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Although a sequential circuit M reduces to a combinational net-
work Cy after all feedback paths have been cut, an application of
Bossen and Hong’s checkpoint labeling procedure to Cy does not
necessarily yield a minimal solution. The set of checkpoints so ob-
tained will include all feedback lines. In this paper, it is shown that
these feedback lines are not necessary checkpoints under a “delay
equivalence” relation. In addition to this, we also show that not every
fanout branch is a necessary checkpoint. Any “singular fanout
branches” can be removed from consideration. The results of our
analysis lead to a minimal checkpoint labeling procedure for sequen-
tial logic networks.

I. INTRODUCTION

Because there are 3“ — 1 possible multiple stuck faults in a logic
network containing w distinct locations where signals may fail (each
location may assume one of the three possible states: normal, stuck-
at-0, or stuck-at-1), test generation and simulation procedures often
resort to fault collapsing techniques to reduce the number of faults
which need to be considered. To date reported results in the literature
deal only with combinational logic. This prompted our interests in the
research to be discussed in this paper.

Bossen and Hong introduced a fault collapsing technique for com-
binational logic networks called checkpoint labeling procedure.'
Checkpoints, as defined by them, are a number of specified points in
the network such that any multiple fault in the network is equivalent
to some multiple fault among these specified checkpoints.! The check-
points defined in Ref. 1 are a minimal set of points having the property
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just stated. A natural question is, What are the checkpoints in a
sequential circuit? It is well known that by cutting all the feedback
lines, a sequential network can be mapped into a combinational
network. A reasonable approach would be to apply Bossen and Hong’s
labeling procedure to the resulting combinational network. The check-
points obtained would then include all the feedback lines. In this paper,
we show that in general all these feedback lines need not be check-
points under a relation called “delay-equivalence” to be defined later.
We will see that the number of checkpoints can be greatly reduced for
a highly sequential logic network if our results are utilized. This, in
turn, greatly reduces computational complexities for multiple fault
analysis in sequential networks. A possible application of our results
can be found in a paper by Chang, Su, and Breuer.?

Il. FAULT COLLAPSING IN SEQUENTIAL NETWORKS

The checkpoints in a circuit are specially designated signal lines.
Checkpoints are defined so that for an arbitrary stuck-at-fault a there
exists at least one equivalent fault defined on the checkpoints. Hence,
if there are u << w checkpoints, we need only consider 3“ — 1 multiple
faults. Bossen and Hong have developed a labeling procedure for
specifying the minimal set of checkpoints in a combinational circuit.
Their results seem to be an extension of the work of Shertz and
Poage.**

For convenience, Bossen and Hong’s procedure is as follows:

(i) All the primary inputs that do not fan out are checkpoints.
(i) All the fanout branches are checkpoints.

(zii) NOT gates are considered as lines.

Although a sequential circuit M reduces to a combinational network
Cy after all feedback paths have been cut, Bossen and Hong’s labeling
procedure does not necessarily yield a minimum number of check-
points for such circuits.

Consider a synchronous sequential circuit M represented by Huff-
man’s model as shown on Fig. 1, where Cy is the combinational portion
of M, and D is the set of delay elements. We assume that faults in Cy
are restricted to stuck-at type and faults in delay elements (D f/f’s)
result in stuck outputs. Gates and flip-flops of M are connected by
edges. An edge of M is either a line or a branch. Namely, it is either a
primary input, a primary output, a fanout stem, or a fanout branch.
Also we shall assume the following:

Assumption 1: The output value of a gate is a function of each of its
inputs.

Assumption 2: The number of edges in M is finite.

Assumption 3: There are no “inaccessible” edges in M. An edge of
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Fig. | —Huffman’s model of a sequential circuit M.

M is said to be inaccessible if it is not a primary input and, moreover,
if it is not driven by any gates or memory elements of M.

Almost all practical sequential circuits satisfy the above assump-
tions. Figure 2 shows a fictitious integrated circuit chip. Edge 5 is
inaccessible.

Restricting our attention to stuck-at-faults, we define a single fault
as exactly one edge stuck-at-1 (s-a-1), or stuck-at-0 (s-a-0), and a
multiple fault as a collection (one or more) of single faults, each
associated with a different edge. Also, we shall not consider intermit-
tent faults.

By applying Bossen and Hong’s procedure to the combinational
network Chy, the set of checkpoints so obtained will include all feedback
lines denoted by the vector Y. However, we shall show that this subset
of checkpoints is not necessary under a delay-equivalence relation.
Later we shall consider asynchronous sequential circuits.

IIl. SEQUENTIAL NETWORK WITH D FLIP-FLOPS
Definition 1

Two faults u and v in M are said to be delay-equivalent (d-equiva-
lent) of order k, if M with u is equivalent to M with v after an

application of an input sequence of length at least k.
If the specific value of % is not of interest to us, we shall simply say

Fig. 2—A fictitious integrated circuit chip.
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that u and v are d-equivalent. To demonstrate this concept, let us refer
to the sequential circuit shown in Fig. 3. The fault a s-a-0 is d-
equivalent of order 1 to the multiple fault b s-a-0 and c s-a-0.
Lemma 1: Any multiple fault in a delay flip-flop is d-equivalent of
order 1 to a stuck input.
Proof: Let y and Y denote, respectively, the output and input of a
delay f/f. Then, y(g + 1) = Y(g) for all q. Thus, a stuck output is d-
equivalent of order 1 to a stuck input. Also, a stuck input and output
is d-equivalent of order 1 to a stuck input only, and is d-equivalent of
order 0 to a stuck output only.

Because of this lemma, we shall consider a delay f/f as a 1-input
gate under the d-equivalence relation.

Definition 2

(i) A sequence of edges of M, denoted by [s1, 82, +--, Si, =++, 8al,
where s; # s; for all { # j, is said to be a forward path, if for each
i < n either (a) s; is a fanout stem and s;+; is a fanout branch of s;, or
(b) there exists a gate of M, say g, such that s; and s;+. are, respectively,
an input and the output of g.

If s; = « and s, = 8, the path [sy, Sz, - -+, 8x] is said to be a forward
path from « to B. If B is a primary output, the path is said to be a
terminal forward path of «.

(ii) A sequence of edges of M, denoted by [s1, Sz, «--, Si, *++, 8nl,
where s; # s; for all i # j, is said to be a backward path, if for each
i < n either (a) s; is a fanout branch and its stem is 8i+1, or (b) there
exists a gate of M, say A, such that s; and s+, are, respectively, the
output and an input of A.

If s, = a and s, = 8, the path is said to be a backward path from a
to B. If B is a primary input, then the sequence [s;, 83, - -+, 8, <+« , 8a]
is said to be a terminal backward path of .

COMBINATIONAL CIRCUIT

X —
EXCLUSIVE a
OR GATE z

CLOCK

Fig. 3—A simple sequential circuit.
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A backward path from a to 8, denoted by p, is said to be a backward
path of a, if there exists no edge I" in M such that a backward path
from « to I contains every element of p. The path p is said to terminate
at .

Clearly, if 8 is a primary input of M, then a backward path from «
to 8 is also a terminal backward path of a.

The path (s, ss, - -+, 8] is said to pass through each s;. Conversely,
each s; is said to be contained in the path. Branch s; is also said to be
an element of the path [s;, 52, -+~ , 8n].

As an example, consider M, on Fig. 4. The sequences [12, 18, 6, 8, 9,
11, 20] and [12, 17, 19, 5, 8, 9, 11, 20] are forward paths of edge 12.
However, the sequence [12, 18, 6, 8, 10, 12, 15, 16, 19, 5, 8, 9, 11, 20] is
not a forward path of 12 because edges 12 and 8 appear twice in the
sequence. All backward paths of edge 20 are shown in the graph of Fig.
5. Note that this graph is a tree with edge 20 as the root, and the
leaves are either primary inputs or fanout branches.

Definition 3

If every edge of M possesses at least one terminal forward path, then
M is said to be a regular sequential circuit. Otherwise, M is said to be
irregular.

We will focus our attention on regular sequential circuits.

Definition 4

A sensitized path from an edge a = x; to an output #in M is a
terminal forward path from « to 8, along with constant signal values
assigned to some of the other edges such that changing the logic value
of x; will change the logic value of 8.

1

12 16
IR

o

Fig. 4—Sequential circuit M.
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Fig. 5—Backward paths of edge 20 of M. Underline indicates either a primary input
or nonsingular fanout branch. Starred edges are members of K(20).

In the circuit shown in Fig. 4, we can sensitize the edge 1 to the
output 20 by setting edge 9 to s-a-1 and edge 13 to s-a-0.
Lemma 2: Let g be a gate in M, a regular sequential circuit, and x,,
Xy, +++ , X be the inputs to g. For each i, there always exists a multiple
fault in M which will sensitize x; to an output.
Proof: Since M is regular there exists at least one terminal forward
path from x; to an output 8. Using the concept of Boolean difference,’
the condition for sensitizing the output of g to the input x; is given by
the equation

d - -
d_i=g0 Bgr=gg1+81=1,

where

8o = g(xls ey Xiel, 0: Xitly =", xﬂ);
and

g =g(xy, +rv, Xi, 1, Xis1, =+, Xn).
Now select any minterm of gog: or Zog:. If this minterm specifies x; =
o;, where g; is either 0 or 1, then let the x; input to g be stuck at ;. Now
assume that for the terminal forward path from x; to 8, the output of

£ is an input to gate 4. Repeating the process just described, A can be
sensitized to g. This chaining process is continued until f is reached.

Definition 5

Let « and 8 be two edges of M. Edge a is said to dominate edge B,
if both a s-a-0 and «a s-a-1 will cause M to become independent of the
signal on B regardless of whether or not other edges are normal.
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To illustrate this, let us consider Fig. 2. Edge 6 dominates edges 1
and 3. Edge 7 dominates all other edges. However, edge 2 does not
dominate edge 1, because when edge 3 s-a-1 and edge 4 s-a-0, edge 7 is
a function of edge 1 independent of the state of edge 2.

Theorem 1: Edge a dominates edge f3, if and only if all terminal
forward paths of 8 contain «.

Proof: Suppose all forward paths of 8 pass through a. A stuck o will
block any signal on 8. Thus, M becomes independent of 8 if a is stuck.
Therefore, a dominates 3. Suppose there exists one terminal forward
path of 8 that does not contain «. Then, by Lemma 2, one can always
find a multiple fault on M, which will sensitize the signal on 8 to at
least one of the primary outputs of M. Thus, M is dependent on 8 and
o does not dominate 8. This proves the only if part.

Theorem 2: Dominance relation induces a partial ordering.

Proof: Every forward path of « passes through «. Thus, « dominates
o. Let a; dominate a: and a: dominate a3. By Theorem 1, all forward
paths of az and a» pass through a; and ai, respectively. Thus, all
forward paths of as also pass through a;. This implies that a; also
dominates as. Suppose « dominates 8 and 8 dominates a. By Theorem
1, all forward paths of 8 pass through a and all forward paths of & pass
through B. This means that if a # 8, none of & and 8 has a forward
path. Therefore, « dominates 8 and 8 dominates & implies & = .
Namely, dominance relation is reflexive, transitive, and antisymmetric.
We conclude that it induces a partial ordering.

In a combinational network, a fanout branch never dominates other
fanout branches of its stem. However, in a sequential circuit a fanout
branch may dominate other fanout branches of its stem. Consider, for
example, the sequential circuit M,, which is shown on Fig. 4. Branches
9 and 10 are fanout branches of stem 8. Since every forward path of 10
passes through 9, branch 9 dominates branch 10.

Definition 6

A fanout branch that dominates other fanout branches of its stem
is said to be singular; otherwise, it is said to be nonsingular.
Theorem 3: (i) A stem possesses at most one singular branch.
(if) Every singular branch dominates all other fanout branches of
its stem.

Proof: Let a stem which possesses singular branches be denoted by 8
and its fanout branches be denoted by a1, as, ---, an, where a; is
singular. By definition, «; must dominate at least one a; (Fa). If a;,
where j # 1 or i, is also singular, then «; will have at least one forward
path that does not pass through a; because every forward path of o;
contains the fanout stem 8. Thus, a; will no longer be dominated by
a;. This contradiction proves (i). Suppose some «; is not dominated by
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a1. Then, a, possesses at least one forward path that does not pass
through a;. It follows that «;, for all i # 1, also possesses at least one
forward path that does not pass through a;. Part (ii) of the theorem
follows as a result of Theorem 1.

Definition 7

The kernel set of edge a of M, denoted by K(a), is a set of edges of
M such that
(i) every backward path of a contains exactly one member of K(«),
(i) members of K(a) are either primary inputs that do not fanout
or nonsingular fanout branches, and

(iii) every forward path from each member of K(«) to a does not
contain any other nonsingular fanout branches.

Let us consider M, again (see Fig. 4). All backward paths of edge 20
are shown on Fig. 5. Each underlined edge is either a primary input or
nonsingular fanout branch. Every starred edge is an element of
the kernel set of edge 20 [i.e., K(20)]. From Fig. 5 we have K(20) =
{1, 4, 13, 14, 15, 17, 18}. The following kernel sets can be easily verified:
K(1) = (1}; K(12) = {7, 10}; and K(8) = {4, 14, 15, 17, 18}.

Lemma 3: Let a and B8 be any pair of edges of M.
(1) A stuck a is d-equivalent to some mulliple fault among its
kernel set K(c).

(it) If K(a) and K(B) are disjoint, then any multiple fault among o
and f is d-equivalent to some multiple fault among K(«) U K(B).
Proof: Part (i) follows jointly from the fact that any multiple faults of
a logic gate are equivalent to multiple faults among the input lines
only,' and the definition of K(«) which requires that every backward
path of a contains exactly one member of K(a). Part (if) follows part
(i) of the lemma.

Lemma 4: If « does not dominate B, then either (i) there exists no
forward path from B to a, or (it) every forward path from f8 to «
contains at least one nonsingular branch.

Proof: If statement (7) is true, then o does not dominate 8.

Suppose there exists a forward path from 8 to a, denoted by p =
[81, - -+, sn], that does not contain any nonsingular branch. Then s; is
either a fanout free stem or a singular branch. Let s; be singular. Then,
si—1 is a fanout stem. By Theorem 3, all other fanout branches of s;_;
are dominated by s;. Therefore, all forward paths of s;_; pass through
s;. Thus, all forward paths of 8 also pass through «. This implies that
o dominates 8. Suppose every s; is a stem without fanout, then p is a
fanout free path. But by Theorem 1, this also implies that « dominate
B. The contradiction proves the lemma.

Theorem 4: If a does not dominate 8 and 8 does not dominate a, then
their kernel sets are disjoint.
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Proof:Let o € K(B). Then, o falls into exactly one of the following
categories.

(i) o lies in a backward path of 8 which does not contain any edge
in common with any backward path of a.

(ii) o is contained in a forward path from a to 8.

(iii) o is contained in a backward path of B, say p, that does not
contain a but p, and a backward path of &, say g, contains common
branches.

Clearly, if o belongs to category (i), 0 € K(a). If o belongs to category
(if), by Lemma 4 and category (iii) of the definition of K(a), 0 & K(a).
So, consider only category (iii). Let p = [s1, 82, +++, sn], and ¢ =
[t1, t2, -« , tm]. Category (iii) implies that there exists u and v such
that s, = £, and s; # ¢; for all i < u, j < v. Namely, s, (or ¢,) is a fanout
stem. If s._; and #,—, are nonsingular, by definition o lies in a forward
path from s,-, to B8; that is, 6 € K(a). If s, is singular, by Theorem 3
t,—. is not. Thus, branch ¢,_, is dominated by s.—1 and so is a. If 5,1 is
dominated by 8 then so is a. This contradicts the assumption. There-
fore, s,—1 is not dominated by 8. By Lemma 4, there exists k = u — 1
such that s; is a nonsingular branch. This implies that ¢ € K(a).
Therefore, K(8) and K(a) are disjoint.

Theorem 5: In a regular sequential circuit, every singular branch is
not a necessary checkpoint, but all nonsingular fanout branches are
necessary checkpoinis.

Proof: Let 8 be a fanout stem with fanout branches a,, - - -, an, where
ay is singular. By Theorem 3, every a; # a, is dominated by ai. Thus,
a stuck ay edge is d-equivalent to a stuck 8 edge. As to a stuck a; edge,
for any i # 1, it is not d-equivalent to either a stuck 8 edge, or stuck
a; edge, or stuck a; edge for j # i. Therefore, all nonsingular fanout
branches of 8 are necessary checkpoints.

Theorem 6: For any irregular sequential circuit M there exists a
regular sequential circuit M* such that M and M* are equivalent,
and furthermore, M* preserves fault behavior of M under stuck-type
fault assumption.

Proof: Being irregular, M possesses two sets of edges, denoted by
and §*, where each member @ does not have any terminal forward
paths, and each member of 2* possesses at least one terminal forward
path. It follows that no primary output of M is a function of the signals
on any member of  under fault-free or any stuck-type fault conditions.
Therefore, removing all members of € will not alter the normal or
abnormal functional behavior of M. The resulting circuit consists of
only edges in Q* and is regular.

To illustrate this theorem, consider sequential circuit M- on Fig. 6a.
One can easily verify that £ = {4, 5, 8, 11, 13, 14, 16} and Q* =
(1, 2, 8, 6, 7, 8, 9, 10, 12, 15, 17}. After removing £ from M and
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Fig. 6—Use of Theorem 6. (a) Sequential circuit. (b) Circuit Ms;.

relabeling, one obtains the sequential circuit M3, shown on Fig. 6b,
which is actually a combinational circuit.
Theorem 7: In a sequential circuit M, either (i) the kernel set for any
edge in M exists, or (i) M is irregular.
Proof: Suppose « is an edge of M. Let a backward path of a be denoted
by p = [s1, 82, -+, 8x], where s; = a. Then, p belongs to one of the
following categories.

(i) p is a terminal backward path; namely, s, is a primary input of
M.

(if) There exists T < n such that s, and s.—; are fanout branches of
7. (See Fig. 7a.)

(i17) There exists a gate g such that a is an input of g and s, is the
output of g. (See Fig. 7b.)

(iv) s, is inaccessible.

Category (iv) never occurs because of Assumption 3.

Suppose p falls into either category (£) or (if). Then every backward
path of @ contains at least one nonsingular fanout branch or a primary
input. This implies that K(a) does exist if case (iif) does not apply.

Now consider case (iif). Suppose there exists no s;, 1 =i =< n, that is,
a fanout branch. This means that every element of p does not have a
terminal forward path. Thus, M is irregular.

Suppose there exists some s;, 1 < i < n, that is a fanout branch. If s;

2268 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981



is singular, then s, is the stem of s;. Moreover, s is dominated by si.
If all other fanout branches of p are also singular, then by the
transitivity of dominance, s; would be dominated by si+1. This would
imply that neither s; nor si+; has a forward path. Thus, we conclude
that some s; must be a nonsingular fanout branch and, hence, the
theorem follows.

From the foregoing analysis, we now derive a checkpoint labeling
procedure for a sequential circuit M.

Step 1.If M is irregular, convert M into M* as in the proof of
Theorem 6.

Step 2. All primary inputs that do not fanout are checkpoints.

Step 3. All nonsingular fanout branches are checkpoints.

RN
N I N

[]!]
|
|
]

()

(b)

Fig. 7—Proof of Theorem 7. (a) Category (ii); (b) Category (iii).
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Step 4. NOT gates are considered as lines and delay f/f’s are con-
sidered as 1-input gates.

Theorem 8: The above procedure yields the necessary and sufficient
checkpoints to represent all the multiple faults in M which are
detectable.

Proof: Clearly, faults among the edges of £ of Theorem 6 are unde-
tectable and can be ignored. Let € be a multiple fault defined over a set
of edges of M*, denoted by A = {a;}. Let B = {8;} be constructed
from A by removing all elements of A which are dominated by some
other elements of A. Then B is the largest subset of A such that no
member of B is dominated by any member of B. Because any signal
on a dominated edge will be blocked by the edges which dominate it,
€ is equivalent to a multiple fault among B. Furthermore, since 8; € B
does not dominate 8; € B for all i # j, K(8:) and K(8,) are disjoint. By
Lemma 3, a multiple fault among B is equivalent to a multiple fault
among the following collection of edges of M*:I" = Ugep K(B:). Since
I" is a subset of the collection of checkpoints W given by the above
procedure, € is equivalent to a multiple fault among W. This proves
the sufficiency. The necessity follows from Theorems 5 and 6.

In comparison with the set of checkpoints obtained by applying
Bossen and Hong’s procedure to the combinational network Cy of Fig.
1, we see that we have removed from consideration the following edges:
(i) all feedback lines represented by the vector Y; and (ii) all singular
fanout branches.

Therefore, our work greatly simplifies fault analysis of cyclic logic
networks.

It is important to point out that Definition 6 and Theorem 1 can be
used to identify the singular edges.

IV. ASYNCHRONOUS SEQUENTIAL CIRCUITS

Having found a minimal checkpoint labeling procedure for synchro-
nous sequential circuits with delay flip-flops as memory elements, we
now consider asynchronous sequential circuit. The structure of an
asynchronous sequential circuit can be represented as shown in Fig. 8.

Xﬁ z

Cm

LUMPED <
PROPAGATION ——————
DELAYS

Fig. 8—Asynchronous sequential circuit.
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It can be seen that the model is almost identical to the one shown in
Fig. 1. The only difference is that the clocked delay flip-flops of Fig. 1
are now lumped propagation delays of the feedback lines. Because of
this, one might conjecture that the checkpoint labeling procedure is
applicable without modification to asynchronous sequential circuits.
This conjecture is indeed true.

Consider Step 3 of the labeling procedure. It states that a delay flip-
flop is considered as a 1-input gate. Under stuck-type fault assumption,
this is equivalent to saying that a delay flip-flop is considered as an
edge in the procedure. Therefore, we ascertain that the foregoing
analysis carries over to an asynchronous case under the permanent
stuck-at fault assumption.

V. SUMMARY AND DISCUSSION

In our analysis, we have developed a minimal checkpoint labeling
procedure for squential circuits. This procedure is applicable to both
synchronous sequential circuits with delay flip-flops as memory ele-
ments and asynchronous sequential circuits. Since most of the clocked
flip-flops in use today, such as JK f/f, latch f/f, etc., are actually made
of asynchronous sequential circuits, the procedure is applicable to any
synchronous sequential circuits whose memory elements are either
delay flip-flops or the aforementioned clocked flip-flops.
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