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Most Markovian queueing networks that arise as models of stochastic
congestion systems (e.g., communication networks and multiprogrammed
computer systems) do not have a product form in their stationary probability
distributions, and hence are not amenable to the simplicity of product-form
analysis. In this paper we suggest an approach for systematically examining
the validity of a class of approximation schemes that is based on the idea of
equivalent networks and is used for the approximate equilibrium analysis of
nonproduct-form networks. We study equivalent networks, and prove a gen-
eralization of the so-called “Norton’s” Theorem for closed product-form net-
works in order to study and generalize the equivalent flow method for the
approximate analysis of nonproduct-form queueing networks. We then present
the results of a study of the approximation scheme as applied to a type of
network model (called a central-server model) that arises frequently in mod-
eling multiprogrammed computer systems. In this model the central server
uses a priority discipline, so the resulting network is nonproduct form. This
study demonstrates the situations under which the approximation can be
expected to do well or poorly and the kinds of errors it introduces.

I. INTRODUCTION

Mathematical modeling of stochastic systems frequently gives rise
to models in a class referred to as Markovian queueing networks—
specifically, queueing networks whose time evolution can be described
by a discrete-state, regular Markov stochastic process. Markovian
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Fig. 1—Notion of an equivalent network; (a) original network, (b) with arrows
indicating flows between @, and its complements, and (c) with arrows indicating models
of flows between @, and its complement.

queueing network models, known as product-form networks, have been
widely studied, owing primarily to their well-understood stochastic
behavior, and the simplicity of their analysis in equilibrium. However,
the class of product-form queueing network models is far from ade-
quate for modeling many simple real-world congestion systems. The
exact equilibrium analysis of nonproduct-form queueing networks is,
in most cases, computationally, and often fundamentally, intractable.
Much effort has, therefore, been directed towards devising approxi-
mation schemes that attempt to reconcile the conflicting requirements
of modeling fidelity and the simplicity of product-form analysis. One
such class of approximation schemes is based on the idea of equivalent
networks. In this paper we systematically study this approximation.
By an equivalent network we mean the following (cf. Fig. 1). Con-
sider a closed queueing network @ constructed from the set of nodes
M and the subnetwork @, consisting of nodes M; C M. Let @;qbe a
network constructed from M, such that the joint equilibrium (proba-
bility) distribution of @, is the same as the marginal joint equilibrium
distribution of @, in Q. The network @, is then said to be equivalent
to @..* Clearly, to study @, in isolation, one needs to account for the

* This notion of equivalence may appear unduly restrictive. Why not establish a
more detailed stochastic equivalence? For the calculation of many performance analysis
criteria, the present notion is adequate. However, it is easy to see that the equivalent
networks we later identify yield equality in distribution for the entire process in
equilibrium.
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influence of the nodes in M — M, on the nodes in @;. When @ is
product form, the influence of the complementary network on @, takes
an especially simple form, and can be determined by analyzing a
modified version of the complementary network in isolation! For the
case where M, consists of a single node, this fact was first recognized
by Chandy et al.,' who called the equivalent network so obtained a
“Norton” equivalent, because of the similarity of this equivalence to
Norton equivalence in electrical circuits.

In Section IT we study equivalent networks and demonstrate the
simplifications that arise for product-form networks. The development
yields a generalization of Norton’s Theorem to multinode subnetworks
of closed product-form networks. Essentially, the same extension to
the entire class of closed product-form networks has been obtained
independently and concurrently by Kritzinger et al.> and Balsamo et
al.,? through an approach based on verification via detailed computa-
tions from the product-form solution. Qur approach is substantially
different, in that it derives Norton’s Theorem directly as a special case
of a general result for stochastically equivalent networks. This ap-
proach is concise, conceptually and intuitively appealing, gives the
result a probabilistic interpretation, and shows up clearly the role
played by the product-form solution. It also seems to be the natural
approach for the purposes of this study.

This generalization of Norton’s Theorem motivates the following
approximation scheme. Suppose now that € is a nonproduct-form
network, but for the purposes of studying the subnetwork @,, we follow
the equivalence procedure for product-form networks. Suppose also
that in doing so we find that the version of the complementary network
we have to analyze, in order to determine the latter’s influence on @,
is product form. Let the equivalent network thus obtained be Q..
The approximation scheme, referred to above, approximates the equi-
librium distribution of @, with that of @i, (i.e., approximates @, by
Qle.,). The effort to determine and analyze Qleq will, in general, be
considerably less than the effort to exactly analyze @, in Q.

This approximation scheme is an extension of one (often referred
to in the literature as an equivalent flow approximation) that has been
utilized by several workers, in the field of network performance anal-
ysis, with remarkably accurate results. Sauer and Chandy,* and Chow
and Yu® use this idea as the basic step in iterative schemes for
approximating central-server models in which the central server is not
of product-form type. Schwartz® uses the basic scheme directly to
approximately analyze a model for a multiple-access communication
system. In Section III we draw upon the theoretical development in
Section II to study the validity of the approximation scheme when it
is applied to a simple test-bed model.
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Il. EQUIVALENT NETWORKS

Consider a closed Markovian queueing network @ consisting of M
congestion nodes. In this section we study the problem of the equilib-
rium analysis of a subnetwork @, (embedded in Q). To simplify the
discussion we shall limit our considerations to networks of First In,
First Out (FIFO) nodes. It is easily recognized that the ideas in this
section can be extended to apply to more general networks. In Section
2.3 we establish Theorem 1, which explicates the structure of equiva-
lent subnetworks of the networks described in Section 2.1. By combin-
ing this result with Theorem 2, we get a generalization of Norton’s
Theorem.

2.1 Network specifications

Q is a closed queueing network consisting of M FIFO nodes (indexed
byi € {1, ---, M}). There are R classes/types of customers (indexed
by r € R = {1, ---, R}) with N, customers in the rth class. The M x
M matrix P = [p{P] is the routing probability matrix of type r
customers; customers do not change class as they move from node to

node. For each rin {1, - - -, R}, P is a stochastic matrix which, when
considered as a transition probability matrix, leads to a Markov chain,
on the state space {1, - - -, M}, with a single positive, communicating
class.

Throughout the following discussion, the network state process is
assumed to be in equilibrium. The state of the ith node (denoted by
S') is a finite string drawn from the set R. Given a state vector S’, r
€ R appearing in the kth position in the string S’ denotes that a
customer of type r is in the kth position, in FIFO order, at the node i.
Thus, by definition, the customer in service is in the first position. S
= (8", ..., SM) denotes the state of the entire network . The ith
node is equipped with an exponential server which, when the state of
the network is S, serves a customer of class r at the rate »;(S).

@, is a subnetwork of @, consisting of M; (<N) nodes (indexed by
i € {1, ---, My}). @ is the complementary network consisting of
M, =M — M, nodes (indexed by i € {M; + 1, - --, M}).

Some additional notation is inevitable; this we proceed to describe
in the next subsection.

2.2 Notation

N = (Ny, - - -, Ng) is the population vector of the network @, where
N, is the number of customers of class r, r € R.

Let R* = (U1, - - -, R}™) U © where © denotes the empty string.
For any s € R*, denote by N,(s) the population of class r in the string
s, and let

N(s) = (Ni(s), - -+, N(s), - - -, Ng(s)).
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For K, a positive integer, let

K={(s", ---,s%): (forevery i, 1 <i <K, s € R*)
K
and Y N(s') = NJ.
=1

As stated in Section 2.1, S = (S?, - -, 8™) denotes the Q-network
state. Let S, = (S', --., S™) denote the @,-network state and S, =
(SM*1 ... SM) denote the @,-network state. Let FY, and F& and
F§ denote respectively the sets of feasible states, in equilibrium, of
the state process of the networks @, @, and @., respectively.

A network @, constructed from the nodes {1, ..., M;} is said to be
equivalent to @, if the joint equilibrium (probability) distribution of
the state processes of Q. is the same as the marginal joint equilibrium
distribution of the state process of @, in Q.

2.3 Construction of Qe

Let m: F§ — (0, 1) be the equilibrium distribution of the state
process of the network @. Let (for every (1 < i< M)(1 <r < R)) (for
every S € FR) v, (S) = »,(S:) and (for every S, € F)

pit & 7 {A customer of type r is in service at node
i/, i is in state S,}.

Construct a network ,.q from the nodes {1, - .., M} as follows:

1. The routing between the nodes in Q¢ is the same as in @, (self
loops around nodes in @, are included in @,.,).

2. When the state of Qe is Si, node j(1 < j < M,) receives an
exogenous arrival stream of class r customers with (state dependent)
rate ¥ a1 o0 (S1)py) -

3. A customer of class r, after completing service at node i (1 <i =<

M,), leaves the network Q,., with probability ¥, ., p:,-' ),

Theorem 1: @, as constructed above is equivalent to the subnetwork
@ of Q.

Proof: The intuitive appeal of the construction is manifest. In Step 2
of the construction, for every i(M; + 1 < i < M), p3' vi(S1) is the
conditional throughput of type r customers through node i, when @,
is in the state S;. A fraction p,'-f’ of this flow through i finds its way
into node j of @,.

A simple detailed proof can be obtained by summing the Kolmogorov
equilibrium equations for @ over the set {S € F{:S, fixed}, and
observing that the resulting equations are exactly the equilibrium
equations for §,., described above (cf. Ref. 7). O

Remarks: But for the explosion in notation that occurs in setting up
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a detailed proof, it is clear that the construction of Qe described
above extends easily to networks other than those described in Section
2.1. In this work, however, we continue to restrict our attention to
networks of the latter type.

We now turn to the subclass of product-form networks of the class
of networks described in Section 2.1. Since we are concerned here with
FIFO nodes, the service rates cannot be class dependent. We further
assume that the service rates are not state dependent in any way, i.e.,
we now have

(forevery (1<i<M)(l1<r<R) and SE F&)vi(S) = v,

Let (for every r € R) C” C {1, - - -, M} be the subset of nodes of @
that communicate under P (i.e., in queueing-network terminology,
the chain corresponding to class r). Let R; = {r€ R: C N (M, +1,
..., M} # @) be the set of customer types that visit Q.. Let | Rz| =
R, IR — R;| = R, (where || || denotes set cardinality), and reindex
R so that the elements of R, receive the highest indices. Let N? =
(N1, -+, Ng) and if s is a string in R*, let N*(s) = (Ng(s), ---,
Nk(s)), i.e., N%(s) is the population vector, of the string s, restricted to
the classes in R,.

For every N’ = (N 41, - - - , N&) < N?, consider the network Q;(N")
obtained from Q by replacing all servers in @, with infinite speed
servers (i.e., by short-circuiting the nodes in @,), and placing N’
customers in the resulting network. Let mn- be the equilibrium distri-
bution of the state process of the network Q;(N’). Define for every
M +1<sisM), reR,,

£N' A 7n {A customer of type r is in service at node i in Qz(N’)}.

2.4 The product-form case
Theorem 2: If Q is a product-form network then

for every (M, + 1 < i < M)(r € R,) and every S, € F¥
pS = gNNUS) (o as defined earlier).

(Note: it is obvious that (for every (M, + 1<i<M),r¢& R, and S, €
FR)pi =0.)

Proof: The proof utilizes a simple lemma and is outlined in the
appendix. O
Remarks: Theorem 2, when combined with Theorem 1, yields a gen-
eralization of Norton’s Theorem' to multinode subnetworks. Even
though the previous development is specific to the class of networks
described in Section 2.1, it is clear that the same approach can be used
to extend Norton’s Theorem to the entire class of closed product-form
networks. The product-form solution continues to play the same role
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as it does in Theorem 2, i.e., it allows the rates of the external arrival
streams in @, to be computed from an analysis of @; for all possible
customer populations in Q;.

IIl. AN APPROXIMATION SCHEME

In an IBM Research Report, Chow and Yu® suggest a somewhat ad
hoc, iterative approximation scheme for a class of central-server
models, with a priority discipline at the central server. As mentioned
earlier, the scheme relies on an inexact application of Norton’s Theo-
rem to such networks. In Section I we described a natural generaliza-
tion of this so-called equivalent flow approximation scheme to more
general nonproduct-form networks. In this section, we present the
results of a detailed study of the application of this approximation to
a simple, test-bed, central-server network.

3.1 The test-bed model

Consider the two-node network @ shown in Fig. 2. There are two
customer classes, namely 1 and 2, with N, and N, customers, respec-
tively (i.e., N = (N,,N3)). At node 1, the customers of class 1 (high-
priority) have preemptive priority over class 2 (low-priority) cus-
tomers; after being preempted by a class 1 customer, when a class 2
customer reaches the service station again, it resumes service where it
left off; class 1 and 2 customers have exponential service times with
rates »;; and vy, respectively. Such a service discipline is commonly
referred to as a preemptive resume discipline. At node 2, there is no
priority; customers are served in the order in which they arrive
(irrespective of class), at the class independent exponential service
rate v,. Customers alternately seek service at nodes 1 and 2 and stay
in the network forever. This model belongs to a class of central-server
networks that arise as models of computer systems.

| TYPE 1
i<T vy
VT FIFO V2
| :D,/
TYPE 2
Fig. 2—Q.
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3.2 Approximating the test-bed network

The network described in Section 3.1 is nonproduct form because
of the preemptive resume discipline at node 1. In order to approximate
the equilibrium behavior of node 1, we first increase the service rates
at node 1 to infinity, thus effectively short circuiting the node. Denote
the resulting network by Q; (Fig. 3). Then for each (k,ks) < (N1,N2)
analyze @4 with k; and k, customers of types 1 and 2, respectively, in
the network. Let (cf. Thm. 2) (for every (ki,k:) < (N1,N2)) (for every
r € {1, 2}) £+ = Prob {A customer of type r is in service at node 2
when (ky,k;) customers are in Q3}.

This probability will not depend on the sequence in which the (k,k;)
customers are placed in @3. Since the service rate at node 2 is class
independent, it is clear that, in equilibrium, all possible states, for any
arrangement of the customers, are equally likely. From this we can
directly conclude that

(for every (0, 0) < (ki,kz) < (N1,N3)) (for every r € {1, 2}),

ok — __Fr
u ky + ke

Now consider the open network @, consisting of the node 1 in
isolation. The service rates and discipline remain the same as in @.
When there are n, customers of type 1 and n; customers of type 2 in
Q1eq then customers of type r (€ {1, 2}) enter the network at the rate
Almna) where

(for every (my,nz) < (Ny,No)A{™™ = g5y,

When a customer finishes service in Q,eq, it leaves the network (Fig.
4).
The evolution of the network Qle,, can be described by a regular
Markov process on the state space {(ni,n2): (ny,n2) < (N1,Nz)}. The
idea is to approximate the equilibrium distribution of customers at
node 1 in @ with the equilibrium distribution of customers in Qieq-
At first glance, the approximation technique described above may
seem rather ad hoc. However, we can draw upon the development in

TYPE 1

V2

{ky, k) (S (N, Nz)) CUSTOMERS ——D—Q—

<]

TYPE 2

Fig. 3—Q..
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Section II to understand the inner workings of the test-bed model,
and to show that, at least in principle, the approximation scheme is
not altogether unreasonable.

It is clear that we can think of node 1, in the test-bed network Q, as
comprising two FIFO nodes with service rates that depend just on the
joint state of these two nodes. Consider the subnetwork @, of @
consisting only of node 1. Theorem 1 can now be invoked to determine
the exact equivalent network @q. Let

(for every (ny,n2) < (N,,No)) (for every r € {1, 2}),
pn2) = rfA customer of type r is in service at node
2/(ny,n;) customers in @, }.

Q1eq is then an open network consisting of node 1. When there are n,
customers of type 1 and n; customers of type 2 in @q, then customers
of type r (€ {1, 2}) enter the network at the rate A" where

(for every (ni,ns) < (N1,No))A™m2 = plium)y,

When a customer finishes service in @, it leaves the network (Fig.
5).
The equilibrium distribution of customers in @, is exactly the same
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as the equilibrium distribution of customers in @,. Observe, though,
that the form of @, is the same as that of @10q, the difference lying
in the state-dependent input rates. It is in this sense that the approx-
imation scheme is reasonable. The idea now is to compare the exact
state-dependent input rates, p$"*"?v,, with the approximate state-
dependent rates,

N—(ny,ng) Nr — Ny
£2r "V = Va2 |,
N1 -n + N2 = N2

i.e., to compare p{"? with
N, - n,
Ni—n+Nz—ng

for all (ny,n2) S (Ny,N:) and for r € {1, 2}.

3.3 Qualitative evaluation of the approximation

In this section, we present a qualitative evaluation of the approxi-
mation scheme as applied to the test-bed model.

Observe that if the service rates for the two FIFO queues comprising
node 1, in Q,, were not state dependent (in the priority scheme they
are state dependent), then @, would, in fact, be a product-form net-
work. Theorem 2 would then lead us to conclude that Qm and Qieq
were the same. Consider what happens if, in @, v1: is allowed to go to
infinity. Then, effectively, the high-priority customers do not interfere
with the low-priority customers at node 1. With 1, = o, the network
becomes the one shown in Fig. 6, which is a product-form network.
Thus according to our observation above, for values of »1 that are
large, compared to »;; and s, the approximation can be expected to
yield very good results.

In order to discover the situations in which the approximation can
be expected to behave poorly, one needs to understand what aspects

TYPE 1

‘Nl' NZ) OO [—.D_Q—

V12 FIFO

| TYPE 2

Fig. 6—“Lim” @ "11~=.
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of the exact network the approximation fails to capture. If ), were a
product-form network, then, given that (k,,k,)(<(N;,N;)) customers
were in node 2, all arrangements of customers within the node would
be equally likely. As it stands, however, at node 1, priority 1 customers
can preempt customers of priority 2. This suggests that given
(k1,k2)(<N;,N-) customers in node 2, some arrangements of customers
would be more likely than others. In fact, we conjecture that priority
1 customers are more likely to be ahead of priority 2 customers, leading
to the (conjectured) conclusion that

(for every (0, 0) < (ky,ks) < (Ny,Np))phi~ ™" = b ,
kl + kz

and

Ptk < ka
kl + kz

Thus Qleq uses smaller (resp. larger) state-dependent input rates for
type 1 (resp. type 2) customers than the exact equivalent @eq. This
idea is suggestive, but it is difficult to draw any immediate conclusions
from this conjecture as to the relationship between exact and approx-
imate performance measures of the network.

Another approach to discovering the direction in which the approx-
imation can be expected to err is to observe that if node 2 in @ is
replaced by a processor-sharing node, with class-independent service
rate vy, then @,., becomes the exact equivalent of @, (cf. Fig. 7). (This
follows because when node 2 is processor sharing, if (ky,k2)(< (N1,N3))
customers are present at node 2, then the rate of flow of class r(€
{1, 2}) customers into node 1 is (k,/(k; + k2))vs.) To fix ideas consider
the case N; = n(=1) and N, = 1. The throughput of the class 2
customer is simply the reciprocal of the mean successive passage times
of the (single) class 2 customer through the point X (cf. Figs. 2 and

| TYPE 1

[Ny, N3) CUSTOMERS

4
4
) PROCESSOR
SHARING

Fig. 7—@Q with node 2 processor sharing.

TYPE 2
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7). In either network, when the class 2 customer crosses the point X
to enter node 2, it finds all the class 1 customers receiving service at
this node. In the original network, since node 2 is FIFO, the class 2
customer will have to wait for full service completion of the n class 1
customers before it can leave node 2 (and subsequently, at some future
time instant, cycle back through X). Thus, the mean sojourn time of
the type 2 customer, in node 2 of the original network, is (n+ 1)/va.
However, if node 2 is processor sharing, then on entering node 2, the
customer of type 2 starts receiving service immediately at the rate v,/
(n + 1), and continues to receive service at a rate »y/(k + N0=sks<
n) until it finally leaves. Thus, in this case, the sojourn time of the
class 2 customer at node 2 is stochastically dominated by an exponen-
tially distributed random variable with mean n + 1/v2, and hence has
a mean smaller than (n + 1)/v2. We further expect, intuitively, that,
after completing service at node 2, when the type 2 customer returns
to node 1, it expects to find more type 1 customers at node 1 when
node 2 is FIFO than when it is processor sharing. Given that the type
2 customer finds k(0 < k < n) type 1 customers on its arrival at node
1, its sojourn time at node 1 does not depend on whether node 2 is
FIFO or processor sharing, and increases with increasing k. Thus, we
expect that the mean sojourn time of the type 2 customer at node 1
will be larger if node 2 is FIFO than when it is processor sharing. The
conclusion is that the mean passage time of the type 2 customer,
through the point X, is larger in the original network than in the
approximating network.

To see the magnitude of the error this effect could cause, let N; = 1
and allow v;» — , vy — o, and »s/r12 — 0. Under these assumptions,
in the original network, the class 2 customer will be blocked once (and
only once) at node 1 each time it cycles through the point X. The
average time it spends in the blocked condition is 1/v1,. The rest of
the time in each cycle tends to 0. Hence, the mean response time for
the class 2 customer in the original network is 1/vy;. If node 2 is
replaced by a processor sharing node, then, each time the class 2
customer cycles through X, it is blocked once (and only once) with
probability 1/2. Hence, the mean response time for the class 2 customer
in the approximating network is 1/2vy, thus yielding an error of 100
percent.

We do not yet have a simple but rigorous argument that would allow
us to say conclusively that the approximation yields higher through-
puts for low-priority customers. However, the arguments presented
above do make the conclusion plausible.

3.4 Numerical examples

To examine how the approximation works with specific examples,
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we wrote a FORTRAN program to solve the equilibrium equations for
@1eq using a simple recursive technique.? The program was somewhat
more general, in that it could accept arbitrary state-dependent input
rates and output rates. Thus, the same program could be used to solve
the network exactly, if it were given the exact values of p{3*™ and
pirn2) for the various feasible (nq,n,).

It is not hard to calculate exactly the probabilities p§}*"? and p 5™
for some simple cases. Of course for (n,,n;) # (Ny,N,), piar? =1 —
p$v™?. Consider, for the purpose of illustration, the case N; = 1, N, =
1. Note that the state of the network @ is completely described by the
state of node 2. The epochs of entry into the state S® = (12) are
renewal epochs. The next state is, inevitably, S% = (2). The next state
is 8% = (21) with probability »,,/ (vu + »3) and S? = (0) with probability
vs/(v11 + v2). Because of the preemptive discipline, the next state to be
entered in the set {(12), (21)} will be S* = (12), thus completing a
renewal cycle. Since the expected holding time in each state in {(12),
(21)} is 1/vs, therefore

1
0,00 _ V2 — 1
P = 1 " 1 = - ’
1
= = 1+
ve vt v + ve
and, of course,
pnm = 0 and p(D 1) = 1.

In Table I we list the exact expressions for pé’{“”*}, for all (n,n,) <
(N1,N»), for some values of (N;,N;). These were computed in the same
fashion as in the above example.

In Tables II(a), (b), and (c), we give several numerical examples of
exact and approximate solutions of the test-bed network. The exact
solutions and the approximate solutions were obtained using the
FORTRAN program described above. The program yields the equi-
librium joint-probability distribution of queue lengths at node 1. In
Tables II(a), (b), and (c), we display these joint probabilities and the
node 1 utilizations.

The following observations are immediate and summarize our con-
clusions regarding the performance of the approximation scheme when
applied to the test-bed network.

1. The numerical computations support our earlier observations
that if »y, is large, then the approximation can be expected to yield
excellent results [cf. case (1) in each of Tables II(a), (b), and (c)].

2. The low-priority utilizations are consistently higher, again sup-
porting our earlier observations regarding the direction in which the
approximation can be expected to err.
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Table |—Exact expressions for pi7"" in the test-bed network Q.

(cf. Thm. 1 and Fig. 2)

— Compsr}_s‘ n
Ni N: (mayna) par™ with 5y’
1 1 (1,0 0
0,1) 1
0,0 ! >}
1+ —u
m + Va2
2 1 (20 0
(0,1), (1,1) 1
(1,0) ! =i
1+ Y11 V2 . Y11
mtrv: wmtr mtr
14+ —2—
(0,0) m + v =1
1+ V11 + i 2
m + v va + r
+ V2 . _]!L 2
m + v m+
12 (L0),(11) 0
0,2) 1
©,1) ! =}
1+ vz A Y1 V12
vig+ve wutr vt
. V11 + V2 . V11
mtve wmtrv: mtnrn
(0,0) 1 >
1+ Y11 m
m+ v wmtr

v
, s []_ + =+ .
ng + v2 vz vzt

“E™ = 1= ol if (nuna) # (N, ND; 5 = o = 0).

3. When »y, v12 and », are comparable, then the approximation
yields good results with errors in the utilizations in the neighborhood
of 10 percent.

4. Considerable errors in the low-priority utilizations can arise,
however. Witness case 3 in each of the Tables II(a), (b), and (c). With
a very large low-priority service rate at node 1, the approximate low-
priority utilization suffers from an error of 20 to 50 percent.

5. For the range of examples studied, the equilibrium probabilities
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Table Il—Numerical comparisons of exact and approximate
solutions of the test-bed network

Equilibrium State Probabili-

ties at Node 1 Node 1 Utilizations

Approxi- Approxi-
Exact mate* Exact mate*
Case State  Proba- Proba- Utiliza-  Utiliza-
No. v w2 w» (n,ng)  bility bility  Class tion tion

(@) (Na=1N,=1)

1 10 1 1 (0,0) 0.614 0.606

(1,0) 0.029 0.028 1 0.064 0.063
(0,1) 0.322 0.331 2 0.322 0.331
(1,1) 0.035 0.036

2 1 S5 1 (0,0) 0.231 0.222
(1,0) 0.077 0.056 1 0.462 0.444
(0,1) 0.308 0.333 2 0.308 0.333
(1,1) 0.386 0.389

3 1 100 2 (0,0) 0.393 0.488
(1,0) 0.196 0.163 1 0.601 0.504
(0,1) 0.0059  0.0081 2 0.0059  0.0081
(1,1) 0.405 0.341

(b) (Ny=2,N,=1)

1 10 1 1 (0,0) 0.681 0.676
(1,0) 0.044 0.043

(20) 0002  0.002 1 00754 0.0748
(0,1) 0244 0249 2 0244 0249
(1,1) 0027 0027
(1)  0.003  0.003

2 1 5 1 (000 0179 0171
(1,0)  0.083  0.065
(2,0) 0.024 0.016 1 0.631 0.618
(0,1) 0191 0211 2 0191  0.211
(11) 0250  0.260
(21) 0274 0276

3 1 100 2 (00 0170  0.217
(1,0) 0116  0.109
(20) 0050  0.036 1 0827  0.780
(0,1)  0.0022 0.0033 2 00022 0.0033
(1,1) 0187  0.188
(21) 0474 0447
(c) (Ny=1,N,=2)

1 10 1 1 (0,00 0464 0457
(1,0) 0015 0014
(0,1) 0316 0319 1 00495  0.0487
(1L1) 0016 0016 2 0487 0494
(0,2) 0170 0175
(1,2) 0019  0.019

2 1 5 1 (00 0116  0.109
(1,0) 0028  0.108
(0,1) 0177  0.182 1 0437 0418
(1) 0070  0.055 2 0447 0473
0,2) 0270 0291
(1.2) 0340  0.346

3 1 100 2 (0,00 0473 0584
(1,0) 0167  0.130
(0,1) 0008  0.010 1 0517  0.404
(1,1) 0115  0.090 2 00101 00123
(0,2) 0.002  0.002

(1,2) 0.235 0.184

*Based on Norton’s Equivalent.
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are never drastically wrong, and follow trends similar to the exact
values.

The test-bed model is hard to analyze exactly for population sizes
larger than the ones considered. We have run detailed simulations of
the test-bed model for larger population sizes, and the results of these
simulations continue to support the qualitative observations we have
made above.

IV. CONCLUSIONS

We have demonstrated an approach for systematically analyzing
the equivalent flow approximation. Qur investigations have (1) re-
vealed the conceptual basis for the approximation scheme, and (2) led
to an understanding of the reasons for, and directions of, the errors
that such an approximation scheme could introduce when applied to
a class of prioritized central-server models. The approximation as
described in the paper is of more general applicability, and much work
remains to be done to discover its validity (accuracy and computational
tractability) for more complicated, nonproduct-form networks. Our
work, we think, provides the theoretical understanding and motivation
for pursuing more detailed investigations.
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APPENDIX

Proof of Theorem 2: Index the nodes of @ in the same order in which
they were indexed in §. We need the following lemma.
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Lemma: Let T denote the class r routing probability matrix for the
network Q3. Partition P as follows:

M, M;
. M Py Py .
P = Mz{ P(r) P(r)
21 22

Then
(]) re R2 = T(r) _ P(r] (r)[I P(rl (r)
() If A*? solves AP = A" then, part;twnmg A as

[ AY) Ay’jl
A(r) =] =~ -~
M, M,

(@) if r&Rythen A =0
(b) if r € Ry then AY) = APT™.
Proof of Lemma: Conclusion 1 follows readily from the fact that, for
each r € R, P is the transition probability matrix of a finite Markov
chain with a single, positive communication class that has a nonempty
intersection with {M; + 1, - - - , M}. For details see Ref. 7.
Conclusion 2 follows directly from Conclusion 1. O
Returning to the proof of Theorem 2, we let =: F§ — (0, 1) be the
equilibrium distribution of the state process of network @.* It is now
well known (cf. Ref. 9) that () is of the form

1M :
T(S) =5 I:Il fi(S"),

where G is a normalization constant and, foreachi € {1, ..., M}, f; -
depends only N(S’), »; and (for every r, (1 < r < R))A\", where A =
(A?), ..., A7) is any solution of AVP® = A",

Hence, (for every S; € F¥) (for every, r, Mi+1<i< M), re
R,)

M .
IT £(S)

IS:SEFR,(S', - - ., 5%1)=8,,8(1)=r| j=1

I 789

1S:SEFR,(S), - . ., SM)=5,] j=1

S —
pirt =

H f;(S9

1S2: b,er,,m,,i_msﬂ,bun ri j=My+1

H f(S%)

1S:SEFRNSNE pais| i=My+1

*For notation see Section 2.2.
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(where F& N SM: . is the set of feasible states of @, when
N*=N*5,)

N2 — N?(S,) customers are in @),

which, using the above lemma and the fact that the equilibrium
distribution of the @3 network state process is still product form,

= EN’—N’(SI)
N .

Remarks: Some care is needed in asserting the last equality in the
case where there are classes r; and r;, such that the submatrices of
the communicating classes under T and T are the same permu-

tation matrices (i.e., members of classes r, and r, cannot overtake
each other). In this case the equality follows because for each N’, £J

and £ are independent of the order in which members of these classes

irg

circulate in the network @s. O
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