Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 9, November 1981
Printed in U.S.A.

Fault-Simulation Methods—Extensions and
Comparison

By Y. H. LEVENDEL and P. R. MENON
(Manuscript received December 16, 1980)

In this paper, we compare four different methods of fault simulation
in terms of their handling of arbitrary numbers of logic values,
modeling levels, and detailed timing. The methods considered are
parallel, deductive, multilist, and concurrent simulation methods.
Since some of the methods, in their current forms, are unable to
handle all the problems under consideration, we have proposed
extensions to the methods wherever necessary before making the
comparisons. While all the methods considered are capable of solving
the problems with the same degree of accuracy, the concurrent sim-
ulation method appears to be the simplest and most flexible.

I. INTRODUCTION

Different techniques for the efficient simulation of faults in digital
circuits have been published. Among these, the best known are parallel
simulation,'? deductive simulation,* and concurrent simulation.’ A few
papers analyzing some aspects of these methods have also been pub-
lished.**

This paper and two others'™'' comprise a series attempting a com-
prehensive analysis of fault simulation methods. It is hoped that they
will provide a basis for the selection of fault-simulation methods to
satisfy specific requirements.

In this paper, we consider three aspects of circuit modeling and their
effects on the fault-simulation method used. First, we consider the
number of logic values needed to accurately model logic devices and
its impact on the simulation method. Next, the effectiveness of the
different methods for simulating at different levels (e.g., gate level,
functional level, subsystem level, etc.) is considered. Finally, we discuss
the modeling of timing effects, such as rise and fall times and high-
frequency rejection.

Our study covers four methods of fault simulation: parallel, deduc-
tive, multilist, and concurrent. In their current forms, some of the
methods are not capable of handling all the problems we consider.

10,11

2235

Therefore, we have attempted to extend the existing methods, wher-
ever necessary, before making the comparisons between methods.
Before proceeding to the analysis of the methods, we present a brief
description of each method.

Historically, parallel simulation was the first method that simulated
a number of faults simultaneously.’ This method, which is perhaps the
most widely used, takes advantage of word-oriented operations in the
host computer and packs together several faulty circuit values into one
or more computer words. Although this method is quite efficient,
multiple passes are required for simulating large numbers of faults.

Deductive simulation attempts to eliminate the need for multiple
passes by computing normal signal values in the circuit and deducing
the faulty values by manipulating lists of faults.* Associated with each
signal is a fault list, which is a set of faults, any one of which will cause
the signal value to be different from the normal value. The effects of
faults are propagated through the circuit by an algebra of sets.

The multilist method associates two or more lists of faults with each
signal.’*'? Conceptually, the number of lists associated with a signal is
equal to the number of logic values simulated. Thus, for two logic
values, there will be a 0-list and a 1-list associated with each signal,
the former being the set of faults in whose presence (individually) the
signal will have the value 0, and the latter those that result in a value
of 1. Set algebra is necessary for manipulating these lists also. However,
unlike the deductive method, the equations for computing the output
lists of a device from its input lists are dependent only on the function
performed by the device and not on the signal values.

In concurrent simulation, any fault that causes the inputs, outputs,
or internal state of a device to be different from their normal values is
represented conceptually by a copy of the device. During simulation,
if the inputs, outputs, and state of a faulty copy become identical to
those of the fault-free copy, the faulty copy is deleted. Thus, faulty
copies are created and deleted during simulation. The evaluation of
faulty copies is essentially the same as fault-free copies, and no set
algebra is involved. Concurrent simulation can also handle a large
number of faults simultaneously.

It is interesting to note that all the above methods, except parallel
simulation, use some form of data compression for storing faulty signal
values. On the other hand, parallel simulation attempts to compute
simultaneously the fault-free signal value and a number of faulty signal
values associated with each lead in the circuit.

1. NUMBER OF LOGIC VALUES

Three-valued logic systems have been widely used for analyzing
essentially binary systems.'®"* Three logic values are also used in logic

2236 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

simulation, where 0 and 1 represent the two discrete values being
modeled and a third value, u, denotes that a particular value is
unknown.

Recently, tri-state busing has become a widespread technique used
in many Ls1 designs. Difficulties in modeling effects associated with
cmos technology have been reported.'” One effect is the memory
associated with a disabled bus. That is, the disabled bus remembers
the previous logic value on the bus. A solution consists of adding
special circuitry to regular gates, making possible the use of a simulator
with only three logic values."” An alternate solution is the addition of
three more logic values, namely zo, 21, and z, for representing the states
of disabled buses, with previous value equal to 0, 1, and unknown,
respectively.'® Transistor-transistor logic (TTL) tri-state technology
requires the addition of only one logic value, z.'°

Bus contention, another typical, potentially destructive tri-state
effect, cannot be modeled by added circuitry. A solution consists of
adding one more logic value representing a conflict state, a, as shown
in the following example.

Consider a driver inverter and a bus configuration in TTL tri-state
technology (Fig. 1). When line e is enabled, the gate operates as an
inverter, when e is disabled the output of the gate is in a high-
impedance state. When used in a bus configuration, two enabled
inverters create a conflict (bus contention), if they are in opposite
states. The set of logic values {0, 1, u, a, 2} is sufficient to model these
effects, since tri-state devices in TTL technology do not have the
memory property mentioned above.

Table I shows how the bus configuration of Fig. 1 can be simulated
using the above set of five logic values. Since the bus will be connected
to the output of drivers, which can produce four out of the five logic
values, only four logic values are used for modeling the bus.

er

€2 1 a3 b3

(a)

(b)

Fig. 1—(a) TTL Driver-inverter. (b) Bus configuration.

FAULT SIMULATION 2237

Table |—(a) Tristate inverter output
(b) State of tristate bus

€;

0 1 u a z
0 z 1 u u u
1 z 0 u u u
a; u z u u u u
a z u u u u
|z z u u u u
(a)
b

0 1 u z

0 0 a u 0

b, 1 a 1 u 1

u u u u u

z 0 1 u z

(b)

If an ordinary gate could be connected directly to a bus, the model
should allow five logic values for the gate inputs, but requires only
three logic values for its output. Table II shows the behavior of such
an AND gate with inputs x and y, and output ¢

The use of larger sets of logic values, though necessary to correctly
model modern technology, has a serious impact on the method of
simulation used. The following sections deal with this problem.

2.1 Parallel simulation

When using a switching algebra (i.e., two logic values) parallel
simulation can be implemented by associating one computer word
with each line in the circuit. One bit of this word represents the signal
value on a line in the fault-free circuit and the remaining bits represent
values on the same line in the presence of different single faults.

Table Il—AND gate with five input

logic values
x

0 1 u a F4

0 0 0 0 0 0

1 0 1 u u u

y u 0 u u u u
a 0 u u u u

z 0 u u u u

2238 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

Table Ill—Coding for three logic

values
U-'l“ ﬂll a;
0 0 unknown
0 1 1
1 0 0
1 1 unused

When a three-valued system is used, each of the circuits simulated
in parallel must be coded using two binary digits. A commonly used
method consists of associating two words with each line a, namely the
0-word, o°, and the 1-word, a'."” The coding used is shown in Table III,
where the subscript i refers to the ith bit of each word.

Examples of its use are shown in Fig. 2. Here, and elsewhere in this
paper, lower-case roman letters are used to denote leads and Greek
letters represent words. For the gates of Fig. 2, we have

y°=¢x0+B°
Yl=ﬂl'ﬁl
8 =a-p
61=a1+ﬂl
0o __ 1
e

where . and + represent the bitwise AND and OR operations on
complete words.

This method can be extended for any number of logic values. For
instance, consider the AND gate of Fig. 3, using the set of logic values
{0, 1, u, a, z}. The binary coding scheme requires three computer
words for each line, and three codes (out of eight) are not used. For

0 0 §5°
P S I
b{ﬁa b‘[g?

OR
0

ﬂ{aa X{E'

NOT

Fig. 2—Use of coding to represent signal values on gates.

FAULT SIMULATION 2239

= <<
NS o

al

a al c
a?
E 0

b

Fig. 3—AND gate representation for five logic values.

any choice of code, it is possible to calculate the gate output from
switching expressions of the following form:

YEl = f(aﬂ’ £!1, 012, BD: Bl: 32)

Yl = g(aﬂ, (Il, ﬂ2, ﬁo’ ﬁl, BZ)

.Y2 = h(t!ﬂ, ﬂ!l, 02, ﬁD, ﬁl, 32)‘
The original set of logic values and operations do not constitute a
Boolean algebra. The coding scheme establishes a mapping of non-
Boolean functions into switching operations that can be applied on full
computer words, thus, allowing parallel processing.

By using a coding of n — 1 variables to represent n logic values, it is
possible to obtain simpler equations for computing the outputs of
gates. For example, consider the gate of Fig. 3 and a coding using four
words a’, o', a, and o7 to represent five logic values. The code is such
that ol =1, j= 0, 1, a, or z, iff a; = j. All the variables will be zero, if
and only if a; = u. With this coding, the following equations are
obtained for the gate of Fig. 3:

Y=a"+p
_Yl=al_Bl
Y'=0
Y =0.

This type of coding can be used for any number of logic values.

2.2 Multilist simulation

It has been shown that for a three-valued logic system, three lists
X° X', and X" can be associated with each line x.''? Each list, X,
(i = 0, 1, u) represents the faults which cause line x to have the value
i. For each line x, all the lists X’ are disjoint and any list is the
complement of the union of the other two (i.e., the union of the three
lists is the set of all faults being simulated).

For the gates of Fig. 2, we have

2240 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

C'=A'NB _,_ 1
D'=A'UB!

{D°=A°nB“ r=pup
1 _ 0

{;;jl X =XUX,

where ~, U, and N, are set complement, union, and intersection,
respectively.
When five logic values are used, we need five lists; for instance, A°,
A', A", A® and A* are associated with line a.
For the AND gate of Fig. 3, we have
C°=A"UB°
C'=A'NnB
c'={}
C={}
cCr=(C°ucCc'uciuCcy=A"UB°UA'NB.

For the inverter of Fig. 1, we have

B°=E'nA'

B'=E'NA°

Bz=E0
B*=E*UE®UE*U (E'n (AU A))
B*={ 1},

and for the bus configuration of Fig. 1
A% = (B! N B?) U (B? N B3) U (B2 N Bj)
A} = (Bi N B3) U (Bi N B3) U (B: N Bi)
Af =B U B}
Ai=BiN B3
A§ = (BN B}) U (B: N BY).

This method can be generalized to any gate type and any number of
logic values as follows: Let us assume that we wish to simulate a
function f(x), x2, +--, x»), where each input and the output may
assume any one of k values, denoted by 1, 2,---, k, and that the

FAULT SIMULATION 2241

function is defined by a table which specifies the values of f for all
combinations of values of x;.)

(i) We associate a variable x} with each variable x;, such that
x?=1if and only if x; = j, 1 = j < k. Similarly, we associate % variables
f/ with f.

(if) For each i, 1 =i < k, we obtain an expression

ff=3% P,

where P; are products of literals x7", representing all combinations of
values for which f = i. For example, if the table has an entry

n=1Lx=0x=zf=1,
the expression for f' will contain the term
x1x9%5 .

(iii) Replace all lower-case letters in the equation for f* by the
corresponding upper-case letters, representing lists, and retain the
superscripts and subscripts. Replace products by intersection and sums
by union.

2.3 Deductive simulation

Deductive simulation is well defined for two logic values, and is also
applicable to three logic values with some loss of information.* Specif-
ically, if the signal value in the normal circuit is known, (i.e., 0 or 1),
but the value in the presence of a fault a is unknown (denoted by u),
the fault « is included in the fault list as a star fault;*'® that is, it is
unknown whether the particular signal value in the presence of the
fault « will be different from the fault-free value. It was shown in Refs.
10 and 12 that there are cases where the circuit value in the normal
circuit may be unknown, but the value in the presence of a fault may
be known. Since the deductive method cannot represent this case, the
results obtained may be less accurate than with other methods.'*'?

A modification of the deductive method that leads to accurate three-
valued fault simulation was presented in Ref. 10. It uses the coding of
Table III for representing each signal value by a pair of binary
variables. A pair of equations can then be derived, as in Section 2.1,
for computing the coded outputs for each gate type. These equations
can be viewed as defining a transformation of the original circuit with
three signal values into two circuits that will have only binary signals.
These two circuits can be simulated using the two-valued deductive
method. The fault-free and faulty signal values on any lead in the
original circuit can be determined from the signal values and fault lists
associated with the corresponding pair of leads in the transformed
circuits.

2242 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

Fig. 4—Tristate bus driver.

The same approach can be used for performing deductive fault
simulation with any number of logic values. If k logic values are to be
simulated, [log:k] binary variables will be used to represent them,
where [x] denotes the smallest integer greater than or equal to x. The
equations for the coded outputs of different gate types can be derived
from their truth tables, and used in deductive simulation.

As as example, consider the bus driver of Fig. 4 to be simulated with
four logic values, namely, 0, 1, 2 (high impedance) and u (unknown).
The behavior of the device is specified in Table IV.

Using the coding of Table V, we shall represent the signals a, e, and
b of the bus driver by a, and a,, e and e, and b, and b,. The output
equations by and b, can be derived from Tables IV and V.

bo=ey-€1 + ap-e0-€1
bi=¢y-&+ a:-é-€,

For any combination of input values and fault lists, the output values
and fault lists can be computed as in Ref. 19.

Denoting the fault list associated with each variable by the corre-
sponding upper-case letter, let the input values and fault lists for the
circuit of Fig. 4 be as follows:

a=0; Ao={1,3}
a=1 A ={3)

en=0;, E,= {24}
er=1, E,={4,5}

Table IV—Behavior of bus

driver
e
0 1 z u
0 z 0 u u
a 1 z 1 u u
F4 V-4 4 u u
7 z u u u

FAULT SIMULATION 2243

Table V—Coding for tristate devices

X0 X X
0 0 u
0 1 1
1 0 0
1 1 z

Let us assume that all the faults being considered are external to the
device, and we wish to propagate the effects of the faults through the
device. The input conditions are: @ = 1, e = 1. Since the fault 1 is
contained only in the fault list Ao, it will cause ao to become 1, and
therefore a to become z. On the other hand, fault 3 is contained both
in A, and A,, and will cause both a; and a, to be inverted; the value of
a in the presence of fault 3 will be 0. Similarly, fault 2 will result in
e=z fault4ine =0, and fault 5ine = u.

For the above set of values, the output values and fault lists can be
computed using the equations for b, and b, and the method presented
in Ref. 19 as follows:

bo=0
=1
By = (AcN Eo N Ey) U (EoN Ey) = (1,3, 4)
By = (A UE,UE) N (EoN E1) = {2, 3,5).

Denoting the value of b in the presence of fault a by b(a), we can
obtain the following faulty values from the values b, and b, and fault
lists By and B,.

b(l)=2z, b(2)=u; b(8)=0; b(4d) =2z b5 =u

These can be verified by computing the output for each faulty com-
bination of inputs using Table IV.

The modified deductive method discussed above does not lose any
information about the normal and faulty circuits and is as accurate as
any of the other methods. It requires only [log.n] lists compared to the
n lists needed for multilist simulation. However, fault list computations
depend on signal values and may be more complex than in the multilist
method.

2.4 Concurrent simulation

There is no limitation on the number of logic values in this simula-
tion method since faulty and fault-free circuits are treated independ-
ently. As long as the primitive elements of the circuit are well defined,
the evaluation of faulty circuits presents no difficulty.

2244 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

2.5 Summary of results

The results of Section II are represented in Table VI.

Deductive simulation with three logic values (indicated by * in
Table VI) requires the introduction of the concept of star faults.
Deductive fault simulation for more than three logic values (indicated
by T in Table VI) could be defined by using a transformed circuit as
proposed in Section 2.3. However, the complexity of such a procedure
does not seem to justify its use.

From the point of view of simulating more than three logic values,
concurrent simulation represents the simplest, most flexible simulation
method.

ill. MODELING LEVELS

Three levels of modeling and their effects on the simulation method
used will be considered: gates, higher-level primitives, and user-defined
functions.

3.1 Gate-level simulation

All the fault-simulation methods presented here were initially de-
veloped for simulating circuits modeled at the gate level. Therefore,
none of the methods presents any problem, provided only two (or
three) logic values are to be simulated. The differences due to the
number of logic values needed have already been discussed in Section
11, and the effects of detailed timing analysis are discussed in Section
Iv.

3.2 High-level primitives

It is often convenient to model devices such as flip-flops, multiplex-
ors, counters, and shift registers as high-level primitives rather than as
interconnections of gates. For purposes of simulation, such devices
may be described by tables, Boolean equations, or algorithms. The

Table VI—Summary of Results: logic values

Parallel Multilist Deductive Concurrent

Switching One word per | Two lists Well defined Well defined
algebra line per line

Three logic Two words Three lists Well defined but Well defined
values per line per line pessimistic*

Five logic Three words Five lists Undefinedt) Well defined
values per line per line

n logic [log:n] words n lists per Undefined | wel defined
values per line line

* Deductive simulation with three logic values.
T Deductive fault simulation for more than three logic values.

FAULT SIMULATION 2245

type of representation that is most convenient to use will usually
depend on the simulation method.

3.2.1 Parallel simulation

Several solutions are possible. The input values for individual faults
can be determined from the input word(s), and the outputs of the high-
level primitive can be evaluated for each case. The output values must
then be packed so that the parallel simulation method may be used
elsewhere. While this approach may be satisfactory for predominantly
gate-level circuits which also contain a few high-level primitives, the
overhead associated with converting to single-fault simulation and
back to parallel simulation may not be acceptable.

When only two logic values are involved, the primitive can be
represented by Boolean (switching) expressions. The operators in
these expressions can be treated exactly like gates in parallel simulation
of gate-level circuits. When more than two logic values are simulated,
the description of the primitive may be in the form of tables. Using a
coding of the type described in Section II, switching algebraic expres-
sions for the coded output words (i.e., the 0-word, 1-word, etc.) can be
obtained in terms of the coded words associated with the inputs and
state variables. These equations can then be used to compute the
coded output words.

3.2.2 Multilist simulation

The function realized by a high-level primitive can be represented
by tables. From these tables, equations for the output lists in terms of
lists associated with inputs and state variables can be obtained as
discussed in Section 2.2 and used for simulation.

3.2.3 Deductive simulation

As in the case of parallel simulation, one approach is to simulate
each high-level primitive for one fault at a time and use the results to
construct output fault lists for use outside the primitive. Alternatively,
outputs and the next state values of state variables may be represented
by Boolean equations, which are used for fault-list computations in
the same manner as gates. When more than two logic values are to be
simulated, a binary coding can be used as discussed in Section 2.3, and
equations for each coded bit can be used for fault-list computations.

Another possibility is to use tables that specify the fault-list com-
putations for every combination of input values.! These tables can be
constructed from the tables specifying the primitive, as shown by the
example of Fig. 5.

The behavior of the function is represented in Table VII, where p,,
q: are the initial states of the flip-flops and ps, g2 are the next states.

2246 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

Fig. 5—NAND sr latch.

Table VIl—Behavior of SR latch

D1 q r 8 P2 qz
1 0 1 0 0 1 1
2 0 1 0 1 1 0
3 0 1 1 0 0 1
4 0 1 1 1 0 1
] 1 0 0 0 1 1
6 1 0 0 1 1 0
7 1 0 1 0 0 1
8 1 0 1 1 1 0
9 1 1 0 0 1 1
10 1 1 0 1 1 0
11 1 1 1 0 0 1
12 1 1 1 1 u u

The table does not include 00 as an initial state because it cannot be
produced directly.

The fault-list propagation is summarized in Table VIII and does not
include local faults. Py, @y, R, S, P2, and @ are the fault lists associated
with pi, qi, r, 5, p2, and @.. The star faults in the table are to be added
to both the fault lists, P> and §.. We shall demonstrate the procedure
used for deriving Table VIII, by showing how line 1 of the table was
obtained.

Consider line 1 of Table VII. To get a change in p», we need a change
into lines 3, 4, 7, or 11 and for a change in g2, we need a change into
lines 2, 6, 8, or 10, which produces:

P, = P,@,RSU P,Q.RSU P.Q.RSU P,Q,RS U P,@,(®)
=RSUPR

Q.= P,Q.RSU P,,RSU P.@:RSU P,Q,RS U P,@,(®)
= RS U @S,

where juxtaposition represents intersection. Since a change to line 12
is needed to cause p, and g» to become unknown, the star faults are

FAULT SIMULATION 2247

Table VIll—Fault-list equations for SR latch

P, Q2 Star Faults
1 RSUPR RSUQ\S P,@Q.RS
2 RSUPR SUP\R P\Q:RS
3 RUQ.S RSUQ.S P\Q.RS
4 RUQ.S RSUQ,S P.Q.RS
5 RSURP, RSUGS P\Q.RS
6 RSUP,R SUP\R_ P\Q.RS
7 EUQ]S_ RSUR@ P.@RS
8 RSUP,.R SUPR P,@:RS
9 RSUQ.R RSUSP, P@:RS
10 RSUGhR SUQ.R P,@:RS
11 RU@\S RSu@\S P@:\R:S
12 (1 {3 P\@QRS
given by
P,@Q\RS.

We have used P;Q,, which corresponds to the initial state 00 in the
faulty circuit, as a don’t-care state (®) to simplify the expressions.

3.2.4 Concurrent simulation

In concurrent simulation, the same method is used to evaluate fault-
free and faulty circuit signal values. Therefore, no transformations of
representation are necessary, and any representation that leads to
efficient simulation may be chosen.

3.3 User-defined functions

Our discussion of Section 3.2 also applies to user-defined functions.
The main difference is that the tables or equations used for represent-
ing the functions must be generated from descriptions in a high-level
language such as the function definition language in LAMP.*

A typical construct in such a language is the cause-effect statement.
Such statements can be nested to many levels. The techniques dis-
cussed in Section 3.2 can be used for simulating user-defined functions
using the parallel, multilist, or deductive method by first replacing
cause-effect statements by equivalent equations. For example, the
statement

ifx then z=a else z=108
can be replaced by
z=a-x+b:x+a-b
The redundant term a-b has been introduced to produce the correct
result z = 1 for the case a = b = 1 and x = u.*' Otherwise, the

pessimistic result z = u will be produced for this case.
Concurrent simulation does not require the transformation of cause-

2248 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

effect statements into equations. For each fault and each combination
of inputs and state, only those computations enabled by the conditions
need be performed. The operations in a function definition need not
be restricted to logical operations. Therefore, it is not necessary to
generate Boolean equations corresponding to arithmetic operations, as
would be necessary in the other methods considered. Thus, it appears
that the concurrent method would allow simulation of functions de-
fined at a higher level than is possible with the other methods.

3.4 Summary of results

The results of this section are summarized in Table IX. The concur-
rent method is clearly superior in its ability to simulate different levels
of models.

IV. TIMING

In this section, we study different effects related to timing, and their
impact on the four simulation methods under consideration. We shall
consider the effects of different rise and fall times associated with
signal changes, suppression of short pulses to model inertial delays,
and the simulation of faults which affect the magnitude of delays
associated with devices. We shall restrict our discussion to logic
simulation with two and three logic values.

4.1 Rise and fall times

The delays associated with 0 to 1 and 1 to 0 transitions of a signal,
called here the rise and fall times, are not necessarily equal.”>* All the
methods of fault simulation under discussion simulate a number of
signals simultaneously, some of which may be rising and some falling.
To simulate this effect accurately, a mechanism is necessary for
allowing rising and falling signals to change at different times.

Let ¢, be a time before any change occurs on the line under consid-
eration. Due to differences in the rise and fall times, signal changes
may occur on the line at times ¢, and ¢, where #, < t; < ;. Thus, at
time &, all signal changes associated with the particular event would
have occurred. The effect of different rise and fall times can be

Table IX—Summary of results: modeling levels

Parallel |Multilist | Deductive | Concurrent
Gate level 1 1 1 1
Higher level 2 2 2 1
primitives
[User defined 2 2 2 1
functions

Note: 1 = No transformations required.
2 = Transformation into equations required.

FAULT SIMULATION 2249

simulated accurately by computing the values of the signals at time £
based on the values at ¢, and t», namely, the initial and final values for
the particular set of transitions.

In the following sections, we shall consider four simulation methods
and examine the results produced by their different models at three
points in time, namely, before (%), between and t(t), and after

ta(ts).

4.1.1 Parallel simulation

Let £, &, and & be the words associated with a line x at times &, 4,
and &, in two-valued parallel simulation. In three-valued simulation,
two words denoted by superscripts 0 and 1 will be associated with the
line for each of the above times, and the coding of Table III will be
used.

Case 1: Rise time < fall time. We have

=6+ &
for two-valued simulation, and

L=&+8&

8 =248

for three-valued simulation where + and . represent bitwise OR and
AND performed on full words.
Case 2: Fall time < rise time. We have

El = gﬂ'gQ
for two-valued simulation, and
fi=t86

£ =¢0+&

for three-valued simulation.
The preceding formulas can be verified by checking all nine possible
transitions between the set {0, 1, u} and itself.

4.1.2 Three-list method

Let X}, X3, and X} be the i-lists at times f, £, and ¢, defined above,
for i = 0, 1, u. Using the same arguments as in Section 4.1.1, we obtain
the lists for time ¢, as given below.

Case 1: Rise time < fall time. We have

X!= XU X}
X{=X"n X3,

2250 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

Case 2: Fall time < rise time. We have
Xi=Xin X}
X! =X5UX3.
In both cases, X{ = (xX7uU X)).

4.1.3 Deductive simulation

Deductive simulation with different rise and fall times has been
discussed by Kjelkerud and Thessen.” Here we present an alternate
method.

Let the times &, t;, and ¢; be as defined earlier and let x; and X;
represent the signal values and fault lists at those times, i = 0, 1, 2. If
the rise time is less than the fall time, all 0 to 1 transitions will occur
at t;. Therefore, we have

X1 = X+ X2.
Similarly, if fall time < rise time, 1 to 0 transitions will occur at #,, and

x; = 1 if and only if it remains at 1 throughout the transitions.
Therefore, for this case

X1 = Xo+X2.
The fault lists X, at time ¢, for different signal changes in the fault-free
circuit and different relative values of rise and fall times can be
determined from these equations. They are summarized in Table X.
4.1.4 Concurrent simulation

In fact, concurrent simulation is a trivial case, because fault-free and
and faulty circuits are simulated independently. Rising and falling
edges will still occur in distinct event waves, but the treatment of these
events is individual.

4.2 High-frequency rejection

High-frequency rejection consists of eliminating short pulses for
modeling the effect of inertial delays. We consider events occurring at

Table X—Fault-list equations for handling different rise and fall times

Fault-Free Circuit Rise Time < Fall Time Fall Time < Rise Time
Rising edge n=1 n=0
x=0x=1 Xi=XNX; X = XuﬂXz
Falling edge n=1 n=20
x=1x=0 X=X, an Xl XoﬂX2
Constant one n=1 n=1
xn=Lixn=1 Xi=XinX: Xi=XUX;
Constant zero =0 x =0
x0=0,22=0 X=X uUuXs Xi=XnNnX:

FAULT SIMULATION 2251

times fo, 1, and £, where to < £, < t> and the logic values at these times.
If t, — ¢, is less than the magnitude of the inertial delay, then the
change at ¢, must be rejected to suppress short pulses and the value
between £, and ¢, x;, will be replaced by a corrected logic value, xin. If
Xo, X1, and x» are the computed signal values at &, ¢, and £, respectively,
and if £, — ¢, is less than the inertial delay, the corrected signal value
at time £, is given by:

X1 = XoX1 + X1 X2 + XopXa.

The method for performing high-frequency rejection can be derived
from this equation.

In case there are more than two events within the range of the
inertial delay, the treatment elaborated above must be repeated for
each pair of events within that range. For example, consider three
events occurring at times £, 2, and #;. The following triples will be
considered: (fo, t1, t2), (fo, t, £3), (t1, 2, t3), which represent three pairs
of events.

4.2.1 Parallel simulation

For two-valued parallel simulation, the word & has to be replaced
by

bin = bob1 + Sid2 + &obe

and for three-valued parallel simulation, £} and £ are replaced by
g = & + 18 + 86
$n = £07 + £383 + £662.
The coding defined in Table III was used to obtain the above equations
for three-valued parallel simulation.
4.2.2 Three-list methods
Using the equation for x,, given above, we obtain the following fault-
list equations:
X% = (X3nXH U (XN XY U (X5 N X3)
XL =XinXhu XinX U (XinXz)
X = (X?U X))
4.2.3 Deductive simulation

The deductive fault list X1, can be obtained from the equation for
the new signal value x1,, the values of xo, x1, and xz, and the associated
fault lists. The fault list X,, can be computed in the same manner as
fault propagation through functional blocks.” In fact, high-frequency

2252 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

rejection may be thought of as being performed by a filter whose
equation is given above.

The fault-list computations for the eight possible patterns of xq, x1,
and x» are summarized in Table XI.

As an example, consider the case xp = 0, x; = 1, x, = 1(line 4 in
Table XI). We have

Xim=XoX1 + X1 X+ x0x2=a + b +ec.

The fault lists associated with the terms a = xox;, b = x1X0, and ¢ =
xox2 for the specified values are:

A=XNnX; B=XUXy C=XnNnZX,.
Therefore,
Xo=ANBnNnC=XUuX)nNXuUX)n X UX)
=X NX)UXENX)U (XiNX).

4.2.4 Concurrent simulation

In this case, each faulty signal value is computed separately. There-
fore, high-frequency rejection can be performed on each signal individ-
ually, using the equation for xi, given in the preceding section.

4.2.5 Suppression of short-duration detections

We have considered the suppression of short pulses produced inde-
pendently by each fault-free or faulty signal value. However, we did
not consider the case of a short pulse of detection, when neither the
faulty nor the fault-free signal incurs a pulse. This is illustrated by the
case where xo = 1, x; = 1, xo = 0, for the fault-free signal and xo = 1,
x, = 0, xo = 0, for the faulty signal. This causes a short detection
between ¢, and t.. For deductive simulation, this short detection may
be eliminated by using the formula

Xin= X NX) U (XoN X3) U (X5 NX)
independently of the fault-free signal pattern and after the high-

Table XI—Fault-list equations for high-frequency rejection
X2 Xin Xin

(Xo N X)) U (X, NXp) U (XN Xo)
(XoN X)) U (X) NXs) U (XoN Xa)
(XoN X)) U (X; NXo) U (Xo N Xy)
(XoNX)) U (XN X)) U (XoNXo)
(XoNX)U XK NX)U(XNX)
(XoN X)) U XiNXe) U (XoN Xo)
(XoNX) U XiNXy) U (XN Xo)
(Xl] nX]) U (X[n Xg) U (Xu rlXQ)

=
ko

HHHH,OOOO
—_—_—o O -=OO
OO~ OO
—F—_—_Oo~OoQoQ

FAULT SIMULATION 2253

frequency rejection has been performed. The term X is the set of
faults detected at time #:.

The same method may be used for all the other simulation algo-
rithms described earlier.

4.3 Delay faults

A fault that affects the transport delay associated with a signal is
called a delay fault. Consider a fault that causes a delay to change
from d to d’. When the signal at the site of such a fault changes, the
signal value corresponding to the particular faulty circuit must be
delayed by d’ instead of d.

4.3.1 Parallel simulation

Two aspects of delay faults must be considered: injection of delay
faults and the propagation of the effects of delay faults. Let us assume
that a gate which is the site of a delay fault has been evaluated at time
t, and the jth bit of the word represents the circuit with the delay
fault. Let the normal and faulty delays be d and d’, respectively, and
let d < d’. Let x = (x), x5, - -+, x,) and X’ = (x9, x5, ---, x) be the
vectors representing the old and new values, respectively. If for any
i1 # J, x! # x:;, a vector (x1, x5, +++, Xj—1, Xj, Xj+1,*+, Xn) will be
scheduled to be applied to the gate output at time ¢ + d. If x} # x;, the
vector X’ will be scheduled to be applied to the gate output at time
t + d’. Similarly, if d’ < d and x; # xj, the vector (x, x3, - - - , X1, X},
Xj+1, * + + , Xn) will be scheduled for time ¢ + d’. If x} # x; for any i # j,
then the vector x’ will be scheduled to be applied at time ¢ + d. The
vectors for updating at the different times can be obtained from the
old and new vectors by appropriate masks and logical operations.

From the above discussion it should be clear that the effect of delay
faults is to cause the signal values on the same lead in the presence of
delay faults to change at different times. When one or more values in
a vector change, the gates to which the signal fans out in the fault-free
and all faulty circuits are scheduled for evaluation in parallel. There-
fore, no special treatment is necessary for propagating delay faults.
Since any signal change at the inputs of a device, faulty or fault-free,
will cause an evaluation of the device (faulty and fault-free), delay
faults will tend to increase the number of evaluations required.

4.3.2 Three-list method

The equations required for simulating delay faults using the three-
list and deductive methods can be derived by treating the delay fault
as an internal fault in a functional block. These equations can then be
used for simulating delay faults without explicitly modeling them as
faults in functions.

2254 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

Let a be a delay fault which causes the delay associated with a signal
to change from d to d’. Let f. be a fault variable,"” which has the
fault-free value of 0, but the fault o causes it to become 1. We shall
represent the input and the output of the function used for modeling
the delay fault by x and z, respectively. We assume that the evaluation
is being done at time ¢ = 0, and the value of the input x, ¢, units of time
earlier is represented by x(—¢;). Two different cases must be consid-
ered:

Case 1: d < d’. The value of z at time d is given by

if f, then z = x(d — d’)
else z = x,

which can be transformed into the equation
2(d) = fo-x(d —d') + fo-x.

Case 2: d’ < d. The value of z at time d’ can be represented by a
function as in Case 1, and transformed into the following equation:

2(d') = forx + forx(d —d).

The equations for the three-list method can be obtained from these
equations using the method discussed in Section 2.2.

Casel:d<d’
zZ\d) = [{a}) N X'(d = d")] U [X' N {a}]
Z°d) =[@ NX U X' NX(d—-d)]U[X(d-d) N {a}]
Z4(d) = [Z'(d) U Z°(d)].
Case2:d' <d
ZNd') = [{a} N XU [X'(d’' — d) N TaT]
Z°d) = [NX°1U[X° N X°(d’' —)]V [X°(d’ — d) N {a}]
Z'(d’) = [Z"d’) U Z°(d")].
4.3.3 Deductive simulation

The functional equations derived in Section 4.3.2 can be used for
deriving deductive fault lists for delay faults. The fault-list equations
will depend on signal values as shown in Table XII.

4.3.4 Concurrent simulation

Since each fault is handled separately, the simulation of delay faults
does not need any special processing.

FAULT SIMULATION 2255

Table Xll—Fault-list equations for delay faults

x x(d—-d') z(d) Z(d)
0 0 0 [X(d - @) N {a}]U [Xn {E}]
0 1 0 (Xid—=ad) N (@)]U [}m {E}’]

1 0 1 [Xﬂ {E}]u [X(d - d') N {a}] U X N X(d —)]
1 1 1 [X(d—a")n{a}]U[XnX(d’—d)]Ul:Xﬂ a]
Casel:d<d’

x xd —d) 2d) Z(d’)

0 0 0 XN {a)]U [X(a" —d)n {;}]

0 1 1 XN X - d)JuXn {a}]U[X(d'—d)n '{_J}}

1 0 0 [Xn{a}]u[md'—d)n a]

1 1 1 |:X(d’ —d) n{?ﬂ UIX N («}]UX N X(d - d)]
Case2:d’' < d

4.4 Summary of results

Changes in the fault-free and faulty values may occur at different
times for the same line due to different rise and fall times and to delay
faults. In the case of parallel simulation, a change in a single faulty or
fault-free value on a line leads to computations involving the whole
word (or pair of words). In the three-list and deductive methods, the
addition or deletion of a single fault will require recomputation of
complete lists. On the other hand, concurrent simulation treats each
event, faulty or fault-free, independent of all other events and, there-
fore, should require less computation. High-frequency rejection is also
simpler in concurrent simulation than in the other methods.

V. CONCLUSION

We have compared parallel, multilist, deductive, and concurrent
simulation methods with regard to their ability to simulate more than
two logic values, different levels of simulation, and accurate timing

2256 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

analysis. All the methods, except deductive, can handle any number of
logic values without significant changes in the method. An extension
of the deductive method to an arbitrary number of logic values is
presented. Concurrent simulation appears to be the most convenient
method of simulating an arbitrary number of logic values.

All the methods, except concurrent, require the transformation of
functional descriptions of high-level devices into Boolean equations.
No such transformation is required for concurrent simulation. In fact,
it is not even necessary to restrict operations in functional descriptions
to Boolean operations if concurrent simulation is used.

All the methods are capable of handling different rise and fall times,
performing high-frequency rejection and simulating delay faults. Since
concurrent simulation handles each event separately, these functions
can be performed more easily and efficiently than the other methods.

In addition to the aspects discussed here, two factors that must be
considered in selecting a simulation method are storage requirements
and speed. A detailed analysis of the speed and the storage require-
ments of these methods is made in Ref. 11 based upon statistical data
gathered from deductive simulation.

REFERENCES

1. S. Seshu, “The Logic Analyzer and Diagnosis Programs,” Coordinated Science
Laboratory, Rept. R-226, 1964.
2. 8. Seshu, “On an Improved Diagnosis Program,” TEEE Trans. Electronic Computers,
EC-14, No. 1 (February 1965), pp. 76-9.

. S. A. Szygenda, “TEGAS-2- Anatomy of a General Purpose Test Generation and
Simulation System for Digital Logic,” Proc. 9%th ACM-IEEE Design Automation
Workshop (June 1972), pp. 116-27.

D. B. Armstrong, “A Deductive Method of Simulating Faults in Logic Circuits,”
IEEE Trans. Computers, C-21, No. 5 (May 1972), pp. 464-T71.

. E. G. Ulrich and T. G. Baker, “Concurrent Simulation of Nearly Identical Digital

Networks,” Computer, 7, No. 4 (April 1974), pp. 39-44.

. H. Y. Chang et al., “Comparison of Parallel and Deductive Simulation Methods,”
IEEE Trans. Computers, C-23, No. 11 (November 1974), pp. 1132-8.

Y. H. Levendel and W. C. Schwartz, “Impact of LSI on Logic Simulation,” Proc. of
COMPCON, San Francisco, February 1978.

M. Abramovici, M. A. Breuer, and K. Kumar, “Concurrent Fault Simulation and
Functional Level Modeling,” Proc. 14th Design Automation Conference (June
1977), pp. 128-37.

F. Ozguner, W. E. Donath, and C. W. Cha, “On Fault Simulation Techniques,” J.
Design Automation and Fault Tolerant Computing,” 3, No. 2 (April 1979), pp. 83-
92,

10. Y. H. Levendel and P. R. Menon, “Comparison of Fault Simulation Methods —
Treatment of Unknown Signal Values,” J. of Digital Systems, 4, No. 4 (Winter
1980), pp. 443-59.

11. Y. H. Levendel and P. R. Menon, unpublished work.

12. Y. H. Levendel and P. R. Menon, “Unknown Signal Values in Fault Simulation,”
Proc. 9th International Symposium on Fault Tolerant Computing (June 1979),

- I = R~ T N)

©

. 125-8.
13. M?g'oeli and S. Rinon, “Application of Ternary Algebra to the Study of Static
Hazards,” J. ACM, 11, No. 1 (January 1964), pp. 84-97.
14. E. B. Eichelberger, “Hazard Detection in Combinational and Sequential Switching
Circuits,” Proc. 5th Annual Symp. on Switching Circuit Theory and Logical
Design (1964), pp. 111-20.

FAULT SIMULATION 2257

15. R. L. Wadsack, “Fault Modeling and Logic Simulation of CMOS and MOS Inte-
grated Circuits,” B.S.T.J. 57, No. 5 (May-June 1978), pp. 1449-74.

16. Y. H. Levendel, P. R. Menon, and C. E. Miller, “Accurate Simulation Models for
TTL Totempole and MOS Gates and Tristate Devices,” B.S.T.J., 60, No. 7
(September 1981), pp. 1271-87.

17. Y. H. Levendel and M. A. Breuer, “Vector Representation of Switching and Three-
Valued Functions,” Proc. Eighth Internat. Symp. on Multi-valued Logic (May
1978), pp. 163-70.

18. S. G. Chappell, C. H. Elmendorf, and L. D. Schmidt, “LAMP: Logic-Circuit Simu-
lators,” B.S.T.J., 53, No. 8 (October 1974), pp. 1451-76.

19. P. R. Menon and S. G. Chappell, “Deductive Fault Simulation with Functional
Blocks,” IEEE Trans. Computers, C-27, No. 8 (August 1978), pp. 689-95.

20. S. G. Chappell et al, “Functional Simulation in the LAMP System,” J. Design
Automation and Fault Tolerant Computing, I, No. 3 (May 1977), pp. 203-16.

21. K. Wu, Ph.D. Dissertation, “Synthesis of Accurate and Efficient Functional Mod-
eling Techniques for Performing Design Verification of VLSI Digital Circuits,”
Univ. of Texas, Austin, December, 1979.

22. S. G. Chappell and S. S. Yau, “Simulation of Large Asynchronous Logic Circuits
Using an Ambiguous Gate Model,” Proc. Fall Joint Computer Conf. (1971), pp.
651-61.

23. S. A. Syzgenda, D. M. Rouse, and E. W. Thompson, “A Model and Implementation
of a Universal Time Delay Simulator for Large Digital Nets,” Proc. Spring Joint
Computer Conf. (1970), pp. 207-16.

24. E. Kjelkerud and O. Thessen, “Techniques for Generalized Deductive Fault Simu-
lation,” J. Design Automation and Fault Tolerant Computing, 1, No. 10 (October
1974), pp. 377-90.

2258 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1981

