Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 6, July-August 1981
Printed in U.S.A.

No. 4 ESS:

Evolution of the Software Structure

By P. D. CARESTIA and F. S. HUDSON
(Manuscript received August 26, 1980)

This paper examines two different examples of how No. 4 ESs
software has evolved through restructuring to meet the needs of the
changing No. 4 Ess environment. The two software areas that under-
went varying degrees of incremental restructure are Call Processing
and Fault Recovery. We characterize the pre-restructure architec-
tures, discuss the motivation and rationale which led to restructure,
and present and evaluate the post-restructure architecture for each
software system.

I. INTRODUCTION

No. 4 Ess, the largest-capacity electronic switching system ever
developed by the Bell System, was developed to meet specific objec-
tives of capacity and reliability." To meet these objectives, the No. 4
ESS was designed using new hardware technology and a comprehensive
stored program. The primary objectives of the initial No. 4 Ess program
design were:

(i) real-time efficiency,
(i) simple human interface,

(iit) defensive design,

(iv) ease of modification.

Since its initial service date, the No. 4 Ess has released a new generic
software package approximately once a year incorporating major new
hardware and software capabilities. Each new generic was built upon
the previous generic. As the number of features provided by the No.
4 ESs grew, it became increasingly more involved in certain areas of
software to accommodate new features without impacting existing
features. The amount of time spent in regression testing had the
potential for becoming an ever growing part of the software develop-
ment interval, thus, increasing new feature development cost.

New software development methodologies that used top-down de-

1167

sign and structured programming techniques gained wider use in the
No. 4 Ess software development process. These rigorous approaches
to software design effectively pointed out where certain areas of No. 4
ESs software could be improved.

A new high-level programming language, EPLX, was introduced that
supported structured programming techniques and provided increased
program readability, modularity, and maintainability.

Given the continuing demand for new features, the design objectives
for software development had to be enhanced to place greater emphasis
on ease of modification and flexibility to reduce the cost and develop-
ment time of new system features. This increased emphasis along with
new software development methodologies and programming languages
led to a selective restructuring of areas of No. 4 Ess software, which
were to be affected the most by new feature development.

The No. 4 Ess software areas which became major candidates for
restructuring were call processing and fault recovery. Sections II and
III give the restructuring process for these two software areas.

Il. CALL PROCESSING RESTRUCTURING

To better understand the motivations and rationale for restructur-
ing, we review the call processing architecture prior to restructure.? It
should be made clear that the entire call processing system was not
restructured. Instead, an incremental restructuring occurred which
focused primarily on the task programs responsible for call handling
actions. We discuss the task programs in light of their original design
and their deficiencies. We give the motivation for and approach to
restructure, along with a discussion and evaluation of the new archi-

tecture.

2.1 Call Processing before restructure

When the No. 4 Ess cutover in 1976, it provided the capability to
interface with both local and toll switching machines, to function as a
tandem and/or toll switch, and to interface with all of the trunk
signaling types listed below:

() Dial Pulse (DP)

(a) Delay Dial Start Dial
() Immediate Start
() Wink Start

(if) Multifrequency (MF)
(a) Wink Start
(b) Delay Dial Start Dial

(iiif) Common Channel Interoffice Signaling (ccis)

The No. 4 Ess also provided the Centralized Automatic Message

1168 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

Accounting (caMA) function for trunks using dial pulse or MF address
signaling.

The call processing programs were initially structured in a three-
level hierarchy as shown in Fig. 1. The task dispensers (Level 1), which
were entered directly from Executive Control, provided the interface
for external stimuli received from the signaling hardware (Signal
Processors and ccis terminals) and the interface for internal stimuli
received from timing and queuing programs. Executive Control pro-
vided both high- and low-priority entries to the task dispensers, which
used the entries to poll the buffers in the signaling hardware for high-
and low-priority reports and to determine if time-out conditions ex-
isted. If reports or time-out conditions existed, they were dispensed
sequentially to the appropriate task program for processing. The task
dispensers remained in control until all relevant external or internal
stimuli had been processed or until an overload threshold had been
reached that limited the amount of activity processed by the system
during any base cycle.

The task programs (Level 2) performed the specific actions that
switched calls. Task programs were entered from the task dispensers
in response to a particular stimulus. The task program investigated

EXECUTIVE
CONTROL
TASK SIGNALING
LEVEL 1 DISPENSERS HARDWARE
LEVEL 2
OTHER
TASK
OPERATIONAL
PROGRAMS PROGRAMS
LEVEL 3
CALL
HANDLING

SUBROUTINES

Fig. 1—Initial No. 4 Ess call processing architecture.

SOFTWARE STRUCTURE 1169

the present state of the call and, depending upon the present state and
the stimulus, initiated the appropriate actions to advance the call to a
new state. The present state of a call can be determined from the call
register (CR) or trunk register (TR). The cr is a 64-word block of call
store memory used for temporary storage of information during call
setup. CRs are not dedicated on a per-trunk basis. Instead, there is an
engineered number of cRs per office which are link-listed together.
The TRs are two-word blocks of call store memory assigned on a per-
trunk basis. TRs contain dynamic information about the current state
of the trunk or call.

Certain repetitive or specialized call handling functions were de-
signed as subroutines (Level 3) so they could be accessed by several
task programs. Examples of call handling subroutines are seizing and
initializing a CR, connecting incoming and outgoing trunks, hunting a
service circuit, or pegging a traffic counter.

The task programs also interfaced with other operational programs
during the processing of a call. These interfaces were established to
allow independent software development of major operational func-
tions such as audits, translations, network management, and trunk
maintenance. Where these functions overlapped during the processing
of a call, clearly defined interfaces were established with the task
programs.

2.2 The Call Handling task programs

The Task Program block in Fig. 1 shows the set of task programs as
shown in Fig. 2. The task programs were organized on a signaling-
type/type-of-trunk basis and separated into incoming trunk and out-
going trunk programs. Each program was state driven and was respon-
sible for acting on the stimuli dispensed from the task dispensers. The
incoming trunk programs processed internal and external stimuli as-
sociated with the incoming trunk part of a call, and the outgoing trunk
programs processed internal and external stimuli associated with the
outgoing trunk part of a call. Internal stimuli were associated with
events such as timing or queuing reports. External stimuli were phys-
ical trunk signals. Each incoming trunk program also had an interface
with the Digit Reception and Analysis Programs, which were respon-
sible for determining the outgoing routes for the call based upon the
dialed digits. Digit sending to a large degree was part of the outgoing
trunk programs.

The task program architecture arose primarily because of the means
of communication with the signaling hardware. Communication with
the signaling hardware was at a physical signal level (off-hook, on-
hook) rather than a logical signal level (seizure, answer). Therefore,
the signaling protocol for a specific trunk was required very early in

1170 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

INCOMING TRUNK OUTGOING TRUNK
PROGRAM PROGRAM

DIGIT RECEPTION

AND ANALYSIS

®® O

Fig. 2—Detailed view of task programs.

the processing of trunk signal reports. Rather than convert the physical
signal into a logical signal prior to dispensing reports to task programs,
the task programs were designed to handle the physical signals on a
signaling-type/type-of-trunk basis. This approach resulted in a set of
programs that were organized on an incoming and outgoing trunk basis
for each signaling type/type of trunk.

Each program processed stimuli associated with its particular sig-
naling type. However, there were always points in call setup where an
incoming and outgoing trunk were involved in the call. They could be
of the same or different signaling types. A stimuli at these stages of a
call usually required actions by both the incoming and outgoing trunk
programs. The design approach was to take one of two actions: (i) do
whatever processing is required by the incoming trunk program, then
pass control to the outgoing trunk program or vice versa, (iz) have the
incoming or outgoing trunk program process the signal for both trunks
associated with the call. The latter approach resulted in task programs
that no longer contained processing logic for a single signaling type or
for incoming or outgoing trunk. Incoming trunk programs made deci-
sions based upon the type of outgoing trunk associated with the call
and vice versa. For example, the ccis task programs contained MF and
DP signaling logic, etc. This approach was generally taken to save real
time or to minimize program interfaces.

The drawbacks to such a task program design were: (i) proliferation

SOFTWARE STRUCTURE 1171

of decisions; (if) duplication of program functions; (iff) dilution of
program cohesion; and (iv) loss of independence between incoming
and outgoing trunk. In some cases, task programs were call controllers
and in others, single trunk controllers. The interfaces between incom-
ing and outgoing trunk program became many and complex as shown
in Fig. 3. The task program interfaces with the other operational
programs further complicated the picture.

2.3 Motivation for restructure

With the development of the 4E3 generic for the No. 4 Ess, call
processing was enhanced to provide the International Gateway Ex-
change Feature. This new feature required the addition of ccitTT No.
5 and ccITT No. 6 signaling capabilities to call processing. Two new
incoming and outgoing task programs were required along with the
modification and retest of all existing task programs. Rather than add
these signaling types to the existing architecture, thus further compli-
cating an already complex structure, we considered restructuring the
call processing task programs.

The goal of restructuring was to minimize the drawbacks of the
current design, while at the same time, to minimize the effects of
restructure upon the existing task programs which were known to be
real-time efficient and virtually error-free. Eliminating duplication,
strengthening program cohesion, and true separating incoming and

INCOMING TRUNK OUTGOING TRUNK
PROGRAM PROGRAM

DIGIT RECEPTION

AND ANALYSIS

Fig. 3—Task program internal interfaces.

1172 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

outgoing trunk processing were of special importance since future
generics are very likely to require additional call handling task pro-
grams for new signaling types.

2.4 Approach to restructure

The key problem to be resolved with the restructure effort was how
to make incoming trunk and outgoing trunk programs truly independ-
ent. The process began with formulating a universal call (shown in Fig.
4) and identifying the call events that must be processed to complete
the call. At this point no effort was made to distinguish incoming trunk
from outgoing trunk. The main focus was on the overall call. Seven
call events were identified:

() Origination,

(i&i) Digit reception,

(itZ) Outgoing trunk selection,

(iv) Origination on the outgoing trunk,

(v) Digit sending,

(vt) Receive answer,

(vit) Receive disconnect.

The architecture began to materialize as a result of functionally
decomposing the universal call into three sequential call stages:

() Setup—that part of the call from seizure on the incoming trunk
through digit sending and connection of the incoming and outgoing
trunks.

(if) Post Setup—that part of the call during which time a voice
path is connected, while awaiting answer and in the talking state.

(i1f} Clearing—hardware and software trunk idling sequences after
call termination.

The three sequential call stages were further decomposed into
incoming trunk (1cT) and outgoing trunk (0GT) processes, resulting in
the functional decomposition shown in Fig. 5.

The final phase of the process addressed the basic problem of
isolating 1cT and oGT processing. A new program function was created
to consolidate the communication interfaces between ICT and oGT task
programs and to oversee common call related functions. This program
was called the Report Dispenser. Its inclusion in the new architecture
made it possible to remove from the task programs any trunk signaling
logic dealing with the other trunk involved in the call and to create
trunk handlers.

The Report Dispenser was the single most important addition to
the call processing architecture, because it introduced the use of logical
signals as the means of communication between trunk handlers. Trunk
handlers could now communicate with the Report Dispenser without
involving another trunk handler. Incoming trunk and outgoing trunk

SOFTWARE STRUCTURE 1173

‘uretderp mofj [[e2 restaanun—y ‘i

133NNOIJSIA
3AI13034

HIMSNY
IAI303H

-

ONIAGN3S
11910

JNNY L
ONI0ODLNO NO
NOILVYNIDIHO

NOILD373S
ANNYL
ONIODLNO

NOILd303H
11910

NOILYNIOIHO

THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

1174

“[[80 [eSISAIUN B Jo uonisodwooep [puonoung—g “81q

ONIAN3S NOIL237702

11910 11910
123738

ONIHY3ITD ONIHVY3ITD dN.13S 150d dN.L3s 150d dnli3is SNNBL dN.L3s

ONIODLNO ONIWODINI ONIODLNO ONIWODNI ONI09LNO ONIWOINI
9NIOQDLNO
ONIHY3TD dn.13s 150d dn.i3s
ONITONVH

1Iv2

1175

SOFTWARE STRUCTURE

processing became independent. The complex interface between in-
coming and outgoing trunk programs had been replaced with a stan-
dardized interface that used logical signals as a means of communicat-
ing with a central point of control wherein call-related decisions
requiring knowledge of the other trunk were made. The new architec-
ture became one where task programs/trunk handlers communicated
with trunk circuitry via physical signals and communicated with other
trunk handlers via logical signals.

2.5 New architecture overview

The primary features of the new architecture are as follows:

(f) The splitting of call handling into parallel real-time processes
(finite state machines), which control states of the incoming trunk, the
outgoing trunk selection process, and the outgoing trunk.

(if) The consolidation of communication decisions, which link these
finite state machines in a program called the Report Dispenser.

(iif) The identification of a subset of call handling functions that
can be implemented as subprocesses (submachines) under control of
incoming or outgoing trunk handlers. These functions were common
to most calls and relatively independent of signaling type. They are
digit reception and digit sending.

An architecture based upon trunk handlers is advantageous from
the standpoint of minimal impact upon the existing call processing
task programs. The basic logic of the task programs can be maintained;
the changes are limited to separating incoming and outgoing trunk
functions, eliminating redundant code, and interfacing the task pro-
grams with the Report Dispenser. Figure 6 illustrates the major
modules in the new architecture and the control hierarchy.

All task dispenser reports are made on a trunk state basis. This
means that report dispensing is based strictly on the state of one trunk
involved in a call to the trunk handler responsible for handling that
type of trunk.

All internal and external stimuli are dispensed by the task dispensers
in the same manner as existed in the pre-restructure system. A new
task dispenser was added as part of the restructure effort to interface
with the cciTT No. 6 signaling terminal.

When a trunk handler receives a physical signal from the task
dispenser it takes whatever action is appropriate and then reports a
logical call event to the Report Dispenser. The Report Dispenser
determines the next call action to initiate based upon the logical event
and may invoke per call common functions, such as outgoing trunk
selection, or invoke the other trunk handler involved with the call.
When the signal has been completely processed, control is returned to
the task dispenser via the Report Dispenser and the trunk handler

1176 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

that initially received the stimulus. In summary, a physical signal is
passed to the trunk handler, which converts the signal to a logical
signal (answer, disconnect, etc.) based upon the state of the trunk. The
logical signal now becomes the stimulus to the Report Dispenser to
stimulate further call processing actions.

The block called Common Call Functions in Fig. 6 consolidates
many common call related functions and interfaces which in the pre-
restructure architecture were spread throughout the task programs.
Many of the interfaces with the other operational programs are con-
solidated here.

The Digit Reception and Digit Sending functions appear as sub-
machines under the incoming and outgoing trunk handlers. They are
programs which are invoked by the trunk handlers and are logical
rather than physical signal driven. Task dispenser reports are directed
to these submachines and not to the trunk handlers. This allowed for
efficient real-time execution in the processing of these reports and

EXECUTIVE
CONTROL

SIGNALING
TASK DISPENSERS e PWARE
PHYSICAL
SIGNALS REPORT
DISPENSER
CALL FAILURE
CONTROL
LOGICAL
SIGNALS
COMMON
CALL
INCOMING FUNCTIONS OUTGOING
TRUNK TRUNK
HANDLERS HANDLERS
DIGIT DIGIT
RECEPTION SENDING

SUBROUTINES

Fig. 6—No. 4 ESS call processing architecture.

SOFTWARE STRUCTURE 1177

does not burden the trunk handlers with detailed knowledge of how
the submachine performs its function.

Call Failure Control has the same relative position in the new
architecture as the Report Dispenser and is responsible for controlling
the clearing of incoming and outgoing trunks as a result of Ineffective
Attempts, i.e., calls that are not successfully completed.

2.5.1 A simple call

To more clearly understand the structure, interfaces, and control,
we describe a simple DP-to-DP call. We incorporate only those events
needed to successfully complete the call because the picture becomes
more complicated when call anomalies are taken into consideration.
The scenario is based upon the universal call diagram. Figure 7
represents the call flow diagram for the call. Incoming Trunk actions
are represented along the top horizontal axis. Logical events are
reported to the Report Dispenser, which then communicates these call
events to the oGT. Outgoing trunk actions are represented along the
bottom horizontal axis. The call actions progress in sequence from left
to right.

The call begins with the receipt of an off-hook origination on the
idle 1cT. The physical off-hook signal is passed from the task dispenser
to the 1cT handler which prepares for digit collection. When the 1cT is
ready to receive digits, an integrity check signal is sent backward
toward the originating office. The next ICT action is to receive digits.
This action is performed by the Digit Reception Program. The Digit
Reception Program also analyzes the digits to determine the outgoing
trunk group for the call. The Report Dispenser is now notified that
the call is ready for oGt selection. The Report Dispenser invokes the
oGT selection program which is a common call function. After a
successful return from the oGT selection program, the Report Dis-
penser invokes the 0GT handler. The first ogT handler action is to seize
the oGT. After seizing the trunk, the Report Dispenser is informed that
seizure is complete. For this call, no 1cT action is required at this point.
Action is required if the 1cT is cc1s or ccITT No. 6. This knowledge
resides only within the Report Dispenser. The oGt handler waits for
receipt of the integrity check signal from the far end office indicating
readiness to receive digits. The ogT handler invokes the Digit Sending
program, which deletes or prefixes digits to the dialed number and
controls the outpulsing process on the oGT. When all digits have been
outpulsed, control passes back to the Report Dispenser indicating the
outgoing part of the call is complete. At this point, the call moves from
the setup stage to the post setup stage. The CR is released and the
voice path between 1cT and 0GT is completed. Both actions are com-
mon call functions. Each trunk handler places itself in the waiting-for-

1178 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

"moy [Te2 asnd [erp-03-asnd rerq— S1q

NI3HI
na ININTYL — suaud ALIBDILNI 190
HIMSNY ON3s IA1393Y 32138 @n_
o8 31314W03 3137dW03
HY31D HIMSNY ONISINdLNO JHNZI3S
dS100434 dSI00d34 45100434 dS100d434 dS100d34
OHYMHO04 123713S 190
HY3I1D 404 AQY3IH
HIMSNY
.\ sii91a
ERli]] ONITYL 404
1IVM JZATYNY

511910
JAI303H

]

pHELH]
ALIY93LNI
aN3s

NOILYNIDIEO

ANNHL
INI09LN0

H3SNI4SIO0
140434

ANNHL
ININOINI

1179

SOFTWARE STRUCTURE

answer state. The next signal the No. 4 ESs expects to see is off-hook
answer on the 0oGT or on-hook clearforward on the 1cT, should the
originator disconnect. In the case of the answer signal, the 06T handler
processes the signal for the oGT and reports the logical event to the
Report Dispenser, which in turn, passes the event to the 1cT handler
for processing. The next event in the call will be an on-hook disconnect
on either trunk.

If the 1CT receives an on-hook clearforward, the 1cT handler reports
the event to the Report Dispenser which invokes the 1cT and ocT
clearing routines to idle the trunks. If an on-hook clearback signal is
received by the 06T, the oGT handler passes the event to the Report
Dispenser, which invokes the 1cT handler to send a clearback signal on
the 1cT. A clearback does not cause the call to be idled. A clearforward
must be received to idle the call.

This simple example of the DP-to-DP call demonstrates how the
Report Dispenser isolates the 1cT and ocT from having knowledge of
the other. We can then extend this example to cases where the 1cT and
oGt are of different signaling types and show that by communication
with the Report Dispenser using logical call signals any type of 1cT can
interwork with any type of oGT, given the necessary logical signals
have been defined.

2.5.2 The report dispenser

Communication between the trunk handlers is consolidated in the
Report Dispenser. When a trunk handler detects a logical event that
may be significant to the other trunk handler on that call, it reports
that event to the Report Dispenser. The Report Dispenser determines
the other trunk handler on the call and passes control to the appro-
priate trunk handler. This consolidation of what are primarily signaling
type decisions about the other trunk handlers involved in the call
results in an overall reduction of code and simplifies the addition of
new signaling types. The addition of a new signaling type to this call
processing system obviously involves the design and development of
an 1cT and oct handler. However, if the new signaling type does not
require the addition of any new logical signals, then the Report
Dispenser only requires slight modification to include the new signaling
type.

The trunk handlers communicate with the Report Dispenser by
means of logical signals and pass additional data with the cr and TR.
The signals are divided into two categories: setup and post setup.
Setup signals are passed to the Report Dispenser, along with the CR,
during the setup stage of a call. The signaling type of the 1cT and oGT
and the state of the call are stored in the cr. Based upon cr data and
the logical signal, the Report Dispenser makes the decision on what to
do next in the processing of the call. Post setup signals are passed to

1180 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

the Report Dispenser in the post setup stage of the call, which is after
the cR has been released. The Trunk Scanner Number (TSN), which
identifies the 1cT or OGT, is passed along with the logical signal.
Through data translations using the TSN, the signaling type of the
trunk and the TR are found. Based upon the signaling type of the trunk
and the logical signal, the proper next step in the call can be taken.
This mechanism then allows 1cT and oGT handlers to have no knowl-
edge about the other trunk involved in the call. That knowledge, along
with the knowledge of the state of the call, resides within the Report
Dispenser.

There are several functions in call processing that are call-event
dependent and signaling-type independent. The Report Dispenser
provides a central point for calling procedures associated with these
common call functions. The common call functions include:

({) Voice path setup and take down.

(i) Interfacing with the No. 4 Ess Service Observing System, if it
is active on a call.

(iii) Interfacing with the No. 4 Ess Network Management Programs.

(iv) Call register release.

(v) Interfacing with the No. 4 Ess Inward Wide Area Telecom-
munications Service Billing Program.

(vi) Interfacing with the No. 4 Ess Call Detail Recording Program
for international calls.

The advantages of calling common call functions from the Report
Dispenser instead of assigning that responsibility to the trunk handlers
are as follows:

(i) minimization of errors—the functions can be called from a
single module;

(i) reduction in real time—such functions generally required the
knowledge of both trunks, information which the Report Dispenser
had available but would have to be regenerated in a trunk handler;

(iif) elimination of code—the functions can be called from a single
module;

(iv) simplification of changes or additions to event-dependent func-
tions—a significant advantage when adding features that are signaling-
type independent.

2.5.3 Call failure handiing

Call failure handling or final handling is the name given to the
cleanup process for calls that fail to complete in a normal manner.
Calls can fail due to machine error (hardware or software), customer
error (misdialing, early abandon), or network conditions (congestion,
network management controls).

There is a general class of events in the No. 4 Ess known as call

SOFTWARE STRUCTURE 1181

irregularities, which cause either a retrial attempt, or an abnormal
termination of the call. An abnormal termination is called an ineffec-
tive attempt. Most ineffective attempts are because of an inability to
complete the setup stage of a call. Some examples are as follows:

(i) 1cT abandon in the setup stage.

(ii) Network congestion (all circuits busy, network management
controls).

(#ii) Failure on retrial attempts (glare, outpulsing errors, integrity
check failures).

(iv) Office congestion (no CRs or service circuits, network blockage,
overload controls in effect).

Some ineffective attempts occur in the post setup stage, such as loss
of transmission (carrier failure).

Final handling clears ineffective attempts, allowing call processing
resources (CR, trunks, service circuits) to be reused for new calls.
Announcements and tones are also provided to help inform the cus-
tomer of the situation.

There are numerous states that a call could be in when final handling
is required. A call could be using many combinations of machine
resources (i.e., CR timing lists, service circuits). Rather than determine
the exact state of a call and idle only those resources and processes
associated with that state, final handling checks for and idles all
possible resources and processes on a call. In this way, calls can be
cleared that have invalid states or invalid resources associated with
valid states.

Final handling can be thought of as having two components, a call
failure controller and a set of trunk clearing modules. The call failure
controller holds a position in the architecture equivalent to the Report
Dispenser, and like the Report Dispenser performs functions associ-
ated with common call related facilities (see Fig. 6). The trunk clearing
modules are part of each trunk handler and provide a customer
treatment based upon the trunk signaling type.

The call failure controller could have been made part of the Report
Dispenser and final handling conditions treated via the same logical
event-type interface that trunk handlers have with the Report Dis-
penser. However, the call failure controller already existed in the pre-
restructure architecture and changing this interface would have had a
major impact on the existing trunk handlers. A logical event-type
interface like that of the Report Dispenser was provided in the call
failure control module to accommodate the cciTt No. 5 and ccITT No.
6 trunk handlers, since they were new task programs to be developed
during restructuring.

When a call requires final handling, the trunk handler interfaces
with the final control module, which clears common facilities and

1182 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

invokes the particular trunk clearing modules to idle remaining trunk-
related facilities and to provide proper customer treatment for the call.

2.6 Evaluation

The interfaces and direction of communication between the trunk
handlers, the task dispensers, and the Report Dispenser have become
call processing programming standards. In some cases these standards
produce a call flow which sacrifices real-time efficiency for the sake of
uniformity. However, the sacrifice of real time is justified to maintain
the integrity of the architecture. The analysis of call processing pro-
gram errors and the changes required for program correction are a
much simpler task because of easier problem isolation. The architec-
ture makes the addition of new signaling types and design changes a
more quantifiable job. The placement of new modules becomes readily
apparent in the structure because the architecture directs the designer
to a specific process of functional decomposition. The new signaling
type is separated into ICT and OGT processes. Each process is then
further decomposed into setup, post setup, and clearing functions, and
new logical signals, if any, are identified. This process to a degree
forces a consistent approach to the first level of task program modu-
larity.

Since the call processing restructure was incremental, major portions
of the existing code were not redesigned or rewritten. Existing task
programs were not totally reorganized into distinct setup, post setup,
and clearing modules. However, additional reorganization continues as
new features are added to the call processing task programs. The
implementation of the new ccitt No. 5 and ccITT No. 6 trunk handlers
followed the call processing program standards completely. In addition,
ccrrt No. 6 was implemented with the use of EPLX.

As part of the 4E5 generic, the Mass Announcement System (MAS)
feature was added to the No. 4 Ess. The Mas feature required a number
of new types of calls to be processed by the No. 4 Ess and was a major
software development undertaking in call processing. Using the struc-
ture of the new architecture as the basis for MAs feature decomposition
and design, changes were made to add Mas to the call processing
system. The feature addition was successful. Many of the new mas
calls executed correctly soon after introduction for testing in the
system laboratory environment. At the same time, the old call types
that the No. 4 Ess previously accommodated remained intact with no
errors introduced as a result of the MAs feature addition.

The restructuring effort did not go without problems, the prime
being increased real-time usage. After the architecture was solidified
and much of the software developed, certain real-time critical parts
were reviewed and optimized until real-time performance was judged
to be within reason. As real-time improvements were made to the

SOFTWARE STRUCTURE 1183

EPLX, additional changes were made to certain areas of call processing
to further improve real-time performance.

lll. MAINTENANCE SOFTWARE RESTRUCTURING

Peripheral maintenance software for the No. 4 Ess also has been
selectively restructured to minimize the cost of developing such soft-
ware and provide the ability to continue to add new hardware features.
The restructured peripheral fault recovery system incorporates oper-
ating system concepts, top-down hierarchically designed control struc-
tures, and use of a formal development methodology. This section
gives a brief overview of the pre-restructured maintenance system. We
also give error recovery and system recovery concepts, the motivation
behind restructuring a selective part of the maintenance system, and
finally a description of the restructured system, and an evaluation of
the benefits of the new system.

3.1 Maintenance system overview

The stringent reliability and maintainability requirements of the
No. 4 Ess affect both the hardware and software design of the system.
In the software, we have developed a large program package to provide
maintenance functions.’ This maintenance software package consists
of four functional areas that play an essential role in providing the
maintenance capabilities of the No. 4 Ess: (i) fault recovery; (i)
diagnostics; (Zif) system reinitialization and recovery; and (iv) system
integrity and audits. Fault recovery is concerned with the system
recovery from hardware faults. Diagnostics aid the craftperson in the
identification of faults and repair of a faulty unit. System reinitializa-
tion is concerned with the overall coordination of system recovery
from multiple or severe hardware and software malfunctions. The
system integrity area is concerned with the detection of and recovery
from memory mutilation. These software areas are designed based on
specific error recovery and system recovery concepts. We give these
concepts in later sections for background information.

Various types of redundancy (e.g., duplex, n + 1 duplication, n + 2
duplication, and load sharing) are used in the different subsystems to
meet hardware reliability requirements. Each subsystem uses a num-
ber of error-detection techniques such as parity, matching, order
acknowledgment, and self checking. These hardware characteristics
place specific requirements on the maintenance software, particularly
the fault recovery area, which is tightly coupled to hardware design.

3.1.1 Error recovery concepts

The maintenance software is built around several levels of execution
based upon both maintenance software and hardware error detection
triggers. Table I shows the maintenance program execution levels in

1184 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

Table |—Maintenance program execution levels

Layer Level Function
Phase 4
System Phase 3 System
Recovery Phase 2 initialization
Phase 1
A
]é Processor
Maintenance D fault recovery
Hardware E
Interrupts F
G — Peripheral recovery
K — Utility and timing
— Segment timing validation
Maintanenace Interject
Software { BLM } Fault recovery
Manual requests
Audits Base Low-priority task
Diagnostics

the No. 4 Ess. Only those execution levels which are applicable to
peripheral fault recovery are discussed. The remaining levels of exe-
cution are presented in Ref. 4 on the 1A Processor.

Base level is the lowest and the normal level of system execution.
All the call processing work described earlier, as well as audits and
diagnostics, are normally executed at this level. Base level maintenance
(BLM) is the next level and is triggered by defensive checks provided
in software or firmware. Interject level is the next higher level and is
guaranteed to be served by the 1A Processor every 10 ms. F-level
interrupts report peripheral errors and are of two types: peripheral
unit failure (PUF) and autonomous peripheral unit failure (APUF). The
PUF interrupt is generated by the 1A Processor when a peripheral
frame fails to acknowlege, or incorrectly acknowledges a directed order.
The APUF interrupt is generated autonomously by a peripheral unit
failure. The 1A Processor scans for APUFs every 11.2 ps. Base level
maintenance, interjects, and both types of F-level interrupts invoke
peripheral fault recovery. Fault recovery actions can also be stimulated
by manual requests, such as input messages or power control switch
requests.

3.1.2 System recovery concepts

When fault recovery succeeds in reconfiguring the system so the
faulty unit is not in service, repair activity commences. However, in
cases when complex or multiple faults prevent fault recovery from
configuring an acceptable working system, system recovery actions are
taken. Phase recovery is the highest level system recovery action and
can be initiated either manually or by software. Phase recovery can

SOFTWARE STRUCTURE 1185

escalate through four phases, where phase 1 is the least severe and
phase 4 is the most severe. Phase 4 can only be requested manually.

There are two types of Phase 1s. The first type executes a specified
set of audits that correct data mutilation. The second type is a directed
phase 1 and is initiated by a fault recovery action on a peripheral unit
which results in a loss of service provided by the unit. The directed
phase 1 initializes software structures associated with the faulty unit.
A phase 2 initializes additional software structures and also performs
a unit access test on the peripheral hardware when it is initiated by F-
levels. Phase 3 is the highest level phase that is automatically re-
quested. It performs additional software structure initialization and
additional tests on the hardware. A phase 4 performs a total system
initialization and can only be requested manually.

3.2 Motivations for a modern structure

3.2.1 Drawbacks of original implementation

Since the initial generic release (termed 4E0), each new generic has
included new features, hardware cost reductions, and enhancements.
Each generic must continue to meet the original design objectives of
the system for capacity and reliability and, at the same time, provide
new services, and take advantage of the rapidly changing technology
through hardware cost reductions. By the end of the second generic
(4E1), the continuing demand for new hardware features and cost-
reduced hardware was evident. We, therefore, determined how the
development cost could be reduced for maintenance software. Of the
four maintenance software areas described earlier, we found the fault
recovery area to be affected most by new hardware feature develop-
ment since efficient changes or additions could not be made.

The principal reason the pre-4E2 fault recovery software exhibited
this lack of flexibility was that it was functionally partitioned with a
decentralized control structure. Figure 8 shows the functional parti-
tions used in the pre-4E2 fault recovery software. They include:

(i) Peripheral Configuration Program,
(ii) Craft-Machine Interface Program,

(iti) Hardware Phase Recovery,

(iv) Error Analysis Program,

(v) Per unit fault recovery programs.

Each functional area contained control and unit-dependent code for
many units embedded in the same programs. Each time a new unit
was added, the functional area was modified, resulting in increased
complexity, and requiring the en'‘ire area to be retested. Each one had
decentralized control and had to provide for the following common
requirements:

(z) Multilevel execution,
(i£) Unit dependent interfaces,

1186 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

——————

FUNCTIONAL
AREAS

ERROR,.
ANALYSIS

PERIPHERAL
UNIT
CONFIG.

CRAFT—
MACHINE
INTERFACE

|

HARDWARE
PHASE
RECOVERY

_ AREAS AFFECTED MOST BY
NEW HARDWARE FEATURES

F-LEVEL |___
PREFILTER |—
UNIT FAULT RECOVERY
| AREAS
PERIPHERAL
BUS
<< =1 FAULT
|\ RECOVERY
NETWORK <,‘:J
CLOCK
< FaULT
RECOVERY —
SIGNAL o
<:>| PROCESSOR
FAULT
RECOVERY —>
COMMON
INTEROPEICE [
<— SIGNALING
FAULT —
RECOVERY
VOICEBAND |~
INTERFACE
<—>1 FAULT
RECOVERY =
DIGROUP fem
TERMINAL
FAULT
RECOVERY —>
R —
~—~ SUPPRESSOR
FAULT
RECOVERY >
I M | S
MAINTENANCE
RESTART
PROGRAM

Fig. 8—Peripheral fault recovery structure (4E2 generic).

(iit) Hardware and software coordination,

(iv) Reentrant software.

Fault recovery software is required to execute on all system levels of
execution, i.e., base level, BLM, interject, F-level interrupt, and phase
level. In general, other maintenance software executes only on one
level. In addition, fault recovery software is required to interface to all
types of peripheral hardware. Hardware coordination is required be-
cause of the highly interconnected hardware. In particular, recovery
from a problem in one unit generally affects other units. Software
coordination is required to prevent software interaction due to time-

SOFTWARE STRUCTURE

1187

shared execution on base level. Reentrant software is required due to
the multilevel execution of fault recovery software. As an example, the
same fault recovery software may be started and successively re-
started by escalating recovery actions. These requirements resulted in
excessive interfaces and interaction between the different functional
areas. Consequently, much fault recovery code was duplicated in an
effort to reduce the number of interfaces. However, duplication made
the job of maintaining the software much more difficult.

Each unit fault recovery program was responsible for many functions
common to fault recovery of several units. The functions were being
performed by several different programs in numerous ways. For ex-
ample, each unit fault recovery program provided interfaces to each
functional area, provided software to collect common recovery data,
provided software to output recovery messages, etc.

Since most fault recovery software executes on interrupt level, it was
designed with emphasis on real-time efficiency to minimize the inter-
ruption of base level due to a faulty unit. Techniques such as “tricky
code” and private interfaces, as examples, were used for real-time
efficiency. This also contributed to a structure that was difficult to
change.

3.2.2 Development of improved structure

In response to these shortcomings in the pre-restructured fault
recovery structure, an improved fault recovery structure was developed
to incorporate the following: (i) a peripheral maintenance operating
system; (it) new hierarchically designed fault recovery control struc-
tures; (iii) a higher-level language; and (iv) a more formal development
methodology.

The operating system would remove some complexity from the
software by handling multilevel execution, memory allocation, and
software coordination, and provide a truly standard interface between
functional areas of fault recovery software.

The hierarchically designed control structure would provide com-
plete separation between control and unit-dependent code. This would
remove much of the unnecessary complexity in the control areas and
limit the testing mainly to the new feature software being added. A
hierarchical structure would lend itself more easily to changes and
additions. It would improve readability and maintainability of the
product.

A high-level language would improve programming productivity,
readability, and maintainability. Programming productivity would be
improved by allowing the programmer to concentrate on programming
the function and not on initializing and saving registers, implementing
loops, etc. Removing this level of detail from the source code would
also improve the readability and maintainability of a program.

1188 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

A formal development methodology would provide uniform and up-
to-date documentation. The more rigorous steps in a methodology
that insist on requirement reviews, design reviews, code walk-throughs,
and test plan reviews help ensure that more software bugs are found
early in the development. Other benefits of this formal development
methodology, which uses development teams, are better project visi-
bility and a larger group of people with knowledge of the software.

The development cost of the operating system and new control
structures could be spread over several generics with little additional
development cost beyond that required to add new units. Once the
operating system and control structure were in place, the development
costs for a new hardware-related feature would be reduced. In addition,
program maintenance cost would be reduced.

Each of the above techniques, to some degree, has the drawback of
less real-time efficiency and greater program size. The advantages
stated above were judged to outweigh these considerations. It is also
common practice when using a structured design approach to optimize
after the design is working. Time should be scheduled for optimization
when it can be determined which areas require real-time and program-
size optimization. Note that optimization is generally easier in a
structured design that is written in a high-level language. In many
cases, large improvements in real-time and program store usage can
be accomplished by small changes in a structure and/or compiler.
Also, the increased program size is partially offset by reduced tempo-
rary memory requirements. This reduction can be attributed to more
efficient use of temporary memory by the new operating system.

The fault recovery software, thus, evolved to a set of centralized
control structures executing under a maintenance operating system.
These control structures are designed with complete separation be-
tween control and unit-dependent code. Both maintenance control and
unit-dependent software are written in EPLX. To add units to this new
system, unit-dependent modules are added to each control structure
as illustrated in Fig. 9 by the dashed blocks. In general, no modification
is needed to the control structures. This results in testing the new unit
software and little regression testing. In the pre-restructured fault
recovery system each functional area required modifications to add
the new control code and unit code. In Fig. 8 the blocks with the
blacked-in corners are the functional areas that required extensive
changes and additions. Each functional area required testing of the
new unit fault recovery software and extensive regression testing of
existing unit fault recovery software.

The new fault recovery system was planned to be evolved over
several generics and to operate in parallel with the pre-restructure
fault recovery system. The pre-restructure fault recovery system con-

SOFTWARE STRUCTURE 1189

EXECUTIVE
CONTROL
MEDIC PMOS
MESSAGE |eg—a OPERATING
DISPENSER SYSTEM
BOOTCNTL PUFR FERA FRDI TOPIC
HARDWARE FAULT ERAOR CRAFT—
PHASE RECOVERY ANALYSIS MACHINE i
RECOVERY CONTROL CONTROL CONTROL
| o DIF | | DIF L .| DIF DIF | .| DIF
UNIT UNIT UNIT UNIT UNIT
CODE CODE CODE CODE CODE
| .| PUC | | CLOCK | .| cLock | | cLock | [cLock
UNIT UNIT UNIT UNIT UNIT
CODE CODE CODE CODE CODE
| .| mas | .| PUC .| PUC Lo PUC | .| PUC
UNIT UNIT UNIT UNIT UNIT
CODE CODE CODE CODE CODE
="
Lo NEW | | .| MAs | o MAS | .| MAS | o] mas
UNIT UNIT UNIT UNIT UNIT
I_CODE CODE CODE CODE CODE
__ ——— —
o NTWK _-1'_ NEW_] Loy NEW—i _..r_NEW_;
. UNIT | UNIT | UNIT UNIT
CooE [COPE | | COPE | | GODE |
T NEW |
1 unir !
"—f!_cone_i

Fig. 9—Peripheral fault recovery structure (4E5 generic).

tinues to handle the units it was designed to accommodate. New units
are being implemented under the new fault recovery system in the
EPLX language.

3.3 Characterization of new fault recovery control architecture

The development of the new fault recovery control architecture was
a multigeneric development. This new architecture was developed as
a parallel system without disturbing the existing fault recovery soft-
ware system, which supports the existing peripheral hardware archi-
tecture. The initial introduction was in the 4E3 generic with the
development of the Peripheral Maintenance Operating System (PMOS)

1190 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

and the Peripheral Unit Fault Recovery (PUFR) control structure. The
first units supported by this system were the network frames (Time
Slot Interchange and Time Multiplexed Switch). In the 4E5 generic,
five new control structures were added, plus unit-dependent code for
four new hardware frames. The five control structures were: () Toll
Peripheral Configuration (Topic); (if) Frame Request and Diagnostic
Interface (FRDI); (izi) Failure Error Analysis (FERA); (iv) Message
Dispenser and Coordinator (MEDIC); and (v) Bootstrap Control
(BooTcNTL) Program.

Each of the control structures, with the exception of MEDIC, was
recommended as part of the original plan. Message Dispenser and
Coordinator is a control structure which resulted from the introduction
of intelligent (micropressor based) peripherals into the No. 4 Ess.
These new peripherals execute macro-level orders which return mul-
tiword responses on a deferred basis after control is released. This
required a new structure to control sending, receiving, and dispensing
responses from these units. All four of the new hardware frames
developed for 4E5 were of this type.

The resulting fault recovery software structure after the 4E5 generic
is shown in Fig. 9. Each of the control structures was designed to meet
the following objectives:

(i) Remove complex system dependencies by making use of the
PMOS.
(ii) Make use of a more formal development methodology.
(i) Use EPLX.
(iv) Provide complete separation between control and unit-depend-
ent code.
(v) Provide standard unit-dependent interfaces.
(vi) Remove limitations (structure sizes, number of units, etc.)
which exist in the present fault recovery software system.

(vii) Provide new capabilities.

Section 3.3.1 briefly describes each functional area of the new control
architecture.

3.3.1 Peripheral maintenance operating system

The pmos is the heart of the new fault recovery control architecture.
This operating system centralizes peripheral maintenance control
and coordination while reducing the complexity of system interaction.
The operating system provides a standardized interface between PMOS
tasks and the remainder of the system software. A pPmos task is a
software process or function defined to the operating system. This
interface allows an operating system task to be requested with several
options specifying levels of execution, request mode, and priority. For
example, simultaneous tasks can be scheduled on the same level or
different levels, requested in a schedule and hold mode, parallel sched-

SOFTWARE STRUCTURE 1191

ule, or run-immediate mode. The operating system provides for task
execution on base level, BLM, interject level, F-level, and phase level.
Schedule and hold mode allows a task to schedule other tasks and be
suspended until the other task is completed. Parallel schedule allows
a task to schedule several other tasks and be suspended until all are
completed. Run-immediate mode allows a task to request other tasks
to be executed immediately. The main features of the operating system
are: (i) task coordination; (if) multilevel execution; (ifi) administration
of segment breaks; and (iv) reentry.

Peripheral fault recovery code for several units tends to be tightly
coupled due to highly interconnected hardware units. The operating
system removes from a task many of the concerns of task interaction
by providing several task coordination functions. The operating system
exercises blocking rules as defined in a central blocking table. Blocking
prevents time-shared execution of specific tasks which otherwise would
interact. Control of abort conditions and the execution of abort pro-
cedures are also provided. Control of execution and the determination
of associated priorities are also included in a task coordination function.

Multilevel execution is a characteristic which in the past required
numerous redundancies in many fault recovery programs. For example,
each fault recovery program was required to check for the execution
level and perform the necessary function to segment on that level. The
operating system consolidates the necessary checks and functions to
execute on different levels in one place. In general, tasks need not
know what execution level they are on.

Segment breaks* required by base level processing add complexity
and substantial development cost without a unified control architec-
ture. Peripheral Maintenance Operating System provides segmenta-
tion routines for the new control structures. These routines preserve
task memory when segment breaks are taken and ignore segment
breaks on interrupt, interject, and phase level. The operating system
also provides routines for timing breaks. Timing breaks at any execu-
tion level releases the operating system for execution of other tasks
until the time specified at the break has expired. The task environment
is preserved on segment breaks or timing breaks and reestablished
upon return to the task.

Reentry is a condition that causes numerous problems for multilevel
maintenance software. This problem arises, for example, when a mul-
tilevel program is interrupted on base level and the same program is
entered on the interrupt. This can result in variables, initialized on
base level, being overwritten on the interrupt level. This problem has

* Segment break is a convention in No. 4 Ess whereby all base level processing
programs are required to return control to the Executive Control program every 3 ms.

1192 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

forced fault recovery software to be exceedingly defensive during
execution, adding system integrity checks and numerous other controls
to avoid problems. The operating system resolves each case of reentry
to the interrupted program. The integrity of each task is maintained
either by aborting a task or allocating a different memory block to the
task.

3.3.2 Message dispenser and coordinator

The MEDIC is a control structure developed to satisfy new require-
ments introduced with microprocessor-based frames in the peripheral
system of the No. 4 Ess. Prior to 4E5, all peripheral frames on the
peripheral unit bus returned responses to orders in the peripheral unit
bus reply window. This window is 32 1A Processor cycles or 22.4 ps in
duration. With the introduction of microprocessor-based frames, their
macro-level orders required much longer times to complete because of
the higher-level function being performed. These frames were designed
to return an initial response in the reply window, indicating the order
was accepted. A “task complete” response was returned when the
macro work was completed within the frame.

Message Dispenser and Coordinator was developed as a control
structure, having special interaction with the operating system. The
basic functions of MEDIC are to (i) coordinate sending macro orders to
microprocessor-based frames; (i) poll these frames for responses on a
deferred basis; and (iii) dispense those results to the appropriate client.
The message dispenser, in conjunction with the operating system,
provides primitives (low-level function calls) which allow a PmMOs task
to be suspended while waiting for a macro response. The task is
automatically reactivated when the macro response is received. MEDIC
provides a macro timeout notification. If a response is not received in
a predefined maximum allowed time, the task is notified. The message
dispenser also provides appropriate handling of unsolicited frame
reports and autonomously generated reports. The unsolicited and
autonomously generated reports are processed on BLM. The fault
recovery program resolves the cause of the report and takes the
appropriate recovery action to clear the problem.

3.3.3 Peripheral unit fault recovery

The PUFR control structure was the first control structure developed.
It was developed in the 4E3 generic and supported the cost-reduced
1s1 frames. The Peripheral Unit Fault Recovery is a common control
structure that handles all levels of peripheral error recovery (BLM,
interject, and F-level). It consolidates common error-recovery func-
tions under one control program by providing the following common
functions: (i) initialization of data structures; (if) collection of critical
data required to isolate the source of a fault; (iif) an interface to unit-

SOFTWARE STRUCTURE 1193

dependent tasks to isolate the fault; (iv) an interface to error analysis
programs to acknowledge the recovery actions; (v) execution of the
necessary actions to recover the system; (vi) scheduling of any deferred
maintenance actions, e.g., diagnostic, audits, etc.; and (vii) printing of
reports containing critical data and the recovery action taken at the
time of the fault.

The Peripheral Unit Fault Recovery controls the execution of fault
recovery by calling both common routines and special unit dependent
procedures. It satisfies the requirements of complete separation of
control and unit-dependent software by providing standard interfaces
to unit-dependent procedures. It calls the appropriate unit procedure
by indexing a table based on unit identity. In addition to consolidating
the common functions, PUFR also provides several enhancements.
Some of these enhancements are: (i) multiple isolation attempts; (ii)
multiple unit interface to error analysis; and (iii) enhanced report
messages. Multiple isolation attempts allow a unit isolate program to
request an isolation attempt on a different unit, for the same interrupt,
when the problem cannot be resolved to the original unit. The subse-
" quent isolation attempt is usually on a connecting frame. Multiple unit
interface to error analysis allows the unit isolation program to pass a
list of suspect units to error analysis when the problem cannot be
resolved to a single unit. Enhanced report messages provide the craft
with additional information concerning the source of the interrupt and
the corrective action taken.

3.3.4 Failure error analysis

The FERA program provides the centralized control structure for
carrying out the fault recovery error analysis function. The main role
of error analysis in the No. 4 £ss is listed below:

() Complement fault recovery by adding the element of interrupt
history,
(ii) Resolve intermittent and transient hardware faults,

(iit) Resolve faults in interconnected hardware,

(iv) Isolate persistent or intermittent system troubles in highly
interconnected hardware subsystems,

(v) Record and analyze error history information,

(vi) Provide graceful degradation by removing units, which causes
the minimum service effect, to correct a system problem,

(vii) Monitor deferred maintenance activities to guard against re-
moving the redundant part of an intermittent failing piece of equip-
ment.

Failure Error Analysis provides these functions by determining
recovery actions with strategy tables. Strategy tables are a collection
of decision schemes which make different decisions on successive
occurrences of an error. A strategy table is selected by fault recovery

1194 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1A981

based on the type of fault occurring. The Analysis can acknowledge
and accept the action recommended by PUFR or recommend an alter-
nate action. The decision schemes and the selection of a strategy table
use several factors to reach a decision:

(i) environment of the configurable portion of the system (simplex,
duplex),

(if) number of times the fault has occurred,

(fi1) type of fault (unique, nonunique),

(iv) characterisic of the fault (transient, hard failure, illegal system
action).

The Analysis also provides control for alternate recovery strategies.
This control provides better analysis functions to be performed. An-
other new feature is a parallel analysis capability, which allows a
strategy table and analysis function to execute in parallel. If the
analysis function reaches a conclusion, it can override the action
recommended by the strategy table. These new strategies allow FERA
to resolve intermittent faults, transient faults in interconnected hard-
ware, and persistent troubles more efficiently than the existing error
analysis program. These enhancements were provided in addition to
meeting the common objectives of all the new control structures.
Secondary functions provided by FERA are (i) monitoring manual
configuration requests; (if) monitoring deferred maintenance actions
(diagnostics, routine exercises); and (iif) manual input/output for
control and display of FERA functions and data.

3.3.5 Craft-machine control program

The craft-machine interface functions are provided by the FRDI
control structure. It provides the basic interface for manual configu-
ration requests of the No. 4 Ess peripherals from either the TTY or
Power Control Switch (pcs) located on the frame. Requests from the
TTY may be for removal, restoral with diagnostic, restoral without
diagnostics (unconditional), or for a switch of an active unit. Requests
from the Pcs may be for removal of a unit or restoral with a diagnostic.
When any manual configuration requests are initiated, FRDI validates
the request, interfaces with the ToPIC program to perform the config-
uration, interfaces with the FERA program to monitor the request, and
prints the appropriate message to indicate whether the action was
completed or denied. In addition to printing a message, if the request
was initiated from a pcs, lights at the frame are lighted or extinguished
to acknowledge the request.

The Frame Request and Diagnostic Interface is also the primary
interface to the Diagnostic Control program for peripheral configura-
tion before and after diagnostic requests. All diagnostic requests,
independent of the source, are validated by FrRDI. After the request is
validated, the appropriate configuration function is requested. After

SOFTWARE STRUCTURE 1195

the diagnostic, FRDI controls the disposition of the unit by either
restoring it or leaving it out of service. This decision depends upon a
variety of conditions, such as the termination condition of the diag-
nostic, the results of the diagnostic, the type of request, and the state
of the pcs.

3.3.6 Configuration control

The configuration control in the new peripheral fault recovery
control architecture is provided by the Topic program. The Toll
Peripheral Configuration program is responsible for establishing the
configuration of the new peripherals introduced in the 4E5 generic. It
is also responsible for the configuration of the Network Clock (NCLK)
and System Clock (syscLK). These latter units existed in the initial
release of the No. 4 Ess generic, 4E0. However, with the addition of
the Network Clock Synchronization Unit (Ncsu) in 4E5,° a major
portion of the configuration software had to be modified and was
moved into the new architecture.

Beyond the primary function of accepting requests from all sources
and directing configuration requests to the specific unit-dependent
program, ToPIC will determine if there are any connecting unit consid-
erations, for example, clock or voice data path dependencies. If there
are, ToPIC will take appropriate action on the connecting units. It also
attempts to leave the resultant peripheral system configuration in a
state that minimizes service degrading conditions. This is also based
on connecting unit status.

3.3.7 Bootstrap control

Bootstrap is a function executed during phases of recovery which
include hardware configuration. The bootstrap function for the new
units in the 4E5 generic is controlled by the BooTCNTL program. The
function of bootstrap is to initialize the hardware and execute access
tests. The degree of initialization and access testing varies depending
on the phase of recovery (phases 1 to 4). With the introduction of
microprocessor based units in 4E5, a large portion of the initialization
of these frames is performed by firmware resident within the frame.
During this initialization process, the 1A Processor is free to perform
other functions. Bootstrap Control, making use of features provided
by the operating system, is free to start the bootstrapping of other
units. This technique is referred to as parallel bootstrap. This process
results in less total time required to bootstrap several frames than
would be required if the function were executed in a serial fashion.

Bootstrap Control also provides output containing the results of
access tests performed during the phase. This information is useful to

1196 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

the craft in understanding the final configuration after a phase, and in
troubleshooting the peripherals removed from service during a phase.

3.4 A fault recovery example

This section presents a simple example of recovery from a hardware
fault by the restructured fault recovery system. This example is
provided to give a clear understanding of the function of each control
structure. Figure 10 illustrates the actions taken in this example. A
single hard (nonintermittent) fault in a duplicated unit is assumed for
this example. The FRDI and BOOTCNTL structures are not involved in
this example since they primarily execute on base and phase level,
respectively.

A hardware error triggers an F-level interrupt and results in a PUFR
F-level task being scheduled in pmos. Peripheral Unit Fault Recovery
performs initialization of internal data structures and collects data at
the time of the interrupt which reflects the state of the system and the
interrupting unit. It then schedules (schedule and hold mode) the
unit’s fault recovery task, passing the data it has gathered as input.
Peripheral Unit Fault Recovery is suspended until the unit fault
recovery task completes.

The unit fault recovery task will attempt to isolate the source of the
interrupt to a configurable piece of hardware (half of a duplicated unit,
etc.). The unit fault recovery task will analyze the input data, perform
access tests, and reconfigure the unit and retry peripheral orders to
isolate the source of the error. The suspect unit half, fault class (hard
fault, software fault, intermittent fault, etc.), resolution class (resolved,
unresolved), and recommended actions are returned to PUFR in a data
block passed as input. Peripheral Unit Fault Recovery is reactivated
when the unit fault recovery task is completed.

It then schedules (schedule and hold mode) the FERA task passing
the suspect unit, fault class, and resolution class as inputs. The Analysis
then determines if this is the first interrupt for this unit by consulting
history data files. A new history data file is allocated, if it is the first
interrupt. The Analysis updates a history data file, if a previous
interrupt has been recorded for the suspect unit. It then selects a
primary strategy based on interrupting unit, number of interrupts,
fault class, resolution class, and configuration of the unit at the time of
the error (simplex or duplex). The primary strategy acknowledges the
action recommended by the unit fault recovery task or specifies an
alternate action. The primary strategy is not used if the number of
interrupts which has occurred on this unit is greater than the designed
limits of a strategy table. The Analysis control selects a secondary
strategy if this occurs. Otherwise, the secondary strategy is not used if
a recovery action is specified by the primary strategy. The Analysis

SOFTWARE STRUCTURE 1197

‘suorjor Axaaooal jmey apdurexg—o1 S

"DI4NOD 153n03Y _ ADILVHLS ADILVHLS ADILVYHLS >mﬂ_hm_x NOILIV 31v10si
LINN 3VAVA | | | SISATVNY AHVONOI3S AHVINIHG RS vodn | | anawwooau LIND
10H1NOD _ 10HINOD | T04LNOD NSV
21401 wH34 _ AH3IADI3Y V.
| 1INA AH3IAOD3H
NSVL 1nv4
1IN
Yivdad
NOILOV AHIAOD3H oA LINN 1037109
140d3d WHO4H3d 31v10S| ANy
INIWE3130 JZITVILINI
0HLNOD
Hdnd ASYL
¥4nd
SOWd
A3A3—4

THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

1198

control always executes the analysis strategy independent of the action
specified in the primary or secondary strategy. The analysis strategy
views the interrupt in terms of a potential multi-unit hardware inter-
connection fault. The analysis strategy can overide the action specified
by the primary or secondary strategy if an interconnection fault is
suspected. The Analysis returns the recommended recovery action to
PUFR in a data block passed as input.

The Peripheral Unit Fault Recovery is again reactivated when FERA
completes. The recovery actions specified by FERA are then performed.
The recovery actions may be an immediate action (configuration, etc.)
or a deferred action (diagnostic, audits, etc.). Deferred actions are
scheduled for base level execution. Immediate actions are scheduled
for F-level execution. In the case of an immediate configuration action,
pUFR schedules a ToPIC task in a schedule and hold mode. Toll
Peripheral Configuration validates the configuration request and in-
terfaces to the specified unit software for the function requested
(remove, restore, switch, etc.). PUFR is reactivated after the ToPIC task
is completed.

At this point the recovery is completed. The remaining function of
the Peripheral Unit Fault Recovery is to format and output the data
collected at the time of the interrupt and the recovery actions taken.
It then returns to PMos, completing the F-level processing.

The Peripheral Maintenance Operations System returns to base
level processing after it determines that no other F-level tasks are
scheduled. The deferred actions scheduled for base level are then
executed.

3.5 Evaluation

With the release of the 4E5 generic, the multigeneric plan to develop
a centralized peripheral fault-recovery-control architecture and a
maintenance operating system is complete. This new control structure
provides the fault recovery capability for four new peripheral unit
types (DIF, Puc, MAS, NcsU).>” Four other peripheral unit types (TsI,
TMS, NCLK, SYSCLK) are partially supported under this system.

The development cost of the new fault recovery control architecture
and the unit dependent code for the units listed above has been slightly
larger than the original estimates. This difference can be partially
attributed to the introduction of microprocessor technology with these
units. It can also be said that introducing this new technology in the
pre-restructured maintenance system would have resulted in even
larger software development costs for these units.

The new fault-recovery-control architecture provides a well-docu-
mented, flexible-control architecture with well-defined interfaces to
unit-dependent code. With this control architecture in place, new

SOFTWARE STRUCTURE 1199

features can be developed with an estimated 30 to 50 percent savings
in fault recovery software effort. A portion of this savings can be
attributed to the development methodology and the use of a high-level
language. It is difficult to estimate the savings contributed by either
factor. Also, it is not clear that the total benefit of either factor can be
attained without the other also being present.

There are also many side benefits in addition to a decrease in
development costs. Most of these benefits stem from the use of a
modern development methodology. Improved, up-to-date documen-
tation is one benefit already mentioned. Others are (i) better project
visibility through the use of development teams and walkthroughs; (ii)
a larger base of people with knowledge of specific software modules
through the use of development teams; and (iii) more software bugs
found early in the development prior to laboratory testing and field
release.

Disadvantages of the new fault recovery control architecture and
structure design methodology are increased program size and real-time
usage. Real-time usage in error recovery, even though critical, does
not significantly affect the system call handling capability as in call
processing programs. These disadvantages were anticipated, but it was
unclear what increase could be expected. Initial data indicate that a
specific function like error recovery, which is real-time critical, has the
following distribution of real-time usage:

Operating system—10 percent,

Control structures—2 percent,

Macro waits—35 percent,

Unit code—>53 percent.

Some portion of the operating system, control structures, and unit
code time can be attributed to the use of a high-level language.
However, without recoding specific procedures it is difficult to deter-
mine what percentage is due to the language. Experiments have been
performed comparing EPLX with the previously used language (EPL).
In general, EPLX used more real time and program store than EPL.
However, with some optimization the EPLX program was nearly as
efficient as the EPL program. This indicates that there is little inherent
inefficiency in the language. With proper knowledge of the language,
programs can be optimized for both real time and program store usage.

IV. SUMMARY

This paper has described two specific examples which show how the
No. 4 Ess has evolved through software restructure to better accom-
modate the addition of new hardware and software features. Call
Processing and Fault Recovery software underwent varying degrees of
incremental restructure. These software areas were considered for

1200 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1981

restructure because many new features were to be added to the No. 4
ESS which directly affected Call Processing and Fault Recovery. The
restructuring efforts focused on improving the deficiencies of the pre-
restructure software and made use of modern development method-
ologies and a high-level programming language to accomplish the
objectives. The resultant architectures are heirarchical, much more
modular, and more easily modified and maintained. We acknowledge
the effort of those designers too numerous to mention, who contributed
to the successful Call Processing and Fault Recovery restructuring
effort.

REFERENCES

1. E. A. Davis and P. K. Giloth, “No. 4 Ess Performance Objectives and Service
Experience,” B.S.T.J., this issue.

. T. J. Cieslak et al., “Software Organization and Basic Call Handling,” B.S.T'.J., 56,
No. 7 (September 1977), pp. 1113-1138.

. M. N. Meyers, W. A. Routt, and K. W. Yoder, “No. 4 Ess Maintenance Software,”
B.S.T.J., 56, No. 7 (September 1977), pp. 1139-67.

. “1A Processor,” B.8.T.J., 56, No. 2 (February 1977), pp. 119-327.

. R. Metz and D. F. Winchell, “No. 4 Ess Network Clock Synchronization,” B.S.T.J.,
this issue.

. T. W. Anderson et al., “No. 4 Ess Mass Announcement Subsystem,” B.S.T.J., this
issue.

. K. M. Hoppner et al., “No. 4 Ess Digital Interface,” B.S.T.J., this issue.

-1 o G W N

SOFTWARE STRUCTURE 1201

G EEmmmme

g f

