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The growth of electronic switching systems and the high-capacity
tnteroffice signaling network provide an opportunity to extend tele-
phone network routing rules beyond the conventional hierarchy.
Network models are described that illustrate the savings inherent in
designing networks for dynamic, nonhierarchical routing. An algo-
rithm for engineering such networks is discussed, and the compara-
tive advantages of various path-routing and progressive-routing tech-
niques are illustrated. A particularly simple implementation of dy-
namic routing called two-link dynamic routing with crankback is
discussed and is shown to yield benefits comparable to much more
complicated routing schemes. The efficient solution of embedded
linear programming (LP) routing problems is an essential ingredient
for the practicality of the design algorithm. We introduce an efficient
heuristic optimization method for solution of the LP routing problems,
which greatly improves computational speed with minimal loss of
accuracy. We also project computational requirements for a 200-node
design problem, which is the estimated size of the intercity Bell
System dynamic routing network in the 1990s.

I. INTRODUCTION AND SUMMARY

The rapidly growing stored program control (spc) network, consist-
ing of electronic switching systems interconnected by common-channel
interoffice (ccis) signaling links, provides a significant opportunity to
extend the telephone network routing rules beyond the conventional
hierarchy. In the sPc network, there are no restrictions to hierarchical
route choices or to routing rules which remain fixed in time, but we
may rationally consider network configurations which use dynamic,
nonhierarchical routing (DNHR). The term dynamic describes routing
techniques which are time-sensitive, as opposed to present-day hier-
archical routing rules which are time-fixed. An important variable in

1787



the dynamic routing strategy is the frequency with which network
routing rules are updated.

1.1 Savings possibilities with dynamic routing

There are two major opportunities to improve the planned network
design (forecast) with more advanced routing techniques. First, be-
cause of its fixed nature, present hierarchical routing cannot really
take much advantage of load variations which arise from business/
residence, time zones, seasonal variations, and other reasons. By allow-
ing time varying, or dynamic routing, some of this penalty can be
reduced. Second, the present hierarchical routing has rigid path
choices, plus low blocking on final links which limit flexibility and
reduce efficiency. If we choose paths based primarily on cost and relax
the present rigidity in network structure, a more efficient network
should result. The upper limits on improvement in these two areas are
discussed first.

1.1.1 Noncoincidence effects

It is estimated from a 28-node intercity network model (Fig. 1) that
about 20 percent of the network’s first cost can be attributed to
designing for time varying loads using our present static hierarchical
routing techniques. To show this, we first designed a hierarchical
network using a conventional cluster busy-hour approach. Then, to
quantify the extra capacity being provided, we also designed the 28-
node model for the individual hourly loads. These hourly networks
were obtained by using each hourly load, and ignoring the other hourly
loads, to dimension a hierarchical network that would perfectly match
that hour’s load. This procedure results in 17 separate network designs,
one for each hour.

Figure 2 is a plot of the normalized network cost (including switching
and facility cost) required for the cluster busy hour and hourly network
designs. On the top line, the cluster busy-hour solution had a network
capital cost of one unit to satisfy all 17 hours of load with fixed,
hierarchical routing. The 17 hourly networks, shown on the lower
curve, represent the normalized capital cost of the circuit miles and
trunks actually required at each hour to satisfy the load. Three network
busy periods are visible: morning, afternoon, and evening. We can also
see a noon-hour drop in load, and an early-evening drop as the business
day ends and residential calling begins in the evening. The hourly
network curve separates the capacity provided in the cluster busy-
hour solution into two components: below the curve is the capacity
actually needed at each hour to meet the load; above the curve is the
capacity which is available but is not needed at that hour. This
additional capacity exceeds 20 percent of the total network capacity
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Fig. 2—Network first cost for 28-node network.

through all hours of the day. This gap represents the capacity put in
the network to meet noncoincident loads, and suggests a maximum
limit on network reduction which might be achieved through improved
routing techniques.

1.1.2 Limited path selection effects

Additional benefits can be provided in network design by allowing
a more flexible intercity routing plan that is not restricted to hierar-
chical routes. Our approach allows the selection of shortest (nonhier-
archical) paths. Applied to each hourly load, this approach yields an
overall savings of about 5 percent in comparison to the hierarchical
hourly networks. Figure 2 also displays these results and shows that
the 20 percent bound discussed above has increased to a total of 25
percent. This additional savings potential translates into actual bene-
fits by introducing nonhierarchical shortest path routing into the
design, as is done in the DNHR network design algorithm.

Figure 3 illustrates the limitation that the hierarchy imposes in the
28-node network between San Diego and Birmingham. The alternate
paths between these points go through two regional centers, San
Bernardino, Ca. and Rockdale Ga., providing relatively long paths.
Selecting more direct paths, for example the Tucson, and Phoenix, Az.
and Montgomery, Al. paths, would provide design benefits. Allowing
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the optimum choice of intercity routes beyond the hierarchical choices
(i.e., nonhierarchical networks) yields design savings. This includes
allowing the present final paths to use alternate routing, which in
many cases would further improve the network efficiency.

1.2 Summary

In Section 3.2, we describe the route formulation of the unified
algorithm (ua). In this formulation the allowed traffic patterns (routes)
are formed for each point-to-point demand prior to traffic assignment
in the routing optimization step. Three routing methods are considered
in designing networks using the route formulation method:

(i) Progressive routing in which a call progresses through the
network one switch at a time without retracing its path until it either
reaches its destination or arrives at an intermediate switch from which
it has no outlet.

(if) Multilink path routing in which a call blocked by a busy trunk
group on a path may use the capabilities of the spc network to be
“cranked back” to the originating node and attempt the next path in
the route.

(iti) Two-link path routing, which is identical to multilink routing,
except that a path from origin to destination may have at most two
links.

We find that design savings on the order of 10-15 percent are
possible when using these routing methods as compared to present
hierarchical techniques. From the savings results and implementation
considerations, we conclude that two-link routing is preferred.

We next consider another formulation of the UA called the path
formulation, which is specifically tailored to examine two-link routing
options. This method does not preselect allowable routes, but allows
the traffic allocation step to assign traffic directly to paths in order to
minimize network cost. Routes are formed after the optimization step
to realize the desired flows. A flow feasibility algorithm is described
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Fig. 3—Shortest path choice.
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which forces the resulting path flows to be realizable. Three two-link
routing methods for realizing the optimum path flows are then consid-
ered, varying in complexity from a very flexible method, cGH routing
(developed by Chung et al)', to a very simple method called sequential
routing. The latter method consists of offering all traffic to an ordered
list of two-link paths with the overflow from one path being offered to
the next path; the ordered list may change by time-of-day to take
advantage of traffic noncoincidence.

We find that the routing techniques investigated using the path
formulation achieve at least 1-2 percentage points additional savings
over the routing techniques studied using the route formulation. We
then find that sequential routing incurs an insignificant cost penalty
when compared to more flexible routing schemes and, because of its
simplicity, we conclude that sequential routing is the preferred routing
method.

Efficient optimization techniques are considered in Section IV.
These methods allow the design of very large networks for dynamic
routing using reasonable computer resources. Finally, potential Bell
System applications are discussed in Section V.

1Il. DYNAMIC ROUTING CONCEPTS: DESIGN, SERVICING, AND
CONTROL

Figure 4 illustrates the three primary components of the network
design and administration functions as three interacting feedback
loops around the network. The network offered load is shown to
consist of predictable, average demand components, unknown forecast
errors, and day-to-day variation components. The feedback controls
function to regulate the service provided by the network through
capacity and routing adjustments. Network design (or planned serv-
icing) operates over a year-long interval, drives the network capacity
expansion, and preplans routing patterns to minimize network costs.
Demand servicing accounts for the existing capacity and, on a weekly
basis, fine-tunes link sizes and routing patterns to account for forecast
errors inherent in the year-long design loop. Real-time control makes
limited adjustments to the preplanned routing patterns to account for
normal daily shifts in load patterns.

Network provisioning for dynamic routing depends primarily on
performing off-line calculations for network design and demand serv-
icing. The off-line calculations select the optimal routing patterns from
a very large number of possible alternatives in order to minimize the
trunking network cost. The term dynamic routing frequently suggests
an extensive search for the optimal routing assignment to be performed
in real time. This extensive search is in fact being made but most of
the searching is performed in advance using an off-line design system
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Fig. 4—Planned servicing, demand servicing, and real-time control as interacting
feedback loops around the network.

and an off-line demand servicing system. The effectiveness of the
design depends on how accurately we can forecast the expected load
on the network. Errors associated with the forecast are corrected in
the demand servicing process described in the companion article.” The
only routing decisions necessary in real time involve conditions that
also become known in real time: day-to-day load variations, network
failures, and network overloads. Procedures for real-time routing are
also described in the companion article.

Ill. DESIGN ALGORITHM
3.1 Overview

In this section, we describe the algorithm used to design near
minimum cost nonhierarchical networks using dynamic routing. This
algorithm is termed UA because it combines into one systematic
procedure various network design concepts, such as

() Using time-sensitive dynamic routing to take advantage of
traffic noncoincidence,

(i1) Routing traffic along the least costly paths,

(iif) Favoring large, more efficient trunk groups,
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(iv) Using efficient trunk group blocking levels determined by the
economic hundred call seconds (Eccs) method, and
(v) Minimizing incremental network cost.
The first two concepts were described in Section 1.1. A brief descrip-
tion of the other three concepts incorporated in the UA is given below.

3.1.1 Favoring large trunk group

Figure 5 illustrates the number of trunks, N, required to carry a
particular carried load, a, at constant blocking. From the shape of the
curve comes the well-known fact that at constant blocking the number
of additional trunks required to carry an increment of offered load
decreases as the trunk group size increases. Hence, it is advantageous
to combine several traffic parcels into one large parcel to be routed
over a large trunk group since one large trunk group is inherently more
efficient than several smaller trunk groups.

In the A, larger trunk groups are favored through the use of a link
incremental cost metric proportional to the slope (3N/da) of the trunks
versus load curve. Thus, the link metric indicates the attractiveness of
this link to carry additional traffic.

3.1.2 Use efficient blocking levels

Figure 6 illustrates the cost trade off between carrying traffic on the
direct trunk group between A and B, and the alternate network that
overflow calls will use. The problem is to find the optimum value of
blocking (or, equivalently, the number of trxnks) to handle the offered
load at a minimum cost. This question was first answered by Truitt’
who derived the concept of an Eccs based on the direct path to
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Fig. 5—Efficiency of large trunk groups.
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alternate path cost ratio and the marginal capacity of the alternate
path. Truitt’s Eccs method is commonly used today in both intercity
and metropolitan network design. This method is also used in the UA.

3.1.3 Minimize incremental network cost

Network cost and performance are nonlinearly related. Hence, the
network design problem is inherently a nonlinear programming prob-
lem. To avoid the complexities associated with nonlinearity, the net-
work cost function can be linearized around the present operating
point and the linearized (incremental) cost function minimized to yield
a minimum cost network.

This approach of minimizing the incremental network cost has been
successfully used by other investigators. Yaged' has used this tech-
nique to find a near minimum cost facility network to satisfy trunk
demands when the facility links display a concave facility cost versus
channel capacity relationship. For his problem, Yaged demonstrated
that this technique satisfied the Kuhn-Tucker conditions which are
necessary (but not sufficient) for optimality. An analogous approach
was used by Knepley® who applied the minimal incremental cost
concept to the design of the automatic voice network (AuTOVON).

Figure 7 shows the iterative loop for the route formulation of the
UA. Basic input parameters include trunk cost, point-to-point offered
loads, and required point-to-point grade-of-service (Gos).

The router finds the shortest paths (sequences of links) between
points in the network. Using assumed link blocking levels, the router
then forms the paths into candidate routes (sequences of paths) and
determines the proportion of flow appearing on each path in the route
for each unit of offered load. This method of forming routes from
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Fig. 7—Unified algorithm iterative loop.

assumed link blockings is a key feature of the UA. It eliminates the
nonlinear relation between link blocking, number of trunks, and offered
load from the optimization step, and it also permits investigation of a
wide variety of routing schemes.

The Lp then assigns flow to the candidate routes to minimize
network cost. The output from the router is the optimum routing plan
consisting of the routes to be used in each hour. This routing is
provided to the engineering program which determines the flow on
each link and sizes the link to meet the design level of blocking used
in the router step. Once the groups have been engineered, the cost of
the network can be evaluated and compared to the last iteration.

If the network cost is still decreasing, the update module (i) com-
putes the slope of the capacity versus load curve on each link and
updates the link cost using this slope as a weighting factor, and (i)
computes a new level of link blocking using the Eccs method. The new
link lengths and blockings are fed to the router which again selects
shortest paths, and so on.

3.2 Detailed description
3.2.1 Initialization

An initial set of link blockings and metrics are calculated based on
the Eccs method. Initial link blockings are determined assuming that
the overflow path is the shortest two-link path between the endpoints
with a marginal capacity of 28 ccs.

3.2.2 Router

The router consists of both a route generator and an LP. The route
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generator constructs a set of candidate routes for each point-to-point
demand pair in each design hour. Each route candidate contains just
enough paths to meet the cos constraint. The LP then selects which
routes will be used in each hour and in what proportion.

Since the method of constructing routes depends on the routing
discipline (progressive, multilink, or two-link) to be used, we defer the
discussion of how these various routes are formed to their respective
sections. For now we assume that the route generator forms the proper
number of routes for each demand pair, and calculates the portion of
route carried load on each link for the routing discipline used. The
operation of the va is such that almost any routing scheme can be
used, merely by using the proper route generator.

The second step in the router is the LP, which assigns the offered
traffic to the candidate routes in order to minimize the network
incremental cost.

First, we introduce the following notation:

L = number of links.

K = number of demand pairs.

H = number of design hours.

J% = number of routes for demand pair & in hour A.

P, = proportion of carried load on route j for point-to-point demand
pair & on link i in hour A.

M; = incremental link cost metric in terms of dollar cost per erlang
of carried traffic for link i.

R} = offered load to demand pair & in hour A.

r"x = carried load on route ; of demand pair % in hour A.

Al = offered load to link i in hour A.

a; = maximum carried load on link i over all hours.

g"x = route blocking on route j of demand pair £ in hour A.

b" = blocking on link i in hour A.

Then the LP will select the r/; and the resulting a; so as to minimize

L
ZM,-a.-
i=1
subject to
K J}
y Y Phrly<a;, i=1,2...,L h=12 ..., H
k=1 j=1
Jh r?k
ng—_h—=Rg h=1,2,"',H k=1,2,"',K
=11 = Ejk

rﬂ‘kzO,a;EO.

Inputs to the Lp are P, andg”; from the route generator, M; from
the previous metric calculation, the link blockings 4?, and the R}.
Outputs from the Lp are the r’, the assignment of carried load to the
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routes, and a;, the associated link capacity (maximum carried load). In
many cases, the IBM LP package (MPSX-370) was used to obtain the
results reported here. All point-to-point traffic was first assigned to its
least expensive route to form a feasible solution to the LP; this solution
was used as a starting basis. In those cases where a heuristic optimi-
zation method (HOM) (see Section IV) is used to solve the Lp, the
output will be a set of r%,, which approximates the optimal route flows.

3.2.3 Network engineering

After the LP has assigned traffic to routes, the network must be
engineered to achieve a link blocking no higher than the assumed
blocking used as input to the router. In this way, the Gos constraint
will be satisfied, or at least the cos will be no worse than that
calculated by the router. If the cos is not satisfactory, it is corrected
by the blocking correction algorithm described below.

To arrive at a consistent set of hourly blockings and offered loads,
an iteration scheme is used. The iteration uses the present estimates
of the link offered loads to size each link in its peak hour and calculate
blocking estimates in side hours. After all groups have been sized, new
proportions of carried load are calculated using the blocking estimates
and the routing pattern given by the LP. The link flows are then
recalculated and the process repeated. The iteration is continued until
the sum of the absolute blocking changes is less than a prescribed
convergence threshold. Engineering can be accomplished either by
using a single parameter traffic model or a two-parameter traffic
model. Results given in this article are for the single-parameter case.
Fractional trunks were allowed so as to achieve the required blocking
exactly. This stabilizes the iterative loop and speeds convergence.

3.2.4 Blocking correction algorithm

If a route blocking in the engineered network exceeds a threshold,
the blocking on the first path is decreased until the route blocking is
equal to the desired cos. The additional traffic which must be carried
to reduce the route blocking to the desired cos will, thus, be carried on
the path which has the minimum incremental cost, and the network
cost increase required to correct the route blocking should be close to
minimal.

Once an engineered network solution is obtained, the route blockings
needing correction are rank ordered and the highest route blocking is
corrected first. After the new link blockings are obtained, routes are
once again checked for blocking violations and the entire process is
repeated until an engineered network solution is found which does not
violate the route blocking constraint. The blocking correction has been
made part of the engineering loop as shown in Fig. 7.
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3.2.5 Calculation of new metrics

The expression for the link metric is CidN;/da;, or the cost per trunk
multiplied by the rate of change of trunks required to keep the blocking
constant with a changing carried load. Hence, this is the incremental
cost to carry an increment of load at constant blocking on link i. In
particular, the partial derivative is approximated by
_ C{Niai + Aai) = Ni(ai)]
- Aﬂ( ’

M;

where

C; = cost of one trunk on link i
N;(a) = trunks required on link i for carried load a (for the link
blocking &:)
Aa; = incremental carried load (normally set to 5 percent of a;)

3.2.6 Calculation of more efficient blockings

The Eccs approach of Truitt” is used (Fig. 6) to calculate Eccs values
in the ua. The objective is to calculate the number of trunks, N*, (and,
hence, the link blocking, B) that will minimize the total cost of carrying
load A over the combination of the direct path and the alternate paths.
To do this the network cost is first written as:

Cost = CN + aM,
= CN + AbM.,, (1)

where a is the overflow load from link AB (¢ = Ab) and M, is an
equivalent metric for the alternate route network. A partial derivative
is taken of eq. 1 with respect to N and the resulting expression set
equal to zero to obtain the minimum.

3.3 Candidate routing methods
3.3.1 Progressive routing

Progressive routing is familiar since the Bell System hierarchy is an
example of progressive routing. In this scheme, when a call is sent from
one node to another node, the control of the call is also passed to the
next node. No crankback to a previous node is allowed, but the call
must continue toward its destination at each stage, or be blocked. The
main difficulty with progressive routing is to avoid looping. In the
hierarchy this is prevented automatically by the structure of the
network. In our nonhierarchical design, the assumption was made that
the history of the call could be carried via ccis. In that way, the
electronic switching processor would know the nodes to which the call
had already been routed, and disallow them as the next outlet choice.

Besides preventing looping, route control is also used to promote
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efficient trunk use. Basically, we prohibit excessive alternate routing
which can result in calls routing on paths with many links, thus
“stealing” trunks from calls which can complete on one or two links.
This situation has a cascading effect and can result in inefficient trunk
use, with fewer call completions than otherwise possible. To promote
efficient trunk use, we eliminate paths with a large number of links
which are unnecessary to meet the required Gos.

In the dynamic version of progressive routing, traffic is allocated to
the most economical next node choices on a time varying basis.

3.3.1.1 Route proportions and blocking. A simple example of the
computation of route blocking and proportions is given in Fig. 8. From
the assumed blocking on each link and the progressive routing pattern,
the load offered to, and overflowing from, each link is calculated. From
this information, the route blocking and proportions are determined.

3.3.2 Multilink path routing

Path routing implies selection of an entire path between points in
the network before a connection is actually provided on that path. If
a connection on one link in a path is blocked, the call then seeks

\

A * 0.10 B 0.10 z
100 ERLANGS 100 ERLANGS

a 89.12 B 81.0 z A 0.901 g 0.819 z
(c) (d)
Fig. 8—Example of progressive route proportions. (a) Routing and link blocking. (b)

Overflow loads (total carried load = 98.9 erlangs) (c) Link-carried loads. (d) Link
proportions.
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another complete path. Implementation of such a routing technique
could be done through control from the originating office, plus a
multiple link crankback capability to allow paths of greater than two
links to be used. Path-to-path routing is nonhierarchical, and allows
the choice of the most economical paths rather than being restricted
to hierarchical paths.

Dynamic path routing is achieved by allocating fractions of the
traffic to routes, and allowing the fractions to vary as a function of
time. To generate more than one route for each point-to-point pair,
one approach is to use cyclic routing. This method has as its first route
(1,2, ---, M), where the notation (i, j, #) means all traffic is offered
first to path i, which overflows to path j, which overflows to path k.
The second route of the cyclic router is a cyclic permutation of the
first route: (2, 3, - .-, M, 1). The third route is likewise (3, 4, --- , M,
1, 2) and so on. This approach has computational advantages because
its cyclic structure requires considerably fewer calculations to find the
proportions for all routes than does a general collection of paths. The
route blockings of cyclic routes are identical; what varies from route to
route is the proportion of flow on the various links.

3.3.2.1 Route proportions and blocking. Figure 9 illustrates that some
links may be common to more than one path and, hence, route blocking
calculations and route carried flow calculations can become involved.
From the assumed blocking on each link and the path-to-path routing
pattern, the load offered to, and overflowing from, each link is calcu-
lated and from this information the route blocking and proportions
are determined. More complicated routes are handled by a method
given in Ref. 6.

3.3.3 Two-link path routing

In the design of multilink path networks, about 98 percent of the
traffic was routed on one- and two-link paths even though paths of
greater length were allowed. Because of switching costs, paths with
one or two links are usually less expensive than paths with more links.
Therefore, two-link path routing was introduced and uses the greatly
simplifying restriction that paths can be two links in length at most. It
requires only single-link crankback to implement and uses no common
links, but is otherwise identical to the multilink scheme. It achieves
nearly the same network savings as multiple-link path routing, and
appears to be very attractive as a network routing alternative. Com-
putation of route proportions is greatly simplified for two-link routing,
since common links cannot occur on one route.

3.4 Route formulation results and conclusions

We consider here the cost of a 10-node subset of the 28-node network
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A ! 0.05 8 0.15 z
} 100 ERLANGS

(a) (b)

D

100 ERLANGS

A 80.75 8 84.19 z A 0.851 8 0.887 z

(c) (d)

Fig. 9—Example of multilink proportions. (a) Link blockings: routing is ABZ —
ACBZ — ADZ. (b) Path overflow loads and blocking: carried load = 10.749 erlangs and
blocking = 0.32 for path ADZ; carried load = 3.4425 erlangs and blocking = 0.3115 for
path ACBZ; carried load = 80.75 erlangs and blocking = 0.1925 for path ABZ. (c) Link-
carried loads; route carried load = 94.94 erlangs. (d) Link proportions.

(Fig. 1) designed for multihour loads. Results for large networks are in
general agreement with these results. We illustrate designs for hierar-
chical, progressive, multilink, and two-link networks to satisfy the
traffic loads for a single hour of load and also for three network busy
hours (10 a.m., 1 p.m., and 8 p.m.). The 10-node hierarchical networks
were designed using current standard practices. In the design of DNHR
networks, the IBM mathematical programming system, MPSX-370,
was used to solve the necessary LP in the multihour design and was
run to optimality in each iteration (this is feasible for the 10-node
network problem). The cos objective was 0.005 blocking, and five
routes were allowed for each point-to-point demand pair in each hour.

3.4.1 Ten-node single hour results

The va can design a network for a single hour simply by assigning
all the traffic for a particular point-to-point pair to the least expensive
route for that pair. There is no need to generate more than one route
for each point-to-point pair since the direct route is the least expensive
in the single-hour case.

Table I gives single-hour network design results using the 10 a.m.
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load data, together with the percent savings for progressive routing,
multilink routing, and two-link routing in comparison to the network
engineered for hierarchical routing. The average network point-to-
point cos is also shown for each network design. The UA design cost
usually converged in about five iterations. The savings for progressive
routing and two-link routing are only slightly smaller than multilink
routing. The average network Gos for the DNHR networks were all
better than the hierarchy.

The primary reasons that the ua can save about 6-7 percent over a
hierarchical design appear to be that (1) the ua has a better choice of
routing, and (11) all groups can be sized for an efficient blocking level.
In the 10-node network, the algorithm used paths from Los Angeles,
Ca. to Orlando, Fl. that passed through Birmingham, Al. and Phoenix,
Az., along with the more normal paths through San Bernardino, Ca.
and Rockdale, Ga. used by the hierarchical design. Additionally, no
existing final groups were sized for one percent blocking, hence, the
average trunk occupancy was higher. For example, the Rockdale to
White Plains, N.Y. group was sized for 16 percent blocking by the ua,
and paths through the subtending sectional centers (in the hierarchy)
were used to carry traffic overflowing the Rockdale-White Plains
group so that the overall point-to-point blocking objective was met. In
fact, the average blocking on groups that would be interregional finals
in a hierarchy was about 21 percent in the uA. This resulted in higher
occupancy of these expensive interregional groups.

3.4.2 Ten-node multihour results

We now discuss hierarchical, progressive, multilink, and two-link
networks to satisfy the traffic loads for three network busy hours (10
a.m., 1 p.m., and 8 p.m.). From the results in Table II we conclude that
there is little difference in potential network cost savings between
progressive routing, two-link routing, and multilink routing. In fact, it
appears that using ccis crankback and originating node control will
only save about an additional one percent in network cost. The reason
is that most traffic in the various dynamic routing networks is routed
on the same links, because for many point-to-point pairs, these routing

Table I—Single-hour unified algorithm results
for 10-node network (10 a.m. load)

Savings
Network Routing Cost GOS (%)
Hierarchical © $5,949,500 0.009
Progressive 5,567,800 0.004 6.4
Multilink 5,611,100 0.005 7.4
Two-link 5,555,900 0.005 6.6
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Table Il—Network designs for 10-node network
(based on three hours)

Net-
Network Savings  work
Routing Cost (%) (GOS) Hour
Hierarchical $7,160,000
Progressive 6,043,100 15.6 0.003 10 a.m.
0.002 1 p.m.
0.003 8 p.m.
Multilink 5,980,100 16.5 0.002 10 a.m.
0.001 1 p.m.
0.002 8 p.m.
Two-link 6,064,300 15.3 0.003 10 a.m.

0.002 1 p.m.
0.003 8 p.m.

methods carry a significant amount of traffic on the direct path and on
the same two-link, first-alternate path.

Because progressive routing, two-link routing, and multilink routing
designs are very close in cost, the preferred routing method should be
based on ease of implementation. Progressive routing requires a history
of visited nodes to be sent with each call to prevent looping. Since no
central point has complete control of a particular call, it would also be
quite difficult to measure point-to-point blocking. We contrast this to
the use of originating node control in multilink or two-link routing
which makes it easier to measure point-to-point blocking. The blocking
measurement is necessary for network servicing in order to adjust
routing and augment trunk groups to satisfy unforeseen loads; the
blocking measurement would indicate when corrective action is nec-
essary. Having originating node control of every call is also helpful for
real-time routing, which attempts to maximize use of the network in
the face of unusual load conditions. For a description of servicing and
real-time routing, see Ref. 2. On the basis of these implementation
considerations and the comparable savings, two-link routing appears
to be the preferred routing method.

3.5 Path formulation

As explained earlier, the route formulation decided on the possible
routes a call may take prior to the LP assigning traffic to the candidate
routes at minimum cost. The choice of routes was limited because of
the large number of candidates. For example, the number of routes
that can be formed from ten paths is 10!, or over 3 million routes.
Hence, the restricted choice of routes could result in suboptimality,
since a better route not contained in those generated may exist.

The path formulation forms routes after the optimization step.
Hence, the LP and “form routes” blocks would be interchanged in Fig.
7. The LP assigns traffic directly to the candidate paths at minimum
cost.
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The first step in the router stage is to generate the required number
of one- and two-link paths. These paths are then passed to the Lp,
which is somewhat different in structure than that of the route for-
mulation. This difference arises since the amount of flow that can be
carried on a particular path depends on the blocking on that path and
on the flow assigned to all other paths comprising the particular route.
For instance, if the blocking on a path were 20 percent and the offered
load were 100 erlangs, it would be impossible to carry more than 80
erlangs on this path. Hence, some method is needed to determine
upper limits on path flow so that the resulting flows selected by the LP
are feasible. Such questions of feasibility did not arise in the route
formulation since the link blocking probabilities were embedded in the
link proportions.

3.5.1 Flow feasibility algorithm

An iterative method of using upper bounds to force flow feasibility
is shown in Fig. 10. Here we incorporate flow feasibility constraints
into the router stage. Immediately after the generation of paths, initial
upper bounds on path flows are set for use by the first LP iteration. At
this point, nothing is known about the amount of flow which is optimal
on any path. Hence, we desire to constrain the LP as little as possible.
For this reason, the initial upper bound on flow on any path j for
demand pair % is set according to the following formula:

UPBDj, = Rx(1 — B,
where

UPBD ;. = upper bound on flow on path j of demand pair %,
R, = offered load to demand pair k%,
B, = blocking on path j of demand pair k.

(The dependence of these quantities on the hour has been suppressed
for clarity.)

FLOW FEASIBILITY ALGORITHM

UPDATE
UPPER fe—y
BOUNDS

UPDATE
BLOCKINGS

seT FORM
IN | GENERATE LINEAR ROUTES iul
™  PATHS PROGRAM (REALIZE
BOUNDS FLOWS)

|
|
I
I
|
|
|
|
|
|
»—:— UPPER  p—a=f
|
|

Fig. 10—Unified algorithm path formulation router detail.
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Hence, the initial upper bound on flow is set, assuming that the
entire offered load can be offered to any path independently of the
load offered to any other path. Thus, the resulting flows can be
infeasible since there might not be enough offered load to simultane-
ously achieve the desired flow on all paths for the same demand pair.
For instance, suppose

B, =0.2,
sz = 0.1,
Bak = 0.2,

Ry = 10 erlangs,
Then

UPBD.. =8 erlangs,
UPBDy. = 9 erlangs,
UPDB;;, = 8 erlangs.

We assume that the required cos is 0.005 so that the flow on all
three paths should total 9.95 erlangs; this required flow is feasible since
an overall blocking of ByxBaxBax = 0.004 is possible should all paths be
used. Now suppose that the LP chooses for this demand pair the
optimal flows

rie = 8 erlangs,
rox = 1.95 erlangs,
Iag = 0,

where r;, is now redefined as the carried flow on path i of demand pair
k. The only way to realize the desired flow of 8 erlangs on path 1 is to
offer path 1 the entire 10 erlangs. This means that 2 erlangs will
overflow path 1. These 2 erlangs can then be offered to path 2, but can
result in a maximum flow of 1.8 erlangs due to the blocking on path 2.
Hence, the desired flows are infeasible. A method to compute new
upper bounds to force these flows toward a more feasible solution will
be discussed shortly; attention will now be focused on the structure of
the LP used with the path formulation.
An LP to optimize path flows will solve the following problem:

minimize
L
E M.a,-
=1
subject to
K J}
Y ¥ Phrh=a i=12, ,L
k=1 j=1
h=12---,H
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J

Yrh=GFf h=12-...,H
s=1 k=12 ---,K
rh<UPBDY% h=12...,H
k=12 ..., K
J=12 ... J}

rh=0  a=0,

where we redefine

Pj} = 1if path j for demand pair % uses link i in hour A,
= 0, otherwise,

rh = carried load on path j for demand pair % in hour A,

J% = number of paths for demand pair % in hour A,

G = total carried load for demand pair % in hour A.

The total carried load for demand pair % in hour A is related to the
total offered load for demand pair k% in hour A, as follows. The minimum
blocking that can be achieved on demand pair £ is

I}
E}=1] Bk
J=1

where B/ = blocking on path j for demand pair % in hour A. Let
cos = desired grade-of-service
and the blocking on demand pair . in hour % will be
f* = max[E%, cos].
Then,
Gk = RIf1 - f2].

Thus, the total carried flow is determined by the Gos, unless E is
greater than this desired cos. If the Gos constraint cannot be met, all
paths are required to be at their maximum flow to minimize the
blocking. A blocking correction algorithm, similar to that used in the
route formulation, is used in the engineering stage to correct those
routes whose blockings are unacceptable.

Returning to Fig. 10, the next step in the flow feasibility algorithm
is to update the link blockings in all hours based on the current link
flow. This can be done by calculating the link size so that the maximum
allowed blocking in any hour is not exceeded, and then calculating the
blocking in all hours. After the blockings have been updated, the upper
bounds need to be recalculated based on the current desired flows
(determined by the LP), so as to obtain a more feasible solution.

The method used to recalculate the upper bounds is best illustrated
by an example. The data in Fig. 11 show how a routing method, called
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OFFERED LOAD: 14.07
PATH:

SKIP PROPORTION: 0% 20.6% 10.8% 0% 96.7% / 3
4.32 2.96 1.08 0.49 0.48
TAREETR YA LT o6
1 7 5 4 2

1 2 3 4 5 6 7 8
LP LP REALIZED REALIZED
PATH PATH CARRIED OFFERED OFFERED CARRIED  UPPER
NUMBER BLOCKING LOAD LOAD LOAD LOAD BOUND  VIOLATION
1 0.307 9.75 14.07 14.07 9.75 9.76 0
7 0.603 1.36 3.43 3.43 1.36 1.72 0
5 0.287 1.88 2.64 2.64 1.88 211 0
) 0.453 1.06 1.94 1.08 0.59 0.59 0.47
2 0.239 0.012 0.016 0.016 0.012 0.37 0
3 0.309 0 0 0.48% 0 0.33 0
6 0.339 o] 0 0.48* 0 0.32 0
8 0.488 0 1} 0.48% 0 0.25 0

*OFFERED LOAD ASSIGNED FOR UPPER BOUND CALCULATION AS DESCRIBED IN THE TEXT.
EXCEPT FOR PATH NUMBER AND PATH BLOCKING, ALL ENTRIES ARE IN ERLANGS.

Fig. 11—Upper bound determination using a skip-one-path algorithm.

skip-one-path routing, can be used to set upper bounds which force
more feasible flows, while still allowing the LP some flexibility in
choosing new flow patterns. (The algorithm is called skip-one-path
because traffic is allowed to skip a path where it is not needed.)
Basically, this algorithm works by keeping track of the offered load
available and using this load to realize the desired flows in a sequential
manner. The data in Fig. 11 were the flows selected by an Lp that used
the initial upper bounds to route 14.07 erlangs of load on a particular
demand pair in a particular hour.

The first step in the algorithm is to calculate the load which must
be offered to each path to realize the flow selected by the Lp. This
offered load, given in the fourth column of Fig. 11, has been calculated
from the carried load on each path selected by the LP (column 3)
divided by one minus the blocking on the path (column 2). The next
step is to sort the path offered loads from largest to smallest. This has
been done for the data in Fig. 11; note that path number 7 follows
path number 1 in terms of offered load. The path numbers used here
refer to an internal ordering used by the algorithm.

Once the path ordering has been determined, the algorithm proceeds
as follows. As the largest offered load desired by the LP is equal to the
total offered load of 14.07 erlangs, all the load must be offered to path
1 as shown in the diagram in Fig. 11. Hence, none of the offered load
is “skipped over” path 1. Applying the load in this way will realize the
desired flow on the first path. Note that path 1, which carries the
greatest flow, is at its upper limit (a common situation). With the given
blocking of path 1, the overflow from path 1 is 4.32 erlangs.
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Thus, the offered and carried loads desired on path 1 can be
achieved, as shown in columns 5 and 6. Since the total demand load is
available for path 1, and the blocking is assumed constant for this
example, the upper bound on path 1 flow remains constant. The last
column in Fig. 11 gives the violation, or amount by which the desired
flow exceeds the new upper bound. In this case, the violation is zero.

Now consider path 7, which is next in order of offered load. The
desired offered load to this path is 3.43 which is less than the overflow
from path 1. The difference between these two loads, which is 4.32 —
3.43 = 0.89 (20.6 percent of 4.32), is skipped over path 7, and 3.43
erlangs is applied to path 7. This process of skipping can be accom-
plished by generating a random number before the call is offered to
path 7. With probability 0.206, a call skips path 7 and is offered to the
next path. A call that does not skip is offered to path 7.

Thus, the desired flow on path 7 can be realized. The upper bound
on path 7 is calculated assuming the entire offered load (4.32 erlangs)
could be offered to path 7. Note that this allows for more flow on path
7, if desirable, on the next iteration of the Lp. The skip-one-path
algorithm gives an actual offered load to path 7 of 3.43 erlangs with
2.07 erlangs overflow. The overflow is calculated as (0.603) (3.43) =
2.07. The total available load for any other path is now 2.07 + 0.89 =
2.96 erlangs.

Now consider path 5 which needs 2.64 erlangs of offered load. The
amount of traffic to be skipped is 2.96 — 2.64 = 0.32, or 10.8 percent of
the 2.96 erlangs available. The upper bound on the path 5 flow is based
on 2.96 erlangs, which is the total available load at present that could
be offered to path 5.

A different situation arises, however, when attempting to realize the
desired offered load to path 4 of 1.94 erlangs. The total of the overflow
from path 5 (0.76 erlangs) and the 0.32 erlangs skipped over path 5 is
1.08 erlangs which is the maximum load that can be offered to path 4.
Hence, the LP has assigned more flow than can be realized. The
maximum possible flow is 0.59; likewise, the upper bound is 0.59. Thus,
there is a bound violation of 1.06 — 0.59 = 0.47 erlangs.

The process continues until the last path with a nonzero LP flow has
been dealt with. At this point, all unused load, 0.48 erlangs in this
example, is assumed to be available as offered load for all paths with
a zero flow assigned by the LP. The upper bounds are then calculated
in the same way as the initial upper bounds were set.

As mentioned earlier, the algorithm is called skip-one-path because
traffic is allowed to skip a path where it is not needed. Actually, given
that the amount of load to be skipped can be realized by generating
random numbers, this algorithm yields a workable routing method to
realize the desired LP flows, as will be discussed in Section 3.5.4.
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Once the upper bounds have been calculated, the LP can be again
executed to optimize the new problem. The sum of bound violations is
available as a measure of flow feasibility. It is not necessary to begin
the Lp from “scratch” since the current routing patterns, with upper
bounds updated to reflect the new flows, can be used as a starting

basis.
3.5.2 Fiow realization techniques

Once the path LP has converged, we must then realize the Lp flows
by forming the appropriate routes. The flow realization algorithm
selects the routes. Three flow realization algorithms are discussed here
and differ in their computational complexity and their flexibility in
approximating the desired flows. Each algorithm treats the desired
flows in each design hour independently, hence, the routing changes
from hour to hour.

3.5.3 Routing algorithm-cGH

The cGH algorithm, named after Chung, Graham, and Hwang, who
developed it, is composed of cyclic blocks. For example, suppose there
are seven paths with desired flows r.. One possible cyclic block reali-
zation of the seven r; is

(1) (23 4) (56) (7).

The notation means that all the offered load to this route is first
offered to path 1. The overflow from path 1 is then offered to a cyclic
block composed of paths 2, 3, and 4. The term cyclic block means that
a proportion 8% of the total load offered to the kth block is offered to
cyclic permutation i, where cyclic permutation i is selected so that the
ordering within the block is preserved but a different path appears
first. In the cyclic block under consideration, a proportion 8 of the
input traffic will be offered to the paths in the order (2, 3, 4) and
proportion 83 to (3, 4, 2), etc. Offering traffic in this manner may be
accomplished by generating a random number when a call is offered to
the cyclic block. Note that all calls see the same blocking probability
within the cyclic block since all paths are searched.

The realization algorithm must define the contents of each cyclic
block and calculate the proportions 8% associated with the kth cyclic
block. The basic steps to accomplish this are as follows, and the
-subsequent example should make the steps clear.

In the interest of brevity, notation dealing with demand pairs and
design hours has been suppressed. Let

r; = desired flow on path ¢,
B; = blocking associated with path ¢,
Q: = 1 — B: = connectivity of path i,
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0= i = desired offered load to path i,

8; = Bio; = desired overflow load from path i,
J = total number of paths.

(i) Calculate o; and 8;. Sort and relabel the g, if necessary, so that
0)=0:=03 -+ = 0.

(it) The first path in the cyclic block to be formed is the as yet
unused path i with the largest a,.

(itz) Insert an as yet unused path : with largest remaining o; after a
path j with g; > 8, if such a path j exists. Repeat this step until no such
J exists.

(iv) The current (kth) cyclic block ends with the last path inserted.
If there is but one path in the block, set its coefficient to 1.0 and go to
(v). If there is more than one path in the block, let

ﬂ? = 0Omih — 8j,
where m () refers to the path in the /th position in the 2th block, and
J refers to the path preceding it in the cyclic ordering of the block.

Note that the algorithm guarantees that all «f are positive. Then
calculate

L
¥ oaf
=1

which is the cyclic coefficient associated with the ith path in the kth
block, assuming there are L paths in the block.
(v) If there are remaining r; > 0, return to (i).
(vi) Add single path cyclic blocks at the end of the route, if
necessary, until the Gos constraint is satisfied.
Table III shows an example of the algorithm and the resulting

Table ll—The CGH routing example

Realized
Path Path LP Car- LP Offered LP Over- Carried
Number Blocking ried Load Load flow Load Load Error
(B)) (r) (o)) (8:)
1 0.307 9.75 14.07 4.32 9.75 0
7 0.603 1.36 3.43 2.06 1.26 0.10
5 0.287 1.88 2.64 0.76 1.74 0.14
4 0.453 1.06 1.94 0.88 0.98 0.08
2 0.239 0.012 0.016 0.0037 0.26 0.25
3 0.309 0 0 0 0.06 0.06
6 0.339 0 0 0 0 0
8 0.488 0 ] 0 0 0

Total:  0.63

Route: (1) (7, 5, 4) (2) (3)
Coefficients: (100%) (59.2%, 13.4%, 27.4%) (100%) (100%)
Except for path number and path blocking, all entries are in erlangs.
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routing. The data for this example is identical to that used for the
example in Fig. 11. The path order in Table III has already been sorted
on offered load (o:). Path 1 becomes the first path in the first cyclic
block since o, is the largest; it is also the only path in the first cyclic
block since no other o; is larger than 6.

Path 7 begins the next cyclic block, since o7 is the largest remaining
offered load. Path 5 follows path 7 in the second cyclic block since o5
(2.64) is greater than §; (2.06). Likewise, path 4 follows path 5. The
second block ends with path 4, since no other unused path has an
offered load greater than ;.

The coefficients of the second cyclic block are computed as follows:

ai =07 — 8, =343 — 0.88 = 2.55

a3 =05 — 8 =264 —2.06 =0.58
ag =04 — 85 = 194 - 076 = 118

Total =431
Then,
2.55
?=22 = 592
B g 3é 59.2 percent
D
B3 = YT 13.4 percent
1.18
Bi= YETi 27.4 percent

These coefficients 8% for the four blocks are shown below the route
shown in Table III in order of starting path; thus, 59.2 percent of the
traffic offered to the second block starts with path 7.

Path 2 forms a one-member cyclic block since it is the only path left
with a positive 0. Note that path 3 was included to decrease the
blocking from 0.0057 to 0.0017, thus, meeting the Gos objective of
0.005. The total path flow error (absolute difference between desired
flow and realized flow) is shown to be 0.63 erlangs.

3.5.4 Skip-one-path algorithm

The skip-one-path algorithm can be used to realize path flows, as
well as to calculate upper bounds. An example of skip-one-path routing
is shown in Fig. 12. A No. 4 Ess routing data block could be modified
to do skip-one-path routing by generating a random number before a
call is offered to the next path. With a predetermined probability, a
call would skip over the path without being offered to it and proceed
to the next path in the routing sequence.

Once again, the first step is to sort the paths by offered load. The
algorithm used to calculate the amount of offered traffic to skip the
next path was discussed previously. Note that path 3 has been added
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SKIP PROPORTION: 0% 20.6% 10.8% 0% 96.7% 0%

OFFERED LOAD: 14.07 -Q' 432 m 2'96m I'DBm O'“QQ °"‘3Q__
7 5 4 2 3

PATH: 1
LP LP REALIZED REALIZED
PATH PATH CARRIED OFFERED OFFERED CARRIED
NUMBER BLOCKING LOAD LOAD LOAD LOAD |ERROR]|
1 0.307 9.76 14.07 14.07 9.75 0
7 0.603 1.36 3.43 3.43 1.36 0
5 0.287 1.88 2.64 2.64 1.88 0
4 0.453 1.06 1.94 1.08 0.59 0.47
2 0.239 0.012 0.016 0.016 0.012 0
3 0.309 0 0 0.48 0.33 0.33
6 0.339 0 0 0 0 0
8 0.488 0 0 0 0 0
TOTAL: 0.801

EXCEPT FOR PATH NUMBER AND PATH BLOCKINGS, ALL ENTRIES ARE IN ERLANGS

Fig. 12—Skip-one-path routing example.

to meet a Gos objective of 0.005. Also, Fig. 12 shows a path flow error
of 0.80, which is greater than the 0.63 path flow error given by the ccn
algorithm.

3.5.5 Sequential routing algorithm

A very simple method to realize desired path flows is termed
sequential routing. This scheme simply sorts the desired flows on
offered load (as do the other methods) and lets the first path overflow
to the second path which overflows to the third path, and so on. Thus,
traffic is routed sequentially from path to path with no probabilistic
methods being used to get the realized flows closer to the desired flows.
The reason that sequential routing works well is that most flow is
carried on the first one or two paths, which are loaded to their upper
bound, and errors in meeting flow on later paths are not significant.

Figure 13 shows a sequential routing example. The given blockings
and desired flows are identical to those used in the other routing
examples. Note that in this particular example, sequential routing has
the highest error in flows of all the three routings studied. In general,
sequential routing has the least flexibility of the three realization
methods discussed here. We consider the effect of this flow inaccuracy
on network cost.

3.6 Path formulation results and conclusions

Network designs were obtained for the ceH algorithm and the
sequential routing algorithms using a 30-node network model. The
results in Table IV show that the cGH algorithm is more accurate than
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OFFERED LOAD: 14.07  O—— O— o 0 O—
PATH: 1 7 5 4 2 3
Lp LP REALIZED  REALIZED
PATH PATH CARRIED OFFERED OFFERED CARRIED

NUMBER BLOCKING LOAD LOAD LOAD LOAD |erRROR|

1 0.307 9.75 14,07 14.07 9.75 0

7 0.603 1.36 3.43 432 172 0.35

5 0.287 1.88 263 2.60 1.86 0.02

4 0.453 1.06 1.94 0.75 0.41 0.65

2 0.239 0.012 0.016 0.34 0.26 0.25

3 0.309 0 0 0.08 0.06 0.05

6 0.339 ] o 0 o o

8 0.488 (] o 0 0 0

TOTAL: 1.32

EXCEPT FOR PATH NUMBER AND BLOCKING, ALL ENTRIES ARE IN ERLANGS

Fig. 13—Sequential routing example.

the sequential algorithm, but the difference in final network cost was
only about 0.5 percent. Additionally, these routing methods added
between 1 and 2 percentage points to the savings achieved with the
route formulation. While these results have been illustrated only for
small network models, they have recently been confirmed using a full-
scale, 215-node, intercity network model.

Hence, among path formulation routing alternatives, the very simple
sequential routing technique achieves network design savings almost
identical to those of much more complicated schemes. A routing
method, such as ccH has additional costs not quantified in this study.
For instance, a switching system with cGH routing would have to store
traffic allocation proportions and markers to indicate where the cyclic
blocks begin and end, along with the ordered list of paths. Sequential
routing, on the other hand, needs only the ordered list of paths. Also,
applying traffic allocation techniques such as those needed by cGH
routing would require real time to generate and process the appropriate
random numbers. Sequential routing needs no such traffic allocation
and, hence, has a real-time advantage.

Table IV—Network designs for 30-node network
(based on 16 hours)

Savings
Network Routing Cost (%)
Hierarchical $137,874,300
Two-link (route formulation) 117,830,000 14.5
Sequential 115,534,300 16.2
CGH 114,849,300 16.7
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IV. OPTIMIZATION METHODS AND RESULTS
4.1 Heuristic optimization method (HOM)

As mentioned in Section 3.2, an HoM was developed to solve the Lp
problems of the UA route formulation. This heuristic was revised to
solve the LP problems of the path formulation (Section 3.4). For the
sake of brevity, this section describes only the latter version. We
discuss the three basic ideas underlying the Hom and provide a brief
overview.

4.1.1 Rerouting of traffic

The first concept concerns the rerouting of traffic. A reroute is a
reassignment of flow of a particular point-to-point pair from one path
to another in a single design hour. Given an initial assignment of path
flows for each point-to-point pair, the HOM progresses to its final
solution by a sequence of reroutes. Thus, each iteration of the heuristic
affects the flow on a few links and in only one design hour.

4.1.2 Marginal costs

Next, we discuss a concept which allows us to evaluate the potential
cost savings of any reroute. The marginal link cost is an estimate for
the rate of change of the total network cost function relative to the
change in flow on a link during a particular design hour. The HOM uses
an UPCOST and a DOWNCOST indicating the predicted cost change
if we increase or decrease the link flow during a particular hour. We
maintain marginal costs for every link during every design hour.

The rules for determining the marginal link costs of a link are simple.
For a particular link we examine the flow during each design hour. If
the peak flow on the link occurs in only one hour, then increasing or
decreasing the flow in that hour will increase or decrease the capacity
of the link. We then set the UPCOST and DOWNCOST in the peak
hour equal to the metric of the link. If the peak flow occurs in more
than one hour, then increasing the flow in one of the peak hours will
increase the link capacity, while decreasing the flow in one of the peak
hours will leave the capacity unchanged. We then set the UPCOST in
all peak hours equal to the link metric and set the DOWNCOST in all
peak hours equal to zero. In all design hours where the link flow is
below the peak flow, we set the UPCOST and DOWNCOST equal to
zero since increasing or decreasing the flow does not affect the link
capacity.

Once the marginal link costs are computed, we can determine the
marginal cost of diverting flow from one path to another in the
following way. We first sum the UPCOSTs of the path that will gain
flow, and then sum the DOWNCOSTsS of the path that will lose flow.
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Subtracting the latter sum from the former sum yields the marginal
cost of the reroute. If this cost is negative, then the reroute is profitable.

Once we decide to perform a particular reroute whose marginal cost
indicates that it is profitable, we then determine the amount of flow to
divert. The rule for finding this quantity is to continue rerouting until
the marginal cost of the reroute changes.

Figures 14 and 15 sketch an example of how the marginal link costs
are determined and how they are modified when a rerouting of traffic
occurs. Figure 14 shows two paths between nodes A and D in the first
of two design hours. Each path has two links. The metrics for links
AB, BD, AC, and CD are 10, 10, 60, and 60, respectively. Path 1 is
initially assigned 20 erlangs of flow while path 2 is assigned none. The
upper bounds on the path flows are 20 and 15 erlangs, respectively.

LINK AB LINKBD
1 FLOW FLOW

35

30

1 2 HOUR 1 2 HOUR
UPCOST| 10 0 UPCOST| 10 0
DOWNCOST| 10 0 DOWNCOST | 10 0

LINK AC LINK CD
FLOW FLOW
28
% 23
12
1 2 HOUR 1 2 HOUR

UPCOST| 0 60 UPCOST| 0 | 60
DOWNCOST| 0 60 DOWNCOST| 0 | 60

Fig. 14—Link flows and marginal link costs in example.
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LINK AB LINK BD
b FLOw FLOW

25

‘= )

1 2 HOUR 1 2 HOUR
UPCOST| 10 0 UPCOST| 10 0
DOWNCOST| 10 0 DOWNCOST| 10 0

PATH 2

LINK AC LINKCD
4 FLOW FLOW
25 28
17
1 2 HOUR 1 2 HOUR
UPCOST| © 60 UPCOST| 60 60
DOWNCOST| 0 60 DOWNCOST| © 0

Fig. 15—Updated link flows and marginal link costs in example.

Figure 14 also shows the initial flow and marginal costs for each of
the links in each of two design hours. For example, link AB carries 30
erlangs in hour 1 and only 14 erlangs in hour 2. Since it has a unique
peak in hour 1, the UPCOST and DOWNCOST of link AB in hour 1
are set equal to 10, the metric of link AB. In hour 2, they are set equal
to zero.

We can now use the marginal link costs to determine the marginal
cost for rerouting traffic from path 1 to path 2. Summing the UPCOST's
of links AC and CD in hour 1, and subtracting from it the sum of the
DOWNCOSTs of links AB and BD in hour 1 yields

(0 +0) — (10 + 10) = —20,

the marginal cost of diverting from path 1 to path 2 in hour 1.
Therefore, the reroute is a profitable one.
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We next determine the amount of flow to divert. Now the marginal
profit of the reroute will hold until one of the marginal link costs in
the above calculation changes. We then reroute as much flow as
possible until either the DOWNCOST of link AB, the DOWNCOST
of link BD, the UPCOST of link AC, or the UPCOST of link CD
changes in hour 1. Figure 15 describes the effect of rerouting 5 erlangs
of flow in hour 1. Link CD has gained 5 erlangs of flow and now has 2
peak hours. The UPCOST in each hour is now equal to the link metric,
while the DOWNCOST in each hour is zero. Since the UPCOST of
link CD has changed from zero to sixty, 5 erlangs is the total amount
of flow that we reroute. If after the marginal reroute cost is reevaluated
we find that the reroute is still profitable, we continue to divert flow
until the marginal reroute cost changes again. We continue in this
manner until either the reroute is no longer profitable, or there is no
more flow assigned to path 1, or the flow on path 2 reaches its upper
bound. We then search for another profitable reroute.

4.1.3 Candidate list

The last concept for the HoM concerns the method for deciding how
many candidate reroutes to evaluate before actually performing a
particular reroute. In selecting a reroute pair, there is a tradeoff
between the quality of the reroute found and the amount of time spent
searching for it. Although we would like to find very profitable reroutes,
the moMm should also be computationally efficient. The HOM uses a
candidate list to find the next reroute to perform. This concept works
in the following way. The first M point-to-point pairs are searched for
profitable reroutes. The K most profitable reroutes are put into a
candidate list and the most profitable reroute in the list is selected and
performed. Once this particular reroute is no longer profitable, the
remaining members of the list are reevaluated and the most profitable
reroute is selected and performed. This process continues until there
are no more profitable reroutes left in the list. The next M point-to-
point pairs are then searched for profitable reroutes, a new list is
generated, and the reroutes in the list are performed until they are no
longer profitable. The HOM continues in this manner. Whenever the
last point-to-point pair in the set of all point-to-point pairs is encoun-
tered, the next point-to-point pair to be considered is the first point-
to-point pair in the set. The heuristic then “wraps around” the set of
all point-to-point pairs. The HoM finally terminates when there are no
profitable reroutes among all point-to-point pairs.

4.1.4 Overview

The three concepts we have described in this section (the rerouting
of traffic, the marginal costs, and the candidate list) are used together
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in the HOM. After an initial feasible solution is selected, the marginal
link costs are determined. A group of point-to-point pairs is searched
and a list of the most profitable reroutes is formed. Each reroute is
performed until it is no longer profitable. When there are no more
profitable reroutes in the list, a new group of point-to-point pairs is
searched and a new list is formed. The heuristic continues in this
manner until there are no profitable reroutes. The next section de-
scribes typical examples of the computational results that have been
obtained.

4.2 Computational results

We compared the Hom with MPSX/370 using an LP problem that
was generated by the uA. The problem was derived from the 28-node
network where the average number of paths per point-to-point pair
was 9.4. The corresponding LP had 1402 rows, 7630 columns, and a
density of 0.17 percent. We used as a reference point a nonoptimal
solution obtained by MPSX/370 after 904 cpu seconds. The heuristic
progressed very rapidly until it was within 0.2 percent of the MPSX/
370 solution. It then terminated after only 2 cPU seconds. In contrast,
MPSX /370 required 860 cPu seconds to produce a solution of similar
quality. We see that the HOM can produce a near-optimal solution
much more quickly than MPSX/370. Also, the UA contains many
approximations so that an optimal solution to the LP is not necessary.
In fact, there is little penalty in the network cost if the HOM is used.

4.3 Run times for large networks

To design a 200-node network with 6 design hours, the va will
require about 20 million bytes of memory, much of which is needed to
solve the linear programs.

Tests with a 190-node intercity network model for 6 design hours
indicate that the ua will require less than 4 hours of cpPU time to design
a large network. Half of this time will be spent by the HoM. With
expected advances in hardware, the total time may become consider-
ably smaller.

V. POTENTIAL BELL SYSTEM APPLICATIONS

The implementation of DNHR requires the following developments:
(i) Network design, servicing, and electronic switching system soft-
ware.

(ii) Collection of point-to-point data. The network would be de-
signed and administered using a point-to-point blocking criterion and
the blocking must be measured to administer the network properly.

(iii) Mechanization of routing administration function. The prolif-
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eration of routing updates would necessitate a mechanized routing
administration system.

(iv) Design along a network boundary separating the centralized
intercity network from the decentralized metropolitan networks. This
is to achieve efficient network designs, both in cost and in computing
time.

(v) Modification of network operation support systems such as the
network management systems.

(vi) Modifications of switch planning tools and methods. These must
be modified to reflect DNHR design in order to model the network
properly.

The expected benefits of dynamic routing are attractive. However, the
fundamental nature of the changes raises service, cost, and feasibility
issues that might substantially reduce the projected benefits.

Several studies are underway to assess fundamental issues, such as
network management, switching and signaling loads, large scale opti-
mization, and transmission performance.
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