Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 7, September 1981
Printed in U.S.A.

Digital Signal Processor:

Private Communications

By C. A. McGONEGAL, D. A. BERKLEY, and N. S. JAYANT
(Manuscript received August 2, 1980)

Where normal safeguards for message privacy are not adequate,
some form of encryption is required. Voice messages, encoded using
an adaptive differential pulse-code-modulation encoder such as that
described in a companion paper, may be encrypted for privacy (pro-
tection against casual eavesdropping) through similar digital signal
processor programs with little additional computation. Two methods
of implementation are described: The use of U-permutations for
temporal scrambling of the transmitted bit stream and the use of bit-
masking by stored random numbers. The relative merits of each
system are discussed, illustrating both the flexibility and limitations
of the digital signal processor for such applications.

I. INTRODUCTION

Situations occur in everyday telephone communication systems
where the normal safeguards for message privacy may not be adequate.
This could happen, for example, in a radiotelephone system where
message contents could be easily intercepted by unauthorized listeners.

In this paper, we discuss two simple methods for ensuring short-
term privacy for such telephone systems. These methods are based on
the Adaptive Differential Pulse Code Modulation (ADPcM) codec de-
scribed in a companion paper.' Both methods modify the aAppcm
transmitted code word in such a way as to randomize the bit pattern.
Decoding the resulting randomized code words requires advance
knowledge of the randomization key.

The techniques discussed here are non-time-varying and have lim-
ited numbers of encryption keys. Thus, the message is only protected
from casual listeners. Listeners who possess the necessary equipment
can determine the required decoding key. However, the system is

1563

designed so that decoding cannot be accomplished in the duration of
an average conversation.

Both these methods have been implemented using the Bell Labo-
ratories Digital Signal Processing integrated circuit (Dsp)® with only a
slight increase in processing load relative to that required by non-
encrypted ADPcM encoding and decoding. The resulting system should
be able to support two or three simultaneous coders or decoders per
integrated circuit.

Issues of key distribution and cryptanalysis are outside the scope of
this paper.® Our purpose, rather, is to demonstrate what can be realized
in terms of adapting an existing ADPCM DsSP program for a potential
privacy application. With rom and rRaM capabilities greater than what
are available in the present psP, levels of privacy can be straightfor-
wardly enhanced—for example, by layering several permutation and
masking operations, as in the Digital Encryption Standard.’

In the following section, we discuss privacy algorithms. Then, we
consider the implementation of each using the Dsp. Finally, we discuss
the relative merits of each system. This discussion illustrates both the
flexibility and limitations of the DsP for such an application.

Il. PRIVACY CODING FOR ADPCM TRANSMISSION

There are three major requirements for a simple digital privacy
system:

() It must be possible to generate a “large” number of encryption
keys (bit rearrangement or masking patterns) automatically and easily.

(ii) The encrypted speech must be unintelligible if decoded by
other than the proper key.
(iii) The system must be sufficiently tractable so as to be imple-
mented without significant incremental cost.
The two encryption methods we will consider are as follows:

(i) U-permutations® where the bits in a given block of ADPCM code
words are permuted from their normal order, producing a temporal
scrambling of the bit stream.

(iz) Addition of stored pseudo-random numbers to the ADPCM code
words to form randomly “masked” encrypted code words.
Other methods, such as use of linear congruential random number
generation®® to form masks, are possible, but methods (i) and (if)
above are both practical and illustrate the principles of encryption for
privacy.

2.1 U-permutations
The class of uniform (or U-permutations on N bits is defined by*

s=krimod N);rs=12 ... N, (1)

1564 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

where r is the initial bit position and s is the scrambled bit position in
the block of N bits. The encryption key is &, and must be prime to N.
Unscrambling of the N-bit block is accomplished by another U-per-
mutation

r = kss(mod N), (2)

with kik:(mod N) = 1. Figure la illustrates a permutation of bits
within a block of N bits, while Fig. 1b shows an example of uniform
permutation for N = 16, k; = 3 and k. = 11.

It has been found that to satisfy the requirement for unintelligibility
requires at least N = 16 for 24-kb/s aAppPcm (8-kHz sampling, 3 bits per
sample)." We have implemented an N = 16 system using 32-kb/s
ADPCM (8-kHz sampling and 4 bits/sample to provide telephone quality
speech). The scrambled speech is of very low intelligibility with casual
listening. However, individual words from a limited vocabulary, such
as spoken numbers, may be distinguishable, especially with experi-
enced listening. An implementation with higher N faces some difficul-
ties because of address space limitations. With the current DSP version
N > 32 is impossible, as will be discussed later.

The number of keys in U-permutation is given by N.G(N), where
G(N) is the number of numbers that are prime to N.* There are 112
keys available for N = 16. For N = 32 this increases to 480 keys. The
adequacy of a given number of keys depends on the application.

2.2 Random number masking

The random mask method we have considered is basically very
simple. In essence, a different random number is added to each ApPcm
code word before transmission and that same number is subtracted by

1 2 3 N
1 2 3 N
(a)

r 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s 3 6 91215 2 5 8 11 14 1 4 7 10 13 16

N=16 k=3 ky=11
(b)

Fig. 1 —Example of (a) general bit permutation in a N-bit block and (b) uniform
permutation with N = 16, &, = 3, and k. = 11.

PRIVATE COMMUNICATIONS 1565

the receiver. A finite table of random numbers is used and synchroni-
zation is required between transmitter and receiver.

The encryption key for any given transmission is the starting point
in the random number table relative to the block synchronization.
Additional keys may be produced by generating the random number
mask using multiple table pointers and adding together the random
numbers to form the code word mask. Using two pointers, the masking
of aAppcM code word C with an L-number random table (4 bits per
entry so L = N/4) can be written as

E=C+R(I+0)+RI+ 0y, (3)

where R(I) denotes the I-th word of the random table, E is the
encrypted code word, O:; are the table offsets relative to the beginning
of the table and I = 0 at beginning of a transmission block (synchro-
nization time). Decryption is accomplished by subtracting the same
set of random numbers from E. The key words are O,., leading to a
maximum of L? possible keys of which L(L — 1)/2 are unique. Even
for L = 16 the encrypted speech is essentially unintelligible and for
larger L, the presence of speech is very hard to detect. (The output
sounds like continuous white noise at all times.) The table size is
limited by DsP ROM size of 1024 words, but L = 512 words is certainly
practical. Two table pointers then give about 130,000 keys.

lil. IMPLEMENTATION USING THE DSP

The basis for both DSP privacy implementations is the ADPCM codec
discussed in the companion paper.! In both encryption systems the
coder or decoder is recast slightly in “subroutine” form which allows
more convenient handling of the block synchronization structure. Also,
to avoid the problem of two’s-complement sign extension, the ADPCM
code word is converted to unsigned form; that is, the 4-bit code word,
represented as —7 to 8 in the original coder, is offset by 7 and coded as
0 to 15.

3.1 U-permutations

The U-permutation for N = 16 is implemented by splitting blocks of
four code words (4 bits each) into blocks of 16 one-bit words, rearrang-
ing the one-bit words according to the proper permutation and reas-
sembling the permuted block of four words for transmission. One block
of four words is being permuted, while a second block is being sent
allowing a very simple program organization.

The required modulo N arithmetic is accomplished without any
computation being required by overflowing the address register being
used as the storage pointer. Thus, for N = 16, the disassembled one-
bit words are stored at every fourth RAM location. The proper permu-

1566 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

tation increment is stored in the upper 8 bits of the increment register
and the address sequence generated by overflow.

Assuming that the RYA register is pointed to the unsigned form of
the ADPCM code word, the following DSP instructions disassemble the
code word and store the resulting one-bit words in RAM. The code
word is disassembled by loading the bit to be saved in bit 14 of the p
register and zeroing all other p register bits. The ¢ register is set to 24,
(Notation for the psp assembly language is given in a companion

paper.?)

i=030; “permutation in-
crement”
rd = 0; “RAM storage ad-
dress”
a=p p = 2048+ryz; “get bit 1 of code
word”
a=p p = l*c; “set up to zero
other bits”
a = p&a p = 4096+ryz; “zero other bits;
get bit 2”
w=a a=p p = lxc; “set up to zero
other bits”
rdi=w a = p&a p = 8192+ryz; “save bit 1;
get bit 3”
w=a a=p p = l*c; “set up to zero
other bits”
rdi=w a = p&a p = 16384+*ryz; ‘“save bit 2;
get bit 4”
w=a a=p p = l*c; “set up to zero
other bits”
rdi=w a = p&a; “save bit 3; zero
other bits”
w=a;
rdi = w; “save bit 4”

The single bits are reassembled into a code word by shifting and
adding the bits using the following instructions:

k = 010; “permutation increment”
ry = 160;;; “RAM storage address”
a=p p = l.*ryk; “get bit 4”

a=p p = l.#ryk; “get bit 3"

a=p+ 2=+a p = l*ryk; “shift and add; get bit 2”
a=p+ 2*a p = lxryk; “shift and add; get bit 1”
a=p + 2=*a; “code word reassembled”

PRIVATE COMMUNICATIONS

1567

In this scheme, the rRAM values are refreshed at a 500-us period (for
an 8-kHz sampling rate) which is the maximum specified refresh time
for the dynamic Ram.” To extend the method to N = 32, it is necessary
to use spare program cycles (of which a sufficient number appears to
be available) to supplement the “natural” RAM refresh cycles.

Permutation blocks larger than N = 32 bits are not possible using
this approach since 2N words of RAM are required. Thus, N = 64 would
fill the 128-word RAM on the DsP allowing no scratch storage as
required by the basic ADPCM coder.

The decoder implementation is very similar and has identical limi-
tations. A single DsP u-law to p-law codec, using N = 16, was imple-
mented successfully and the resulting speech was quite well scrambled
although, as mentioned before, some numbers could be distinguished
with practice.

The limited number of keys in an N = 16 U-permutation system
could present a problem in some applications. To increase the number
of keys, the easiest route appears to be random number masking,
which is discussed next.

3.2 Random number masking

Random 4-bit numbers are stored, 4 bits per word, in a ROM table.
The table size is limited only by available RoM. We arbitrarily used a
256-word table for our implementation, but considerably more space
is available and can be used if more keys are desired.

In single-pointer masking a pointer into the table is arbitrarily
chosen. The pspP automatic (6-bit) loop counter is set to 63 and for
each ADPcM code word generated, a random number is fetched, added
to the code word, and the pointer incremented. When the loop count
is satisfied the pointer is restored to its original value.

If multiple pointers are used, offset values are initialized and each
random number is fetched and added to the code word. To avoid
additional programs steps for detection of the table end, the pointers
are limited to occur no later than 64 locations from the end of the
table. The two-pointer version has the following requirement

S+8+64<N, (4)

where S is the starting pointer, 8 is the offset from S, and N is the
mask table size.

All additions are made without attention to overflow out of the 4-bit
code word and the least-significant four bits are transmitted. The
received word then has identical masks subtracted, without regard to
unsigned underflow, and the four least-significant bits are taken as the
input to the aAppPcM coder. In two’s-complement arithmetic the final
result is correct, without regard to overflow or underflow, if that result

1568 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

is in the required range. (The decrypted code word must satisfy this
condition since the original unsigned word was in the 4-bit range.) An
example of masking by this process is shown in Fig. 2.

Assuming the RX register contains the mask pointer, the K register
contains the offset value and the RYA register contains a pointer to the
unsigned form of the ADPCM code word, the following DsP instructions
encrypt the code word:

a=p p = rxk#c; “get mask word 1”

a=p p = rxkxc; “get mask word 2”

a=p+a p = l.*xw; “add masks; get code word”
a=p+a p = 017xc; “subtract mask from code word”
a = p&a; “decrypted 4-bit code word”

The code word is decrypted by the following instructions. The rx and
K registers contain the table pointer and offset value, respectively. The
W register contains the encrypted code word.

a=p p = rxk=c; “get mask word 1”

a=p p = rxk#c; “get mask word 2”
a=p+a p = l+rym; “add masks; get code word”
a=p—a p = 017xc; “add code word”

a = p&a; “encrypted 4-bit code word”

The two-pointer encrypted codec was implemented on a single DsP
with p-law input and output. Table sizes as small as 16 words, with a
single pointer, yield unintelligible scrambled speech.

To examine the synchronization properties of the system, the same

ENCRYPTION

ADPCM CODE WORD 101

1001 la— INITIAL POINTER + 100
(KEY 1)
0011 re— OFFSET POINTER + 0011
(KEY 2)
MASKED WORD ——== 1 0111
H,_J
. TRANSMIT
.
.
DECRYPTION
256 WORDS
o
N - o0on
.
. - 1001
(1) 101
_r_f

RECONSTRUCTED CODE WORD

Fig. 2—Example of bit-masking with two-pointer random number encryption and
decryption.

PRIVATE COMMUNICATIONS 1569

codec was also implemented in a two-DsP version. A simplified block
diagram is shown for this system in Fig. 3. Digital signal processor 1
provides the encryption and transmits the encrypted bits; psp 2
performs the decryption. In the absence of appropriate synchronization
mentioned below, the output of the receiver digital-to-analog converter
is scrambled. This is the same configuration used for the two-Dsp
codec,' except that provision is made for block synchronization. The
status and control bits, CO and S0, provide a “sync” bit for this purpose
and, assuming synchronization is recovered externally from the trans-
mission format, are connected separately in parallel with the main
serial data-bit stream. Synchronization formatting and recovery is
probably also possible within the psp, but it is beyond the scope of
this paper.

Programming the synchronization is very simple. Each time the
table pointer is reinitialized the transmitter sends the control signal
(S0) using the STR register, and the receiver waits for the control signal
(C0) using the syc register. Digital signal processor instructions for
the transmitter and receiver are given below.

transmitter
init:
le = 63; “set up loop counter”
str = 1; “send control signal”
auc = 0x06; “set ¢ = 2", overflow”
str = 0; “turn off control signal”
loop:
receiver
init; .
le = 63; “set up loop counter”
auc = 0x06; “set ¢ = 2!, overflow”
syc =4 “wait for control signal”
loop:
8-BIT SYNCAIT 8-BIT
B-LAW DSP DSP BLAW
/AP 32 kb/s ADPCM 2 [AT
+ TIMING
! ﬁm !
i ROM
i |
I
SRR d
8-kHz CLOCK
A/D-D/A

Fig. 3—Simplified block diagram of two-DsP ADPCM codec with block synchronization.

1570 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table |—Memory utilization

Memory
Instructions
Coder Type per Sample ROM RAM
ADPCM encoder 46 228 5
U-permutation encoder N = 16 57 308 37
Random mask encoder L = 256 68 552 6
ADPCM decoder 38 156 5
U-permutation decoder N = 16 42 214 37
Random mask decoder L = 256 55 452 6

As expected, synchronization time is imperceptible and the system
sounds exactly the same as does the single DSP codec.

IV. DISCUSSION

Both encrypted codecs provide adequate scrambling in terms of
reduced intelligibility, although random number masking is capable of
entirely destroying the impression of speech.

Program efficiency, in terms of instructions executed per 125-us
sample, is also similar as shown in Table I. Utilization of the Dsp,
relative to its maximum execution rate of 156 instructions per 125-s
sample, ranges from 24 percent for the ADPCM decoder to 44 percent
for the random mask encoder.

Table I also shows memory utilization for the different implemen-
tations. (These should be compared to 128 words of available RaAM and
1024 words of available RoM.) The ADPCM codec is in subroutine form
and savings of about eight instructions can be made by removing this
structure at the expense of a considerably more opaque program.

The number of keys required for this type of privacy system has not
been studied and other issues, such as transmission of keys, are outside
the area of this paper. Clearly, in this implementation random number
masking provides for more keys than U-permutations. Also, if greater
levels of secrecy are required on a particular transmission link, one
can envision a special transmitter/receiver pair with a unique PROM or
RrOM random number table used externally, thereby achieving a 2** key
system. (This is because there are 2" binary sequences of length M.)
For any single transmission, i.e. a single set of pointer positions, k& =
64. However, if one considers other pointer positions this number is
greater and is, in general, a function of the random number table
length L.

Although the programming was not discussed, the setting of the
particular key to be used in a given transmission would require, for
example, reading an external switch register during program initiali-
zation. Thus, one would need some simple external circuitry to divert
the codec input stream at initialization (reset) time and appropriate

PRIVATE COMMUNICATIONS 1571

DSP programming to handle the input format and store the result in
RAM.

V. CONCLUSION

Two privacy encryption systems, based on ADPCM coding of speech,
have been discussed. Using the psP we have implemented both with
modest increases in processor load. The U-permutation method makes
heavy use of RAM and has limited numbers of encryption keys. Random
number masking makes heavy use of ROM and can provide large
numbers of keys. Both systems reduce speech intelligibility and could
form the basis of an effective privacy system.

VI. ACKNOWLEDGMENTS

The authors would like to acknowledge the support of their associ-
ates in the Bell Laboratories Acoustic Research Department, especially
that of J. Johnston, in the development of the modulo arithmetic
concepts; J. Upton in modification of the psp hardware for block
synchronization; and J. L. Flanagan for his support, encouragement,
and discussion of the use of specially prepared rRoM for secrecy.

REFERENCES

1. J. R. Boddie et al, “Digital Signal Processor: Adaptive Differential Pulse-Code-
Modulation Coding,” B.S.T.J., this issue.

2. J. R. Boddie et al.,, “Digital Signal Processor: Architecture and Performance,”
B.S.T.J., this issue.

3. W. Diffie and M. E. Hellman, “Privacy and Authentication: An Introduction to
Cryptography,” Proc. IEEE, 67, No. 1 (March 1979), pp. 397-427.

4. 8. C. Kak and N. S. Jayant, “On Speech Encryption Using Waveform Scrambling,”
B.S.T.J., 56, No. 5 (May-June 1977), pp. 781-808.

5. D. E. Knuth, The Art of Computer Programming, Vol. 2, Massachusetts: Addison-
Wesley, 1969, pp. 9-25.

6. M. Buric, J. Kohut, and J. Olive, “Digital Signal Processor: Speech Synthesis,”
B.S.T.J., this issue.

1572 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

