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By means of a numerical solution to Maxwell’s equations, we
calculate those parameters necessary to design and fabricate single-
mode lightguides. These include optimum core radius and profile
parameter a. In the design the dispersion is minimized by varying
the core radius while the relative index difference A, the wavelength
A, and profile parameter are held fixed. A comparison of calculated
dispersion with experimental data shows excellent agreement.

I. INTRODUCTION

Recently, single-mode lightguides have been developed that achieve
transmission losses as low as 0.5 dB/km and 0.2 dB/km at wavelengths
of 1.3 um and 1.55 um, respectively.' When the total lightguide disper-
sion is reduced to zero at the operating wavelength, a transmission
system can be realized with wide repeater spacings and extremely large
bandwidths.>* In fact, bandwidths in excess of 1 GHz/100 km are
expected. Clearly, such a lightguide system would be ideal for undersea
cable and other long-distance transmission applications.

The design of single-mode lightguides with zero total dispersion
requires an accurate description of this parameter in terms of profile
shape, materials properties, and core radius. This necessitates a solu-
tion of Maxwell’s equations for the fundamental HE, lightguide mode
as well as the TEy and T'M,; modes.

For radially inhomogeneous media, it is usually not possible to
obtain these solutions as analytical expressions of a closed form. To a
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very large extent the design of single-mode lightguides has in the past’
focused on rectangular-shaped index profiles. This is because Max-
well’s equations are very much easier to solve in this case. When
nonrectangular profiles have been considered, numerous approxima-
tions have often been employed.

To avoid these difficulties, we have developed a numerical technique
to obtain exact solutions to the vector form of Maxwell’s equations.’
These equations are written as four coupled simultaneous first-order
differential equations. The effective index N, for the single propagating
HE,, mode is found by solving the characteristic equation derived
from the matching conditions of the field components at the core
cladding interface. The dispersion is then calculated from N,. In
addition, we find the conditions under which the T'Eo; and T'Mo; modes
propagate.

Our computing procedures do not impose any restrictions on the
index profile of the fiber.*® However, for the sake of simplicity and
familiarity we choose the a-index profile. To confirm the analysis, we
compare the computed results with known experiments when possible.
The calculated results include the dispersion, the optimum core radius
(defined as the value at which the zero total dispersion will occur for
a given relative index difference, wavelength, and a value), and the
corresponding cutoff frequency.

To keep the accuracy as high as possible, material dispersion is
included in the calculation from the onset. The subtle interaction
between material properties and waveguide properties determine the
propagation characteristics of the lightguide. Details of the numerical
procedure can be found in the appendix.

Il. DESIGN OF A DISPERSIONLESS SINGLE-MODE FIBER

In the design of a single-mode fiber, the relative index difference A,
the operating wavelength A, and the cladding index N, are normally
specified. The objective of the design is to make the total dispersion
for the HE,; mode equal to zero, the total dispersion D, being defined
as the time spread of a narrow pulse per fiber length L per source
spectral width dA. Qualitatively speaking, this can be accomplished by
adjusting the radius and profile shape so that the waveguide dispersion
exactly counterbalances the material dispersion. In addition, the design
must be such that the TE, TM, and other higher-order HE and EH
modes are not propagating. In the analysis shown in the appendix, the
number of modes allowed to propagate in the fibert core are not
restricted. However, the single-mode analysis is nothing but a partic-
ular case of multimode propagation and it can be easily achieved
simply by setting the angular mode number M = 0 and 1 in the
elements of matrix A [eq. (18) in the appendix] while fixing the radial
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mode number @ = 1. When M = 0, the cutoff frequency for the TEy,
and TMy; can be determined. Below this cutoff point, only a funda-
mental mode (HE,) propagate in the fiber. All the modes other than
M = 0 are hybrid modes. Further details are explained below.

When egs. (22) and (23) are substituted into eq. (21), determinant
(21) decomposes into two uncoupled equations, giving the TM and TE
modes,

TM mode:

(B%AZI - K(fi)‘/uf\u) -
(BiAz2 — k({i)yor2) )

(1)

TE mode:
(ﬁ%sz - YOAﬂ) -
(ﬁ%ASI - 'Yol\-u)

When N, is the maximum value of the index of refraction in the core
and N, is the cladding index, the effective index of the bounded modes
must satisfy the condition N> < N, < Ni. Therefore, from egs. (1) and
(2) the effective index N.(0, 1) for the TM,, and TEs mode can be
found.® The notation N.(M, Q) refers to the effective index of a mode
having angular mode number M and radial mode number Q.

In practice, the core radius is changed until N,(0, 1) is equal to N..
This gives us the cutoff radius a.. for the TEx and TMo modes. The
normalized cutoff frequency is then calculated from

Ve =22 JNT = ML (3)
Now if V < V,, only a single mode (HE1) propagates. The effective
index N, for this mode is calculated in the single-mode region as a
function of the radius and is the principal quantity used to determine
the dispersion of the HE:, mode.

The relationship between the effective index N.(1, 1) and the group
index N is given by

1. (2)

dN.

d\’
The propagation time of a pulse through a fiber of length L and group
index N, is

Ng=Ne_A

(4)

L
t= T Ng. (5)

If there is a variation of N, with wavelength, there is a dispersion or
spread in pulse width. Thus

L dN,
dt=6 dA

dA, (6)
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where dA is the spectral width of the source.
We can substitute N, from eq. (4) into eq. (6) and get
d’N,

L
dt = _E (dA)A W

(7
The total dispersion D; is
D= (®)

Thus,

A d3N.
‘=TT ®

Obviously, we need to solve Maxwell’s equations for N, and then
calculate d*N./dA* to obtain D,.

Following the procedure described in our earlier papers, it is con-
venient to describe the dispersive properties of the cladding by a
modified Sellmeier formula.>” Thus,

Cs Ci Cs
Ay Iy LTy
where I = 0.035. The coefficients C; are given in Table I. Figure 1
shows the variation of the silica cladding’s refractive index, for the
lightguides considered here.

Since the relative index difference A is rather small, typically ranging
from 0.2 percent to 0.8 percent, the core center index N, can be written
as

No=Co+ CIA2+ CoA* + (10)

S [L-4T

To obtain a feel for the size of the numbers involved, the following
data are useful:

A = 1.33 pm,
N = 1.446925,
N; = 1.449825 [as calculated by eq. (11)].

N (11)

Table |

Co = 1.4508554
C, = —0.0031268
C; = —0.0000381
Cs = 0.0030270
C, = —0.0000779
Cs = 0.0000018
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Fig. 1—Refractive index of silica as a function of wavelength.

Since we assume a wavelength dependence for N., described by eq.
(10), N, as calculated by eq. (11) is also wavelength dependent. The
following profile formula is particularly useful and will be employed in
the fiber design:

N(r) = Ni[1 — Ar<]. (12)

A few comments seem in order: When a — o the profile is rectangular,
when a = 2 it is parabolic, when a = 1 it becomes linear, and when
a < 1 the profile develops a cusp. Figure 2 illustrates these shapes.

In practice, one specifies A, A, and the profile parameter a. The
computer then searches for a core radius that makes D; = 0 by means
of Mueller’s iterative method. If it can be assumed that the total
dispersion is the sum of waveguide dispersion D,(A, a, a, A) and
material dispersion Dn,(A), then the physics of the problem is easy to
understand. As will be shown later, this separation is quite accurate.
Thus, a dispersionless single-mode fiber is one in which material
dispersion is exactly balanced by waveguide dispersion. This is illus-
trated by Fig. 3.

Curve D, (M) shows the material dispersion as a function of wave-
length for a single-mode lightguide with A = 0.2 percent and a rectan-
gular profile. Note that it changes sign and passes through zero at
about 1.27 pm. Also plotted are waveguide dispersion curves for three
different radius values. Note that all three curves are negative and that
as the radius decreases the magnitude of the dispersion increases at a
given wavelength.

From Fig. 3 we can draw a number of conclusions. First, the
lightguide with the materials properties shown can be made totally
dispersion free only at wavelengths longer than 1.27 um. Second, as
the wavelength gets longer the guide radius must get smaller. Finally,
at longer wavelengths a much larger amount of material dispersion
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Fig. 2—Index profile shapes for various power laws. When a — o the profile is
rectangular, when a = 2 it is parabolic, and when « = 1 it is linear. If « is less than 1, the
profile develops a cusp.

must be compensated for by waveguide dispersion. This requires
greater precision in the waveguide parameters than when the guide is
designed to operate at the zero of material dispersion. Hence, it is
desirable to have a variety of materials available for lightguide design
purposes.

Finally, a typical total dispersion curve D, illustrating lightguide
operation at 1.3 um, is plotted in Fig. 3.

lil. SINGLE-MODE LIGHTGUIDES WITH a PROFILES FOR 1.33-um
OPERATION

Single-mode lightguides that are designed to operate at 1.33 um with
A = 0.2 percent are of much current interest. The cutoff frequencies
V.(a) for the a-index profiles can be found from egs. (1) and (2). Figure
4 plots the results. There is little change in V. until the profile
parameter is below 10, then it increases rapidly. At a = 1, V. and Vo
are 4.383 and 2.724, respectively. The data of Fig. 4 agree well with
that in the literature.®?

To determine the radius a.p. for zero total dispersion, a computer
search is done for values less than a., where a. is the cutoff radius [see
eq. (3)]. Figure 5 shows the result for three a values, namely 100, 2,
and 1. The radii turn out to be 4.142, 5.725, and 6.294, respectively.

588 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1981



Note that the total dispersion D, is most sensitive to the radius for
o = 100, and least sensitive when « = 1. For design purposes, we plot
aope as a function of the profile parameter a in Fig. 6. This plot also
includes the cutoff wavelength A., where A. is defined by the following
formula:

Ac = (Vopt/ Vc) -A. (13)

Note that both V. and V. are employed in the calculation. Therefore,
to allow only one mode to propagate in the core, the operating
wavelength must be longer than the cutoff wavelength A.. For a step
index profile with A = 0.2 percent and A = 1.33 um, A. is close to 1 um.
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Fig. 3—A plot showing material dispersion D,,, waveguide dispersion D,, and total
dispersion D,. Note that because of the difference in sign between the material dispersion
and the waveguide dispersion it is possible for one to cancel the other at a particular
wavelength.
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Fig. 4—A plot of V. and V,u as a function of the profile parameter.

The calculations described thus far in this section have made no
assumption concerning the separation of the total dispersion D; into
its component parts D, and D,. Our numerical procedure simply
searches for a zero in total dispersion and does not assume that D, =
D, + D,.

However, the material dispersion contribution can be calculated
directly by means of egs. (10) and (9), where N is substituted for N..
The waveguide dispersion can be found by solving Maxwell’s equations
numerically via the procedure outlined in the appendix, with N, being
wavelength independent.

Figures 7a through 7c show the results for a« = 100, 2, and 1. In all
three figures the material dispersion, which is of course independent
of core radius, is represented by the horizontal dashed line. The
negatives of the waveguide dispersions are dependent on core radius
and are the solid lines in the figures. The intersection of the solid and
dashed lines yields the optimum radii. As is evident from the figures,
the radii are identical with the previous calculations.

IV. A COMPARISON WITH EXPERIMENTAL DATA
Miya, Terunuma, and Hosaka'’ have fabricated GeO, doped single-
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mode lightguides for the 1.3 pm and 1.5 pm region. Their experimental
data are very useful to check the theory presented in this paper. They
give data on a fiber with A = 0.2 percent and a zero total dispersion at
A = 1.33 um. A second fiber has A = 0.74 percent and a zero total
dispersion at A = 1.54 pm. Both are step-index fibers. Their experi-
mental data are measured with a fiber Raman laser excited by a @
switched, mode-locked Nd:YAG laser. The spectral range studied is
1.1 to 1.7 um. The optimum radius is 4.142 pm for A = 0.2 percent and
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Fig. 6—A plot of cutoff wavelength A. and optimum radius a,,: versus a. This data is
very useful for design purposes.

A = 1.33 ym. The optimum radius is 2.30 um for A = 0.75 percent and
A = 1.53 um. Figure 8 compares their experimental results (circles and
triangles) with our calculations (solid and dashed lines). The agreement
is excellent.

V. DISCUSSION

At a wavelength of 1.33 um, dispersion-free lightguides can be
designed with improved properties over the rectangular profile guides.
Our calculated results of a,, and cutoff frequency V.(a) both show a
rapid increase as the profile parameter a drops below 10. For a
triangular index profile (a = 1), the core size is over 50 percent larger
than the size of a step-index core. Thus, due to ease of handling,
coupling to the source, and splicing, a larger core size is desirable for
the same value of A and A.

As the profile parameter a drops below 10, V., also begins to
increase substantially. It is significant that in the case of a = 1, Ve ~
2.7, which is a substantial increase over the step-index case, Vi, ~
1.8.11'12

In addition, Fig. 5 shows that a lightguide with a triangular profile
is less susceptible to variations in core radius than a step-index guide.
Therefore, because of the larger core size and less sensitivity in its
tolerance, a triangular profile may be less difficult to fabricate than a
rectangular profile.
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APPENDIX

To study the propagating modes in a fiber, we first assume that the
cross section of the fiber is concentric in the core and cladding and
that the core diameter 2a is much smaller than the outer diameter D
(Fig. 9). Further, we assume that the core is a lossless, radially
inhomogeneous medium with a scalar permittivity e. A relative per-
mittivity (dielectric constant) is defined by k = /€, where € is the
value in free space. However, as is well known in a nonconducting
medium, the permittivity becomes equal to the square of the index of
refraction N. For source-free fields in a dielectric waveguide, Maxwell’s

equations reduce to

oH

VXE=—up—
ho 5 ”

oFE

VXH—EUICF{,

DISPERSION IN ps/km . nm

a =100
A =0.002
A=133um

—Dy (N, a.a,A)

a, CORE RADIUS IN MICROMETERS

Fig. 7(a)—A plot of waveguide dispersion and material dispersion as a function of

core radius, a = 100.
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Fig. 7(b)—A plot of waveguide dispersion and material dispersion as a function of
core radius, a = 2.

where E(R, t) and H(R, t) represent the electric and magnetic fields.
o is a scalar permeability in free space.

In a cylindrical coordinate system R = {R, ¢, 2}, the solution of eq.
(14) is described by the vector components of two fields, {Eg, E,, E.}
and {Hg, H,, H.}. Among these components we are primarily inter-
ested in finding the tangential components {E,, E.} and {H,, H.}.
These will be continuous through the core-cladding interface. Once
the tangential components are known, the radial components Er and
Hp can be obtained from these components. To find a complete set of
bounded modes we consider the following form of solution:

E(p, ¢, 2, t) = E(p) exp[i(wt — M¢p — B2)], (15)

where w and M are angular frequency and mode number, and B is

propagation constant along the z axis.
Introducing a new variable A, the field components are written as
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Ay E.

= | A _ —iZopH,
A4 _IZOHZ

where p = KR = 2nR/), Z, is the wave impedance defined by (uo/€),"
and A is a wavelength.

Substituting eq. (16) into eq. (15) yields a set of the first-order
ordinary differential equations."** In the following equation,

dA
== Laa, (17)
Y p

the operator A(p) is a 4 X 4 matrix that contains important property

constants and parameters, for instance, the index of refraction N,

angular mode number M, and the effective index N, defined by 8/k%.
The 4 X 4 matrix A (p) can be written as

7
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Fig. 7(c)—A plot of waveguide dispersion and material dispersion as a function of
core radius, a = 1.
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0 (N2/k) — 1 0 ~MN,/«

p’ — M? 0 MN. 0 (18

0 MN./x 0 o=y |- 18
—MN., 0 Ni—« 0

The method of numerical computation has been given in our earlier
work,” which briefly gives the procedure for finding the solutions and
emphasizes what is needed to describe a single-mode fiber design.

Equation (17) is a familiar type of differential equation. A fourth-
order Runge-Kutta method is used to solve it numerically. A concise
description is as follows. First, we know that there are two possible
solutions in both the core and cladding, and they are linearly inde-
pendent. Therefore, a general solution will be a linear combination of
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two solutions, denoted by A; in the core and TI'; in the cladding.
In the core region,

Ai= A A + AsAi, (19)
and in the cladding region,
Ty = AsAis + AsAia. (20)

The solutions A;; and A are transferred to the core-cladding inter-
face through the operation of eq. (17), starting with two initial condi-
tions given at the center of the core.>*

At the interface p = pi, each has to be matched with the solution in
the cladding to satisfy the continuity condition mentioned earlier.
Thus, the matching condition yields a set of homogeneous equations
for the constants A;. Hence, the characteristic equation is the vanishing
determinant of the system of equations,

detl Aijl = 0. (21)

Fig. 9—Cross section of a fiber and cylindrical coordinate system. R or p is the radial
coordinate, ¢ is the angle, and z is the axial direction (p = KR).
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Particularly, considering M = 0, we can write the solutions in the core
and cladding as follows. The two core solution vectors at p = p; are
Ai and Aiz(p:). Expressed in terms of their components, they are

An A12
_ | A=z | A
All = A31 and Ai2 = A32 (22)
Aa Asge
And the two cladding solutions at p = p; are taken as
g 0
= K(fi)‘(o(fi) . X = 0 . A
A.s 0 Wﬂ( Il) a-nd AM YO( ;:) WO( :l); (23)
0 Bi

where
ﬁl = [Ng - K({f)]uz! ;i = ﬁipi’
yo = {i-[Ko({:)/Ko($:)], and Wo($i) = Ko($:) /81

The prime in the above equation denotes differentiation with respect
to ¢.
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