Copyright © 1981 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 60, No. 2, February 1981
Printed in US.A.

Compiling Three-Address Code for C Programs

By J. F. REISER
(Manuscript received February 27, 1980)

This paper describes a post processor that improves the assembly-
language code generated by the portable C compiler. The novel ability
to change a sequence of two-address instructions into an equivalent
three-address instruction distinguishes this particular code improver
from other “peephole” improvers. The combined compiler-improver
generates good three-address code for the Digital Equipment Cor-
poration VAX-11® computer without requiring extensive changes in
the compiler itself, which was designed to accommodate machine
architectures with at most two addresses per instruction. For typical
programs the improver reduces the number of bytes in the instruction
stream by 10 to 23 percent. This paper emphasizes the technique used
to transform two-address code to three-address code.

I. INTRODUCTION

The portable C compiler' is an effective tool for quickly constructing
a C compiler? for a general purpose digital computer. With reasonable
effort the resulting compiler generates correct code, and the quality of
the translation into assembly language is acceptable. However, users
frequently demand better code if they anticipate prolonged or exten-
sive use of programs written for a particular application. A post
processor that reads the assembly language generated by the compiler
and writes better assembly language having the equivalent effect can
satisfy much of the demand. (Here “better” code requires fewer bytes
for instructions or less time to execute, or both.) This paper describes
a program that improves code generated for the Digital Equipment
Corporation vax-11® computer, paying particular attention to the
technique used to transform two-address codes into three-address
codes.

One reason why a code improver can be effective is that the portable
C compiler often generates code in the easiest possible correct manner,
even if such a code is suboptimal over a wide range of machines. The

COMPILING THREE-ADDRESS CODE 159

compiler expects that a post processor will clean up after it. For
example, the compiler translates the C program fragment

while (---) {

if (b > 0) break;

}
as if it were written
while (+++) {
if (b < = 0) goto L100;
goto L101;
L100:
)
L101:

which contains a conditional jump around an unconditional jump. It
should not be difficult to compile the original fragment as if it were

while (...) {
if (b > 0) goto L101;

}
L101:

but the compiler does not do this, so one of the standard tasks for a
code improver is to replace “skips over jumps” with jumps on the
negated conditions.

Another reason that a code improver can produce better code is that
the compiler’s model of code generation may ignore or not take full
advantage of architectural features found on a specific machine. The
portable C compiler understands one-address instructions and two-
address instructions, but does not understand three-address instruc-
tions or instructions which use an address as an immediate operand.
Similarly, the compiler thrives on certain addressing modes (register,
pointer, displacement from a register base) and has difficulty fully
exploiting others (auto increment, double indexing).

A code improver can also be effective because C-language statements
or compilation on a statement-by-statement basis may be too low
level. The concept “turn off bit 15” may have a direct hardware
implementation, but must be expressed in C language as a Boolean
AND operation. The portable C compiler attempts no analysis of
interstatement information flow, nor does it always take advantage of

160 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981

hardware idioms. A code improver can often perform some flow
analysis and recognize more hardware idioms.

The idea of a code improver is not new. “Peephole optimizers” are
well known.** One C compiler for the PDP-11 computer has had a code
improver for many years.* The section of Ref. 5 on the FINAL compi-
lation pass describes a code improver used internally by a BLIss-11
compiler.

The code improver described here makes the portable C compiler
usable as the workhorse compiler in a serious production environment.
Measurements indicate that for typical programs the improver reduces
the number of bytes in the instruction stream by 10 to 23 percent; the
novel technique reported here accounts for as much as one-third of
the reduction. The time required to execute the code is also reduced
by 4 to 8 percent. The improver produces good three-address code
from the two-address code generated by the compiler.

Il. IMPROVING CODE FOR THE VAX-11

An existing improver of code compiled for the PDP-11 served as a
model and outline for the vax-11 code improver. The improver reads
a file of assembly language and divides the file into segments corre-
sponding to C procedures. For each procedure it constructs a doubly-
linked list of the instructions and label definitions, with additional
links for references to labels. The improver then combs the list,
repeatedly trying to apply any one of several incremental transfor-
mations. The transformations satisfy a principle of optimality: Any
local improvement is guaranteed to be a global improvement at least
as large, and conversely, if the program as a whole can be made smaller
or faster, then there is a collection of local changes which will account
for the improvement. When no further transformation can be made,
the improver prints the list and moves on to the next procedure. Many
of the transformations depend little on the particular machine.
Straightforward adaptation of the old program yielded code to transi-
tively close jumps to jumps, delete instructions that immediately
follow unconditional jumps, delete jumps to the immediately following
instruction, remove unreferenced or redundant labels, merge common
tail sequences, move basic blocks to the point of sole use, and inter-
change physical order of the consequent and alternative to a test.
Simple modifications also produced a program to rotate loops to place
a single conditional jump at the bottom, handle skips over jumps,
eliminate redundant setting of the condition code, move common
antecedents of jumps into the merged tail, eliminate constant tests or
tests which are subsumed by a preceding test, exploit add-compare-

* pDP is a registered trademark of Digital Equipment Corporation.

COMPILING THREE-ADDRESS CODE 161

Table |—Translations of a = b + c;

PDP-11 vax-11 Improved vax-11
mov b, rQ
add ¢, r0 addl3 b, ¢, r0
mov r0, a movl r0, c addl3 b, ¢, a

branch (“DO-loop”) instructions, and remember values already in
registers.

. THREE ADDRESSES FROM TWO

Fully utilizing the three-address instructions available on the vax-
11 presented a new challenge. Table I illustrates a common opportunity
to use a three-address instruction. In this example the variables a, b,
¢ are assumed to reside in memory (either global or local) and not in
registers. The first column gives a translation for the ppp-11 that
cannot be improved in either time or space. (If some of the variables
reside in registers, then improvements are possible.) Both the produc-
tion and the portable C compiler for the PDP-11 produce this translation
without the aid of a code improver. The second column contains the
code generated by the portable C compiler for the vax-11. The com-
piler saves one instruction by doing the work of the first two pppP-11
instructions in one three-address vax-11 instruction. However, it will
not generate the code in the right-most column, where a single instruc-
tion suffices for the whole statement. Internally the portable C com-
piler uses a binary tree to represent each parsed statement. The height
of a binary tree with three external nodes (each explicit variable is
represented by an external node) must be at least two. Furthermore,
the pattern-matching algorithms used by the compiler are restricted
to subtrees of height one. (The pattern match has since been general-
ized to match subtrees of arbitrary height.) Thus the compiler gener-
ates two separate instructions for this case. It does have the flexibility
to use an instruction with three addresses, but the destination operand
of a three-address instruction must always be one of the compiler’s
temporary locations, usually a register. The challenge to the code
improver is to recognize situations like this one and change the code
appropriately.

Table II illustrates a complication. Here the addition and assignment
are embedded as an expression whose value is passed as an actual
argument in a procedure call. Although the same addl3 and movl
instructions appear together, the value in r0 is needed later and r0
cannot be elided. In standard terminology, the value in register r0 is
live, or alternatively register r0 is busy. The improver can elide register
usage only when the value in the register is known to be dead, or the

register is free.

162 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981

For an arbitrary program, determining which registers are free at a
given point requires a fair amount of work. The register usage and
flow of control through any part of the program can effect whether or
not a register is busy in any other part of the program. Code generated
by the portable C compiler has a property that makes busy/free
analysis much simpler. All registers are free any time the compiler
generates a backward branch instruction. The portable C compiler
generates code on line, completely translating the current expression
or statement before proceeding to the following expression or state-
ment. The use of a temporary expression always occurs physically
after its generation. Thus the entire busy/free analysis can be done in
a single backward scan over the generated code. The backward scan
marks a register busy each time the register is read or used as a source
operand. Some instruction occurring closer to the front of the file must
have put a live value into the register, or else the register would
contain garbage. Analogously, the backward scan marks a register free
each time the register is written or used as a destination operand.
Since the write destroys whatever used to be in the register, no one
could have wanted that dead value.

The backward scan must take precautions to record each use of a
temporary register, including the implicit uses. The return instruction
ret implicitly reads r0, the register in which C code returns function
values. Thus r0 is busy just before each ret. The overall code-gener-
ation strategy of the compiler assumes that each procedure call instruc-
tion calls writes all the temporary registers. Thus all the temporary
registers are free just before a procedure call.

The busy/free information can also be used to eliminate dead code.
An instruction that writes only into free registers does no useful work,
except possibly for the side effects it causes. If the address computa-
tions contain no side effects, then only the condition code could matter.
The condition code is set by each nonbranch instruction, so the
condition code itself is free unless the instruction which logically
follows is a conditional branch.

The backward scan must also be careful with code generated from
conditional expressions. There can be no busy registers at the time of
a backward jump, as noted earlier. Since the compiler performs no

Table Il—Translations of f(a = b + ¢);

“Improved”
pDP-11 vax-11 (but wr(‘))ng;n:'ix-ll
mov b, r0
add c, r0 addl3 b, ¢, r0
mov r0, a movl r0, a addl3 b, c, a
mov r0, (sp) pushl r0 pushl r0
jsrpe, f calls $1, f calls §1, f

COMPILING THREE-ADDRESS CODE 163

Table lll—Translationof x =a ? b : c;

testl a
jeql L100
movl b, r0
jbr L101
L100: movl ¢, r0
L101: movl r0, x

interstatement data-flow analysis (and in particular does not recognize
common subexpressions), there can be no busy registers at the time of
a forward jump generated from an entire C statement. Since labels
exist only because jump instructions branch to them, these two facts
might suggest that a register cannot be busy at any label, either. A
register can, however, be busy at a forward jump (and thus at a label)
with one of the values of a conditional expression. Table III illustrates
one such situation.

Even though the instruction movl ¢,r0 writes r0, the register is
busy at the jbr because (if a is true) it contains the value of b to be
stored into x. Thus the busy/free status of each register must be
associated with each label as the label is passed during the backward
scan, and retrieved from the corresponding label at each jump. This
can be done efficiently by keeping a bit vector associated with each
label, initializing all the bits to “free,” and recording busy registers as
labels are passed. Because backward jumps have no busy registers and
the backward scan encounters the destination label of a forward jump
before seeing the jump itself, the bits will always be correct.

In general the code improvements other than insertion of three-
address instructions and elimination of dead code by consulting the
busy/free information destroy the property that no temporary register
is busy at a backward jump. This implies that using a single backward
sweep over the code for the entire procedure to determine busy/free
is valid only once, at the beginning before other improvements are
tried. Fortunately, once is enough.

IV. OTHER USES OF THE BACKWARD SCAN

The backward prescan is also a good time to recognize hardware
idioms. The vax-11 has a number of instructions to set, clear, and test
single bits, and to extract contiguous bit fields of arbitrary size.
Appropriate uses of these instructions are often concealed in C with
various Boolean or shift-and-mask operators or sequences of operators.
Computing with the addressing modes by using instructions in which
an address is used as an immediate operand often saves time and
space. Powerful addressing modes often depend heavily on register
usage, and the backward pass is already computing this information.
Since the backward scan is performed only once, time will not be

164 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981

wasted searching for hardware idioms more than once, as part of the
general iterative improvement strategy. Table IV gives some example
improvements,

V. DEVICE DRIVERS

On the vax-11, the control and data registers for input/output
devices lie in the memory address space. Programs manipulate the
registers in much the same way as they manipulate memory, and the
assembly-language code for a device driver cannot be identified solely
by its form. However, certain instructions and addressing modes do
not work properly when addressed to device registers. Generally these
are exactly the instructions and addressing modes that the code
improver wants to introduce. For example, neither of the first two
improvements in Table IV is legal on a device register. Thus the code
improver must be told when it is improving the code for a device
driver, so it can avoid those improvements that cause problems.
Reading or writing a device register typically has side effects that are
different from reading or writing a memory location, and other hard-
ware considerations such as bus widths, circuit board area, or number
of words of microcode are often important. Yet from a software
viewpoint such special cases are irritating and error prone, and it
would be desirable to get rid of the complication.

VI. CONCLUSIONS

A single backward scan enables the code improver to determine
register usage and introduce three-address instructions where appro-
priate. The backward scan takes advantage of the fact that all registers
are free at each backward jump, a property that would otherwise be
considered a weakness in the compiler. The single backward scan also
recognizes hardware idioms at a lower cost than previous algorithms.

Table IV—Improvements using VAX-11 hardware idioms

C Code Raw Translation Improved Translation
int a;
a | = 0x8000; bisl2 $0x8000, a jbss $15, a, L100
L100:

int a, b;

b = (a > 12) & 0xF; ashl $—12, a, r0 extzv $12, $4, a, b
bicl2 $—16, r0
movl r0, b

int *p, *q;

q = &p [f(x)]; pushl x pushl x
calls §1, f calls $1, f
ashl $2, r0, r0 ‘moval *p [r0], q
addl2 p, r0
movl r0, q

COMPILING THREE-ADDRESS CODE 165

REFERENCES

1. S. C. Johnson, “A Portable Compﬂer: Theory and Practice,” Conference Record
Fifth Ann. ACM Conf. Principles of Programming Languages, Tucson, AZ (Jan-

uary 1978), pp. 97-104.
2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood

Cliffs, New Jersey: Prentice-Hall, 1978.
3. W. M. McKeeman, “Peephole Optimization,” Commun. ACM, 8 (July 1965), pp.

443-4.
4. A.V. Aho and J. D. Ullman, Principles of Comptler Design, Reading, Massachusetts:

Addison-Wesley, 1977.
5. W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke, The

Design of an Optimizing Compiler, New York: Elsevier, 1975.

166 THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1981

