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In a previous paper, a method was presented to integrate numeri-
cally nonlinear stochastic differential equations (SDEs) with additive,
Gaussian, white noise. The method, a generalization of the Runge-
Kutta algorithm, extrapolates from one point to the next applying
functional evaluations at stochastically determined points. This pa-
per extends (and at one point corrects) algorithms for the simple class
of equations considered in the previous paper. In addition, the method
is expanded lo treat vector SDEs, equations with time-dependent
functions, and SDEs higher than first order. The parameters for
several explicit integration schemes are displayed.

I. INTRODUCTION

There are two approaches to the study of a physical system described
by a stochastic differential equation (sDE). On the one hand, one may
work with an equation for the probability distribution function for the
random variables such as the Fokker-Planck equation. On the other
hand, one may attempt to generate representative points on a trajec-
tory by direct solution of the sDE. With either approach it is rare that
analytical solutions can be found, except for linear systems. While the
deterministic equation for the probability distribution can be solved
numerically with standard techniques, in practice there are great
difficulties. Numerical techniques for SDEs are a less-developed subject,
but quite promising since they are capable of giving direct information
about the random process, such as the power spectrum, higher mo-
ments, and transition rates. Several discussions of the problem have
been published.'

A previous paper® (hereafter referred to as I) describes a systematic
approach to the numerical solution of SDEs. Attention was limited to
the simple one-variable equation of the form
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dx
7 flx) + A(¢), (1)

where f(x) is a differentiable function through some order, and A(¢) is
a Gaussian white noise source with

(A(2)) =0, (2)
(AA®@)) = &8(t = t'). (3)

The procedure introduced was an extension of the Runge-Kutta
method for numerical solution of deterministic differential equations.
In the Runge-Kutta technique, as applied for instance to dx/dt = f(x),
f(x) is evaluated at x(¢) and a number of other definite points. From
these evaluations an extrapolation from x(£) to an estimate, % (¢ + h),
is constructed which is accurate to a given order in the time step, A,
i.e. errors are less than order A*. To apply this procedure for SDEs, the
function f(x) is evaluated at stochastically selected points. The algo-
rithm is such that all moments of £ (¢ + k) — x(¢) are correct to the kth
order in the step size h.

In this paper, we continue and extend the work begun in I in two
ways. First, we discuss further the algorithms given in I. The two
possible second-order algorithms described earlier are generalized to
two families of parameter sets. A third-order algorithm proposed in I
was in error and is corrected. We go on to consider a fourth order four-
stage algorithm, but report our inability to find one. Our analysis
suggests that kth order k-stage algorithms do not exist for 2 = 4.

The second way in which we extend the discussion in I is to
generalize the method to three other classes of sDEs. The first class is
vector SDEs in which each component has its own independent Gaus-
sian noise source:

dx
i f(x) + A(2). 4)

This generalization may then be applied to the study of the class of
sDEs in which f is an explicit function of both x and ¢. Also we show
how to handle spEs which are higher than first order (higher order
derivatives of x with respect to ¢ appear).*

In Section II, we briefly review the previous work and introduce the
nomenclature. Section III contains a discussion of explicit algorithms
which may be used for one-variable SDEs such as eq. (1). In Section IV
we discuss the integration of vector sDEs and how to solve time-
dependent and higher-order systems. This is illustrated in Section V

* A discussion on how our method may be applied to SDEs with multiplicative random
variables will be presented elsewhere (H. S. Greenside, to be published).
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with an explicit, third-order, vector algorithm. Finally, we indicate
some new directions which seem important to explore.

Il. REVIEW AND NOTATION

A convenient way to solve an SDE such as eq. (1) is to rewrite it as
an integral equation
h

x(h) = x(0) + J ds flx(s)] + w'"(h), (5)

a

where

4
w(¢t) = J ds A(s) (6)
0
is the Wiener process. We later need the iterates of w'® defined by
t
w'"l(t) = J ds w'""')(s). (7
0

The w'" are Gaussian random variables with zero mean and covari-
ances given by eqgs. (18) and (19) of I. One can expand the right-hand
size of eq. (5) in a series in 2'%, where the order of the stochastic terms
is determined in probability. The result is

x(h) = xo + hf + h*ff + CO)RP(fF* + f*f") + .-« + S(h), (8)
where the stochastic part is given by

S(h) = ("R} 2 + { Fw(R)}s)2

h
+ {-;— f” j ds [w””{s)]z}

+ f'ﬂw“](h) + ffﬂ[hw[ll(h) _ w[2l(h)]

{
(5 [ aermar),
(o7

+
| =

5/2

+

DO =

ff ( f ds (h — s)[w'""(s)]* + [w“'(h)]z)

+5 dq s[w'")(s)]?

h
+ (512) fw'jfo ds [w“”(S)r} T @

3
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[Note that in the equation for S(k) in I, eq. (I14), the third-order term
involving f'f” was incorrectly given.] We have written x, for x(0), and
f™ indicates the nth derivative of f evaluated at x = xo. In S(h) terms
of order h’ in probability have been gathered together in braces and
the subscript j placed after the braces. The moments of the stochastic
variable S(h) are, to third order in A,

(S) = WhZEF" + RACKEFT" + WEfF" + %l f) + -, (10)
(S?) = ht + Rf + RCE™ + HEff" + ") + -+, (11)
(S%) = (T/RES" + ---. (12)

(Note that the coefficient of f’f” in (S) is in error in I and is corrected
here.) For the expansion through order A* the terms of S nonlinear in
the w’s, hence non-Gaussian, do not contribute to moments higher
than 2k — 1. It follows that if errors in (S?) are reduced to O(h**")
then errors in (S™}, n = 2k — 2, will be that order or higher order in A.

In I it was proposed to integrate the SDE, eq. (1), by an extension of
the Runge-Kutta scheme.’ The algorithm for an [ stage procedure is
as follows:

&1 = flxo + R'2EV2Y)), (13)
g2 = flxo + hfag + h'72EV2Yy), (14)

g =f(xo+ hBug + +++ + hBu g1 + B'EVY)), (15)
= %o+ h(Aig + -+ + Aug) + BVEY,, (16)

The I + 1 stochastic variables Yy, ---, Y; are Gaussianly distributed
with mean zero and covariance
(Y;Y;) = L. 17)
The matrix L, being symmetric, has '%(! + 1)(I + 2) independent
parameters. Numerically, it is convenient to generate the Y set by
writing
J+1
Yi= XY N2, (18)
n=1
where the Z’s are a set of independent Gaussian random variables with
mean zero and variance unity. Note particularly that in eq. (18) only
j + 1 variables Z, need be used to define Y;. The A;, form I + 1 vectors
of [ + 1 components

A(): {;\01,0, 0, ---,O}, (19)
A= (A, Az, 0, -4+, 0}, (20)
A= (A, Aezy Ay -0y A ) (21)
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The %(I + 1)(I + 2) parameters A;, are related to the same number of
independent parameters in the symmetric L. matrix by

L.‘j = A,‘ . Aj (22)

The algorithm egs. (13) to (16) can be expressed as a power series in
h'”, there being a deterministic part and a stochastic part, §. In turn,
the moments of the stochastic part can be expanded in powers of A.
(A two-stage, second-order illustration is given in 1.) Each term of the
deterministic part and of the moments takes the form of: (a power of
h) X (a power of £) X (a product of powers of f and its derivatives) X
(a coefficient which is a function of the parameters A;, 8;;, and A;,).
Corresponding terms occur in the expansion, eq. (8), and in the
moments of S(A) given by eq. (9), except that in the latter cases the
coefficients have definite numerical values. Therefore, equations for
the parameters are obtained by equating the two coefficients for each
different term (i.e., different product of f and derivatives) through a
given power, h*. The series match independently of the explicit form
of f(x).

There are ([ + 1)* parameters: A; (i=1, ---,1); 8;; (=2, ---, 1, and
j=1, .+, i—=1); A (i=0,.+-,L,andj=1, ..., i + 1). There may be
fewer conditions to be satisfied than this. If so, it is convenient to use
only m rather than [ + 1 Gaussian random variables, Z,. This amounts
to setting Ajp, = 0 for p > m.

A procedure which is correct through order A*, which involves !
stages, and which utilizes m Gaussians will be called a kolsme algo-
rithm. Explicit examples are given in Section III.

. THE 252516, 303525, AND OTHER ALGORITHMS

In I the parameters were displayed for a 2¢02s1¢ algorithm. There is
one degree of freedom (6 parameters, 5 equations). The most general
choice of parameters is

A =1-Y%a™,

Az = Yha™,

B =a,

Ao =1,

A= %[1 % (2a — 1)72],

Az = %[1 F (2a — 1)'/%), (23)

with a > '%. In I the solutions with « = 1 were suggested as particularly
convenient.
In the Appendix of 1, a discussion of the 353s2s algorithm was
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presented. The exposition contained an error and should be disre-

garded. A proper discussion follows.

The 16 — Y%(4 — m)(5 — m) parameters of a 3p3sm¢ algorithm must
satisfy 14 equations obtained by matching the expansion of egs. (13)

to (16), and the expansion of eq. (8) and moments of eq. (9):

3
rAi=1
3
Z 0 =
E Aial =,

i=2

A3ﬁ32 BZl = 1/5,

LO(J = 11
3
Z A:'LOI' = 1/2,
i=1
3
¥ AiLi="%,
fs
3
2 AiLga = 1/3,
i=1
3
Y ALL =%,
i=1
3
2 - 1/31
i=1
3
Y Al =",

3
E A,‘(x,'Lo,' = 1/3,
=2

i—1

3
Z 2 [ (Lij + 1/2Lff)

j=1

Y

]

3 3 3 i-1
h) Y AAL; +2 E A; Z BijLoi = %,

i=1j=1 =2 j=1

where, by definition,
i-1

Qi = Eﬂij, i=2,3.
j=1

1932 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1981

(24)

(25)

(26)

(27)
(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)



A remarkable simplification occurs if we assume
Ar=0, (39)
Loi= Lii = a;, =23 (40)

(it can be shown that no real solutions exist without these conditions).
Then the 14 equations, eqs. (24) to (37), reduce to 7 independent
equations in 8 unknowns for a 303s2¢ algorithm. This leaves one
degree of freedom which we can take as az. We are, of course, only
interested in solutions for which all the parameters are real. This
requires that

O<ae<'h or B<=ar=<1. (41)

Since some of the equations are nonlinear, there are multiple solutions
in certain regions. Further details are presented in the Appendix. Table
I gives an indication of the behavior of the parameters as a is varied.
Since Ay is obtained from the solution of a quadratic equation, two
choices are shown. As a; increases through 0.247583, a new pair of real
roots of the equations appears, while at 0.2689703 the other pair
becomes complex. There are four roots in the range % =< a = 1
(although at % and 1, roots are degenerate). The parameter set
corresponding to a: = % looks particularly interesting because all

Table |—Parameters for 3,352 algorithms appropriate to a one-
variable SDE*

aa'l' ﬂ:u Az An Asz Aaz

0.1 —1.82639 0.34247 0.03341 —1.14271 0.22458 0.45453

0.2 —0.82716  0.48077 0.12491 —1.15128 0.31072 0.41574

0.25 —-0.72222 0.57143 0.24733  —0.90403 0.26211 0.37268

—0.22692 0.81865 1.30789 —0.37268

0.30 —0.79630 067568 —0.31442 0.19962 5.71406 —0.27639

% -1.0 Ya —Vi2 0.61844F —2.50406% 0.0

0.7 —0.65079 0.67568 —0.14525 0.67143 —1.88108 0.27639
0.06670 0.47809 —2.57869 —0.27639

0.8 —0.17901 0.48077 —0.14275 0.63842 —1.42839 0.41574
0.14191 0.46368 —1.78360 —0.41574

0.9 0.01003 0.34247 —0.12381 0.63799 —1.24446 0.45453
0.07126 0.64299 —1.21137 —0.45453

1.0 Y% Ya —Ya 0.76579§ —1.00149§ 2'7%/3

* The parameters not listed are given by:

Bn = a2

ﬂnz = l/(ﬁAsﬁ'z}

A=

As=1—-A

Az = aa

Az = +(a2 — ad)'?

AGI = BM + B:!z

1 a2 is varied as the one degree of freedom.
g +39'2/4 — 2%%/3,
—2'2/12 + 1799'/2/48.
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parameters are <1, and a3 = A;;1 = Az = 0. A second interesting
parameter set is the one for a, = 1.

A 30452¢ solution will be discussed in Section IV. In this case, there
are enough degrees of freedom so that the parameters can be selected
to produce an algorithm which integrates the deterministic part of the
equation through fourth order.

It is straightforward, but quite lengthy, to extend all of the equations
in Section II to fourth order. We have done so. For a 4p04smg algorithm,
there are 25 — %(5 — m)(6 — m) parameters which must satisfy 29
equations (39 coefficients must be matched but 10 of the resulting
equations are not independent). The assumption that A, = 0 and
Loi = Lii = ay, i = 2, 3, 4, reduces the number of unknowns to 18 —
%2(5 — m)(6 — m); and, remarkably, the number of independent
equations is reduced to 18. Thus, there may be solutions with 5
Gaussians (the maximum possible). Unfortunately, after a reasonably
thorough search for solutions we were not able to find any real
solutions.* Although we do not have a proof that no real solutions
exist, it appears that there is no 4p4smg algorithm.

IV. ALGORITHM FOR VECTOR SDEs
Consider next vector sDEs of the type

? f(x) + A(t), (42)
with
(A(t)) =0
(A AL(E) = £68.,6(¢ — 1), (43)

If the A covariance matrix is not diagonal, then linear combinations of
the equations can be taken to diagonalize it, or the algorithm described
below can be modified.

In a fashion analogous to that used to obtain eqs. (8) and (9) one
can write (using the summation convention on repeated indices)

x(t) = xo. + hf, + %h*f..f,
+ (BVR(fpfushs + fowhufl) + <+« + Sc(h), (44)

* The algebra involved in many of these calculations is extremely lengthy. Occasion-
ally it is susceptible to simplification by a combination of equations. For these reasons,
we would be willing to provide further details of our calculations to interested parties.
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S, (h) = (w!"(h)}1)2 +h[ ﬁ.,.w}.”(h)}:sfz
+ {1 f\..,,..f ds wL"'(s)w‘,”'(s)}
2 0

+ {f - N R) + fou fulhw!l(R) + wP(R)]

2

h
+ (é) f..,..,.,.J. ds w}f”(S)wﬁ.”'(S)w,[,"‘(S)}
0 5/2
1 h
+ {-2- fonfue f ds (h — s)w!™(s)w!)(s)
0

h
+ fs-!“'fhpf ds w'”(s)w!M(s)
0

h

0
1 h

+ gg) frameo | ds w9l )X s)wls)
24 X 3
+ oo, )
where
a a d
foreoon = 5o oo — filx=x), (46)

dx, dx, d9x,
t
wl’(¢) = j ds A(s), (47)
]

with w!™ being the nth iterate of w!"). There is one major difference to
note between egs. (45) and (9). In the former, a distinction must be
made between the term with f, , f.., and that with £, .. f. ,; in the latter,
both are f'f”. This leads to an extra equation which the parameters
will have to satisfy for sets. Such differences first enter in fourth order
for sets of deterministic differential equations, while for SDEs they
enter at third order.

The earlier algorithm for numerical integration is easily generalized
to

& = fl{x0, + h'? ;llmyl,.}), (48)
gzx = f:r( {xn,. + hBQl glp + h]/igreY?.ﬂ}): (49)
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ik = fx({x{)p + th]glp + .-+ th.f‘lg!~la + hUZE:IIEYIp}): (50)

xx(h) = Xox + h(Alglu + ..+ Algfl() + hl/zgijzyoﬂ (51)
where {x,} denotes the set of variables x,, - - - , xn. It is appropriate to
take the covariance of the Y, as

(Y.Y;,) = Lib.; (52)

or, equivalently, to write
Yi= E AJ'J"Zjnu (53)
j=1

where the Z;, are Nm independent Gaussian random variables of mean
zero and variance unity. In general, m = [ + 1, but it may be possible
to construct an algorithm with smaller m, i.e., a kolsm¢ scheme for
vector SDESs.

Equation (51) may be expanded to any desired order, A*, giving a
deterministic and a stochastic part, S. Once again, equations for the
parameters are determined by demanding equality of the deterministic
part to that of the expansion, eq. (44). Further equations result from
equating the moments of S and S. In general, there are more equations
to be satisfied for sets than for a single variable because of the mixed
partial derivatives. Note, however, that the parameters for the
algorithm, A; By, Ay, are not functions of the component
index, «.

Once an algorithm is available for vector SDEs, it can be applied to
two other classes of sDEs. Consider the generalization of eq. (4) where
f is time dependent

dx

7 f(x, £) + A(t). (54)

By introducing an extra variable xy4+; = t (i.e., dxn+1/dt = 1), one can
rewrite eq. (54) in the form eq. (42) as an N + 1 dimensional,
autonomous vector SDE:

% =F(y) + A(2), (55)
y = (0, x2, -+, XN, XN41), (56)
Fly)=(fh,Fo, ---, v, 1), (67)
E=(&,8&, -+, &N, 0). (58)

In this case, the random variables Y; v+ or Z; v+ need not be generated
since they are always multiplied by zero.

An nth order differential equation may also be integrated in a
straightforward manner. Consider as an example the simple case
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d"x d" 'x

yr + ci(x) i + o0+ cnlx) = A(2). (59)
This equation is equivalent to the n dimensional vector SDE
dy1
_;i"t_ = y2| (60)
dyN-1
b YN, (61)
dyn
_E = _cl(yl)yN—l - C2(y1)yN—2 — tee — Cl(yl) + A(t). (62)
Note that
£=(0|0:°"101£) (63)

so that only one Gaussian variable is needed per time step. More
complicated equations than eq. (59) are just as easily handled; e.g.,
equations nonlinear in the derivatives and equations with an explicit
time dependence on the left.

V. PARAMETERS FOR VECTOR SDE ALGORITHMS

To second order, the equations for the vector algorithm parameters
are identical with those of a single equation. Thus, the parameters
given earlier in eq. (23) may be used for a vector 202slg scheme.

To third order, one new equation enters. All the eqs. (24) to (38)
hold except that eq. (36) splits into two (because of the difference of
mixed derivatives):

2 A E: BijLij =

=2 J=1

, (64)

— | -

i-1

3
2 A _El BiL;j =
=

=2

5 (65)
The one degree of freedom of the one-variable 30352¢ algorithm is now
removed, but a solution might still exist. Unfortunately, no real solu-
tion can be found regardless of whether there are 2, 3, or 4 Gaussians.

In order to find a third-order algorithm, it was necessary to consider
a 304s2¢ procedure, that is, to add a stage. This leaves many degrees
of freedom—in fact enough so that the deterministic part of the
equation could be satisfied to fourth order with one degree of freedom
left. Actually, these extra degrees of freedom only exist if one assumes
[in the pattern of eqs. (39) to (40)] that

Al = 0, (66)
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Lo.‘ - L.‘.‘ = o, i= 2, 3, 4, (67)

Since the parameter equations are nonlinear there are multiple families
of solutions. We have not explored all the branches, but have looked
particularly at a branch for which a4y = 1. This implies that A, =
(1, 0, --.). In Table II we present two parameter sets which can be
used for the 30452¢ algorithm with 4o deterministic-part accuracy. We
have the parameters for three other families of solutions but have not
presented them because some parameters are large, i.e., = 5. The
degree of freedom is in the relation between A1, and A;; which is

4 4 4 i-1
(2 Aiﬂtfﬁu) An + (E A:'Aizﬁu) A = (EI;) - ¥ A; 22 BiL;.  (68)
=2 i=2 =3 j=

All the parameters in this equation except A;; and A2 are determined
by other equations. In Table II we present two solutions, for which
A1z = 0 and Ay; = 0, respectively.

From the point of view of computer time, a 30452 algorithm might
be faster than a 3p3g4¢ algorithm (if the latter existed); i.e., an extra
functional evaluation may be faster than generating more Gaussians.
For problems in which the effect of noise is small (small £) the 304s2¢
algorithm, being fourth order in the deterministic part, would be more
accurate.

VI. CONCLUSION

In Section IV, we considered various koksmg algorithms and found
that for the one variable problem there were 5, 14, and 29 equations to
be satisfied for £ = 2, 3, and 4, respectively. On the other hand, the
numbers of parameters available to satisfy these equations are maxi-
mally (2 + 1)® = 9, 16, and 25, respectively. It appears that the number
of equations is increasing more rapidly than the number of parameters.
[The situation is complicated for a number of reasons: (i) assumptions
like egs. (39) and (40) seem capable of reducing the number of equa-

Table ll—Parameters for a 35452 algorithm
appropriate to vector SDEs

A, 0.0 A, 0.644468
As 0.194450 Ay 0.161082
Ba 0.516719 Ba1 —0.397300
ﬁnz 0427690 ﬁll - 1.587731
B2 1.417263 Bas 1.170469
Ao 1.0 Aoz 0.0

An 0.0 Az 0.271608
or

A —0.5667253 Az 0.0

Az 0.516719 Azz 0.499720
Aal 0.030390 Aag -0.171658
Au 1.0 Az 0.0
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tions considerably; (ii) even when there are sufficient parameters real
solutions do not always exist; and (iii) vector SDEs produce more
equations with the same number of parameters.] To achieve a third-
order algorithm for sets it was necessary to use four stages, and our
failure to find a 404s algorithm in Section III probably means that at
least a fifth stage is necessary. A similar situation occurs for determin-
istic equations, in which case more than % stages are needed when the
order of accuracy is k = 5.*

Higher order methods can be achieved in other ways than by
increasing the number of stages. One possibility, suggested in I, would
be to adapt iterative multistep methods, e.g., of the Adams-Moulton
type.> Another approach would be to use implicit Runge-Kutta meth-
ods in which later stage g,’s are used in earlier stage g/'s.* An l-stage
implicit method would then require the self-consistent solution of /
nonlinear equations for the / g;'s at each time step. For mildly nonlinear
spEs and small fluctuations of the stochastic parts, this could be more
efficient than larger stage methods. It is known that deterministic
implicit methods are capable of achieving kth order accuracy with
fewer than % stages, so this could well be the case for sDEs also.

It is our hope that the work presented here and in I, besides
providing some practical schemes for integrating sDEs, will stimulate
further research on this interesting and important topic.
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APPENDIX

We briefly present further details of the solution of the equations
for the parameters of the 30352 algorithm to illustrate the procedures
which one follows in cases of higher order or more stages.

The seven independent equations to be solved, after assuming egs.
(39) and (40), are eqgs. (24) to (28), (36), and (37). The eight unknowns
may be taken as az, as, Az, As, B33, Aoi, An, and Ajz. Other A parameters
are given by

Aa1 = az, (69)
Az = ag, (70)
Az2 = +(a2 — a3)'?, (71)
Aa2 = (a3 — a3)'% (72)

(The use of the negative sign for A» changes all signs for the A:2’s, and
is a trivial modification equivalent to changing the sign of Z..)
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Equations (24) to (26) may be solved for A,, A,, and A; in terms of
a; and a. Setting A, = 0 leads to

3oz — 2

- 6az — 3' (73)

a3

By egs. (71) and (72) we see that both a» and a3 must be between zero
and unit, for a real solution, which, coupled with eq. (73), implies
inequality eq. (41).

The remaining parameters are solved for as follows: eq. (27) yields
B2 in terms of parameters now dependent only on «a2; eq. (28) dictates
Ao1 = 1, which is true for every algorithm; eq. (36) is a linear equation
for A;y; and eq. (37) is a binomial equation for A,..
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