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Detecting the Occurrence of an Event by FM
Through Noise
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(Manuscript received March 26, 1981)

The occurrence of an event at a random time 7 is signaled through
white noise by an FM signal whose modulation h(t — 1) is a causal
pulse triggered at . Nonlinear filtering is used to find exact expres-
sions for the chance that v > t, and the expectation of T, each
conditioned on the observed noisy FM signal over (0, t). The former
quantity can be used to minimize the probability of error in guess-
ing—from the obseruvations over (0, t)—whether v has occurred by t.

I. INTRODUCTION

The theory of frequency modulation has always been beset by
analytical difficulties, and nowhere have these been more in evidence
than in the area of optimal demodulation of noisy FM signals. Recent
advances in nonlinear filtering, however, make it possible to solve
certain problems of detection and estimation quite explicitly. We
report on such a class of problems here.

The basic problem setup is this: an event of interest occurs at a
random time 7. Its occurrence is signaled by sending a pulse of shape
h(-), starting at 7; that is, we send

_J0 t<r
s(t) = {h(t—‘r) t=1’

where A(-) is some causal, integrable pulse. The signal s(¢) is trans-
mitted by FM; the waveform is

4
cos[9+wt+j s(u)du]
0

for a carrier frequency w and initial phase 6. In transmission this wave
suffers the degradation of having white noise added to it; thus, we
observe a signal y, defined by
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t
dy: = cos[ﬂ + wt + j s(u)du]dt + dby,
0

with b, a Brownian motion independent of . We would like to construct
a nonlinear filter acting causally on y; to estimate optimally at each
time ¢ whether 7 < t or not, and if so, by how much. This filter will be
obtained by solving the nonlinear filtering problem of determining the
conditional probability

po(t) =P{r>t|y, 0=s=t}
and the conditional density (z = distance back from ¢ to 7)
pi(t,u) = P{red(t —u)|y, 0=s=<t}, O=su=t.

Such a filter (po, p1) represents a summary, without loss, of all the
information in the “past” o{ys, 0 =< s < ¢} that is relevant to whether
r occurred by time ¢, and if so, how far back. In particular, the filter
(po, p1) yields least-squares estimates of 7, by integration over u,
according to the formula

oo

uf(u)du

t
E{r|y, 0=s=t} = polt) T—FQ
where F is the a priori distribution of 7, and f = F' its density. The
first term predicts where 7 will be, on the average, when it has not yet
occurred by ¢; the second “postdicts” T when it has already happened
by time t. Indeed, the first term is E{71.>| y,, 0 = s = t} and the second
is E{rl<|y, 0=s5=<t}.

+ J (t — u)pi(t, u)du,

II. NOTATIONS
Let x; be the process 1, so that

. = 0 if the event has not occurred by time ¢.
! 1 if the event occurred by time ¢.

Then with X, = [§ x.ds, the signal s(¢) can be written as

(. _[HX) t=1
s(t)—Lh(t s)d.?c,.-—{0 f<

and the FMm signal as
cos[f + wt + H(X))],

where H = [q h(s)ds.

lIl. FILTERING EQUATIONS

Our approach is Bayesian: foreknowledge of distr {7} is used to
calculate the conditional probabilities po and p;. We assume for sim-
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plicity, and with only slight loss of generality, that r has a known a
priori distribution F with a differentiable density f. The “rate” at
which 7 is occurring during (¢, ¢ + k), given that it has not yet
happened, is just
f(t)

1-F(t)
We assume at first that the phase # is known at the receiver. Then, the
filtering or Zakai equations for unnormalized versions pp and p; of pg
and p,, respectively, are just

dpo = A(t)podt + cos(f + wt)pody:,

AL) = >0.

9
dp, = % + cos[# + wt + H(u)]p:dy:,
with initial conditions po(0) = 1,
¢
lim J pi(t, u)du =0
ho J,

and boundary condition p,(¢, 0) = po(£)A(t).

It can be seen that since the process x, is transient in character these
equations are coupled in one direction only: p; depends on p, via the
boundary condition, but pe in no way depends on p;. Thus, it will be
possible to solve for p, first, and then for p;. We first transform the
problem into one without stochastic differentials. This is done by the
now familiar device' of looking for a solution of the form

po(t) = exp[ ycos(6 + wt)]go(t)
pi(t, u) = exp{ywcos[f + wt + Hu)}qu(t,u), 0<t=<u,

where go and ¢, are differentiable functions, though not necessarily
C'. This form for po and p, indicates that the rough or martingale
dependence of these functions on y(-) is confined to the exponent as
shown, while their dependence on y(-) via go and q; is of a much
smoother integrated form, as will be seen.

Applying Ito’s formula to the postulated form, with quadratic vari-
ation d(y), = dt since the observation process is a translation of the
Wiener process, we find these nonstochastic PDEs for g, and g::

1 .
do = o (—A(t) + wysin(@ + wt) — 3 cos*(f + wt)), qo(0) =1
aq1 g ;
—==—+q | y[w + h(u)]sin[0 + wt + H(u)]
1 2
—Ecos[0+ wt+ Hu)]|,0=su=t.
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The boundary condition is
q:(t, 0) = qo()A(2) .
The first equation is an ODE solvable as
t t
. 1
qo(t) = exp(— J A(s)ds + J [wyssin(f + ws) — 3 cos*(0 + ws)]ds)
0 0
t

=[1- F(t)]exp(j

The second is a first-order PDE solvable by characteristics as

[wysin(f + ws) — é cos’(f + ws)]ds).

qilt, u) = A(t — u)exp(J {wysin[@ + ws + H(s — t + u)]
0

- % cos’[@ + ws + H(s — t + u)]
+ y.h(s — t + u)sin[0 + ws + H(s — ¢ + u)]}ds),

where A(.) is an arbitrary function. To obtain A we let u|0, and we
use i(s —t +u) =0and H(s — ¢t + u) =0 for s <t — uto find

qi(t, 0) = A(t)exp(J’ [¥swsin(@ + ws) — % cos’(f + ws)]ds),
0

= go(t)A(L),
by the boundary condition. Thus, A(f) = f (), and we obtain

t—u

qi(t,u)=f(t— u)exp([ [wyssin(d + ws) — % cos*(f + ws)]ds

0

t
+ J {[w + h(s — t + u)]yssin[f + ws + H(s — ¢t + u)]
t—u

- %cosz([ﬂ +ws+ H(s—t+ u)]}ds).

We remark that this is the unconditional density f(¢ — u) that 7
occur at ¢ — u, multiplied by a positive factor depending on the pulse
shape A and the observation {ys;, 0 =< s = t}. The cos® integral can be
evaluated explicitly, leading to some simplification, and to approximate
formulas for large carrier frequencies.”

The normalization

polt) + J pit, u)du=1
0
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is achieved by dividing each of py and p, by
¢
po(t) + f oilt, u)du,
0
where

polt) =[1 — F(t)]exp(y,cos(& + wt) + [ [wyssin(f + ws)
0

1
-3 cos*(f + ws)]ds)

pilt, u) = f(t — u)exp[y,cos[ﬂ + wt + H(u)]

—u
1 ;
+ f [wysin(f + ws) — 3 cos’(f + ws)]ds
0

+f [[w+h(s—t+u)]yasin[0+ws+H(s—t+u)]

t—u
1 2
—Ecos[9+ws+H(s—t+u)] ds |.

If, as is likely, the phase @ is not known at the receiver, then it must
be integrated out in both py and p, prior to normalization, a process
that mars the relatively neat formulas obtained for po and p, for
known. With # uniform over (—m, =) and independent of 7, familiar
Bessel function approximations again arise.’

IV. HAS r OCCURRED YET? THE OPTIMAL GUESS

In the kind of system under study here, a task of primary interest is
to guess at ¢ whether 7 has happened yet. Such a guess is represented
mathematically by a random process v, taking the value 1 for a
decision that r has not occurred, and a value 0 for a decision that it
has, and adapted to the past observations p{y, 0 = s < t}. The
probability of error is just

Plr=t&uv=1}+P{r>t&uv. =0},
which can be written as
El..(1 —-v) + Evdl — 1,20)
=FEl,., — 2E1l...v, + Ev,
=E(l- — )’

the mean square error in approximating 1.., by v,. Thus, the chance of
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error is the least if v, is chosen to minimize this mean square error.
Noting that po(t) = E{1.>|y: 0 < s < t}, we can write this mean
square error as

E{ po(t) — 2po(t)ve + vt}
and conclude that a minimizing v; is

1| if po(t) >
v(t) =

TN ST

0| if polt) <

It follows that by watching po(-) we can make a best guess as to
whether 7 has occurred yet or not, best in the sense of minimizing the
chance of being wrong.

V. THE CONDITIONAL EXPECTATION OF 7

As we observe the signal y,, we may be interested in predicting 7 on
the basis of the information seen so far. More precisely, since it is
possible that at ¢ > 0 7 has already occurred, we want to simultaneously
predict and “postdict” 7 by calculating the two terms in

T=E{r|y,0=s=<t}
=E{rl>t|y, 0= s=<t}) + E{tl<|y, 0= 5= ¢)}.

The second term is clearly given in terms of p; by

t
J (t — u)pi(t, u)du, (u= distance back to 7 from ¢) .
0

We claim that the first is just

J"" udF (u)
TFo
For with o{y,, 0 < s < t} = Y for short, we have
E{rl.~| 5} = E{r1| ybvr > t}| 6}
= E(E{r|ybvr > t} 15| y0}
= E(E(7|7 > t} 1| y5}
= po(t)E{7|7 >t}

po(t)

since the additional y, information in Y§ U 7 > ¢ is irrelevant to 7 when
it is known that T > ¢. That is, since x, = 1, is a Markov process, all
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the information o{x,, ys, 0 < s < ¢} is irrelevant to {x,, u > ¢} when it
is known that x, = 1, i.e.,, > ¢
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