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A unified theory is presented for data-aided equalization of digital
data signals passed through noisy linear dispersive channels. The
theory assumes that some past and/or future transmitted data sym-
bols are perfectly detected. We use this hypothesis to derive the
minimum mean-square error receiver. The optimum structure consists
of @ matched filter in cascade with a transversal filter combined with
a linear intersymbol interference canceler which uses the ideally
detected data symbols. The main result is an expression for the
optimized mean-square error as a function of the number and loca-
tion of the canceler coefficients, the s/n, and the channel transfer
function. When the number of canceler coefficients is zero, we get the
well-known result for linear equalization. When the causal or post-
cursor canceler approaches infinite length, we obtain the well-known
decision feedback result. When both the precursor and postcursor
cancelers become infinite, we obtain the very best result possible,
namely, the matched-filter bound dictated from fundamental theoret-
ical considerations. Neither the decision feedback nor the matched-
filter results can be achieved in practice since their implementation
requires infinite memory and storage. Our theory can be used to
calculate the rate of approach to these ideals with finite cancelers.

I. INTRODUCTION

The theory of linear and decision feedback equalization to mitigate
the effects of intersymbol interference (1s1) and noise in digital data
transmission is well known.'™ In this paper, the problem of equalization
is cast in a general framework of an 181 canceler aided by past and/or
future data values. This general structure is suggested from optimal
detection theory and is shown in Fig. 1. The optimal detector of digital
data in the presence of additive Gaussian noise and 18I is comprised of
a matched filter and an 151 estimator which is used to cancel the
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Fig. 1—Block diagram of data-aided equalization.

interference.”® The implementation of this structure is often impract-
ical because of its complexity.™®

In our theory we postulate that some portion of the 1s1 can be
perfectly synthesized and, therefore, subtracted from the incoming
signal. In other words, we replace the optimal estimator with a practical
one. The effect of the remaining interference is then minimized by a
linear filter or a conventional linear equalizer. In practical systems,
however, perfect estimation cannot be achieved; therefore, our results
serve as ideal limits. The inclusion of occasional errors in our theory
has proved mathematically intractable so far.

In Section II, we determine the minimal mean-square error (mse)
when an arbitrary set of data symbols is known to the receiver. In
Section III, the optimal receiving filter is derived and analyzed. The
performance of the infinite linear equalizer, the decision feedback
equalizer and the infinite canceler are obtained as special cases of the
general result. Section IV covers a discussion of numerical results.

Il. MINIMUM MSE FOR DATA-AIDED EQUALIZATION .

In Fig. 1, the transmitter generates the data sequence {a.} whose
elements are assumed to be independent identically distributed (i.i.d.)
discrete random variables. These discrete amplitudes sequentially
modulate the pulse p(¢) at a rate 1/T to produce the transmitted
signal. The pulse shape, p(t), can be viewed as the overall impulse
response of the transmitting filter and the transmission channel. White
noise, »(t), is added to the received signal which is then applied to the
linear receiving filter, w(¢). The output signal is sampled at the symbol
rate 1/T and combined with the output of the canceler. The linear
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canceler is modeled as a transversal filter with coefficients, {c.}, where
n € S, and where the set of integers S denotes the range of the
canceler’s taps.

For most applications, and for the special cases investigated later in
this Section, the range will contain the neighboring taps of the refer-
ence location but never the reference location itself, and consequently,
S={-Ny +-+,=1,1, --., Ny}. The canceler operates on the past
received symbols @,-1, - - , @»-n, and on the future received symbols
@n+1, =+, Gnen,, Which are assumed to be known to the receiver.
Clearly, to realize an operation on the future data symbols, a time
delay of at least V,T seconds has to be introduced.

For a general set S the output signal x, = x (nT') can, thus, be written
as

-]

Xn= Y, TeQnir— ), Ck@n-ik+ n. (1)
k=—w kES

Where rx = r(kT) is the overall impulse response evaluated at ¢ = &T,

e = TJ' w(r)p (kT — 7)dr, (2)

and where & = £(kT), i.e.

.fk=f w(ryv (kT — r)dr, for k= —o0, ... ,-1,0,1, -..,00. (3)

To facilitate modeling of various types of linear modulation schemes,
the data sequence, the noise, and all impulse responses are assumed to
be complex valued. In general, p(¢) will be the preenvelope of the
passband transmission system with respect to a carrier frequency. This
notation has become extremely useful and economical in this field.’
Specifically, it permits a unified presentation of baseband and pass-
band systems.

The output signal, x,, after slicing or quantizing is usually taken to
be an estimate of the transmitted data symbol a,. Our goal now is to
obtain a receiving filter, w(¢), and canceler taps, {c»}, so that the mse,

e=Ef|x, — ax|?}, (4)

is a minimum. To determine the optimal canceller coefficients, {c.},
we differentiate eq. (4) with respect to ¢,, n € S, and set the result to
Zero

de
Eg—-=aﬁ[c,‘{‘—r,‘.‘+c,.—r,.]=0, for ne S, (5)

where
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E{a.a?} = 0%8.s, (6)

and 8, is the Kronecker delta. The immediate conclusion from eq. (5)
isthatforn € S

Cn=Tn. (7)
Inserting this into eq. (1), we get
Xn= Y Tu@n i+ f w(tyy(nT — 7)dr. (8)
kES .

Thus far, our approach is perfectly obvious. By knowing the data
symbols for all integers & € S, it is possible to synthesize the resulting
151 associated with these symbols and subtract it from the current
signal sample x,. If the set S contains all integers k < n, we use all the
already-decided-upon data symbols (available at the receiver without
delay) to synthesize the postcursor 1sI. This is precisely what is done
in decision feedback equalization. If the set S contains all the integers,
except the one associated with the present instant, n, all 1sI is elimi-
nated. But this, of course, requires infinite delay. In practice, the set S
will be finite and our main concern will be to determine how it
influences the mse.

We now proceed to optimize the receiving filter, w(t), for a given set
S. Inserting eq. (8) into eq. (4) and using eq. (6), the resulting mse can
be expressed as

€=G§{E|I‘k|2—l‘n—rﬁ'+1+02], 9)
kgS
where
E{v(t)v(t + 7)*} = 62T68(1), (10)
and where
o2 (7
o= T;;J’ |w(t)|dt . (11)

We remark that more general noise covariances can be included, but
the calculations become more cumbersome without yielding additional

insights.
To obtain the optimum w(t), let
w(t) = wo(t) + Au(t) (12)
and define
Uy= TJ’ wo(t)p(RT — 7)dr1, (13)
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where wo(t) is the optimum impulse response of the receiving filter
and where the U, are the samples of the optimized overall impulse
response. It follows immediately from eq. (2) that

re=Us+ ATJ’ p(t)p(RT — 7)drt . (14)
When
O€
a " 0 (15)

A=0

is calculated from eq. (9), we obtain an equation for the optimum
receiving filter:

wo(t)No = p(—=t)* — ¥ Uep (kT —1)*, (16)
kgS
where
2
No=2:. (17)
Oq

The interpretation of eq. (16) is standard: the optimum receiving filter
is comprised of a matched filter p(—t)* in cascade with a transversal
filter having taps only at those locations where the canceler has none.
This structure is shown in Fig. 2.

To obtain our central result, an expression for the optimal mse, we
multiply eq. (16) by Two(¢)* and integrate from —o to +o0. This yields
with the aid of egs. (9), (11}, and (13) the result

€opt = Ui(l - UD) . (18)

The explicit determination of U is the subject of the next section.

*
— pl—t) fmeee T

Fig. 2—Optimal receiving filter, wo(t).
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lil. THE OPTIMAL FILTER

To determine the sample values, {Un}, of the optimal overall
impulse response, define the autocorrelation function of the channel
impulse response as

R, = T[ p(mT — 1) p(—7)*dr (19)
and its Fourier transform as
Rw)= Y Rne /™7, (20)

After multiplying eq. (16) by Tp(nT — 1) and integrating from — to
+00, we get the following system of linear equations in {U,},

UnNo=Rp — Y, UiRnr for allm. (21)
kgS

To determine the optimal receiving filter, we only need to know U,
for m & S. From eq. (21) we extract the equations necessary to
determine U, and partition them as follows

Uo(No + Ro) = Ro— Z UkRﬁk for m= 0, (22)
ng
Y UiMp =1 —Uo)Rn for mée&dJ, (23)
k¢J

where we defined
M. = Ry, + Nobro, (24)

and where J is the set S augmented by m = 0.

Note that the indices of the unknowns and the indices of the right-
hand sides of eq. (23) have gaps of the same size and at the same
locations. (See the definition of f above.) Thus, the set of equations in
(23) is not in a standard form and the solution technique is not obvious.
In Appendix A we develop a technique to solve this infinite set of
equations with finite gaps. It involves the solution of a special infinite
set of equations without gaps. T'o compensate for the gaps, we augment
the original set of equations. Specifically, we add for m € J a finite
number of equations to the infinite set such that the solution vanishes
for m € J. From Appendix A, we determine that the optimum mse
becomes

No

2 —_—
g No+ H’ (25)

€opt =
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where H, is determined from the following set of equations:
z MilnH, = 80— NoMz, for kEJ (26)

meJ
and where M3’ is the inverted sequence of M, i.e., it satisfies

2 M,,M.Eln = 8;,,0 for allk. (27)

In the following section, we investigate the minimal mse for some
special cases. As mentioned initially, we use the realistic assumption
that the set S contains the neighboring locations {—N,, --., —1,
1, .-+, Nz}. ThenJ = {—Ny, - -+ , N} and the coefficient matrix in eq.
(26) is a finite Toeplitz matrix. The solution of eq. (26) and, thus, Ho
is unique and is guaranteed to exist when R (w) + Ny is bounded away
from zero and infinity.'"” These conditions are very mild and are
satisfied in most cases of practical interest.

3.1 Infinite length equalizer

For N; = N; = 0 the set J includes only the zero integer and all
canceler coefficients vanish. Consequently, eq. (26) degenerates to a
single equation

HoM7'=1—- NoM3'. (28)

Solving this for H, and inserting it into eq. (25), we obtain the standard
result for the optimum linear equalizer,®

T J'”',T Nodw

il . 29
2w |, R(w)+ No @9

eopt =

where we expressed M;' in terms of its Fourier transform

T (" dw
-1 _ =
° o _[WR(N) +No 30

3.2 Matched-filter

When N; = N, = » the set </ is infinite; i.e., the canceler subtracts
all the 1s1. Equation (26) in this case yields

2 M;im(Hm + Nobmo) = Oro for allk. (31)

Comparing this with eq. (27) gives the result
M,, = H, + Nobnp . (32)
From eqs.(32) and (23) it follows that H, = R, for all m. Thus, the
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optimum mse for this case is
No

o ot Fa

This is recognized as the matched-filter bound for the optimal detec-
tion of a known signal in noise and in the absence of 1s1.

(33)

3.3 One-sided canceler of infinite length

For N, = 0 and N; = = the canceler performs as an ideal decision
feedback equalizer of infinite length. In Appendix B the mse is derived
for the more general case N; # 0, i.e. for a decision feedback equalizer
with a limited number of noncausal taps. The result is

No

€opt = Gﬁ'm—, (34)

Y |Mi|®

k=0

where the coefficients M3 are determined from the following equation

Yy MiMn.r =M, for allm. (35)
k=0

Here, {M}} is the causal “root” of the two sided sequence {M,)}. It
satisfies M = 0 for k < 0 and M} = (M=;)* for k = 0. It is shown in
Ref. 3 that

/T
|ME|? = No exp [%J' In (R;r“” + 1) dw}, (36)
—a/T o

and when this formula is inserted into eq. (34) we get the well-known
result for the decision feedback equalizer,

/T
€opt = 02 €XP [— %f In (R;;;’) + 1) dw]. (37)

—-n/T

Unfortunately, there is no similar simple expression for |M{|? for
k # 0; therefore, we are forced to numerically factor the two-sided
sequence {M;} into its causal and anticausal root.

IV. DISCUSSION OF NUMERICAL RESULTS

In this section, the minimal mse of data-aided equalization is eval-
uated numerically for certain channels and for various sets of canceler
taps. We will exhibit and discuss the behavior of the mse, €,p:(IV1, N2),
as a function of N; and N for typical telephone channels. As a point
of reference, note the following easily proved inequalities:

eopt(og 0) = Gopt(o, °°) = Gopt(m, m)-
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In the following, we examine three types of cancelers:

({) Starting from the infinite length linear equalizer whose mse is
€opt(0, 0), we increase the number of causal canceler taps; ie., we
examine €,pt(0, No) for N =@ =0, ---, 15.

(ii) Starting from the infinite length linear equalizer, we increase
the number of known data symbols alternating between causal and
noncausal ones; i.e., we examine €n(N,, Nz) for @ = N; + N» =
0, ---, 15 and where N, = N; for @ even, N, = N, + 1 for @ odd.

(iii) Starting from the infinite length decision feedback equalizer

whose mse is €p:(0, ), we examine the behavior when noncausal taps
are added; i.e., €pe(N1, ®) for Ny =@ =0, ---, 15.
Equation (25) is used to determine the mse for cases (i) and (it), where
H, is obtained as the solution of eq. (26). To determine the sequence
{M3"} for all &, we observe that the Fourier transform of the sequence
{R:) isrelated to the overall transfer function of the channel as follows:

om\ |*

Clearly, R () is periodic with period 27/T, and it is only dependent on
the magnitude of the overall channel transfer function, P(w). There-
fore, phase distortion in the channel has no effect on the mse. This is
reflected in the well-known fact that phase distortion can be perfectly
equalized without noise enhancement. Therefore, the sequence,
{M}:'}, is obtained as follows

Rw)= X

k=—ca

(38)

T =/T jhwT
J’ e’ dw (39)

Mil=_—_ - =
T on R(w) + No’

—u/T
where j = v—1. Fast Fourier transform techniques are used to evaluate
eq. (39). Numerical tests show that it suffices to take 64-128 samples
of R (w) + Ny in the interval [—7/T, #/T]. The fact that the coefficient
matrix in eq. (26) is positive definite and Toeplitz, makes it possible to
obtain the desired solution, Hy, recursively. This is done with the
Levinson algorithm.''™"

For case (iii), we evaluate eq. (34). The sequence, {M7}, is obtained
from the following approach.’ First determine {F} for all & such that

In(M(w)) = T Fre ™, (40)
fS—
Then it follows that
M(w)* = exp { ¥ F;,e“ﬂ‘“’T}, (41)
k=0
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and

T /T
Mf=— M(w)*e™Tdw . (42)

2m T

Fast Fourier transforms are used to obtain consecutively {F:}, M (w),
and M;. The overall channel power transfer function, | P(w)|? is
assumed to consist of a raised cosine shaped transmitting filter with
relative excess bandwidth, a = 0.15,

| T (w)|?
(1 for |w| < (1 - a)n/T

] a\ T T aT
0.5[1-3111(&:—?)%] for(l—az)?,<:.a<(1+n:|t)—,1;—1

. ay T T T
0.5|:1+sm(w+i,)£:| for—(1+a)T<w<—(1—a)T

L elsewhere

and cascaded with the channel power transfer function |G (w)|%

Figure 3 shows two different channel power transfer functions,
|G (w)|? which are used to derive the subsequent numerical results. In
(a) we show the equivalent baseband transfer function for the worst
channel meeting the basic conditions of private lines (BASICBAD).'®
Part (b) shows a transfer function (CABLE) with linearly increasing
attenuation. The parameters P, and P; indicate the attenuation at
w= —n/T and w = #/T. A model for a baseband cable channel is
obtained when P; = P,.

Figure 4 shows the mse as a function of the number of canceler taps
for the various channel transfer functions and for s/n of 20 dB at the
receiver input. The dotted line represents type (i) canceler; the dashed
line, type (if); and the solid line, type (iif). The curves for types (i)
and (if) start at the minimal mse for the infinite length equalizer and
the curve for type (i) starts at the minimal mse of the infinite decision
feedback equalizer.

As can be observed, all curves converge very rapidly to their asymp-
totes. The curve for type (i) indicates that only 3 causal coefficients
suffice to closely approximate the performance of an infinite decision
feedback equalizer. The curve for type (ii) suggests that a total of 6
coefficients (3 causal and 3 anticausal) results in a performance which
is very close to the optimal (the matched-filter bound). The curve for
type (iit) reaches very close to the mse obtained from the matched-
filter bound with only 3 noncausal coefficients, in addition to an infinite
decision feedback equalizer. These results are virtually independent of
the channel involved.
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Fig. 3—Power transfer functions. (a) BASICBAD channel; (b) CABLE channel.

The channel, however, influences the best mse which is obtainable
with the infinite equalizer, i.e. €p:(0, 0), and with the infinite decision
feedback equalizer, i.e. € (0, ). Table I shows these figures for the
various channels.

The minimal mse obtained from the matched-filter bound is —20.04
dB. Therefore, 1.8 to 4.7 dB can be gained for the channels considered
if a canceler of three causal and three noncausal coefficients is included.

APPENDIX A
Solution of an Infinite Set of Equations with Finite Gaps

Let
My = Ry + Nobro, (43)

and consider

Y UsMpt=(1— U)Rn for med, (44)
kﬁJ
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Fig. 4—Mean-square error for data-aided equalizations. (a) BASICBAD channel; (b)
CABLE channel, P, = P, = —10 dB; (¢) CABLE channel, P, = —10 dB, P; = —20 dB.
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Table I—Minimal mean-square error

oo Decision
Feedback
o Equalizer Equalizer
Mean-Square Error €p: (0, 0) in €t (0, ) in

Channel dB dB
BASICBAD —18.056 —-19.16
CABLE
P,=10,P;=10 -18.22 -19.13
P,=10,P, =20 —15.35 =17.97

where J is a finite set. It always contains the number zero but is
otherwise arbitrary. Equation (44) is an infinite set of equations with
a finite gap in both the indices of the unknowns U, and the right-hand
sides R,.. Notice that eq. (44) reduces to a discrete convolution and,
therefore, is easy to solve if 2 and m are allowed to take on all the
integers, or if the gap could be removed somehow.

Now consider instead of eq. (44) the following set of equations

2 V*Mm—k = (1 - UO)(Rm - Hm) for 8].1 m, (45)

h=—ce

which is a discrete convolution. In order that eq. (45) conform to eq.
(44), the auxiliary sequence {H..} must satisfy

H,=0 for me¢d, (46)
and

Va=0 for med. (47)

To accomplish this, the values of Hn, for m € J are determined such
that these constraints are forced to be satisfied. This is always possible
since there are N; + N: + 1 free parameters, Hn, and the same number
of conditions on V,,. From the above, it follows that

Uk=Vk for kﬁJ (48)

This is easily proved by subtracting eq. (45) for m¢& J from eq. (44).
Now define the sequence {M;'} such that

h) MMl = 6nmo. (49)

h=—m

It can then be shown that

Vi=(1=-Uy) ¥ (Ru—Hu)Miln for allk. (50)

me=—w
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Since Vi = 0 for k € J, we conclude from eq. (50} that
Y HuMiln= Y RuMp‘n for REJ,

and since H, = 0 for m & JJ, it follows that
E HmM;lm = 8&,0 - NoM;I for kE J, (51}
med

where we used eq. (43) and eq. (49) for the right-hand side. Eq. (51)
can be solved if the Toeplitz matrix generated by the sequence {M}"'}
is not singular. This is always the case when M(w) = R(w) + Ny is
bounded away from zero and infinity, i.e. for all systems of practical
interest.’

For evaluation of the mse, we need

Y URx =Y ViR, (52)

RET 3

where the equation holds because V;, = 0 for £ € J. Since J always
contains the number zero, we conclude from eq. (43) that R_; can be
replaced by M_;. This yields together with eq. (52) and eq. (45)

Y UrR-x = (1 — Uo)(Ro — Hy) . (53)
RS
We use eq. (53) together with eq. (22) to obtain
H,
U= m ’ (54)
which finally leads to
No
- a2
€opt = Ogq No '+'_H_D ’ (55)

the desired main result.

APPENDIX B
Analysis of the One-Sided Canceler of Infinite Length

For N, finite and N = o, the set of equations (24) which determines
U, reads as follows:

2 UMy = 1- Us)R, for m<-—N,. (56)

k<—N,

To solve this one-sided convolution, we factor the sequence {M,} into
a causal part {M7) and an anticausal part {M}; i.e.,

My=3Y MaMp-»n, (67

n=0
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where

My=0 for n<0 (58a)
M,=0 for n>0. (58b)
We now define a sequence Y, such that
Y MiYnn=(1—U)Rn forall m. (59)
m=0

Now insert eq. (57) into eq. (56) to obtain

Y Uv ¥ MiMppn=(1-U)Rn for m<-N:. (60)

k<—N, n=0

In addition, substract eq. (60) from eq. (59) for m < —N; and obtain
the following set of equations

Yo=Y UiMni for m<-N,. (61)

k<—N,

Multiply eq. (61) by M, sum over all m < —N,, and use eq. (57) on
the right-hand side to obtain

Z Ythm = 2 UkM—k . (62)
k<—-N, k<—N,
Recall that
M, = Ry + Nobrp, (63)

and compare eqs. (57) and (59) which determines Y as
Yn=(1-U)M, for m#0. (64)

Now insert eq. (64) into eq. (62) and make use of eq. (63) once more to
obtain the one-sided sum which is required in eq. (53):

Y RaUr=(1-Uy) ¥ M.MZ,. (65)

k<—N, m<—N,
Since M, = M?,, it can be shown that

Y RU=(1-Uy) % | M5|?

k<—N, m<—N,

=(1-U) ¥ M| (66)

m>N,
Also, insert eq. (66) into eq. (53) and use eq. (63) to find
No+ Ho=My— ¥ | M| (67)

m>N,
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With eq. (57) evaluated for m = 0, we finally obtain
N,
No+ Ho= Y | M|

m=0

and with eq. (55) we get our desired result,
No

€opt = 055 .
Y Mz

m=0
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