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This paper derives fixed-order recursive Least-Squares (LS) algorithms that
can be used in system identification and adaptive filtering applications such
as spectral estimation, and speech analysis and synthesis. These algorithms
solve the sliding-window and growing-memory covariance LS estimation prob-
lems, and require less computation than both unnormalized and normalized
versions of the computationally efficient order-recursive (lattice) covariance
algorithms previously presented. The geometric or Hilbert space approach,
originally introduced by Lee and Morf to solve the prewindowed LS problem,
is used to systematically generate least-squares recursions. We show that
combining subsets of these recursions results in prewindowed LS lattice and
fixed-order (transversal) algorithms, and in sliding-window and growing-
memory covariance lattice and transversal algorithms. The paper discusses
both least-squares prediction and joint-process estimation.

I. INTRODUCTION

Computationally efficient recursive Least-Squares (LS) algorithms
have recently attracted attention in applications such as adaptive
equalization,"* echo cancellation,’ and speech analysis and synthesis®’
because of their fast convergence properties when compared to older
least-mean-square or gradient adaptation techniques.®*'® Since the
work on computationally efficient LS algorithms by Morf and others
first appeared in Refs. 11 and 12, numerous papers have followed that
produce computationally efficient algoritms that solve different types
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of autoregressive LS estimation problems.'*'” In general, these algo-
rithms fall into four categories: (1) prewindowed recursive LS, (2)
sliding-window recursive LS, (3) growing-memory covariance recursive
LS, and (4) nonrecursive LS algorithms. Each of the first three
categories has two subcategories: fixed-order, or transversal, algo-
rithms; and order-recursive, or lattice, algorithms.

References 1 and 12 present a prewindowed LS algorithm that
satisfies a transversal filter structure (fast Kalman algorithm). Sub-
sequent Refs. 7, 18, and 19 describe prewindowed and growing-memory
covariance LS algorithms that satisfy a lattice structure. Normalized
prewindowed LS lattice algorithms that involve fewer recursions than
the original unnormalized versions, and which have the important
advantage that all internal variables are less than or equal to unity in
magnitude are presented in the more recent Ref. 13. Reference 14
extends the normalized lattice algorithms to solve the sliding-window
and growing-memory covariance LS problems. The recursive algo-
rithms mentioned so far require order N arithmetic operations per
iteration to update the filter parameters, where N is the order of the
filter. A computationally efficient order-recursive algorithm that
solves the set of linear equations for the covariance LS prediction
problem has been presented in Ref. 11, and extended to the joint-
process-estimation case in Ref. 17. These algorithms require order N .
operations to compute the LS prediction coefficients and are nonre-
cursive in the sense that the solution generated at time interval i is
not used to generate the solution at time interval i + 1.

This paper attempts to unify and extend the previous work by (1)
systematically generating all of the recursions needed to derive all of
the previously mentioned algorithms, and (2) using these recursions
to derive new recursive fixed-order sliding-window and growing-mem-
ory covariance LS algorithms. These new algorithms solve directly for
the prediction- or autogressive-model coefficients, and involve signif-
icantly less computation than both the unnormalized and normalized
versions of the order-recursive or covariance lattice algorithms pre-
sented in Ref. 14. In addition, in some applications it may be advan-
tageous to work directly with the prediction- or autogressive-model
coefficients, rather than the set of reflection coefficients produced by
lattice algorithms. The algorithms mentioned in the previous para-
graph, along with the new ones derived here, are obtained by appro-
priately arranging subsets of least-squares recursions. The geometric
or Hilbert space approach originally used by Lee and Morf® to derive
the prewindowed LS lattice algorithm is used to derive all of the basic
least-squares recursions in a cohesive manner. In this paper, however,
only scalar-valued data are considered.

The next section defines the sliding-window and growing-memory
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covariance LS problems to be solved. Then Section III reviews the
geometric approach to LS estimation. Fundamental order and time
updates for the least-squares projection operator are given in Section
IV, with derivations in Appendix A. In Section V these projection
updates systematically derive least-squares recursions. Section VI
gives fixed-order covariance algorithms and Section VII extends the
preceding discussion to the joint-process-estimation case. Appendix B
lists subsets of recursions in Sections V and VII that constitute other
LS algorithms.

Il. PROBLEM STATEMENT

We start by defining a sequence of data values yq, ¥1, + -+ , ¥, where
i is the current time index. A linear least-squares forward predictor of
order n chooses the coefficients fj, to minimize
i n 2
ff(iln) = 2 (ym - E f,‘;nym—j) 3y (1)
m=i’ =1
where i’ to i is the time window of interest. The coefficients f;,, 1 <
J < n, are called the forward-prediction coefficients. A linear least-
squares backward predictor of order n chooses the backward-prediction
coefficients b;|,, 1 = j < n, to minimize

n 2
el(i|n) = 2 (ym-n - 21 bj|nym-j+1) . (2)
m=i j=
Minimization of (1) rather than (2) is generally desired for a given
application. The forward and backward prediction problems stated
above are closely related, however, and the LS algorithms to be
presented use the backward prediction coefficients to solve for the
forward prediction coefficients in a computationally efficient manner.
+ If, instead of estimating future values of the same process, we wish
to estimate another related process {x;}, the least-squares cost function
becomes

i n 2
eliln) = ¥ (xm - 21 ﬂ'jlnym-jﬂ) , (3)
m=i =

where tap coefficients c;, replace the prediction coefficients f;;, and
biin. The cost function (3) is relevant to joint-process-estimation
problems such as channel equalization and echo cancellation. In the
case of channel equalization, y; is the ith sample of the channel output,

and x; is the ith channel symbol.
Setting the derivatives of the cost functions (1), (2), and (3) with
respect to the prediction (tap) coefficients equal to zero results in the
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following linear equations:

P11 1af(E|0) = 2 Yi¥i-1ns (4a)
Siriiab(i|n) = X ¥j-nYiin, (4b)
J=i
and
@i ine(iln) = X %¥jin, (4c)
J=i
where
f7(i|n) = [funfein -+ fainl, (5a)
b7 (i|n) = [bijabzin -+ bayl, (5b)
c’(i|n) = [eyjnCain *++ Cainls (5¢)
Yin = [%¥j-1 -+ Yjmnsa, (6)

and the covariance matrix

‘pi‘,iln = 2 yjlanTl‘n- (7)
j=i

Suppose now that i’ =0, and that yo is the first available data
sample. The least-squares solutions for f, b, and ¢, obtained by solving
(4), are undefined since they depend on the unspecified data values
y—1,y—2, «++, y-n The simplest, and perhaps most popular,
technique for circumventing this problem is to assume all data values
y;.J < 0, are zero. The least-squares solutions resulting from this so-
called prewindowed estimation are then well defined as long as the
covariance matrix is nonsingular. In applications such as speech
modelling, however, where estimates of the prediction coefficient
vector f(i| n) are desired given relatively few data samples, prewin-
dowed estimation may result in undesirable edge effects from assuming
data is zero outside a given window. For these types of applications, it
is desirable to estimate the prediction coefficients without any as-
sumptions concerning the data outside the time window of interest.

Covariance least-squares estimation replaces the lower time limit i’
in (1), (2), and (3) by n, so that only known data values are used to
compute the LS prediction (tap) coefficients. The improved estimates
so obtained are not without cost, however. The resulting covariance
LS algorithms derived in this paper and elsewhere’ involve more
computation than prewindowed LS algorithms. Notice that at each
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iteration i, the prediction coefficients are computed from i + 1 data
values. Because the number of data samples entering the least-squares
computation grows with time, this type of estimation has been called
growing-memory covariance estimation.'®

Finally, another windowing technique that has attracted attention
recently is the sliding-window technique, in which the lower time limit
i" in (1) and (2) is replaced by i — M + n + 1, and in (3) by i — N +
n, where M is a predetermined constant. At each iteration the least-
squares prediction coefficients are therefore computed from a fixed
number (M) of data samples. Notice that data samples outside the
time window i — M + 1 to i have no effect on the least-squares solution
for f, b, and ¢ at time i, i.e., they are totally forgotten. This is in
contrast to more conventional exponential forgetting techniques that
reduce the effects of past data samples in a more continuous fashion.'®
The sliding window is therefore useful in applications where the
autoregressive model changes abruptly with time, or where undesirable
transients periodically affect the data samples. In the former case,
when the model parameters change, the sliding window eventually
discards data values corresponding to previous model parameters. In
the latter case, the sliding window eventually discards corrupted data
values.

Computationally efficient recursive algorithms that solve the grow-
ing-memory covariance and sliding-window LS estimation problems
will be derived in Sections V through VII. The next section develops
the necessary mathematical background by reviewing the geometric
interpretation of linear least-squares estimation.

1. MATHEMATICAL BACKGROUND

Given two vectors X and Y having the same dimension i, the inner
product of X and Y is defined to be

(X,Y) = X"WY, (8)

where W is some prespecified i X | weighting matrix. As an example,
a typical weighting matrix is the exponential weighting matrix

W:=[1ww?- .. wI, 9)

where I is the ¢ X { identity matrix. For convenience, we will assume
that W is the identity matrix. Modification of the results in this paper
to the case where W is arbitrary is straightforward. The distance
between two vectors X and Y with the same dimension is therefore
the regular Euclidean distance,

dX, Y) =Y -X[=(Y -X, Y - X)"2 (10)

The (nth order) projection of a vector Y onto a subspace (or
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manifold) M, which is spanned by the n vectors {X;, Xa, -- -, X}, is
denoted as Py Y. The orthogonal projection of Y onto M is defined as

P4Y =Y - Py,Y, (11)
and is orthogonal to the subspace M. This implies that
(X;,, Y- PyY)=0, for j=1,.--,n. (12)

Since PyY lies in M, there exist constants, or regression coefficients
fl, f2s frty fn Such that

PuY = ¥ fX; = Sf, (13)
j=1

where S8 = [X, --- X,] and f7 = [f, - - fu]. Using (12) and (13), it is
easy to show that

f=(8"S)'S™X (14)
and
PyY = S(STS)'STY, (15)
assuming S”S is nonsingular.

The linear least-squares estimate of Y, based upon the vectors
X,, --- , X,, is formed by choosing fi, - - - , f. such that

el = 1Y = 3 X1 (16)
p;

is minimized. Differentiating this quantity with respect to f; and setting
the result equal to zero gives

Y = 3 fX; = PuY, (17)
j=1
and the vector of estimation errors,
e=Y — 21 X; = PuY. (18)
f=

We have identified the operator P as a least-squares projection.

IV. PROJECTION-OPERATOR UPDATE FORMULAS

In this section some fundamental relationships satisfied by the least-
squares projection operator are presented. These projection updates
fall into two main categories: order updates and time updates. Under
time updates are two subcategories, forward and backward time up-
dates. We point out in advance that a total of three projection-operator
updates will be used throughout this paper: one order update, one
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forward time update, and one backward time update. In addition, one
forward and one backward time update for inner products will be
needed.

4.1 Order updates

Given two vectors, Y and X, and a linear space M spanned by the
vectors X,, X, ---, X,, all in R/, suppose we wish to calculate the
least-squares estimate of Y based upon the vectors X;, ---, X, and
X. In particular, we wish to find coefficients @;, j = 1, --- , n, and b
such that | Y — (%, ¢X; + bX) || is minimized. From the discussion
in the last section, we know that the least-squares estimate of Y is

Y aX; + bX = Puax Y, (19)
=1
where {M + X} denotes the space spanned by M and X. We can write
the following orthogonal decomposition of the space {M + X},
M+ X} = M@ {PyX]. (20)

By the Hilbert space projection theorem,*! we have that for any vector
Y ER]

P|M+x|Y = PMY + P|pbx|Y. (21)
Figure 1 illustrates this equation for the special case n = 1. The

projection of Y onto the space spanned by two vectors X, and X; is
shown as the sum of the two projections Px,Y and Pipy x, Y.

Fig. 1—Decomposition of Px .x, Y.
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Equation (21) constitutes a fundamental order update for the least-
squares projection operator. The (n + 1)st-order projection Psx) is
expressed as the sum of the nth order projection Py and the first order
projection Pypux;. By subtracting both sides of (21) from Y, we obtain
the following order update for the orthogonal projection operator P,

P|Jju+x|Y = PJ,\}Y - P|p.¢x|Y. (22)

4.2 Forward time updates

The forward time updates derived in this section compute a least-
squares projection at time i given the same least-squares projection at
time i — 1. These recursions, when combined with the order recursions
in the last subsection, can be used to derive prewindowed LS algo-
rithms. We first consider the following vectors X ; and Y, ;, which are
composed of data samples from time i, to , i.e.,

Xg.l' = [x: Xic1 -+ %), (23a)

and
YZi = [y Yie1 -+ Yl (23b)

For notational convenience, in this section only we will omit the lower
time subscript on the data vectors and assume it to be i. Our objective
is to compute the linear least-squares estimate of Y, given X; in terms
of a least-squares estimate that does not use the most recent value y;.
With this in mind we define the unit vector

w'=[10-.-00], (24)

which has the same dimension as Y, i.e., u; € R™%*!, Associated with
u, is the space spanned by u;, or the space of most recent data values,
denoted as U. Note that Py, Y; = y;u;. For notational convenience we
define a tilde operator as follows,

Y = PuY: = [0 yic1 Yiez =+ Yigr1 Yils (25)

i.e., Y. is the projection of Y; onto the subspace of past data values.
The basic prediction problem is illustrated in Fig. 2, where Y; is a
vector having its endpoint in back of the plane of the paper and X;
has its endpoint in front of the plane of the paper. We are given the
vector X;, from which the least-squares estimate of Y;, Px,Y, is to be
recursively obtained. At time i we therefore assume a regression
coefficient a corgputed at time : — 1 (ie., Px_ Y1 = aXi,, or
equivalently, Pz Y; = aX;), which we wish to modify using the most
recent data values y; and x;. Figure 2 therefore shows Px,Y; decomposed
into the two vectors aX; and Px(Y; — aX;). Figure 3 illustrates the
plane spanned by X;, X, and U, Since ABC and ADE are similar
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ut
uy
Fig. 2—Decomposition of PxY..
triangles,
AB AC
AD ~AE - ® (26)

so that AC = aX,. Figure 4 attempts to include vectors not shown in
Fig. 2 and again illustrates the decomposition of Px.Y; (Only the
endpoint of Y; is in Fig. 4.)

Assume now that the vector X; is replaced by the subspace M;

spanned by the vectors X, ;, X, -, X,,;. Let
S = [Xi Xz, -+ X, (27)
and
Si=[Xu X --- X.). (28)
We define the projection
Py, Y: = S[STS'STY, = Sf, (29)

ie., Py, Y; lies in M; but uses regression coefficients computed at
time i — 1. Referring to Fig. 3, Px,. Y, = aX,. Appendix A shows that

i]i=1

PM'Y,' = PM Y,‘ + PMl.llg(lli, PJ,qg‘.Y,-)seCQB,», (30)

ili-1

where

sin®; = (w;, Pyu;) = || Pau; |2
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AE = X
Py, AD = X;
E AB = aX;

i
|
|
|
|
o
D
X

Fig. 3—Plane spanned by X; and

Py ¥ —aX;)

|
|
Px, P Y= X |l

\}\"

ax; I >
1
Uy 5
X

U

Fig. ——Rotated view of Fig. 2.

= (ufS,)(STS) " (STw), (31)
and
29, = ———1— (32)
sec 1 — sin?6;

The variable 6; can be interpreted as the angle between the spaces
spanned by the matrices of basis vectors $S; and S.. Referring to Fig.
3, the angle 0 is given by

IXil? %}
IX:l? IXl*

sin’0 =1 — (33)
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and measures the unexpectedness of the data received at time i. Notice
that (33) can be rewritten as (31), where M; and S, are replaced by X;.

We obtain the following time update for the orthogonal projection
operator by subtracting both sides of (30) from Y;,

Pﬂ}in = PJ,\II Yi - PMillf(ll,', PJH..Y.-)seczﬂl-. (34)

One more relation that will be useful in the following section is a
recursive equation for the inner product (v;, P14 Y;), where v, is an
arbitrary vector in R"*', This recursion, which is derived in Appendix
A, is

(vi, Pt Y:) = (V;, P }:}i?f) + (w;, Pivi)(w;, Py Y:)sec’;, (35)

where M; is the space spanned by §,.

ili=1

4.3 Backward time updates

Consider again the data vectors X; and Y; defined by (23). Suppose
we wish to compute the linear least-squares estimate of Y; given X, in
terms of a least-squares estimate that does not use the most distant
or past values y;, and x;. Clearly, this problem can be solved in exactly
the same fashion as the time-update problem stated at the beginning
of the last section. By turning the vectors Y; and X; upside down, and
assuming that y; and x; are the most recent samples, one can solve
this problem by using time updates already derived. The same argu-
ment holds when X is replaced by the subspace M; spanned by vectors
Xy, X34 +++, Xni In this case we wish to calculate the projection
Py Y, in terms of a projection onto the space spanned by the matrix
of basis vectors S; in which the bottom row has been replaced by zeros.
This is in contrast to the previous time updates, which expressed
Py, Y in terms of a projection onto the space spanned by S; in which
the top row has been replaced by zeroes (i.e., M;).

In analogy with the notation defined in the last section, we define
the unit vector

ul/=[00...01] € R-0*, (36)

and the space spanned by u;, as U;,. We also define the following
asterisk operator in analogy with the previous tilde operator,

Y= P'LLI,-OY:' = [¥i Yie1 -+ Yign 01" (37)

Similarly,
Sf=[X1; X% --- XX (38)

The projection of Y; onto M, using regression coefficients computed
from Sfis defined as

Py

Ll

oY = SISITSHSHTY). (39)
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The regression coefficients that multiply the basis vectors of M; are
in this case elements of the vector [S}"S¥]~![S}TY]].

The derivation of (30) can be repeated with u; replaced by u;, tildes
replaced by asterisks, and Py, replaced by Py, ., to give the follow-
ing projection decomposition,

PuY; = Py, . Yi + Pumi(a, P1,.Y;)sec’d}, (40)
where
sin’0¥ = || Pau,, ||
= (uf8;)(S7S)*(8Tu,)
= (u;,, Pumuy), (41)
and
sec’f} = ——17* (42)
1 — sin“f}
Subtracting both sides of (40) from Y; gives
PiYi = P, .. Yi — Paui(Wy P1,.Y;)sec’d}. (43)

Finally, the following update for inner products is analogous to (35),
(viy P Y:) = (v}, PipYF) + (i, Pivi)(w, Py Y:)sec’df. (44)
This completes the presentation of projection-operator recursions

needed to derive the least-squares recursions in Sections V and VIL

All order updates for variables entering the least-squares algorithms

to be presented can be derived from (22). Similarly, all forward and

backward time updates for vectors entering these algorithms can be
derived from (34) and (43), respectively, and all forward and backward

time updates for inner products can be derived from (35) and (44),
respectively.

V. LEAST-SQUARES RECURSIONS
5.1 Notation

Referring to the definition (23), a shift operator z™ is defined by
7Y 0 = [Yiej Yici1 * Vi) (45)

Equations (1) and (2) can now be rewritten as
¢(i1n) = | Yigeni — X firnZ 7Y ian) |12 (46a)
=1
and
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n

e(i|n) = " Z_"Y:'0+n,i - 2 bjln(z_j+lYl",+n,i) "2, (46Db)
j=1
where i’ has been replaced by i, + n. A matrix of shifted data vectors
is denoted as

Sigrnilly 1) = [27Yieni 277 Yipani -+ 27" Yigenil, (47)

where [ < n. The space spanned by the columns of S;,:(l, n), which
is a subspace generated by past data values, is denoted as M; (I, n).
For notational convenience we will omit the lower time index of S and
M and assume that it is always i + n. Notice that we can write the
covariance matrix defined by (7) as

q)|'|;|+rl,i|r.| = SJT(OQ n— 1)S:(0’ n-— 1)‘ (48)

Two types of updates exist for least-squares parameters: order
updates and time updates. The time updates in this section generally
fall into two categories. Given some LS parameter £ (i.e., the forward
prediction vector f or the prediction residual), we wish to find (1) a
recursion for £ computed from the data samples {y;, yi+1, - -+, ¥} in
terms of £ computed from the data samples |y, Yi+1, - - -, ¥i-} (for-
ward time update), and (2) a recursion for £ computed from the data
samples {yi, ¥i+1, +++, ¥} in terms of ¢ computed from the data
samples { ¥, +1, Yig+2» -+, ¥i} (backward time update). Associated with
the variable £ is therefore an order index n and the time indices of the
data used in the least-squares computation. If the data values
{ ¥ipy Yig+1» - - - » ¥i) are used to compute £, then the indices i; and i must
be specified. This is in contrast to the prewindowed case where only &
need be specified since i is always zero.

Throughout the rest of this paper, the starting-time index of the
generic parameter £ will appear as a subscript, and the current-time
index will appear as a function argument. As an example #;(i|n)
implies that the data values {y;, i+, - -, ¥} are used to compute
the nth order variable £. The following variables are needed to derive
the LS algorithms in the next section:

1. Forward and backward prediction vectors [from (4)],

f,(i1n) = ®itn-1,-11alST (1, n)Yijni] (49a)
and
b (i|n) = ®31.:a[S7(0, n — B (7Y 1n)]. (49b)
2. Forward and backward prediction residual vectors,
E; (i|ln) =Y, . — S{1, n)f, (i| n) (50a)
and
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Eb; (il n) = 27"Yi4ni — Si(0, n — 1)by(i| n).
3. Forward and backward prediction residuals (scalars),
ei(i|n) = (WEq(i|n)) = yi = fL(i| n)¥izan
and
evi(i|n) = (u, Epyi| n)) = yica — LI n)¥ijn.

4. Forward and backward cost functions,

ef.iﬂ(”n) = | E[,:},(“"-) "2. fb.i.,(“ n) = | Eb,io(il n) |2

5. PARtial CORrelation (PARCOR) coefficient,
Rnig(i) = (Epn(iln — 1), Epii — 1n = 1)).
6. Auxiliary variables, or gains,
Bipr1(i] 1) = ®iiniinYiins
hi1(i | n) = B iniinYigtnin
Yigr(111) = (W Prgon-1i) = ¥n@ihnitn¥iln
vEn(i|n) = (Wi Pron-1W) = YigrninPighn,ilnYighnins
and
@i (i] n) = (W, Prgon-ni) = Y a®itniinYigtnine
Notice that
S0, n — 1)gi+1(i| n) = Puon-1us

and
Si(0, n — Dhj(i|n) = Ppmon-1Wi;
and that
Yigr1 (i1 n) = gl n)¥iin,
vha(iln) = g1 n)Yignin
and

ﬂ£ﬂ+1(i| n)‘ = E?Sn(i | n)yi0+n|n = hgﬂ(i' n)Y:’ln-

(50b)

(51a)

(51b)

(52)

(53)

(54a)
(54b)
(55a)
(55b)

(55¢)

(56a)

(56b)

(b7a)
(57b)

(67¢)

Using the notation in the last section, the gains y and v* are,
respectively, sin’f; and sin’0}, where 6; and 0} are, respectively, the
angles between M;(0, n — 1) and M0, n — 1), and between M;(0, n —

1) and M¥(0, n — 1).

At each time instant our objective is to minimize the cost functions
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¢,(i|n) and e, (i|n). From the discussion in Section III it follows
that

E/,(i1n) = PiamYieni (58a)
and
Euio(i|n) = Pron-1(Z"Yigrna). (58b)

The following variables, which are closely related to the prediction
residuals, are also needed:

E/i(i|n) = Pig,am Yigens
= Yini — Si(1, n)fi,(i — 1|n), (59a)
and
Eii(iln) = Py, yo0n-1(2""Yigin,)
= 2""Y4ni — Si(0, n = Dby (i — 1|n), (59b)

i.e., Ef and E/ are the forward and backward residual vectors obtained
by using prediction vectors computed at the previous time interval.
The top components of Ef; (i|n) and E;;(i| n) are, respectively,

eri(tln) = (w;, Ef(i|n))
=y — fI(i — 1| n)yi-1in (60a)
and
ebi(t|n) = (u, Ef;(i|n))
= Yi-n — bi(i = 1| n)yin. (60b)

The nth order forward prediction residual computed at time iy + n
using the tap vector f; (i| n) is

efi,(i|n) = (u,E;(i|n))

= Yigtn — fﬁ(iln)ywnﬂ.n- (61)
The forward residual vector at time i using the forward prediction
vector calculated from the data samples {y; 41, - -+, yi} is
E[,iu|:‘o+1(“n) = PJA?!,G,,-‘,Hu,inDm,i
= Yi+ni — Sil1, n)fi (i n). (62)

The variables e (i| n) and E,;,+1(i| n) are similarly defined.
Notice that the time indices associated with a residual vector change
in accordance with the projection space, i.e.,

Pt Yigeni =Epin(i|n = 1), (63a)
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and
Pan-(z " Yigni) = Epgpli = 1|n = 1). (63b)

The recursions needed to derive the algorithms in the next section
are now generated systematically. By appropriately defining the vec-
tors and subspaces entering the projection order update (22), order
updates are derived for all of the basic variables defined by (49) through
(55). We then use the forward and backward time updates (34) and
(43) to obtain forward and backward time updates for the basic vectors
defined by (49), (50), and (54). Finally, the forward and backward
time updates for inner products (35) and (44) are applied to
Bnjo(0), (i1 n), and e;(i|n). It would take up too much space to
explicitly define the vectors and subspaces that must be substituted
in the projection update used to derive each recursion. Consequently,
only the results are stated, with a few representative examples worked
out in more detail.

5.2 Order updates

The following order updates are obtained by using the projection
order update (22) [or equivalently (21)]. The [th through the mth
component of f;(i|n) is denoted by [f;(i|n)],m, and [f;(i| n)]; is the
jth component of £;(i| n). The same notation is used for the backward
prediction vector b, (i| n) and the gain vectors g;,(i | n) and h; (i| n).

C kagli)
Eb,,'a(i - lln - 1)

Ef,a'o(i'n) = E[,i0+l(i| n—1)

‘Epi (i — 1|n = 1), (64a)

kn,io(i)

Esi(iln) = Ep(i = 1|n—1) — m
Efign(i|n — 1), (64b)

0!
Eb‘io(i - 1|n - ].),
. 0)
Rf,anﬂ(“ n-—1)’

(65a)

Ef‘,'o(l:ln) = Ef,i0+1(i|n - 1)

(65b)

q,,.-,,(iln) = éb,,'ﬂ(i -1 I n-— l)

kn.io(i)
Eb_,'ﬂ(l'— 1|n— 1)’

(£, 1) a1 = fimliln — 1) — [£i(i] n)bi(i —1|n —1), (66b)

(66a)

[£:,(i | n)]. =
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kn,iﬂ(i)
ff'jo+](i1 n— 1) ’

[bi(i[n)): =

[bso(iin)]z,n =b:,,(l' -1ln-1) - [big(iln)]lfin-i-l(iln - 1),

[g(i|n + Dy, = al?)
€,i,(i| n)

[g;.,(il n+1),= gi+1(i|n) — [ga},(”n + 1)]n+1bio(i'n)r

eri(i|n)
eri(iln)’

[8,(iIn + Dlope = (i — 1| n) — [g,(i|n + 1)1.f, (i n),

[&,(ln + 1], =

efi(i|n)
fb,io(” n)’

[hi(i|n + 1)) =

[hi(i|n + Dha = hign(iln) = [hiiln + D]aabg ] n),

thiiln + 1), = alln)
it n)

[(hiiln + Dlonn = hi(i = 1|n) — [hy(i|n + 1)]f(i|n),

eg,iu(i | n)

iln+ 1) =; t|n) + T
¥i,(T] ) = vigrli| n) liln)’

e?.i[,(i | n)

Wln+1)=~(G—1|n)+ )
ot ) = il |n) oili| )

. ) et (i
yiGln + 1) = vfali|n) + —M
Eb,so(lln)
eri(i|n)

Yililn + 1) =3~ 1in) + 200,

ey (i n)ef(i| n)
fb.io(f | n)

ay(iln + 1) = a;n(i|n) +

)

and

erili | n)efi(i| n)
Ef.,'o(l. I n)

ap(iln+1) =i — 1|n) +

(67a)
(67h)
(68a)
(68b)
(69a)
(69b)
(70a)
(70b)

(71a)

(71b)

(72a)

(72b)

(73a)

(73b)

(74a)

(74b)

As an example, (64a) is derived from (22), where M is replaced by
Mi(1, n — 1), X is replaced by 27"Y ., and Y is replaced by Y, +n,
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By observing that E;; (i — 1|n — 1) is orthogonal to M(1,n-1),it
is clear that

(Yitnis Ebigi — 11n = 1)) = (Egiena(i|n — 1),
'Eb,io(i -1 I n-— 1))
= kn,(1). (75)

Recursions (65) are obtained by taking norms of (64) respectively.
The recursions (68) through (71) are obtained from (21), where Y is
replaced by u; and u;,, respectively. Making the same substitutions in
(21) and then taking inner products with u; or u;, gives recursions (72)
through (74).

5.3 Forward time updates

The following forward time updates are obtained from the (orthog-
onal) projection operator forward time update (34):

i — T/ (; _ ; ef,io(iln)
Ef.lo(t ' n) = Ef.lo(‘l n) [PM,(I.n)ux] 1— ‘Y,;n(i —1 I n) N (76&)
E;;(i|n) = Eg;(i|n) — [Pumon-nui] % , (76b)
Giln) = f.(i — - eri(i|n)
f,(i|n)=f,(i—-1|n)+ gi,(i—1|n) T = eli— 117 , (77a)
»” g o e (i| n)
b, (i|n) = b,(i — 1|n) + gi,n(i|n) 1= yen(iln)’ (77b)
(: — h.(: _ oo (1 a.—o(i|n)
hi(iln) = by = 1|n) — galiln) T~ AR (78)
. . 2(i|n)
vz(lln)=ﬁ(t-1ln)—i—%. (79)
and
a;, (1| n) = yl:hi(i = 1| n)[1 — v, (i n)]. (80)

Equation (78) is obtained from (34), where M; is replaced M,(0, n) and
Y. is replaced by u;,. Equations (79) and (80) are obtained by making
the same substitutions in (34) and then taking inner products with
u;, and u;, or by premultiplying (78) by ¥ n-11n and y/|,, respectively.
Taking the inner product of (76) with u; and u;, respectively gives the
following recursions:
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erig(i|n)

efi(i|n) = = vli—1]n)’ (81a)
i) = esi,(i| n)

ebiy(i|n) —-“’——1 ienn) (81b)

efo(iln) = efi(i — 1|n) — e (i|n) 7 f'bil_ (: 1|1n|)n) , (82a)
L]

and

edililn) = e},(i = 1|n) — ey (i| n) 3 C:"":.(il(:?n) . (82b)

g+

5.4 Backward time updates

The following backward time updates are obtained from the projec-
tion operator backward time update (43):

efi(i1 n)

E1ui1m) = Buagonliln) = [Puomd T e s, (830)
i
* [y
Euui1) = Engrni1) = [Pronid 725 10— (83b)
g+
fonliln) = £lilm) = i = 1) T 1D — (84
PN etqliln)
bisa(ifn) = bi(i|n) = hin(iln) 7 VGl (84b)
o ai(t| n)
gi,(i|n) = gi«1(i|n) = hy(i|n) 1= G1m DR (85)
Tali1 1) = vgualil m) — —alilm)_ (86)
o o+ 1 —viiln)’
and
asu(” n) = y.fm-ungsoﬂ(iln)[l - 'Y;(”n)]- (87)

Equation (85) is obtained by replacing Y; by u; in (43). Equations (86)
and (87) are obtained by premultiplying (85) by v/, and yl..-1n,
respectively. The following recursions are obtained by taking the inner
product of (83) with u;, respectively:

ay(i — 1|n)
—yii—1|n)’

erigri(i|n) = epy(i|n) + efy(iln) 7 (88a)
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and

enipnliln) = eni1n) + eililn) T2 fm;f_ill(__':; 5. (68b)

The recursions that result from taking inner products with u;, will not
be used and are therefore omitted.

5.5 Inner product updates

The following recursions are obtained from the forward time update
for inner products (35):

kn,iu(i) = kngo(l - 1) + e,r,foﬂ(il n-— l)eb,.-o(i -1 I n— 1)
1

T—qgnli-1ln-1’ (89)

eroli|n) = eili = 1) + efifiln) 7= m:_ S (0
and

(i n) = (i — 1| n) + ebi(i|n) -l—jm—) . (90Db)

The following recursions are obtained from the backward time
update for inner products (44):

Bnio(1) = Rnjgn1 (i) + efin(iln — Dedi(i — 1|n — 1)

1

T-afuli-1n-1)’ (1)
i1 m) = gignil n) + eFi(iln) T— ﬁ(: i O

and
enioli| ) = esini(i| n) + eBi(iln) T= 2t (92b)

Equations (89) and (91) are obtained by using (35) and (44), where v;
is replaced by Y +n, Y is replaced by 27" Yn,, and M; is replaced by
M;(1, n — 1), respectively. The previous set of recursions (64) through
(92) are complete in the sense that any existing least-squares alogrithm
can be derived by manipulating suitable subsets of these recursions.
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VI. RECURSIVE FIXED-ORDER COVARIANCE ALGORITHMS
6.1 Sliding-window algorithm

Combining (60), (61), (68) through (73), (77), (81a), (84), (90a), and
(92a), gives the following sliding-window LS algorithm for the predic-
tion coefficients. Where unspecified, the order of the variable is
assumed to be N, the order of the least-squares filter. Also, the starting
time index is denoted as iy. If the sliding window contains M data

values, then iy =i — M + 1,
efili) = yi — 1 = 1)y,
£i,(i) = £i,(i — 1) + &, (i — Def; (i),
eriy(1) = efi, (D1 — vt — 1)],
eliy(i) = Yigrn — EL(0)¥igen-1,

iol1) = €l = 1) + efi(D)ey (i),

g"o(iIN + 1), = e_fil)_

eri(1)
[€,GIN — Dlowsr = g4l — 1) — [g(i| N + 1)]fi (i),
(hy(i|N + 1)}, = e?ffu(f),
Gf,sﬂ(l)

[hiCIN + Dlonver = hi(i = 1) — [hi(i| N + 1))f (i),

fia() = £,(0) — hy(i — 1) 1“_1:’;;.0((::_)__17’
L]
*2 0
erigh1 (1) = €3, (1) — _i_:e;ﬁ;o%_ﬁ!

eé,iu(i) = Yi-N — b.’-f;(t' - 1)y,

b, (i—1)+epi ()[g, (| N+1)]in

B = e DEi I N+ Dlvns

el:io(i) = Vi, — bi:(i)y:'u+N:
8ip(l) = [8,((| N+ )] n+[8:,(i | N+ 1)]n41by (D),
hin(t) = [hy (| N+ 1)y v+ [bi (| N+ 1) vaibi (2),

Yilt — 1) + e (Dg (i | N + 1)]
=€), (i | N + 1)]nn
1 — ehi(t)[8i (i | N + 1)]na

’Yin+l(i) =

RECURSIVE COVARIANCE ALGORITHMS

(93a)
(93b)
(93c)
(93d)
(93e)
(93f)

(93g)

(93h)

(93i)

(93j)

(93k)
(931)
(93m)

(93n)

(930)
(93p)

(93q)
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via() = yii = 1) + efi(Dh (| N + Dk

— efifhi(i| N + Dlw (93r)
and
. . L ebili
bigsi(i) = bili) = hyan(d) ﬁz‘—)(ﬁ (93s)

The recursions (93m) and (93q) were not listed in the previous section,
but are easily obtained by solving (77b) and (68b) simultaneously for
b, (i), and by substituting (68a), (69a), and (81b) into (72), and solving
for ++1(i|n). Notice that all data samples in the sliding window
(Yi-m+1, ..., 5,) must be stored. This is also true of the order-recursive
sliding-window algorithm presented in Ref. 14. If division is counted
as multiplication, then the algorithm (93) requires 12N + 16 multiplies
and 12N + 12 additions at each iteration. In contrast, the unnormal-
ized sliding-window lattice predictor (see Appendix B) requires 16N
multiplies and 10N additions per iteration, and the normalized lattice
predictor'® requires 30N multiplies, 18N additions, and 6N square
roots per iteration.

Because sliding-window algorithms have finite memory, initializa-
tion for these algorithms is basically the same as for the prewindowed
case, i.e., the data y; can be assumed to be zero for i < 0. After M
iterations, where M is the window length, these data points are
discarded. The algorithm (93) is therefore initialized by setting the
gains v and v*, and the elements of the vectors £, b, g, and h equal to
zero, and letting

Eﬂ,‘u(O) = 6, (94)

where § is chosen to ensure that the algorithm remains stable. It is
easily verified that for time i <M — N — 1, where M is the length of
the sliding window, the algorithm (93) becomes a modified version of
the prewindowed LS transversal (fast Kalman) algorithm.??

6.2 Growing-memory covariance algorithm

The following fixed-order growing-memory covariance algorithm is
obtained by combining (60), (68b), (69), (77), (78), (80), (85), (87), and
(90a). The lower index of the window i, is assumed to be zero. For
notational convenience we define the following variables,

i ) _
T— vailm) (952)

Bi,(i n)
and
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. _ _ alt]n)
Brilm = 12 (95b)

Where unspecified, the lower time index and the order of the variables
are equal to zero and N, respectively,*

ef(i) = yi= (i — Dy, (96a)
f(i) = £f(i — 1) + g(i — 1)e/(i), (96b)
efi) = yi — £(i)yis, (96¢)
eA1) = i — 1) + ef(i)ef(i), (96d)
(gGIN + DL = 43 (96e)
[8GIN + Dlovar = g = 1) — [GIN + DL, (96f)
ei(i) = yi-n = b7l = Dy, (96g)
€)= (86| N+ Dl + 8GN+ Dlveib@), (960
B) = yTh(i - 1), (96;)
£°6) = yh-1gi(0), (96K)
o0 - 20 = SO 1) 06
and
h() = h(i — 1) - B, (96m)

Notice that this algorithm can be applied only if i > N. Otherwise,
the least-squares variables of order N are undefined and cannot be
used to compute the same least-squares variables at the successive
time interval. Initialization of this algorithm can be performed, how-
ever, by using an order-recursive algorithm for i < N to increase the
order of the filter by one at each successive time iteration. An order-
recursive algorithm for the prediction coefficients is obtained by
combining (89), (66a), (67a), top components of (64a) and (64b), (66b),
(67b), (65a) and (65b), (82a), (88a), (84a), (92a), (71), (73b), (72), and
(74b). This algorithm is basically the same as the covariance lattice

* The author recently discovered that this algorithm has been independently derived
in Ref. 23 using an algebraic approach.
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algorithm presented in Refs. 7 and 19, except that additional order
recursions for the prediction vectors f and b have been added. It is
not explicitly stated in an effort to conserve space. Order-recursive
computation of f and b requires order N? arithmetic operations per
iteration, rather than order N operations per iteration, as required by
the fixed-order algorithm. Not all N components of the vectors f and
b need to be updated at each iteration for i < N, however. If data is
first received at time i = 0, the recursions listed above can be used for
n=0upton =i At time i = N all of the variables that enter the
fixed-order algorithm (96) have been computed by the order-recursive
algorithm except for g(i), B(i) and 8*(i). The gain g(i) is the only
variable needed at the next iteration of the fixed-order algorithm and
can be computed by first using (96j) to calculate 5(i) and then using
(96m) to solve for g(z).

Derivation of initial conditions for the order-recursive initialization
routine is significantly more complicated than for the sliding-window
algorithm. This is because for i = n, the matrix ®,,, is guaranteed to
be singular, and hence all variables are technically undefined. Refer-
ence 14 gives a convenient solution to this startup problem. By using
a generalized inverse of a singular or nonsingular matrix, the least-
squares projection operator P, given by (15), can be defined even when
the matrix S”S is singular. If this generalized inverse is defined
appropriately, it can be shown that the projection updates in Section
IV hold even when the covariance matrix is singular. This implies that
all of the recursions listed in the last paragraph that constitute the
order-recursive initialization routine can be used starting from i = 0
with the following initial conditions:

£(010) = b(0|0) = £;(=1]0) = h(-1]0) = 0, (97a)

k.(—1) =0, l1=sn<N, (97b)
v(=1]0) = ¥*(=1|0) = a(-1]0) = 0, (97c)

and

=0
croim = {5 fr 130 @
At each iteration i < N,

er(i]0) = e(i]0) = y: (97e)

and
¢(i]0) = &(i|0) = (i — 1]0) + yi. (97f)

Counting division as multiplication, the algorithm (96) requires
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11N + 7 multiplies and 11N + 1 additions per iteration. To compare,
the unnormalized growing-memory lattice predictor (see Appendix B)
requires 22N multiplies and 12N additions per iteration. The normal-
ized lattice algorithm requires 30N multiplies, 18N additions, and 6N
square roots per iteration. We point out that the fixed-order covariance
algorithm specified by (96) is not unique. In particular, equation (96c)
can be replaced by (81a). The extra recursion (93q) must be added to
compute v, however. This type of modification has been applied to the
fast Kalman algorithm, and has resulted in improved numerical prop-
erties.”?

VII. EXTENSIONS TO JOINT-PROCESS ESTIMATION

The algorithms presented so far solve the LS prediction problem
wherein the sums (1) and (2) are minimized. In applications such as
channel equalization, echo and noise cancellation, and adaptive line
enhancement, two processes, {x;} and {y;}, are given, and our objective
is to estimate the {x;} process in terms of the {y;} process. The vector
of estimation errors is denoted as

n-1

E.ij1(i|n) = Xipsni — 2 cj+l|n(z_jYiu+n,i)
=0

= X:’o+n,i - S0, n — l)cin+1(i]n)a (98)

where X ; is defined by (23a), ¢;+1(i| n) is the n-dimensional vector
of regression coefficients at time i used to estimate X, [given by
(4c)] where i’ = ip + n), and the lower time subscript of E, and ¢
denotes the time index of the starting value from the y sequence (i.e.,
Yi+1), Which is used in the least-squares computation. Qur objective is
to choose ¢;,41(i| n) such that

exigr1 (i) = | Egna(i|n) || (99)
is minimized. The discussion in Section III implies that
E.ign(i|n) = Pion-1Xgrni (100)

We now use the projection recursions in Section IV to derive order
and time updates for E, (| n) and ¢;(i| n). Details are again omitted
since they are basically the same as before. Combining recursions in
this section with the prediction algorithms of the last section results
in recursive algorithms that solve the LS joint-process-estimation

problem. o
The following notation, which is analogous to the notation in

Section 5.1, is first defined:
1. Cross-correlation coefficient,

RECURSIVE COVARIANCE ALGORITHMS 2985



kﬂ:,iﬂ(i) = (X +ni> Eb,in(il n))
= (Egig(i| n), Epi(i| n)). (101)
2. Current residual (scalar),
exipli| 1) = (W Eyi (i n))
= x; — ¢}(i| n)Yifn- (102)
3. Past residual (scalar),
etpn(i|n) = (W, Eqn(i|n))
= Xigtn — Cigr1(i| )Y igenin- (103)
4. Oblique residual
elifiln) = xi — ci(i = 1 n)yi. (104)

The following order recursions are obtained from (22):

E.. G _ . ki1 i) .
x.io(l | n+1)= Ex,:'n+1(l| n) — o (Il n) Eb,;'o(l | n), (105)
2]
: . ki
eililn + 1) = einli|n) — é—b%‘l"(rg‘, (106)
i)
(x]
[eqliln + Do = 222a@ (107a)

.ro("l n)
and
[eg(i|n + Dlis = €igraliln) = [ei(i|n + Dlnnbi(i|n).  (107b)

Derivation of the following forward time updates involves a straight-
forward application of (34) and (35), where Y; is replaced by X in,
and M; is replaced by M0, n — 1):

ci (il n) = e,(i — 1|n) + eLi(i| n)gi(i| n), (108)
1
ki) = k(i = 1) + expnlil meniiln) T———70 (109)
g+
1
A7 = 1 — 2. ; —_—
e(i|n) = e (i — 1|n) + ez, (iln) = ~lin)’ (110)
s (iln) = e (i — M
ex.(i|n) = eX,(i — 1|n) — ex,li|n) = yaliln)’ (111)

and
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ex.i'g(il n’)

T vg(iln) (112)

expli|n) =

Similarly, the following backward time updates are obtained from (43)
and (44):

er,(i|n)

¢, (i|n) = ¢cim(i|n) + hy(i|n) T i)’ (113)
Cuignli1m) = exiiln) + eXililn) - f“’fg(’;l’n) , (114)
EShign () = k840 — eXon(i n)ealiln) ?jﬂm;) (115)

and
i1 1) = exili|n) — e34(i1 ) (116)

1= yiiln)

Combining (104), (108), (103), and (113) (in that order) with the
fixed-order sliding-window algorithm (93) gives the corresponding
sliding-window joint-process-estimation algorithm. Adding these ad-
ditional recursions results in a total computational complexity of
16N + 17 multiplies and 16N + 13 additions per iteration. This should
be compared with 23N multiplies and 14N additions per iteration
required by the unnormalized sliding-window lattice joint-process
estimator. Initialization of these additional recursions is accomplished
in a fashion analogous to the prediction recursions. In particular, the
data y; and x; is assumed to be zero for i < 0, and ¢;(—1|n) = 0.

The fixed-order growing-memory algorithm (96) is extended to the
joint-process-estimation case by adding the recursions (104) and (108).
The order-recursive prediction algorithm listed in Section 6.2 is ex-
tended to the joint-process-estimation case by adding the recursions
(105) (top component only), (109), (107), (111), and (113). In each
case the variable i, = 0. Adding (104) and (108) to (96) results in a
total computational complexity of 13N + 7 multiplies and 13N + 1
additions per iteration. This should be compared with 28 N multiplies
and 16N additions per iterations required by the growing-memory
covariance lattice joint-process estimator. The following accomplishes
the initialization of the additional recursions for the order-recursive
algorithm:

kP(-1) =0, 1 < N, (117a)
c(-1|n) =0, 0sn<N, (117b)

=n
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and

fi =0
xoim ={8 fr 720 7o)

The fixed-order algorithm is initialized by using the order-recursive
algorithm for i < N.

VIIl. CONCLUSIONS

We have presented new fixed-order algorithms that recursively solve
the sliding-window and growing-memory covariance least-squares es-
timation problems. The fixed-order growing-memory algorithm re-
quires approximately one half the number of multiplies and divides
required by the analogous unnormalized order-recursive or lattice
algorithm. The fixed-order sliding-window algorithm requires approx-
imately 70 percent of the number of multiplies and divides required
by the analogous lattice algorithm. These fixed-order algorithms also
help complete the list of computationally efficient LS algorithms
currently available. In particular, each type of windowing technique
that has been proposed for the LS computation (i.e., prewindowed,
growing-memory covariance, and the sliding window) has resulted in
both computationally efficient fixed-order and order-recursive algo-
rithms. The order-recursive algorithms offer the advantage of being
able to dynamically choose the order of the autoregressive model, while
the fixed-order algorithms require less computation.

Associated with the algorithms mentioned in this paper are per-
formance issues such as the relative convergence speed of each algo-
rithm given different types of stationary and nonstationary random
inputs, and the evaluation of finite word-length effects. As an example,
the relative performance improvement offered by LS covariance al-
gorithms over LS prewindowed algorithms has yet to be ascertained
in applications where the prediction coefficients must be estimated
from relatively few data samples. These issues will play a crucial role
in determining the practical value of the LS algorithms presented in
this paper.
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APPENDIX A
Derivation of (30)
We wish to prove (30). By definition,
Py, Yi=PuyY; + P(;iPMj Y;, (118)

ii=
where M is the subspace spanned by the column vectors of S;. Pro-
jecting both sides of (118) onto M; gives

li-1

PM'.PM..“_IY,‘ = PM‘.PMI,Y[ + PM',PU..P i HY,‘. (119)
Now Py, Y lies in M;, and hence
PM.'PM.'nﬂY" = PM"[-_,YE- (120)
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Also,
Py Py Y: = S(STS:)(S78:)(878)'8TY,
= S(S78)"'ST'Y;

= Py(Y: — PyY)). (121)
Combining (118) through (121) gives
PuY: = Py, Yi + Py,PuPi, Y
= Py, Yi + (Pay)(u;, P, Yi). (122)

Subtracting both sides of (122) from Y;, and then taking inner products
of both sides with u; gives

(w, P#Y:) = (u, Pag,  Yi)[1 — (w;, Paui)]. (123)

Combining (122) and (123), and using the definition (31) gives (30).
[Ref. 24 gives a purely geometric proof of (30) for the case where M;
is spanned by one vector (as illustrated in Fig. 2).]

To derive the inner product update (35), we first rewrite (34) as
PﬁiY,- = PJE’.‘P;‘]?;H—:Y" + PU‘PJ];I lY; - PM,.I.I,'( u;, Pi?IY,) Seczﬂ,-

ili=

= Pﬁlplet + ui(ul.! P}J‘.l,'“_]Yl.) - PMlui(ul, PJﬂ‘Y;)Seczﬂi

= Pt,PyY: + Piguiu, Py Yi)sec’:. (124)
Taking the inner product of both sides with v; and using the fact that
(V,‘, Pﬁiu,-) = (11,‘, PJH..V;') (125)
gives (35).
APPENDIX B

Other Recursive Least-Squares Algorithms

The recursions in Section V and VII are complete in the sense that
any of the existing computationally efficient LS prediction or joint-
process-estimation algorithms can be derived from suitable subsets of
these recursions. The purpose of this appendix is to illustrate this
point by listing the recursions that enter the prewindowed LS trans-
versal (fast Kalman) and lattice algorithms, the unnormalized sliding-
window and growing-memory covariance lattice algorithms,'* and the
nonrecursive LS algorithm presented in Refs. 11 and 17. The list of
recursions presented below does not completely describe each algo-
rithm. For example, initialization is not discussed. Consistent steady-
state algorithms can be formulated, however, by choosing the time
indices and order of the variables in each recursion appropriately. The
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following algorithms apply to the more general joint-process-estima-
tion case (eliminating the recursions from Section VII gives the
analogous prediction algorithm):

1. Prewindowed transversal (fast Kalman) algorithm:' (60a), (77a),
(51a), (90a), (69), (60b), (93m), (68b), (104), and (108).

2. Prewindowed lattice algorithm* (See Refs. 18 and 16): (89), (64a)*
and (64b), (65a) and (65b), (72a), (109) and (105).

3. Sliding-window lattice algorithm:'*!® (89), (64a) and (64b), (65a)
and (65b), (72a), (73a), (91), (109), (105), and (115).

4. Growing-memory covariance lattice algorithm:'*'® (89), (64a) and
(64b), (65a) and (65b), (82a), (88a), (92a), (72b) and (72a), (73b), (74b),
(109), (105), (111), and (114).

5. Nonrecursive LS algorithm:

The following set of recursions, which represents a modified version
of the algorithm presented in Ref. 17, can be used to compute f(i| N),
b(i| N), and ¢(i| N), given by (4), in an order-recursive fashion starting
with first-order least squares variables at time i. Initialization consists
of computing these first-order variables via the definitions given in
Section V,

(78) (for computing h(i — 1| n)), (85) (for computing g,(i| n)), (79),
(86), (84a), (77b), (92a), (90b), (53), (66), (67), (65a) and (65b), (51Db),
(61), (68), (71), (57c), (72a), (73b), (103), (113), (101), (107).

Assuming that the covariance matrix ®y,n+1 has been computed, a
more convenient form for (53) is

ka(i) = (Yo, Es(i — 1|n — 1))
= Y,Z:;[Z_"Yn,i - S,’(]., n — l)b(t - 1|n - 1)]

n=1

=R,— ¥ R._b(i —1|n - 1)];, (126)

j=1

where R, = Y1 (27Y,,), and is the (1, j + 1)st element of D, i e
Equation (101) can be similarly modified.
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(64) and (105) with u; are required. In the sliding-window case, the inner products of
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