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One of the major drawbacks of the standard pattern-recognition
approach to isolated word recognition is that poor performance is
generally achieved for word vocabularies with acoustically similar
words. This poor performance is related to the pattern similarity
(distance) algorithms that are generally used in which a global
distance between the test pattern and each reference pattern is
computed. Since acoustically similar words are, by definition, glob-
ally similar, it is difficult to reliably discriminate such words, and a
high error rate is obtained. By modifying the pattern-similarity
algorithm so that the recognition decision is made in fwo passes, we
can achieve improvements in discriminability among similar words.
In particular, on the first pass the recognizer provides a set of global
distance scores which are used to decide a class (or a set of possible
classes) in which the spoken word is estimated to belong. On the
second pass we use a locally weighted distance to provide optimal
separation among words in the chosen class (or classes), and make
the recognition decision on the basis of these local distance scores.
For a highly complex vocabulary (letters of the alphabet, digits, and
three command words), we obtain recognition improvements of from
3 to 7 percent using the two-pass recognition strategy.

I. INTRODUCTION

As illustrated in Fig. 1, the “standard” pattern recognition approach
to isolated word recognition is a three-step method consisting of
feature measurement, pattern similarity determination, and a decision
rule for choosing recognition candidates. This pattern recognition
model has been applied to a wide variety of word recognition systems
with great success.'® However, the simple, straightforward approach
to word recognition, shown in Fig. 1, runs into difficulties for complex
vocabularies, i.e., vocabularies with phonetically similar words. For
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Fig. 1—Block diagram of standard approach to isolated word recognition.

example, recognition of the vocabulary consisting of the letters of the
alphabet would have problems with letters in the sets

¢1={A, J, K},
¢:={B,C,D,EG,P,V,T,Z},
¢3 = {Q: U}r

b4 = {Is Y},

¢5 = {L’ Ms N}9

¢e = {F, S, X}.

Similarly, recognition of the computer terms of Gold® might lead to
confusions among the set containing four, store, and core. In the above
cases the problems are due to the inherent acoustic similarity (overlap)
between sets of words in the vocabulary. It should be clear that this
type of problem is essentially unrelated to vocabulary size (except
when we approach very large vocabularies), since a large vocabulary
may contain no similar words (e.g., the Japanese cities list of Itakura®),
and a small vocabulary may contain many similar words (e.g., the
letters of the alphabet).

The purpose of this paper is to propose, discuss, and evaluate a
modified approach to isolated word recognition in which a two-pass
method is used. The output of the first recognition pass is an ordered
set of word classes in which the unknown spoken word is estimated to
have occurred, and the output of the second pass is an ordered list of
word candidates within each class obtained from the first pass. The
computation for the first pass is similar in nature but often reduced in
magnitude from that required for the standard one-pass word recog-
nizer. The computation of the second pass consists of using an “opti-
mally” determined word discriminator to separate words within the
equivalence class. In Section II, we present the two-pass recognizer,
and discuss its philosophy and method of implementation. In Section
III, we give an evaluation of the effectiveness of the two-pass approach
for a vocabulary consisting of the 26 letters of the alphabet, the 10
digits, and the command words STOP, ERROR, and REPEAT. Finally, in
Section IV, we summarize the results and show how they are applicable
to practical speech recognition systems. <
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Il. THE TWO-PASS RECOGNIZER

Assume the word vocabulary consists of V words. The ith word, v,
is represented by the word template R;, 1 =1,2, ---, V, where each R;
is a multidimensional feature vector. Similarly, we denote the test
pattern as T (corresponding to the spoken word g in the vocabulary),
where T is again a multidimensional feature vector. For simplicity we
assume that the pattern similarity and distance computation is carried
out using the “normalize and warp” procedure described by Myers et
al.,’® and illustrated in Fig. 2. A “standard” word duration of N frames
is adopted, and each reference pattern is linearly warped to this
duration. We call the warped reference patterns R.. Similarly, the test
pattern is linearly warped to a duration of N frames, yielding the new
pattern T. A dynamic time-warping alignment algorithm then com-
putes the “standard” distance

N
DT, R) = 3 d(T(k), Ri(w(®)), M
where d(T(k), R:(1)) is the local distance between frame £ of the test
pattern, and frame ! of the ith reference pattern, and w (k) is the time-
alignment mapping between frame k of the test pattern, and frame
w(k) of the ith reference pattern. The total distance D of eq. (1) is
only a function of &.

We define the local distance of the kth frame of the test pattern to
the w (k)th frame of the ith reference pattern as d;(k), where

di(k) = d(T(k), Ri(w(k))), (2)
so D(T, R:) of eq. (1) can be written as

N
mtmw§z¢m. 3)

k=1

N

l

Riln),n =12,.., NR LINEAR R, 7=12 .., N
TIME
WARPING

N DT R

| -

Tim), m =12,..., NT LINEAR Timl,m=12,...N
TIME
WARPING

Fig. 2—Block diagram of the normalize-and-warp procedure for equalizing the
lengths of words.
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If R, corresponds to the correct reference for the spoken word T (i.e.,
i = q), then we would theoretically expect the local distance d, (&) to
be independent of k, with d assuming values from a x” distribution
with p (eight for the system we are using) degrees of freedom for the
case where the speech features are those of an LPc model and the log
likelihood distance measure is used for the local distance.'* Thus, if
we plotted d, (k) versus k, we would expect it to vary around some
expected value d where

d = E[d,(k)] = E[x3]. (4)

An example of a typical curve of d, (k) versus % is given in Fig. 3a.

If we now examine the typical behavior of the curve of d;(k) versus
k when ¢ # g, we see that one of two types of behavior generally
occurs. When word ¢ is acoustically very different from word i, then
d;(k) is generally large [compared to d of eq. (4)] for all values of k&,
and the overall distance score D of eq. (3) is large. This case is
illustrated in Fig. 3b. However, when we have acoustically similar

dik) 7
-
itq

31 T

k

Fig. 3—Curves of d;(k) versus k for three cases.
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words, then generally d; (k) will be approximately equal to d, (%) for all
values of % in acoustically identical regions, and will be larger than
d, (k) only in acoustically dissimilar regions. An example in which the
dissimilar region occurs at the beginning of the word (the first N
frames) is shown in Fig. 3c.

The key point to be noted from the above discussion is that when
the vocabulary contains words that are acoustically similar, and one of
these similar words is spoken (i.e., it is the test utterance), then the
total distance scores for these similar words consists of a random
component [because of the variations of d(k) in the similar regions]
and a deterministic difference (because of the differences in the dissim-
ilar regions). In cases when the size of the dissimilar region is small
(i.e., N < N in Fig. 3c), then the random component of the distance
score can (and often does) outweigh the true difference component,
causing a potential recognition error. For highly complex vocabularies
(e.g., the letters of the alphabet), this situation occurs frequently.

One possible solution to the above problem would be to modify the
overall distance computation so that more weight is given to some
regions of the pattern than others. For example, we could consider a
weighted overall distance of the form

N
Y Wk)d(T k), Ri(w(k)))

D(T, R) == - , (5)
z W

where W (k) is an arbitrary frame weighting function, and the denom-
inator of eq. (5) is used for distance normalization. The problem with
eq. (5) is that a “good” weighting function is difficult to define since
the “optimal” set of weights is clearly a function of the “actually”
spoken word (g) and the reference pattern being used (i). Furthermore,
any weighting that would help discriminate between acoustically sim-
ilar words, would tend to hurt the discrimination between acoustically
different words.

The above discussion suggests that a reasonable approach would be
a two-pass recognition strategy in which the first pass would decide on
an ordering of word “equivalence” classes (in which sets of acoustically
similar words occurred), and the second pass would order the individ-
ual words within each equivalence class. For the first-pass recognition
an unweighted (normal) distance would be used, and for the second
pass a weighted distance would be used. In order to implement such a
two-pass recognizer, a number of important questions must be an-
swered, including:

(i) How do we “automatically” choose the word equivalence classes
for each new vocabulary?
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(i) How do we determine class distance scores for the first recog-
nition pass?

(iii) How do we determine weighting functions for the second
recognition pass?

(iv) How do we generate weighted distance scores for the second
recognition pass?

(v) How do we combine results from both recognition passes to give
a final, overall set of distance scores and word orderings?

Some possible answers to each of these questions are given in the
following sections.

2.1 Generation of word equivalence classes

Given the V vocabulary words v, v, +- -, Uy, we would like to find
a procedure for mapping words into acoustic equivalence classes ¢,
j=1,2 ..., J where J < V. There are at least two reasonable
approaches for solving this problem; one is a theoretical approach, the
other an experimental one.

For the theoretical approach we can generate a “word-by-word”
distance matrix D,, on the basis of the phonetic transcriptions of the
vocabulary entries. In order to do this we need to define a “phoneme”
distance matrix, d,, a distance cost for inserting a phoneme, dj, and a
distance cost for deleting a phoneme, dp. The phoneme distance matrix
could be a count of the number of distinctive features that have to be
changed to convert from one phoneme to another.' A total word-by-
word distance is then defined by a dynamic time-warp match between
the words, with a vertical step representing an insertion, and a hori-
zontal step representing deletion. Figure 4a illustrates this procedure
for the words eight and o/, and Figure 4b for the words one and nine.
For the words eight and «J, the optimum path is an insertion (of /),
match between e’ and e’, and a deletion of ¢, giving a distance

dr + dp(el, e") + dp
3 ’

d(e't, Je') = (6a)

whereas for one and nine, the optimum path is a straight line giving
dy(w, n) + d, (3, a’) + d,(n, n)
3 .

It should be clear that once d, ( p1, p2), dr, and dp are defined, the word-
by-word distance scores can be generated.

A second approach to obtaining word-by-word distance scores is to
use real tokens of the vocabulary words and do the actual dynamic
time warping of the feature sets and obtain actual word distances. If
several tokens have been recorded, averaging of distances increases
the reliability of the final results.

(6b)

d(w > n, na'n) =
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Fig. 4—Examples illustrating “word” alignment based on dynamic time warping.

From the word-by-word distance matrices, word equivalence classes
may be obtained using the clustering procedures of Levinson et al."
in which the vocabulary words are grouped into clusters (equivalence
sets) based entirely on pairwise distance scores.

As an example of the use of the above techniques, consider the 39-
word vocabulary consisting of the 26 letters of the alphabet, the 10
digits, and the 3 command words STOP, ERROR, and REPEAT. These 39
words become clustered into the sets

Tokens
é»n = {(B,C,D,EG,P,T,V,Z, 3, REPEAT}, 11
¢ = {A,J,K, 8 H}, 5
¢ = {F, S, X, 6}, 4
o = {1 Y, 5,4}, 4
P = {Q’ U, }s 3
¢ = {L, M, N}, 3
¢7 = {0}! 1
P = {R}s 1
by = {W}, 1
¢10 = {STOP}’ 1
¢11 = {ERROR}, 1
¢z = {0}, 1
¢13 = {1}, 1
o = {7}, 1
¢ = {9}. 1
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We discuss this vocabulary and the resulting equivalence sets a great
deal more in Section III.

2.2 Determination of class-distance scores

Once all the vocabulary words have been assigned to one of the J
classes, the first recognition pass estimates an ordering of the word
classes in terms of class-distance scores. The class-distance scores can
be determined in one of two ways. First they can be computed as the
minimum of the word-distance scores, for all words in the class, i.e.,

d(¢;) = min D(T,R), j=1,2 ..., (7)
v € ¢

This computation is similar to the one used by Aldefeld et al.'® for
directory listing retrieval.

An alternative method of obtaining class-distance scores would be
to obtain “class-reference” templates (as well as word-reference tem-
plates) and to measure distance directly from the class-reference
templates. Clearly with multiple templates per class, the K-nearest
neighbor (ENN) rule can be used as effectively for class templates as
for word templates.

The reason for considering class-reference templates for obtaining
the class-distance scores is that the number of word classes is clearly
smaller than the number of words. Hence, the number of distance
calculations required to establish class-distance scores is generally
much lower for class templates than for word templates. For example,
for the 39-word vocabulary discussed previously, there are 15 word
classes. Hence there is almost a 3 to 1 reduction from words to word
classes. However, it should be clear that the danger in using class
templates is that errors in determining class distances can be made
from the reduced number of templates. This point will be discussed
later in this paper.

2.3 Choice of weighting functions for the second pass of recognition

The output of the first recognition pass is an ordered set of word
class-distance scores. For the second recognition pass, all words within
the top class (or classes) are compared to the unknown test-word
pattern (T) using a weighted distance of the type discussed in eq. (5),
and an ordering of words within the class is made. If several classes
have similar class distance scores, the words within each of these
classes are ordered in the same manner.

The key question that remains is how do we choose the weighting
function, W(k), of eq. (5) in an optimal or reasonable manner. The
reader should recall, at this point, that the optimal weighting function,
W(k), is assumed to be a function of the pair of indices i (the reference
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Fig. 5—Simple Gaussian model for frame distance distributions.

word) and j (the proposed test word). Hence if there are L words in an
equivalence class, then there are L(L — 1) sets of weighting functions
[the cases i = j have W(k) = 1].

We have investigated two ways of determining W (k) for the second
recognition pass. Optimality theory says that to maximize the weighted
distance of eq. (5),'® the value of W (k) should be

Wik) =1 k = ko, (8a)
=0 all other &, (8b)

where k, is the index where the distance between R; and T is, on
average, the maximum. In this manner, the algorithm places all its
reliance on the single frame where one would expect the maximum
difference between reference and test patterns to occur. In practice,
this weighting does not work since the variability in location of the
frame k = k, of eq. (7) is large. Hence, on several trials the distances,
using the weighting of eq. (7), can vary considerably.

A more effective manner of determining a good (but not optimal)
set of weights is as follows. Consider the model for the distribution of
distances for a single frame as shown in Fig. 5. The curve on the left
in Fig. 5 is the assumed distribution of distances in the case when
i = J (i.e., the reference and test patterns are from the same word). In
this case, we expect a x” distribution with p (order of the LPC model)
degrees of freedom for the frame distance. For convenience, we model
this distribution as a Gaussian distribution with mean m, and standard
deviation o;.*

For the case when i # j (i.e., the reference and test patterns are from
different words), we assume the frame distance has a Gaussian distri-

* This assumption is reasonable since the word distance, which is a sum of frame
distances, has a Gaussian distribution (by the central limit theorem), and the actual
probability of word error is directly related to the word distance.
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bution (as shown to the right in Fig. 5) with mean m, and standard
deviation o,.

We now make a simple recognition model that says the probability
of recognition error for the word is proportional to the probability of
error for single frames (since the word distance is the sum of frame
distances). Then, based on the model of Fig. 5 with assumed Gaussian
statistics, the probability of correct classification (i.e., finding a smaller
frame distance for the spoken word, than for any other word) for a
single frame is

P(C) = J P[p(d/i=) = A]-P[p(d/in;) > A] dA, &)

where P[x] is the probability of the event x occurring. Equation (9)
says that the probability of correct frame classification is the integral
of the probability that for the correct word (i = j) we get a frame
distance A, and for the closest incorrect word (i # j) we get a frame
distance greater than A. Thus the probability of a frame error is

PE)=1-P(C), (10)

which becomes
PE)=1-— f N[A — my, 01] j N[y — mg, a2] dndA, (11)
e A

which can be put into the form

(ma—m) /(a1 +03)'? 2
exp (—x°/2) mez — nm
P(E) = j ———dx=Erf (———) . (12)
V2 Vo? + o}

The form of eq. (12) can be verified for the simple cases m: = m,
where P(E) = 0.5, and mz >> m,;, where P(E) — 0.

The above discussion suggests that a reasonable choice for frame
weighting would be

| (dii(k)) — (dii(R))|

s 13
(oi,-ue) + afzj,.cm)w (13)

WP (k) =

where d;i(k) is the local distance between repetitions of word i for
frame k&, and dj; (k) is the local distance between spoken words j and i
for frame k, and where the expectations are performed statistically
over a large number of occurrences of the words v; and v;.

By way of example, Fig. 6 shows examples of plots of (d;i(k)) versus
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Fig. 6—Examples of frame-by-frame distances for words within word equivalence
classes.

k and W (k) versus k for some typical cases.* Figure 6 shows a series
of plots for the following cases:

(i) (Fig. 6a) Curves of (dji(k)) and 04w for the case where word i
was the letter I, and word j was the letter Y. We can see that (d(k))
(the solid curves) is approximately constant whereas (d’,. (k)) differs
from {d;(%)) only at the beginning of the word (i.e., the first eight

* The data of Fig. 6 were obtained from about 10,000 comparisons for each word, i.e.,
a large data base was used.
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frames). We also see that the curves of 64, (the dashed curves) are
comparable for the casesj = i and for j # i, with only small differences
occurring in the first eight frames.

(if) (Fig. 6b) Curves of (d;;(k)) and of;_lm for the case where word i
was the letter A, and where j corresponéed to the letters J and K for
word 8. Similar behavior to that of Fig. 6a is seen, in that (dj;(k)) is
approximately constant, and (dj:(k)) is larger than (d:(k)) at the
beginning of the word, for words J and K, and at the end of the word,
for word 8. For the word 8, the curve of a4, is also fairly large at the
end of the word, indicating the high degree of variability in the plosive
release of the word 8.

(iii) (Fig. 6¢c) The part shows the results of averaging the data of
Fig. 6b over all j # { with ; in the class of word i, i.e., class-weighting
templates. In this case the curve of (d;;(k)) shows flat behavior except
at the beginning (due to </, K) and end (due to 8). If storage of word-
weighting curves is burdensome, the use of class-weighting curves
could be considered as a viable alternative.

Figure 7 shows a set of two weighting curves W7 (k) for the words
I'and Y. Figure 7a shows the weighting curve for reference word I and
test word Y, and Fig. 7b shows the weighting curve for reference word
Y and test word I. Several interesting properties of the curves should
be noted. First we see that W’ (&) generally consists of a large pulse
(for these examples this occurs near 2 = 1) and a residual tail. The tail
is a measure of the statistical noise level, i.e., the statistical difference
between (dj(k)) and (d;(k)) in the region of acoustical similarity.
Typically the peak amplitude in the tails is less than 10 percent of the
peak amplitude in the main pulse.

Another interesting property of the weighting curves is that there is
no symmetry, in that

Wi (k) # WP (k). (14)

An explanation of this behavior is given in Fig. 8, which shows two
plots of dynamic time-warping paths for the words I and Y, where it
is assumed that the word Y is simply the word I with a prefix phoneme
/w /. Figure 8a shows that when I is warped to Y, there is a discrepancy
region in which the /w/ is being warped to the initial region of the
/a’/ and large distances result. The /a’/ is warped to itself (the
“ideal” path) and no further distance is accumulated. Figure 8b shows
that the discrepancy region is considerably smaller when Y is mapped
to I. The resulting weighting curves agree in form with the results
given in Fig. 7.

2.4 Generation of distance scores for the second recognition pass

We have now shown how to assign words to classes, how to get class
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Fig. 7—Weighting curves for comparing the words /I/ and /Y /.

distance scores for the first recognition pass, and how to assign weights
for pairs of words within a word class. The next step in the procedure
is the determination of the distance for the second recognition pass
based on the pairwise weighted distance scores.
To see how this is accomplished, we define a pairwise weighted

distance D;; as

N

Y WW(k)d;(k)

k=1

Dj; =

— (15)
Y W (k)
k=1

where i is the index of the reference pattern (i.e., one of the words in
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Fig. 8—An example showing why the word weighting curves are not symmetrical.

the equivalence class) and j is the (assumec!),jndp/;of—ﬂ?é‘bst/ pattern
(again one of the words in the equivalence class). -

The quantity Dj; of eq. (15)i5 comptted for all i, j pairs (with i # j)
in the wo*d class with-riinimum class distance, and a matrix of pairwise
distanees/)is obtained. The word distance, D;, can be obtained in one
of two ways, namely:

(i) Averaging over the j index, giving

D;=73% Dj,. (16a)
7

Ji

(ii) Finding the minimum over the j index, i.e.,

D; = mm {Dj,.'}. (lﬁb)

i

The advantage of averaging is that D; tends to be more reliable, since
averaging is equivalent to adding weighted distances over a larger
number of frames than would be used for a single comparison. The
minimum computation is useful, especially when several of the Dj; are
about the same. We examine both these scoring methods in Section
II1.

For the case of averaging pairwise distance scores [eq. (16a)], the
computation can be carried out more efficiently as follows. By combin-
ing eqs. (15) and (16a) we get
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N
kgl W (k) di(k)

D=YD.=% [ (17a)
J 7 E W‘“(k)
k=1
N (W (k) di(k
P _NM (17b)
! ¥ WH(k)
k=1
N WP (k
=22 -N# di(k) (17¢)
R )
k=1
N .
= El Wi(k) d:(k), (17d)
where
Wik) = EM- (18)
LE W

Thus, for L words in the equivalence class, we can compute D; with N
multiplications and additions [rather than the N (L — 1) computations
of eq. (16a)], and only L vectors of N averaged weights [ W (k)] need
be stored, rather than L(L — 1) vectors as implied by eq. (15).

Another variation on the distance weighting that was studied here
was the effect of applying a nonlinearity to the weighting function,
W’ before computing D;,;.. The nonlinearity was to replace W/ (k) by
W/(k), defined as

_ . if Wi
Wik (k) = {W (k) ({e)/me >T, (19)
otherwise,
where
Whax = max [W7(k)], (20)

and T is a threshold which is specified in the algorithm. The nonline-
arity of eq. (19) truncates (to 0) the weighting curve whenever its
relative amplitude falls below the threshold. Figure 9 illustrates a
typical curve W”(k) and its truncated version W”‘(k). The new
weighting function was then applied directly in eq. (15) in place of
W7 (k). Clearly, when T = 0, W”' (k) and W”*(k) are identical. Again,
when averaging is used, the computation of eq. (17) gives a reduced
set of weights.
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Fig. 9—An example of a weighting curve and its truncated version.

2.5 Overall distance computation

If we can make the assumption that the probability of a class error
on the first recognition pass is significantly smaller than the probability
of a word error on the first pass, then the final distance for each word
of the minimum class is the distance obtained on the second recogni-
tion pass. However there are applications in which it is desirable to
have a distance score for every word in the vocabulary. Hence, in these
cases, it is necessary to combine the ordering from the second pass,
with the distances from the first pass. The basis for such a strategy is
that distances on the first pass are statistically more reliable than
distances on the second pass, whereas order statistics (within the class)
are more reliable on the second pass than on the first pass. One very
simple way of combining distances and word orders is to obtain second-
pass ordering for every word in the vocabulary (i.e., apply the method
of Section 2.4 to all word classes), and then reorder the word list using
distances from the first pass, and ordering within the class from the
second pass.

2.6 An example of the use of the two-pass system
To illustrate this entire procedure, Tables I to III show an example
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Table |I—Recognition results for a simple example
(first pass)

Word
Word Position Class
Word Word Distance First Class Distance
Index Class  First Pass Pass Number First Pass

0.47 1 0.47
0.39 2 0.66
0.51 3 0.37
0.72
0.42
0.60
0.67
0.83
0.37
0.78
0.66
0.62

GO ST A

—

DO DO €O D = = GO B €O €O =
—
~300 = - B

of the recognition steps for a 12-word vocabulary with three word
equivalence classes. Table I shows the results of the first recognition
pass. The class distance scores are assigned as the minimum word
distance for words within the class. The “best” class in the first pass
is class 3 with a distance score of 0.37, with class 2 having a somewhat
higher distance of 0.47. In the second recognition pass the words within
the best class (or classes) are compared using the optimally determined

Table l—Second recognition pass results for the example in Table |

J
1 6 7 12
1 X 043 | 0.52 | 0.47 0.47 1
i 6 0.67 X 0.62 | 0.62 0.60 3 Class 1
7 0.72 | 0.75 X 0.60 0.69 4
12 0.60 | 0.57 | 0.63 X 0.60 2
D;.i D;(avg) Order
J
4 8 10 11
4 X 0.87 | 0.82 | 0.85 0.85 3
i 8 0.80 X 0.84 | 0.86 0.83 2 Class 2
10 092 | 0.77 X 0.91 0.87 4
11 0.78 | 0.80 | 0.80 X 0.79 1
Dy, D;(avg) Order
J
2 3 5 9
2 X 0.33 0.25 0.28 0.29 1
3 3 0.47 X 0.67 0.60 0.55 4 Class 3
5 0.45 0.56 X 0.57 0.53 3
9 0.27 0.37 0.30 X 0.31 2
D, Di(avg)  Order
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weighting functions. The results for each of the three classes are shown
in Table II. In practice, one would usually need to compute the D;;
scores only for the best one or two classes. However, for explanatory
purposes, results are shown for all three classes. Also, as discussed
above, in the case of distance averaging, the Dj,; scores need not be
computed since the D; scores can be obtained directly via egs. (17) and
(18). Using the technique of averaging leads to the within-class dis-
tances and orderings as shown in the table. Finally, Table III shows
the results of reordering the words using the distances obtained from
pass 1, and the within-class orderings obtained from pass 2. Thus word
2 is the best recognition candidate (with a distance of 0.37), whereas
word 9 was the best recognition candidate at the end of the first pass.
Other, within-class reshufflings of word position occur as a result of
the two recognition passes as shown in Table L

2.7 Summary of the two-pass recognizer

Figure 10 shows a block diagram of the full two-pass isolated word
recognition system. In the first pass a DTW distance is computed
between the unknown test word and the reference templates for each
word class. The outputs of the first pass are ordered sets of word
distance scores and class distance scores.

For the second pass a set of pairwise weighted distances is deter-
mined for all words within each word class with suitably low scores on
the first recognition pass. The final recognition output is a combination
of distance scores from the first pass and word orderings from the
second pass. In the next section we demonstrate how this procedure
works in some practical recognition examples.

Table lll—Overall word
positions and distances for
the example given in Tables

land Il

Word Word Word
Index Position  Distance

047
0.37
0.51
0.78
0.42
0.62
0.67
0.72
0.39
0.83
0.66
0.60

—

SN NNOWO-IW— U

N=Re Rl Rari Lot l
—

—

10
12
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Fig. 10—Block diagram of the overall two-pass recognizer.

. EVALUATION OF THE TWO-PASS RECOGNIZER

To test the ideas behind the two-pass recognizer, we used a data
base of existing recordings. The word vocabulary consisted of the
V = 39 word vocabulary of the letters of the alphabet, the digits (0 to
9), and the three command words STOP, ERROR, and REPEAT. The
training data for obtaining word and class reference templates, and
pairwise word weighting curves, consisted of one replication of each
word by each of 100 talkers (50 men, 50 women).* The word reference
templates (12 per word) were obtained from a clustering analysis of
the training data.'*® A set of “class” reference templates (12 per class)
was obtained from a second clustering analysis in which the words
within a class were combined prior to the clustering. The pairwise
word weighting curves were obtained by cross-comparing all word
tokens within a word class, averaging the time-aligned distance curves,
and computing both the averages and standard deviations for each
frame.

To test the performance of the overall system, two test sets of data
were used. These included:

1. Ts1—10 talkers (not used in the training) spoke the vocabulary
one time over a dialed-up telephone line.

2. 182—10 talkers (included in the training) spoke the vocabulary
one time over a dialed-up telephone line.

Two sets of performance statistics were measured. For the first
recognition pass the ability of the recognizer to determine the correct
word class was measured. For the second recognition pass the improve-
ment in word recognition accuracy (over the standard one-pass ap-
proach) was measured. The results obtained are presented in the next
two sections.

* All results presented here are for speaker independent systems.

ISOLATED WORD RECOGNITION 757



25

__—C=1KNN=1

P

CLASS ERROR RATE IN PERCENT

—_——— Lyt g Sy S Xy e hr Ty
5} 9 12

NUMBER OF TEMPLATES PER WORD (Q)

Fig. 11—Plots of class accuracy as a function of the number of templates per word
(@), class position (C), and KNN rule (knN) for a 15-class vocabulary.

3.1 Class recognition accuracy for the first pass

The ability of the recognizer to determine the “correct” word class
of the spoken word was measured using both word templates (and
obtaining class-distance scores from the word-distance scores as dis-
cussed previously), and class templates (obtaining class-distance scores
directly). The number of templates per word (or per class) varied from
1 to 12 in the tests to see the effects of the number of reference
templates on the class accuracy. The K-nearest neighbor (KNN) rule
was used to measure class scores with values of KNN = 1 (minimum
distance), KNN = 2 (average of two best scores), and KNN = §) (average
of @ best scores), where @ was the total number of templates used per
word (or per class).

The results of the class recognition accuracy tests are given in Figs.
11 and 12.* Figures 11 and 12 show plots of class error rate (based on
the top C classes) as a function of the number of templates per word
(Fig. 11) or templates per class (Fig. 12), for values of KNN = 1 and 2,
and for C = 1 (top candidate), C = 2 (two best classes), and C = 3
(three best classes). Figure 11 shows results when each class is repre-
sented by word templates, and Fig. 12 shows results when each class
is represented by class templates.

* The reader should note the difference in vertical scales between Figs. 11 and 12.
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Several interesting observations can be made from Figs. 11 and 12.
These include:

(i) The KNN = 1 rule performs consistently better than the KNN =
2 rule for class discrimination, for all values of C and . This result is
in contradiction with the results of Rabiner et al.® who found signifi-
cantly better performance for KNN = 2 than for KNN = 1. The
explanation of this behavior is that the KNN = 2 rule provides signifi-
cantly improved, within-class discrimination (at the expense of slightly
worse between class discrimination), and that when the only function
is to determine the class, the KNN = 1 rule is superior. In fact when the
KNN rule was used with a value of KNN = @ (i.e., averaging over all @
reference templates), the class accuracy on the first candidate de-
creased by about 20 percent—a highly significant loss of accuracy.
This result again demonstrates that the minimum distance rule
(RNN = 1) is best for class discrimination.

(it) The use of word-reference templates provides significantly better
performance than obtained from class-reference templates. For ex-
ample, the class error rate for the top three classes (C = 3) with @ =
4 templates per word is essentially 0; whereas the class error rate for
the top three classes with four templates per class is about 4 percent.
This result shows clearly the importance of representing each word in

50

—=C=1,KNN =1
—

_—C=1,KNN=2

25

CLASS ERROR RATE IN PERCENT

-
-
~—

-~ ==

- - N
>~ ~— e N TTTEmmmmmme—a L
T\ — _""ﬂl_—:.-_—mﬂ".‘__‘_:_-—-:‘..‘___-.-
= C=3,KNN=1-="~ _ IC=3.KNN=2 o SIIITToA
T T e e o Jp——
' : ' ! ' l | I | I
R 4 6 ] 12

NUMBER OF TEMPLATES PER CLASS (Q)

Fig. 12—Plots of class accuracy as a function of the number of templates per class
(@), class position (C), and ENN rule (ENN) for a 15-class vocabulary.
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the equivalence class by an adequate number of word-reference tem-
plates.

(i1) With six templates per word, error rates of about 4 percent
(C = 1), 1 percent (C = 2), and 0 percent (C = 3) are obtainable,
indicating that the full contingent of 12 templates per word is unnec-
essary for proper class determination. Using 6, rather than 12 templates
per word reduces the computation in the first recognition pass by 50
percent. If we always use two or more word classes, the required
number of templates per word for the first pass can be reduced to four,
with no serious loss in class accuracy.

The results shown in Fig. 11 indicate that high accuracy can readily
be achieved in determining the correct equivalence class for each word
in a very complex vocabulary. Hence there would appear to be no
problems in implementing the first pass of the recognition system.

3.2 Within-class word discrimination for the second pass and overall
performance scores

The two-pass word recognizer was tested on the words of Ts1 and
Ts2. For each test set a total of 390 words were used (39 words X 10
talkers). For Tsl, the word recognition accuracy (for the best candi-
date) on the first pass was 78 percent, and for T2 (with talkers from
the training set) the word recognition accuracy on the first pass was 85
percent. At the output of the second pass, the word recognition
accuracy for the best candidate [using the averaging technique of eq.
(16a) and assuming the correct word equivalence class was found] was
84.6 percent for Tsl and 88.5 percent for Ts2, representing potential
improvements of 6.6 percent and 3.5 percent, respectively. The reason
that a larger improvement in accuracy was obtained for Ts1 data than
for Ts2 data was that the accuracy on the first pass was lower for Ts1
than for Ts2 (where the talkers were in the training set) and hence
there was more room for improvement within the word classes.

Figures 13 and 14 show plots of the changes in accuracy that are
obtained for Ts1 (Fig. 13) and 1s2 (Fig. 14) data when a threshold is
imposed on the distance scores at the output of the first recognition
pass. The threshold specifies that the second recognition pass is
skipped if the distance of the second word candidate is more than the
threshold greater than the distance of the first word candidate. Clearly
this procedure is a strictly computational one, since low-distance scores
for a single word on the first pass are highly reliable indicators that no
second pass is necessary. The data plotted in Figs. 13 and 14 show the
percentage of cases where the actual spoken word comes in a lower
position on the second pass than in the first pass within the word class;
it also shows the percentage of cases when the spoken word comes in
a higher position on the second pass than the first pass, and the
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Fig. 13—Percentage improvement, decrease, and the resulting difference in word
position at the output of the second recognition pass for Ts1 data as a function of the
distance threshold using the averaging method.

difference (the improvement) between the two curves. All the results
are plotted as a function of the distance threshold for performing the
second-pass computation. It can be seen from these figures that the
two-pass recognizer is not ideal, i.e., there is a significant fraction of
words for which a worse position results at the output of the second
pass. However, on balance, it is seen that a real improvement in
recognition accuracy results, and it is this improvement that makes
the procedure a viable one.

A similar set of results obtained using the minimum computation of
eq. (16b) on the second pass rather than the average computation of
eq. (16a) are shown in Figs. 15 and 16 for Tsl1 and Ts2, respectively.
These plots show the same information as those of Figs. 13 and 14 for
the averaging procedure. A comparison of these results shows that the
averaging computation performs as well as, or better than, the mini-
mum computation for the whole range of distance thresholds, and for
both data sets. These results indicate that the averaging method
provides a small but important statistical stability to the computation.

3.3 The effect of thresholding on the weighting curves

We ran a series of tests with the data from Ts1 and TS2 to investigate
the effects of applying thresholds to the weighting curves as illustrated
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Fig. 14—Percentage improvement, decrease, and the resulting difference in word
position at the output of the second recognition pass for T82 data as a function of the
distance threshold using the averaging method.

in Fig. 9. The results indicated that poorer performance always re-
sulted when any significant part of the weighting curve was zeroed out.
Thus the gain achieved by removing the “statistical” low-level parts of
the weighting curve was canceled by the “deterministic” loss from the
rest of the weighting curve. Hence the conclusion was to use the entire
weighting curve as derived from the statistical model.

3.4 Computation for the two-pass recognizer

We have seen in Section 3.3 that word recognition accuracy improve-
ments of from 3.5 to 6.6 percent result for the 39-word vocabulary
using the two-pass recognizer. A key question that must be answered
is what is the cost of the computation for the two-pass system.

To answer this question we must examine the computation in each
pass of the recognizer. In the first recognition pass, for a V-word
vocabulary with @ templates per word, a total of @V DTW comparisons
are made. For a value of N = 40, each DTW comparison requires about
500 nine-point dot-product computations, so a total rate, R, of

R, =Q-V.500.9 (21)

multiplications and additions are required.
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If we assume that the local distances d;:(k) associated with the
optimum warping paths are saved for each reference template, then
for each pairwise comparison of the second pass a total of N (typically
40) multiplications and additions are required. For L words in the
equivalence class, a total of

R,=L.(L-1):N (22)

multiplications and additions are required for the second-pass com-
putation for a single equivalence class. For the averaging procedure of
eq. (17), R, is reduced to LN multiplications and additions.

If we assume typical values of V=39, @ =12, L =7, N = 40, we get
R, = 2,106,000 and R = 1680, i.e., the computation of the second pass
is insignificant compared to the first pass computation. Furthermore
since we can use reduced values of @ for the first pass (i.e., @ = 6 or
@ = 4) the overall computation can be significantly reduced from the
standard isolated word recognizer, with the same improvement in
accuracy!

IV. DISCUSSION

The results presented in the preceding section show that improved
recognition accuracy can be obtained via a two-pass recognition algo-
rithm. It was shown that the improvements were both global, i.e., in
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Fig. 15—The same results as in Fig. 13 obtained using the minimum method.
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Fig. 16—The same results as in Fig. 14 obtained using the minimum method.

an absolute recognition sense, and local, i.e., within the classes of
equivalent words. Although the proposed two-pass recognizer has a
number of possible implementations, it was shown that the best choices
were to use a reduced set of word templates on the first pass, and to
use all word classes that had reasonably small distance scores on the
second pass.

One of the major issues that remains unresolved in the two-pass
recognizer is the choice of weighting curve used in the second-pass
distance computation. The assumed Gaussian model which led to the
variance-weighted difference of means for the weights is, at best, an
approximation to the actual situation. Experimentation with modified
forms of the weighting curve of eq. (13) led to poorer recognition
performance. Thus, because we lacked a viable alternative, the weight-
ing curve of eq. (13) is the only one we investigated for use in the two-
pass recognizer.

An interesting question that arises as a result of this study is how
could this two-pass recognizer aid in practical recognition tasks. As
one would anticipate, the answer to this question is that it depends on
the specific recognition task. For example, for the backtracking direc-
tory listing retrieval system of Rosenberg and Schmidt,"” the improve-
ment in recognition accuracy could provide significant reductions in
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search time. However, for the search procedure of Aldefeld et al.,'® the
increased word accuracy would have no effect on the search time, but
could increase the name accuracy, especially when similar names exist
in the directory (e.g., T. Smith and P. Smith). For applications like the
airlines reservation system of Levinson and Rosenberg,'® the increased
word accuracy would reduce the load on the syntax analyzer; however,
it needn’t necessarily increase the overall accuracy of the system.

The above examples show that the two-pass recognition strategy
can be useful for some applications, but one must examine carefully
the specific task before claiming how useful it will potentially be.

V. SUMMARY

We have shown that a two-pass approach to isolated word recogni-
tion is viable when the word vocabulary consists of sets of acoustically
similar words. The first recognition pass attempts to determine accu-
rately the class within which the spoken word occurs, and the second
recognition pass attempts to order the words within the class, based
on weighted distances of pairwise comparisons of all words within the
class. We discussed several alternatives for implementing this two-pass
recognizer, and we made a performance evaluation which showed that
a reliable class decision could be made based on a reduced set of
template scores, and an improved word decision could be made from
weighted pairwise distance scores.
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