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This paper considers maximum-likelihood sequence estimation
(MLSE) for quadrature amplitude modulation (qAM) signaling at rates
approaching several baud/Hz. In this regime, intersymbol interfer-
ence and possibly cross channel coupling are the dominant transmis-
sion impairments. We derive the structure of a detector that optimally
accommodates both impairments. A bit error rate performance bound
is found, and the concept of an error state transition matrix is
introduced to facilitate the analysis. We explore a modulation scheme
wherein cross-channel coupling is intentionally introduced, and find
that it improves detection efficiency. The use of MLSE may be an
important consideration for power and spectrally efficient digital
radio systems, either terrestrial or satellite, since rates approaching
the Shannon limit may be attainable without channel coding, and
frequency selective fading is handled in an optimum manner.

I. INTRODUCTION

The search for digital radio modulations which combine power and
bandwidth efficiency with ease of implementation has attracted inter-
est for many years."® Combined with the performance analysis of
receivers which represent a compromise between optimality and prac-
ticality, this field remains the focus of much current research activ-
ity.'>'® Quadrature amplitude modulation (QAM) is a particularly sim-
ple modulation to implement, and determination of the theoretical bit-
error rate (BER) achievable for this modulation at an arbitrary rate of
information transfer per unit bandwidth is the subject of this paper.
Phase shift keying (PsK) is, of course, a special case of QAM.

The primary impairment to QAM transmission is intersymbol inter-
ference caused by bandlimiting at the transmitter and dispersion in
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the channel. We investigate maximum-likelihood sequence estimation
(MLSE) to optimally detect the impaired signal, which is also corrupted
by additive Gaussian noise. In particular, we analyze the Viterbi
algorithm for realizing MLSE and then proceed to find an upper bound
for the BER. In this regard, the analysis to be presented simplifies,
unifies, and expands earlier treatments of the same subject.'®'” The
primary goal is to obtain a basis against which the performance of any
suboptimum receiver may be compared. In so doing, we show QAM to
be capable of providing performance close to the Shannon limit, an
observation of considerable importance for communication satellite
and terrestrial digital radio applications. Additionally, study of the
mechanisms responsible for MLSE error generation provides insight
into appropriate waveshaping to improve BER performance. One such
waveshaping technique, wherein the spectrum is intentionally asym-
metric with respect to the transmitting filter passband (e.g., QAM-
Single Sideband), is shown to generally improve the BER performance.

In Section II, motivation behind a study of QaM is illustrated, the
QAM model is presented, and the MLSE algorithm is derived. Section
III is devoted to the derivation of a BER outer bound, and in Section
IV, this bound is applied to examples which demonstrate the inherent
power of MLSE. We show that a BER of 10~ can be maintained at a
transmission rate of 5 bits/s/Hz with an energy per bit penalty no
greater than 1 dB compared against ideal nonoverlapping rectangular
signaling; a four-pole Butterworth transmit filter is assumed in this
calculation.

Il. QAM MODEL AND THE MLSE ALGORITHM

Figure 1a gives a general model of a digital communication system.
Here, the source produces a stream of binary data d = {do, dy, ++-,
dr} which is converted into an analog waveform by the modulator for
transmission to the destination. The modulator may include a band-
limiting filter to contain spectral emission. White Gaussian noise is
added in the channel, and it is the function of the receiver to reproduce
a copy d of the original data sequence with a reasonably low probability
of bit error.

The output of the modulator can be represented by the expression

Sc(t) = Re {[A(t, d) + jB(t, d)]e 7}, (1)

where wy is the carrier radian frequency and A (¢, d) and B(¢, d) are
data-dependent real waveforms.

The form of Sg(t) provides great flexibility to achieve both high
power efficiency and high spectral efficiency. However, the modulator
to generate the best Sg(¢) and the receiver to detect the data in the
presence of corrupting noise may be quite difficult to implement, e.g.,
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separate waveform synthesizers and receiver matched filters may be
required for each of the 2" possible outcomes of the data stream d.

To simplify the modulation and detection processes, we consider
QAM, a special subset of (1) having the form

S(t) = Re {5}0 [ax(d) + jba(d)]A(t — kT)e""""‘} , (2)
~ where
h(t) = hr(t) + jhi(t) is a complex waveshape,
ax and by are real numbers dependent upon the data,
T~! is the channel signaling rate,
and

N + 1 is the number of complex channel symbols used to
transmit the data d.

Equation (2) can readily be modified to admit the familiar staggered
types of modulation for which the in-phase and quadrature pulses are
offset from each other by the amount 7/2.%° Although MLSE can be
applied to this case, we restrict our attention in the following to
nonstaggered modulation. We expect that performance similar to what
we report here is achievable with staggered modulation as well.

The waveform S(¢) may be generated as shown in Fig. 1b. Here, the
numbers a; and b, are generated by a channel encoder and the
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Fig. 1—Models for digital communication channels. (a) General digital channel. (b)
Symbol-by-symbol qaM digital channel.
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numbers ag, bz, @x+j, be+j can be dependent. In the subsequent devel-
opment we assume that, for j # 0, the pairs (ax, bz) and (@z+j, be+;) are
independent, corresponding to independent symbol-by-symbol signal-
ing. The MLSE algorithm to be derived can be generalized to optimally
detect d when the numbers a, and b, are dependent only upon the
most recent K data symbols supplied to the encoder. A convolutional
encoder is one such case which has been treated for real A(f) and
binary signaling.'®

We note that the numbers a, and b, may be dependent. Thus, our
treatment admits the familiar PsK type of modulation. Further, with
no loss in generality, we assume in the following that 4(t) is the
combined impulse response of the transmitter and a possibly dispersive
channel.

At the receiver, we observe

R(t) = S(t) + Re {[ni(¢) + jna(t)]e 7}, 3)

where n.(f) and na(¢) are independent white Gaussian noise processes,
each having two-sided spectral density No/2. Thus, the in-phase and
quadrature components of R(¢) are as follows:

N
F(t) = Y [arhr(t — kT) — brhs(t — RT)] + na(t)
&=0

A Sr(t) + nalt) (4)
and
N
2(t) =Y [arhi(t — RT) + behr(t — RT)] + nalt)
k=0
2 Sy(¢) + na(t). (5)
Let
a= {aog ay, ---, an}, b = {bo, b1, -+, bn}. (6)

Then, since the noise is white and Gaussian, the optimum receiver
selects as detected data that sequence pair (¢, ) for which the
likelihood function,

L(a,b) = eXp(— N%J’ ([#(t) — Sr()] + [2(8) — S1i(B)T) dt) , (D)

is maximized. This is equivalent to maximizing, with respect to the
hypothesis (a, b), the quantity

A(a,b) =2 j [#(£)Sr(¢; a, b) + 2 (£)S:(L; a, b)]dt

- J’ [Sk(t; a, b) + Si(t; &, b)]dt. (8)
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From (4) and (5),

N oo
A(a,b) =2 hz J J(t) [arhr(t — RT) — brhi(t — RT)]dt
=0 J__

N
+2 Y | 2()[arhi(t — kT) + bihg(t — kT)]dt

k=0

a0

N N
-z X [arhr(t — ET) — bphs(t — kT)]

k=0 m=0
—oo

[anhr(t — mT) — bnhi(t — mT)]dt

N N
=% ¥ | [achi(t — kT) + bphe(t — kT)]

k=0 m=0 | __

[amnhi(t — mT) + bnhr(t — mT)]dt. 9)

Let

ap = j At hr(t — kT)dt, Br = I HAt)hi(t — kT)dt,

Ve = J 2(t)hr(t — kT)dt, pr= J’ 2(t)hs(t — ET)dt. (10)

Then, the quantities in (10) can be generated by processing both #(t)
and 2 (t) through filters matched to hz(t) and A;(t), and sampling the
output at time ¢ = &T.
Let

Ye= ar + P&, 2z = Yr — Be. (11)

Finally, let us define

Xr-m = J [Ar(t —RT)hg(t —mT) + hi(t — kT)h:(t —mT)]dt, (12)

$hem = j [hi(t = RT)hr(t —mT) — hr(t — RT)hi(t —mT)]dt. (13)
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Then
N
A(a, b) =2 kE (aryr + brzi)
-0

N N

- ¥ ¥ (ar@m + brbn) X

k=0 m=0

N N
- E 2 (akbm - bkam) ;.k*m‘ (14)
k=0 m=0

Thus, for each hypothesis under test, the maximum-likelihood re-
ceiver forms a linear combination of the received statistics from which
is subtracted a stored constant which is independent of the received
data. (This constant must be slowly updated if the channel frequency
characteristics change as during frequency-selective fading. Our anal-
ysis applies to each instantaneous characteristic since the detection
epoch is far smaller than the time intervals associated with such
changing characteristics.)

We note that the matched filtering operation can be performed in
the passband, and that the received statistics y; and z; are, respectively,
the in-phase and quadrature samples of the passband matched filter
response to A(t),

v(t) = 51';[ | H(w) |*e'dw = f h(r)h* (1 — t)dr. (15)

Then

and we see that the quantities x, and {, are the real and imaginary
samples of the matched filter response to A(¢) at time nT. These are,
then, real and imaginary components of the intersymbol interference.
From (12) and (13),

X-n = Xn;s §7n = —fm fo =0. (17)

In the following, we assume that the intersymbol interference vanishes
for |n| > M, a positive integer.

For QaM, we can use the Viterbi algorithm to maximize (14) with
respect to (a, b). Rewriting (14),

N E-1
A(a,b) = } ax [2yk —axo—2 Y (@mXp_n,t bmfk—m)]
k=0 m=k—M
N k-1
+ Y b [2zk —bixo—2 ¥ (bmxpm— amfk—m)] , (18)
k=0 m=k—M

where the convention is adopted that a, and b, are identically zero for
k<.
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Let the partial sum A.(a, b) be the first n terms in each of the sums
appearing in eq. (18). Then

Aﬂ(a) b) = Anfl(a: b) + an [2_)#: - an)(o -2

n—1

E (amxn_m + bmgn—m)jl

m=n—M
+ bn [22n - bnxo - 2

n—1

2 (bmx,,_m - am{nn)] . (19)
m=n—M

Equation (19) is in a form such that the Viterbi algorithm can be
directly applied. We see that to calculate A.(a, b), we must add to
A,-1(a, b) a term which depends on the received data y. and z, and
the hypothesis subvectors (@n-m, -++, @) and (ba-p, + -+, bn). Fur-
thermore, the next calculation to find A.+:(a, b) no longer depends on
@n-m and b,_p. Thus, we can perform MLSE by means of a trellis
diagram containing I states, where I is the number of discrete values
which can be assumed by each symbol pair (a., b.). Let us label each
state by the 2M-tuple a;_r+1, * -+ - , @&, bj-am+1, -+ -, b;. Then, permissible
state transitions take the form shown in Fig. 2, drawn for (a., b.)
independent and binary (hence, I = 4) and M = 2. For each permissible
transition, we can compute the branch metric A;(a, b) — Aj_i(a, b)
[see eq. (19)].

Maximume-likelihood sequence estimation is performed via recursive
application of (19) forn=0,1, ---,j, - - -, N. Suppose the partial sum
of the most likely path leading into each state for n = j — 1 is known.
We calculate the partial sum of the I competing paths leading into
each state for n = j by adding the partial sum of the most likely path
into each state at n = j — 1 to the branch metric corresponding to that
transition. The largest of the partial sums among the paths merging at
each state then corresponds to the most likely path leading to that
state and is stored for future calculations. The hypothesis (a;-m, bj—m)
corresponding to the surviving path at each state is also stored as part
of the most likely path leading to that state since a;-, bj-m does not
affect subsequent calculations. Thus, at each node, I — 1 out of I
possible paths are deleted from further consideration. The path
through the trellis with the greatest metric Ay then identifies the most
likely transmitted sequence (&, b).

Unlike the case of the general digital modulation of (1), the com-
plexity of the ML receiver for gaAM grows exponentially with M (the
one-sided extent of the 1sI) rather than exponentially with the message
length.
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lil. BIT-ERROR RATE PERFORMANCE BOUND

To find an upper bound on the BER performance of MLSE, we invoke
the concept of an error event. Consider an incorrect path which
diverges from the correct path at depth p in the trellis and remerges
with it for the first time at depth g. Since the correct and incorrect
paths agree over the first p epochs, the difference in path metrics at
the remerge point is given by

A= Ag= ¥ (an—ap) [2yn = (an — an) xo

n=p+1

n—1
-2 ¥ {(amn—an)x,_, + (bn — bn) fnm}]

m=n—M

+ i (br — bn) [22:" — (bn — b7) X0

n=p+1
n-1
=2 3 {(bn = B Xy — (am— ) sn_m}} . 0
where
A, is the metric of the correct path,
Aj is the metric of the remerging incorrect path,

Qn, b, are the channel symbols along the correct path,

and
a;, b}, are the channel symbols along the incorrect path.
Let
E, =% (a. — ar), (21)
F,="% (b, — bn). (22)

Then, substituting (10) and (11) into (20), and after extensive simpli-
fication (see Ref. 18 for a similar derivation), we obtain the result

Ag—A;=D + ne, (23)

where

g n—1
D= 2 E, [En +2 E (me,,_m - Fmg'nm)jl

n=p+1 m=n—M

+ Y F, {F,.+z w (me,,_m+E,,,;,,_m)] (24)

n=p+1 m=n—M
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8j 1 b; 1a;bj ajbjajy1bj

0000 p 0000
0001 0001
0010 p 0010
0011 0011
0100 /=@ 0100
0101 0101
0110 0110
0111 0111
1000 1000
1001 1001
1010 1010
1011 » 1011
1100 1100

1101 1101

1110 1110

1111 1111

Fig. 2—State transition diagram for four-level oM with four symbols of 1s1.

and n., is a zero-mean Gaussian noise random variable with variance
o = DNy/2. (25)

In (24), we have assumed that the energy contained in A(£) is unity.

At the gth epoch, the MLSE receiver must choose a survivor from
among that path agreeing with the correct path over the most recent
M epochs and all other incorrect paths remerging with it. An error will
be committed if an incorrect path is chosen. Since the correct path
may have been deleted by a prior decision, the metric comparisons
may be between the remerging incorrect path and a partially correct
path with metric greater than that of the overall correct path. The
probability of committing an error at the gth epoch by selecting a
particular one of the remerging incorrect paths of length ¢ — p is, then,
overbounded for a particular correct sequence by
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P,<P{A,— A, <0}, (26)

Recognizing that the true energy contained in h(f) is xo £ es, we
now normalize the intersymbol interference coefficients by dividing
each by xo to obtain the result

P, = Q(V2esD/No), (27)

where @(-) is the complementary error function.

Let N, be the number of incorrect paths which diverge from the
correct path at the pth epoch and remerge, for the first time, at the
gth epoch, and let &, ; be an error event associated with one such path.
Then the probability of committing an error at the gth epoch is
overbounded, for a particular correct path, by

q Np
PESP{U U tg;;,j}. (28)
p=1j=1
Applying the union bound,
E 2 P{&.;}, (29)
p=1j=1
where, for a particular event &, ;, P{&,,} is the probability that A, —

Ay <0,

Let pp,; be the number of bit errors associated with the event &,,;.
Then, the expected BER for decisions made at the gth epoch, condi-
tioned on a particular correct sequence is overbounded by:

Pp = E Z = [K""JP {&p,}] . (30)
p=1j=1 0K =1
The particular form chosen for (30) will be useful later.

Finally, we note that the correct path is one of I?” outcomes over
the unmerged span between epochs p and g. The result (30) must,
therefore, be averaged over these outcomes to remove the conditional
dependence on the correct path.

Thus, evaluation of the upper bound involves a weighted summation
of the probabilities of all error events merging with the correct path at
the gth node. We will now develop a technique for performing this
summation in an orderly fashion.

We note from (25) that for every error event, D > 0. Also, for each
error event, D is dependent only upon the error sequences (E., Fy),
p < n = q. For one particular error event, the quantity D will
assume its minimum value Dp,;.. Then, using (27) and the inequality’
Q(Vx + y) = (¥x)e™ for x > 0, y > 0, we obtain

Pr<Q (\ / ze’}f;“‘i“) exp {€sDumin/No)

g N,

3 % 2 ftmiexp (—esDpu/No}]. (31

=1 j= 1
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Hence, evaluation of the upper bound involves computation of the set
of Euclidean distances D, ; for each correct path. The error-state
transition matrix, to be described, provides a systematic way to find
these distances, average over correct paths, and perform the sum.

Referring to eq. (24), we see that the contribution to the distance
between a correct and an incorrect path incurred between nodes j and
j + 1, where p = j =< q, is given by

j—1
d = v2es/Ny E; [Ej +2 E (mej_m + Fmgf“m)]

m=j—M

=
+ v2ep/N, F; |:FJ + 2 E‘M (me;'—m - Emfjﬁm)jl . (32)
m=j—.

This contribution can be represented as the distance incurred by a
transition from error state E;_um, Ej a4, »++, Ejo1, Fiost, Fjopary <+,
Fj_1 to error state Ej a1, Ej—ma2, Ej, Fjpm+1, Fi-m+2, « -, Fj. A particular
pair of elements (E,, F,) from an error sequence may assume no more
than J < I(I — 1) + 1 discrete values. For example, if @, and b, are
binary and independent, then the pair (E,, F,) may assume the nine
values: (0, 0), (0, —1), (0, 1), (1, —1), (1, 0), (1, 1), (-1, =1), (-1, 0),
(=1, 1). Excluding the all zeros error state, J™ — 1 error states remain.
We write down a (J¥ — 1) X (J™ — 1) error-state transition matrix
T = {¢,;}, where the indices i and  each range over the J* — 1 integers
labeling the error states. The element ¢;; represents the weighted
distance incurred by the i — [ error-state transition:

tis = fuxie®s,
and
d;;is the Euclidean distance incurred in permissible transi-
tions i — [;
iz is the number of bit errors incurred in the i — [ transition;

fi1is a factor representing the fraction of data pairs (a;, b))
which can produce the error (E;, F;) at any epoch j.

Element t;;= 0 for forbidden transitions.

The weighted distance incurred along any error path between epochs
J1 and J2 can be uniquely determined from either the error sequence
between j; — M and j. or the error-state transitions between j; and j..
Using the latter approach, the weighted distance incurred along an
error path between epochs j; and j. is simply the product of the
weighted transition distances ¢;; along that path.

As an example of the values to be assigned to the factors f;; and
ptis, suppose that the Ith error state at epoch j is characterized by
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(E;, F;) = (1, —1), and the channel symbols a; and b, are binary and
independent. Then, @; and b; must equal +1 and —1, respectively,
implying that f;; = %, and the number of errors incurred p;; = 2.
Alternatively, if (E;, F;) = (1, 0), then a; must equal +1, b; can be %1,
fir="%,and p;; = 1.

Since each error state can be reached from no more than J — 1 error
states, each row in the error-state transition matrix contains no more
than J — 1 nonzero entries, and T is quite sparse.

The error states are numbered from 1 to J* — 1. Then, at any epoch
j — 1, an error event may begin by a transition from the correct state
(Eiim=0,+++ ,Ej 1=0,Fjp=0,+++,F;,=0) toone of the J — 1
states (Ej-p+1 =0, +++ ,E; 1 =0, E;, Fj_nt1=0, --- , F;., =0, F;). We
introduce the J¥ — 1 dimensional column vector V,. The nth element
of V, is the accumulated weighted distances of all error paths spanning
g epochs which merge with the nth error state at any node. Then, V,
contains J — 1 nonzero elements, corresponding to the  — 1 error
states given above. The values assumed by these J — 1 elements are

i = Jzeb/Nu [.Ef + Ff-]x*"'ﬂ-, (33)
where

piis the number of bit errors incurred in transitioning from the all-
zeros error state to error state i;

f; is the fraction of data pairs (a;, b;) capable of producing a transition
from the all-zeros error state to error state i;

and

i can assume one of the J — 1 values corresponding to the indices of
error states which can be reached from the all-zeros error state.

Also, the vector V, is given by
V, =TV, ' (34)

At depth p, a remerge may occur from the J — 1 error states
(Ej, Ej+1 = 0, s, Ej+p_1 = 0, F}', F}+1 = 0, v, F}-’-p*] = 0). We introduce
a second J* — 1 dimensional vector U containing only </ — 1 nonzero
elements. The nth element of U is equal to unity only if error state n
merges with the all-zeros error state. Then the contribution to the BER
bound at depth p from the point of divergence is given by

Py, <U”. [% (Tﬂ-lvl)] (35)

k=1

Thus, using the error-state transition matrix, the BER bound (30)
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can be averaged over the correct sequence and rewritten as:

o

Py<U".Y [% (Tp-lvl)]

p=1

x=1

2epDriin
.Q( = )exp (€ Dimin/ No). (36)
(1]

An alternate form is

Pp =< '[..T""-{lim1 E [T ' k=1+€) V=T ' (xk=1)Vi]

e—0 € p=1
2epDrmin
Q( el )EXP(Emeh./No)} . (37)
No
The bound will converge if the matrix series
S=YT'x=1) (38)
p=1

converges. If (38) converges, then
S=1I-1D7, (39)
and

« Q(v2epDrmin/ No) exp(esDnmin/No). (40)

k=1

Pz<U". [i (I —T)"V;]
oK

A necessary and sufficient condition for the convergence of S is that
the largest eigenvalue of T have magnitude less than unity.

If J¥ — 1 is small, then the largest eigenvalue of T can actually be
found, and if the convergence criterion is satisfied, then the BER bound
for MLSE can be found in closed form by inverting I — T and substi-
tuting into (40). When J* — 1 is too large to conveniently admit such
closed-form solution, then mathematical rigor must be sacrificed by
returning to (37), and truncating the series at some point pmax such
that the remainder may safely be assumed to be small. In
this event, the order of matrix T is usually quite large, and some
concern may arise from the apparent need to repetitively multiply
large matrices. This is not the case, however, since the term T*'V,
may be found recursively as

TP 'V, = T(T?*V)), (41)

i.e., the term T”"'V, may be found by recursively multiplying the
matrix T by a vector.
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IV. APPLICATIONS

As a first application, we consider MLSE detection of 4¢ PSK with
overlapping rectangular pulses. Let

h(t) =p@t)e’™, (42)
where
_ ) V2e/T, O0=t<r
p@®) = {0, ’ elsewhere. (43)
Then,
L
S(t) = Re { Y (ax + jbs) A(t — kT)e"w} , (44)
k=0

where T < 1 is the signaling interval, and a. and b are independent
and equally likely to be +1. Suppose T = 7/4, i.e., 8 bits are transmitted
every symbol duration (r seconds). If A = 0, the four possible signal
points for each transmitted symbol are as shown in Fig. 3a, correspond-
ing to the familiar 4¢ Psk modulation. Similarily, if A = 2n/7, then
h(t— kT) = p(t — kT)exp[jA(t — ET) = p(t — kT)exp(—j™%)-
exp(72™"), and the four signal points for each symbol transmitted are
again as shown in Fig. 3a, although the points exhibit a progressive 90-
degree phase rotation for each successive symbol transmitted. The
carrier is also offset to the new value w’ = wo + 27/7. However, since
a, and by, are independent and equally likely to be +1, the error events
for the waveshapes corresponding to A = 0 and A = 2#/7 are identical,
and both must, therefore, exhibit the same detection performance.
For A = n/7, h(t — kT) = p(t — kT)e”? ™" e”™", the carrier is offset
to the new value o’ = wo + 7/7, and the signal points alternate on

x
b

(@) (b)
Fig. 3—Signal constellations for four-level QaM. (a) 4¢ PsK; carrier offset A = 0 or

w/7. (b) 4¢ PSK; carrier offset A = n/7. Signal constellation alternates between crosses
and circles.
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successive symbol transmissions between the two sets of locations
shown in Fig. 3b. As will subsequently be shown, detectability for
A = @/ is superior to that for A = 0.

For rectangular signaling with T = 7/4, it is readily established that
M = 3, and the MLSE receiver for 4¢ PSK contains 4° = 64 states. The
error-state transition matrix needed for analysis, however, is of the
order N = 9° — 1 = 728. We number the error states by means of the
six-tuple (E,, F\, E;, F>, E,, F3), where each element can assume 3
values (0, £1). The state where each element is equal to zero corre-
sponds to a merge and is excluded from the error-state transition
matrix. For numerical purposes, a convenient way to number the error
states is given by

1+3(Fs+1) +3"(Es+ 1) + 3*(F, + 1)
+3(E; + 1) + 34(F1 + 1) + 3%(E, + 1),
B= | B=@"-1/2 o
Fy+ 1)+ 34 (Es+ 1) + 33(F, + 1)
+3(E+ 1) + 3 (Fi+1) + 3%(E, + 1),
B> (9" -1)/2,

where B is the state number. If the above numbering scheme for ay, b
binary and independent is generalized to arbitrary M, then it can
readily be established that the error-state transition matrix possesses
the symmetry:

tij = tpe1-i P41, P=9M_1, (46)

Each row in T contains no more than nine nonzero elements, corre-
sponding to the permissible transitions.

For the case A = 0, Dy, was found by search to be 0.5, and for A =
/7, Dmin was found to be 0.757. Bit-error rate upper bounds for the
two cases as functions of e,/Ny are shown in Fig. 4. Also shown, for
comparison, is the ideal BER for quadraphase signaling with nonover-
lapping rectangular pulses, i.e., 2 bits transmitted per symbol duration
T. We see that, for 107® < Py < 10~*, MLSE performance for ¢ = 7/4, A
= q/7 is within 1.5 to 2 dB of that achieved with nonoverlapping
pulses, although the signaling rate is four times as high. Also, over the
same BER range, performance of signaling with A = 01is 1.5 to 2 dB
poorer than with A = #/7.

We next consider the transmission of overlapping pulses of finite
duration with amplitude tapering to contain spectral emission. The
pulse h(t) takes the form:

R = {[1 + € cos (2nt) /T]exp(/*), -1/2< t =1/2,

0, elsewhere, (47)
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Fig. o—Bit-error rate vs e,/No for overlapping rectangular pulses, with no carrier
offset and with optimum carrier offset. Four symbols are transmitted per pulse duration

where 0 < € < 1. The transmitted signal is given by (44) with/A () as
above, and the power spectrum for various values of €, with A = 0, are
as shown in Fig. 5. As € increases in amplitude, the main lobe of the
power spectrum tends to increase, but the sidelobes are reduced.

For the particular case € = 0.45, the peak sidelobe is down 24 dB
relative to the main lobe height. Let us define the R.F. bandwidth as
being twice the baseband frequency at which the power spectrum dips
permanently below —24 dB. Then, from Fig. 5, the spectral efficiency
of the transmission (bit rate/R.F. bandwidth) is equal to (2/2.5) (v/T)
bits/s/Hz. where, as before, T is symbol signaling rate.

The MLSE error rate bounds for this pulse appear in Fig. 6. For T'=
/4, corresponding to M = 3, it was found that D, occurs at A = 7/2,
and for T = 1/5, corresponding to M = 4, it was found that Dy, occurs
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at A = 5n/87. Both cases are compared against A = 0. Results for
T = t/4, corresponding to a transmission rate of 3.2 bits/s/Hz, show
that for Pg = 107, optimum carrier offset is about 0.5 dB superior to
no offset, and that e;/Ny must increase by about 4 dB, compared
against nonoverlapping pulses, to maintain the error rate. However,
for the same pulse shape, transmission of nonoverlapping pulses pro-
vides a rate of only 0.8 bits/s/Hz. Thus, the transmission rate is higher
by a factor of four. For T' = 7/5, the transmission rate is 4 bits/s/Hz,
(a factor of five higher than for nonoverlapping pulses), and the
required increase in e;/NN, is about 5.1 dB for optimum carrier offset.
Performance without carrier offset is, again, about 0.5 dB inferior.

~
~

~
\\\\ ptr'={1+tcm{2ﬁlffl,T/2<r<1",f2

0, ELSEWHERE

A

POWER SPECTRUM IN DECIBELS

0 VT 2T 3T
FREQUENCY

Fig. 5—Spectrum of raised-cosine pulses. p(t) = 1 + ecos(2nt/7) for —1/2 < t < 7/2,
and p(¢) = 0 elsewhere.
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Fig. 6—Bit-error rate for overlapping raised-cosine pulses with € = 0.45, for no carrier
offset and optimum carrier offset.

Let us compare these results against M-ary PsK signaling with
nonoverlapping pulses. We define the carrier-to-noise (CNR) p required
to achieve a given BER by

p = Rey/No, (48)

where R is the transmission rate in bits/s/Hz. For nonoverlapping
binary pulses (4¢-PSK), the transmission rate is 0.8 bits/s/Hz, and to
maintain a BER of 107%, es/Ny = 8.4 dB and p = 7.4 dB. If we double
the transmission rate to 1.6 bits/s/Hz by employing 16¢ PSK with
nonoverlapping pulses, the required CNR ratio increases by 12 dB to
p = 19.4 dB. By contrast, MLSE with optimum carrier offset provides
a transmission rate four times higher (3.2 bits/s/Hz) with p = 17 dB,
and a transmission rate five times higher (4 bits/s/Hz) with p = 19.7
dB. Thus, for p = 19.7 dB, quadraphase modulation with overlapping
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pulses, optimum carrier offset, and MLSE can more than double the
capacity compared against 16¢ PSK with nonoverlapping pulses.

As a final example, we give perhaps our most dramatic demonstra-
tion of the inherent power of MLSE. We consider that/(¢) is the impulse
response of a four-pole Butterworth filter whose center frequency is
offset from the carrier frequency. At baseband, the matched-filtered
response to A(t) has a spectrum

81-1
H(w) = [1 + (“’m;;‘“) ] , (49) -

where w; = awaqp is the carrier offset, and wsqgs is the cutoff frequency
of the Butterworth filter. We arbitrarily define the R.F. bandwidth as
twice the 3 dB cutoff frequency for no carrier offset. Transmission of
S(t), (44), at a rate T~ = waan/27 then corresponds to R = 1 bit/s/Hz.
We consider transmission of overlapping pulses at a rate five times as
high. The various x.’s and {,’s are found from (15) and (16) via contour
integration. The impulse response is truncated at M = 4, and |x.| and
|¢»| are both less than 0.02 for n > 4.

Results are as shown in Fig. 7. The optimum carrier offset was found
to be a = 0.625, yielding Dy, = 0.9; for a = 0, Dy = 0.8. We see that,
for both cases, results are close to ideal rectangular signaling with
nonoverlapping pulses, and that the optimum carrier offset is superior
to no offset by about 0.5 dB. To maintain a BER of 107, e;/N, =
9.5 dB. Since the transmission rate is 5 bits/s/Hz, the required cNR is
then p = 16.5 dB. At this cNR, Shannon’s channel capacity C/W =
logz(1 + p) is 5.5 bits/s/Hz. Thus, for P, = 10~*, MLSE performance
with the simple Butterworth signaling chosen is quite close to the
Shannon limit. Even without carrier offset, the required cNR is about
17 dB, for which the Shannon limit is 5.7 bits/s/Hz.

V. CONCLUSION

Maximume-likelihood-sequence estimation has been shown to be a
powerful technique to permit high rates of data transmission with
straightforward channel signaling. In this treatment, channel coding
techniques were not used, and Quadrature Amplitude Modulation was
employed. Implementation of MLSE by means of the Viterbi Algorithm
requires a detector with I states, where I is the number of levels
which may be assumed by each channel symbol and M is the extent,
in symbol intervals, of intersymbol interference. Complex signaling
waveforms, which are generated by means of carrier offset modulation,
can be accommodated and may improve detection efficiency; MLSE
equalizes both the in-phase and quadrature components of the inter-
symbol interference.
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Fig. 7—Bit-error rate vs e,/Ny for four-pole Butterworth transmit filtering for no
carrier offset and optimum carrier offset.

An error-state transition analysis was used to systematically com-
pute a BER bound for MLSE. Applying this bound, it was shown by
example that, with MLSE, transmission rates approaching the Shannon
limit may be possible without channel coding.

The power of MLSE detection makes this technique a candidate for
radio systems constrained in bandwidth. Since the MLSE approach
admits complex waveshapes, channels admitting frequency-selective
fading can readily be accommodated, provided that the slowly varying
channel frequency characteristics are monitored to update the detec-
tion constants continuously. The real limitation on the application of
MLSE involves the speed at which the detector can operate, and this
places a constraint on the symbol rate of the radio channel. For rates
under 30 Megabaud, MLSE may be quite feasible; implementation at
real-time rates of 300 Megabaud, such as may apply to satellite
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channels, is beyond the current state-of-the-art. However, if the sat-
ellite system employs time-division multiple access (TDMA), then the
low-duty cycle for any ground station may permit MLSE implementa-
tion in nonreal time between TDMA burst arrivals. For duty cycles
lower than 10 percent, this would appear to be feasible today. At
higher duty cycles, nonreal time detection with parallel processors is
another possibility.
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