Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 7, September 1981
Printed in U.S. A.

Digital Signal Processor:

Software Simulator

By J. AAGESEN
(Manuscript received June 23, 1980)

One of the development aids for the digital signal processor (DsP)
is a software simulator, dspsim, which runs interactively under the
UNIX* operating system. It is a program debugging tool which can
be used without access to the DSP hardware environment. It allows
the user to monitor run-time characteristics of DSP programs which
cannot be observed using the device itself. It is very flexible in
providing capabilities for single or multiple program stepping, setting
and modifying conditional breakpoints, examining register contents
and generating data plots on the terminal.

I. INTRODUCTION

A number of development tools have been designed for the single-
chip digital signal processor (DsP)." This article describes a software
simulator for the pspP, dspsim, which runs under the UNIX operating
system. The simulator provides an interactive program development
and debugging facility which operates exclusively in the UNIX envi-
ronment with no need for the psp and associated hardware. It includes
general input/output handling and offers great flexibility in its ability
to access registers, set breakpoints, and take specified action when
prescribed conditions are met. Also, it has the capability of printing x-
y plots on the terminal. Execution can be interrupted at any time for
observation of register contents, change in breakpoint conditions, etc.,
after which execution can be resumed without loss of continuity.
Creation of programs is facilitated by the Dsp assembler’ which gen-
erates a file that the simulator can load directly into its program

* Registered trademark of Bell Laboratories.

1475

memory. Diagnostic messages are printed in response to erroneous
operations and special DsP conditions.

This paper covers the architecture of the simulator, the handling of
psP conditional auxiliary instructions, and a discussion of the simulator
commands. It concludes with a brief terminal session illustrating the
operation of the simulator.

Il. ARCHITECTURE
2.1 Overview

A block diagram of dspsim is shown in Fig. 1. The DsP box represents
the simulation of the basic DsP architecture as described in Ref. 1,
excluding the rRam and the roMm. The operation of the simulator is
controlled by the simulator executive system which interprets com-
mands and invokes required utility routines. A number of files are
associated with the simulator. The RAM file corresponds to the random-
access memory of the psp. The program file (PGM) provides the read-
only memory function. The input stack (1s), performing the function
of a signal source, contains data that are to be read into the input

RAM PROGRAM TRACE
FILE FILE FILE
(RAM) (PGM) (TRC)

INPUT OUTPUT
STACK DSP STACK
(1s) (0s)

|
UTILITY
DSP ROUTINES
SIMULATOR
EXECUTIVE
UNIX ™ UNIX™
FILE OPERATING TERMINAL |
SYSTEM SYSTEM

Fig. 1—Block diagram of psp simulator,

1476 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

buffer, 1BUF, of the Dsp. The output stack (0s) collects output data
from the DsP output buffer, oBUF. The trace file (TRC) keeps a record
of program branches. The simulator can access files in the UNIX file
system. This provides for off-line storage of DsP files so that DsP files
can be loaded from and written to UNIX files.

2.2 Data formats

Data to be entered into registers directly from the terminal or from
UNIX files may be hexadecimal, octal, binary, decimal integer, or
decimal fixed-point numbers. Also, data can be entered in p-255 com-
panding format (chord and mantissa) and as linear data with a special
prefix indicating conversion to p-255 upon loading. The latter is con-
venient when a linear input data file exists and the u-255 processing
performance of the DSP program is to be evaluated.

2.3 File formats

Files for the DSP are arrays in memory. They are classified into file
types in accordance with the word length of the data they accommo-
date. The file types, characterized by their data structure and simulator
application, are as follows:

10-bit address data (TRc file)

16-bit data (PGM file)

20-bit data (ramM file)

mixed data word length (input and output stacks)

The DsP chip transfers data from and to the outside world via serial
channels. The I/0 control register determines the number of bits to be
transferred in a particular operation. Data words are stored in the
most significant bits of the 20-bit 1BUF. When a 16-bit word, for
example, is transmitted to IBUF, an inherent scaling by the factor 16
takes place. Since the simulator cannot tell from a data word, per se,
what its intended bit-length is, files of mixed data lengths have a
length identifier associated with each word, specifying 8, 16, or 20 bits.
When data are read from 1S into IBUF, the simulator first checks for
agreement between the word length identifier and the input number
field of the I/0 control register; if no discrepancy is detected, the data
transfer takes place with the proper bit alignment, otherwise an error
message will be given. The data words in the DSP OBUF are right-
adjusted so no bit-shifting is required on transfer to 0s. The word
length information from the output number field of the I/O control
register is, however, carried over to the 0s. The identical formats of 1s
and os allow output data to be used as input in a subsequent run of a
DSP program.

SOFTWARE SIMULATOR 1477

The UNIX files are in Ascn format. They contain a FILETYPE
declaration which must match the file type of the psp file into which
it is loaded. Appropriate word length symbols are appended to data in
UNIX files containing mixed data word lengths.

A data line (where data is linear) may have the format

data[* scale factor][+ offset].

This can be used in editing an existing file into a new one with scaled
and offset data values. The appropriate arithmetic is performed when
the file is loaded.

UNIX files may contain more input or output data than the corre-
sponding simulator 1s or 0s can accommodate. The input file will be
automatically loaded into the 1s when the stack is exhausted; this will
continue until all UNIX file data have been used. Repeated “writes”
of the os to a UNIX file, within the execution of a DsSP program, will
append data to that file until execution of the particular psp program
is terminated.

lil. CONDITIONAL OPERATIONS

The Dsp has four control/status lines which correspond to the
following four bits of the synchronization control register:

1BF Input Buffer Full

0BE Output Buffer Empty
c0 External Control Signal
c1 External Control Signal

These control lines are hardware driven and, therefore, have no
predictable logical state during the execution of a DsP program. If an
auxiliary instruction is conditional, control bits must be available at
the time the instruction is executed. The simulator handles the control
bit setting through its communications links with the external oper-
ating environment, namely the terminal or the UNIX file system, in
the following ways:

(i) Default. A request is printed on the terminal for the value of
the control bit 1BF, 0BE, c0, or c1. Execution resumes when the control
bit value is entered.

(if) Optional. The control bits can be read from a UNIX file speci-
fied as an argument to the GO command. This is used when the
execution of the DsP program requires input of numerous control bits.

IV. COMMANDS

The command repertoire includes UNIX type commands for file
handling and editing. It also includes commands for re-initialization of

1478 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

the simulator, setting and reading DsP registers, and transfer of files
between the simulator and UNIX environments.

The WHEN operation is used to perform checks on breakpoint
variables during execution of the DsP program and invoke simulator
commands when breakpoint conditions are met. A breakpoint can be
set on any DsP register value, on accumulator overflow, and on the
number of DsP cycles executed; it can also be set to occur after a
specified number of input or output operations have taken place and
can be implemented for the nth time the program counter, or input or
output data, match their corresponding breakpoint parameters. This
permits the execution of complex test scenarios.

There are three simulator commands associated with the WHEN
operation. SC sets the breakpoint parameters and DC lists the table of
current parameter values. The WHEN command itself sets the test
conditions and simulator commands to be carried out during execution
of the program. It has the format:

WHEN][(expression) {commands}]
The expression has the structure
cond op cond op cond -- -

where cond is any test variable name. This implies that the variable in
the logical expression becomes “true” when the breakpoint variable
matches the check value. The logical operator NOT, OR, or AND is
designated by op. As an example, the following simulator command
lines

sc pc =10
sca= 12345
when (pc|a) {dmp pc; dmp y}

will result in the printing of the DSP program counter value and Y-
register, Y, when the program counter, Pc, equals 10 or the accumulator,
A, equals 1234.5.

The ED command invokes the UNIX text editor which operates on
ascil files. Thus, the UNIX files can be edited directly, whereas the
simulator and DsP files are translated into ascii files during the editing
process and back into numerical format on completion of the editing.
The translations are done automatically and are not visible to the user.
The editor is useful, for example, in creating or altering input data files
or filter coefficient files for the simulator’s RAM.

The DMP command is used to print the contents of all or, through
appended arguments, selected DsP registers. The plot command, PLT,
produces x-y plots of data files. It facilitates automatic or specified

SOFTWARE SIMULATOR 1479

scaling and shifting of data origin. It can be used in comparing segments
of input data with the corresponding processed data.

The GO command initiates execution and, through a number of
arguments, controls various 1/0 and diagnostics options. While the GO
command provides for continuous execution of a DSP program, the
STEP command executes the number of DSP cycles specified in its
associated argument.

V. TERMINAL SESSION

The usage of the simulator is illustrated by an application of the Dsp
as a tone generator. The terminal session is recorded in Fig. 2. The
simulator is invoked from the UNIX shell level by the DSPSIM
command. The simulator command level is indicated by a *:” prompt
character. First, the simulator’s program memory is loaded, using the
LD command, with the hexadecimal object file tone440, which was
generated previously by the psp assembler from a source program.
Next, a breakpoint is set on an accumulated number of outputs equal
to 70. The WHEN command is used to specify the actions to be taken
when the breakpoint is reached. The actions are:

1. Write the os into the UNIX file tone440.out.
2. Plot the data in tone440.out on the terminal.
3. Stop execution.

Finally, the execution is initialized with the GO command (the —m
flag suppresses certain diagnostic messages). Although this terminal

$ dspsim
VERSION 2.7 {(Mar 1, 1980)
: |d pgm toned40
: sc nout=70
: when (noutl{wr os tone440.out;plt toned40.out;stop}
: go -m
*10**3
140+
130+
120+
10+
100+

THIEL

10+

?

=10+
-20+
-30+

$

-50+

s o
-+- + + —t + + + +

0 V10 20 30 40 50 60 70

Fig. 2—Terminal session on psp simulator.

1480 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981

session is not an exhaustive demonstration of the simulator features,
it should give a general flavor of the simulator operation.

VI. ACKNOWLEDGMENT

Grateful thanks go to Stephen M. Walters, who did some preliminary
work in translating the DsP functions into simulator software; both he
and James R. Boddie offered helpful suggestions on the operation of
the simulator. Also, special thanks go to Robert L. Farah who, through
diligent use of the simulator, discovered a number of abnormalities
which were subsequently diagnosed and corrected.

REFERENCES

L J. R.. Boddie et al., “Digital Signal Processor: Architecture and Performance,”
B.S.T.J., this issue.

2. C. L. Semmelman, “Digital Signal Processor: Design of the Assembler,” B.S.T.J.,
this issue.

SOFTWARE SIMULATOR 1481

