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Given two baseband signals f(¢) and g(t), suitably restricted in amplitude
and bandlimited to [A, u] and [—g, =A], 0 < A < g < oo, it is shown how
to generate a carrier signal, s(t) = A(t) cos{ct + ¢(t)}, bandlimited to [c — G,
¢ + B] and [—(c + B), —(c — B)], where B need be only sightly larger than p,
and such that f(t) and g(t) may be recovered by bandlimiting log A(t) and
¢(t), respectively. The restriction A > 0, i.e., that the baseband signals be
bandpass, is not essential but it is a practical constraint in approximating the
required operations. Also a modification is given for conserving bandwidth in
case the signals f(¢) and g(t) are of disparate bandwidths.

I. INTRODUCTION

Double-sideband amplitude modulation is wasteful of bandwidth,
but it offers the advantage of envelope detection (with full carrier). A
simple way to utilize the same bandwidth in transmitting two inde-
pendent signals, f(t) and g(t), is the so-called in-phase and quadrature
modulation

S1(t) = f(t)cos ct — g(t)sin ct,

where synchronous demodulation is required to recover f and g. A
modification that allows f to be recovered (approximately) by envelope
detection is

So(t) = {1 + f(t)}cos et — g(t)sin ct.
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The envelope of Si(t) is
A1) = VL + f@O)F + £@).
Then if g is made small (compared to min{1 + f(¢)}), we have
Ao(t) =1+ f(t).
The phase of S; (i.e., the part due to signals) is

gt) _ &)
L+f()  1+£@)

So making g small allows envelope and phase detection to be used so
as to approximately recover f and g (multiplying the phase output by
the envelope output).

A still further modification is

Ss(t) = {1 + x;(t)}cos ct — {1 + xa(t)}sin ct,

¢z(t) = tan™!

where x; and x, are both small. The envelope of Ss is
As(t) = VO + 22 + (L + x2)° = V2 + 2% + 220 + xT + 2%

"_-'Jﬁ 1+m
= 5 .
The phase of S; is
14+ x w oxe—x
— 1 [~
¢ot) = tan™ =yt T
So if
——x1;x2=f and 222 _ g
ie.,
n=f+g
x2=f—g:

then envelope and phase detection of S; will give (approx.) the desired
independent signals f and g.

An exact result of this type may be obtained using log of the
envelope, rather than the envelope, and then bandlimiting the phase
and log of the envelope to obtain the desired independent signals f
and g. A slight increase in bandwidth is required to allow a guard band
in the filtering operations. Also |f| and | g| cannot be too large if the
increase in bandwidth is to be small. The basic theory is that of

3054 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



Exponential Single-Sideband Modulation (ESSB) developed in Ref.
1.

Il. THE EXACT METHOD

We assume that the desired signals, f and g, are bounded band-pass
signals whose Fourier transforms vanish (in the sense detailed in Ref.
1) outside [\, p] and [—g, —A], 0 < A < g < », which then (automati-
cally) have bounded Hilbert transforms, / and g. The band-pass
assumption is not essential to the theory, but affords important
practical simplifications in approximating the Hilbert transform op-
erations as well as in effecting the subsequent analytic exponential
modulation.

Now suppose z;(t) and z,(¢) are bandlimited “analytic signals” whose
Fourier transforms vanish outside [0, 8] and which signals are zero-
free in the upper half-plane with

|z12(t + w)| = ¢ for u=0, -0 < < o0, (1)

Then log 2, and log z; are analytic and bounded in the upper half-
plane, and hence their Fourier transforms vanish over (—o, 0).
Writing

zi(t) = As(t)e™, A, = |z (2)
z(t) = Ay(t)e™, Ay = |z, (3)
we have
log z,(t) = log A,(t) + igs(t) (4)
log z5(t) = log Aa(t) + iga(t). (5)
Under further assumptions on z, e.g.,

219(t + 1w) =1 + 0(e™), u — oo, (6)

log A and ¢ will be Hilbert transform pairs:
¢i(t) =log" Ai(t),  log Ai(t) = —u(t) (7)
¢a(t) = log" Ag(t)  log As(t) = —4a(t). ®)

Now we consider the product
2(0)2(8) = A(t)Ax()e 40,

where the bar denotes the complex conjugate. The F.T. (Fourier
transform) of z,(¢) vanishes outside [0, 8] and the F.T. of z,(t) vanishes
outside [—B, 0]. Therefore, the F.T. of 2,(¢)zz(t) vanishes outside
[=B, B]. Then we form the signal
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s(t) = Re e™2,(t)za(t)

= A(t)cos{ct + ¢(t)}, 9)

where ¢ > 83,
A(t) = A1(t)Aq(2) (9a)
o(t) = ¢i(t) — ¢a(t), (9b)
and the spectrum of s(t) is confined to [¢c — 8, ¢ + 8] and [—c — B,

c&eﬁil']t;quire

B, .{log A(t)} = f(¢) (10)
B, .{o(t)} = &(t), (11)

where ¢ < a < B, and, in general, B, is any bandlimiting operator
[with passband (—p, p) and cut-off frequency * g] defined by

B, fx(t)} = .[,, x(8)Kpq(t — s)ds (12)
and

I?p_q(w) = f K, (t)e™dt=1, -p<w<p
=0, |w] > gq. (12a)
0<p<g<oo (12b)

>
The definition of K, 4(w) in the cut-off region (p, q) and (—g, —p) is
>
not important, but K, ,(w) must be sufficiently smooth to give

f | Kpolt) | dt < oo (12¢)
so that B, ,{x(t)} is defined for any bounded x(t).
Writing (10) as
B,.{log A(t) + log As(t)} = f(¢)

and taking Hilbert transforms of both sides of (10) and (11), using (7
and (8), we have

B,..{¢1(t) + ¢o(t)] = f(t) (13)
Bn,cr‘d’l(t) - ¢2(t)3 = g(t) (14)

or
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B,..{6:(t)} = el f(t) + g(t)} (15)

B...l62(t)} = ([ (2) — g(t)}, (16)

which according to (7) and (8) is equivalent to
B, .{log Ai(t)} = Y{f(t) — &(¢)} (17)
B,..{log As(t)} = 'A{f(t) + §(¢)}. (18)

Setting

h(t) = %lf(t) — 40))  ha(t) = if(e) + gt)),  (19)
Hi(t) = hy(t) + iha(t), (19a)
hao(t) = A{f(8) + &)} halt) = A{F() — ()},  (20)
Ha(t) = haolt) + iha(t), (20a)

the four equations (15), (16), (17), and (18) are equivalent to the two
equations, implying (6),

B, .{log z:1(f)} = Hi(t) (21)
B,..{log 2:(t)} = Halt), (22)

where H, and H, are given “analytic” band-pass signals whose Fourier
transforms vanish outside the single interval [A, x] and 2; and 2, are
bandlimited “analytic” signals whose Fourier transforms vanish out-
side the single interval [0, 8]. The problem of finding 2; and 2z, has
been solved (see Ref. 1):

21(t) = Baslexp Hi(t)] (23)
z(t) = Baslexp Ha(t)}, (24)

where B, ; is any bandlimiting operator with passband (—a, «) and
cut-off frequency +g.

Now z, and 2, given by (23) and (24) satisfy (21) and (22), provided
zi(r) and z3(7), 7 =t + iu,)are zero free in the upper half-plane u > 0.
The filter characteristic K, s(w) in the cut-off region («, 8) becomes
important, but not critical, in this respect. From theoretical consid-
erations the linear cut-off characteristic is desirable (see Ref. 1):

w

Rs)=P=%  acw<s (25)

For a given « and 8, and a smooth cut-off characteristic, z; and z, will
be zero free in the upper half-plane provided | H,| and | Hy| are not
too large. In practice this means that the levels of f and g must not be
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too large if « and 3 are not much larger than y, the top signal frequency,
i.e., in the bandwidth conserving case. The results in Ref. 1 may be
used as a rough guide. For example, if « is only slightly larger than p
and 8/a = 1.1 (relatively sharp cut-off), then z; and 2, will be zero free
in the upper half-plane if | H,| and |H,| are less than 0.6. (See the
appendix for a modification of signals f and g of disparate bandwidths.)

lIl. IMPLEMENTATION

The block diagram of an implementation is shown in Fig. 1. The
transmitter is shown in Fig. 1a. The inputs are labeled f(t + T') and
g(t + T) to account for a delay T incurred in the Hilbert transform
filters. The delay T need not be more than one or two periods of the
lower signal frequency A to obtain a good approximation to the Hilbert

transforms, f(t) and (t). (The inputs f(¢t + T) and g(¢ + T') must be

delayed accordingly to obtain f(t) and g(t).) The signals f(t), f (t), g(t),
and g(t) are summed to obtain

hy = Y%(f — §)
hy = Y(f + &)
hy = %(f + 8)
hy = Y%(f — 8)

in accord with (19) and (20). (The gain factor of the summing net-
works, shown as 1/2, may be any constant, which may be simply
reflected as a gain factor on the inputs.) Then these outputs are fed
to two analytic exponential modulators that furnish outputs

X, = e™cos h, = Relexp Hi}
Y, = e™sin A, = Im{exp Hi}
X, = eMcos h, = Relexp H,)
Y; = e™sin h; = Im{exp H).

A feedback circuit for accomplishing the analytic exponential mod-
ulation is described in Ref. 2. The outputs of the modulators are then
bandlimited with identical low-pass filters LPF,; having the character-
istic shown in Fig. 2a to obtain

x; = Ref{z}, » = Imfz}
%3 = Re{zs},  yo = Imfzp}.

These outputs are then combined to form
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Fig. 1a—Transmitter.
Fig. 1lb—Receiver.
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Fig. 2a—Characteristic of LPF,.
Fig. 2b—Characteristic of LPF5.
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4

s(t) = Re{[x,(t) + iyi(¢)][xa(t) — iyalt)]e™}

ictl

= Re{[xixz + y1y2 + (1% — ya2x1)]e
= (x1%2 + y1¥2)cos ¢t — (y1x2 — Y2%1)sin ct
= A(t)cosict + o(t)}.

The signal s(t) is then transmitted to the receiver, Fig. 1b, where an
envelope detector is used to obtain the envelope A(t), which is then
fed to a device having a logarithmic characteristic to furnish the
output log A(t). This output is then filtered with LPF; to obtain f(t).
A phase detector, e.g., a phase-locked loop, is used to detect the phase
#(t), which is subsequently filtered with another LPF; to obtain g(t).
The characteristic of the filters LPF, is shown in Fig. 2b.

Note that ¢(t) is high pass with lower frequency A; so ¢(t) may be
recovered from {¢’(t) + c}, if desired.
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APPENDIX
Maodification for Signals of Disparate Bandwidths

Note that the bandwidth of the transmitted signal is the sum (or
twice the sum, counting positive and negative frequencies) of the
bandwidths of the analytic signals z,(t) and z,(t), which need be only
slightly larger than the sum of the bandwidths of the analytic signals
H,(t) and H,(t). Owing to the linear combinations in (19) and (20),
the bandwidths of Hi(t) and Ha(t) will be the same, equal to the larger
of the bandwidths of f(t) and g(t). In case the bandwidth of, say, g(t)
is (considerably) larger than that of f(t), the bandwidth of the trans-
mitted signal may be reduced by setting
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Hi(t) = f(t) + if (t) (26)
Ha(t) = g(t) + ig(t). (27)

Here we assume that the Fourier transforms of H;(t) and H,(t)
vanish outside the intervals [\, u;] and [As, uz], respectively. Now we
set

z1(t) = B, g lexp Hy(t)}, m <o <p (28)

Zz(t) = an,ﬂz{exp Hz(t)i, pe < ag < 52, (29)

where 8, and 8. need be only slightly larger than u; and u, (respec-
tively), the top frequencies of f(t) and g(t) (respectively). The Fourier
transform of z,(¢)z2(t) now vanishes outside the interval [—f;, 1],
which is smaller than would obtain in the previous scheme. Thus the
Fourier transform of the transmitted signal,

s(t) = Re e“z(t)z(t), ¢ > B (30)

vanishes outside the interval [c — 8;, ¢ + (1] (and its reflection about
the origin). The price paid for the saving in bandwidth is another
Hilbert transform operation required in separating the signals at the
receiver.

We have

s(t) = A(t)cos[ct + o(t)], (31)
where
A(t) = |z:(t)za(2)|
d(t) = ¢1(t) — ¢aft).

Then, assuming as before that z; and z; are zero free in the upper half-
plane, we have

L(t) = log A(t) = Ly(t) + La(t), (32)

where L(t) = log | z:(t)], L2(t) = log | z2(t)| and L(t) is related to ¢(t)
by

o(t) = ¢1(t) — ¢olt) = Ly(t) — Lo(t) (33)
é(t) = 1(t) — da(t) = —Li(t) + La(t). (34)

In accord with (28) and (29) and the zero-free hypothesis, we have
(as shown in Ref. 1)

By, {Li(t)} = f(2) (35)
Bo,alLa(t)} = g(t) (36)
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To obtain Ly(t) and Ly(t) from log A(t) and ¢(t), we need the Hilbert
transform ¢(t), where according to (32) and (34),

Ly(t) = % log A(t) — %d(t) (37)
Ly(t) = Y log A(t) + Yad(t). (38)

_ However, to recover f(t) and g(t), we may use a modified version of
¢(t). We define

Hrault) = Hyfo(t)), (39)

where H,, is a modified (e.g., band-pass) Hilbert transform operator
defined by

H,.[¢(t)] = _[m hy(t — x)¢(x)dx (40a)

hyu(w) = f hau(t)e™'dt = —i sgn w, (40b)

for 0<\A<|w| =g

Now ¢(t) and ¢.(t) are high-pass functions with lower frequencies
A1 and A (respectively). Thus, if we require

0 < XA < min(Xy, A2), u = max(py, p2), (41)

then we have
f(t) = ¥B,. . {log A(t) = dr,u(t)} (42)
g(t) = ¥iB,,.,{log A(t) + éru(t)). (43)
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