Copyright © 1983 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S.A.

The 3B20D Processor & DMERT Operating System:

3B20D Processor Memory Systems

By I. K. HETHERINGTON and P. KUSULAS
(Manuscript received March 17, 1982)

The memory system supplied with the 3B20D Processor provides a
high-reliability, high-performance, main-frame memory for use by the
3B20D Central Control and Input/Output system. The memory system
is designed using a collection of high-speed, static and dynamic
memory devices and appropriate logic controllers. In addition to
providing basic on-line storage for program text and data, the mem-
ory system provides hardware assistance for virtual-to-physical ad-
dress translation, access protection, memory resource arbitration,
and performance enhancement utilizing a high-speed cache memory.
The technology used in implementing these functions includes state-
of-the-art 64K dynamic random access memory devices and high-
speed TTL-compatible gate-array integrated circuits.

I. INTRODUCTION

The memory system associated with the 3B20D Processor’ includes
a 16-megabyte memory, a high-speed cache memory, and hardware
assistance for the virtual-to-physical address translation process, ac-
cess protection, and memory resource arbitration functions.” The
memory system utilizes high-speed, static and dynamic memory de-
vices and appropriate logic controllers.

The block diagram shown in Fig. 1 highlights the major components
and interconnections of the 3B20D) Memory System. The diagram
indicates the memory system related control, address, and data paths,
including the interconnection to the fully duplicated system. Internal
central control data paths associated with the Store Address Transla-
tor (SAT) are not shown.

As indicated, the 3B20D Memory System is comprised of a 16-

207

CENTRAL CONTROL 1

CENTRAL CONTROL 0

STORE CONTROL STORE CONTROL
UNIT UNIT

FaN

VIRTUAL
ADDRESS/
CONTROL

VIRTUAL
ADDRESS/
CONTROL

DATA DATA

UPDATE BUS
MAIN STORE MAIN STORE
UPDATE UPDATE
PHYSICAL PHYSICAL
ADDRE
ADDRESS DATA DIRECT DIRECT DATA S8
MEMORY MEMORY
ACCESS ACCESS
[_ACONTROLLER CONTROLLER
J , U
MAIN STORE MAIN STORE
CONTROLLER CONTROLLER
ATB - ADDRESS TRANSLATION BUFFER
CSU - CACHE STORE UNIT

K—
)

MAIN STORE ARRAYS

I:‘ MAIN STORE ARHAYSl

Fig. 1—Block diagram of the 3B20D Processor memory system.

megabyte main store, a Main Store Update (MASU) circuit providing
interconnection control between the duplicated memory systems, a
store address translator, and an optional Cache Store Unit (CSU). The
subsystems that use the memory system are the central control and
the Direct Memory Access Controller (DMAC). Memory operations
are initiated by either of the duplicated central controls or DMACs. In
the DMERT environment, one CC/DMAC combination has control
of the system and initiates all memory operations. The MASU circuit
performs write operations to both duplicated main stores. In this way,
both main stores are kept up to date with currently executing pro-
grams, data, and I/0 transactions. If a central control switch is needed,
it can be accomplished quickly since the off-line central control can
immediately use a fully updated main store.’

The 3B20D Processor supports memory management that allows
programs to be written using virtual addresses without regard to where
they actually reside in memory. An address translation hardware
assistance circuit, the SAT, is provided in the 3B20D. The SAT
provides high-speed access to the most recently used address-transla-
tion and access parameters. It serves as a cache memory for the

208 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

translation parameters that apply to the software processes executing
in the central control. The same address-translation mechanism im-
plemented by the SAT is used by the DMAC.** Thus, processes
executing in the central control can share virtual address spaces with
peripheral devices communicating through the DMAC. In addition,
once this address-translation mechanism is established by the operat-
ing system, the central control or the peripheral devices may initiate
memory operations independently.

The remainder of this paper discusses, in more detail, the major
components of the memory system. The discussions cover the opera-
tional aspects of the design, self-checking, error reporting, error recov-
ery, and diagnostic features® provided in the memory system design.
Other topics addressed include performance, reliability, device tech-
nology, and environmental considerations.

Il. STORE ADDRESS TRANSLATOR

In any computer system, the main memory is an expensive resource
and has to be efficiently managed for improved system performance.
Because the 3B20D Processor supports a multiprogramming environ-
ment, the memory may be shared by several user programs, each
having access to the full virtual memory spectrum. Hence, a mecha-
nism for relocation and protection of a user’s address space (text and
data) is required. The 3B20D translates the virtual addresses used
within the processor and I/0 subsystem to a real or physical address
used within the main store. To reduce the overhead associated with
the address-translation and protection mechanism, the 3B20D uses an
SAT that contains a high-speed address cache called the Address
Translation Buffer (ATB).

2.1 Address space partitioning

For the purpose of sharing, relocating, and protecting, the 24-bit
address space is partitioned into “segments.” A segment is a contiguous
block of sequential virtual addresses the size of which may range from
1 byte to 128K bytes. To reduce memory breakage due to fragmenta-
tion, each segment is further partitioned into 2K-byte blocks called
“pages.” A segment has up to 64 pages and an address space can have
up to 128 segments. The virtual address generated by the processor is
divided into a 7-bit segment field, a 6-bit page field, and an 11-bit byte
offset (displacement) as shown in Fig. 2.

2.2 Address translation process

The SAT translates the 24-bit virtual address to a 24-bit physical
address used by the CSU and the main store. This translation is
conceptually a two-step table-lookup operation and is controlled by

MEMORY SYSTEMS 209

“JIun 310)8

9YJBD PUE I0JB[SUE} SSAIPPE 3I103S 0SS0 (JOZHE 2Y3 Jo weiderp yoig—z g

| ¥344ne
9z-05N8 L1INN 3HOLS FHOVD | NOILLVISNYHL
ss3yaav | I ssayaav
3HOLS | _
SE-0
sng
viva
SE-0
3H01S SNE Y.va JHOVD
,.¥., S53H0QY 3HOVD
1INA M Zw “ 21901 8, SS3HAAVY IHIVD M03HD |
ovis fe—| &N 378VN3 s NOILO3L0Y¥d [NOILYTIOIA NOILO3LOHd
LdNHHILNI 2 N3 = 39n00m 15313q
QN3 = LIH p————
||||||| | nso | LiH 3HOVD
LINA HO4VI HOLYW
HOLYIN .
Ao Lo e

H3ddnae

ALIHVd B NOILYQITVA

SS3Haav
NOIL¥I073H

‘ss3yaav

i
I ovL
|

]

N
< 0u1N00 NoIL0310

~

LINA AHOW3W 3HOVD - NIND
QHOM SNLYLS WYHO0Hd - MSd
LINN 3HOLS 3HIVD - NS
NOILVISNYHL SS3HOAY - 81V

43181934
SS3HAAY 3HOLS

_kzmz

I 1
30v1dsia | 39Vd [LNIWO3S MSd
L 9 L €

SS3HAAY TYNLHIA

210 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

the Program Status Word (PSW), the segment base register (SBR),
and two main store resident tables (the segment table and the page
table). The resident operating system manages these registers and
tables. Recently used translation information is kept in the high-speed
ATB and is accessed concurrently with the CSU.

2.3 Segment base register

The currently executing process’s’ address space is defined by the
SBR. The SBR is a 32-bit register that contains the physical address
pointer to the beginning of the process’s segment table and its length
(which is equal to the number of segments allocated to the process).
There are eight such SBRs in the processor to accommodate eight
independent address spaces at any time. These eight address spaces
are assigned by software, and in a DMERT environment, a minimum
subset of four is allocated to the kernel, a kernel process, a supervisor
process, and a user process. The fields in an SBR are allocated as
follows:

(i) Segment table address (22 bits)—This field points to the begin-
ning of the segment table in main store.
(if) Unused (3 bits)—This field is presently not used.

(iii) Segment limit (7 bits)—This field designates the length of the

segment table.

2.4 Segment table

The segment table (one exists for each process) contains a descriptor
for each segment of the process. Each entry is 4 bytes long and resides
on a full word boundary in the main store. It is partitioned into three
fields as follows:

(i) Page table address (22 bits)—This field points to the beginning
of the page table.

(i) Page table length (6 bits)—The length of the page table is one
more than the value in this field.

(iii) Protection bits (4 bits)—Three of these bits indicate whether
the segment is readable, writable, or executable. One bit indicates the
validity of the entry.

2.5 Page table

The page table (one exists for each segment) contains a descriptor
for each page in the segment. Each entry is 4 bytes long and resides on
a full word boundary in the main store. The entry has four fields that
indicate:

(1) Relocation Address
(ii) DMA usage

MEMORY SYSTEMS 211

(iiz) Protection

(iv) Unused.

The process of virtual to physical address translation is described in
the following sections.

2.5.1 Segment table lookup

The segment field of the virtual address is first compared against
the segment limit field of the SBR to establish whether the addressed
entry is within the table. If the segment limit is less than the segment
field, a “segment length error” exception is recognized and control of
the processor is transferred to handle the exception. If there is no such
error, the segment field of the virtual address and the segment table
address in the SBR are used to index into the segment table in the
main store and access an entry.

The fetched segment table entry is checked for validity. If the entry
is invalid, control is transferred to exception handling microcode. If
the entry is valid, the page field of the virtual address is compared
against the page table length field in the segment table entry. If the
value of the page field is greater than the maximum number of pages
in the segment, the control is transferred to a microcode routine to
handle the error. In case of no such error, a page table lookup is
initiated.

2.5.2 Page table lookup

The contents of the page-field of the virtual address and the page
table address field of the fetched segment table entry are used to index
into the page table to fetch a page table entry. The protection bits
obtained from the segment table entry and the page table entry are
ANDed, and a check is made for a possible protection violation. In
case of such an error, an error-handling routine is initiated. If there is
no protection violation, then the physical address is generated by
concatenating the relocation address field of the fetched page table
entry and the byte offset field of the virtual address.

2.6 Address translation buffer

The Address Translation Buffer (ATB) is provided to reduce the
overhead associated with the address-translation mechanism. The
ATB is capable of holding 128-page table entries for eight different
address spaces (for a total of 1024 entries) and is organized as a two-
way set associative memory. When the processor initiates a store
access, the ATB checks whether the corresponding physical address is
available in its memory. If the physical address is available (called a
“hit”), it is sent to the main store. But, if the physical address is not
available (called a “miss”), an “ATB Miss” processing microroutine is

212 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

initiated which does the segment and page table lookups and loads the
obtained physical address into the ATB. The access is then restarted.
Subsequent access to the same page results in hits.

2.7 ATB control bits in PSW

The PSW contains a field that provides control for the memory
management. The ATB functions can be enabled or disabled. When
disabled, address-translation and protection check functions are disa-
bled, and the virtual addresses are directed to the CSU and the main
store as physical addresses.

The PSW also controls process communication capabilities between
virtual address spaces. The PSW designates the Primary Segment
Base Register (PSBR) and the Secondary Segment Base Register
(SSBR). Each of these registers defines a virtual address space. Gen-
erally, the PSBR is used to select one of the eight blocks of the ATB
for address translation. Under PSW control, however, the SSBR can
be used for read, write, or both read and write memory operations. All
instruction fetches use the PSBR irrespective of the contents of the
PSW. Special instructions are provided to manipulate the PSW. This
hardware feature can be used to move data between two address
spaces very efficiently.

2.8 ATB operation

Figure 2 shows the block diagram of the ATB. When an access 1s
initiated by the processor, the ATB is accessed using 3 bits of the PSW
(selecting one of eight address spaces), low order 3 bits of the segment
field, and low order 3 bits of the page field of the virtual address. The
address tag fields of the ATB are matched against the corresponding
bits of the virtual address. Simultaneously, the two relocation address
fields are directed to the cache. A hit is generated in case of a successful
match.

If a hit is detected, then a check is done to see whether the access is
allowed on that page. The processor and the cache are informed in the
case of any protection violation.

If a miss is detected, the cache ignores the relocation addresses. An
“ATB Miss” microroutine is initiated by the processor and the new
ATB entry is loaded into one set of the ATB using a defined replace-
ment algorithm. The access is then restarted.

As mentioned before, the ATB is capable of handling translations
for eight tasks at any instant. But, when a new task is allocated to a
block of the ATB, the entries associated with the previous task have
to be invalidated. A dedicated 8-bit counter is provided to do this
invalidation with minimum microcode overhead.

The address translation mechanism provided by the SAT is com-

MEMORY SYSTEMS 213

patible with that provded by the DMAC. In this way, processes
executing on peripheral controllers can share virtual address spaces
with processes executing on the central control.

2.9 Redundancy

The ATB hardware is completely self-checked. Parity is checked
over the Store Address Register (SAR), the ATB entries and the ATB
related bits in the PSW. Parity bits are regenerated for the physical
addresses to be checked at the cache and main store. The hit and
protection check logics are duplicated and matched, and can be exer-
cised under maintenance control. In case of any hardware faults in the
circuit-pack, the access is aborted and control is transferred to a fault-
handling routine. The ATB memory can be written and read over the
source and destination buses of the processor.

Il. CACHE STORE UNIT

The Cache Store Unit (CSU) reduces the effective access and cycle
time of store operations for the 3B20D Processor. Combining a rela-
tively small, high-speed “cache” memory with a large main store
results in a system with an average access time approaching that of
the high-speed cache but with the low cost per bit and storage capacity
of the Main Store.

The concept of a cache takes advantage of a general programming
characteristic of locality of reference. Most references to memory tend
to be highly localized or clustered into small groups at any given time,
and regions tend to change relatively slowly during the course of
program execution. Thus, a relatively small, high-speed CSU contains
the most often used words from the main store and thereby reduces
the average access time of the reference.

3.1 Organization

The CSU is organized into two sections: an interrupt stack section
and a cache section. Since the main store contains a much larger
storage capcity than the CSU, a mapping function is required to
compress the main store address range into the much smaller CSU.
The compression is achieved by adding a tag which contains the
physical page address to each word of cache data storage. To increase
the probability that a main store word is in the CSU (a “hit”), the
cache is organized as a four-way set-associative memory. Each one of
the four cache modules contains 2K bytes of high-speed storage. The
interrupt stack section also contains 8K bytes of memory.

Since the cache is four-way set-associative with the main store, there
is a one for one correspondence to the page offset address but full
associativity for the page portion of the address. Thus, word 0 from

214 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

any of the four cache modules may correspond to word 0 from any
page in main store.

3.2 Operation

Since the cache section of the CSU functions as an associative
memory, a match search in the cache is performed in parallel with the
translation of the virtual-to-physical address by the ATB. This hard-
ware parallelism is illustrated in Fig. 2. An access causes the low 11
bits of the virtual address to select a unique page offset on each of the
four cache modules. The page portion of the virtual address (high 13
address bits) is translated by the two-way set-associative ATB. Each
of the four cache tag modules is matched to the two translated physical
page addresses. The ATB will indicate to the cache which of the two
translated addresses is valid. If one of the four cache tag modules
matches this translated page address, the CSU will generate a hit
signal to the CPU and gate the associated word onto the cache data
bus.

Functionally, the CSU interconnects the CPU and main store. The
CSU connects to the CPU via the cache address bus, cache data bus,
and control leads. Because the CSU interconnects the CPU and main
store, DMA transfers to main store will not prevent the CSU from
being accessed by the CPU. Thus, CPU contention for the main store
is reduced since most references will result in a CSU hit.

During system initialization, all locations in the CSU are invalidated.
When the CPU references the memory system and a cache miss
results, the referenced word is automatically copied into the CSU. If
a word needs to be copied from the main store and all four cache
modules contain valid data, a random replacement algorithm selects
the cache group in which a word will be replaced. Once the cache has
been initialized by the system, the operation is transparent to the
software with the exception of enhanced performance.

The CSU contains arbitration and sequencer control logic to auto-
matically update its data and arbitrate between CPU and DMA write
operations. When the DMA writes into the main store the CSU checks
if the DMA reference is in the cache. If the word is in the cache, it is
automatically invalidated by the CSU sequencer. While the CSU is
checking for a DMA write hit, the CSU indicates a busy condition to
the CPU. DMA reads from the main store do not result in any
operation from the CSU.

3.3 Interrupt stack

The CSU also contains an 8K-byte high-speed memory which is
used by the CPU to reduce the interrupt response time when the CPU
is in the kernel operating mode. When the CSU is in the interrupt

MEMORY SYSTEMS 215

stack mode, the CSU will generate 100-percent hits for both read and
write operations.

3.4 Software support

The CSU is designed to support the software organization of the
DMERT operating system and the “C” programming language. Call
and Return are frequent operations with the C language. The CSU
has built-in hardware algorithms to function as a high-speed data
stack. A stack write operation (CSAYV) will force the data to be copied
into both the cache and main store. A stack read operation (CRET)
will cause the data to be read from the cache and then invalidated.
This location in the cache is then available for use by new data. The
data stack is part of the cache section and is totally separate from the
interrupt stack.

3.5 Self-checking

The self-checking philosophy of the CSU is to provide immediate
detection of faults that cause errors and nonimmediate detection of
faults that affect the performance of the CSU. The CSU has built-in
self-checking hardware that monitors the operation of the CSU. Faults
detected by the self-checking hardware include CSU sequencer errors,
multiple writes into the CSU, multiple cache hits, accessing errors in
the tag memories, and cache write errors.

A multiple hit is an example of a catastrophic fault since it would
result in the contents of two or more cache words being ORed onto the
cache data bus. This type of failure is prevented by duplication of the
hit logic and by providing multiple hit detectors that monitor the hit
logic and the module enable logic. The cache also generates and checks
parity over the tag and address bits.

The CSU also provides diagnostic access to the “internals” of the
circuit. When the CSU is configured in the maintenance mode, the
normally associative memory tages are configured to function as
conventional RAM memories. In addition, special access is provided
to the counters, CSU sequencer, and various status bits.

IV. MAIN STORE
4.1 Configuration

Physically the main store can consist of one or two modules. Each
module contains one Main Store Controller (MASC) and up to sixteen
Main Store Arrays (MASA). The central control can directly address
16 megabytes of text or data.

The preproduction design of the main store was based on the initial
use of 16K Dynamic Random Access Memory (DRAM) devices. The
design was organized to allow evolution to higher-density devices. The

216 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

production design initially used a Western Electric 64K DRAM’ that
utilized two power supply voltages. The current design uses a newer
Western Electric 64K DRAM that permits denser packaging. This
design is implemented using a single circuit pack main store controller
and a 1-megabyte MASA circuit pack. Thus, all 16 megabytes of
addressable memory are contained in one module.

4.2 MASU operational aspects

The MASU circuit provides control of main store bus communica-
tion between duplex Control Units (CU), allowing the MAS in the
standby CU to be kept up to date. The MASU also controls the use of
the main store buses by the central control, DMA, and other CUs.
The MASU in the active CU in a duplex configuration gives the
highest priority to the central control followed by DMA 0, DMA 1,
and operations from the other CU, respectively.

Communication with the Main Store is over the address bus, data
bus and the command bus. The command leads indicate whether the
operation to be performed is a write, read, clear, byte, halfword, or
maintenance operation. Valid operations to the MAS include:

(i) Write full word
(i) Write halfword/byte
(iii) Read word
(iv) Read and clear fullword
(v) Read and clear halfword/byte
(vi) Maintenance write (nonmemory operation)

(vii) Maintenance read (nonmemory operation).

The MASU communicates asynchronously with the MASC by the
use of the Store Go signal (SGO) and Store Complete signal (SCM).
Prior to issuing the SGO to the MASC, the MASU issues an address
and data bus enable to the requesting unit with the highest priority.
The MASU then issues the SGO to the MASC. The MASC upon
receiving the SGO begins a timing sequence that selects the addressed
MASA and issues a GO signal (GOI) to the MASA. The selected
MASA then allows data to be read or written at the specified address
depending upon which main store operation was decoded by the
MASC.

The MASC performs various error checks during the timing se-
quence to ensure the integrity of the MASC and MASA. In the event
an error does occur, the MASC sends an error signal to the requesting
unit. Depending upon the operation being performed and the state of
the error sources, the MASC at a specific point in the timing sequence
issues an SCM to the MASU to indicate that the operation has been
completed. The MASU can then grant the main store buses to the
next requesting unit with the highest priority.

MEMORY SYSTEMS 217

4.3 Self-checking

The 3B20D main store was designed with a significant amount of
self-check circuitry. The partitioning of the circuitry on the circuit
packs also was designed to improve fault detection. For example, the
data bus transceivers on the memory array have only one bit from
each parity field partitioned in each device. In this way a fault affecting
either one of the bits or all the bits in the device will be detected by a
simple parity check. Similarly the address, RAS, and CAS drivers for
the memory devices on the MASA were partioned so that a fault
associated with one of these drivers would affect at least two bits in
each of the data-parity fields. By affecting more than one byte the
probability of detecting the error by failing a byte-parity check in-
creases.

To ensure bus integrity the MASC checks the address, data, and
command bus parity between the MASC and the MASU. If the
address parity check fails during a write cycle to the memory, circuitry
in the MASC prevents the writing of data into the addressed memory
location. Thus, invalid information will not be written into the memory.
If the other parity checks fail, an error is signaled but an undesired
memory operation may take place. The MASC internally monitors the
timing sequencer and refresh address counters to ensure that they are
functioning properly. Circuitry also checks the SGQ and SCM signals
between the MASC and MASU to ensure that “handshaking” that
takes place between the two units is functioning properly. The MASC
by checking four selected responses from the MASA also can check
communication to the MASA. The MASC can determine from the
select responses whether an MASA was selected or not, and it can also
detect if more than one MASA responded.

4.4 Error correction

The 3B20D main store performs error detection and correction.
Error correction circuitry on the MASC and Error Correction Coding
(ECC) of data in the MASA result in the correction of all single bit
errors. This circuitry also flags all double and detectable multi-bit
erTors.

In the 3B20D central control, byte parity is maintained over each
byte of the data word. The main store uses the existing byte-parity
bits in a modified form of the Hamming code.®? By adding four addi-
tional ECC bits (in addition to the byte-parity bits) the main store can
then perform single-bit correction and double-bit failure detection.
When presenting data to the system the MASC maintains byte parity
by gating the byte parity bits to the MASA from the MASU, and vice
versa. On the MASC five gate arrays are used to implement the error-
checking and correcting circuitry. One gate array code is used for each

218 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

of the four bytes. The fifth gate array code is used for the additional
four ECC bits.

The MASC issues an error signal when it detects a location in MAS
in need of correction. The MASC presents the corrected data to the
system but will not automatically rewrite correct data at the location.
The actual rewriting of data is handled by the software error interrupt
handler. In the event of a noncorrectable error, the error interrupt
handler reads the data from the standby CU—if it is in a duplex
configuration—and uses that data to rewrite the faulty location.

4.5 Diagnostics

The 3B20D MASC provides maintenance access to a significant
portion of the circuitry in the main store. This maintenance access is
used by microcode to initialize the MASC and by diagnostics to test
the functional operation of the MAS.

The MASC issues various maintenance commands within the MAS
when the maintenance command, address, and SGO signal are pre-
sented to the MAS. The maintenance operation is decoded off the
address and is only valid for one MAS cycle. By using an address
decoded maintenance command, the state of certain data bits can be
latched, providing the latched maintenance state until cleared. The
MASC under diagnostic control uses the various maintenance com-
mands and states to perform the following operations:

(i) Control address loop-around (address returns on data bus)
(if) Control the refresh circuitry

(ii{) Control the error correction circuitry

(iv) Control the error detection/reporting circuitry.

By using the maintenance capability, the diagnostics can verify the
integrity of the bus structure, the MASA, and the MASC. The data
integrity of each MASA is tested by performing a series of data pattern
tests on each MASA equipped.

V. ACKNOWLEDGMENTS

The authors would like to thank D. J. Matter, C. M. Narayanan,
and D. M. Trampel for their assistance in the preparation of this
manuscript and their contributions to the 3B20D memory system
design. D. R. Draper and W. A. Read also have made significant
contributions to the main store design.

REFERENCES

1. M. W. Rolund, J. T. Beckett, and D. A. Harsm, “3B20D Central Processing Unit,”
B.S.T.J., this issue.

2. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, “DMERT Operating
System,” B.S.T.J., this issue.

MEMORY SYSTEMS 219

3. R. C. Hansen, R. W. Peterson, and N. O. Whittington, “Fault Detection and
Recovery,” B.S.T.J., this issue.

4. A. H. Budlong and F. W. Wendland, “3B20D Input/Output System,” B.S.T.J., this
issue.

5. R. E. Haglund and L. D. Peterson, “3B20D File Memory Systems,” B.S.T.J., this
issue.

6.

. J. L. Quinn, R. L. Engram, and F. M. Goetz, “Diagnostic Tests and Control
Software,” B.S.T.J., this issue.

7. R. P. Cenker, D. G. Clemons, W. R. Huber, J. B. Petrizzi, F. J. Procyk, G. M. Trout,
“Fault Tolerant 64K Dynamic Random Access Memory,” IEEE Transactions of
Electronic Devices, ED26, No. 6 (June 1979), pp. 853-60.

. R. W. Hamming, Coding and Information Theory, Englewood Cliffs, N.J.: Prentice-
Hall, 1980.

e -]

220 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

