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Using an exact numerical solution to Maxwell’s equations, we
determine the optimum refractive index profile parameter o for a
germania-doped silica lightguide. Our results agree closely with the
earlier work of Olshansky and Keck and with the work of Marcatili.
However, differences exist that may be important in the manufacture
of very high bandwidth lightguides.

. INTRODUCTION

It is now well established that a lightguide with a near parabolic
index profile can have single frequency bandwidths of 1 GHz-km or
greater.'” This is expected to happen if the profile is smooth, the
central dip is narrow or small, the profile parameter is properly chosen,
and modes that have a significant amount of their energy transported
in the cladding are eliminated.*® Our understanding of these factors
has largely come from approximate solutions to Maxwell’s equations
for lightguides. The availability of computer software for exact numer-
ical solutions’ to Maxwell’s equations allows us to reexamine some of
these effects and to look at other factors that may influence lightguide
bandwidths. In this paper, we determine optimum power law profile
parameters (i.e., « parameters) as a function of wavelength for a
germania-doped silica lightguide.

Il. PROCEDURE

We study a lightguide with a 13.5 mole percent germania-doped
silica core and a pure silica cladding. The core is assumed to be
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perfectly cylindrical with a diameter of 50 microns. The cladding is
considered to be essentially infinite. The doping profile is such that
the refractive index is a power law function of distance R. Thus,

N=N1+(N2—N1)-(;), )
where N, is the refractive index at the center of the core, N; is the
refractive index in the cladding, R.. is the radius of the core, and « is
the profile parameter. We assume that this functional form holds at all
wavelengths of interest.

We have accurately determined the wavelength variation of the
refractive index of silica and some doped silicas. Figure 1 gives the
data for 13.5 mole percent germania-doped silica and pure silica. As is
well known, the refractive index falls off slowly with wavelength for
both of these glasses.? We express the data by the following modified
Sellmeier formula:’

Ni=Co+ 01A2 + CQA4 + Cs/(hi' - 0.035)
+ Ci/(A% — 0.035)2 + Cs/(A% — 0.035)%, (2)
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Fig. 1—The wavelength dependence of 13.5 mole percent germania-doped silica and
pure silica.
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where A is in microns and i = 1, 2. Table I lists the coefficients for eq.
(2) for both 13.5 mole percent germania-doped silica and silica.

Our numerical procedure to solve Maxwell’s equations has been
described in detail in an earlier paper.” Thus, we only give a very brief
description here. The method is similar to that described by Vigants
and Schlesinger,'” and Vassel.!! We write Maxwell’s equations in
cylindrical coordinates as

dr
e p'A(p)T(p), (3)
fi]

where I'(p) is a column vector whose four elements are related to the
tangential components of the electromagnetic field. They are as fol-
lows:

I =E.,

Ty = —ipH,Zo, "
Ts = pE,,

Ty = —iH.Z,

where Z, is the wave impedance of free space and the variable p is
defined as K,R.
The 4 X 4 matrix A(p) can be written as

0 (N%/k) — 1 0 —MN./x

P’k — M*? 0 MN., 0 (5)
0 MN./x 0 P — (M?*/k)

—MN, 0 NZ—«k 0

This matrix describes the properties of the media.

We solve eq. (3) by an optimized fourth-order Runge-Kutta proce-
dure.”? This is a higher-accuracy formula than used in our earlier work.
The most important computational results are the effective indices N.
for the various modes in the lightguide.

The group indices N, are calculated from the effective indices by
the following formula:

Ng= N.— AdN./dA\. (6)

Table I—Coefficients for eq. (2)

13.5 Mole Percent Germania-

Doped Core Silica Cladding
Co= 1.4706868 1.4508554
C, = —0.0026870 —0.0031268
C, = —0.0000356 —0.0000381
Cy;= 0.0035756 0.0030270
C, = —0.0000828 —0.0000779
Cs = 0.0000018 0.0000018
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The derivative is obtained from numerical calculations of N, at three
closely spaced wavelengths.
For a lightguide with the materials and profile described earlier, a
simple approximate relationship exists between group index N, and
effective index N, for certain modes. In particular, for a given profile
parameter a, angular mode number M, wavelength A, and for modes
far from cutoff, the effective indices are nearly linearly related to the
group indices. Evidence for this can be obtained from Fig. 2, curve (a).
In this case, we have A = 0.6328 micron, M = 0, and a = 2. The solid
line is the linear least-squares fit to the data when the last two modes
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Fig. 2—Plot of group index (Ng) versus effective index (N.) at a wavelength (A) of
0.6328 micron with M = 0. In (a) th

e profile parameter « is 2.0 while in (b) « is 2.2. Note

that a good linear relationship exists between N; and N. if the last few modes are
neglected.
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Fig. 3—Plot of group index versus effective index for A = 0.82 micron and M = 0.
When a = 2.08 the group indices are all nearly the same except for those modes being
influenced by the cladding.

are deleted. (The last mode is too far off scale to be plotted.) Obviously
a nearly linear relationship exists between N, and N,. In addition,
there is a very slight systematic deviation from the least-squares line.
This suggests that additional terms are needed to completely describe
the data. However, this will be of no consequence to the analysis to be
described here.

The last two modes (those that deviate strongly from the line) have
a significant fraction of their energy being transported in the cladding.
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Thus, they are not tightly bound to the core and normally are not
considered in an optimum « calculation.

An optimum profile parameter «, for a particular family of modes,
is one that minimizes the spread in group indices for that family at a
particular wavelength. For example, we might consider all the modes
associated with a specified M value. In this case, the optimum a would
be the one that gives the smallest slope to the least-squares line
relating N, and N;.
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Fig. 4—Part of the data of Fig. 3 on an expanded scale.
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Fig. 5—Plot of group index versus effective index for A = 1.06 microns and M = 0.

Figure 2, curve (b) shows a near optimum value of a = 2.2 for M =
0 and A = 0.6328 micron. We see that the least-squares line is now
nearly horizontal and that evidence exists for the necessity of higher-
order terms to exactly fit the data. The strong drop-off of the last few
modes is still evident.

A very good overall optimum a for all M values will be nearly
identical to the optimum a for M = 0. As will be shown shortly, this
results in excellent equalization of the lower-order modes and a good
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equalization of the higher-order modes. For most engineering appli-
cations, optimum a’s in the wavelength range of 0.63 to 1.55 microns
are needed.

lll. RESULTS

Figures 3 through 7 show plots of N, versus N, for various a
parameters and wavelengths for M = 0. Figure 4 shows part of the
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Fig. 6—Plot of group index versus effective index for A = 1.32 microns and M = 0.
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Fig. 7—Plot of group index versus effective index for A = 1.55 microns and M=0.

data of Fig. 3 on an expanded scale. Note that in all a nearly linear
relationship exists between Ng and N, except for the last couple of
modes. As mentioned before, these modes are nearing cutoff and are
usually not considered in an optimum « determination.

At each wavelength, we see that there is an a value, aop, that makes
the slope of the line nearly zero. Table II lists aop values for wave-
lengths of engineering importance and also for a few other wavelengths
as well.

The data of Figs. 3-7 pertaining to the infrared wavelengths are

NUMERICAL CALCULATION OF OPTIMUM a 463



Table Il—Optimum alpha values

A (microns) Qopt
0.6328 2.211
0.73 2.130
0.82 2.081
0.90 2.037
0.983 2.000
1.06 1.974
1.20 1.925
1.32 1.884
1.40 1.856
1.55 1.807

summarized in Figs. 8 and 9. Figure 8 shows the slope of the line
relating N, to N, as a function of wavelength for various a values. We
see that most infrared wavelengths of interest require an a value in
the range from 1.8 to 2.1. Figure 9 shows the same data, but this time
as a function of a for various wavelengths. The same conclusion is
obvious.

Figure 10 displays a calculation of the group indices for all the bound
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Fig. 8—Plot of the slope of N, versus N, as a function of A for various a values.
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modes in the fiber for A = 0.82 micron and a,, = 2.081. This plot
gives a vivid representation of the fiber characteristics. We see that
indeed a = 2.081 gives a good equalization for all the modes if those
being influenced by the cladding are ignored. A delay-time calibration
corresponding to 1 ns/km is also included in the plot.

IV. DISCUSSION

Within the framework of the WKB approximation, Marcatili’’ has
obtained an exact result for aop that minimizes pulse widths. His
formula is as follows:

aope = (2 — p)(1 4+ V1 —24) -2, (7)
where
N, A dA
pP= Fg . K . ﬁ, {8)
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Fig. 9—Plot of the slope of N, versus N, as a function of a for various A values.
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Fig. 10—Plot of group index versus effective index for all the bound modes in the
ightguide. We see that for A = 0.82 micron and a = 2.081 there is a good equalization of
the group indices.

Nl—N2

N @)

N? is the group index on axis, and A =

Also, within the same WKB framework, Olshansky and Keck' have
obtained an approximate formula for o,y that minimizes the rms width
of a pulse. Approximations that coincide with Olshansky and Keck’s
can also be obtained from the exact result of Marcatili.

It is clear that a.p: depends upon the type and number of approxi-
mations employed, how the various modes are weighted, and whether
we wish to minimize pulse width, rms width, or some other parameter.
Another possibility would be to define an optimum « that would
include the effects of those modes having significant energy trans-
ported in the cladding. This is likely to lead to an a quite different
from that obtained in this work.
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Figure 11 shows the results of Olshansky, Marcatili, and ourselves.
There is great similarity in the shape of the curves and in the actual
numbers. The deviation between our results and the WKB results is
largest at the longer wavelengths. It is obvious that the agreement
between all results is good and, at the present state of the manufac-
turing art, can be considered the same. However, this may not neces-
sarily be the case in the future. To illustrate (see Fig. 12), we calculate
N, as a function of N, at 1.55 microns for M = 0 and aope = 1.775
(Olshansky) and acp = 1.807 (this work). There is an obvious difference
in slope; this difference would be significant in the design of high
bandwidth lightguides.

A good representation of our optimum a values is given by the
following formulas:

0.63 micron < A < 1.00 micron,

Qope = 2.9970857 — 1.6647237A + 0.6629181\7 (10)

22

21

_ -THIS WORK

5201 _ —MARCATILI
=] -
- _ —OLSHANSKY
19—
18-
| ] | | | 1 | | |
06 07 O8 09 10 11 12 13 14 15 18

A INMICRONS

Fig. 11—Plots of optimum profile parameter a versus wavelength for a 13.5 mole
percent germania-doped silica lightguide. The index dispersion data employed is from
Fleming's work. A clear similarity exists among the results of Marcatili, Olshansky, and
this work.
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Fig. 12—A plot of N, versus N, for A = 1.55 microns. oo = 1.775 is calculated from
the formula of Olshansky et al., and aep. = 1.807 is from this work.

1.00 micron < A < 1.55 microns,
aope = 2.3835734 — 0.4170708\ + 0.0290252A% (11)

It is reasonable to assume that by linear interpolation or extrapola-
tion we can generate the refractive index dispersion curves for ger-
mania-doped silica in the range from 0 to 16 mole percent. Using this
data, we can then calculate the dependence of N, on N, for a number
of levels of doping. Figure 13 shows a family of curves for M = 0, a =
1.884, and A = 1.32 microns. There is a good equalization of N for all
the compositions. We also see that, as expected, the number of modes
decreases as the doping level drops. Thus, at the 1 percent doping level
for M = 0 only one N. exists. As usual, the last couple of modes for
each doping level show a substantial cladding effect.

Finally, the data displayed in Figs. 8 and 9 may have some implica-
tions to lightguide engineering. From Fig. 8, we see that the various a
curves pass through zero with about the same slope. This suggests that
the range of operating wavelengths will be the same for all design
wavelengths. Likewise from Fig. 9, we see that the various A curves
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Fig. 13—A family of plots of N, versus N. for various doping percentages of germania.
The a value is 1.884 and M = 0.

pass through zero with similar slopes. This suggests that the allowable
error in a will be about the same for all design «’s.
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