Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S.A.

An Experimental Teleterminal—The Software
Strategy

By D. L. BAYER and R. A. THOMPSON
(Manuscript received September 29, 1982)

A research model of a synergism between a telephone and a
computer terminal is described in this paper and its companion. The
hardware design of this “teleterminal,” described in the companion
paper, includes an internal microprocessor and a data connection to
a host computer. This paper describes the software in these two
machines. The software resident in the teleterminal’s internal micro-
processor addresses internal issues like cursor control, tab expansion,
and data modes. The software resident in the host controls screen
content and menu selection. The teleterminal is a research tool for
the investigation of the human interface for the access to experimental
services. Such services include calling by name, directory retrieval, a
variety of information (e.g., yellow pages, department store catalogs,
community bulletin boards, newspapers, and libraries) and a variety
of personal services such as mail, personal calendar, entertainment,
and shopping. The user-interface is a conceptual tree-like structure
that can be customized by the user.

. INTRODUCTION

A teleterminal is defined to be a piece of equipment that merges the
functionality of the traditional telephone with that of a computer
terminal. It is characterized by:

(i) A traditional telephone facility
(i) Internal intelligence
(iif) A data communication facility
(iv) A general-purpose display
(v) Dynamic labeling of buttons (soft keys).
This merger of functionality has been seen to be synergistic. One such
teleterminal, whose hardware is described in Ref. 1 and in the com-
panion paper,” is illustrated in Fig. 1.

121

TeunuajeEy y—I g

122 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

The construction of and, more significantly, the experimentation
with such a teleterminal is part of a large-scale, long-range research
investigation into the systems, software, and applications aspects of
telecommunications. Cognitive and social implications are a significant
part of the study. An evolving futuristic “test-bed” environment’
currently consists of a highly reliable host computer (a three-processor
Tandem-16), an “intelligent” digital switching office,* and a collection
of teleterminals. A number of systems-level principles have been
uncovered in the course of this research and appropriate papers have
been submitted to and published in appropriate journals. It is the
purpose of this paper and its companion to describe the equipment
used in this research and thereby serve as a common reference for
those other papers of a more general nature.

Compatibility with today’s environment would be of major impor-
tance if a real product were being described, but it is of little conse-
quence in a research environment, except that it simplifies the dissem-
ination of teleterminals to interested people. There are about three
dozen of these teleterminals in an active user community. It must be
emphasized that the teleterminal is not a proposed product; it is a
research tool. Design decisions, and discussions in this paper about it,
are based on this important point. If a product were anticipated, many
decisions would have been made differently and the reasons discussed
would change dramatically. Furthermore, neither this research nor
this paper is intended to describe nor imply the future direction of the
Bell System as it relates to advanced communications systems and
services, nor is it intended to endorse any hardware or software
offerings by any vendor.

The next section of this paper presents the research objectives of
the project that have an impact on software. They include assumptions
about the system environment and the impact on the user. In Section
I1I, intelligence distribution is discussed and the internal and host
programs are described. In Section IV, a scenario is presented to
illustrate program execution, the user interface, and the kinds of
capabilities provided. Section V contains a discussion of lessons learned
and future directions.

Il. OBJECTIVES

Objectives that have software implications are emphasized. These
are presented from the viewpoint of both the system and the user.
2.1 System environment

In the current system configuration, each teleterminal has a standard
terminal connection to a host computer and a standard telephone
connection to a telephone office. The only assumed commonality

AN EXPERIMENTAL TELETERMINAL 123

occurs at the teleterminal itself. Compatibility with the “POTS” (plain
old telephone service) world requires that old-fashioned telephone
hardware like the switchhook and Touch-Tone* dialing equipment be
necessary parts of the teleterminal.

Such a system configuration impacts software in that this required
POTS hardware reduces available space for microprocessor memory
inside the teleterminal and that special microprocessor software is
needed to interact with this POTS hardware. Furthermore, the host
software must transmit phone numbers to the teleterminal (with a
special data mode) instead of directly to the telephone office controller
and it must be concerned with such POTS functions as the switchhook
state and dial tone. “POTS” functions, like “busy” or “network block-
ing”, could be recognized by including certain tone-detecting filter
circuits in the hardware, but to conserve space this was not done. As
a consequence, the software is limited to assuming the presence of dial
tone after a fixed delay and the software can make no branches on
whether or not a call completes.

A second system aspect is our desire to use the teleterminals in a
“test-bed” environment for the ongoing investigation of the human
interface and the study of experimental services. This suggests that
changes will be made to the software frequently and reflection of this
in the initial design of the software architecture was felt to be wise. A
distribution of intelligence was selected wherein the functional soft-
ware is located in a centralized general-purpose host computer. Fur-
thermore, this “access program” can be structured to simplify antici-
pated changes. Such a “host-centered” distribution of intelligence may
not be ideal for a marketed product where the design goals would be
different and the interface would be more stable. These kinds of items
are discussed in Section V.

2.2 User impact

After system environment, the second area of objectives with soft-
ware ramifications is the impact on the user. There are two such
impacts: the physical cosmetics of the teleterminal and the conceptual
interface to the software. Cosmetic features that affect software are
the small size, the incorporation of both telephone and terminal
characteristics, and the inclusion of function keys.

For the experiments with new applications, the teleterminal replaces
a conventional business telephone. It is important that the set occupy
approximately the same desk space as a conventional business tele-
phone. Furthermore, the set is “real” in the sense that all electronics,
except power supplies, reside within the set. This results in a limited

* Registered service mark of AT&T.

124 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

physical space for internal memory and thus restricts the size of the
internal software. The placement of the function keys adjacent to the
cathode ray tube (CRT) screen has major impact on the software. At
the “low” level, internally executed “primitives” are required for
labeling buttons and sensing button-pushes. At the “high” level, these
buttons make possible the use of a tree-structured user interface to
access various functions.”

From the user view, three general requirements of this access
method are simplicity, convenience, and customizability. The interface
must be as conceptually simple as possible, even to the most casual,
unsophisticated user. The required convenience of the interface is
attained by enhancing the access to often-used functions and the
names of often-called people and by providing a “translation” capabil-
ity between the user’s name for some function and the “telephonese”
or “computerese” for accessing it. Whether customization is done by
the vendor or by the user, the need for real simplicity in the underlying
data structure, and not just apparent simplicity in the user’s view of it,
is reinforced.

The structure of the user interface is tree-like in a deliberate attempt
at “congruency’” with simple models of human cognition.® Similar
“gccess trees” have appeared in the literature. References 7 and 8 are
representative. In the marketplace, Hewlett-Packard’s new line of
terminals and the British PRESTEL are examples. In the mathemat-
ical sense, a “tree” is an acyclic, connected graph;® but the concept of
tree to be presented is more like the “lay” notion of a large woody
plant.

Informally, the parts of a tree include the root, branches, interme-
diate nodes, and leaves. Let a screen of button labels correspond to a
node. Let the dynamic label of a button correspond to a branch or leaf,
depending on whether its selection causes a traversal to a new node or
the actuation of some function, respectively. The structure is not a
mathematical tree because multiple branches to the same node are
permitted, as are “backup” and “restart” branches (which make the
“graph” cyclic). Analogous to the root, or initial node, of the tree is an
initial labeling of the buttons by which the user perceives the
“entering” of his structure of functions and directories. The root of an
example access tree is illustrated in Fig. 2.

The organization of this access tree is intended to be defined or
selected by the user. A functional organization would show a root
menu with branches like Telephone Functions,* Computer Func-
tions, Calendar, Mail, etc. A utilitarian organization would attempt
to place highly used functions near the root and seldom used functions

* Labels identifying function keys are set in boldface type.

AN EXPERIMENTAL TELETERMINAL 125

1 Directory Menu Susan [

[l Personal Dirctry Dave Boss [
[Prefix Call Personal Asst[]
LIHOME New Functions []
(1 Top 10 System []
[]-explain- -lock-[]

Fig. 2—A sample access tree.

far from the root. Some compromise of the two organizations is
probably most appropriate, depending on the user’s level of sophisti-
cation and the frequency of use.

Il INTELLIGENCE DISTRIBUTION

The user interface to system capabilities is determined by the
properties of the terminal and the network resources that the user can
access through the terminal. The capabilities of the terminal are
constrained by the computing power of the internal processor and by
the data switching capabilities of the communications system. Cur-
rently available microprocessors span at least an order of magnitude
in speed and several orders of magnitude in memory size. In the case
of the teleterminal, power requirements and chip count were important
considerations in the selection of the internal microprocessor. Many of
the design considerations described in the previous section constrained
the type of internal computations and thus focused our efforts on
software issues relating to telephone applications vis-a-vis general-
purpose word-processing systems.

In the next subsection, the capabilities of the processor within the
teleterminal are presented. A list of functions performed by the instru-
ment is given and the impact of this processing power on feature
software is discussed. The limitations of, and alternatives to, the
current design are presented in Section V.

3.1 Internal processing

The teleterminal contains an Intel 8748 microprocessor with 2048
bytes of programmable read-only memory (PROM) for program stor-
age and 288 bytes of random access memory (RAM) for data storage.
The processor executes instructions in from four to eight microseconds.
A common operation such as moving a byte from one location to
another in RAM requires four instructions, occupies six bytes of
program memory, and takes 32 microseconds. A single vectored inter-
rupt is available for performing time-critical functions.

The internal program is written in assembly language and occupies
most of the available program memory. The function of the internal
program is to control the microprocessor’s peripherals: a Matrox

126 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

display processor, a tone generator with muting relay, an ASCII
keyboard with clicker relay, and a universal asynchronous receiver/
transmitter (UART) for interface to the host computer.

The Matrox display processor cycles through a 512-byte dual-ported
buffer memory displaying its contents as 16 rows of 32 characters on
a CRT. In addition to character generation, the display processor
provides character blinking at a half-hertz rate. The internal processor
manages the contents of the buffer memory. Scrolling is implemented
by moving the entire contents of the display buffer. A cursor is
implemented by displaying an underscore character (-) when a space
character lies at the cursor coordinates or by blinking the character at
the cursor coordinates (inverse video would be more attractive but is
not available in the current hardware). Button labels are cleared,
positioned, and formatted by the internal processor.

The tone generator is used to dial over the telephone line associated
with the teleterminal. The state of the switchhook is examined to
determine if the receiver is off-hook. After a short delay to allow for
dial tone, digits are dialed by activating the muting relay, activating
the tone generator for approximately 100 milliseconds, then deactivat-
ing the muting relay, and waiting approximately 60 milliseconds before
repeating.

The keyboard peripheral consists of three types of keys: standard
keys that correspond to ASCII codes, special control characters within
the control code set that correspond to the buttons adjacent to the
screen, and polled control buttons. The first two types of keys are
scanned, encoded into ASCII character codes, and latched by the
keyboard circuitry.? The processor examines the latch approximately
60 times per second. When a character has been latched by the
hardware, the processor reads the character, clears the latch, and
activates the clicker relay to give the user audio feedback. Normal
character codes are delivered to the output UART for transmission to
the host. For codes corresponding to screen buttons, the processor
emits a unique three-character sequence for each of the buttons.

Control buttons are wired directly to individual bits on one of the
processor’s input/output (I/0) ports. After debouncing, the buttons
are used to (also see Section 3.3):

(i) Freeze the screen
(it) Emit a special host-specified “delete previous character” code

(iii) Emit a special host-specified “delete current line” code

(iv) Emit a special host-specified “interrupt” code. The internal
buffer of input characters from the host is also purged.

The input characters from the UART (data from the host) are read
at interrupt level and collected in a 255-byte circular buffer. In full-
duplex operation, flow control is implemented by emitting a single

AN EXPERIMENTAL TELETERMINAL 127

symbol when the input buffer approaches overflow. This symbol can
be set by the host with a control message. The characters in the
circular buffer are processed by the base-level part of the control
program. Data is separated into three classes: control messages, re-
sponse messages, and ordinary text. Control messages change the
“state” of the set and determine how ordinary text is to be processed.
The following “states” exist:

(i) Label button—Data is positioned adjacent to the button, left
or right justified, and constrained to fifteen characters per line.

(it) No scroll—Data is constrained to the bottom line of the screen.

(iit) Dial—Data is interpreted as dial control: that is, a digit to dial,
a request for dial delay (usually for second dial tone), a request to time
and display call duration, or a request for current call status.

(iv) Terminal—Data is displayed much the same as on any simple
CRT terminal.

Response messages are character strings generated by the teleter-
minal in response to either a button push or a host request for status.
These messages appear in the teleterminal’s input stream because the
host computer, in full-duplex mode, echos all characters transmitted
from the set. Status response messages are ignored by the set. Button-
push response messages cause the set to start flashing the first char-
acter of the associated button label, providing a feedback cue equiva-
lent to echoing ordinary characters.

In summary, the internal processing capabilities are used to control
the CRT display and perform dialing functions. Support for telephone-
related applications is manifested in functions that dial, label buttons,
flash-button labels, and restrict output to the bottom line on the CRT.

3.2 Host processing

The description of the host software is contained in the next three
subsections. First the host’s software environment is didcussed, then
the structure of the user’s data is defined, and finally the “access
program” is described.

3.2.1 Host software environment

At the system level, the host software environment is that of a
transaction-oriented, time-sharing, general-purpose computer. The
current implementation, under the UNIX* operating system,' pro-
vides a convenient machinery for interfacing the access program not
only to the standard commands, system calls, and supported progygms

of the UNIX operating system, such as those providing computer mail,

* Trademark of Bell Laboratories.

128 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

calendar functions, and various games, but also to current and future
specialized application programs, such as have been written for mail
access, call-memos, and personal calendar maintenance. The access
program and the peripheral programs have been written in the C
programming language'' by a multiplicity of authors with program
interfaces provided by the standard system calls and interprocess
messages of the UNIX operating system. The complete environment
resides in a Tandem computer system.

The user’s tree-structured data are isolated from the access program
that manages those data. This isolation is accomplished by keeping
user-specific data in a separate file (per-user) and out of the program.
This isolation permits the existence of a single copy of the program in
a computer that supports multiple users, each with a unique and
customized access structure. Furthermore, this software practice per-
mits changes in directories or function procedures and similar modifi-
cations and customizations without requiring the recompiling of a
program.

A data change to the access tree data file may be as trivial as an
updated telephone number or name of an application program, or it
may be purely cosmetic like renaming a button label, moving a familiar
function to a new position in the tree, or placing a new label on some
vacant button. Or, it may be more significant, like pruning the tree,
attaching a new node to the tree, grafting an entire subtree to a new
position, or adopting an entirely new access tree. Currently, these
changes are made through the UNIX text editor to the data only and
the program is not recompiled. An experimental editor with a poten-
tially improved human interface is described in Ref. 12.

3.2.2 Data description

The access tree is logically organized as a hierarchical data structure.
The currenttimplementation uses a magnetic disk medium and so the
physical organization is linearized into a serial file of records. The data
consist of an iteration of “record-groups” (each corresponds to a node
of the tree or screen on the teleterminal), each in turn made up of
ordered “records” (each corresponds to a button label). The actual
data file read by the access program is obtained by “compiling” the
file to be described here. A structure diagram of the data, in the sense
of Michael Jackson," is shown in Fig. 3.

The label is the text that appears adjacent to the corresponding
button when the parent-node is active. The successor-node identifies
th®node to which the tree traverses when the corresponding branch
is selected. The button-number is usually omitted but, if specified, is
an integer between zero and eleven. The default is the “next” button
in logical order. The command is executed by the program as described

AN EXPERIMENTAL TELETERMINAL 129

CORRESPONDENCES

TREE FILE —— — — — == — — — —USER

yd

N NODE OF TREE
HEADER GROUP __—__"[SCHEEN OF TELETERMINAL
BRANCH OR LEAF
* ————
RECORD — = FUNCTION BUTTON
LABEL {SUCCESSOR) = BUTTON# COMMAND {MISC) H
IN DEFAULT DEFAULT DEFAULT
QUOTES =SELF = NEXT = TRAVERSE

*MEANS “ITERATION"
Fig. 3—Structure diagram of access tree data.

in the next subsection. The miscellaneous field contains data pertinent
to the command, such as a telephone number or program name.

Data files in the format of such access trees also require “headers”.
Since each user is assumed to possess a personal tree file, it is
appropriate to place user information in the header such as: a list of
telephone numbers from which one is selected for “call-return” mes-
sages, the password for allowing access to “private” parts of the tree,
and the default-assumed location used for adjusting call prefixes. The
first several lines of a typical user’s tree file are illustrated here in
Fig. 4.

Record-groups are enclosed in brackets,“{}”, and symbolically
named. The records are assigned to buttons in consecutive order within
a record-group by default. The default successor-node is the current
node and the default command is TRAVERSE. The correlation be-
tween a record-group and the user’s perception on the CRT screen is
seen by comparing the record-group named ROOT from the partial
file of Fig. 4 with the “Root node” illustrated in Fig. 2. In the node
corresponding to the PREROOT record-group of Fig. 4, buttons num-
bered one, seven, nine, and ten are left unlabeled.

From the header of the file in Fig. 4 it is seen that this tree belongs
to a user whose Bell Laboratories phone number is 6170 at Murray
Hill (represented by the mnemonic prefix “MH”) and whose home
phone number is 4649999 in dial area 201 (represented by the mne-

130 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

TREE heading

Numbers: murray-hill: MH6170, home: N4649999
Password: joesentme

Location: MH

%%

PREROOT

(

“introduction”, CATFILE(expl/e.0,trav);
*Other User” =2; CATFILE(/get/dump/othus,exit);
“*Other Phone”, OTHERPHONE;

“Other Location”, OTHERLOC;

*explain-", EXPLAIN;

“open”(ROOT), CHANGELOCK;

“Bell logo” =8, CATFILE(/get/dump/bell,trav);
*exit-" =11, CATFILE(none,exit);

}

ROOT

(

“Directory Menu” (DTORYMENU);

“Personal Diretry” (PERSDIRY);

“Prefix Call” (PREFIX);

“HOME”, CALL(N4649999,zhome);

*“Top 10” (TOP10);

“.explain-", EXPLAIN;

“Susan”(PERSASST), CALL(MH4236,sst);
“Dave Boss”, CALL(MH4235,db);

“Personal Asst”(PERSASST);

“New Functions”(NEWSVC);

“System”, RUNSCROLL(/bin/sh,sh);
*“.lock-"(PREROOT), CHANGELOCK;

}

PERSASST

{

*Today’s Appnts”, RUNSCROLL(/usr/lbin/caltoday,caltoday);
“Other Appnts”, RUNSCROLL(/usr/lbin/calexam,calexam);
*Make Appnts”’, RUNSCROLL(/usr/lbin/calenter,calenter);
"Set Reminder”, REMINDER;

“Time & Date”, RUNBOTTOMLINE(/bin/date,date);
“2.month Cal”, CALZMONTH;

“Read Mail”(PREFIX), READMAIL;

*Send Mail”, SENDMAIL;

*Send Call-Memo”, SENDCALLMEMO;

“Std. Call-Memo”, STDCALLMEMO;

*_backup-"(ROOT), TEMPBACKUP;

*.restart-"(ROOT);

)
DTORYMENU

{
“Emergency”’(EMERGDTORY);

Fig. 4—Example of a partial tree file.
AN EXPERIMENTAL TELETERMINAL

131

monic prefix “N”’). This user’s password is “joesentme” and dial digits
will be prefixed assuming (in the default) they are dialed from Bell
Laboratories at MH. These default attributes may be changed by the
user at the node called the PREROOT (see Fig. 4), first encountered
when the file is initially opened at the beginning of the access program.
Functions at the PREROOT allow the user to change his default
location or add another phone number temporarily to those listed in
the header, or allow a new user to identify himself.

Each user is assigned a computer user-identification and a corre-
sponding file system “home” directory. The user’s private access tree
is expected to be found in this directory along with other pertinent
files like a personal directory, a mailbox, and a personal calendar.
Besides each private tree-file, there is a collection of “public” tree files,
any of which may be accessed by any user. The real users have access
structures in which only real or imminent functions are accessible. The
running example throughout this paper is such a tree. One pseudo-
user, called “demo”, has indicated access to named functions that are
not implemented but from which provocative demonstrations have
been given.

3.2.3 Program description

The structure (also in the sense of Michael Jackson) of the host-
resident access program is illustrated in Fig. 5. The uppermost level
shows the initial processing of the tree-file, the initial labeling of the
buttons, and an iteration of processing “button pushes”. Each button
push is processed by reading the button identification message from
the teleterminal, checking the validity of the message and its “type,”
executing the corresponding command with respect to current
“modes,” traversing the tree to the successor-node, and displaying the
button labels pertaining to that node. The formats of various messages
to and from the teleterminal are discussed in the next subsection.
Command “modes” and “types” are briefly described.

The lock mode and the explain mode are program states that apply
to the imminent button push but which are manipulated by a previous
button push. The lock mode disables most commands and is a means
for providing privacy protection: it is toggled by the CHANGELOCK
command (see Fig. 4), which prompts for a password when “unlocking.”
The explain mode is enabled by the EXPLAIN command (see Fig. 4)
and causes the program to substitute an explanation of the subsequent
button push for the regular action of that button push.

A very brief description of each of the currently implemented
commands is tabularized in Fig. 6. These commands are usually
requested by the user through the operation of an appropriately
labeled button. However, as another “type” of request, unprompted

132 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

PROGRAM

g

S

OPEN AND DISPLAY PROCESS CLOSE TREE
PROCESS INITIAL USER REQUEST FILE AND
TREE FILE NODE (BUTTON PUSH) EXIT
READ TRAVERSE TO DISPLAY
BUTTON SUCCESSOR- NEW
1D NODE NODE
0 (0] [e] (o]
INVALID RELABELABLE KEYBOARD TELEPHONE
BUTTON COMMAND CALL
T
| /[
{ e
o]
RESTRICT o EXPLAIN EXECUTE 0 L
IF “LOCK"" IF “"EXPLAIN" COMMAND
MODE MODE IF “"NORMAL"

Fig. 5—Structure diagram of the access program.

keyboard entries are also interpreted as user-defined requests for
specific commands. For example, unprompted numeric key entries are
interpreted as telephone numbers.

Examination of Figs. 2, 4, and 6 will aid the reader in correlating the
data file with the program. Several button pushes will be illustrated
here, with more in the scenario presented in Section IV. In Fig. 4, the
line beginning with “Personal Asst” (in the ROOT record-group)
illustrates that Personal Asst is the label for button number eight on
the root node (see Fig. 2). It is further seen from that record that when
this button is selected by the user, the default TRAVERSE command
is executed by the program and the tree traverses to the node whose
record group is named PERSASST. Every command concludes with
a traversal to the successor node; the TRAVERSE command does
nothing else before that. The TRAVERSE command (see Fig. 6)
requires no other data, and so none are present in the miscellaneous
field of the record. The PERSASST record group is included in Fig. 4
and it corresponds to the button labels on the “Personal Assistant”
node shown here in Fig. 7.

The line beginning with “System” on Fig. 4 illustrates that System
is the label for button number ten on the root node (Fig. 2). When this
button is selected by the user, the RUNSCROLL command is executed

AN EXPERIMENTAL TELETERMINAL 133

COMMAND

BACKRESTART
CAL2MONTH
CALENDAR
CALL
CALL2LINE
CALLLOCAL
CALLPOTS
CALLPREV
CALLPRFX
CALLTRAV
CALLTREE
CATFILE

CHANGECALLTRAV

CHANGELOCK
DIRCATEGORY
DIRINSTALL
DIRTREE
DUMMYCALL
EXITENTRY
EXITROOT

EXPLAIN
INSERTLABEL
LEFTRIGHT
MAILRETURN
OTHERFILE
OTHERFILEEXIT
OTHERFILEROOT
OTHERLOC
OTHERPHONE
READMAIL
REMINDER
RUNBOTTOMLINE
RUNRETURN
RUNSCROLL
SENDCALLMEMO
SENDMAIL
STDCALLMEMO
TEMPBACKUP
TEMPLATEBEGIN
TEMPLATEFILL
TEMPLATEINIT
TEMPLATEMATCH
TRAVERSE

DESCRIPTION

backup or restart in directory

special interface for two-month calendar
special interface for general calendar

call from button label

call from two-line button label

call with local prefix

“POTS" call

call party previously called

call with labeled tie-line prefix

“POTS"” call or traverse in directory

call from temporary tree

cat indicated file and exit or traverse
toggle “call/traverse” mode in directory
toggle “lock” mode

select directory category

proceed with personal directory installation
make temporary tree from temporary directory
dummy version of CALL

traverse to TREE with selected directory entry
OTHERFILEEXIT or OTHERFILEROOT via
mode

toggle “explain” mode

insert button label into textual files
left/right traversal in directory

“detour” return to mail program

use other file instead of TREE

leave other file to exit point in TREE

leave other file to TREE root

change default location

enter “other number” for call-memos
special interface to read mail

special interface for reminder service

use bottom line, create child, continue
clear & scroll, create child, label return button
clear & scroll, create child, wait

special interface to send a call-memo

send mail via UNIX software

special interface for standard call-memo
temporal backup

initiate template creation

fill in directory template

initialize template from previous call

count or list template matches in directory
simple tree traversal to successor

Fig. 6—Current commands.

134 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

[0 Today’s Appnts Read Mail [J

OO0 Other Appnts Send Mail [J
[0 Make Appnts Send Call-Memo [
[0 Set Reminder Std. Call-Memo [J
O Time & Date -backup- [J
0 2-month Cal -restart- []

Fig. 7—The Personal Assistant node.

by the program and afterwards the tree traverses (by default) to the
current node. In executing the RUNSCROLL command (see Fig. 6),
the program clears the teleterminal of button labels and causes the
indicated program (in this case, a UNIX program called the “shell”)
to execute from the teleterminal as a computer terminal. The screen
now looks like that of a traditional terminal to the user, who is
“talking” to the command interpreter of a supposedly familiar oper-
ating system. Upon termination of the shell, the access program gets
control back and it executes the default traversal to the current, or
root, node. In the “jargon” of the UNIX operating system, the activity
is that the access program puts itself to sleep, and requests the
spawning of a child process. The program expects to find the path to
the particular child in the miscellaneous field of the record. When the
user terminates the session with the child, it is killed and the parent
(the access program) is awakened. The entire operation is perceived
by the user as a leaf in that a function was requested, granted, and no
traversal took place.

Changes to the data were discussed in the previous subsection. But
not all changes to the access method can be implemented as simple
“odits” of the access file. A new or changed command requires a
program change and subsequent recompilation. However, the program
has been structured specifically to simplify such changes. Command
execution is implemented with a huge multiple branch. The C code in
each branch is functionally decomposed. It should be relatively easy
for a neophyte programmer (not our unsophisticated user, however)
to modify this part of the program. A third kind of change is the
unforeseen “nasty” kind of program change that requires a higher
level of skill in the person making the change.

The user is expected to “log in” to his own account on the host from
his teleterminal, and then to cause the access program to execute from
his home directory. The program runs as a “shell” through which
other programs, including the shell and other application programs,
are invoked. It is planned for the invocation of the access tree program
to be placed in the user’s profile to facilitate “log in.”

AN EXPERIMENTAL TELETERMINAL 135

3.3 System considerations

The internal firmware was designed so that communication between
the user and the application software can proceed with a minimum of
teleterminal-related details in the application programs. The areas of
concern were system conventions imposed by the operating system,
which impact the human interface to the application software and the
potential for application software dependence on the detailed charac-
teristics of the teleterminal. While the software was specifically imple-
mented in the environment of the UNIX operating system, and the
style of the paper assumes that, steps were taken in the design of the
internal firmware to avoid assumptions about the specific operating
system.

Operating systems establish conventions to control terminal I/0.
Most systems usurp characters from the ASCII set for line deletion,
character deletion, and interruption of program execution. In the
UNIX operating system, the default symbols are: ‘@’ to erase a line,
‘# to erase a character, and DEL to interrupt program execution.
Because our goal was to provide a consistent human interface inde-
pendent of any operating system idiosyncrasies, the teleterminal allows
the application to down-load the codes that should be used for these
functions. Extra keys on the keyboard are provided for the erase-
character, erase-line, and program-interrupt functions. Since condi-
tions arise when a user may want to enter one of the special characters,
the teleterminal will automatically prefix these characters with a host-
specified escape-character (back-slash, by default, in the UNIX oper-
ating system).

Minimizing software dependence on the details of the teleterminal
is achieved by defining a high-level interface to the functions:

(i) Labeling re-labelable buttons
(if) Dialing

(iif) Forcing output to be placed on a single line of the display

device.
By and large these functions are sufficient to allow all the tree-oriented
software to execute on terminals that provide some form of relabelable
buttons. Besides the use of a CRT to label buttons adjacent to the
screen, alternatives are a button with embedded light-emitting diodes
(LEDs) or a CRT with a touch-sensitive screen. Control of the screen
is typically achieved by the host software through print statements.
The teleterminal-specific details, such as the actual character strings
defining control functions, can be isolated in one file. Using the macro
facility of the C language, these control messages can be made to look
like function calls. For example, a macro for labeling buttons may be
defined such that the statement:

136 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

button label(btn_num,“Prefix Call”);
would expand to the C statement:
printf(“%c%c%s\n",ESC,’a’-1+btn_num,“Prefix Call”);

When executed (assuming btn_num is equal to 2) this statement results
in the string

ESC b Prefix Call CR NL

being transmitted to the teleterminal, which causes the second button
on the left-hand side of the screen to be cleared, then labeled with
“Prefix Call”. Similar macros may be defined for other primitives.

IV. A SCENARIO

The functionality of the tree-like access method is demonstrated by
a scenario wherein A calls B, but B is either busy or not home: A
leaves B a message to return the call; then B becomes available, reads
the message, and returns the call to A. We (a user named “us”) are A,
Susan is B, and the scenario begins at the root node (Fig. 2). A
monologue for introducing a new user to the teleterminal, its services,
and tree-like access is appropriate for the unsophisticated user before
presenting this scenario. Such a monologue is illustrated in Ref. 5.

We select the Susan button and place a call to Susan, the depart-
ment secretary. Customization of the tree-file is demonstrated by the
presence of the Susan button in the root, indicating that this call is
frequently made; and also by the button text itself: Susan is a
“friendlier” label than initials and last name (like a typical directory
entry) or secretary. As seen in Fig. 4, the miscellaneous field of the
“Susan” record in the tree-file contains her telephone number and her
computer user identification. The CALL command (see Fig. 6) causes
the telephone number to be dialed and the id to be stored for possible
subsequent use. The tree is traversed to the Personal Assistant (Fig.
7).

As an aside, this last traversal exemplifies two points already made.
The user, in customizing his own tree-file, determines the successor
node of branches like Susan. There are three appropriate choices:

(i) Traversal to the current node emphasizes the leaf nature of
such a botton and, often, if such a call fails to complete, a “related”
call (that is, to someone on the same node) may be the logical
subsequent event,

(ii) Traversal to the root gives the perception of “resetting” the
teleterminal for subsequent use.

(iii) Traversal to the Personal Assistant is appropriate if calendar
and message functions are likely to be subsequently used.

AN EXPERIMENTAL TELETERMINAL 137

With the use of restart and backup buttons, the decision is not all
that critical. The second point that is exemplified is the fact that the
access tree is not, strictly speaking, a tree: two branches to the
Personal Assistant have already been demonstrated.

Continuing with the scenario, let Susan be busy and let us send her
a “Call-Memo” requesting that she call us back. There are two “Call-
Memo” buttons on the Personal Asst node (Fig. 7): Send Call-
Memo prompts the user through the creation of a general call-memo
and Std Call-Memo immediately sends a standard “I called you—
Please call me back” call-memo. This standard message is created
once by, or for, the user and is available in the user’s directory along
with a host of other handy files, like a personal directory and a personal
calendar. We select Std Call-Memo and we are prompted on the
bottom line of our teleterminal as shown here in Fig. 8.

The program can’t be sure that the call-memo is intended for the
person last called, but that is the default operation. If the user wishes
to change the default, he identifies the desired user (typing is echoed
after the colon on the bottom line). We simply type the “CR” key to
continue the default operation and the scenario proceeds. The program
responds on the bottom line as shown here in Fig. 9.

Proceeding to the second half of the scenario, Susan is tracked as
she returns the call. Her first action is to read her mail. From the root
(assuming that her tree-file resembles ours), she selects Personal
Asst and then Read Mail. A special mail program is invoked that
interfaces the mail program provided in the UNIX operating system

[l Today’s Appnts Read Mail[]
0 Other Appnts Send Mail[]
(0O Make Appnts Send Call-Memo]
[JSet Reminder Std. Call-Memo [
[0 Time & Date -backup-[]
[0 2-month Cal -restart-[]

To whom? (if not Susan):
Fig. 8—The Personal Assistant node with Std Call-Memo prompt.

[1Today’s Appnts Read Mail []
O Other Appnts Send Mail (J
O Make Appnts Send Call-Memo []
[0 Set Reminder Std. Call-Memo [J
0 Time & Date -backup- []
[J2-month Cal -restart-[]

Std Call-Memo sent to Susan.

Fig. 9—The Personal Assistant node with Std Call-Memo response.

138 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

to the teleterminal. If our call-memo is her only new message, the
screen appears as shown here in Fig. 10.

After selecting our message, the call-memo is scrolled onto the screen
as shown here in Fig. 11.

There are a number of different responses to such a message: the
choice of action is made after pressing the process msg button, as
shown in Fig. 12. In our scenario, Susan elects to return the call and
selects Return Call. Our telephone number is extracted from the call-
memo by the program, the mnemonic prefix “MH” is appropriately
translated into the correct dial prefix, depending on the location of
Susan’s teleterminal, and the call is made. The screen returns to the
call-memo (Fig. 11) from which point the message would probably be
Thrown Out, ending the scenario.

User perception and the importance of cosmetics cannot be over-
emphasized. The reader must be aware that the demonstration of this
very scenario on an actual teleterminal is many times more appealing
than a description of the demonstration in such a paper as this. Many

(Jus Mar 3 O
O

O

O

old mail OJ

Return to Menu[]

oooono

Select message.
Fig. 10—Root — Personal Assistant — Read Mail.

O From us, Mon Mar 3 11:12 1980 |
[OJ1 tried to call you. Please O
[0 call me back at MH on Ul
COMH6170 O
O -us O
O process msg [
Fig. 11—The Standard Call-Memo.
[0 Save Return Call]
(0 Throw out manual prefix []
[JRe-read Detour [J
(1 Respond msg O
O Another msg []
O Return to Menu [

Select message action

Fig. 12—The Message Action menu.

AN EXPERIMENTAL TELETERMINAL 139

other functions have been implemented but the interest of brevity
prevents any description. These include a personal calendar (see the
first three buttons on Fig. 7), organizational and alphabetic directories,
special-purpose directories (such as emergency numbers, dial-a-“x”,
and assistance), a personal telephone directory, manual selection of
dial prefixes, and a food applications demonstration. In addition, the
tree provides access to standard UNIX programs supplying facilities
like a monthly calendar, time and date, a desk calculator simulation,
and a large selection of computer games. Furthermore, accesses to a
voice storage system and a dial-up dictation system have been imple-
mented that present a highly satisfactory human interface.

V. FUTURE DIRECTIONS

The functional split between the teleterminal and the host has
provided a flexible and efficient interface for experimenting with new
applications. We have “ported” the application software from a Digital
Equipment PDP 11/45 system using the MERT" operating system to
a Tandem computer using the Guardian'® operating system. The
human interface remained the same even though the I/0 characteris-
tics of the two systems are quite different.

Our experience exposed several areas where the current system is
deficient. In the human interface, the teleterminal provides special
keys for delete line, delete character, and program interrupt. Two
additional special keys labeled “end of file” and “program abort” are
needed to provide a completely operating-system-independent inter-
face. Keys with the permanent labels “explain,” ‘“backup,” and
“restart,” would improve the human interface to the access tree by
freeing three of the relabelable buttons for other functions. An exten-
sion of the screen management allowing an arbitrary screen split
between button labels and scrolled text would improve the human
interface by allowing communications in excess of 32 characters.

The interface between the teleterminal and application programs
could be improved by having the teleterminal emit a special button
status message when the telephone goes off-hook. This would allow
applications to respond directly to dial requests, eliminating a button
push under some circumstances. A button label frame buffer capable
of retaining about 30 button labels coupled with a special “more” key
would remove the teleterminal-specific restriction that no more than
twelve buttons can be labeled at one time. '

The current teleterminal interface to the host supports a single
character-oriented data stream. Application software must take special
care to ensure that a message signaling the occurrence of an asynchro-
nous event does not get interspersed with other messages. For example,
if an electronic mail application wanted to inform the user of the

140 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

arrival of a message, the application software would have to coordinate
an attempt to write the message “you have mail” with all other
programs that might have reason to write to the instrument. This
responsibility belongs in the network and in the teleterminal.

The solution requires the network to support some form of data
multiplexing. For teleterminal applications, the network must support
a control channel and several data channels. The control channel is a
message-oriented channel used to establish the switch between data
channels. The network must ensure that control messages are atomic,
delivered error free, and are flow controlled. In order to ensure that
control messages remain synchronized with the data channels, it is
advisable that the control channel be implemented as a subchannel on
a multiplexed data stream. The teleterminal would require enhance-
ments to conform to the message protocol of the control channel and
to route data over the appropriate data channel. It is sufficient that
the teleterminal be able to maintain several data connections but only
be able to receive (and send) data over one channel at a time.

For a network with this form of data multiplexing, asynchronous
events, such as the arrival of electronic mail, could be implemented by
sending an “alert” message to the teleterminal over the control chan-
nel. The teleterminal would respond by flashing a button with the
alert label. The user would eventually respond to the alert by pressing
the alert button, causing the teleterminal to send a “hold” status
message over the current active data channel, switch to the mail data
channel, and send a “proceed” status message over the mail channel.
The mail program could then take control of the screen. To return to
the program interrupted by the mail function, either the user would
press a permanently-labeled resume buttom or the mail program
would automatically return by sending an appropriate control message
to the teleterminal. In either case, the teleterminal would send a status
message over the previous data channel. The application program that
had been put on hold would take over the screen by rewriting the last
frame before the interruption.

A new design of the teleterminal has been recently completed and
it incorporates many of the features described. Cosmetically, the screen
is logically the same size as that of a conventional computer terminal
and the keyboard is large enough for touch-typing (see Fig. 13). Thus,
the set of services appropriately addressed is expanded from “enhanced
telephony” to include information management and office automa-
tion.!” Functionally, the new teleterminal provides a telephone inter-
face like that of a traditional 6-button key telephone, thus allowing
easy interface to call directors and speakerphones. The internal proc-
essor is a “microcomputer system” running under a UNIX-like oper-
ating system.'® At this time it simply emulates the functions of the old

AN EXPERIMENTAL TELETERMINAL 141

142 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Fig. 13—Redesigned teleterminal.

internal software; however, many more elaborate functions are
planned.

One of these is the capacity for a multiplicity of message “windows,”
each supporting one of the independent data connections mentioned
above. Investigations into combining voice and data onto one digital
channel are proceeding.'” New applications become feasible once the
teleterminal is connected to an intelligent switching office: for example,
displaying the number of a calling party and a variety of transfer and
screening functions. Many new capabilities, and improvements to
existing capabilities, have been suggested by the teleterminal users
and these are gradually being added.

VI. CONCLUSION

This paper has described the software strategy behind the construc-
tion of a research tool called a teleterminal. The realization of this
strategy lies in a software architecture whereby intelligence is distrib-
uted between the teleterminal’s internal processor and a host com-
puter. The programs resident in each of these locations, and their
intercommunication, have been discussed.

More in the abstract, another part of this strategy is an access
method whereby the user of a future teleterminal can conveniently
interface to the abundance of applications that could be available.
General concepts have been presented and a first implementation has
been described from the user's viewpoint. The proposed access method
has been found highly acceptable by colleagues and acquaintances but
formal testing®>' on the general public has only just begun. This is
ongoing work and this paper represents a “snapshot in time” that is
already slightly out of date. The first working teleterminal was dem-
onstrated internally in September of 1978. Since that time three dozen
teleterminals have been constructed and a user group assembled. The
software has undergone innumerable changes, and the newer “model”
was designed and constructed.

Acknowledgments are owed to the following colleagues for their
contributions to the software effort of the project: Bob Anderson for
assistance with the internal software, Martin Sturzenbecker for the
special mail program and a filter that enables the access program to
work at a regular terminal, Ron Gordon for the tree “compiler” and
the definition of the “high-level” data language illustrated in Fig. 4,
Ron and Martin for a “Food Applications” program that clearly
illustrates the value of organizing “atomic functions” into “generic
capabilities,” Misha Buric for the personal calendar program, Al Usas
for support with the “UNIX-Tandem” environment, and Bob Allen
and Donna Zanolla for their human factors testing.

AN EXPERIMENTAL TELETERMINAL 143

REFERENCES

1. D. W. Hagelbarger, R. V. Anderson, and P. S. Kubik, “Experiments with Teleter-

minals,” Proc. Nat. Telecommun. Conf., New Orleans, LA, 1981, pp. F2.1.1-5.
. D. W. Hagelbarger, “Experiments with Teleterminals,” B.S.T.J., this issue.
. G. D. Bergland, “An Experimental Telecommunications Test Bed,” Proc. Nat.
Telecommun. Conf., New Orleans, LA, 1981, pp. F2.3.1-5.

. R. W. Lucky, “A Flexible Experimental Digital Switching Office,” Proc. 1978 Int.
Zurich Seminar on Digital Commun., Zurich, Switzerland, 1978.

. R. A. Thompson, “Accessing Experimental Telecommunications Services,” Proc.
Nat. Telecommun. Conf., New Orleans, LA, 1981, pp. F2.2.1-5.

. G. Cohen, The Psychology of Cognition, New York: Academic Press, 1977.

. G.T. Uber, et al., “The Organization and Formating of Hierarchical Displays for the
Online Input of Data,” Proc. Fall Joint Computer Conf., 1968.

. D. L. McCracken and G. G. Robertson, “Editing Tools for ZOG, a Highly Interactive
Man-Machine Interface,” Proc. Int. Conf. Commun., Boston, MA, 1979,

. M. Behzad and G. Chartrand, Introduction to the Theory of Graphs, Boston, MA:
Allyn and Bacon, 1971.

10. “The UNIX Time-Sharing System,” 57, Part 2, a dedicated special issue of the
B.S.T.J. (July-August 1978).

11. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice-Hall, 1978.)

12. R. D. Gordon and D. L. Smith, “An Access Tree Editor,” Proc. Nat. Telecommun.
Conf., New Orleans, LA, 1981, pp. F2.7.1-5.

13. M. A. Jackson, Principles of Program Design, New York: Academic Press, 1975.

14. S. R. Bourne, “The UNIX Shell,” B.S.T..J., 57 (July-August 1978), pp. 1971-90.

15. H. Lycklama and D. L. Bayer, “The MERT Operating System,” B.S.T'J., 57
(July-August 1978), pp. 2049-86.

16. Tandem 16, Guardian™ Operating Manual. Tandem Computers Inc., 1980.

17. R. N. Klapman, “Enhanced Communications in an Executive Office,” Proc. Nat.
Telecommun. Conf., New Orleans, LA, 1981, pp. F2.4.1-5.

18. W. M. Schell, “Control Software for an Experimental Teleterminal,” Proc. Nat.
Telecommun. Conf., New Orleans, LA, 1981, pp. F2.8.1-5.

19. R. A. Thompson, “An Experimental User-Resident Communications Controller
Supporting Sub-Rate Circuit-Switched Service,” Proc. Int. Symp. on Subscriber
Loops and Services, Munich, Germany, 1980, pp. 68-71, and the IEEE Trans.
Commun., COM-30, Number 6 (June 1982), pp. 1399-408.

20. R. B. Allen, “Cognitive Factors in the Use of Menus and Trees: An Experiment,”
Proe. Nat. Telecommun. Conf., New Orleans, LA, 1981, pp. F2.5.1-5.

21. R. A. Thompson, “User’s Perceptions with Experimental Services and Terminals,”
Proe. Nat. Telecommun. Conf., New Orleans, LA, 1981, pp. F2.6.1-5.

B oo

w0 o > W

144 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

