Noise Caused by GaAs MESFETs in Optical Receivers

By K. OGAWA

(Manuscript received January 8, 1981)

In the application of GaAs metal-semiconductor field effect transistors (MESFETS) in ultra low-noise lightwave receivers, the channel noise is often the dominant effect in determining sensitivity. This paper analyzes for the first time the excess channel-noise factor Γ for GaAs by considering the effect of circuit capacitance, as well as gate-to-source capacitance on the correlation of gate and channel fluctuations, and derives a useful and analytic expression for Γ . For example, we find that Γ for practical GaAs MESFET amplifiers can be much larger than 1.1 as is usually assumed. The multiplication factor, Γ is approximately 1.75 for the practical GaAs MESFET with 1- μ m gate length, which explains the discrepancy between the optical sensitivity from the noise calculation and experiments.

I. INTRODUCTION

The GaAs metal-semiconductor field effect transistor (MESFET) originally designed for microwave applications has become an important component of lightwave receivers used in communication applications. Unlike most microwave applications, the lightwave-receiver application requires a consideration of induced gate noise and correlation with the channel noise. Van der Ziel's original evaluation of the noise contribution from this component¹⁻³ was later extended by Baechthold to include effects present in MESFETs with short gate length, as well as the intervalley scattering in GaAs.^{4,5} The following computation extends this earlier work to determine the noise factor Γ .

This factor relates the input noise current i_{nt} resulting from all noise sources of the FET to the FET transconductance g_m such that

$$\langle i_{nt}^2 \rangle = 4kT\Gamma(\omega C_T)^2 \Delta f/g_m, \qquad (1)$$

Fig. 1—Equivalent circuit of the intrinsic field-effect transistor with channel noise current i_{nd} and induced gate noise current, i_{ng} .

where C_T is the total input capacitance, k is Boltzman's constant, and T is absolute temperature.

Figure 1 shows an equivalent circuit of the intrinsic field-effect transistor with two noise sources, the channel thermal noise and the induced gate noise sources. We neglect other well-known noise sources, such as the gate leakage current noise and the flicker noise, because our main purpose is to evaluate the noise factor Γ .

The channel noise is described in the equivalent circuit by the noise current i_{nd} having the mean square

$$\langle i_{nd}^2 \rangle = 4kT \cdot P \cdot g_m \cdot \Delta f, \tag{2}$$

where P is a factor depending on various FET parameters and the gate bias.⁴

As explained in Ref. 2, every disturbance in the channel potential introduces a gate voltage disturbance and, in turn, a channel current fluctuation. The mean square of the induced gate noise current is

$$\langle i_{ng}^2 \rangle = 4kT \cdot R \cdot \frac{(\omega C_{gs})^2}{g_m} \cdot \Delta f,$$
 (3)

where C_{gs} is the gate source capacitance and R is a factor depending on various FET parameters and the gate bias.⁴ Since these two noise sources have the same origin, a correlation exists. It can be expressed in the form

$$\langle i_{ng}^* i_{nd} \rangle = j4kT \cdot Q \cdot (\omega C_{gs}) \cdot \Delta f, \tag{4}$$

where Q is a factor depending on various FET parameters and the gate bias.⁴

Figure 2 shows P, Q, and R for GaAs MESFETS of various gate lengths parameters and gate bias parameters.⁵

We evaluate the total input noise by transferring i_{nd} to the input as shown in the circuit of Fig. 3. In this circuit, the input admittance Y is defined by

$$Y_{in} = G + j\omega C_T, (5)$$

capacitance C_T consists of the gate capacitance C_{gs} and a capacitance C_s comprising the photodiode capacitance of the circuit stray capacitance. The mean square of the total input noise current becomes

$$\langle i_{nt}^{2} \rangle = \langle (i_{ng} + i_{nd} Y_{in} / g_{m}) (i_{ng}^{*} + i_{nd}^{*} Y_{in}^{*} / g_{m}) \rangle$$

$$= 4kT \left[P - 2Q \left(\frac{C_{gs}}{C_{T}} \right) + R \left(\frac{C_{gs}}{C_{T}} \right)^{2} \right] \frac{(\omega C_{T})^{2}}{g_{m}} \Delta f$$

$$+ 4kTP \frac{G^{2}}{g_{m}} \Delta f. \tag{6}$$

Fig. 2—The dependence of P, R, and Q on normalized gate voltage $s = [(0.8 \cdot V_g)/W_0]^{1/2}$. The normalized gate length $W = E_s L/W_0$ is the parameter used. W_0 is the pinch-off voltage, E_s is the saturation field (4kV/cm), and L is the gate length.⁵

Fig. 3—Equivalent circuit as in Fig. 1 but with channel noise i_{nd} transformed into input current and voltage noise sources.

Fig. 4—Transconductance g_m , capacitance C_{gs} and Γ as functions of the normalized gate bias voltage s for $C_{gs}=C_T$. The channel depth in μm is the parameter.

Fig. 5—FET noise power normalized with respect to noise power at zero bias voltage as a function of the normalized bias voltage s. The additional input capacitance C_s in pF is the parameter.

Since commonly $G \ll g_m$ in optical receiver design, the comparison of (1) and (6) yields

$$\Gamma = P - 2Q\left(\frac{C_{gs}}{C_T}\right) + R\left(\frac{C_{gs}}{C_T}\right)^2. \tag{7}$$

As shown in Figs. 2 and 4, P, R, Q, g_m , and C_{gs} are functions of the bias voltage and the FET gate length. However, as Fig. 5 shows, the noise

Table I—Noise factor Γ for 1- μ m gate length and various C_s (C_{gs} = 0.5 pF)

	-
C_s (pF)	Г
0.1	2.164
0.2	2.009
0.3	1.897
0.4	1.814
0.5	1.749
0.6	1.697
0.7	1.655
0.8	1.619
0.9	1.589

 $\langle i_{nt}^2 \rangle$ changes little in the bias voltage range between -0.5 V and +0.5 CV as long as C_s is between 0.5 pF and 0.9 pF in spite of the voltage dependency of P, Q, and R.

As a good approximation, one can use the noise parameters determined at zero gate bias voltage for the entire operating range of the transistor. Table I shows Γ at zero bias voltage for various capacitance values C_s , in the case of an FET gate length of 1 μ m, a gate width of 400 um which have the following parameters: P = 1.24348, Q = -0.42384, and R = 0.30329.

REFERENCES

928

- 1. A. Van der Ziel, Noise: Sources, Characterization, Measurement, Englewood Cliffs, New Jersey: Prentice-Hall, 1970.
- A. Van der Ziel, "Gate Noise in Field Effect Transistors at Moderately High Frequencies," Proc. of IEEE, March, 1963, 51 (March 1963), pp. 461-7.
 A. Van der Ziel, "Thermal Noise in Field Effect Transistors," Proc. IRE 50 (August
- 1962), pp. 1808-12.
- 4. W. Baechtold, "Noise Behavior of Schottky Barrier Gate Field-Effect Transistors at Microwave Frequencies," IEEE Trans. Electron. Device, ED-18, No. 2 (February 1971), pp. 97-104.

 5. W. Baechtold, "Noise Behavior of GaAs Field Effect Transistors with Short Gate
- Lengths," IEEE Trans. Electron Device, ED-19, No. 5 (May 1972), pp. 674-80.