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In this paper we present a theory of relational database systems based on
the partition lattice, which represents a new mathematical approach to the
structure of relational database systems. A partition lattice can be defined for
any given relation. This partition lattice is shown to be a meet-morphic image
of the Boolean algebra of subsets of the attribute set. The partial ordering in
the lattice is proved to be equivalent to the concept of functional dependency,
and thus Armstrong’s axioms for functional dependencies are proved. We
solve the problem of finding the list of all keys by seeking the prime implicants
of the Boolean function associated with the principal ideals generated by the
attributes. We demonstrate the properties of the Boyce-Codd Normal Form
(BCNF), and give a modified algorithm for synthesizing an information-
lossless BCNF based on the principal filter. The necessary and sufficient
conditions for multivalued dependency (MVD) are given in terms of a lattice
equation, and the inference rules of MVD are proved. The necessary and
sufficient conditions for join dependency (JD) are given; consequently, we can
prove the known result that acyclic join dependency (AJD) is equivalent to a
set of MVDs. The concept of data independence is introduced, and is extended
to conditional independence and mutual independence. We established this
algebraic theory of relational databases in the same spirit that the theory of
probability was constructed. We present a comparison that demonstrates the
similarities.

I. INTRODUCTION

The existing theory of relational databases is based on Codd’s
relational model of data.? This relational database theory can be
considered to be the study of data dependencies (or independencies).
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The theory was initiated by Codd with the introduction of the concept
of functional dependency; Codd observed that this concept can be used
to design better, normalized, database schemes. The advantage of
normalized database schemes is that they remove the possibility of
updating anomalies caused by undesirable data dependencies.*”

In the existing theory of logical database design, functional depend-
encies are input constraints that must always hold in the relation.® In
the present paper, however, we take a different approach. We assume
that for a particular database designer, there exists a (finite) universal
relation R[Q] for a given set of attributes Q, such that any relation T'
on Q is a subset of R[Q]. Furthermore, each subset X of Q corresponds
to an equivalence relation (partition) on the set of tuples of R[Q].
That is, if two tuples in R[] have the same X value, then they are in
the same equivalence class. With this approach, the concept of func-
tional dependency becomes equivalent to the refinement partial or-
dering of the partition lattice. The partitions on the (finite) set of
tuples of the universal relation R[Q] can then be considered as the
fundamental constraints, from which the functional dependencies
(partial ordering) can be derived. Consequently, with our approach,
the functional dependencies are inherent properties of the universal
relation R[Q]. The input constraints of course must be consistent with
the inherent properties within the database.

Another kind of data dependency, proposed by Fagin’ and Zaniolo,?
is the multivalued dependency, which includes functional dependency
as a special case. Multivalued dependency is the necessary and suffi-
cient condition for the lossless-join decomposition of a relation into
two subrelations, such that the original relation can be regenerated by
the (natural) join operation.” Using the partition lattice we propose,
we can formulate multivalued dependency as a lattice equation (see
Section VI). We show that the axioms for functional dependencies'
and the inference rules of multivalued dependencies'® can all be proved
as theorems within the framework of partition lattice theory. We show
how the concept of join dependency'®'*!* is connected to multivalued
dependency. We give the necessary and sufficient condition for join
dependency and, consequently, we can prove the known result that
the acyclic join dependency is equivalent to a set of MVDs.">'® We
also introduce the concept of data independence, and the extension to
conditional independence and mutual independence of sets of attri-
butes.

The problem of listing all the keys of a relation is solved by using
the concept of principal ideals in lattice theory. One form of a relation
having desirable properties is the Boyce-Codd Normal Form (BCNF);
we show that the concept of the principal filter (dual ideal) can be
used to produce information-lossless Boyce-Codd Normal Forms.
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Both the theoretical foundation and the practical application of the
existing theory of relational databases appear to be fragmented. This
paper shows that all the diverse kinds of data dependencies can be
formulated within the lattice theory, which has the important advan-
tage of unifying the theory of relational databases into a coordinated
whole. Because of this, it would appear that future work in relational
databases should be conducted using lattice theory as the basic frame-
work.

The establishment of this algebraic theory of relational databases is
done in the same spirit as the construction of the theory of probability,
although probability theory is of course unrelated to database theory.
We are convinced that the lattice theory could play a role in the theory
of relational databases similar to the role that measure theory plays
in the theory of probability."”

The basic notion of relational databases is defined in Section II,
and the partition lattice of the relation is introduced in Section III.
The problem of listing all keys is solved in Section IV, where the
Boolean functions associated with the principal ideals are defined.
The properties of the Boyce-Codd Normal Form are studied in Section
V, where we present a modified algorithm for synthesizing informa-
tion-lossless BCNFs based on the principal filters. Section VI is
devoted to the proof of equivalence between multivalued dependency
and a lattice equation. Section VII discusses join dependency and
acyeclic join dependency. Finally, in Section VIII we outline a possible
direction for future research, as well as a comparison that shows the
similarities between probability theory and the algebraic theory of
relational databases. In Appendix A we list the laws of lattice theory
for reference. The proofs of the axioms for functional and multivalued
dependencies are listed in Appendix B.

Unless otherwise stated, we refer to the universal relation as simply
“the relation” in the remainder of this paper.

Il. RELATIONS

An attribute is a symbol taken from a finite set Q = {A,, 4;, - .-,
A,}. For each attribute A there is a set of possible values called its
domain, denoted DOM(A). We will use capital letters from the begin-
ning of the alphabet (4, B, - - -) for single attributes, and capital letters
from the end of the alphabet (X, Y, ---.) for sets of attributes. For a
set of attributes X C Q, an X-value x is an assignment of values to the
attributes of X = {A;, Ay, -+, a;} from their respective domains.
The notation XY will be used to represent the union of two arbitrary
sets of attributes X, Y C Q.

A relation R on the set of attributes Q = {A;, - .-, A,} is a subset of
the Cartesian product DOM(A,) X ... X DOM(A,). The elements
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(rows) of R are called tuples. A relation R on {A,, ---, A,} will be
denoted by R[A, - - - A,]. Similarly, if R is defined on the union of sets
(X1, X3, +++, Xn), then the notation R[X; ... X.] will be used. A
relation can be visualized as a table whose columns are labeled with
attributes and whose rows depict tuples. The ordering of the rows and
columns is immaterial. The cardinal of R is the total number of tuples
in R and is denoted by |R|.

Let ¢ be a tuple in R[Q]. For X C Q, t[X] denotes the tuple that
contains the components of ¢ corresponding to the attributes of X.
The projection of R on X, denoted by R[X], is defined as follows:

R[X] = {t[X]|t € R).

Similarly, the conditional projection of R on X by a Y-value y, where
Y C 9, is defined as follows:

R[X]=1{4{X]|tER and {[Y]=y}.

Let R[XZ] and S[XZ] be relations where X, Y, and Z, are disjoint
sets of attributes. The join (natural join) of R and S, denoted by
R|X|8S, is the relation T[XYZ] whose attributes are XYZ, and is

defined as follows:
TIXYZ] = R[XZ]| x| S[YZ]
={(x,y, 2)|(x,2) ER and (y,2) € S}.

The join can also be defined as the union of a collection of Cartesian
products:

TIXYZ] = R[XZ]| x| S[YZ]
= {R[X] x 8[Y] X (2)| (2) € R[Z] N S[Z].

Let R be a relation on the set of attributes 2. We may have two sets
of attributes X, Y, C , such that for any two tuples ¢, t; € R, ;[ X]
= t,[X] implies t;,[Y] = t,[Y]. We say then that X functionally deter-
mines Y in R, and denote this fact by X — Y. A functional dependency
(FD) X — Y is trivial, meaning it holds in all relations, if Y C X. Note
that FDs enjoy the projectivity and inverse projectivity properties.™*
For sets X, Y C Q' C ©, the FD: X — Y is valid in R[Q] iff it is valid

in R[Q'].
We say that a set of relations {R[€4], - - - , R[Qn]} has the information-
lossless join property if @ = €, --- @, and

R[Q] = R[] X] -+ | X| R[n].

If the set {R[Q], - - - , R[]} does not have this property, we say that
it has a lossy join."* An important property of functional dependency"’
is that if FD: X — Y is valid in R[Q] then
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R[Q] = R[(Q? - Y)X]| x| R[XY].
This property will be discussed in more detail in Section VI.

IIl. THE RELATION LATTICE

If S is a nonempty set, then a subset p of S X S is called a binary
relation on S. The product of two binary relations p, p’' € S X S is
defined as:

pep ={(a, b} €S %X S|3c e S such that (a, c) Ep, (c, b) € p’}.

We say that a relation p on S is reflexive if (a, a) € p for every a in S;
that p is symmetric if p™' = p, i.e,, if

(Va, b€ S), (a, b) € p implies (b, a) € p;
and that p is transitive if p o p C p, i.e,, if
(Va,b,c€S), (a,b)€Ep and (b,c) Ep imply (a,c)E p.

A binary relation is called an egquivalence relation if it is reflexive,
symmetric, and transitive.

A family 7 = {B;| i € I} of subsets, called blocks of S, is said to form
a partition of S if the following conditions hold:

1. Each B; is nonempty
2. Foralli# jinl, BN B;=0
3. UBili €1} =S8.

The two apparently different notions of “equivalence relation” and
“partition” are interchangeable: Let p be an equivalence relation on a
set S. Then the family a, = {b| (a, b) € p} of subsets of S is a partition
of S. Conversely, if # = {B;| i € I} is a partition of S, then the relation
{(a, b) | (i € I}, (a, b) € B} is an equivalence relation on S.

If p is an equivalence relation (partition) on S, we shall sometimes
write apb as an alternative to (a, b) € p. The sets a, that form the
associated partition of the equivalence relation are called p-classes.
The set of p-classes is called the quotient set of S by p and is denoted
by S/p.

A binary relation = on the set S is a partial ordering of S if and only
if = is reflexive; antisymmetric, i.e., if

(Va, b€ S), a=<b and b=a imply a=b

and transitive. A set S with a partial ordering = is called a partially
ordered set (poset) and it is denoted by the pair (S, =).

Let (S, =) be a poset and let T be a subset of S. Then, a € S is the
greatest lower bound (g.l.b.) of T iff

1. (VteT),ast.
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" 2. (VteT),a’ =timpliesa’ = a.
Similarly, @ € S is the least upper bound (Lu.b.) of T iff

1. (VtET),t=a.

2. (VteT),t=a’ impliesa =a’.

A lattice is a poset in which any two elements a and b have a g.Lb.,
called a meet and denoted by a-b, and a L.u.b., called a join and denoted
by a + b. We sometimes write the meet a-b as ab if no confusion is
created. The properties of the meet and join operations of a lattice'®
are listed in Appendix A.

Let the set of all partitions m; on S be denoted by [](S), and define
the partial ordering on [](S) as follows:

If (Vﬂ, be S), ﬂ‘l‘rlb 1mplles a‘ﬂ'zb, then ™ = 7.

The poset (IT(S), =) is seen to be a lattice (IJ(S), -, +) with a
universal lower bound 0 = {B;|i € I} such that every block B; is a
singleton, and an universal upper bound 1 = {S}. To specify a partic-
ular partition, we list the elements, and distinguish blocks with bars
and semicolons. For example, if S = {1, 2, 3, 4, 5] and partition = on
S has blocks {1, 3, 4}, {2, 5}, then we write = = {1, 3, 4; 2, 5}. The meet
and join of any two partitions m;, =2 € [[(S) can be determined as
follows:

1. (Va, b € S), am,-m:b iff am,b and amsb.

2. (Va, b€ S), ary + mb iff In € Nand ¢y, -+, ¢, € S such that
a = ¢y, b= ¢, and c;m1Cis1 OF ¢macisy foreach i, 0 < i<n -1

A complemented distributive lattice is called a Boolean algebra (see
Appendix A). The set of all subsets of S, called the power set of S, and
denoted by 25, with the partial ordering (VSy, S; € 2%), 8: = Sz iff S,
2 8., is a Boolean algebra (25, ., +, 7) with the universal bounds 0 =
S and 1 = @. The dual of a poset is the poset with the converse partial
ordering on the same elements. The Boolean algebra defined above is
the dual of the conventional Boolean algebra of the power set. The
operations of meet and join are defined by

1. Meet (glb) Sl-Sz = 81 U Sz,

2. Join (l.ll.b.) Sl + 82 = Sl n Sg,
and the complement of S; € 25is §; =S — Si.

Let ¢: L — M be a function from a lattice L into a lattice M. We
say y is a meet-morphism if

(Va, b€ L), la-b) =y(a)-¥(b),
and y is a join-morphism if
(Va,bE€L), Yla+b)=yla)+ y(b).
Meet-morphisms and join-morphisms are both isotone (order-preserv-

ing); i.e.,
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(Va,be L), a=b implies y(a) = y(b),

and any order-preserving one-to-one mapping with an inverse is an
isomorphism.'®

Let R be a relation on the set of attributes Q. The set of all subsets
of Q, denoted 2%, with the partial ordering defined by set-containment,
is a Boolean algebra (27, -, +, 7),'® where the meet, join, and comple-
ment operations are defined as above. For every X € 29, there is an
equivalence relation (partition) on the set of tuples in R[] defined as
follows:
Definition 1: Let R be a relation on the set of attributes Q. Each subset
of Q is associated with a partition of the set of tuples of R. We define
the function #: 2% — [[(R[Q]), which we call the partition function
(associated with R[2]), by

0:X — 0(X) = {(t,, t) € R[Q] X R[Q] | ts[X] = tz[X]}. W

In general, the image set Im(f) of 8 is not a sublattice of [J(R[Q]).
Since m,, me € Im(6) implies m, -7, € Im(f), Im(6) is a complete lattice
in its own right,?® and it will be called the relation lattice of R[Q], and
denoted by L(R[]). Note that there are no duplicated tuples in R[Q],
so that 8(R2) = 0. Since the tuples cannot be “differentiated” by the
empty set of attributes, we define (@) = 1. The universal bounds of
L(R[Q]) are the same as those in [[[R)2]). We immediately recognize
the concept of functional dependency to be equivalent to the refine-
ment partial ordering of the partitions.

Lemma 1: Let R[] be a relation on the set of attributes §, and let 6: 2°
— [I1(R[]) be the partition function associated with R[], defined above.
Then

X—-Y iff X)=a(Y). W

An immediate consequence of the above lemma is that the projection
R[X] of R[] on X is simply the quotient of R[Q] by 8(X), i.e., R[X] =
R[Q]/6(X). Thus each tuple in R[X] corresponds to a 6(x)-class in
R[Q]/6(X) and it takes the X-value only. Note that 6(X) = 6(Y) does
not imply R[X] = R[Y] because the attributes X and Y may have
different sets of values.

Theorem 1: Let R be a relation on the set of attributes Q, and let L(R[Q])
be the relation lattice of R. Then the partition function 8:2% — L(R[Q])
is a meet-morphism.
Proof: We want to show that
0(XY) =0(X)0(Y), VX, Ye2°
Suppose t,0(XY)to. Then, t,[XY] = t:[XY], which implies

t[X] =t[X] and 4L[Y]=t[Y].
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Hence,
HO(X)t, and £HO(Y)ts.
By the definition of the meet operation, we have
H0(X)0(Y)t,,

so that
#(XY) = 60(X)0(Y).

Suppose t;0(X)8(Y)t.. Then,
t0(X)t; and H8(Y)ts,

so that
t[X] = t[X] and (Y] =t[Y],
and thus
t[XY] = [ XY].
Consequently,
LO(XY)t,,
so that
8(X)8(Y) = 6(XY).
Hence

8(XY)=06(X)o(Y). ®

Note that the partition function # is order-preserving, but it is in
general not a join-morphism.* However, if 8(X + Y) = (X)) + (YY)
holds in L[R], the pair (X, Y) has a special property in the relation.
This is discussed further in Section VI

It is clear now that Armstrong’s axioms for functional dependencies
become theorems within the framework of lattice theory. The proofs
of the axioms for functional dependencies are given in Appendix B.

Let R be a relation on the set of attributes Q, and let 8: 2% — L[R(Q)]
be the partition function associated with R[2]. Then the relation
8 ° 07" on 27 defined by

g0 ={(X,Y)€2%x2%6(X)=0(Y))

is obviously an equivalence relation. Sets in the quotient set 2%9 67"
will be called @ classes.

* The join of r; and m; in L(R[Q]) may be different from their join in [[(R[2]). We
will use the notation 7, ® =, to denote the join of m; and =, in [[(R[Q]), while 7 + 72
will denote the join of 7, and =z in L(R[2]); e.g., in Example 1 below, 8(E) @ 6(S) = {1,
2,3, 4,5,6;7,8],and 0(E) + 8(S) = {1, 2, 3,4,5,6, 7, 8.
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Table |—Relation R[ECSY]

Employee Child Salary Year
1 Hilbert Hubert $35K 1975
2 Hilbert Hubert $40K 1976
3 Gauss Gwendolyn $40K 1975
4 Gauss Gwendolyn $650K 1976
5 Gauss Greta $40K 1975
6 Gauss Greta $50K 1976
7 Pythagoras Peter $16K 1975
8 Pythagoras Peter $20K 1976

Example 1: Consider the relation R in Table I (see Ref. 7). Let @ =
{E, C, S, Y} be the set of attributes, where E = employee, C = child,
S = salary, Y = year. Then
2=, E, C, S, Y, EC, ES, EY, CS, CY, SY, ECS,
ECY, ESY, CYS, CESY},

and

0@=11,23,4,5,6,17 8 =1,
6(E) ={1,2;3,4,567,8 =m,
6(C) = 0(EC) = {1,2; 3,4, 5,6, 7, 8 = m,
6(S) ={1;2,3,5 4,6 7,8 =,
0(Y)=1{1,3,5,7; 2 4, 6,8 =,
0(ES) = 0(EY) = 6(SY) = 8(ESY)
=1{1;2;3,5; 4,6, T; 8} = =5,
6(CS) = 6(CY) = 6(ECY) = 6(ECS) = 8(CSY) = 6(ECSY)
={1; 2 3:,4;5;6,7; 8 =0.
The Hasse diagram!®?! of the relation lattice is illustrated in Fig. 1. W

IV. LIST OF KEYS

Let R be a relation on the set of attributes Q. We say that X C Q is
a superkey of Rif X — A, VA € Q. If X is a superkey and no proper
subset of X is a superkey, X is said to be a key of R.»**

Lemma 2: X C Q is a superkey of R iff 8(X) = 0.
Proof: (Necessity) Let @ = {A,, ---, A,}, and X — A;, VA; € Q. Then,

0(X) = 0(A), VA; e Q.
By the definition of the meet operation, we have
0(X) = 0(A))0(A,) -+« 8(A,).
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Fig. 1—Relation lattice L(R[Q]).

It follows from Theorem 1 that
0(X) = 0(A142 --- An) =0(Q) = 0.
Hence,
8(X) = 0.
(Sufficiency) Suppose #(X) = 0. Then
0(X) = 6(A), VA; € Q.
Hence,
X—A, VA, eQ 1

An ideal is a subset J of a lattice L with the properties'®

1. a€dJ,x€L,and x = a, imply x € J,

2. a,b€ Jimpliesa + b € J.
For every a € L, the subset of all elements “less than or equal to” a is
evidently an ideal; it is called the principal ideal of L generated by a,
and is denoted by (a], i.e.,

(al={xE€L|x=a}.
Definition 2: Let R be a relation on the set of attributes Q@ = {A,,
..., A,}. For each A; € Q, J; = (6(A))] is the principal ideal of the
relation lattice L(R[Q]) generated by 8(A;). A Boolean function
fi(Als "')An)= E X
B#(X)ET;
defined on 2° is the Boolean sum of all X € 27 such that 8(X) = 6(4)).
We will call f; the principal ideal function (generated by 4;). W
This function plays a role similar to the Boolean function used in
Ref. 16.
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Theorem 2: Let R be a relation on @ = {A;, ---, A,}. XC Qisa
superkey of R iff X is a product term in the expansion of the Boolean
function

F(A], "':An)= ],:[fl(Als "'yAn)y

where f; is the principal ideal function generated by A,
Proof: The Boolean function F(A,, - --, A,) has the expansion

F(Ali""An)=Hfi= Z Xl"'Xn-
=1 0(X)ES;

We want to show that every term K = X; ... X, is a superkey. Since
0(X,) € J; = (6(A))], it follows that
0(X;) = 6(A), l<is<n.
From L6 in Appendix A, we have
B(X)0(X) --- 8(X,) = 0(A1)8(Ay) --- 6(A,).
It follows from Theorem 1 that
(X Xy - X)) =60(A, --- A) =0(Q) =0,
and thus
(X, X, --- X)) =0.
Hence, K = X, X, - - - X, is a superkey of R.
Conversely, suppose X is a superkey of R. Then
X— A, VA; € Q.
Thus,
0(X) = 6(A), l<i<n
By the definition of the principal ideal /;, we must have
0(X) € J; = (8(A)], l<i<n.

It follows that X = X ... X (n times) is a product term in the
expansion of F(A,, ---,A,). B

It is natural to call F(A,, ---, A,) the key Boolean function of the
relation R[A, --- A,). Since any key X is a superkey of R, X must be
a product term of the key Boolean function F(A,, ---, A,). Since no
proper subset of X is a superkey, then by the definition of the prime
implicant of a Boolean function,” we have
Corollary 1: Let R be a relation on the set of attributes Q = {A,, -- -,
A.. X C Qs a key of R iff X is a prime implicant of the key Boolean
function F(A,, --- ,A,). A
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An attribute A € Q is prime in R[Q] if A is in any key of R; otherwise
A is nonprime. A C Q is a nonprime attribute if and only if the key
Boolean function is independent of A.
Theorem 3: Let R be a relation on Q. A € Q is a nonprime attribute iff
there exists X C Q such that

LAEX, X—A,

2. AZ — X implies Z — X.
Proof: (Necessity) Let A € Q be a nonprime attribute, and let X be
any key of R. Then

AgX, and X — A

Suppose AZ — X. Then #(AZ) = 6(X) = 0. It follows that 6(AZ )=0
and thus AZ is a superkey; it contains a key K C AZ and A & K. We
have K C Z, so that

6(Z) = 6(K) = 0 = 0(X).
Hence,
Z— X.

(Sufficiency) Let @ = {4,, - - -, Ay}, n = 2. Assume there is an X =
Ag, + -+, An, such that (1) X — A,, and (2) A,Z — X, implies Z—- X
We want to show that A, must be a nonprime attribute. The key
Boolean function F(A,, -- -, A,) of R[2] can be written in the form

FlAy, -+, An) = f;[lfl- = fify -+ fofmes oo o
= (flfxfm+1) e (flfxfn):

where fx = fa - -+ fn For any product term Y in fx we have
0(Y) = 0(X) = 6(Ay).
Therefore, Y must be a term in f,. It follows that f, has the form
h=fx+g

for some Boolean function g. Since 8(A,Z) = 6(X) implies 0(Z) = 0(X),
fx can be written in the form

fx=Ah+h+p=h+p

for some Boolean functions k and p which are independent of A,. Also,
every f,j =m + 1, - - -, n,can be written in the form

fi=he+fxe+gq

for some Boolean functions e and g, which are independent of A,. It
follows that
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fifxfi = hifx(fie + fxe + q)
= fx(he + fifxe + f19)
= fx(fre + f1q)
= fifx(e + q@) = (fx + g)fx(e + q)
= fx(e + g) = (h + p)(e + g).
Since h, p, e, and g are all independent of A,, we know that ffxf; is

independent of A, forallj=m+1, - .. , n. Clearly, no prime implicant
of F(A,, ---, A,) contains A,, and therefore A, is a nonprime attri-
bute. W

Example 2: Consider the relation R in Example 1. To obtain the prime
implicants of the key Boolean function F, we can first simplify each
principal ideal function. The principal ideal functions of the relation
R[ECSY] are

fe=E+ C+ SY,
fc =C,
fs=S+ EY + CY,
fy =Y+ ES + CE,
and the key Boolean function is
FEC S Y)=(E+C+ SY).C.(S+ EY + CY)
(Y + ES + CE)
=CS + CY.

The sets CS and CY are the keys, and E is the only nonprime
attribute. W

V. BOYCE-CODD NORMAL FORM

Normalization is a logical database design process that can be viewed
as the decomposition of a relation into a set of subrelations, such that
the original relation can be regenerated by the joins of the subrelations.
The purpose of decomposition is to separate the independent compo-
nents into distinct relations, to avoid updating anomalies.? It is claimed
in Ref. 4 that the Boyce-Codd Normal Form is one that is free of
insertion and deletion anomalies. This section is devoted to the BCNF
and its relation lattice. A modified algorithm for synthesizing an
information-lossless BCNF® is included, based on the concept of the
principal filter of the relation lattice.

Recall that a functional dependency X — Y is trivial if Y C X. A
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relation R[Q] is said to be in Boyce-Codd Normal Form if, for all
nontrivial FDs X — Y, X is a superkey.*
Definition 3: Relation R[Q] is in BCNF if X — Y implies either
1. X is a superkey, i.e., #(X) = 0,
or

2.YCX B

If a relation is in BCNF, we will show that its relation lattice has
some special properties. To analyze these properties we need the
concept of the principal filter."®

An ideal of the dual of the lattice L is called a filter of L. A subset
M of L is a filter of L if

l.aEM,xEL,and x 2 q, imply x E M,

2. a,b, € M implies a-b € M.

For every a € L, the subset of all elements “greater than or equal to”
a is a filter; it is called the principal filter of L generated by a, and is
denoted by [a), i.e.,

[@) ={x € L|x Z a}.

If a and b are elements of a lattice L, where a < b, and there is no ¢
€ L such that a < ¢ < b, then we say that a is covered by b (or b covers
a).®® An element that covers the universal lower bound O of L is
referred to as an atom of L."®
Definition 4: Let R be a relation on the set of attributes @, and let =
be an atom of the relation lattice L(R[Q]). Let Q, = {A|A € Q, 6(A) =
7} € Q. Then the projection R[Q.] of R and Q, is called an atomic
projection, and [r) is called an atomic filter. W

It is easy to verify that the relation lattice of the atomic projection
R[] is isomorphic to the principal filter [x) of L(R[Q]) generated by
m.

Definition 5: Let R be a relation on the set of attributes 2, and let =
€ L(R[Q)]) be an atom. The principal filter [r) of L(R[Q]) is called
normal iff whenever X — Y is valid in the atomic projection R[Q,]
then Y C X; otherwise, it is called abnormal. W

Lemma 3: A relation R[Q] is in BCNF iff every atomic filter of L(R[])
is normal.

Proof: (Necessity) Trivial.

(Sufficiency) Suppose X — Y and X is not a superkey, i.e., (X) +#
0. Then there must exist an atom , such that

0<w=0(X)=6(Y)

It follows that X, Y C Q, and that X — Y is valid in the atomic
projection R[R,], which is assumed normal. Therefore YC X. W
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The join operation in the Boolean algebra (2% -, +, ) is not always
preserved by the # mapping. But for a relation R[Q] in BCNF, if X, Y
C Q and neither X nor Y is a superkey of R[Q], then the join X + Y
is preserved by 6. We have
Corollary 2: If R[Q] is in BCNF, X, Y C Q, 8(X) # 0, and 6(Y) # O,
then

X +Y)=6X)+ 6(Y).
Proof: Since X+ YC Xand X + YC Y, we have
H(X)=6(X+Y) and &Y)=0X+Y).
By definition of the join operation, we have
0X)+8(Y)=E0X+Y).
Suppose there is a Z C  such that
0(X) =06(Z) and 6(Y) = 6(2).
Given #(X) # 0 and 6(Y) # 0, we have
ZCX and ZCY.
Thus,
ZCX+Y,
so that
(X +Y)=0(2).
By the definition of least upper bound, we have
X+ Y)=0X)+6(Y). 1

The most important characteristic of the BCNF is given in the
following theorem.

Theorem 4: The relation R[Q] is in BCNF iff every atomic filter [m) of
L(R[Q)) is isomorphic to the Boolean algebra (2%, -, +, 7).
Proof: (Necessity) Since [«) is a meet-morphic image of 8 restricted to

2% it is sufficient to show that 0 is a one-to-one mapping on 2%, Let
X, YE 2%, and 6(X) = #(Y). It follows that

H(X) =0Y — X)0(Y + X) = (Y - X),
which implies
X—-Y-X
Since 0 < 7 = #(X) and [«) is normal, we have
Y-XCX
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Hence,

YC X
Similarly,

XCY.

Therefore, X = Y, and f is a one-to-one mapping on 2%.

(Sufficiency) Suppose X — Y is valid in R[Q,]. Then #(X) = 6(Y).
Since the inverse of an isomorphism is also order-preserving, it follows
that X D Y. Therefore, [r) is normal and R[Q] is in BCNF. W

The above theorem implies that if [«) is normal, the only key of
R[Q,] is 67\ (%) = Q,.

It is known that any relation has a lossless-join decomposition into
Boyce-Codd Normal Form, and an algorithm for determining the
decomposition is given in Ref. 6. We will show how the concept of the
principal filter can be used to modify this algorithm. In the algorithm
for synthesizing the Third Normal Form,” a concept similar to the
principal filter is used implicitly by Bernstein when he partitions the
functional dependencies (Step 2). Before describing the improved
algorithm, we need the following:

Lemma 4: Let R be a relation on Q. Let = € L(R[R]) be an atom of the
relation lattice, and let K be a key of the atomic projection R[{,]. Then,

R[Q] = R[(2 — Q)K]| X |R[Q.].

Prooff KCQ,and K—Q,. B
The algorithm for determining the lossless-join decomposition into
BCNF is simply to construct a sequence of decompositions D; = (R,
., R,) of R, each with lossless join: Initially, let D, consist of R
alone. If T[Q] is a relation in D;, and T[2] is not in BCNF, let = be an
atom of L(T]Q)) for which the principal filter [r) is abnormal. Let K

Table II—Relation R{MSPCNY]
Model Serial

Number  Number Price Color Name Year

1 1234 342 13.25 blue pot 1974
2 1234 347 13.25 red pot 1974
3 1234 410 14.23 red pot 1976
4 1465 347 9.45 black pan 1974
5 1465 390 9.82 black pan 1976
6 1465 392 9.82 red pan 1976
7 1465 401 9.82 red pan 1976
8 1465 409 9.82 blue an 1976
9 1623 311 22.34 blue ettle 1973
10 1623 390 30.21 blue kettle 1976
11 1623 410 28.55 black kettle 1975
12 1623 423 28.55 black kettle 1975
13 1623 428 28.55 blue kettle 1975
14 1654 435 28.55 red kettle 1975
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be a key of the atomic projection T[Q,]. Now replace T[Q] in D; by
T[Q — Q,)K] and T[Q,] to obtain D;,,. Continue the process until all
the relations in the decomposition D;, are in BCNF,

Example 3: Let us consider the relation RIMSPCNY] from Ref. 23,
where M = model number, S = serial number, P = price, C = color, N
= name, and Y = year. The tuples of the relation RIMSPCNY] are
shown in Table II.

The Hasse diagram of the relation lattice L(R[Q]) is illustrated in Fig.
2, where

m =11, 8,09, 10, 13; 2, 3, 6, 7, 14; 4, b, 11, 12},
T =1{1, 2, 3; 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14},
m = {1, 2, 4; 3, 11, 12, 13, 14; 5, 6, 7, 8, 10; 9},

={1 2,3:4,5,6,7, 89, 10, 11, 12, 13; 14},

Fig. 2—Relation lattice L(RIMSPCNY]).
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and 8(C) = m,, 8(N) = m, 0(Y) = s, 6(M) = 74, 8(P) = 75, 0(S) = ms.
For X C 9, 8(X) can be obtained easily by carrying out the meet
operations on the attributes in X.

The principal ideal functions of RIMSPCNY] are

fo(M, S, P,C, N, Y)=C+ MS + NS + PS,
fn(M,S,P,C,N,Y)=N+ M+ P+ CY + CS,
fe(M,S,P,C,N, Y)=P+ MY+ CS + MS + NS,
fuM, S,P,C,N,Y)=M+ CN + CP + CY + NS + PS + CS,
fv(M, S,P,C,N,Y)=Y+ P+ S5,
fs(M,S,P,C,N, Y)=S5,
and the key Boolean function is
FM,S,P,C,N,Y)=(C+MS+ NS+ PS)-(N+M+P+CY
+ CS)
(P + MY + CS + MS + NS)
.(M+CN+CD + CY+ NS+ PS + CS)
(Y+P+8)8
= CS + MS + NS + PS.

The keys of RIMSPCNY] are {CS, MS, NS, PS}, and Y is the only
nonprime attribute.

Initially, let D, = {R(MSPCNY)}. Since both atomic filters [rs) and
[we) are abnormal, we arbitrarily choose my, and let £ = Q,,= MPCNY.
The relation lattice of R[Z] is isomorphic to [m). The principal ideal
functions of R[Z] are

g(M,P,C,N,Y)=f(M,0,P,C,N,Y)=0C,
gn(M,P,C,N, Y)=fuM,0,P,C,N,Y)=N+ M+ P+ (Y,
go(M, P,C, N, Y)=/f(M,0,P,C,N, Y) =P+ MY,
guM, P,C,N,Y)=f(M,0,P,C,N,Y) =M+ CN + CP + CY,
g&(M,P,C,N,Y)=f((M0,PCN,Y)=Y+ P,
and the key Boolean function is

GM,P,C,N,Y)=C-(N+ M+ P+ CY).(P+ MY)

(M + CN+ CP +CY)-(Y+P)
= CP + CMY.
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We choose the key CP and replace RIMSPCNY] in Dy by R[(Q — Z2)K]
= R[SPC] and R[Z] = R[MPCNY] to obtain D, = |R[SPC],
R[MPCNY]}. The relation R[SPC] and its lattice are shown in Table
III and Fig. 3, respectively.

The relation R[SPC] is in BCNF, but the relation R[MPCNY] is
not. The relation lattice of R[MPCNY] is isomorphic to the filter [rs).
We will not duplicate the figure. Both “atoms” m¢ and m of [mp) are
abnormal. We choose the filter [w7). The principal ideal functions of
R[Z,] = RIMPNY] are

hu(M, P, N, Y) =gu(M,P,0, N, Y) =M,
hn(M, P, N, Y)=gn(M,P,O,N,Y)=N+ M+ P,
hp(M, P, N, Y) = go(M, P, 0, N, Y) = P + NY,
hy(M,P, N, Y)=g¢(M,P,0,N,Y)=Y + P,
and the key Boolean function of RJMPNY] is given by
HM,PN,Y)=M-(N+ M+ P).(P+ MY)-(Y+ P)
= MP + MY.

We choose the key K’ = MP and replace R[JMPCNY] in D, by R[(Z
— 2., )K'] = RIMPC] and R[MPNY] to obtain D, = {R[SPC], R[MPC],
R[MPNY]}. The relation R[MPC] and its relation lattice are illus-
trated in Table IV and Fig. 4, respectively.

Now we have to decompose the relation R[MPNY] in D;. The
relation lattice of RJMPNY] is isomorphic to [#7) of LIR[MSPCNY]).
We choose the abnormal filter that is isomorphic to [#5). Since Z,, =
PNY and the only key is P, we can replace RRMPNY] in D, by R{MP]
and R[PNY] to obtain D; = {R[SPC], R[MPC], R[MP], R[PNY]}. All
the relations in D, are in BCNF. The relations R[MP], R[PNY] and

Table IIl—Relation R[SPC]

Serial
Number Price Color
1 342 13.25 blue
2 347 13.25 red
3 410 14.23 red
4 347 9.45 black
5 390 9.82 black
6 392 9.82 red
7 401 9.82 red
8 409 9.82 blue
9 311 22.34 blue
10 390 30.21 blue
11 410 28.55 black
12 423 28.55 black
13 428 28.55 blue
14 435 28.55 red
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Fig. 3—Relation lattice L(R[SPC]).

Table IV—Relation R[MPC]

Model
Number Price Color
1 1234 13.26 blue
2 1234 13.26 red
3 1234 14.23 red
4 1466 9.456 black
5 1465 9.82 black
6,7 1465 9.82 red
8 1465 9.82 blue
9 1623 22.34 blue
10 1623 30.21 blue
(11, 12) 1623 28.556 black
13 1623 28.556 blue
14 1654 28.55 red

Fig. 4—Relation lattice L(R[MPC]).
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their respective lattices are shown in Tables V and VI, and Figs. 5 and
6. W

VL. MULTIVALUED DEPENDENCIES

Multivalued dependency (MVD) proposed by Fagin” and Zaniolo® is
the necessary and sufficient condition for a (binary) lossless-join
decomposition. A similar concept, called hierarchical dependency, was
defined by Delobel.?* A bit later, the concept of multivalued depend-
ency was generalized to join dependency by Rissanen.'®'! A set of
“axioms” or inference rules for multivalued dependencies was given
by Beeri, Fagin, and Howard.? We know from our previous discussion
that functional dependency is equivalent to partial ordering in the
partition lattice. In this section we show that multivalued dependency

Table V—Relation R[MP]

Model
Number Price
(1, 2) 1234 13.25
3 1234 14.23
4 1465 9.45
(5, 6,7, 8) 1465 9.82
9 1623 22.34
10 1623 30.21
(11, 12, 13) 1623 28.55
14 1654 28.55

Table VI—Relation R[PNY]

Price Name Year

(1, 2) 13.25 pot 1974

3 14.23 pot 1975

4 9.45 pan 1974
(b,6,7,8) 9.82 pan 1976

9 22.34 kettle 1973

10 30.21 kettle 1976

(11, 12, 13, 14) 28.55 kettle 1975

Fig. 5—Relation lattice L(R[MP]).
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Fig. 6—Relation lattice L(R[PNY]).

is equivalent to a lattice equation. First, however, we state the defini-
tion of MVD and show that MVD guarantees information-lossless join
decomposition.

Definition 5: Let R be a relation on the set of attributes @ = XYZ,
where X, Y, and Z are disjoint subsets of Q. We say there is a

multivalued dependency X —— Y if
R.[Y] =R,[Y], V(x)ER[X], (:)€ERZ] N

Lemma 5: Let R be a relation on @ = XYZ, where X, Y, and Z are
disjoint subsets. Then,

R[XYZ] = R[XY] | X | R[XZ]
iff
R[YZ] = |R[Y]|-|R[Z]|, V(x) € RIX]
Proof: (Necessity) R[XYZ] = R[YX] | X | R[XZ] implies
R[YZ] = R,[Y] X R.[Z], Y(x) € R[X].
Hence,
IRIYZ]| = |RAY]|-|R:Z]].
(Sufficiency) It is easy to verify that
RIYZ]) C R[Y] X R.[Z],  V(x) € R[X].
The given cardinal identity assures that
R.[YZ] = R[Y] X RZ], V(x) € R[X]. A

Theorem 5: Let R be a relation on the set of attributes Q = XYZ, where
X, Y, and Z are disjoint subsets.* Then,

RIXYZ] = R[XY] | X | R[XZ] iff X -— Y.

* For convenience, we assume X, Y, and Z to be disjoint. It will later become clear
that this assumption is not necessary.
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Proof: (Necessity) From Lemma 5, it is sufficient to show that
|RAYZ]| = [R[Y]|-|R[Z]], V(x) € R(X)

iff
R [Y] = R[Y], V(x)€RX), (2 €R(Z).
Since
R[XYZ] = R[XY] | X | R[XZ]
implies

R.[Y] X (x,2) = R[Y] X (x,2), V(x) €R[X], (2) € R[Z].

Hence,
R.[Y] = R.[Y].
(Sufficiency) For every (x) € R[X], we have
(x) X RZY] = {(x, z) X R..[Y]|(x, z:) € R[XZ]]
= {(x, z;) X R.[Y]|(x, z:) € R[XZ]}
= (x) X RJ{Z] X R[Y].
Since |x| = 1, it follows that
|RYZ]| = |R[Y]|-|R|Z]], V(x) ER[X]. B

We need the commutative property of the product of two equivalence
relations (partitions) to establish the lattice equation of multivalued
dependency. The product of two equivalence relations may not be an
equivalence relation; if it is an equivalence relation then the product
must be commutative and vice versa.

Definition 6: Two binary relations p and p’ and S are permutable
(commute) if and only if p © p’ = p’ ° p. This means that ifap xp’ b
for some x € S, then a p’ y p b for some y € S, and conversely.* W
Lemma 6: Let p and p’ be equivalence relations (partitions) on S. Then
the following are equivalent:

Lpep' =p°p

2.p°p =p®p’

3. p ° p’ is an equivalence relation

4. p° p’ is symmetric.

Proof: The proof of Lemma 6 is given in Ref. 21. W

Lemma 7: Let R be a relation on the set of attributes Q and let X, Y, Z
C Q. Then,

’

0(X) = 0(XY) + 0(XZ) = 0(XY) - 0(XZ) = 0(XZ) - 6(XY)
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iff
0(X) C 8(XY) ° 6(XZ).

Proof: (Necessity) Trivial.
(Sufficiency) Suppose t,8(XY) ° 8(XZ)t,. Then there exists {3 € R[]
such that

L0(XT)ta0(XZ)ts,
which implies
t0(X)ta0( X ).
Therefore,
t0(X)ts.
Hence,
H(XY) - 8(XZ) C 0(X).

It follows that

#(X) = 8(XY) - 6(XZ).

From Lemma 6, we have

0(X) =0(XY)®HXZ)=0XY) - 0(XZ) = 0(XZ) » 6(XY).
Since

0(XY) = 0(XY)+6(XZ) and 0(XZ)=0(XY) + 6(XZ),
by the definition of the join operation @ in [[(R[Q]), we must have

0(X) = 0(XY) ® 0(XZ) = 0(XY) + 0(XZ).
But,
(XY) + 0(XZ) = 8(X) + 6(X) = 0(X),
so it follows that
B(X) =0(XY) + 0(XZ) =6(XY) ° 0(XZ) = 0(XZ) - 0(XY). W

The following theorem shows that the multivalued dependency can
be formulated as a lattice equation.

Theorem 6: Let R be a relation on the set of attributes d = XYZ, where
X, Y, and Z are disjoint subsets. Then, R[XYZ] = R[XY] | X | R[XZ]

iff
8(X) = 0(XY) + 0(XZ) = 0(XY) - 0(XZ) = 0(XZ) ° 0(XY).
Proof: (Necessity) Since R[XYZ] = R[XY] | X | R[XZ] implies
RJ[YZ]=R,[Y] x R[Z], V(x) € R[X],
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there is a one-to-one and onto mapping ¢.: R.[YZ] — R,[Y] X R.[Z],
which takes every tuple (y, z) € R,[YZ] into ¢-((y, 2)) = ((»), (2)) €
R,[Y] X R.[Z], V(x) € R[X]. Suppose t,, t; € R[XYZ] and t,0[X]t,, and
assume t; = (x, y1, 21) and tz = (x, ys, 22). As

(y1, 21), (2, 22) € R[YZ] = R,[Y] X R,[Z],
we have _
(), (y2) € R[Y] and (21), (22) € RAZ].

Since ¢, is an onto mapping, there must exist two tuples &3 = (x, yi,
22), and t; = (x, ys, 21) € R[XYZ]. Hence,

LI XY)t,0(XZ )Mt

which means

H(XY) » 80(XZ)t,.
It follows that
6(X) CHXY) - (XZ).
From Lemma 7, we have
X)) =0XY)+0XZ)=0(XY) - 0(XZ)=0(XZ) - (XY).

(Sufficiency) We know R[XYZ] C R[XY] | X | R[XZ]. Suppose t =
(x,y,2) € R[XY]| X | R[XZ]. Then there exist t, = (x, y, 2'), t; = (x,
v’, z) € R[XYZ]. Thus,

t0(X)tz,
which implies
HO(XY) » 0(XZ)t,.
There must exist t; € R[XYZ] such that

LO(XY)t:0(XZ)t,.
Therefore,
ts=(x,y,2) =t E R[XYZ],
and thus
R[XY]| x| R[IXZ] € R[XYZ].
Hence,

R[XYZ]=R[XY] | X | R[XZ]. W

It should be noted that in the above proof we use the fact that Q =
XYZ and #(Q) = 8(XYZ) = 0, i.e., there are no duplicated tuples in
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R[]. The inference rules of MVD are given and proved in Appendix
B. .

Example 4: Consider the relation R[ECSY] of Example 1. We have
the MVD: E —— SY where /(E) = m = {1, 2; 3, :4__5,&7,_8},_6(}30)

=m=1{1,23 45,678}, 0(ESY) =ms = {1;2; 3, 5; 4, 6; 7; 8]. It is
easy to verify that

m=mtms=mems=75°7. N

It is known that if R is a relation on 2 = XYZ, and X —— Y then
X —— Z. The symmetricity of the MVD can easily be seen in the
lattice equation of Lemma 7.

If XYZ C Q@ and 8(X) = 8(XY) + 8(XZ) = 8(XY) ° 0(XZ) = 8(XZ)
> §(XY) holds, then X —-— Y|Z is called an embedded multivalued
dependency (EMVD)’; this is simply a multivalued dependency in the
projection R[XYZ] of R[Q].

Theorem 6 clearly indicates that the MVD is actually a condition
pertaining to data independency rather than data dependency. For this
reason, we introduce the notion of decomposition of two sets of
attributes in a relation as follows.

Definition 7: Let R be a relation on the set of attributes Q. The two
sets of attributes ©,, O, C Q are decomposable in R if

B(Q; + Qo) = 0(2) + 0(2) = 6(Qy) ° 0(D) = 0() ° 6(2,). W

It is easy to see that @, and £, are decomposable in Q iff @, + Q; —
— O — Q| — 2, is an EMVD in R. Furthermore, if £,2; = Q then
Q+ Qo O — Q(or Y + Q—— Q5 — @) is an MVD in R. In the
latter case, (2, Q2) is called a decomposition pair by Armstrong and
Delobel.*

We feel that decomposition is a basic concept in the study of the
structure of databases. It can be naturally generalized to the concepts
of projective decomposition and mutual decomposition. Projective
composition concerns the data independence of two sets of attributes
on the projection of a relation. Mutual decomposition extends the
concept of decomposition to more than two sets of attributes.

Let p be a partition on the set S, the function p* = § — S/p maps
a € S into (a)p* = a, is called the canonical function of p. For S = {a,
b, ..., e}, we will use the notation

«_(a b ... e
p ab, --- e,
to illustrate the canonical function p*. The equivalence relation
ker p* = p* ° p*' = {(a, b) € S X S|p*(a) = p*(b)}.

is called the kernel of p*. Notice that ker p* = p.
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Let p and ¢ be partitions on S = p = ¢; then there is a unique
function f from S/p onto S/a such that (a,)f = a,. The kernal of f,

ker f=fef™ ={(a, b,) € S/p X S/pla a b},

is an equivalence on S/p. It is usual to write ker f as o/p, the quotient
of o and p. Note that a,(a/p)b, if and only if a o b and the mapping g:
(S/p)/(c/p) — S/o defined by ((a,).;,)g = a, is one-to-one and onto.
Thus the function f defined above is in fact the canonical function of
a/p, i.e., f = (o/p)*. It is easy to see the diagram in Fig. 7 commutes,
that is p* ° (a/p)* = ¢*.

Example 5: Let p, o be partitions on the set S = {1, 2, 3, 4, 5, 6, 7, 8},
such that p = {1, 2; 3,4;5,6; 7,8} and o = {1, 2, 3, 4; 5,6, 7, 8} with
=o¢.Then Sfp={I, I, III, IV}, where I =1, 2, , 4, IIl =5, 6,

IV: 71 8) ﬂnd S/ﬂ' = {Q, IB;i where a = 1: 2: 3: y IB = 5’ H 7) 8- The
canonical functions of p and ¢ are

._ (12345 6 7 8
P=\ITHoImnrIviIv

and

«_[12345678
T " N\aaaapppp)

It follows that
o/p = {I, II; TIT, IV}

and

aa B B

Lemma 8: Let p, o1, o2 be partitions on S such that p = oy, p = 09, and
g1° 09 = @09 ° 07. Then

o1 ° 03)/p = (01/p) ° (a2/p).

(o/p)* = (I I 1 IV)' -

5——-—-—5,0

%

Sip

Fig. 7—Canonical function of quotient partition.
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Proof: It is clear that ¢, ° 02 is & partitionon Sandp=o0,° 03 =02 °
oy. It follows from the definition of quotient partition that the lemma
istrue. W

Lemma 9: Let p, a1, o2 be partitions on S, such that p = a1, p = 02.
Then

01° 02 =02° 01
iff
(a1/p) ° (2/p) = (02/p) ° (a1/p).
Proof: (Necessity)
(a1/p) ° (a2/p) = (o1 ° 62)/p = (02 ° 01)/p = (02/p) * (a1/p).

(Sufficiency) Suppose ag; ° oq:b. Then there is a ¢ € S such that
agicaqb. It follows that

a,(a1/p)c,(a2/p)b,.
There must be a d € S such that
a,(a2/p)d,(a1/p)b,.
Thus
ag.dob,
and
aoy ° 01b.
Hence

01°02 € g2° 01,

Similarly, we have g2 ° 61 € 01 ° 02. Then ¢, ° 02 = 02 ° 01. |
Definition 8: Let R be a relation on the set of attributes Q. For Q,, Qs
C 0, the projective partition defined by

0(2;| Q2) = 6(2, + Q2)/6(2)

is a partition on the set of tuples of R[Q]/0(Q:) = R[<]. The canonical
function of 6(%]Q,) is denoted by 6*(2:|2) = (8(2 + 02)/0(22)),
which satisfies 6*(Q;) © 6*(Q] Q2) = (2, + Q22). N

Certain properties of the projective partition are demonstrated in
the following theorems and their proof directly follows from the
definition of projective partition.
Theorem 7- Let R be a relation on the set of attributes Q and 0y, - - -,
2, C Q. Then

n n-1
* (n 9:.) = 0%(Q) ° 0 (Dl Q) ° - 20 (] N 0). W
k=1 k=1
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Theorem 8: Let R be a relation on the set of attributes Q and X, Q,,
, 0, C Q, such that

Uﬂk=9.

k=1

Then
1. 0(X) = 17z ker(6*(Q%) ° 6*(X | Q)
2. (2| X) = ker(6*(Qy) ° 0%(X | Qn))/T17=1 ker(6*(Q) °
(X)) N
Definition 9: Let R be a relation on the set of attributes Q and @, Q,,
Z C Q. We say , and (2, are projectively decomposable on Z if
(2 + 2] Z) = (2] Z) + 0(Q]2)
= 0(Q]Z) © 6(Q| Z)
=0(QZ) c 6(H|Z). A

The EMVD is a special case of projective decomposition, which can
be seen from the following theorem.

Theorem 9: Let R be a relation on Q, and let Q,, @, £ C Q. Then §,
and Q. are projectively decomposable on X iff

0 + R+ 2) =602 + Z) + 6(2 + )
=00+ Z) e 0+ Z) = 0(Q + Z) ° (D + Z).

Proof: The proof follows from Lemma 8 and 9. W

Example 6: Consider the relation R on @ = ABCDE in Table VII.
The Hasse diagram of the relation lattice L(R[Q]) is shown in Fig. 8,
where

=1{1,23,5,6, 7; 4 = 6(4),
m =11, 3, 4; 2, 5, 6, 7} = 8(B),
m =1{1,6,7; 2, 3, 4, 5} = 6(C),

7 =11, 3; 2, 5, 6, T; 4} = 6(AB),
m = {1, 6,7; 2, 3,5 4 = 6(AC),
7 = {1; 2, 5 3, 4; 6, 7} = §(BC),
m =1{1,6,7; 2,5 3; 4] = 6(D),

s = {1, 3; 2, 6; 4; 5, 7} = 0(E),

7o = {1; 2, 5; 3; 4; 6, T} = 6(ABC) = 0(ABD).
Let , = ABD, @, = ACE, = = ABC. We find that
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Table VII—Relation lattice L(R[€])
A B c D E

a; b, [+ d, e

1

2 a by C2 dz 2]
3 13 bl Cy ds e
4 az bl Cy d4 €3
5 a 2 C2 dy €4
6 a by 41 d, €2
7 o by 51 d €y

Fig. 8—Relation lattice L(R[Q]).
B( + 2] ) = 6(A|ABC) = 0(A)/0(ABC) = (I, I, 111, V; IV},
8(2,| ) = 6(ABD|ABC) = §(AB)/8(ABC) = {I, IIT; I, V; IV},
8(2| Z) = 0(ACE|ABC) = 6(AC)/6(ABC) = (I, V; IT, III; IV},

and

0(ABC) = {1, II, III, IV, V},

where I=1,1I=2,5,1I1=3,IV=14,V=6,1.
It is easy to see that ABD and ACE are projectively decomposable
on ABC, i.e.,

6(A|ABC) = 6(ABD|ABC) + 6(ACE|ABC)
= §(ABD|ABC) ° 8(ACE|ABC)
= 0(ACE|ABC) ° 6(ABD|ABC).
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But the MVD: A —— BD (or A —— CE) does not hold in R[Q].
Nevertheless, the EMVD: A — B|C does hold in R[Q]. W

So far we have discussed the properties of decomposition of two sets
of attributes. The concept of decomposition certainly can be extended
to any n > 2 sets of attributes. We define the notion of mutual
decomposition as follows:
Definition 10: Let R be a relation on the set of attributes Q. The
sets of attributes Q;, @y, - - -, Q, C Q are mutually decomposable, if for
any IC N={1, ..., n} and J C N — I, the two sets of attributes
Q= Uier Q; and Qy = Ujey Q; are decomposable. Bl
Theorem 10: Let R be a relation on the set of attributes Q and Q, - - -
Q, = Q. Suppose Qy, - - - , Q, are mutually decomposable. Then

R[Q] = R[Q: -+ Qu] = R[] | X] -+ | X|R[Qn].
Proof: It follows from the definition of mutual decomposition that
R[Qlﬂm]=R[QlQm—l]IXIR[Qm]: m=2)"'n-

Therefore the assertion is true by induction. W

The above theorem states that mutual decomposition implies an
information-lossless join. The converse is not true in general. The
necessary and sufficient condition of an information-lossless join is
called join dependency, which will be discussed in the next section.

VIl. JOIN DEPENDENCIES
Join dependency (JD)'*1 ig a generalization of MVD. It refers to

a collection {Q,, - - -, Q,} of subsets of Q such that
Q=0,..-Q,
and
R[Q] = R[] X[ --- | X]| R[Q].

Join dependency can be considered as a “set of coordinates” of the
relation. The connection between join dependencies and multivalued
dependencies is given by the following lemma:

Lemma 10: Let R[Q] = R[] [X]| --- | X|R[Q], let Ny be a subset of
{1, ---, n}, and let N, = {1, ..., n} — N,. Then (@, ) is a
decomposition pair, where

Q=Q, ... Q, QND = iEL!JV Q, and Qn, = é:fJV Q.
[} 1=

Proof: Since

R[ W] 9-.'] C IXI R[],
iENy iENy
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and

R[ U 9.] C IxI R[],
IEN,

iEN,
it follows that
R[QNQ]I X | R[QNJ C (|X| R[Q,]) | x| (|X| R[Q,])
iIENg IEN,

Since the natural join operation is commutative and associative,® we
have

R[Qn,) | X | R[] € RIQ]|X] -« | X| R[] = R(Q).

But we know
R[Q] C R[] | X | R[Qw,].

Hence,
RIQ] = R[Q,]| X | R[Oy,). W

Let x be an X-value, and assume Y C X. We shall denote the
Y-value in x as x[Y]. Let t € R[Q] be a tuple and let @ = Q; --- Qn.
The notation ¢t & (w., --- , w,) will be used to indicate that #{{Q:] = w;,
Vi€ N, where N = {1, - - -, n} denotes the index set.

Before we state the necessary and sufficient conditions for join
dependency, we first introduce the concepts of a set of consistent values
and an indexed family of tuples.

Definition 11: Let R be a relation on the set of attributes 2, and let
{X;|i € N} be a collection of subsets of Q. The set of values fx;| x; is
an X;-value, i € N} is called a set of consistent values of {X;|i € N} if
the values of X; N X in x; and x; agree, i.e., if

XN X] = xXNX], Vij€N.

The set of tuples {t;|i € N} of R[] is called an indexed family of
tuples with respect to {X;|i € N} if {x|t[Xi]=x, i EN } is a set of
consistent values. W

Theorem 11: Let R be a relation on the set of attributes Q, and let @ =
Q) -+ Q. Then
R[Q] = R[] | X[ - -+ | X| R[]

iff for every indexed family of tuples {t;|i € N } with respect to | X;|i €
N} there is a tuple t € R[] such that t{Q] = %], Vi € N, where X; =
Q,- n Q[, B.I'ld Q,‘ = Uj%iﬂj.

Proof: (Necessity) Let {t;|i € N} be an indexed family of tuples of
R[Q] with respect to {X;|i € N}. Thus, {x;| t{Xi] = x;, 1 € N} is a set
of consistent values. Suppose t{Q;] = w;, i € N. We want to show that
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there exists a tuple t & (wy, ---, w,) € R[Q]. We will prove this by
mathematical induction. We know that s, = (w;) € R[Q,] and (w,) €
R[Q;]. Thus,

wi[Xi]=2x and wq[X5] = x,.
Since {x;|i € N} is consistent, it follows that
wi[X; N Xo] = x1[X: N Xp] = x[X; N Xo] = wy[X; N Xy).
It is known that
XNnXi=@nNnWN@QNY=0nQ, i+*]
Therefore,
wi[Q N Q] = wy[ 2 N Q).

By the definition of natural join, we know that there exists a tuple
sz & (wy, wy) € R[] | X | R[Q).

Suppose there is a tuple s,-; & (wy, ---, Wy) € R[] X]| -+
| X | R[2s—1]. Then

$,a[Xi N Xp] = wiX;: N X,] = x[X: N X,
= x,[X; N X,] = wa[X; N X)), i=1...,n—-1
Hence,
Snc1 2 N Dl = 8202 N (R U -+ U Q,0)]

= sl N Q) U -0 U (2 N Q)]
=5a[(Xi N X)) U ... U (X,— N X))
= wa[(X; N Xp) U -+ U (Xper N X))
= w,[Q, N Q).

It follows that there exists a tuple ¢ such that

t=sp & (wy, -+, w,) €R[M]|X]| --- | X|R[Q] = R[Q).
(Sufficiency) We know that
R[Q] C R[] | X| --- | X|R[Q].
For any t & (wy, ---, w,) € R[] |X| --- | X|R[Q,], there exists an

indexed family of tuples {t;| t,[Q:] = w;, i € N} of R[Q] with respect to
{X:|i € N} that has a set of consistent values {x;| w{X;] = x;, i € N}.
It follows that t & (w,, - -, w,) € R[Q]. Hence,

R[Q] = R[] [X] --- | X|R[Q,]. W

The necessary and sufficient conditions for JD given in the above
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theorem are similar to the notion of template dependency introduced
by Sadri and Ullman.?” The following condition can be considered as
an extension of the binary natural join operation.

Corollary 3: Let R be a relation on the set of attributes , and @ =
- Q.. Then,

R[Q] = R[]| X[ - -+ | X | R[]
iff
ol @] = R[] X - -+ | X| Ry [X]
for every set of consistent values {x;| i € N} of {X;|i € N}, where X; =

QU Yi €N, and R,,,....[9] = {t|t € R[Q], {Xi] = x;, Vi € N}.
Proof: The proof follows from Theorem 11. W

Clearly, for any t € R[Q] = R[®; --- Q,], the set of values {x.] i X:]
=x, X;=%N (), i € N} is always consistent. The converse is not
necessarily true. Suppose for any set of consistent values {x;| x; is an
X,-value, i € N} there is a tuple ¢t € R[] such that {[X;] = x;, Vi E N;
in this case we say {Q;|i € N} is complete.
Corollary 4: Let R be a relation on the set of attributes Q, and @ = 0,

. Q... Then {Q;|i € N} is complete iff

R[X; -+ Xa) = R[Xq]| X[ - -+ | X| R[Xa],

where X; = 2: N ﬁ,—, i EN.
Proof: The proof follows directly from Theorem 11. W
The necessary and sufficient conditions for JD may be stated in a
different form, as follows:
Theorem 12: Let R be a relation on the set of attributes Q, and @ = @,
- Q.. Then

R[Q] = R[Q] | X]| - -+ | X| R[Qn]
iff
1. {Q; 4} is a decomposition pair, i € N,
2. {Q]i € N} is complete, i.e.,

RIX, --- X,] = RIXi]|X]| --- | X|R[Xa], Xi=Nn®, i€EN.

Proof: (Necessity) Condition 1 follows from Lemma 10. Condition 2 is

a consequence of Theorem 11.
(Sufficiency) We know that

R[Q] € R[] X[ - -+ [ X | R[S]-

Suppose ¢ & (wy, -+, wa) € R[] X]| --+ |X|R[Q]. Then there is
an indexed family of tuples {t;| t{Q:] = w;, i € N} of R[] with respect
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to {Xi|i € N} and the set of consistent values {x;|w[X;] =
x;, X; = 2: N €, i € N}. We will prove by mathematical induction that
t & (wy, - --,w,) € R[Q].

Since {Q;|i € N} is complete, there exists a tuple s & (y;, -« -, yn)
€ R[Q] such that

s[Xi] = x;, ViE N.
We know that
a2 N Q) = H[X)] = wilX)] = 1 = s[X3] = s[@ N G),
which means
1A(2 N Qy)s.

Since (Q,, Q) is a decomposition pair, there exists a tuple s, € R[Q]
such that

£,0(2,)s,0(8,)s.
Hence,
s1 & (wy, ya «+ -, ¥n) € R[Q].
Suppose there is a tuple s,—; & (wy, --- , W1, ¥a) € R[Q]. It follows
that

ta[ 0 N Q] = ta[Xn] = W[ Xn] = xn = 801[Xn] = $na[@n N 2]
Thus there is a tuple s, € R[Q] such that
tna(nn)sna(ﬁn)sn—l-

Hence
t=s, & (wy, ---,w,) ERQ]. A

It is known that a special class of JD, called acyclic join dependency,
has many desirable properties; this class makes operations like updates
and joins especially easy.’® * A collection of subsets {Q;|i € N} of the
set of attributes € is called acyclic if all the attributes can be deleted
by repeatedly applying the following two operations:'*?®

1. Delete from some {; an attribute A that appears in no other €;

2. Delete one ©Q; if there is an @, i # j, such that ©; C Q;.

A reduction {Y;|j € J C N, and Vi € N — J3j € J such that Y; C
Y;} is obtained by removing from {Y;|i € N} each Y, that is contained
in another Y.

Definition 12: Let S = {Q;]{ € N} be a collection of subsets of Q. The
core of S, denoted by 8, is defined as follows:

1.$=@,f0r|SI=N=1 A
2. S is the reduction of {Q; N ;|1 € N}, for |[S|=N>1. R
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There are many different but equivalent conditions that characterize
a collection of subsets as acyclic.”® We will use the following one:
Lemma 11: A collection S = {Q;|i € N} of subsets of Q is acyclic iff its
core S is acyclic.
Proof: S can be obtained from S by performing the operations 1 and
2 defined above. It follows that if S is acyclic then S is acyclic and
vice versa. W
Corollary 5: Let S = {Q;|i € N} be an acyclic collection of subsets of .
Then |S| > |S|.
Proof: For |S]| =1, |S| = |@| = 0. For |S| = 2, we know that
|S| = |S|. Suppose | S| = |S|. Then any attribute A in § must be
contained in at least two distinct subsets of S. Let A € Q; N ﬁ;. Tl'len
A€ Q;and A € Q. There is aj # i such that A € Q. Since &, C Q; =
Ukﬂ'ﬂk it follows that

AegneES.

Since | S| = | S| = 2, 8 is not empty. Now, neither operation 1 nor
2 can be applied to reduce S. From Lemma 11 we know this contradicts
the assumption that S is acyclic. Thus, |S| > |S|. W

A JD R[Q] = R[] X]| -+ |X|R[®), @ = @ --- Dy, is an acyclic
join dependency if {Q;|i € N} is acyclic. A recursive condition for
acyclic join dependency is as follows:
Corollary 6: Let R be a relation on the set of attributes @ = @, - -+ Q.
Then

R[Q] = R[] X[ -+ | X| R[]

is an acyclic join dependency iff

1. (2, ) is a decomposition pair of R[Q),i=1, --- , n,

2. R[X; --- Xn) = RIXi]|X| -+ |X|R[Xn] is an acyclic join de-
pendency over the set X, -+ X, C Q, where {X;|i=1, ..., m] is the
core of {Q;|i € N}.

Proof: The join dependency of a collection of sets and the join de-
pendency of its reduction are equivalent.”” The proof easily follows
from Theorem 12 and Lemma 11. W

The above corollary simply states that acyclic join dependency is
equivalent to a set of MVDs and EMVDs, i.e., a set of simultaneous
lattice equations that can be derived recursively. It has been shown by
hypergraph theory that an acyclic join dependency is equivalent to a
set of MVDs.'®¢ That is, the converse of Lemma 10 is true for acyclic
join dependency; we will prove that the converse of Lemma 10 is a
consequence of Corollary 6.

Theorem 10: Let R be a relation on the set of attributes @ = Q; --- Q,
such that {:|i € N} is acyclic. Suppose for any NoS N = {1, --- , n},
N] = N - Ng, and
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R[Q] = R[Qn,] | X | R[Qn,]-
Then
R[Q] = R[] | X[ -« - | X | R[2]

ts an acyclic join dependency.

Proof: This theorem will be proved by mathematical induction on n.
For the smallest nontrivial case n = 3, let the core set {X;|i=1, ---,
m} of {Q]i =1, 2, 3} be the reduction of {Y; = ;N |i =1, 2, 3}.
First we want to show that

R[X; - -+ Xm] = RIXa]| X] -+« | X | R[Xn].

We know m < 3 from Corollary 5. There is nothing to be proved if
m < 2. For m = 2, without loss of generality, let X; = Y, X, = Y5,
and Y; € Y; = X,. Then

XiNXo=Y1NY,=Y NY,Ys=(Y:N Ys) U (Y, N Yy
= (2 N QW)U N Q) =0 N Qs
Since (Q,, 2.(3) is a decomposition pair,
6(X; N Xo) = 0(2 N Qf3) T 6(Q,) ° 0(2:03).

Also we have

2,2Y, =X,
and
Q2 YoYs =Y, = X,
Thus
6() = 0(X,),
0(Q:Q3) = 6(X,),
and

B($2) = 0(Q:) C 8(X,) ° 0(Xo).
It follows that
0(X; N X5) C 0(X,) ° 0(Xs).
Hence
R[X:X,] = R[Xi]| X | R[X5].
It follows from Corollary 6 that
R[Q] = R[] | X | R[Q:] | X | R[].

Suppose the theorem is true for all k < n. Let the core set {X;|i =1,
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.-+, m} of {Q;|i € N} be the reduction of {¥; = & N Q)i € N}. We
know m < n and forany M\, CM = {1, ..., m}and M, = M — M,
there is an Ny C N and N, = N — N, such that

MyCN,, MECN,

and

Xm,=Yn, Xm,=Yn,.
Then,
Xu, N Xy, = Yn,N Yy = U l(Y,—ﬁ Y;)

iENg, JEN;,

= U (QL n QJ) = QND N QN]'
iENy,JEN,

Since (Q2w,, 2,) is a decomposition pair, we have
0(Xn, N Xnr,) = 0(2v, N ) € 0(Dwy,) ° H(Qw,).
Also, we know

vy 2 Y, = Xmp

and

Uy, 2 Yy, = Xy,
Thus

0(Qn,) = 0(Xnm,),

0(Qw,) = 6(Xn,),
and

0(Qn,) © 0(Qwy,) € 0(Xng,) ° 0(Xn,)-
It follows that

0(Xn, N Xar,) € 0(Xns,) ° 0(X,).
Hence

R[X, .-+ Xn] = R[Xum] | X|R[Xpm]

for any My C M, M, = M — M,.
Since the theorem is true for m < n, we have

R[X, --- Xn] =R[Xi]|X]| -+ | X|R[Xn].
It follows from Corollary 6 that
R, --- @] =R[N]| %] -+ | X|R[Q,]. W
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Further discussion of the properties of acyclic join dependencies can
be found in Refs. 15 and 16. A linear-time algorithm for testing
acyclicity is given in Ref. 28.

VIIl. CONCLUSIONS

We have shown that lattice theory is a powerful tool in the analysis
of the structure of relational database systems. Using this tool, we
have established a unified theory of relations. As we have seen, almost
every concept in the existing relational database theory has a counter-
part in the lattice theory. This suggests that further study of relations
should be carried out within the framework of lattice theory. The
independency theory of lattices, which is a generalization of the
familiar notion of independency in the geometries,’®? is especially
important and relevant to the structure of relational database systems
if its relation lattice is modular. This approach may lead to a geometric
interpretation of data dependencies and independencies, which would
make the theory more intuitive and also more useful for practical
application.

The establishment of this algebraic theory of relational databases is
done in the same spirit as the construction of probability theory. A
probability space is a triple (2, Z, P), where Q is the sample space, =
is a o-algebra of the subsets of 2, and P is a real-valued function,
called a probability measure, defined on the ¢-algebra Z.!”* The notion

Table VIll—Comparison of probability theory and
the theory of relational databases

Theory of Relational

Probability Theory

Databases

Sample space Q
Z, the o-Algebra of subsets of
Q

Probability measure

Set of attributes Q

2% the Boolean algebra of sub-
sets of

Partition function

P: £ — R[0,1] 6: 2" > II[R(Q)]

a-additivity: Meet-morphism:

|X,.} is an denumerable union {X:] is a finite collection of
of disjoint events sets of attributes

P CJ Xu) =¥ P(X)) [} (Cl Xk) =0(X) -+ 0(X,)

k=1 =1 Je=1

PQ)=1 8(Q) =0

P(@)=0 8(2) =1

0<PX)<1,YXEZ 0s0X)=1,¥VXe2®

IfXCY, IfX2Y,

P(X) < P(Y) H(X)=6(Y)

If @, and (2, are independent,
P(Q, N Q) = P(2,) P(Q)

If @, and Q; are decomposable,
(0 N Q) = 8(2) + 0(£2)
=8(M) ° 6(2:) = 8(Qa) ° (D)
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of a g-algebra of sets also has an abstract generalizaton, namely it is
a particular case of a Boolean g-algebra.”’ A comparison of the alge-
braic theory of relational databases and probability theory is shown
in Table VIIL.

We feel that this theory of relational databases can be used to
analyze the nonquantitative aspects of data dependencies (or indepen-
dencies), whereas probability theory is the basis of quantitative data
analysis, namely statistics. This comparison is not meant to imply
that there is a one-to-one correspondence between the theory of
relational databases and the theory of probability. Nevertheless, we
are convinced that the lattice theory could play a role in the theory of
relational databases similar to the role measure theory plays in the
theory of probability."

The computational algorithms for meet and join operations of
partitions are given in Ref. 31, which provides the basic tools for
future development of algorithms for relations.
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APPENDIX A
Properties of Meet and Join Operations

In any lattice (L, -, +), the operations of meet and join satisfy the
following laws:
Ll—a-a = a, a + a = a; (Idempotent)
L2—a-b=b-a,a + b= b + a; (Commutative)
L3—a-(b-¢) = (a-b)-c,
a+ (b+c)=(a+b)+ c; (Associative)
L4—a-(a + b) = a + (a-b) = a; (Absorption)
L6—a=b iff a-b=a,
a=b iff a+ b= b;(Consistency)
L6—b=c¢ implies a-b=a-c
b=c implies a+ b= a+ c; (Isotone)
L7—a-(b+c¢)Z (a-b) + (a-c)
a+ (b-c) = (a + b)-(a + c); (Distributive Inequalities)
L8—a =c implies a+ (b-c) = (a + b)-c. (Modular Inequality)
A lattice is called distributive if equality holds in L7 and is called
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modular if equality holds in L8. A Boolean algebra is a lattice (L, -,
+, 7) with the following additional properties:*
L9—a-(b+c) = (a-b) + (a-c),
a+ (b-¢) = (a + b)-(a + ¢); (Distributive Identities)

L10—a =c implies a+ (b-c) = (a + b)-c; (Modular Identity)
L11—L contains universal bounds 0, 1, which satisfy

0.¢=0,0+a=a,

l.a=a,1+a=1;
L12—Va € L, 3a € L such that

a-a=0,a+a=1,a=a,

(@b)=a+b, (a+b)=a-b

APPENDIX B
The Proofs of Axioms for Functional and Multivalued Dependencies

The first three of the following are Armstrong’s axioms for func-
tional dependencies:'
Bl. (Reflexivity for functional dependencies)
fFYCXCQ,thenX—Y.
Proof: 8(X) =8(Y(X — Y)) =6(Y)8(X — Y) = 6(Y). |
B2. (Augmentation for functional dependencies)
If X— Yand Z C Q, then XZ — YZ.
Proof: 0(XZ) = 0(X)0(Z) = 6(Y)8(Z) = 8(YZ). |
B3. (Transitivity for functional dependencies)
IfX—>Yand Y— Z, then X — Z.
Proof: 6(X) = 6(Y) and 6(Y) = 6(Z) imply 6(X) = o(Z). |
The next three axioms apply to multivalued dependencies:**
B4. (Complementation for multivalued dependencies)
IfX—-— YthenX >->Q0-X-Y.
Proof: 0(X) = 8(XY) + 0(XZ) = 0(XY) ° 0(XZ) = 0(XZ) ° 6(XY),
where Z=0Q—-X-Y. [ |
B5. (Augmentation for multivalued dependencies)
If X—— Y,and VC W, then WX —— VY.
Proof: Without loss of generality,* we can let @ = ABCDEFGHIJKL,
X = ABCDEF, Y = BCGHFI, W = CDEFHIJK, V = EFIJ (see Fig.
9). ThenQ?— X — Y=JKLand Q — WX — VY =L.
We want to show that

8(ABCDEF) C §(ABCDEFGHI) * 6(ABCDEFJKL)

* This proof is carried out in terms of equivalence relations (partitions). It is irrelevant
here whether an equivalence relation is the image of a single attribute or the image of a
set of attributes.
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B G

Fig. 9—Set of attributes Q for B5.

implies
#(ABCDEFHIJK) C §(ABCDEFGHIJK) » 6(ABCDEFHIJKL).
Suppose

t,0(ABCDEFHIJK )t,. (1)
Then
t0(ABCDEF)t,.
There exists ts, such that
t:0(ABCDEFGHI)t:6(ABCDEFJKL)t,. (2)
From (1) and (2), we have
tab(JK)t0(JK)t,.
It follows from (2) that
t0(JKG)ts. (3)
Combining (2) and (3), we have
t6(ABCDEFGHIJK)t;. (4)
Relation (2) also implies that
tO(HI)t,.
From (1), we know
t0(HI ),
and therefore
ta0(HI)t.. (5)
It follows from (2) and (5) that
t:6(ABCDEFHIJKL)t,. (6)
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Combining (4) and (6), we have

t:0(ABCDEFGHIJK)t:6(ABCDEFHIJKL)t,.

It follows that

0(ABCDEFHIJK) C 0(ABCDEFGHIJK) ° 6(ABCDEFHIJKL). W

B6. (Transitivity for multivalued dependencies)
IfX—>—>YandY—>—>Z,thenX—>—>2Z -Y.

Proof: Again, without loss of generality, we can let @ = ABCDEFGH,
X = AFGH, Y = BCFG, Z = CDGH (see Fig. 10). Then Z — Y = DH,

Q—XY=DE,Q—YZ=AE,Q— X(Z-Y)=BCE.
We want to show that

90(AFGH) C (ADEFGH) » 8(ABCFGH)
and

8(BCFG) C 6(ABCEFG) - 6(BCDFGH)
imply

0(AFGH) C 0(ADFGH) ° 0(ABCEFGH).

Suppose t,0(AFGH)t,. Then there exists t; such that
t.0(ADEFGH)t:0(ABCFGH )t,.
Since t,#(BCFG)ts, there exists ¢4 such that
t.:0(ABCEFG)t6(BCDFGH))ts.
It follows that
t0(AFG)t:0(AFG)t0(AFG)t,.
From (7) and (8), we have
t,0(DH)t;0(DH)t,.

F B

Fig. 10—Set of attributes Q for B6.
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Combining (9) and (10) yields

t0(ADFGH )t,. (11)
From (7) and (8), we have
ts0(H)t:0(H)ts.
It follows from (8) that
t.#(ABCEFGH )t,. (12)

Relations (11) and (12) yield
t0(ADFGH)ts§(ABCEFGH )t,.
Hence
6(AFGH) € #(ADFGH) - 6(ABCEFGH). 1R
The last two axioms relate functional and multivalued dependencies.

B7. f X - Ythen X -— Y.
Proof: Let Z = Q — XY. We want to show that

0(X) =0(Y) implies 0(X) CO(XY) ° (XZ).

Suppose t,0(X)t,. Since §(X) = (YY) implies §(XY) = 6(X), then
t,0(XY)t,. It follows that

L XY)t0(XZ ) ts.
Hence
AX)CHXY)0(XZ). 1

B8. If X -— Y, Z C Y, and for some W disjoint from Y, we have
W — Z,then X — Z.
Proof: Again, without loss of generality, we can let @ = ABCDEFGH,

E C
F A
G B
" D

Fig. 11—Set of attributes Q for B8.
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X = ACEF, Y = EFGH, Z = FG, and W = AB (see Fig. 11). Then @ —
XY =BD.
We want to show that

8(ACEF) C 6(ACEFGH) ° 6(ABCDEF)
and
8(AB) = 0(FG)
imply
8(ACEF) = 6(FG).
Suppose t,8(ACEF)T,. Then there exists t; such that
t10(ACEFGH)t;0(ABCDEF)t,.

Since

t0(FG)t; and taf8(AB)t,,
we have

t:.0(FG)ts and t:0(FG)ts,
and thus

tLO(FG)t..

Hence

#(ACEF) = 6(FG). R
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