Copyright © 1981 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 60, No. 7, September 1981
Printed in U.S. A.

Digital Signal Processor:

Design of the Assembler

By C. L. SEMMELMAN
(Manuscript received June 13, 1980)

In addition to the features normally provided by assemblers, the
digital signal processor assembler handles the multistatement-per-
instruction format required by a pipelined machine and provides
several other capabilities required by the digital signal processor
architecture. In describing the manner in which this was accom-
plished, more attention is devoted to matters of interest to the user of
the assembler and less to its internal construction. The use of “lex”
to write the parser subroutine is described, and possible future en-
hancements are discussed. An example illustrates the digital signal
processor assembler’s input language and its outputs.

I. INTRODUCTION

The assembler for the digital signal processor (Dsp), as for any
processor, converts programs written in a symbolic language into the
corresponding machine language, and provides various convenience
features for use by the DSP programmer.

The architecture of the DsP is designed for a maximum speed of
operation in applications which differ markedly from those of ordinary
computers. As a result, the DSp assembler contains features which are
unique to this psp application. At the assembly language level, this
results in a complex programming language, which the programmer
must understand thoroughly in order to produce correct and efficient
programs. The assembler, of course, must accept every legal instruction
in this input language and produce machine language corresponding
to every operation in the DsP repertoire. This language differs from
standard assembly languages in several major respects, as described
below.

1483

Il. ARCHITECTURAL FEATURES OF THE DSP AND THEIR EFFECT ON
THE ASSEMBLER DESIGN

The DsP has a number of unusual architectural features which affect
the design of the assembler. Following an overview, these features are
described from a user’s point of view and their effects on the assem-
bler’s design and operation are discussed. Boddie et al.' give a more
complete description of the machine architecture.

2.1 Overview of DSP architecture

The psp contains 1024 words of 16-bit RoM memory for program
storage and 128 words of 20-bit RAM memory for data. The processor
contains a 16- by 20-bit integer multiplier, whose output is fed into a
40-bit integer accumulator. From there, data may be sent to a 20-bit
w register, before being sent to storage or back to the multiplier for
further calculation. Input and output are handled through 8-bit buffers,
with automatic serial-parallel conversion and external synchronization.
The psP has four kinds of special purpose registers, including five
registers for indirect addressing of data (direct addressing is not
allowed), four registers for increments and counting, two for setting
the psp ground rules, and others for instruction counting, return
address storage, synchronization, and status output. A separate adder
is used to increment the addresses stored in the indirect addressing
registers.

The multiplier, accumulator, w register, and data storage functions
are separately programmed and controlled by different fields in the
machine language word. There are two different classes of instructions:
arithmetic and auxiliary, and they make different uses of some of the
bits of the machine language word. The DsP uses the value of one of
the instruction fields to distinguish between the two classes. Arith-
metical instructions occupy only one machine word and may specify
that the next machine word contains a numerical value for immediate
input to the multiplier. Auxiliary instructions occupy two machine
words, and bits in the second word further distinguish between arith-
metical-auxiliary and non-arithmetical-auxiliary subclasses.

2.2 Pipeline architecture

The term “pipeline” refers to the fact that the processor has several
hardware components which perform different operations simultane-
ously and pass data from one component to the next as through a pipe.
In the psp, these components are a multiplier, an accumulator, the w
register and a memory. Data flow from the multiplier to the accumu-
lator, then to the w register and to storage. Each of the hardware

1484 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

components is under the command of a specific group of bits in the
instruction, which selects the exact operation to be performed out of
the group available to the particular component.

Figure 1 shows how the pipeline functions. The columns correspond
to the hardware components, and the rows to instructions which are
executed sequentially in time. Data move diagonally. Each component
can accept and process data in each instruction cycle, if commanded
to do so. Although it takes four cycles for data to progress through all
four components, the DSP accepts a new input argument and produces
a new output each instruction cycle. This increases the data processing
speed appreciably.

For each instruction, the assembler must accept up to four state-
ments, one for each hardware component, and combine the corre-
sponding bit patterns to form the complete instruction. The statements
are usually written in the left-to-right sequence shown in Fig. 1, as this
encourages the following interpretation:

(i) Store the present contents of the w (or Y) register.
(i) Reload the w register from the accumulator.

(iit) Reload the accumulator using the present contents of the
product register.

(iv) Calculate a new product from the x and y arguments specified.

An instruction containing four such statements might be

*rda=w w=a a=p+a p=s*rx++j=*ibufy.

STORE W-REGISTER ACCUMULATOR MULTIPLIER
5
5y Wo A3
¢ S W A P.
° ! ? 2 DATA
(7%} INPUT
w
o3
oS Wo Ay Py /3
w
=
3
T 2
= Ag P })
1
] Iy
0
o
——————— HARDWARE COMPONENTS — ———————

Fig. 1—Pipelining of data.

DESIGN OF THE ASSEMBLER 1485

2.3 Advanced fetches of x and y fields

The x and y fields in a DSP instruction specify the two input
arguments to the multiplier. The sources for the x and y data must be
specified in the instruction that is fetched two cycles before the
instruction that operates on the data. The assembler accepts the x and
y source specifications on the same line as the operation (as shown in
the previous example) and then “skews” them to the x and y fields of
the instruction two instructions previous. The four-statement instruc-
tion shown above would appear in machine language as in Fig. 2.

2.4 Instruction fetched two cycles before execution

Each instruction is fetched from read only memory (RoM) two cycles
before it is executed. This allows time to decode the remaining instruc-
tion fields before execution begins. If this only resulted in a two-cycle
time delay between fetching an instruction and executing it, program-
mers would be able to ignore the delay completely. Unfortunately,
however, this delay in execution also applies to jump instructions. The
two instructions that follow a jump are already in the operating
hardware when the jump takes effect and their x and y fields will affect
instructions that follow the jump. They may differ from the x and y
fields that would be fetched if the jump destination were reached by
normal program counter incrementing. Fields x1 and y1 and fields x3
and y3 in Fig. 3 both refer to the same operation instruction located at
the destination.

The current version of the assembler cannot determine if these two
sets of x and y fields should be alike or if they may be different. The
programmer must answer this question. The assembler tests and
reports a difference as a warning message.

Both the advanced fetching of the x and y fields described above
and this instruction fetching in advance of execution are forms of
pipelining, and they create problems quite unlike those encountered in
the writing of standard assemblers.

Frx ++j ibufy

n-2 110 100

n-1

[
o

w rda a=p+a w

Fig. 2—Fields x and y advanced by two instructions.

1486 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

X 14|

X2 ¥a
DEST:
DEST +1
1
: |
1 |
I : CONTROL
|
| |
| |
|
pc = &DEST;
Xa y3
X4 Y4

Fig. 3—Multiple x and y fields apply to same instructions.

2.5 Other hardware features

The other hardware features mentioned above cause few problems
for the assembler and even eliminate some of the usual assembler
functions. Input and output are treated as if they were two storage
locations. The special purpose registers appear in the source program
only to be loaded with a constant. When they are used for other
purposes a key word, which also specifies the application, conceals
their identifiers. Even statements specifying arithmetical operations
do not have to be analyzed as the assembler recognizes the entire
statement and translates it into a single bit pattern. For example, the
entire statement

a=p+a
is identified as one key “word” and translated into the binary number
001. A multiplication statement, such as
p = *rx++j * ibufy,

contains two key words, *rx++j and ibufy, which become 110 and 100.
Multiplication is implied and there is no place for the product to go
except into the product register, so it need not be specified.

2.6 Summary

The unusual architecture of the DsP produces some strange results
both in the assembler operation and in the appearance of source
programs. The frequent use of key words and the prohibition of direct
addressing combine to make variable names almost disappear from
the source program. Their only use is to prime registers for indirect

DESIGN OF THE ASSEMBLER 1487

addressing. Pipelining also helps to conceal the programmer’s intent.
As a result, source programs are more difficult to read and good
comments are more important than in most assembly language pro-
grams.

lll. EXTERNAL FEATURES OF THE DSP ASSEMBLER

In the development of the assembler, a number of policy questions
were considered and settled before program writing was started. These
decisions are discussed below.

3.1 Environment for development and customer use

Because of the widespread use of the UNIX* time-sharing operating
system? at Bell Laboratories, no alternative was given serious consid-
eration. This choice makes it easy for programmers to prepare their
DSP source language programs using the UNIX text editor, store them
as files, and have the assembler pick them up for processing. Assembler
output files can be listed and retained for testing with the Dsp simu-
lator,® and can be converted to PROM or ROM mask formats.

3.2 Special DSP hardware features

The programmer is required to place the individual statements
which make up an instruction, so that the pipeline operations will be
performed on the correct data. The programmer must also place jump
statements properly, as the assembler does not advance them by two
instructions. This is considered proper as the programmer must un-
derstand the effects of the advanced x and y field fetches.

The assembler does advance the x and y fields for the programmer.
This results in a more readable source program and eliminates one
source of possible error in the assembler input. The assembler also
deduces, from the key words found, which of the various instruction
classes and sub-classes the programmer is using.

3.3 Input language characteristics

The input language syntax resembles that of the language C. This
choice was made because many DSP programmers were familiar with
that language.

To facilitate programming for people who do not need the full
mnemonic content of the C-like constructs, a set of three-character
alternates is available. Thus, a programmer has the choice of entering
either

*rx++i or rxi
* Registered trademark of Bell Laboratories.

1488 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

to mean “the quantity pointed to by the contents of the RX register,
which is post-incremented by the contents of register 1.”

The assembler also provides a limited macro facility. It permits a
single instruction macro to be defined and called within the source
language input file. Argument substitution is not implemented. For
more elaborate facilities, the programmer may use the C-language
preprocessor, which allows multi-instruction capability, nesting of
macros, and argument substitution.

3.4 Handling of errors

The assembler reports each error in a message which appears on the
user’s terminal. Each error is classified as “fatal” or “for information,”
and, where possible, each message contains the number of the line in
the input file where the error was detected. Any fatal error will prevent
the writing of the PROM programming file, and no error or combination
of errors is capable of stopping the assembler before it reaches the end
of the source file.

IV. IMPLEMENTATION POLICIES AND DETAILS

The programming methods described here were selected because
they were convenient in developing the assembler and led to good
quality code.

4.1 One-pass assembler

Because so few variable names are expected in the DSP programs, it
seemed reasonable to assemble as much of the program as possible on
the first pass over the source file. This decision forces the programmer
to define macros before calling them and to assign variables to RAM
storage before referring to them, which appear to be reasonable restric-
tions.

The assembler handles labels in the following manner. When a label
definition is encountered, the assembler puts the memory address and
the current ROM address in a label definition table. When a label
reference is encountered, the memory address and the rRoM location of
the reference are added to a table of label references. At the end of the
source program file, the assembler moves the label definition rRomM
locations into the corresponding label reference locations. Any unde-
fined references cause fatal errors.

4.2 Organization of the DSP assembler

A very brief description of the assembler is as follows: the main
program calls the parser, which is a subroutine written by “lex.”* It
returns a value identifying the token found. Control passes through
two levels of “switch” statements to a block of code where the bits

DESIGN OF THE ASSEMBLER 1489

corresponding to the token are moved into the machine word, and
some flags are set or some table entries made. These actions are
repeated until the end of file is encountered. Then label references are
resolved, output files written, and messages written for the user.

The following paragraphs elaborate on this brief description, but
still give only an overview of the methods used. Tables I through VIII
in the Appendix show the statements which may appear in each class
of instruction and the tokens which are permitted in each statement.
Reference to these tables may be helpful in reading the following
paragraphs.

4.2.1 Token identifiers

The numerical values used to identify the tokens are octal numbers
whose “hundreds” digit identifies a family of tokens and whose “tens”
and ‘“units” digits indicate the member of that family. In addition to
the families of tokens shown in Appendix A, there is a utility family,
whose members are semicolons, label definitions, macro starts, ends
and calls, numerical values, comments, RAM assignments, dimensions,
and subscripts. Some of these items are described more fully in the
next section.

4.2.2 Utility functions

Several members of the utility family are described below. Label
definitions have already been discussed, and comments, dimensions,
and subscripts do not need extensive coverage.

4.2.2.1 Semicolon. The semicolon is used to mark the end of each
DSP instruction. Its appearance initiates the clean-up after one instruc-
tion and the priming required for the next.

4.2.2.2 Macros: start, end, and call. A macro is defined as in the
following example:

{(Macnamerdx =y a=p p=axi=*ryk},

where the braces signal the start and end of the definition. At the left
brace, the parser is called to read the macro’s name, which is saved in
a table. The statements in the macro are assembled in a macro table
location, rather than in their final RoM position. The right brace causes
the assembly location to revert to the normal ROM position.

Mentioning the name of the macro causes the saved bits to be placed
in the proper position. The DsP programmer can add additional state-
ments to the macro before the semicolon completes action on that
instruction.

4.2.2.3 RAM variables. A RAM assignment statement appears as fol-
lows:

ram Z, ABC, TABLE[10];

The key word “ram” causes control to go to a block of code where

1490 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

each token is read. The assembler adds each variable name, its dimen-
sion which defaults to 1, and the RAM location assigned to it, to a table
of RAM variables. At the semicolon, control returns to the normal loop.
4.2.2.4 Numbers. Numbers may be used for several different pur-
poses: as an immediate value to act as the x input to a multiplication,
to build a table in RoM memory, to load a register, as a dimension in
a RAM variable definition or as a subscript in a RAM variable reference.
Thus, the processing of a number depends on the context of its use.

4.2.3 Flags and error detection methods

Fifteen different flags are used in the assembler. Among their uses
are recording the presence of a member from each family of tokens,
the arithmetical or auxiliary class of an instruction, and whether the
instruction occupies two ROM words or one. The flags are used in tests
for correctness of the source code and in steering the assembler.

The tests for errors are quite thorough. They may include some
tests for errors which can never occur, as it was easier to include the
test than to prove the impossibility of the error. The parser rules
include one which detects any character which is not a letter, a number
or one of the specified group of punctuation symbols. When such a
character appears, a message to the user is sent and a fatal error
recorded.

4.2.4 The file ‘dsp.listing’

This file is the output medium by which the assembler communi-
cates its results to the Dsp programmer. A sample of the output is
shown in Fig. 6. The tables referring to macros and labels are prepared
initially as separate disk files and later concatenated with the file
containing the remainder. This file is prepared by rewinding and
rereading the input source program, matching each line to the assem-
bled code.

V. RESULTS

An assembler for DsSP programs has been written and functions as
described in the preceding paragraphs. The assembler contains about

include “dspbg.h”

“Two Bigquad Sections in Cascade”
“Dial Tone Rejection Filter”

ioc = 0502; /* Bbitsin, 16 out */
auc = 067;

i=1;

i=-1

k=-3;

loop: sye=1;

bgic

bquad {1.,—1.957,1., =1.112,.544)
bquad {1.,—1.891,1.,-1.7328,.94297)
bgnoc {loop)

Fig. 4—Input file for biquadratic filter using macro cells and C-preprocessor.

DESIGN OF THE ASSEMBLER 1491

Completed scan of source file. O fatal errors.
Files b.out and d.out were written to disk
dsp.listing was written to disk.

To save files, mv them to other names.

Fig. 5—Digital signal processor assembler messages to user in a successful assembly.

3500 lines of code and comments and has been in use for over a year
in a wide variety of applications. Its output has been used as input to
the simulator program,’ thus, assuring compatibility.

VI. FUTURE ENHANCEMENTS
Enhancements to the DSP assembler fall into near-future and more
remote-time categories.

D.S.P. ASSEMBLER, [data of version]
Two Biquad Sections in Cascade
[data and time of assembly]

MACRO DEFINITIONS
MACRO NAME ADVCMD CMD DATA W/A SOURCE

octal octal octal
LABELS
ROM LOC. LABEL REF. AT LOC.
dec. dec.
10 loop 44

RAM VARIABLES
RAM LOC. DIMENSION NAME

dec. dec.,
LOC. COMMAND DATA X Y LINE SOURCE
dec., octal octal dec.

““Two Biquad Sections in Cascade”
“Dial Tone Rejection Filter"
0 : 00 00 10 : 150602 (auxw } 3 AN ioc=0502;
2 :00 00 10 : 140067 (auxw) 4 AN auc = 067;
4 : 0000 10 : 100001 (auxw) 5AN i=1;
6 : 000010 : 117777 (auxw) 6 AN
8)
)

: 00 00 10 : 127775 (aux w 7 AN

10 : 00 00 10 : 16 0001 (aux w 8 AN
12 : 00 04 10 : 020000 (aux iny) 9 AN
14 : 00 00 10 : 04 0000 (auxw | 10 AN ;
16 : 00 21 01 : 000020 (imm ryi) 11 AA p=mtl(iny);
18 : 00 22 01 : 000031 {imm ryj} 12 AA a=p p=mti2();
obuf=w a=p+a
20 : 14 21 10 : 156457 {(imm ryi) 14N p=—.544" ryi;
22 : 00 21 10 : 043453 (imm ryi) 15N a=p+a p=—=1.112%ryj;
24 : 00 20 10 : 040000 (immw) 16N a=p+a p=1"ryi;
26 : 01 21 01 : 101301 (imm ryi) 17N rdi=y w=a a=p p=—1.957"ryi;
28 : 11 22 10 : 040000 (imm ryj) 18BN rdi=w a=p+a p=1"'w;
a=p+a
30 : 00 21 10 : 141646 (imm ryi) 20N p=-.94297* rvi?
32 : 00 21 10 : 067346 (imm ryi} 21N a=p+a
34 : 00 20 10 : 040000 (immw) 22N a=p+a
36 : 01 00 01 : 103372 (auxw) 23N rdi=y w=a a=p
38 : 1100 10 : 040000 (auxw) 24N rdi=w a=p+a
a=pta
40 : 00 00 11 : 000001 faux w 26 AA ; .
42 : 00 00 01 : 000100 {aux w 27 AA w=a;
44 : 00 00 10 : 000012 (aux w 2B AN pc = &loop;

)
)
)
46 : 00 00 00 : DOOOOO (auxw } 29 AN
)
)
)

48 : 00 00 00 : 0O00OQ faux w 29 AN
50 : 00 00 00 : 000000 (aux w 30 AN
52 : 00 00 00 : 000000 (aux w 30 AN

Fig. 6—Digital signal processor assembler “dsp.listing” file.

1492 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

base = 16

size=8

*Two Biquad Sections in Cascade
0000: 00 08 d1 42
0002: 00 08 c0 37
0004: 00 08 80 01
0006: 00 08 9f ff
0008: 00 08 af fd
000a: 00 08 e0 01
000c: 01 08 20 00
000e: 00 08 40 00
0010: 04 41 00 10
0012: 04 81 00 19
0014: c4 48 dd 2f
0016: 04 48 47 2b
0018: 04 08 40 00
001a: 14 41 82 c1
001c: 94 88 40 00
001e: 04 48 c3 a6
0020: 04 48 6e €6
0022: 04 0B 40 00
0024: 10 01 86 fa
0026: 90 08 40 00
0028: 00 09 00 01
002a: 00 01 00 40
002c: 00 08 00 Oa
002e: 00 00 00 00
0030: 00 00 00 00
0032: 00 00 00 00
0034: 00 00 00 00

Fig. 7—File “b.out” written by DsP assembler.

Among the early improvements are additional macro-libraries and
better syntax checking. The philosophy now in use is that of checking
for specific errors. Because programmers are so ingenious at devising
novel mistakes, it appears that the strategy should be reversed. It
would be better to accept only code which conforms exactly to estab-
lished forms, rejecting everything else.

More difficult, and correspondingly more valuable, are features that
would simplify preparation of DsP programs for the user. This imme-
diately suggests a compiler. However, the pipeline features of the psp
hardware will require the solution of design problems more complex
than those for a standard compiler.

Register arithmetic is another area in which assistance to program-
mers would be valuable. Much of the speed advantage of the psp
comes from the planned use of automatically incremented registers for
indirect addressing. Unplanned or random addressing of memory
would forfeit this advantage. A compiler, then, should optimize the
register use and incrementing. It might also have to change the
locations in which the data are stored.

VIl. EXAMPLES OF DSP ASSEMBLER INPUT AND OUTPUT

The following example was taken from a biquadratic filter program
and shows the use of the macro library and preprocessor. The opera-
tions are primarily numerical calculations.

Figure 4 shows the input file required to program a two section filter.

DESIGN OF THE ASSEMBLER 1493

Two Biquad Sections in Cascade
filetype i
0x0008
0xd142
0x0008
Oxc037
0x0008
0x8001
0x0008
0x9fff
0x0008
Oxaffd
0x0008
Oxe001
0x0108
0x2000
0x0008
0x4000
0x0441
0x0010
0x0481
0x0019
Oxcd48
Oxdd2f
0x0448
0x472b
0x0408
0x4000
0x1441
0xB2c1
0x9488
0x4000
0x0448
0xc3ab
0x0448
Ox6eeb
0x0408
0x4000
0x1001
0xB6fa
0x9008
0x4000
0x0009
0x0001
0x0001
0x0040
0x0008
0x000a
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000

Fig. 8—File “d.out” written by DSP assembler.

The use of four macro calls reduces the amount of typing required of
the programmer, and the probable number of errors. Figure 5 shows
the messages the programmer receives on the terminal at the conclu-
sion of a successful assembly. Figure 6 is the file “dsp.listing.”

The files “b.out” and “d.out” are shown in Figs. 7 and 8, respectively.
The file “d.out” is the input file to the simulator, DSPMATE, and the
RrOM programming utilities. The file “b.out” is a more readable output
file, giving both RoM locations and machine language in hexadecimal
machine language.

1494 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

VIll. CONCLUSIONS

An assembler for the psp differs from conventional assemblers in
many interesting respects. Many of the standard principles of assem-
bler design either do not apply or do not provide benefit. On the other
hand, many novel problems arose, for which standard techniques were

of little assistance.

The current version of the assembler is considered to be a useful,
reliable tool for programmers to use today. There are several areas in
which greater assistance for DSP programmers can be provided and
improvements in those areas are anticipated.

REFERENCES

1. J. R. Boddie et al, “Digital Signal Processor: Architecture and Performance,”

B.S.T.J., this issue.

2. T. H. Crowley, “UNIX Time-Sharing System: Preface,” B.S.T.J., 57, No. 6, Part 2
(July-August 1978), pp. 1897-2304.
3. J. Aagesen, “Digital Signal Processor: Software Simulator,” B.S.T.J., this issue.
4. M. E. Lesk, “Lex—A Lexical Analyzer Generator,” Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories (October 1975).
5. 8. C. Johnson and M. E. Lesk, “UNIX Time-Sharing System: Language Develop-
ment Tools,” B.S.T.J., 57, No. 6 (July-August 1978), pp. 2155-75.
Appendix
Table I—Normal instructions
NOTHING NOTHING a=p p = XSRC*YSRC
DEST =y w=a a=p+a p = XSRC*w
DEST = YSRC a=p-a p = XSRC*¢
DEST =w a=p+2*a p= XSRC*abs (YSRC)
a=p+8*a p=XSRC*abs (w)
a=p+a/2 p=XSRC*c*sgn (YSRC)
a=p+a/8 p=XSRC*c*sgn (w)
a=pé&a
Notes:
(1) If YSRC occurs in column 4, DEST = YSRC may not be used in column 1.
Instead, use DEST =y.
(2) If wis used in column 4, DEST = YSRC may not be used in column 1.
(3) If the second instruction following this one is a normal instruction in which
XSRC refers to RAM, NOTHING must be selected for column 1.
Table ll—Auxiliary arithmetic instructions
NOTHING NOTHING NOTHING NOTHING
DEST =y w=a a=p p = YSRC
DEST = YSRC w = ltm1(w) a=p+a p=w
DEST =w w = ltm2(w) a=p-a p = mtll (YSRC)
a=p+ 2% p=mtl2()
a=p+ 8*a
a=p+a/2
a=p+a/8
a=pé&a
a=a<l4
a=a<xkl18
Note:

See Notes in Table 1.

DESIGN OF THE ASSEMBLER

1495

Table lll—Nonarithmetic auxiliary instructions

NOTHING NOTHING

DEST =y REG = VALUE

DEST = YSRC REG = &LABEL [N]

DEST =w REG = &RAMVAR [N]
REG = YSRC

if (CONDITION) doset ()
if (CONDITION) doau ()
if (CONDITION) dowt ()
if (le——! = 0) doset ()
return

Notes:
(1) See Note 1in Table I.
(2) An instruction containing only a semicolon is a no op.
(3) VALUE represents a number —— integer, real, octal or

ex.
(4) &LABEL [N] represents the Nth word in ROM memory
after the address of the label. If N = 0, [N] may be

omitted.
(5) &RAMVAR [N] represents the address of the (N +

1)th location in an array called RAMVAR, stored in
RAM memory. If N =0, [N] may be omitted.

Table IV—Conditions

ibf IBUF full

obe OBUF empty

c0 Co=1

cl Cl=1

a== a equal to zero
a<0 a less than zero
a>0 a greater than zero
le!=0 lc not equal to zero

Table V—Destinations

(DEST)

Form 1 Form 2
obuf out
*rda rdz
*rda++ rdp
*rda—— rdm
*rd++i rdi
*rd++j rdj
*rd++k rdk

Table VI—Y sources

(YSRC)

Form 1 Form 2
ibufy iny
*rya IyzZ
*rya++ ryp
*rya—— rym
ry++i ryi
ry++j ryj
*ry++k ryk

1496 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

Table VII—X sources (XSRC)

Form 1 Form 2

x olx previous value of x
VALUE VALUE immediate data
rx++i axi RAM address
rx++j axj RAM address
*rx++k axk RAM address
*rx axz RAM address
*rx++ axp RAM address
*rx—— axm RAM address
ibufx inx
*(rom+rx++i) rxi ROM address
*(rom+rx++j) Xj ROM address
*(rom+rx++i() rxk ROM address
&LABEL [N] &LABEL [N]
&RAMVAR [N] &RAMVAR [N]

Note:

See Notes 3, 4, and 5 of Table III.

Table VIll—Registers (REG)

pe program counter
rx pointer for x data
ry pointer for y data
rya alternate pointer for y data
rd pointer for write destination
rda alternate pointer for write destination
i auto-increment for memory pointer
i) auto-increment for memory pointer
k auto-increment for memory pointer
le loop counter
auc AU control
ioc 1/0 control
syc synchronization
str status output
Note:

auc, ioc, syc, and str cannot be set by y sources.

DESIGN OF THE ASSEMBLER

1497

