 through 13 plot these upper and lower bounds, as well as
the results of an exponential queueing network analysis,”” for the
special case where

for three different cases, where the propagation delay is much smaller,
equal, and much larger than the mean processing time at either end of
the link. The fraction of time the queueing network model predicts the
system to be in state o is denoted by (), where

Tf.rnns-ch Tmc-mnaJm‘m

Tec Jm

1
W(J) = a Tme

The system partition function denoted G is chosen to normalize the
probability distribution:

Y mJ) =1
Jelip

5.2 Negligible link propagation delay

We now restrict attention to the special case where the propagation
delay is negligible compared to the processing at either end of the link,
from this point on. For one buffer, the mean throughput rate is upper
bounded by

1 _ 1
Ttrn.nu + Ttruna-mc + Tmc + Trec-trana + Tack Tt.runn + Trec.

A = Aupper =

There is no concurrency or parallel execution of messages, and the

z E(TrransmiTTER) = 1.0 SECOND
f._’ 0.8 |- E(Treceiver) = 1.0 SECOND
g TROUND TRIP PROPAGATION = 0.1 SECOND
3

g O MEAN VALUE LOWER BOUND

o O EXPONENTIAL NETWORK ANALYSIS
z 06 A MEAN VALUE UPPER BOUND

= |

| | |
0 4 B 12 16 20 24

BUFFERS
Fig. 11—Line utilization vs. number of buffers (Tirans-rec = Ttrana/10).
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Fig. 12—Line utilization versus number of buffers (Tirans-rec = Trans)-

1.0
08 I-
=
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Y o4 ]
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Fig. 13—Line utilization versus number of buffers (Tansrec = 10 Terans).

total time required for message handling is the sum of the individual
steps.

For more than one buffer, this will yield an upper bound on the
mean throughput rate of simply B times the mean throughput rate for
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one buffer:
B B
A = Aupper = Tirans + Terans-roc + Trec + Trec-trans + Tack a Trans + Trec’

On the other hand, as the number of messages increases, then either
the transmitter or the receiver (or both) will become completely busy,
yielding different upper bounds on mean throughput rate:
(i) The transmitter is a bottleneck
1 1

A = Auppﬂr - Ttrans + Tack - TI:ra.na

(ii) The receiver is a bottleneck

1
A = Aupper - T—m.
Combining all this, we see
1 1

Ttrnn! + Tack’ Trecaiver’

As?\upp.,=min(

B
Tirans + Tiransrec + Trec + Trec-trans + Tuck)
i 1 1 B
A= N = 0 (o T )

Increasing the number of buffers from one to two, B = 1 to B=2
always increases the maximum mean throughput rate, and now we see

1 1
?\s?\upp,,=min(m,T—m) B>1.

Furthermore, this increase is maximized for Twans = Trec, and then
the upper bound doubles in going from one buffer to more than one
buffer. Why is this so? By having more than one buffer, both the
transmitter and receiver can simultaneously be filling and emptying a
buffer, allowing greater concurrency or parallelism compared with the
single-buffer case. We also note that allowing more than two buffers,
e.g., infinite buffers, will not increase the upper bound on the maximum
mean throughput rate any further. This is because there are only two
serially reusable resources, a transmitter and a receiver, so once they
are concurrently busy, no further gains can be achieved.

For the lower bound on mean throughput rate, we see that

B 1
BTise + BTree  Torans + Trec’

which is identical to the upper bound for B = 1. Why is this so? There
may be significant fluctuation about the mean values shown above,

A= Alow«r =

562 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1983



and in the limit of one big swing about the mean value all of the
messages will pile up at one stage in the network and nothing will be
transmitted until buffers become available.

5.3 Impact of fluctuations

We now examine one special case of this problem in detail, where
Tiansrec = Trectrans = Tack = 0, and we wish to study the impact of
fluctuations about mean values on system performance. We assume
the transmitter processing times are sequences of independent identi-
cally distributed exponential random variables with mean Tians. We
assume the receiver processing times are sequences of independent
identically random variables with common hyperexponential distri-
bution Greceiver(X):

Greceiver(X) = (1 — a) + a(l — e ™),

In words, a fraction 1 — « will require zero processing time at the
receiver, while a fraction « will require an exponentially distributed
amount of processing time with mean 1/jire.. The parameter a gives us
an additional degree of freedom to model fluctuations in the receiver
processing times. For this case, we choose to fix the squared coefficient
of variation denoted by C?, which for the random variable X is defined
as the ratio of the variance to square of the mean (the standard
deviation, measured in units of mean value, squared):

variance(X) e
E*X) '

When this is zero, the variance is zero, and there is zero fluctuation

about the mean. When this is one, we have an exponential distribution,

where the standard deviation equals the mean. When this is greater

than one, the standard deviation is greater than the mean. For this
particular case, we see 0 < a =< 1 and hence

squared coefficient of variation =

C*= 2 -1=1
a
If the mean is fixed but « is varied from one (the exponential distri-
bution case, where the fluctuations are the order of the mean) to zero
(increasing fluctuations about the mean), with most jobs taking zero
time but a few taking a very long time, we can gain insight into the
impact on performance. Since we have fixed the squared coefficient of

variation, the mean is also fixed, since
a
Trec = —.

Mrec
The distribution of the number in the receiver subsystem at the
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completion of processing at the receiver of a message is denoted by
F(K),K=0, ---, B.If none are left behind, then the mean time to the
next completion epoch i T'rans + Trec. If more than zero are left behind
at the receiver, then the mean time to the next completion epoch is
T..c. The mean throughput rate is given by

1 1
= FO) (Toms + T) + [1 = FO)](Tre)  F(0) Torans + Trec
Once we find the distribution of the number of messages in the system
at completion epochs, we are done. However, this is a well-known

result (see Ref. 18, pp. 235-40), and we merely summarize the known
formulas here for the sake of completeness:

F(O) =B_1Q¢.

Y QK

K=0

A

The terms Q(K), K = 0, ---, B — 1 are given implicitly via the
following moment-generating function {(X):

w0 _ 1- X)E[e—A(I—X)Tm]
{(X) = Kz-:-o Q(K)XK = E[e_Ml_X)T'“] - X

Tllustrative numerical results are plotted in Figs. 14 through 16 assum-
ing the transmitter and receiver service times are independent, iden-
tically distributed, exponential random variables. We note that for the
special case where Trec = T'rans = 1, the mean throughput rate is given
by

122

A=s——————  C*=1
2 + M
C*+1

Here we see that as C? — « that the mean throughput rate approaches
the lower bound of 1/2 arbitrarily close, i.e., there is no concurrency or
gain in going to more than one buffer if the fluctuations are too great.
On the other hand, as B — o for C? fixed, the mean throughput rate
approaches one, which is the best possible. The numerical plots show
in which regime which phenomenon (the fluctuations or the buffering
and concurrency) dominates the actual mean throughput rate. The
impact of speed mismatch (i.e., as the transmitter and receiver mean
message execution times start to differ) tends to swamp the impact of
fluctuations: the greater the speed mismatch, the greater concurrency
is achieved, because the exact mean throughput rate approaches the
upper bound closer and closer as the speed mismatch increases be-
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tween transmitter and receiver. Note that the upper bound on mean
throughput rate corresponds to a squared coefficient of variation of
zero, while the lower bound corresponds to a squared coefficient of
variation that becomes infinite.

We now discuss this phenomenon in more detail, because the for-
mulas give only one way of understanding this model. Figure 17 shows
a sample path generated from a simulation of the model, for a total
number of five jobs in the system. In the initial part of the simulation,
the first stage fluctuates between four and five jobs, while the second
stage fluctuates between zero and one job; in the final part of the
simulation, the situation is reversed; after sufficiently long time, we
would return to the first case. When most of the jobs are at one stage,
the mean throughput rate is roughly the reciprocal of the time to
execute one job from start to finish, and there is no concurrency. The
other cases, where there are multiple jobs at each stage, are transient
and the system spends relatively little time in these states.

The analysis developed above can make these intuitive notions more
precise. For example, the mean fraction of time that there are zero
jobs at the receiver is

F(0)
F(0) + Trec

fraction of time zero jobs at receiver =

Ttrans

]

5

4

3

2r

1

o 0 10
NUMBER OF JOBS IN FIRST STAGE vs TIME

(@)

6

5

4

3F

2 b

1=

oL 11 011

NUMBER OF JOBS IN SECOND STAGE vs TIME
(b)

Fig. 17—Sample path generated from a simulation of the model for (a) first stage vs.
time and (b) second stage vs. time.
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while the fraction of time all the jobs are at the receiver is

1

F(0) +£ﬁ-c—

Ttrnna

fraction of time all jobs at receiver = 1 —

As we allow a — 0, i.e., as the fluctuations and squared coefficient of
variation become larger, while the mean time spent at the transmitter
and receiver stay fixed, we see that the sum of these two fractions can
be made arbitrarily close to one, which is what the simulation result
in Fig. 17 shows. At the same time, we see that the mean sojourn time
in the state where the receiver is empty is given by

mean sojourn time in idle receiver state

b Tirans
=Y (1-a)'"aKTwans=——r-—s30 a—0.
K=1 a

Put differently, if one were to measure the operation of this system,
the system might be in the receiver idle state for the entire duration
of the observation process, and the other state of the receiver having
all jobs (which will also become successively longer and longer as
a — 0) will never be observed, or vice versa! In Fig. 17, this would
correspond to gathering data in the first part of the simulation, never
in the second part, or vice versa.

5.4 Queueing network analysis for negligible propagation delay

In a later section, we show that the mean throughput rate is upper
and lower bounded by

Alower < A < Aupper

1

Aower = Terans + Trec + MaX(Torans Troc)
1

Aupper =

The mean value bounds, the queueing network upper and lower
bounds, and exact queueing network analysis mean throughput cal-
culations are all plotted in Figs. 18 through 20 for Ti. = 1.0 and
Twans = 1.0, 0.5, 0.2. The queueing network bounds are identical to the
exact analysis when the transmitter and receiver execute messages at
the same rate. When the transmitter becomes faster than the receiver,
the bounds and exact analysis tend to track the upper bound on mean
throughput rate; in other words, the speed mismatch is of greater
importance than the impact of fluctuations.
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Fig. 19—Mean throughput rate vs. number of buffers for zero propagation time (Tirans
= 0.5 and Trec = 1.0).

5.5 Experimental data

To test predictions of this analysis against actual operations, a series
of experiments were carried out to determine the mean maximum
throughput rate of a data communications link constructed with two
computers, one transmitting and one receiving, over a data link where
the link propagation time was negligible compared to the data com-
munications processing at either end of the link or the data transmis-
sion time of a packet over this link. The test described here involved
sending 51,200 bytes of data over a 9600-b/s data link; similar results
were found for a 1200-b/s data link. The source data were encoded
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Fig. 20—Mean throughput rate vs. number of buffers for zero propagation time (Trans
= (0.2 and T\ = 1.0).

into packets containing either 32, 64, 128, or 256 bytes (one byte equals
eight bits) of data. The system and numerous other details of the
experiment will be described elsewhere in a different report.

We wish to test the gain in going from start-stop or single buffering
to double buffering and to greater than double buffering; our previous
analysis assumes that a mean value of data communications processing
time at the transmitter and receiver adequately characterizes the
system performance.

The experiment involved simply measuring the time required to
transmit 51,200 bytes of data over each link for each size packet. No
processing was done on the data at either the transmitter or receiver
other than to do the data communications processing required for
correct operation. The transmitter and receiver processes resided in
the same PDP 11/45 computer with a UNIX *-like operating system
environment.

Table II summarizes the results of that experiment. The time
required to send each of 51,200 bytes of data plus two additional bits
(for parity and control) over a serial 9600-b/s data link is 53.3 seconds;
thus, the data link transmission speed and not the transmitter or
receiver is limiting data flow here. This can also be seen directly by
noting that the link utilization is approaching one hundred per cent in
Table II. This table shows that double buffering at the receiver offers
substantial improvement in mean message throughput over single
buffering, and there is no apparent advantage in terms of throughput
in choosing a receiver buffer larger than two (e.g., seven was tried).
Finally, this suggests that for this purpose this level of analysis is

* Trademark of Bell Laboratories.
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Table Il—PDP 11 /45 loop-around experiment—maximum mean
throughput rate for transmission of 51,200 bytes over 9600-b/s

data link
Maximum

Number of Packet Size Throughput Link Utiliza-
Buffers (bytes) Time (seconds) (b/s) tion (percent)

1 32 160.0 3200 33

1 64 125.0 4096 43

1 128 90.0 5688 59

1 256 80.0 6400 67

2 32 80.0 6400 67

2 64 58.5 87562 91

2 128 55.5 9225 96

2 256 55.0 9309 97

7 32 64.0 8000 83

7 64 58.0 8827 92

7 128 55.0 9309 97

7 256 54.5 9412 98

appropriate, i.e., that other phenomena that are present are in fact
negligible for these purposes, as shown by the data.

VI. CONCLUSIONS

A performance study of an computer communication system may
be carried out in at least one of three ways:

() Mean value analysis, as described here
(ii) Jackson queueing network analysis®

(iii) Discrete event simulation model.*

In this paper we have demonstrated the ability of the mean value
analysis to present a clear picture of the dependence of computer
communication system performance on the values of the model param-
eters. The mean value analysis is a simple, flexible, inexpensive ap-
proach to performance analysis and should always be used, even if it
is required to supplement the analysis with one or both of the other
techniques. The other approaches quantify the impact of fluctuations
about mean values on performance, refining the mean value analysis.

The utility or validity of any of these approaches cannot be judged
in the abstract: whichever approach or combination of methods is
most appropriate must be judged in terms of the data gathering and
measurements, and how the data is used to draw inferences concerning
cause and effect phenomena, coupled with the spectrum of practical
feasible alternatives. The mean value approach presented here is
simply one tool for carrying out this complex decision-making process.

14,15
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APPENDIX A
Little’'s Law

Jobs enter a system, spend time within the system, and depart. The
system attributes of interest here are:
() L(t) denotes the number of jobs in the system at time ¢
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(ii) C(t) denotes the number of completions in the time interval
(o, £]
(i#i) Every job that enters the system leaves the system.
Our goal is to relate the mean throughput rate of jobs, the mean time
a job spends in the system, and the mean number of jobs in the system.
The total mean time spent by all the jobs in the system is simply
the area underneath the function L(£):

t

total mean time in system by all jobs = J’ L(r)dr.

0

The total mean time spent in the system by any one job is given by

J’ L(7)dr
=

mean time in system per job in (0, £] = o

We multiply and divide by ¢ as follows:

t

L(r)dr

mean time in system per job = 2 z X Covi
The first term is simply the mean number of jobs in the system,
averaged over a time interval of duration ¢:
t
J L(r)dr
o
; .

The second term is simply the mean throughput rate:

mean throughput rate in (0, ¢] = -C% .

mean number of jobs in system in (0, {] =

Hence, we have shown that the mean number of jobs inside the system
equals the mean throughput rate multiplied by the mean time in
system per job, all over an interval of duration (0, ¢]:

mean number of jobs in system in (0, £]
= mean throughput rate in (0, £] X mean time in system/job in (0, £].

If the observation interval becomes infinite, £ — o, and the mean
values defined here in fact stabilize and do not fluctuate, then we have
what is called Little’s Law.'®*' These other derivations rely on aver-
aging over an ensemble of equally likely experiments, and draw on
deep results from the theory of stochastic processes;”* the difficulty
is in showing that the limits in fact exist in a meaningful mathematical
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sense. Here we focus exclusively on time averages of quantities of
interest, since these can be readily measured.

We close with an application of this result that we will use in the
following section. Jobs arrive for processing by a system. Each job
requires a total mean amount of service T. The system consists of a
single queue feeding P identical processors. At any given instant of
time, there are </ jobs in the system, either running or waiting to run.
The mean throughput rate of jobs is denoted by A.

We now restrict attention to a subsystem of the total system, the
subsystem of jobs in execution. Since we have P processors, the
number of jobs in execution at any instant of time is min[./, P]. Hence,
we see that the mean number of jobs in execution, averaged over a
time interval, equals the mean throughput rate multiplied by the mean
time a job spends in execution:

mean number of jobs in execution = E[min(J, P)] = AT.

The actual service pattern of the job is not of interest here: a job may
actually consist of a series of steps with different processing at each
step, and at the conclusion of each step of execution the job returns to
the end of the queue (or to some point in the queue based upon the
step) until it is completely executed.

APPENDIX B
Mean Value Analysis

We now present the mathematical analysis to justify assertions in
earlier sections. The model we deal with is a system handling only one
type of job or transaction. Each transaction consists of one or more
steps; at each step, a given amount of a serially reusable resource is
required for a given time interval. A resource is any entity that is
required for subsequent execution of a transaction; examples of phys-
ical hardware resources are processors, memory, disk spindles, disk
controllers, communication links, local backplane buses and so forth;
example of logical software resources are files, tables, messages, sem-
aphores, and so forth. Here the first step of each transaction involves
entering the transaction into the system via an operator at a terminal;
the second step of each transaction involves placing the transaction in
a staging queue where it will wait if there are more than a given
maximum number of jobs already in the system and otherwise will
enter the system immediately; and it will go through one or more
additional steps inside the system, where the job holds a single serially
reusable resource for each step of execution and then moves on, until
the job is completely executed and control returns to the operator at
the terminal. For each step of each transaction, we are given the
amount of each resource and the mean time required to hold that set
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of resources. We denote by Tx the total mean time spent by a
transaction holding resource type K, which we stress is the sum total
execution time of all visits to that stage by a transaction.

The mathematical model consists of

(i) N + 2 stages of stations: station 0 is associated with operators
at terminals, station 1 is the staging station, and stations 2, --- , N +
1 (N total) are associated with a single, serially reusable resource

(ii) Stage K=0,2, ---, N + 1 has Px identical parallel servers or
processors

(iii) A maximum of M jobs can be held at all stages K = 2, -.-,
N+1

(iv) Each job moves from station to station, and requires Tx total
mean amount of service time at stage K=0,2, -+- , N+ 2.

Figure 21 is a queueing network block diagram of this system.

We denote by A the total mean throughput rate of completing jobs;
R denotes the total mean response time (queueing or waiting time plus
execution time) per job. The system state space is denoted by £2.
Elements in the state space are denoted by J = (Jo, -+, Jn+1). Jx,
K=0,2, ---, N+ 1 denotes the number of jobs either waiting or in
execution at stage K.

Feasible elements in the state space obey the following constraints:

(i) The total number of tasks in the system is fixed at Po
N+1

Po=|d|= 3 Jx.
K=0

SYSTEM

| O (3) \_
TN T =T i

OPERATOR STAGING QUEUE O O
QUEUE QUEUE (2) s Ls
(0) ) - N e T
O QUEUE
(N+1)
Po
OPERATORS
\'\
~<_M JOBS ~N QUEUES
MAXIMUM

Fig. 21—Block diagram of the queueing network model.
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(&) There can be at most a maximum of M jobs inside the system:
N+1

Z Jx = mm[M, Py - Jo].

K=2

Combining all these, we see that elements o in £ are nonnegative
integer-valued tuples such that

JER:{V|V=(%,...,VN+1); VN20K=O,"',N+1;
N+1 N=1

2 Vi = Py; 2. Vg =min(M, P, — Vo)}.
K=o

K=2

The number of jobs in execution at stage K=0,2, ..., N+ 1is given
by min(Jk, Px) at any given instant of time. From the previous section,
Little’s Law allows us to write:

mean number in execution at stage K

= E[min(Jx, Px)]=ATx K=0,2,...,N+1,

where E(-) denotes the time average of the argument. Our goal is to
find upper and lower bounds on A subject to the state space constraints
ondg, K=0,..., N+ 1,

Since mean throughput rate and mean response time or delay are
related via

T To+R

we will also obtain associated lower and upper bounds on mean delay.
B.1 Lower bound on mean throughput rate
We first divide both sides of the following equation
E[min(cJo, Po)] = ATo
by Pq. In like manner, we divide both sides of the following equations
ATk = E[min(Jk, Px)] K=2,.---,N+1

by min(M, Py, Px). Now we add up these N + 1 equations:
E[min(Jo, Po)] | Nil E[min(Jx, Px)]

P, k=2 min(M, Py, Pg)

Tu N+1 TK
=al2 .
[Po * L mind, Py, Px)]

Now we interchange the mean value with the summation on the left-
hand side:
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min(Jo, Po) | ¥¢_min(Ji, Px)
E[ Py +,§2min(M,Po,Px)]

To N+1 TK
=A==+ .
l:Po xgz min(M, P, Px)j]

Our goal is to lower bound the left-hand side by one, which will yield
a lower bound on A.

Two cases can arise. First, there can exist one I =2, ... , N + 1such
that P; < Ji. Since all the terms on the left-hand side are non-negative,
we can lower bound the left-hand side by ignoring all of these terms
except term I:

min(Jo, Po) + N+l min(Jk, Pk) - min(Js, Pr)
Po K-2min(MsP0:PK)_min(M,P0|Pf)

Py
> 1 o1 [=2...,N+1.
= nin(M, Po, P1)

Second, forall K=0,2, ---, N + 1, Px > Jx and hence

min(Jkx, Px) =Jx K=2,.++ ,N+1.
Two subcases arise: if P, — Jo < M then there is no waiting by any job
in the staging queue, and

Jo N Jk Jo Po—do

24 _ >+ 1.
Po ng mm(M, Po, PK} Po PO

The other subcase is if Py — JJo > M and then there is waiting in the
staging queue, so
min(Jo, Py) ! Jx N Jk M

Y — = ¥ — =— =1
Py =, min(M, Py, Px) i=> min(M, Po, Px) M

Hence, we see that

To N+1 TK
A=+ =1
[Po ng mm(M, Po, PK)]

and we obtain the desired lower bound:
Py

N+1 Po

- T,
K=z min(M, Po, Px) K

Alower =

To +

The total mean time to execute a job at each stage in the system has
been stretched from Tx, K=2,--- , N+ 1to Tx, K=2, ... ,N+ 1,
where
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Py
- Tx=T, K=2 ---,N+1
T« min(M, Po, Px) © O *

Py
N+1 4

To + E TK

K=2

Alower =

which is one way of quantifying the slowdown at each node owing to

congestion.

B.2 Upper bound on mean throughput rate
From the definition of A we see

_ E[min(Jx, Px)] _ min(Px, Po, M)

Tx - Tk
From this same identity, we obtain a second upper bound:
AMTk<E(Jx) K=0,2.--,N+1

N+1 N+1
—>A(To+ Z Tx)EE(Ja'F ): JK)=P0.

K=2 K=2

A K=02 ..., N+ 1.

The constraint on the maximum number of jobs inside the system can
be written as
N+1

Y Jx =< min(P, M).

K=2

If we use Little’s Law, we see

N+1 N+1
A E Tk = E E(JK)Emm(M, Py).
K=2 K=2

In summary, we have shown

x = mi . [nﬁn(Po,Px,M)] Py min(M, Po)
min min ] ]
- T N+1 N+1
K=02,... N+1 K T() + 2 TK E TK
K=2 K=2

B.3 Interpretation

One intuitive explanation for these bounds is the following. To
achieve the upper bound on mean throughput rate, each step of job
execution has little fluctuation relative to its mean value, and jobs
interleave with one another. The mean throughput rate can be upper
bounded via the following mechanisms:

(i) The total number of jobs circulating in the system is limiting
the mean throughput rate; in this regime, as we increase the number
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of jobs, the mean throughput rate increases in roughly the same
proportion

(ii) One stage is executing jobs at its maximum rate, limiting the
mean throughput rate; in this regime, as we increase either the speed
of each processor at the stage, or the number of processors with the
same speed, the mean throughput rate increases in roughly the same
proportion

(iii) The constraint on the maximum number of jobs in the system
is limiting the mean throughput rate; in this regime, as we increase the
allowable maximum number of jobs in the system, the mean through-
put rate increases accordingly.

To achieve the lower bound on mean throughput rate, each step of
job execution has large fluctuations relative to its mean value, so that
all jobs in the system are congested at one node. A different way of
gaining insight into this lower bound is to replace the service or
processing time distribution at each node with a bimodal distribution
with the same mean as the old distribution, where (1 — ex) denotes
the fraction of jobs at stage K that are executed in “zero” time and ex
is the fraction of jobs at stage K that are executed in time 1/px such
that Tk = ex/px. Here in normal operation two things can occur: the
mean time for a job to cycle through the network will be roughly zero,
since most stages will take zero time, and hence the number of jobs in
circulation will limit the mean throughput rate, or one stage of exe-
cution will take a time that is much longer relative to all the other
times, and hence all but one or two jobs will be congested at one node,
thus limiting the mean throughput rate.

APPENDIX C
Product Form Distribution Results

The mathematical model considered in this section is a special case
of that considered in the previous section:

(i) One type of job that migrates amongst S stations or stages
(i) A single processor available to execute a job at stage K =
e, S
(éii) N tasks or jobs circulate among the nodes
(iv) Tx denotes the total mean amount of service required by a job
summed over all its visits to stage K =1, ---, S.

The system state is denoted by £:

S
Q= {(Jl, s ds)| 3 JK=N}.

L

At any given instant of time, the system is in state J = (i, - -+, Js),
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where Jx, K =1, ..., S denotes the number of jobs at node K (both
waiting and in execution). The long-term time-averaged distribution
of number of jobs at each node at an arbitrary instant of time is
assumed from this point on to obey a so-called product form or
separation of variables formula

1 S
PROB(J1=K1,-~-,J3=K9)=E—H T (K, ---,Ks) EQ

N I=1

S
= - = Jr
Gy = Gn (T, , Ts) .);h 11:[1 Ty
The interested reader is referred to the literature® for probabilistic
assumptions that lead to this type of probability measure on £, the
admissible state space. Gy is the system partition function chosen to
normalize the product form to a probability measure.® Granted these
assumptions, we observe that the mean throughput rate of jobs making
a complete cycle of the system is given by

A= PROB(Jx>0)  Gn-1(Ty, ---, Ts)

TK GN(TI! MY TS) '

Our goal is to obtain tighter upper and lower bounds on mean
throughput rate and hence mean delay than we obtained in the
previous section, using this additional information. We begin by ob-
serving that

S

. Gwa(Ty, -, T) 3 Tx
K=1
N Tk =G T, 1)

is a symmetric function of the S variables Tk, i.e., we do not change
the value of the function when we interchange any two variables. This
property allows us to show that this function has its maximum when
all the variables are equal to one another. This follows from calculating
first the gradient of the function at that point and showing that it is
zero, and second showing that the Hessian, the determinant of all
partial second derivatives, is negative definite at that point. An alter-
nate way of seeing this holds is to realize that the gradient is zero (from
the symmetry of the function) at the point where all coordinates are
unity, so this point must either be a minimum or a maximum; we then
evaluate the function at a neighboring point, say the point where all
coordinates except one equal zero, and see that this is less than at the
point where all coordinates are one, so this must be a maximum.
Hence, we see
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8 SGN—I(TI- 1, ree, TS= 1)
A Tk <
2 Tk=—Gum =1, ., Ts=1D

S S+N-2
N-1 SN

< - :
(S+N—1) S+N-1

N

We now rearrange this upper bound to see
N

A=— .
2 TK + (N - I)Tavemge

K=1
The first term in the denominator is the mean time for a job to make
a complete cycle through the network:

S
Tcycle - E TK .
K=1
The second term in the denominator is the mean amount of time per
node spent by a job in one cycle of the network:
1 )
Taversge = = 3. Tk.
mee =g 2, K
The same method is now used to obtain a lower bound on the mean
throughput rate, by observing that
l - Gn(Ty, ---, Ts)
A GN"].(TI! e, TS) ’
Without loss of generality, we number the nodes such that node S is

the node that will do the greatest amount of processing on a job on the
average during one cycle:

Ts= max Tk.
K=1,...,8

This can be used to rewrite the above expression:
1 Gn(Ty, -+ - _
—=Ts+ N( 1y ,TS 1).
A Gn(Ty, -+, Ts)
Since the second term is positive, this immediately gives us an upper
bound on the mean throughput rate:
1

A=—.
Ts
In words, node S is the bottleneck node, in this sense.
We now rewrite our expression for the reciprocal of the mean
throughput rate:
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S5-1

e Te4 Y TWR(T,---, T
A K=1
G T,'..’T_
F(T, ..., To) = — 22 52

GnaA(Ty, -+-, Ts) ¥ Tk

K=1
We now manipulate this expression as we did above:
GNT'=1,...,T5"'=1)
S-1)GT'=1,...,T°=1)
G+N—ﬂ (S+ N - 2)!
N NS-2! 1

S+N-2\ S-DES+N-2! N
-1 N—l) S - DN -1

F(T, ..., TS =

A S N K-

Rearranging, we see

N =A

]
Y Tk + (N —1)Tmax

K=1
The first term in the denominator is the mean time for one job to
make one complete cycle of the network'

cycle= E Tk.

The second term is the maximum mean time a job spends at any one
node in the network:

Tmax = max Tk.

K=1,-..,§
In summary, we see
5 N = A <min Tl '3 N
2 TK + (N - I)Tm E TK+ (N_ I)Taverage
K=1 K=1
N =A =< min 1 N ]
Tcycle + (N - 1) Tmnx - - Tmax cycle + (N - I)Tavmse ’

If the average time per node spent in execution by one job during a
cycle and the maximum time per node per job are roughly comparable
to one another, these bounds will be quite close to one another.
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