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A commercially viable GaAs device technology for field-effect tran-
sistors, integrated circuits, and lasers is critically dependent on the
availability of high-quality, single-crystal boules with controlled di-
ameter. We have modeled a diameter control scheme based on the
monitoring of crystal weight for liquid-encapsulated Czochralski
(LEC) growth of GaAs. The presence of the B, 0; liquid encapsulant
and significant capillary forces make the direct interpretation of the
weight-gain signal and its time derivative (DWGS) more complicated
in comparison with pulled materials such as oxide crystals. We have
formulated a realistic model for the LEC growth of axisymmetric
crystals and have derived the differential equation relating the time
evolution of the DWGS to radius and length. We show that the
magnitude of the DWGS at the crystal’s “shoulder” is inversely
related to the radius of curvature. Furthermore, the meniscus by itself
gives rise to a precursor or early warning in the signal, which means
that the maximum in DWGS precedes the maximum in shape by a
few hundred seconds. The existence of a secondary maximum or
aftershock in the signal that is the sole consequence of liquid encap-
sulation is also demonstrated. Excellent agreement has been obtained
between DWGS and the signal predicted from the measured shape of
a grown crystal. Thus, prospects for automatic diameter control are
encouraging.

I. INTRODUCTION

GaAs is one of the key semiconductor materials that serves as a
substrate for light-emitting diodes (LEDs), lasers, and field-effect
transistors (FETSs). Paralleling the development pattern of growth
techniques for other single crystals, the issues of primary interest have
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evolved from questions of quality (elimination of twinning and defects,
doping uniformity) to that of economy of size. However, scaling up the
dimensions of GaAs crystals grown by the liquid-encapsulated Czo-
chralski (LEC) technique necessitates introducing sophisticated
schemes for diameter control. By achieving satisfactory control, it will
also be possible to run for extended periods of time with minimal
supervision, and to attain higher crystal yields, as well as a reduction
in defect generation brought on by shape change.

Since diameter control in Czochralski growth has been the subject
of an excellent recent review by Hurle," here a brief outline of previous
efforts with respect to LEC growth will suffice. Unlike Si? and a wide
variety of oxide crystals® (e.g., GGG, LiTa0Q;) for which successful
diameter measurement and control systems have been developed, the
realization of a viable system for the LEC growth of III-V compounds
has been much more difficult to achieve. This is largely due to effects
associated with the growth chamber under high pressure, the presence
of the encapsulating layer of B;0s(¢), and the phenomenon of anoma-
lous density (diiquia > dsona) in some semiconductor materials.

A number of approaches to the control problem have been taken.
Pruett and Lien,* and van Dijk et al.® have employed an X-ray beam
passing through the high-pressure growth apparatus for GaP, designed
to make the melt a high absorber of radiation relative to all other
materials in the radiative path of the system. The subsequent use of
an image intensifier gave an accurate television picture of the growth
interface. Small changes in diameter could then be electronically
extracted from the video signal and utilized for its control.”

Alternatively, considerable success has been achieved meeting the
demand for large, closely controlled diameter GaP single crystals using
a floating die technique. Cole et al.® employed a SisNj ring floating in
the GaP melt beneath the B:0s(¢#). This modified form of Stepanov
ring®’ creates a long-term stable growth regime, permitting diameter
tolerances of +1 mm for a 50-mm diameter boule. The technique has
also been applied to GaAs with different degrees of success, apparently
depending on the crystallographic growth direction.’

In a third technique, advocated by Bardsley et al.,” a weight signal
or a derivative weight-gain signal obtained by detecting the apparent
weight change of either the crucible or crystal during Czochralski
growth is used to control the power output and consequently the
diameter. Bardsley et al. have considered both the theory’ and its
implementation by an analogue servo-system.' Although these au-
thors have proposed reasonable initial postulates and expressions to
calculate the weight gain, the detailed analysis is limited only to small
perturbations in diameter and the formalism precludes growth by the
LEC technique.
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For some time now we have routinely measured the apparent weight
of LEC-pulled GaAs crystals with a high sensitivity load cell placed in
the high-pressure chamber in series with the crystal pull rod. The
output of the cell is recorded as a dc level. Then, the derivative of the
signal is taken electronically with a device developed especially for
that purpose, and is also recorded. This activity has served as a useful
qualitative guide in the manual control of diameter. The major objec-
tive of this paper is to develop the fundamental theory that governs
the relationship between the shape of an axisymmetric crystal with
arbitrary variations in its diameter (including the shoulder) grown by
the LEC technique and the instantaneously detected derivative
weight-gain signal. Besides gaining new physical insight, we expect
that by means of these investigations we can focus on the important
physical factors and analytical techniques essential to the eventual
control of crystal diameter.

As a first step, a tractable model is formulated for LEC growth with
a meniscus. The treatment leads to an explicit expression for the
derivative weight-gain signal exclusively in terms of the crystal cross
section and its first and second derivatives, in addition to geometrical
and material parameters. Next, the numerical techniques required to
perform computer simulations are outlined. Then, the key features of
the signal are investigated by using the probability density function of
the lognormal distribution for the crystal contour. Among the effects
considered in detail are the shape of the shoulder and the presence or
absence of the B203(¢) encapsulant and meniscus. Furthermore, the
derivative weight-gain signal is predicted for four contour lines—gen-
erated by consecutive 90° axial rotations—of a specially prepared
GaAs boule and compared with the signal measured during growth.
Finally, in light of these modeling calculations, the prospective tech-
niques for diameter control are discussed.

ll. THEORY

In this section, by a consideration of the relevant features of the
LEC growth process, a realistic model is developed for the derivative
weight-gain signal in a form suitable for computer analysis. T'o make
the calculations tractable, but without a serious loss of generality, the
following set of assumptions and constraints has been introduced:

(i) The crystal and crucible are axisymmetric with circular cross
sections. Hence, the crystal’s radius, r, can always be prescribed as a
function of the axial location, L, which is monotonically related to the
time elapsed since seeding.

(it) The crucible containing the melt and the encapsulant is a
right circular cylinder of radius, R. Less restrictively, departures from
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a right cylinder are permitted below the liquid level prevailing at the
completion of growth.
(iii) The effects of crucible and crystal rotation and the concomi-
tant viscous drag are neglected.
(iv) As the initial melt level falls by distance ¢ (Fig. 1), the entire
amount of the liquid is transferred to the solid.
(v) Seepage from the B;0s(¢) encapsulating column of mass, msz,
and volume, Vg, to the melt/crucible interface (walls) is minute.
(vi) The solid-liquid interface is planar. This allows the separation
of the associated heat transfer problem from the calculations.
(vii) Capillary forces between the melt, B;0s(¢), and solid result in
a meniscus of height, &, with a subtended angle between the vertical
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. Fig. 1—(a) Schematic geometry of LEC pulling. (b) Enlarged view of the solid-liquid
interface region.
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and the tangent to the “skirt” of the meniscus (joining angle), « (Fig.
1).

(viii) As the crystal is pulled at constant rate p, contact with the
melt is uninterrupted.

(ix) Physical constants required in the calculations are average
values representative near the melting point of the crystal.

The preceding conditions in combination with the geometrical de-
scription of LEC pulling in Fig. 1 and Archimedes’ principle permit
writing the weight signal, W,, corresponding to detected crystal mass,
m,, as the sum

W, = n,g= W, -W; +Ws; +W. —W;s
true buoyancy vertical weight of the buoyancy
weight correction projection  cylindrical  correction to (1)
w, of capillary meniscus Ws + W,

force
where
W= (m.+mg)g =mg (2a)
W2 = V.opg (2b)
Ws = 27ro cos « (2c)
Wy = r’nhp.g (2d)
Wi = Vaenps g (2e)

The symbols m, V, and p without subscripts designate the mass,
volume, and density of the growing crystal, respectively. The same
letters with subscripts B, 4 e, and g refer to the B;0; encapsulant,
melt, and that portion of the crystal that resides either in the encap-
sulant or the gas phase, respectively. The symbols o and V... represent
the surface tension and meniscus volume, respectively.

Since V. = (m — my,)/p, with the abbreviation k, = pg/p, W1 — W,
in egs. (2a) and (2b) can be transformed into

Wi—We=m(l - k)g+ kimgg. (3)

Then, differentiating eqs. (3), (2¢), (2d), and 2e with respect to time, ¢,
and using eq. (1), we obtain the derivative weight-gain signal (DWGS)
in the form

dw,/g dm dmg; 27
=(1- —+hk—+— —
7t (1— k) i "3 + 2 o cosa—
20 . da dr . dh dVien
——rsmaa+pg(2rwha+rwa)—p3 di . (4)

It can be readily shown that dm/dt is a function of the other
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variables. Clearly, if the crystal is axisymmetric, one has
dm 2 dL
dt dt’

Moreover, the continuity of growth provides the relation

(5)

L=<¢+pt—h, (6)
or in derivative form

dL _d¢_dh

E=§+p 7 (7)

In addition, the conservation of matter during crystallization as the
liquid level falls leads to

m = P((WRZ{_ Vmen) (8)
or
dm _ 2 8¢ dVmen
E“”("’R @@ ) @)

A combination of egs. (5), (7), and (9) permits the elimination of
d¢/dt; hence eq. (5) can be rewritten as

kdVimen ol — 2 ﬁ
dm T dt p dt
— = pmr? (10$)

_ dh ’
R*+p——
PG

where & = p,/p and R? = kR® — r%.
Substituting eq. (10) into eq. (4) for the DWGS yields after several
algebraic operations

_ 2p2
dW,/g - dm, +p(1 ki)mpr"R* 2mo - sin do

dt dt R? g *dt
dVimen r? dh R?
*—a [(1 - k1)PrE5 - PBil + fzwapzlil —(1-%) ?]

dr o
+ 27 p7 I:rhp;+ E cos a]. (11)

In essence, the general form of the DWGS is given by eq. (11). Since
all the variables directly depend on L or indirectly through r on L, it
is convenient to replace the derivatives d/dt by d/dL-dL/dt. Accord-

ingly, we have
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dW./g ki dmg dL +p(1 — ki), r’R? 270 . dadL

@ V4L dt & g M YdL
dVimen dL rt , dhdL R?
* L "&7[ e~ "B}* L dt [‘“ ’“”?]
dr dL o
- = - . (12
+ 27 9L di (rhp(+gcos a) (12)

Equation (12) completely describes the DWGS once the few remaining
unknown functions are evaluated. These are the axial derivative of the
crystal mass outside the B,0s(¢)(dmg/dL), the macroscopic growth
rate (dL/dt), and the meniscus (h, dh/dL, Viyen, and dVipen/dL) in
terms of r(L) and the required physical and geometrical constants.
The crystal shape r(L) we consider here as an input signal and the
choice of different functional forms will be postponed to the next
section.

2.1 Evaluation of dm,/dL

From Fig. 1 we conclude that the total cylindrical volume occupied
by the segment of the growing crystal in V., the encapsulant, and the
meniscus are conserved. Thus we can write the integral relation

L Ly
f r’ndL — I r’ntdL + Vapen + Ve = 7R*(L — Lg + h), (13)
0

0

where the two integrals on the left-hand side are equal to

L
j ri(L)mdL.
L

L]

Thus we can express m,/p as

L, L
me/p = J’ r’adL = j rindL + Vigen + Vo — wRYL — Lg + h).
o )

Differentiating the above equation with respect to L gives

dmyg/p = rlr + dVimen — 7R? (1 dh dLE) (14)
dL

dL dL  dL

To obtain dL./dL we define a function ¢(L, L;) = 0 by subtracting
the right-hand side from both sides of eq. (13). Then, employing the
well-known result for the differentiation of implicit functions we have

dL, _ _ 3¢/dL
dL ~  as/aL,’ (15)
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where

B _ e a Ve gy 9B
oL ri(L)w + aL 7R 1+dL

and

9@ __ 2 2
oL, r*(Lg)m + wR*.

The actual value of L, can only be determined by a numerical proce-
dure. From eq. (13) we get

L m Lg
f rindL + p—” + Ve f ridL
B
u —57 —(L+h) =LE,———Lg, (16)

where the left-hand side includes only known quantities.

While the entire crystal is submerged in B;0s, m; = 0 and
dm,/dL = 0. In that case the counterpart of the volume balance in eq.
(13) is of the form

L
f r’mdL + Vs + Vien = wRA(L + h + A), (17)
0

where A is the distance of the tip of the crystal from the B20s(¢) — gas
interface. Rearranging eq. (17) yields

L
f rlzdL + ms + Vaen
0

PB

—? (L + h) =A. (18)
Comparing egs. (16) and (18) we observe that the left-hand sides are
identical. As the crystal protrudes through the encapsulant, A changes
from positive [eq. (18)] to negative [eq. (16)]. This provides an impor-
tant clue in the computation of Lg;. The numerical solution of eq. (16)
for L, starts when A = 0.

2.2 Determination of the macroscopic growth rate, dL/dt

The macroscopic growth rate given in eq. (7) can be rewritten as
dL dfdL dhdL

T dla daat? (19)

Hence, by a rearrangement of eq. (19) dL/dt becomes

dL _ P
dt 1-d¢/dL + dh/dL’

(20)
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To eliminate the melt coordinate ¢ we use the relation for the conser-
vation of melt [eq. (8)], which gives

L
ﬂf pr’dL + p/Vmen
()

m+ ,O(Vmen
Differentiating eq. (21) with respect to L yields
ds z ‘men,
r dV, /dL. (22)

dL ~ kR®"  uR?

Finally, introducing eq. (22) into eq. (20) gives the macroscopic growth
rate in the form

dL p

dat 2 dVee dh’
l1-—+— )+ =
(kRz dL / R ) dL

2.3 Transformation of the crystal length to time coordinate

In general, r is known as a function of L. On the other hand the
DWGS is recorded as a function of time. Therefore, a transformation
from L to ¢ is necessary in the analysis. From the continuity condition
[eq. (6)] ¢ can be expressed as

_L+h(I)-AL)
> .
Substituting eq. (21) into eq. (24) yields

L
J ridL
t= L+h——9——vm'm /p. (25)

(23)

t (24)

kR? 7R*?
2.4 Meniscus height and related properties

Mika and Uelhoff'' have determined the meniscus shape and inter-
face height, A, occurring during Czochralski growth by a numerical
solution of the Euler-Laplace differential equation. Although, in prin-
ciple, numerical results for the meniscus could be generated concur-
rently with the computation of the DWGS, here we prefer to rely on
faster closed form solutions of the capillary equation. Fortunately, as
shown by Mika and Uelhoff," the analytical approximation of Tsivin-
skii’” describes the exact values of & with excellent precision over a
wide range of joining angles, «, and radii. We have verified that for
a = —10° and r = 0.5 cm the error in using Tsivinskii’s approximation
is less than ~2 percent. Subsequent computer simulations have dem-
onstrated that in practical situations, except when there is a very rapid
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drop in radius, the stated limit on a is obeyed The fact that for a short
time after seeding r is less than 0.5 cm is of minor importance owing
to the initial insensitivity of the DWGS to h.

Therefore, Tsivinskii’s equations'? for the interface height and shape
will provide the basis of our DWGS analysis. In our notation Tsivin-
skii’s equation for A is of the form

h=A[(1 —sin a + u?)? — u], (26)

where

A cos a
4r(L)

and A is a constant. According to Egorov, Tsivinskii and Zatulovskii's
modification for LEC growth of Tsivinskii’s original work A is given

byls
A=+ /—-——29—— @7
(p.— pB)g

The joining angle « is the sum of the growing angle, ¢, and contact
(wetting) angle, B8 (Fig. 1), i.e,,

a=¢+p. (28)

In general, B is a constant, while the growing angle is a function of the
derivative dr/dL according to’

dr _ _, ar
Thus, & [eq. (26)] can be expressed in terms of r and dr/dL at the
solid-liquid interface.

Consequently, the required first derivative of &, dh/dL, includes the
second derivative dr/dL% This can be readily shown by the substi-
tution of the combined egs. (28) and (29) into eq. (26). Then, using
standard trigonometric relations for angle-sums and inverse functions
and differentiating the expression thus obtained with respect to L we
find

u=

tan ¢ =

dh A uv—A

FiAR a7 l:(l_sina_l_uz)l]z_v]: (30)
[+ (@)

where
1 2 2
o L (i 2 i)
S
dL
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S A [rdrdr (dr
YT ?ﬁf dL sin

dL

::; (co 8- sm B)

Another derivative of interest in eq. (12) is da/dL. From eqs. (28)
and (29) we have

da d(tan“dr/dL + B) 1 d’r

dL dL 1+ (dr/dL)? dL*

A property closely related to the interface height is the volume of
the skirt-shaped meniscus, Vinen (Fig. 1), and its axial derivative dVinen/
dL. The quantity V.. can only be evaluated by a numerical technique.
Egorov et al."® provide the x, ¥ coordinates of the meniscus in the form
of the integral

(31)

- &g+, 32
J:;Jl_—'ﬁer() (32)

where

_ . (1 cosa 2 2
@ =sin a (A2+2h)( - h?).
Owing to axial symmetry summing up narrow segments of area x’
provides the volume of the meniscus as

yi=h-8

Vmen = b E x2( J’:‘), (33)

where § is the thickness of a segment.

Apart from performing numerical differentiation, no simple method
exists for the evaluation of dVien/dL. If the shape of the meniscus is
that of a right cylinder, then Ve, and dVien/dL are given by

Veyn = r’nh
and
dVey . . dr , dh
4L - 2rmh aL +r wz. (34)

Simulations indicate that the numerical derivative dVyen/dL is closely
approximated by

d Vmen - Vmen chyl
dL ~ Vey dL

(35)
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Il. RESULTS AND DISCUSSION
3.1 Computing methods

We have succeeded in reducing the theoretical determination of the
DWGS to a differential equation in r, dr/dL and d’r/dL*. Therefore,
if the shape of the crystal is given, the DWGS is calculable; conversely,
the DWGS completely defines the radius of the crystal at any moment
of interest. Here, we address ourselves to the first part of the problem,
though the eventual objective is diameter control emphasizing the
DWGS.

The program to evaluate the DWGS was written in HP Basic. A
key feature in the efficient organization of the computations is the use
of subroutines for dm,/dL [eq. (14)], dLg/dL [eq. (15)], dL/dt [eq.
(23)], & [eq. (26)], dh/dL [eq. (30)], da/dL [eq. (31)], Vien [eq. (33)],
dVimen/dL [eq. (35)], as well as for r(L) and its first and second
derivatives.

Numerical integration was necessary to obtain Ve, and the crystal
volumes between O and L and O and L,. It was found advantageous
to evaluate the crystal volumes in the main routine because during the
simulated growth of a crystal incrementing L in steps of 0.1 cm, the
accumulating volume elements could be retained in memory.

As mentioned earlier, the quantity L, is only required after the seed
emerges from the B20s(¢) encapsulant. Mathematically speaking, this
occurs when the left-hand side of eq. (16) or (18) becomes negative. To
determine L,, at each increment of L the left-hand side of eq. (16) is
evaluated. Then, a linear search is performed, substituting trial values
of L, into the right-hand side of eq. (16) in the range L; — 0.2 to Ly
+ 0.4 cm in steps of 0.01 cm, where L is the previous solution to eq.
(16) at L — 0.1 cm. In case the 0.01-cm mesh around L was too coarse
to yield a solution, an option with 0.001-cm increments was available.

There are several mathematical tools available to describe the shape
of the grown crystal, 7(L). From the actual cross section a large number
of r, L coordinates can be generated in tabular form. Then, one obvious
choice is to employ an interpretation scheme based on point-by-point
tabular values of (L) in addition to numerical first and second deriv-
atives. A more sophisticated alternative is to determine the Fourier
coefficients of the crystal shape. However, we have learned by expe-
rience that the most efficient and satisfactory scheme to convert the
tabular data into functional form is by using cubic spline regression.

A cubic spline function is a piecewise polynomial of degree three
that joins adjacent polynomials in “knots.” At the knots the functional
values as well as the first and second derivatives are continuous.
Ordinarily, a spline passes through all the points within the interval
bounded by two knots. In contrast, in spline regression a cubic least-
square fit for the same points is obtained. We have adapted, for the

488 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1983



present application, Wold’s spline regression technique in terms of B-
splines.™

Fortunately, the key features of the DWGS can be illuminated
without invoking advanced data-fitting techniques. A judiciously cho-
sen elementary transcendental function representing r(L), which has
n continuous derivatives, will be found suitable to illustrate the effect
of various factors governing the course of the DWGS.

3.2 Major influences on the derivative weight-gain signal

3.2.1 Crystal shape

Typical LEC crystals, including GaAs, exhibit a pronounced
“shoulder” as the radius rapidly expands from the seed. Boule-to-boule
variation in the rate of approach to and radius of curvature of the
shoulder is not uncommon. A mathematical description of the shoul-
der, in general, and a prototype crystal, in particular, is possible by
means of the probability density function of the lognormal distribu-
tion.”® Accordingly, we can write for a seed diameter of 0.6 cm

_ 1 (In’L/L,,)
r(L)=C [SL\/E‘; exp — 257 :| + 0.3.

The median length, L,,, and the constant s are chosen such that the
maximum r is 2.8 cm at L = 2.2 cm. From these conditions we have

(36)

L, =22 exp(s?)

and a lengthy expression for C that is also only dependent on the
standard deviation, s. Hence, the function (L) can be constructed if
s is given.

In Figs. 2, 3, and 4 we present the crystal shape r(L) for s = 0.4, 0.8,
and 1.2, respectively. It can be seen that with decreasing s the radius
of curvature at the maximum decreases (i.e., |d*r/dL?| increases).
Furthermore, it can be shown that the rate of approach to the shoulder
(dr/dL) rapidly rises as s diminishes.

Substituting eq. (36) and its first and second derivatives into the
DWGS [eq. (12)] and the subsidiary equations yields the signal and
the crystal cross section as a function of time, both of which are shown
in Figs. 2, 3, and 4. The required parametric values are listed in Table
I. The results demonstrate that the DWGS is extremely sensitive to
dr/dL and |d*r/dL?|. In fact, the steeper the rise in the shape, the
sharper the peak in the DWGS and the larger its absolute magnitude.

Two other characteristic features of LEC pulling that are of crucial
importance can also be observed in Figs. 2, 3, and 4. First, the maximum
in DWGS precedes in time the maximum in shape by a few hundred
seconds. This time lag we shall designate as the “precursor.” The
second property is the additional maximum in DWGS at a time when
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Fig. 2—The DWGS and crystal cross section as a function of time for LEC pulling.
The shape versus length curve (---) is based on eq. (36), se ing s = 0.4. The time
derivative of the unencapsulated weight [dm,/dt, eqgs. (14) and (19)] is also shown.
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Fig. 3—The DWGS and crystal cross section as a function of time for LEC pulling.
The shape versus length curve (- --) is based on eq. (36), setting s = 0.8. The pull rate
:(lelrm in eq. (12)—the factor usually employed in conventional diameter control—is also

own.

the crystal’s radius has already declined. We shall refer to this phe-
nomenon as the “aftershock.”

We have investigated the source of the precursor and aftershock.
Simulations show that neither r nor its derivatives bears any respon-
sibility. Examining the variation of the interface height with time (Fig.
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Fig. 4—The DWGS and crystal cross section as a function of time for LEC pulling.

The shape versus length (- - -) curve is based on eq. (36), setting s = 1.2. The meniscus
height [eq. (26)] is also shown.

Table I—Parameters for the calculation of the

DWGS
Density of erystalline GaAs, d[g/cm®] 5.17
Density of molten GaAs, d,[g/cma] 5.71
Density of B:0s(¢), da[g/cm™] 1.56
Mass of B20s(¢), ma[g] 129.5
Pull rate, p[cm/s 36x10™*
Crucible radius, R[cm] 3.9
Wetting angle, ﬁ[deg{ 15
Capillary constant, A[cm] 0.4
Surface tension, ¢[dyne/cm] 333

4) we note that starting with a small but finite value at the seed, A
saturates beyond the shoulder (h = 0.38 cm).* Hence, no clue can be
extracted from the form of A. Concentrating on the term including the
pull rate in eq. (12), one concludes that this conventional description
of the DWGS? holds quite well in the early phase of growth but departs
from reality near the shoulder and beyond (Fig. 3). The maximum in
the p term and the shoulder perfectly coincide and no secondary
maximum appears.

If, however, one examines the derivative dm,/dt [eqs. (14) and (23),

* The fact that at ¢ = 0, r # 0, thus & > 0 is finite contradicts eq. (24). Therefore, to
correct eq. (25) the residual time

VioenlL =
to= [h(L=0)—#ﬂ]/P

is always subtracted from p.
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Fig. (2)], it is found that this quantity rises from zero to a maximum
value precisely at the time of the aftershock and that the magnitude
of the DWGS in this regime is essentially dm,/dt. In view of the fact
that dm,/dt is specifically associated with B20s(¢) encapsulation, a
reasonable hypothesis is that the aftershock is a consequence of the
LEC technique.

3.2.2 Meniscus shape and liquid encapsulation

To isolate the factors leading to the precursor and aftershock we
have evaluated the DWGS corresponding to the lognormal r(L) [eq.
(36), s = 0.8] in the absence of liquid encapsulation. In this case the
major equations still hold provided ps, Vs, ms, mg, and dm,/dt are
taken as zero. In Fig. 5 we present the DWGS with and without
interposing a meniscus between the melt and the growing crystal. It is
immediately obvious that in both instances the aftershock disappears
from the DWGS. Moreover, if the meniscus is also removed, the
precursor is missing, i.e., the times to reach the peak in DWGS and
cross section exactly coincide. In fact by simultaneously eliminating
B:0s(¢) and the meniscus from the growth system, only the contribu-
tion of the conventional pull rate term® is retained in eq. (12).
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Fig. 5—The DWGS and crystal cross section as a function of time in normal Czo-
chralski pulling without encapsulation. Curves with and without a meniscus present are
given. The shape versus length curve (- --) is based on eq. (36), setting s = 0.8. When
E}ﬁe meniscus is absent, the pull rate term in eq. (12) exactly coincides with the curve
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Further confirmation of these effects is offered in Fig. 6. Here the
calculation of the DWGS is repeated for LEC pulling without a
meniscus. As we expected, though the precursor is missing the after-
shock reappears. Apparently, up to and over the shoulder the DWGS
is governed by the p term. Near the secondary maximum the derivative
dmg/dt becomes the dominant factor.

A more physical interpretation of the aftershock is possible by
plotting the time-dependent radius, r(Lg), of the crystal as it just
protrudes through the B;03(¢). In Fig. 6 we show both r(L) and r(L;)
as a function of time. Besides an expected displacement of the radius
along the time axis one notes that the maximum in (L) occurs exactly
at the time of the secondary maximum in DWGS. From these consid-
erations a surprisingly simple explanation emerges. As more of the
shoulder region becomes uncovered from the encapsulant, the DWGS
registers the rapidly increasing true weight gain as opposed to the
previously measured apparent (buoyancy-reduced) weight gain of the
crystal. Hence, at the time of the maximum aftershock both the freshly
grown layers at L, submerged in B:0s(¢), and the sizable exposed
portions at L, are detected.

The discovery of the precursor and the aftershock has a significant
bearing on the diameter control of GaAs. The precursor is an early
warning signal that predicts a maximum in radius a few hundred
seconds before the actual event. In other words the DWGs is already
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dropping while the diameter is still increasing. Thus the controller has
sufficient time to react to an unwanted change.

When the aftershock is observed there is a good chance that the
controller misinterprets it as an unexpected gain in diameter and, if
undesirable, will respond accordingly. Then, of course, a visible reduc-
tion in diameter will occur. By the fime this is noticed, corrective
action taken cannot restore the loss in diameter control. At best,
beyond the shoulder a “sinusoidal” cross section with small amplitude
results.

In view of these observations one cannot base the diameter control
algorithm for GaAs on the customary p term’ in eq. (12). To be sure,
from the seed up to near the shoulder perhaps it suffices. However, for
the bulk of the boule, control by means of such a traditional method
is clearly inadequate.

3.3 Comparison with experiment

We have extracted the salient features of the DWGS arising during
LEC pulling by the use of the lognormal probability function for the
crystal’s cross section. To compare the experimentally determined
DWGS with the theoretical one the idealized crystal shape must be
replaced by that of a GaAs boule grown by the LEC method under
closely controlled conditions. Some of the growth parameters of inter-
est for this specially prepared crystal are listed in Table 1. The weight
and length of the crystal are 523.3 grams and 6.6 cm, respectively.

The crystal coordinates (r versus L) can be derived from a two-
dimensional projection employing a digitizer. Owing to the eccentricity
of the actual (100) boule, a single view is insufficient. We have obtained
planar projections with sharp contours by a photographic technique.
The crystal was placed on the top of a light box, backlit, and photo-
graphed using a high-contrast film. Then, the procedure was repeated
following a 90-degree rotation around the axis. In this manner, the two
photos provided a total of four cross sections. Digitizing the shape in
0.5-mm intervals 133 pairs of (r, L) coordinates were collected for each
of the four contours. At the shoulder the maximum error between the
crystal and its projection is less than 0.5 percent. The computed mean
weight is 528.6 g with a standard deviation of +9.3 g, which should be
compared with the measured weight of 523.3 g. Clearly, an excellent
tabular description of the crystal’s cross section has been accomplished.
The data points for one of the four views are shown in Fig. 7.

The alternatives to represent the tabular data have been outlined
earlier. In principle, because of close spacing, there would be no
obstacle to a simple interpolation of the (L) values. However, as we
illustrated in Fig. 7, using the numerical first and second derivatives
may be problematic on account of noise. Indeed, when the DWGS was
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Fig. 7—One of the four experimental contours of a GaAs crystal and its cubic spline-
re ion representation (—). The cubic spline regression of the numerical first deriv-
ative dr/dL is also shown. In addition, the numerical second derivative d*r/dL? is given,
together with the quadratic expression derived from the cubic spline of dr/dL.

computed from the numerical derivatives severe discontinuities ap-
peared in the results. This suggests that the steep “jumps” in d*r/dL?
seriously affect at some locations the shape and magnitude of the
DWGS.

A different approach is the finite Fourier transform of the r(L)
points. However, owing to slow convergence a large number of terms
is required. Eight terms were found to be sufficient to describe the
seed and shoulder regions. Beyond the shoulder 18 terms were neces-
sary to fit the data, albeit with concomitant high-frequency noise.
Since the number of required terms was unpredictable and the com-
putation inefficient, Fourier representation of the r(L) data was aban-
doned. Nonetheless, the DWGS based on Fourier analysis provided a
reasonable description of the measurements.

Cubic spline regression' has proven to be the most promising
method to cast the tabular data on crystal cross sections into functional
form. At the middle of the axis, the crystal was separated into two
slightly overlapping domains and within each 12 equally spaced knots
were positioned. The outstanding spline fit to one of the contours is
given in Fig. 7. There are two avenues open to obtain the first
derivative dr/dL. One is a simple differentiation of the shape’s spline,
which results in a continuous quadratic representation. Unfortunately,
in this case the second derivative becomes a continuous network of
connected straight lines (the third derivative is discontinuous) leading
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to a jagged DWGS. A more fruitful approach is to fit the numerical
first derivative itself by a cubic spline. Then, the noisy second deriva-
tive is described by a quadratic expression. In Fig. 7 we show the cubic
spline fit to the numerical first derivative data as well as to the
quadratic function passing through the numerical d ?r/dL?. We note
that a reasonably good description of the derivatives has been obtained
by the spline regression technique. Therefore, all four contours were
treated in a like manner.

Having thus established the shape and shape derivatives for an
actual GaAs crystal, one can readily evaluate the corresponding DWGS
by means of the analytical tools described earlier. Among the input
parameters listed in Table I, all the densities were obtained from a
recent critical evaluation of Jordan.!® The selected contact angle (15
degrees) is consistent with theoretical and experimental findings on
Ge and Si.'"®! The capillary constant A and the surface tension, o,
are connected via eq. (27). Though the recommended value for A by
Egorov et al. is 0.48 cm,'® we have achieved a slightly better fit to the
experimental DWGS using A = 0.4 cm, which is equivalent to o = 333
dynes/cm. The surface tension of GaAs thus obtained is consistent
with that for other ITI-V compounds (InP® and GaSb*)Si and Ge.”

The gross appearance of the DWGS is not overly sensitive to a
change in A. Nonetheless, a detailed examination reveals that the peak
corresponding to the shoulder becomes higher and broader as A
increases from 0.28 to 0.48 cm. With respect to the rest of the DWGS
one can conclude that the peak-to-valley dynamic range diminishes as
A drops. Among the effects of the other parameters, we have observed
a rise in DWGS with an increase in p and a reduction of the time scale
with a decrease in crucible radius.

In Fig. 8 we have reproduced the experimental derivative weight-
gain signal as a function of time, as obtained on a carefully calibrated
strip-chart recorder during the LEC growth of GaAs. The predicted
DWGS:s for the four contour lines as well as the time-dependent cross
sections are also shown. Clearly the theoretical curves envelop the
measured values, providing an excellent overall description.

The computed DWGSs exhibit both the early warning precursor
and aftershock. In the inflection before the first peak we can discern
the time when the seed first protrudes through the B;0s(¢). Since an
actual crystal may possess additional cross-sectional bulges beside the
shoulder, the secondary maximum in DWGS reflects both the memory
of that earlier maximum in radius and the current expansion. To a
small extent the DWGS is influenced by the input shape derivative
function. For example, in the trough above the shoulder, a spline of
the first derivative with many more knots would lead to a smoother
transition to the next peak. Likewise, near the last peak, an improved
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Fig. 8—DWGS (—) and crystal cross section as a function of time for four experi-
mental contour lines of LEC-pulled GaAs. The measured DWGS was traced from the

original strip-chart recording.

agreement with the experimental data is possible at the cost of a finer
derivative spline. Near the bottom of the crystal the accord with the
measured DWGS is more limited, perhaps on account of the increas-
ingly negative turn in the joining angle a (between —20 and —40
degrees). Under those circumstances Tsivinskii’s approximation for
the meniscus properties becomes inaccurate.!!

3.4 Prospects for diameter control

The excellent agreement between predicted and experimental
DWGS strongly suggests that diameter control of GaAs by the deriv-
ative measurement is feasible. There are two approaches to diameter
control implied by the modeling calculations. One is a real-time in-
stantaneous determination of the radius during growth from the
DWGS by solving the differential equation (12). Then, depending on
whether r is increasing or decreasing from a preset limit, the RF input
power is changed by a suitable amount.

The other method is the construction of an “ideal” crystal with
appropriate tolerances on a drawing board. Taking into account the
tolerances for this crystal, a band of DWGS can be evaluated as has
been done for Fig. 8. Subsequently, the control of diameter is reduced
to the problem of adjusting the power input in such a fashion that a
template established by the band of DWGS:s is followed.
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