Copyright © 1983 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S.A.

The 3B20D Processor & DMERT Operating System:

Software Development System

By B. R. ROWLAND and R. J. WELSCH
(Manuscript received March 22, 1982)

The 3B20D Processor software development system is an integrated
collection of tools and procedures that is used in the development and
administration of all 3B20D Processor software. This article de-
scribes the tools and procedures and their use in developing the
3B20D Processor software. These tools and procedures include com-
pilers, assemblers, and loaders, as well as change-administration
and load-building procedures. The most important characteristic of
the development system is the balance between the enforcement of the
project standards and the flexibility offered to developers.

. INTRODUCTION

The software that comprises the operating system, diagnostics and
fault recovery, configuration data base, field utilities, and craft inter-
face for the 3B20D Processor has been undergoing development and
change over several hundred developer years. Without a strict change-
administration strategy and a productive development environment,
the tight schedules and reliable deliveries characterizing this system
would not have been possible.

This paper presents a description of the software-development en-
vironment used by the project’s programmers and those administrating
3B20D Processor subsystems. Without the administrative control,
these developers might otherwise be limited to simply compiling or
assembling programs and attempting to test software with an ad hoc
version of the total system software. The emphasis presented here is
that of the roles of those involved in the software change process, the
tools they each use, the flexibility offered by the tools and administra-
tion structure, and the standards and strategies enforced in the devel-
opment environment.

275



Il. THE ADMINISTRATION OF SOFTWARE DEVELOPMENT

The 3B20D Processor project started with relatively small teams of
engineers, compilation tools, and a primitive testing environment. The
project has grown to a size that now requires considerable machine
support, sophisticated tools, and administrative control. Over 100
developers are responsible for nearly 8,000 source files resident across
eight support computers. Compilation of all of these files into a full
load takes over 24 hours of machine time on a commercial 16-bit
minicomputer. This large amount of software has been partitioned
into 23 logically manageable subsystems, the basis for administration
and testing.

The 3B20D Processor is the target for output from a software
development and administrative environment that resides on the host
support computers. All object code for the target is archived, edited,
and cross-compiled on the host and then transported by tape or data
link for testing on target 3B20D Processors. This separation of host
and target ensures a stable development environment as the target
machine evolves with new features and performance improvements
that may consist of changes in hardware, software, or firmware.

The software administration and development strategy can best be
described as one of well-defined and closely tracked data movement
between nodes on development host machines and it requires a specific
scenario dictating when the data movement takes place. The data are
requests for software changes and program files, and the nodes are
instances of the software structure reflecting some portion of the total
software in one of several development states. Development activity is
spread across the host machines by partitioning the software into
nearly independent subsystems.

In the development environment, a file system structure containing
copies of controlled software source and generated object is referred to
as a node. When a node is populated with source, object, and target
products—all in a like state of development or approval—the node is
called a view of the software. For each major release, the development
system supports three views of the software.

(i) The official view, or node, contains all of the official source,
object, and target products released to customers.

(if) The approved view contains those source, object, and target
products that have been released as emergency corrections to the last
major release. The approved view is an incremental addition to the
official view.

(ii1) The under-test view contains those source, object, and target
products that will be sent out with the next major release. The under-
test view contains everything from the approved view and is otherwise
an increment from the combination of the official and approved views.

276 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



A final view, that of the developer, may include a mixture of the
above views in combination with privately modified versions of various
files undergoing a development change.

The approval of a software change submitted by a developer involves
the successful integration of that change into a known stable software
base. The data movement and approval strategies have a common
thread: the incremental modification of a known good software base to
produce the next iteration of that base.

An important decision made in the design of the 3B20D Processor
development environment was the centralization of the activities used
to construct the collection of libraries and objects for installation (i.e.,
the load) on a machine isolated from development activity. This
allowed efficient load-building techniques to be developed that do not
interfere with developer activity. The implication of centralized load
building is that developer changes must be collected and moved to a
common point where official load building takes place. In fact, it is
only source changes that are moved for load-building purposes. All
changes to products are then reconstructed from changed source.
Results are then redistributed back to the appropriate development
machines.

IIl. MAJOR SOFTWARE DEVELOPMENT SYSTEM COMPONENTS

It is the interaction of four distinct software administration and
generation systems that creates the 3B20D Processor Software Devel-
opment System (SDS). This section presents an overview of these
systems; Section IV describes- their use; and Section V describes the
major standards that contribute to the environment and are enforced
by the project’s tools.

3.1 The Modification Request System

The Modification Request (MR) data base system is a general-
purpose hierarchical system tailored to 3B20D Processor change-track-
ing requirements. The MR is the entity that identifies all requests for
3B20D Processor software changes and tags all source changes made
by developers and administrators to official 3B20D Processor software.
The MR system serves as a central master data base from which
administrators control and track all software changes and generate
appropriate tracking and status reports.

As implemented for this project, the MR data base is actually a
three-level data base comprised of an MR level, one or more release
levels per MR, and one or more subsystem levels per release. The
higher the level (the MR level is highest), the more global the scope of
the information maintained.

The MR level information includes an identification number, origin-

SOFTWARE SYSTEM 277



ator information, problem description, priority, severity, and due date.
At the release level, the data base includes due date, feature engineef g
and developer, and priority. Subsystem level data includes responsible
developer, modified source files, status, solution description, and load-
building instructions. The majority of the information is automatically
generated and stored in response to developer and administrator
actions. For the most part, direct data entry is not necessary.

The MR system includes a high-level query language and report-
formatting facilities for producing reports from the data base. The
query language is very powerful in that it allows for selection specifi-
cation and sorting levels. The reporting facilities process the output of
the query language. Additional capabilities exist that cause brief re-
ports, called synopsis reports, to be generated automatically and sent
to appropriate administrators, supervisors, and/or developers in re-
sponse to particular status changes. For example, when an MR requires
a change in a particular subsystem, the responsible developer receives
a synopsis report. When the responsible developer submits changes in
response to an MR for system test, appropriate administrative person-
nel receive synopsis reports.

3.2 The Change Management System

The Change Management System (CMS) is a facility compatible
with the UNIX* operating system aimed at controlling the activities
of both developers and administrators related to software change and
change approval. The CMS uses the UNIX operating system Source
Code Control System (SCCS) and its own relational data base to track
and relate each change made in a source file to an MR."

All official 3B20D Processor source files are maintained via CMS on
a per-subsystem basis. A CMS instance is defined to be a set of SCCS-
controlled source files and the relational data base tracking the MR-
based changes. Each subsystem is a unique instance of CMS. There
are, therefore, one or more CMS instances on each development
machine (see Fig. 1). This strategy was chosen over a strategy having
only one CMS instance per machine for the following reasons:

() Corruption of a CMS data base would only affect one subsystem.
(#7) The majority of the developers need access to the official source
files for only one subsystem.

(ii) Separate CMS instances per subsystem allow load balancing on
the development machines to be more easily implemented. Instead of
having to extract a portion of a large data base and move it with
developers to another machine, an entire CMS data base can be
moved.

* Trademark of Bell Laboratories.

278 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



CREATED

REVIEWED

UNDER DEFERRED NO PROBLEM DUPLICATE
STUDY I/
AFFILIATED CLOSED
MODIFICATION REQUEST LEVEL
/ GENERIC LEVEL
UNDER DEFERRED NO PROBLEM
STUDY
CLOSED ASSTNED
SUBMITTED
UNDER-TEST
APPROVED
OFFICAL

Fig. 1—Diagram of the state changes in the Modification Request System.

3.3 The Software Generation System

The software development system is geared to construct executable
software for the following three target environments:

(i) A 3B20D Processor running the DMERT operating system.”
This is the primary target for official system software construction.

(it) A PDP 11/70 running a real-time version of the UNIX operating
system. This is the recognized 3B20D test laboratory support proces-
sor.

(iif) A PDP 11/70 running the UNIX operating system. This is the
primary machine and operating system for development and official
software construction.

The primary target for which the SDS generates code is the 3B20D
Processor. A Software Generation System (SGS) containing a com-
piler, assembler, and link editor is provided for generating and sup-

SOFTWARE SYSTEM 279



porting 3B20D Processor binary executable object modules on the
development and load-building machines.

3.4 Building software views

The major tool used by both developers and administrators in
conjunction with the SGS for generating 3B20D Processor loads is the
build tool. This tool invokes the minimum number of commands
necessary to create a requested object incorporating selectable states
of related software from its components. It determines, according to a
specified set of dependency information, exactly which objects must
be rebuilt (because they may be out of date) and which objects are
current with respect to the changes desired in the requested object to
avoid unnecessary compilation steps. This dependency information is
automatically generated by a utility from the software components.
This ability to create an object with particular versions of software
that reflect its state or submitted MR software changes is known as
building a software view.

IV. THE SOFTWARE DEVELOPMENT PROCESS

All software in the DMERT environment is created, corrected, or
enhanced in conjunction with an MR. With this association of an MR
to every software introduction or change, all development on the
project can be adequately monitored. The assignment of an MR allows
a developer to make modifications to official project source and to
ultimately submit the changes for approval by project administrators.
The development activities that occur and the tools used in the process
between the assignment of an MR and the submission of changes are
described in this section.

4.1 MR handling

The MR system maintains modification requests in a variety of
states (see Fig. 1) that reflect the activity being taken on the request.
An MR is created by other developers or applications and then initially
reviewed by administrators. It may be found that an MR is a duplicate
of a previously resolved MR; it may be required to be placed under
study; it can be deferred for later consideration; or it may be found to
be no problem in which case the MR is ultimately closed. The under
study or deferred MRs eventually will be either closed or affiliated
with generics for action. Once the MR level state is affiliated, then
generic level action is allowed.

MR assignment is made to one or more subsystems, as many as are
required to implement a solution. When an MR is assigned, a developer
then creates a development node in which to maintain copies of source
to be created or modified in response to the modification request and

280 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



to build a view of the subsystem affected by the MR. This private
development node gives the developer the freedom to make any
changes with any set of tools on local copies of source files. The
developer is now free to experiment with solutions to satisfy the MR,
while official source remains protected by CMS. Source files intended
to be modified by the developer for the MR are requested via CMS
commands that associate the changes with the MR and the release to
which the MR is being applied. The association of MR to source files
changed is kept in the CMS data base to allow administrators or other
developers to request versions of software containing solutions to
particular problems. While a developer has copies of official source to
be worked on in a private node, all other developers are prevented by
CMS from obtaining copies of the same source to avoid creating
unsynchronized changes. Using private source copies, the developer is
ready to make changes and create new subsystem objects for testing.

4.2 Languages and tools

Software for the 3B20D Processor target is written primarily in the
high-level programming language C with occasional use of the 3B20D
Processor assembly language. The C language contains many modern
control and data structures found in languages such as PASCAL. It is
characterized by its brevity of expression, direct access to data type
representation, and operations and declarations available to the pro-
grammer to enhance the generation of efficient assembly level code.
The 3B20D Processor assembly language is a member of IS25, a
3B20D family standard specifying:

(i) Activation stack format
(i) Data type representations

(iti) Registers

(iv) Operations and addressing modes for accessing and manipulat-
ing data objects ranging in size from a single bit to 32-bit words.

The tools used to compile C programs and assemble assembly code
into user level objects are modeled after the tools used with the UNIX
operating system and for the development of the BELLMAC*-8 mi-
croprocessor.” An additional complement of tools is used to create and
modify special process files and prepare the developer with information
that will be very valuable in the testing environment.

A single command can be used to control the C program compilation
process. This command invokes a source code preprocessor, the C
compiler and optimizer, assembler, and link editor. These four tools in
turn convert a collection of C programs into a single object with
addresses that are either relocatable or absolute (Fig. 2).

* Trademark of Western Electric.

SOFTWARE SYSTEM 281



HEADER FILES C SOURCE FILES

N/

C PREPROCESSOR

!

C COMPILER

1

OPTIMIZER

/ ASSEMBLY FILES

ASSEMBLER

I

LINK EDITOR

l\-o USER LEVEL
EXECUTABLE

OBJECT FILES

PROCESS LOADER

!

SPECIAL PROCESS OBJECT FILES

Fig. 2—Compilation tools.

The preprocessor provides a macro expansion facility and directives
for sharing common source (or keader) files. Header files typically
contain data and macro declarations shared by many programs. This
mechanism ensures that common definitions are consistent across all
programs using them because they are accessed from the same source.

The C compiler and optimizer are based on the portable C compiler*
and a similarly structured portable code improver. The compiler
generates assembly code from preprocessed C source using syntax-
directed parsing (from YACC®) and modified Sethi-Ullman® and Aho-
Johnson’ tree-matching and expression-optimization techniques. The
generated assembly code can then optionally be passed through an
optimizer (or, more correctly, code improver) that eliminates unnec-
essary branching, removes redundant register loads, and converts
certain instructions or sequences of instructions into simpler or more
efficient, yet semantically equivalent ones. Both the compiler and
optimizer leave their result in the form of an assembly language file.

From assembly language source, the assembler creates an object file
containing object code text and data (with optional relocation infor-
mation), symbol and source line number tables to communicate with

282 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



testing tools, and a section layout dictionary that provides information
on the structure of the file.

The link editor is capable of combining a collection of object files
into a single object by resolving interprogram symbol references and
binding symbols to virtual or absolute addresses as specified. The
object file for the 3B20D Processor may contain multiple text and data
sections. This facility is used in the creation of special process files and
libraries.

Process files for the DMERT operating system are generated using
a special tool that uses the link editor to create special data sections
used in process communication and entry. All kernel, supervisor, and
special DMERT processes require use of this tool as a final construc-
tion step. User level processes require only the normal link edit step
for completion.

4.3 Building a view of a subsystem

The object construction tool, build, (based on the UNIX operating
system make command), exists to create objects according to a previ-
ously specified set of object construction commands and a list of
dependencies. This specification is used to identify which software
components are needed to construct others.

Using modification time-stamps provided by the file system, build
determines which objects are current and which need to be rebuilt.
When an object needs to be rebuilt, its specification must be examined,
and so on down the line until all necessary objects are rebuilt or
current. These object construction instructions constitute a makefile
for the particular DMERT subsystem.

The advantage that build offers over make is that the developer in
a private development node need only have copies of the source being
changed and can access the remainder of the objects, header files, or
C or assembler source files from other nodes as specified in the
developer’s viewpath. A viewpath is an ordered set of directory names
indicating the nodes to be searched for missing software components.
The viewpath is an extension of the UNIX operating system search-
path variable that contains a list of directories containing commands.
By specifying a viewpath, a developer can create a desired view of a
subsystem product to be tested. The view may be, for example, that of
the developer’s changes integrated with only officially approved soft-
ware or with any other software currently submitted to the test team.

4.4 Preparation for testing

Once a subsystem has been changed in response to an MR within a
developer’s node and is ready to be taken into the laboratory for

SOFTWARE SYSTEM 283



testing, there are listings that can be prepared to aid in the software
testing process. A set of SGS utilities exist to generate these listings.
A C program breakpoint source listing contains a source listing of all
the functions in a file augmented by line numbers indicating C source
lines at which a breakpoint can be set during testing. This listing is
important due to the fact that object code may have been significantly
rearranged during the optimization step of the compiler rendering
certain C source lines shuffled in a semantically equivalent, but non-
obvious, fashion. The listing helps a developer in a test laboratory who
needs to correlate high-level C source to 3B20D Processor assembly
code.

A namelist utility creates a listing of all the C language symbols
residing in the object file’s symbol table with their addresses and types.
Not all symbols associated with an object need reside in the symbol
table since they can be removed during object creation by another
SGS utility.

A developer can obtain assembly source listings associated with an
object file in either of two ways. The listing can be generated by the
compiler during compilation or it can be created by a disassembler
from the object file. This latter listing will contain C program source
information in terms of symbols, labels, and line numbers if they have
not been stripped from the object. This listing can be of particular
interest after software has executed on the machine to determine
where text and data may have been accidently altered by a process
out of control in a development laboratory.

With these listings augmenting the original source files, the devel-
oper is prepared to enter the testing environment.

4.5 Submitting changed files for approval

When all desired changes have been made and unit or subsystem
testing has convinced the developer that the modification request has
been satisfied, the files extracted from the official CMS data base (and

py files newly created as a result of the MR) are submitted to the test
team through the use of CMS commands (refer again to Fig. 1). The
.activity of the developer on the files in question can be temporarily or
permanently suspended by other CMS commands that place the
changes made into the CMS data base and allow other developers
access to the same files for editing if necessary.

The software approval process in the SDS is initiated when the
developer submits an MR-related software change for inclusion in the
next release. The developer submittal begins a three-step approval
process:

(z) Independent Certification—The source change is used by ad-
ministrators to reconstruct the changed products. This is done in such

284 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



a way as to not affect anything currently approved or under test. The
changed products are then independently tested (certified) by a mem-
ber of the project’s system test group. Certification failure implies
rejection of the MR and further work for the developer.

(i) Integration—Those changes passing certification are incorpo-
rated into the under-test view where they are integrated with the rest
of the under-test changes. This integration is performed by members
of the project’s integration group. Failure during integration also
implies MR rejection, as well as recertification following additional
development.

(iit) Approval—When all certified changes have been integrated and
soak tested, the under-test view will be approved. This implies releas-
ing a software update to 3B20D customers, updating all the nodes, and
approving MRs.

V. DEVELOPMENT ENVIRONMENT AND STANDARDS

The software development system must establish a balance between
the flexibility given to developers and administrators to enhance their
productivity and restrictive standards so that administration is man-
ageable and effective. Considerable development flexibilities already
have been identified. Among these are:

(i) The capability to select a particular version of a source file by
specifying one or more MR numbers whose related source changes are
applied to the last released version of the source file.

(i) The use of any editing facilities once a source file has been
obtained from CMS.

(iii) The C language, which encourages programmer optimization
and functional modularization.

(iv) The protection from concurrent source changes by independent
developers ensured by CMS. _

(v) The independent, private development node allowing experi-
mentation that does not interfere with other development activity.

(vi) The flexible capabilities for view construction provided b¥-
build.

(vii) The ability administrators have through CMS to back out -
changes associated with particular MRs and return to previous soft-
ware states.

The software environment and its SDS tools also impose an impor-
tant set of standards on development activities that guarantee safe,
productive, and orderly administration of all change activity.

5.1 Host machine configuration

The host machines used in software development and administration
are each standardized with respect to the activities that occur on the

SOFTWARE SYSTEM 285



machines. This standard ensures that all development activity can be
monitored adequately and that the proper tools can be made available
to those needing them. With a fixed set of machines, updates to the
software tools can be synchronized making sure that all development
is compatible.

The 3B20D Processor software development system resides on a
network of eight general-purpose, 16-bit minicomputers, all of which
run the UNIX operating system. The functional configuration of these
eight machines is shown in Fig. 3.

(i) Developer activity is confined to the six machines labeled SD
(software development). Here developers utilize CMS, the SGS, and
the build facility, as well as the standard tools available with the UNIX
operating system.

(if) The machine labeled SC (software control) is for administrative
use only. This machine contains the modification request data base
system from which all change activity is controlled.

(iz17) The SP (software production) machine is an administrative
machine. All official product construction takes place on this machine.

The test environment combines a 3B20D Processor and a support
machine running a real-time version of the UNIX operating system as
its support processor.

SOFTWARE MR
CONTROL SYSTEM

SOFTWARE sGs SGS SGS
DEVELOPMENT CMS5 Cms3 e CMs
BUILD BUILD BUILD

SOFTWARE S5GS
PRODUCTION BUILD
TEST TEST

TOOLS

MR — MODIFICATION REQUEST
5G5S — SOFTWARE GENERATING SYSTEM
CMS — CHANGE MANAGEMENT SYSTEM

Fig. 3—Host machine configuration.

286 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



5.2 Software configuration

A standard UNIX operating system directory structure configura-
tion has been established for the 3B20D Processor software subsys-
tems. This configuration is repeated in each CMS node so that file
access and object construction techniques are fully repeatable no
matter where the view building activity takes place.

The 3B20D software is logically partitioned into distinct subsystems.
Typical subsystems include the operating system, diagnostics, and
peripheral unit drivers. Software development for the subsystems is
evenly spread over the six SD machines described in the previous
section. A single subsystem is fully contained on one of the SD
machines. Each SD contains the software development activities for
one or more subsystems.

The only machine on which the full directory structure combining
all of the subsystems exists is the SP machine where official load
construction takes place. Subsystem development can take place on
the individual SD machines, independent of other subsystems, because
the following software construction standard is enforced: the only
source files shared between subsystems during load construction are
global header files (common definitions required by more more than
one subsystem) or global libraries (collections of common object mod-
ules).

Global header files and global libraries have fixed, standard positions
in the SD machines’ directory structure. These shared resources are
distributed from the SP machine to the various SD machines after
validation by administrators. In this way, all SD machines are kept
synchronized with respect to this critical data.

Other top level directories or directory structures are used during
the load-construction process as installation points for revised tools,
tool usage descriptions in manual page format, and 3B20D Processor
core software components.

5.3 Interactions between CMS and the MR system

The major strength of CMS and the MR system lies in the stan-
dardization of source-change administration. The following major
standards are enforced with these tools:

(i) Every incremental change is tagged with an MR number.

(if) The developer cannot modify official source until an MR has
been assigned to him or her by an administrator. This assigning
capability can be used by project administrators to funnel developer
activity.

(it7) Once a developer is satisfied with a change, it is submitted
against the corresponding MR for independent verification. Once
submitted, no further source changes for the MR are allowed.

SOFTWARE SYSTEM 287



The MR data base system on the SC machine and the various CMS
instances, each identified via a subsystem name, on the six SD ma-
chines are connected in the SDS via a high-speed network and a
remote job-execution facility. Specific actions on the SC machine cause
remote jobs to be sent to one of the SD machines and executed for a
particular CMS instance. The reverse is also true. The major triggers
interconnecting the MR system and the CMS instances are:

(i) When an MR is assigned to a particular subsystem for a
particular generic, a remote job is sent to the SD machine on which
that subsystem’s development is based. When the job is executed on
the SD machine, a sequence of CMS commands is executed that cause
the MR to be assigned to the particular generic in the correct CMS
instance. The developer can then officially edit the source files to effect
- the change.

(z7) When the developer is satisfied with changes, they are submit-
ted for verification. The CMS status is set to submitted to prohibit
any further editing for this MR, and a remote job is sent to the MR-
system on the SC machine. This job will cause the MR status for the
particular generic and subsystem to change to submitted.

(iif) A remote job to reject an MR can be sent to CMS on an MR
status change of under-test to assigned or submitted to assigned. In
CMS, the MR would again be available for editing with a subsystem
status of being-fixed.

These are the only MR/CMS mterconnectlons necessary. All other
control functions require only MR system actions.

5.4 Product construction standardization R

A major ingredient of the 3B20D Processor SDS is the standardi-
zation of the format and content of the makefiles used by build. The
standards are enforced by allowing developers to create only a skeleton
makefile and providing a makefile generator to produce the full
makefile. The advantages accrued by standardized makefiles are the
guaranteed correctness and completeness of object dependency lists
and the ability to create cross-reference listings of dependencies to
determine changed file impacts. o

. SUMMARY

Software development for the 3B20D Processor is admm1stered with
an important set of standards and a powerful set of tools to track
development efforts and enforce these standards. The developers have
at their disposal a flexible system for the generation of C programs
and utilities to adequately prepare for debugging and efficiently con-
struct object programs. The resulting 3B20D Processor software de-
velopment system strikes a critical balance between offering freedom

288 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



and flexibility to programmers while managing and monitoring orderly
software change procedures.

REFERENCES

1. M. J. Rochkind, “The Source Code Control System,” IEEE Trans. Software Eng.,
SE-1 (December 1975), pp. 364-370.

2. J. R. Kane, R. E. Anderson, and P. S. McCabe, “3B20D Processor & DMERT
Operating System: Overview, Architecture and Performance of DMERT,”
B.S.T.J., this issue.

. H. D. Rovegno, “A Support Environment for MAC-8 Systems,” B.S.T.J., 57, No. 6
(July-August 1978), pp. 2251-64.

. S. C. Johnson, “A Portable Compiler: Theory and Practice,” Conf. Rec. Fifth Annual
ACM Conference on Principles of Programming Languages, Tucson, Arizona,
January 23, 1978, pp. 97-104.

5. S. C. Johnson, and M. E. Lesk, “Language Development Tools,” B.S.T.J., 57, No. 6
(July-August 1978), pp. 2155-77. L

. R. Sethi and J. D. Ullman, “The Generation of Optimal Code for Arithmetic
Expressions,” J. ACM, 17, No. 4 (October 1970), pp. 715-28.

. A. V. Aho and J. C. Johnson, “Optimal Code Generation for Expression Trees” J.
ACM, 23, No. 3 (July 1976), pp. 488-501.

- W

- o

SOFTWARE SYSTEM 289






