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We derive the modes inside a cylindrical waveguide of finite surface
impedances, assuming the waveguide transverse dimensions are
large compared to the wavelength A. This paper restricts its consid-
eration to the modes with B = k, where B is the propagation constant
and k = 2x/\. For these modes we show that asymptotically, for large
values of k, the field { becomes infinitesimal (of the same order of
1/k) at the boundary. Taking this into account, we obtain simple
expressions for the asymptotic properties of | for large k. The theory
applies to a variety of waveguides: corrugated waveguides, optical
fibers, waveguides with smooth walls of lossy metal, and so on. An
important property of the modes considered here is that their atten-
uation constant is very low, i.e., asymptotic to 1/k*® for large k. Thus,
these modes are useful for long-distance communication. Another
consequence of ¢ — 0 at the boundary is that for large k the
distribution of Y inside the boundary is essentially independent of the
boundary parameters, i.e., independent of the surface impedances in
the longitudinal and transverse directions. This consequence implies
that the same radiation characteristics of the corrugated feed can be
obtained using other structures and, therefore, construction can be
simplified in many cases, with little sacrifice in performance. We also
derive general expressions for { and the propagation constant .

. INTRODUCTION

It is known'™® that in certain waveguides the field becomes, under
certain conditions, very small at the boundary. Consider, for instance,
a corrugated waveguide of radius a and let A be the free-space wave-
length. This waveguide is characterized at the boundary by finite
surface impedance Z. in the longitudinal direction. The frequency
dependence of Z,, which is determined by the depth of the corruga-
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tions, causes the transverse field distribution y(x, y) of a mode to vary
with the frequency k& = 27/A. However, this frequency dependence
virtually disappears (for all modes except surface waves) if the wave-
guide dimensions are large enough. In fact, one finds that Y(x, ¥)
approaches for ka — « a frequency independent distribution that
vanishes at the boundary.® This behavior is responsible for the low
attenuation constant, for the excellent radiation characteristics, and
the wide bandwidth of corrugated waveguides.” We show here that the
same behavior also occurs, under quite general conditions, in a variety
of uncorrugated waveguides.'*' Figures 1a and 1b show two examples,
a dielectric waveguide”®'>'® of general cross section and a hollow
waveguide with metal walls coated by a dielectric layer.*’ Other
examples can be obtained by modifying the boundary conditions in a
variety of different ways. For instance, several dielectric layers may be
used in Fig. 1b, or a metal grid of transverse wires may be placed at
the boundary, as pointed out in Section II. Other examples are the
waveguides of dielectric or lossy metal considered in Ref. 2. We now
outline the main assumptions.

Consider a cylindrical waveguide with an interior region of homo-
geneous and isotopic material, as in Fig. 1c. Let Z and % be the wave
impedance and propagation constant for a plane wave in the interior
region, and let C denote the boundary. Then

Z= \/%, k= w\/e_,u. (1)

Consider a mode with propagation constant 8 and let E, denote the
transverse component of the electric field,

E. = Y(x, y)e 7. (2)

Let 2a be a characteristic dimension of the waveguide, for instance the
width in the x direction as in Fig. 1c. We are concerned about the
asymptotic behavior of ¥(x, y) for large values of ka. Consideration
will be restricted to the modes for which the propagation constant 8
approaches k, as ka — . Thus, we assume

B—k for ka— . (3)

This excludes surface waves, as pointed out in the following section.
Then, a property of the modes considered here is that E and H become
transverse, in the limit as ka — oo,

lim E.=H.=0. (4)

ka—soo

Another property is that asymptotically, per large ka, a set of linear
relations exist at the boundary among the tangential components of E
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Fig. 1—Three examples of cylindrical waveguides: (a) a dielectric rod, (b) a waveguide
with metal walls coated by a thin dielectric layer, and (c) a waveguide with boundary
conditions shown in Fig. 2.

and H. It is convenient to write these relations in the form

zg:] =j[H] _ZEZ} on C, (5)

z

where [H] is a 2 X 2 matrix and H., E, denote the components of H,
E in the direction of the unit vector T in Fig. lc. These relations
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together with eq. (4) give at the boundary
lim E,=H,=0 on C, (6)

ka—sxo
provided the matrix [H] does not diverge for ka — o,
[H] # for ka— oo, (7

Throughout this article, we assume conditions (3), (5), and (7).
Condition (5) is discussed in the following section, where it is pointed
out that for most waveguides considered here, [H] is a diagonal matrix.
In this case it is convenient to define at the boundary surface imped-
ances Z; and Z, by writing

Ef = Z-,—Hz, Ez = _Zszl (8)

where Z. is the longitudinal impedance, and Z, is the transverse
impedance. Then condition (7) requires

Z,1/Z,# = for ka— oo, 9)

It is important to realize that this requirement is violated in a number
of cases. It is violated in a hollow waveguide with metal walls of perfect
conductivity, since then Z; = 0. Furthermore, in a corrugated wave-
guide with corrugations of depth d, the longitudinal impedance Z, is
determined by kd, and there are certain frequencies for which Z, = 0.
A similar situation arises in Fig. 1b where both Z, and Z, vary with kd.
Throughout this article it will be assumed that the quantities

1 1 Z, 1 Z
ka’ ka Z' ka Z,
are small. Therefore, the results will not apply in the vicinity of the
above frequencies.

A direct consequence of condition (6) is that the boundary values of
y vanish, in the limit as ka — o,

klim Y(x,y) =0 on C. (10)

Another consequence is that Y approaches a distribution .. indepen-
dent of ka, for ka — . For finite ka,

‘P = ‘Pﬁ + 84’! (11)
where 8 (but not ) varies with ka and
j|!]jm 8y =0. (12)
Notice condition (10) implies that
Yo =0 on C. (13)
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These results are of practical interest for several reasons. In the design
of a feed,® it is desirable that the boundary values of { be small [as
implied by eq. (10)] since these values determine radiation in the side-
lobes due to edge diffraction at the aperture. Furthermore, for broad-
band applications, it is desirable that the frequency dependent part
8y of the aperture illumination be small, as implied by eq. (12). Finally,
in a corrugated waveguide, or a waveguide with metal walls coated by
dielectric layers, power is lost only at the walls and, therefore, it is
determined by the boundary values of ¥. Since these boundary values
vanish for ka — o, the attenuation constant for the above waveguides
for large ka is very small***'®%'; it is asymptotic to ka % We shall see
that in general y.. is independent of [H] and, therefore, a variety of
different waveguides, with different [ H | but the same boundary shape,
give rise to the same y... This explains the similarity, noted in Ref. 9,
between the modes of a corrugated waveguide and those of an optical
fiber, a dielectric lined waveguide,* and a hollow dielectric waveguide.”
This similarity implies that essentially the same radiation character-
istics of corrugated waveguides can also be obtained with a variety of
other waveguides.

In the particular case of the optical fiber, some of our results are
implied by the asymptotic expressions derived in Ref. 7. Exact solu-
tions for the modes of the corrugated waveguide,'? the optical fiber,’®
and the hollow waveguide of dielectric’ are known for circular geom-
etry. For a rectangular cross section, only approximate solutions®* are
known, except in special cases.”® Exact solutions for the slab waveguide
are given in Refs. 8 and 24. In all these cases one finds that condition
(3) implies condition (10). Measurements of the radiation characteris-
tics of a dielectric horn are described in Refs. 25 and 26. Some of
the properties derived here apply also to propagation in stratified
media.” " The use of surface impedances to characterize a boundary
is discussed in Ref. 30.

Il. BOUNDARY CONDITIONS FOR ka — «

We now derive and discuss eq. (5). Figure 1c shows a waveguide
directed along the z axis and of general cross section in which » is the
outwardly directed normal and 7 is a unit vector tangential to the
boundary,

T=1. X ». (14)

The medium inside the boundary is assumed to be homogeneous and
isotropic. Let C denote the closed contour of the boundary in the plane
z=0.

We are concerned with the properties of {(x, y) in a waveguide of
large transverse dimensions. Thus, consider a mode propagating in the
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waveguide of Fig. 1b and suppose the width 2a is increased keeping
the dielectric thickness d fixed. The resulting behavior of Y(x, y) as ka
— ® can be derived exactly in two cases, when (see Appendix C)

e =0 (15)

3y
and when the boundary is a circle. In both cases one finds that for
most of the modes 8 — k&, as ka — . For these modes, the normalized
field amplitude ¥(x, y)/¥(0, 0) becomes infinitesimal at the boundary
for ka — o. For the remaining modes, those for which 8 does not
approach £, just the opposite behavior takes place: The field becomes
confined to the immediate vicinity of the walls, degenerating into a
surface wave with propagation constant determined by the surface
impedances of the walls. Here, consideration will be restricted to the
modes satisfying condition (3). An important property of these modes
is that asymptotically, for large ka, the surface impedances Z, and Z.
become independent of ka. In fact, if one writes

Z, Z
X=-J A = JZ. (16)
then in Fig. 1b
1
X—>———— tan(vVn®—1kd), (17)
vnt-1
2
Yo -2 ! (18)

CJnT=1 tan(Vn’ — 1kd)’

as shown in Appendix C. Thus, Z, and Z. depend only on the refractive
index n and the thickness kd of the dielectric layer.

For a circular boundary, the above relations can be derived rigor-
ously by expressing the field in terms of Bessel functions, and then
making use of well-known expressions giving the asymptotic behavior
of these functions for large arguments as in Ref. 5. They can also be
derived by the following argument, which applies in general to a
boundary of arbitrary shape (Fig. 1c). Consider the field in the vicinity
of a boundary point P in Fig. 1c. Since ka is large, the curved boundary
can be approximated locally by the tangent plane. Furthermore, since
B = k, the field is produced locally by a plane wave at grazing
incidence. If one determines the law of reflection for such a plane
wave, and takes into account that the plane of incidence is parallel to
the z axis, one obtains®?*" egs. (16)-(18).

The above argument can be used to derive the asymptotic behavior
of Z, and Z, for a variety of other waveguides, illustrated in Fig. 2. In
case (d) the boundary is a smooth surface of lossy metal with surface

* Notice kg denotes £ in free space.
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resistance R;. In (a) the metal surface is corrugated. In (b) the medium
outside the boundary is dielectric with refractive index n, < n,. This
corresponds to the optical fiber of Fig. 1a. In (c), n2 > n, as in Ref. 2,
and, therefore, both Z, and Z, are real, which implies power is lost
through the boundary. Other boundaries of practical interest are
obtained from Fig. 2 by placing a grid of thin wires tangent to T on the
boundary. This will cause Z, = 0 in all cases. For all these waveguides
one finds, for large ka, that [H ] in eq. (5) is a diagonal matrix,

Y O
H]=- (19)
HI=-|y x|
TYPE OF BOUNDARY Z; z-
i P> > .
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Fig. 2—Asymptotic values of the surface impedances Z. and Z, for different boundary
conditions.
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and the coefficients X and Y are determined by the surface impedances
given in Fig. 2. Notice there are cases where [H] is not a diagonal
matrix, as pointed out in Section VIIL

_In the following sections we consider a waveguide with boundary
conditions given by eq. (5) and derive simple expressions for the
dependence of Y(x, y) upon the matrix [H]. These expressions are
obtained neglecting terms of order higher than 1/ka and, therefore,
they do not require an exact knowledge of [H], but only of the
asymptotic behavior of [H], which can be determined as seen in this
section. In Appendix A, a procedure for determining ¢ to any desired
accuracy is pointed out, but the procedure requires that [H] be known
accurately. Any desired accuracy for [H] can be obtained by a proce-
dure of successive approximations, but the resulting expressions are in
general too complicated to be of practical interest.

Concerning the validity of the following derivation, it is important
to realize that even though the expressions obtained for ¢ will not
satisfy the actual boundary conditions exactly, the errors will be small,
of order two in 1/ka. These errors imply the conditions satisfied at the
boundary by the expressions in question can be obtained, from the
actual conditions, by small perturbations, of order two in 1/ka.

. ASYMPTOTIC PROPERTIES OF v

We now determine the dependence of J(x, y) upon the matrix [H].
To this purpose, it is convenient to assume that [H] is independent of
ka. The expressions obtained for Y(x, y) will depend on the coefficients
of [H]. By substituting for these coefficients the expressions obtained
in Section II, one obtains the dependence of § upon ka in general, for
a waveguide with frequency dependent [H].

Thus, consider a waveguide characterized by a given matrix [H],
and let

o’ =k? - g% (20)
Let ¥(x, y) and o” be expanded in power series of I/ka,
=1
l’l = ‘pﬂ’(-ts y) + igl m ‘lbf(x! J’). (21)
2 _ 2 - G
g = am(l + 2-:1 _(ka)i) (22)

where the distributions .., {1, etc., are independent of ka; they are
determined entirely by the shape of the boundary and the coefficients
of [H].

Using egs. (21) and (22) one can derive from eq. (5) for large ka (see
Appendix A) a set of linear relations involving ¥ and the normal
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derivative &y/av,

a'l,b }
Y 1
— [H] + O[E?] on C. (23)
Tk W’
‘P‘r a
d p 4
Expressing ¢, and . in terms of the x- y-components of y, we obtain
;.18
‘Px 1 ‘5:
=—[A] + O[k%] onC, (24)
k Yy
'Py B_
d y o
where
= Ve, Vy Vx, —Vy
[A] [ v, yx] [H] [v,, v }, (25)

v. and », being the direction cosines of ».

3.1 Derivation of y. and ¢,

We now show that for each nondegenerate eigenvalue o.. there are
in general two modes, characterized by different values of ¢;. For most
waveguides, [ H] has the diagonal form (19), and in this case we shall
see that .. is linearly polarized. Furthermore, if the boundary has an
axis of symmetry, then the polarization vector i of . is either parallel
or orthogonal to the symmetry axis. Very simple expressions are
obtained in this case for .., ¢1, y1. More difficult is the treatment for
degeneracy of order N > 1. Then, in order to determine .., one must
find the 2N latent roots of a certain characteristic equation.

The function y must satisfy the wave equation,

Viv+ ey =0, (26)

V. being the transverse part of V. Equation (24) implies that the
boundary values of ¢ vanish in the limit as £ — o.* It is, therefore,
convenient to represent y in terms of the eigenfunctions fi, fi, etc.,
that satisfy the boundary condition

=0 onC. (27
Let u, be the eigenvalue of f,,
Vif + ulf = 0. (28)
From equations (21) and (22) for 2 — oo, one has
Vo e, 0 0, (29)

* From now on the waveguide dimensions will be kept fixed, as  is increased.
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and, therefore, .. must satisfy the wave equation with ¢ replaced by
0. Furthermore, from eq. (24),

V=10 on C. (30)
Therefore, 0. must be one of the eigenvalues u,. Let
O = U (31)
and suppose there is degeneracy of order N, so that N distinct eigen-
functions fi, - -+, fv correspond to the same eigenvalue. Then
Uy =+« =UN (32)

and .. can be written in the form

E Oxm (X, ¥) iz + Z Aym frn (X, ¥) 1y, (33)

m=1

involving N eigenfunctions and 2 N coefficients axm, aym. We now show
that these coefficients cannot be chosen arbitrarily, but there are in
general only 2 N possible choices corresponding to 2N distinct modes.

3.2 Values of axm, aym

The values of  at any point (x’, y’) inside the boundary are related
to the boundary values through the integral relation* *

W y') = f iz 9 2 a, (34)
¢ v

where G = G(x, y; x’, ¥') is Green’s function satisfying the equation
G+ 0’G=08(x—x")o(y—y) (35)

and the boundary condition G = 0 when x, y is a point of C. Let G be
represented in terms of the eigenfunctions frs

G= E 2fr(-t N, Y, (36)

where it is assumed that f; are properly normalized so that they are
real functions satisfying

JJ fix, y) dxdy =1 (r=12--.), (37)
S

S being the region inside the boundary C. From eq. (36), G contains a
component

N
G. = );, frlx, ) f(x", ¥'), (38)

o’ i
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which diverges for £ — o, since 0 — 0. For large &,
11X
G. = ka . Y e, ) frx’, y0). (39)
w L1 1

The asymptotic behavior of eq. (34) for large % is now examined.
Approximating G by G, from eqs. (24), (25), and (34) one obtains the

integral relation
1 [ ag 2] 96
o] ar]
where
%} - i:;]. (41)

Substituting eq. (39) in eq. (40), and taking into account eq. (33), one
obtains for the coefficients a.., aym the characteristic equation

a:] — [IH] [Ixy] 0]
a,]] o [[Iw] [I,,]} a,]]’ (42)
where
ax]=“§“}, ay]=“;"] (43)
and
A R
(Ixr)r.s- Ui J’CAxx v av dl) (44)

and similarly for I, I,., I,, (replace A.: with Ay, Az, A,,).
Equation (42) admits, in general , a total of 2N independent solu-
tions a1 ], az], - - -, aen] for

ay ]

= . 45

a] ay]} (45)
Each solution is obtained by solving eq. (42) with ¢, set equal to one

of the 2N latent roots A, As, - - -, Aoy of the matrix
[I=]  [Is]
Il= . 46
7] [[Iﬂ] L] (46)

If the boundary is lossless, then one can verify that [I] is Hermitian
and its latent roots are real. In this case the 2N solutions are orthog-
onal,

o;lagJf =0 for 1#s, (47)

where ( )/ denotes the transpose conjugate.
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Thus, to determine the coefficients a., ay, etc., which specify Yo,
the 2N latent roots of the matrix [ I ] must be determined. If the roots
are all distinct, then they correspond to 2N distinct modes character-
ized by different ¢, i.e., by different propagation constant . If there
is degeneracy (NN > 1), the expressions obtained from eq. (33) for Y=
are quite complicated. Much simpler is the treatment for N = 1, since
then only one eigenfunction fi(x, y) is involved. This is the most
important case in practice, since it applies to the fundamental modes,
which correspond to the lowest 0. (see Appendix B).

3.3 CaseN=1

For N = 1, only one eigenfunction fi(x, y) corresponds to o. and eq.
(33) reduces to

\Pm = fl(xs y)i, (48)

where i is a unit vector that determines the polarization of V.. If A; #
Az, then eq. (42) for N = 1 specifies two polarizations, corresponding to
two modes with different propagation constants. T'o determine these
two polarizations, let a. and a, be the direction cosines of i. Then from
eq. (42) with N = 1,

Ix_x -1 Ixy x|
[I,, I, - cl} a,:| =0 (49)

2
Lo=2 f A,,[ﬂé] dl, (50)
O . av

and similarly for I, I ., I,, (replace A.. with A.,, etc.). From eq. (49)
one obtains for ¢; the characteristic equation

(Ix.r - C:)(Iyy - cl) = Ixnyx, (51)

whose solutions A; and A; determine for i two eigenvectors i; and i;
with direction cosines specified by eq. (49). Notice i; = iz if A; # Az, If
the boundary is lossless and A; # Az, then from eq. (47)

i-i =0, (52)

and, therefore, the two eigenvectors represent orthogonal polarizations.
For all the waveguides of Fig. 2, [ H] is given by eq. (19). Then

where

L, —I,x,=—_f (Y - X)pxpy["fl] di, (53)
oy
L. =__J’ (Yv? + Xv2) [af‘} (54)
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and similarly for I,, (interchange x 2 y). Since in this case [I] is a
symmetric matrix,

i - 12=0, (55)

and if i, is real (Y. is linearly polarized), then i; is also real and
orthogonal to i,.

We conclude by deriving a general condition that must be satisfied
so that y.. is linearly polarized. Suppose i is real. Then the x axis can
be oriented so that i = i.. This implies a, = 0 and therefore I,. = 0. We
conclude that linear polarization is obtained only if it is possible to
orient the x axis so that

2
f (Y - X)v,vy[ﬂﬁ] dl=0. (56)
c av

Notice then I, = I, = 0, and, therefore,
i1 = i;, iz = iy. (57)

The above requirement is always satisfied if the boundary is lossless
(then X and Y are real) or if the values of X and Y are independent of
position [/ on the boundary. It is also satisfied if the boundary has an
axis of symmetry. In fact, let the symmetry axis be the x axis. Then X,
Y and af, /dv in eqgs. (53) and (54) are even functions of y,

X(x, y) = X(x, -y), Y(x,y)=Y(x, —y), (68)

whereas v,», is an odd function of y, which gives condition (56).

We thus conclude that in most cases of practical interest .. is
linearly polarized. This is of importance in the design of a feed for
reflector antennas, to obtain good cross-polarization discrimination
over a wide frequency range.

IV. PROPAGATION CONSTANT FOR N = 1

Assume the boundary has an axis of symmetry given by the x axis
and let N = 1. Let [H] be given by eq. (19), which applies to all
waveguides of Fig. 2. Then, for the mode polarized in the x direction,
the coefficient ¢; coincides with I, and it is given by eq. (54). Notice
eq. (54) assumes that fi(x, y) is normalized as shown by eq. (37). If fi
is not normalized, we must divide the right-hand side of eq. (54) by the
left-hand side of eq. (37) with r = 1, then obtaining

(Z. vi]|Z + Zv:i/Z.) (3f./ov) dI

c
ul JJ fi dxdy
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for i = i,. For the other polarization i = i,, interchange », £ », in the
above expression, which shows that the two polarizations are in general
characterized by different propagation constants.

Once c; is known, the propagation constant 8 can be derived using
egs. (20) and (22) which for o.. = u, give

g=p-im_1 e cit (60)

where the dots indicate terms of order higher than two in 1/%. If the
medium inside the waveguide is lossless, % is real and the attenuation
constant 7 is determined by the imaginary part of c¢;. Then eqs. (59)
and (60) give

(rv3 + gv3)(3fi/ov)* dlI
7 =—Im(p) == ; (61)

2k*? II fidxdy

where r and g are the real parts of Z,/Z and Z/Z.. This relation was
used in Ref. 1 to determine the attenuation constant for a variety of
waveguides of practical interest.

Using the above expressions one can straightforwardly calculate the
dispersion and attenuation characteristics of any mode for large ka. In
the special case of a hollow waveguide of dielectric with circular
boundary, eqs. (59) and (60) give eq. (31) of Ref. 2.

Of greatest importance are the fundamental modes, which corre-
spond to the lowest o... Then, for the circular boundary of Fig. 3,

filx, y) = Ado(owp), (62)

where p = VxT + y?, o is the Bessel function of order zero, and o.a is
the first root of Jo,

0.0 = 2.4048. (63)
For the rectangular boundary of Fig. 3,

= Tx Ty
filx,y) =A cos(2 a) cos(2 b)' (64)
If fi(x, y) is normalized [see eq. (37)], then

1 1 .
m —-——Jl ) (circle),
A= (65)
—1— le).
o (rectang
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T

Fig. 3—Circular and rectangular boundaries.

V. THE DISTRIBUTION v,

Once .. is known, the boundary values of Y can be calculated with
error of order two in 1/k using eq. (23). If N=1,i = i, and [ H] is given
by eq. (19), then one obtains at the boundary

1 a
= — % I:(X:@ + Yod)i, — (X - Y)v,yyiy] £ onC. (66)
To determine y inside the boundary we separate ¥ into two parts, a

component

fl(x) J’)i,

plus a component due to the other eigenfunctions f;, fs, etc. The latter
component can be determined with error of order two in 1/k by
substituting eq. (66) in the integral of eq. (34), with G replaced by G
— G. for ¢ = 0., as shown in Appendix A. Concerning the former
component, it is shown in Appendix A that if the boundary has an axis
of symmetry, then i is independent of %, and, therefore, one can set
i = i, for all values of k. If there is no symmetry, then in general iis a
function of % and, to determine its dependence upon k, one must follow
the same procedure used in this section to determine i for £ — oo.

VI. APPLICATIONS

We now derive the fundamental modes of circular and rectangular
boundaries with diagonal matrix [ H] given by eq. (19), which applies
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to all the waveguides of Fig. 2. The surface parameters X and Y will be
assumed to be independent of position on the boundary. Then for

i=i,,
Vo = fi(x, y)ix, (67)

giving ¢ in the limit as # — . We now wish to obtain a better

approximation for y.
For the rectangular boundary of Fig. 3b in eq. (66), one has ».», =0,
and, therefore, Y has the same polarization as ., i.e.,

¥ = yi,
neglecting terms of order two in 1/k. The boundary condition (23) can

then be satisfied separating ¢ into a product of two functions, 1 (x)
and y2(y), subject to the conditions

lP] = - IE for x= *a, (68)
Xa

S (69)
k ov

whose solutions are well known.?*®' For the fundamental mode one
obtains

Y = A coS ax cos yy, (70)

where

T Y 7 X
aa_E[l—E+...]_ yb—§[1—5+---j|. (71)

These results are closely related to expressions derived in Ref. 3 for a
dielectric waveguide. Notice that for & — o the rectangular waveguide
degenerates into two parallel plates placed at x = *a, in which case
Y — Y1 (x) and the modes can be derived exactly as in Appendix C.
Similarly, for @ — « one obtains two plates at y = b and ¢ — y2(y).
If both a and b are finite, then eq. (70) shows that ¢ is simply the
product of the two distributions ¥, (x) and ¢»(y), provided terms of
order two in 1/k can be neglected.

Next consider the circular waveguide of Fig. 3. In this case it is
convenient to introduce polar coordinates p, ¢. Taking into account
that X and Y are independent of ¢, one obtains for the fundamental
mode

V= ¥ \
A{ - Y (0=0)

Jo(op)iz — ——

1 = J2(0p)(cos2¢i, + sin24iy) + - - } , (72)
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where the dots indicate terms of order two in 1/, and from egs. (22)
and (59),

X+Y1
= Ok 1-— e ) y
oa oa|: 5 Ta } (73)

0. a being given by eq. (63). These expressions were derived previously
for X = 0 in Ref. 5 and therefore details of their derivation are not
given here.

The above results for rectangular and circular waveguide are valid
provided £ is large enough so that the field at the boundary is small.
From eq. (66) this requires

1 X

Y
— 1 — 1 —<x 1.
ka ’ ka ’ ka

If the waveguide dimensions are large enough, the results apply even
to an ordinary waveguide with metal walls of finite conductivity. To
determine how large the dimensions must be, consider for instance
copper at 100 GHz. Then R,/Z = 2.189 X 107*, and from Fig. 2d one
obtains | Y| =514 and | X | = 5 X 10~°. Therefore, the above inequalities
require

2a >> 10004,

which is too large a diameter for all practical purposes.

The above requirement is a consequence of the large value of Y for
copper walls. By coating the walls with a thin dielectric layer, or by
corrugating them, much lower values of ¥ can be obtained. Suppose
for instance in Fig. 2e one chooses T =1, R,= 0,n, = 1, and nf = 2.
Then, instead of the above requirement, one obtains a >>0.318A, which
is a much more realistic condition. The attenuation constant of such
a waveguide, or of other waveguides realized using one of the structures
of Fig. 2, can be determined straightforwardly using eq. (61)."

When a waveguide is used to illuminate a feed aperture, then at that
aperture usually ka > 1. Then the aperture illumination is given
accurately by egs. (70) or (72) for rectangular and circular apertures.
For other apertures, it can be determined as pointed out in Section V.
By deriving the Fourier transform of egs. (70) and (72) the far-field
can be determined and thus its dependence on the aperture parameters
X and Y can be obtained. These applications are discussed in Ref. 1.

Helical waveguide— A case where [H] is not a diagonal matrix

Consider one of the waveguides of Fig. 2, and let a helical wire be
placed at the boundary, as in Fig. 4. Then one finds that [H]is not a

HIGH-FREQUENCY BEHAVIOR OF WAVEGUIDES 105



_BOUNDARY C
/

g

6
o

Fig. 4—Helix with pitch angle 6.

diagonal matrix,
-1
[H]= cos’8 — XY sin?d

Y, Jj sinfl cosf(1 + XY) (74)
| —/ sind cosf(1 + XY), X ’

where X, Y denote the coefficients of [ H] for § — 0, # being the pitch
angle between the wire and 7.

Consider a circular boundary. Then, we have seen that for § = 0 the
fundamental modes have the same propagation constant, and are
linearly polarized for 2 — . In this section we show that for § # 0
they become circularly polarized, and have different propagation con-
stants 8; and 8.. This implies the following. Suppose at the input of
such a waveguide (Fig. 4) the fundamental modes are combined so as
to obtain, to a good approximation, linearly polarized excitation. Then,
one will not obtain, in general, linear polarization at the output, unless
the difference between the two propagation constants is small enough
so that

(B: = Bl =<,

8

I being the waveguide length. In this section we derive 8; and §,.
Helical waveguides are of importance for their simplicity of construc-
tion, as compared to corrugated waveguides, and for their excellent
performance as hybrid-mode feeds, as shown recently by R. H. Turrin®
whose work motivated the calculation of this section. The following
results agree with Ref. 34. '

Let consideration be restricted to the fundamental modes of a
lossless boundary with [ H] independent of position on the boundary.
Then, from eqs. (25) and (44)

I.\'J: = Hllpx.r - (H]2 + H2l)pxy + H22Vyy, (75)
Ixy = (Hll - H22)V.ry + Hlﬂl’xr - H2Ivyy; (76)
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and similarly for I,, and I,, (interchange 1 & 2, x 2 y), where

1
Vik = — ViV
Ox J

Since the boundary is assumed to be lossless,
(Im)(va) = Hlﬂ(”xr + Vy_v), (78)

and, therefore, I,, # 0. We conclude that for Hy; # 0 there is no
degeneracy possible for the fundamental modes. For a circular bound-
ary, using egs. (74), (25), (50), (51), and (62), we obtain

6—f" dl (j,k=1x1Y). (77)
av

1
i=—(:xJi) (79)
\/5 Y
and
oa = 0=a 2(cos’0 — XY sin’f)

AE* Y ointeos 02X ) 4 .. | (80)
ka ka

with the plus sign of eq. (79) corresponding to the minus sign of eq.
(80). The same expressions apply also to a square aperture with a = b.
Thus, in both cases ¥, is circularly polarized. If XY + 1 > 0, then the
lower value of o corresponds to a mode with polarization rotating in
the sense of the helix in Fig. 4. The opposite is true for XY + 1 < 0.

VIl. CONCLUSIONS

To summarize, we have shown for most of the modes inside a
cylindrical waveguide of finite surface impedances that asymptotically,
for large values of ka, the field y vanishes at the boundary. We have
seen in Section III that for each eigenvalue u, there are, in general, 2N
modes, given for £ — o by eq. (33). For the lowest eigenvalue one has
N =1, and for the corresponding two modes ¥, is given by fi(x, y)i,
where i is a unit vector. If the direction cosines of i are complex, then
Y. is elliptically polarized. If [H] is a diagonal matrix, as for the
waveguides of Fig. 2, and the boundary has an axis of symmetry, then
iis real, and one can always orient the x axis so that i = i.. In this case
the propagation constant 8 is given by egs. (59) and (60), and using
the procedure of Appendix A we can straightforwardly determine v,
with error of order two in 1/k, for any boundary shape. For rectangular
and circular boundaries  is given by eqs. (70) and (72).

Of special importance are the fundamental modes, which correspond
to the lowest eigenvalue o... These modes, treated in Section 3.2, are
needed in reflector antennas to minimize cross-polarization and edge
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illumination over the feed aperture. They are also needed for long
distance waveguide or fiberguide communication. Our results, show
that there is no need to corrugate the walls of a feed in order to obtain
conditions (11) and (48) or to obtain the low attenuations calculated in
Refs. 20 and 21. Furthermore, they imply that the low attenuations
predicted in Ref. 2 for a hollow waveguide of dielectric, or for a
waveguide with metal walls coated with dielectric, can be achieved
also using other waveguides. These applications are discussed in
Ref. 1.

APPENDIX A
A.1 Derivation of eq. (23)

Taking into account that V.E = 0, one can express E, in terms on
the transverse component given by eq. (2). One obtains

E

— V.

B

Using this relation and Maxwell’s equation —jwuH = V X E one can

express H. and H, in terms of y. Substituting these expressions in eq.
(5), we obtain the boundary condition

k 14
2 = (Vi) — (V:-¢)
}=%[H] B }+ B* ov } (81)
¢ Vx| 0

Taking into account egs. (21) and (22) for £ — o, we have
y— 0, on C.

E.=

This implies

Vb xyi O
av av

Taking into account these relations, from eq. (81) we obtain eq. (23)
with error of order two in 1/k.

A.2 Development of o 2 and y in Asymptotic Series of 1/ka

A general procedure for deriving the various terms c., ¥: in egs. (21)
and (22) is now described, thus justifying these equations. Assume that
the boundary has at least one line of symmetry, since this simplifies
considerably the derivation, and it applies to most cases of practical
interest. Also assume that [ H] has the diagonal form of eq. (19), and
that a single eigenfunction f(x, y) corresponds to 0w.

Since there is no degeneracy, V.. is given by eq. (48). Let the x axis
coincide with the symmetry line. Then, the surface parameters X and
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Y are even functions of y,
X(x) —J’) =X(x! .)’) a-nd Y(I) _J’) = Y(x) y)) (82)

and we now show the modes can be divided in two groups, namely
even modes satisfying

Yxlx, =y) = Yx(x, y), U(x, =y) = =dy(x, y), (83)
and odd modes satisfying
Ue(x, =y) = —{ul(x, y), Ulx, —y) = Y (x, ¥). (84)

In fact, let
¥ = ulx, y)ic + Y (x, ¥)i,

be a solution of the wave equation and of the boundary condition (81)
with [ H] given by eq. (19). Then we wish to show that

V= alx, =y — dy(x, —y)i,

is also a solution. Notice that ¢’ is the image of | with respect to the
x axis, as shown in Fig. 5, where P and P’ denote two corresponding
points (x, ¥) and (x, —y). One can verify that

(Vex Y )p = —=(V: X {)p, (85)
(V") e = (Vi) p. (86)

If P is a boundary point, and »’ and » denote the normals to the
boundary at P’ and P, respectively, one has that v’ is the image of v
because the boundary is symmetrical. Taking all this into account one
can verify that y’ satisfies the boundary condition (81) with [ H] given
by eq. (19) at P’. We conclude that if an arbitrary solution v is known,
two independent solutions v, and ¢, can be obtained by the relations

ve="%[y+ ¢,  do="8Yy -] (87)

o—_F

\ y
Fig. 5—For a symmetrical boundary, the boundary conditions are satisfied by both
¥ and its mirror image v’
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One solution, v, is even and the other, |, is odd.
We now proceed to derive o” and y. Let i = i, and assume f; (x, ) is

even, i.e.,
filx, y) = filx, —y), (88)

all other cases (i = iy, or fi odd) being entirely analogous. Then ., and
y, are, respectively, even and odd and it is convenient to separate G
into three parts,

G=G-+G:+G,, (89)

®

where G;, G, denote, respectively, the even and odd parts of G — G...
Taking into account that y. is even, from egs. (34), (36), and (89) one
obtains

Vo= Aufil, y) + j .2 (90)
c d
where
"—f‘dz (91)
Similarly, for v,
f 5% a (92)

In eq. (90), since ¥ can be multiplied by an arbitrary constant, the
coefficient A; can be chosen arbitrarily. We choose A; = 1, to be
consistent with {. = fi(x, y)i.. Then eq. (91) gives

ol —oi= J'tl)xa—fldl (93)

a basic relation that expresses ¢ in terms of the boundary values of
{». Expanding Y. in a power series of 1/ka, from eq. (91) one obtains
for the ith coefficient of o2,

1 9,
Ci=— f 2% -['1' dl, (94)
0= Jo av
where Y, is the x component of ¢; in eq. (21). From eq. (66),
a
Yr1 = —(X:rf, - Yria B_il’ (95)

* Thus G, is obtained from eq. (36) considering only those terms for which f; are odd,
whereas for G., consideration is restricted to f, even with r > 1.
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and, therefore, for i = 1, eq. (94) gives eq. (59).
From egs. (90) and (92), taking into account that at the boundary
W=y—vda=1,

: BG‘ an
S‘P.t = J’ 64’4\' dl: 8‘!’! = J S‘P)’ - dl. (96)
c v - av
Thus, using eq. (95), we obtain
Ye1 = — J (X"§ + Ylo'i) B_fl (aGI) dl- 97
c av \ v .

for the values of v, inside the boundary whereas for {51, using eq.

(66), we obtain
Yy = j Vx":f(x -Y) a_fl (a_Gy) dl, (98)
c ar \ ar _

where ( ). denotes the value for ¢ = 0. Equations (97) and (98) allow
¢ and its derivatives to be determined with an error O(1/k). Therefore,
the right-hand side of eq. (81), which contains the factor 1/k, can now
be calculated with an error O(1/k%). The boundary values of Yx2, Y2
are then obtained from eq. (81).

Once these values are known, eq. (96) can be used to determine 2
and v, inside the boundary. Equation (81) can then be used again to
determine the boundary values of i»a \,3, whose values inside the
boundary can then be calculated using eq. (96). By proceeding this
way, we can successively calculate all ., ¥, Notice in eq. (96) that
the kernels depend on ¢°. Therefore, to determine yxi, Y5 for i > 1, we
must first calculate the coefficients c¢;, - -, ¢;-; using eq. (94). Once
these coefficients are known, the kernels must be developed in power
series of 1/k, and then the first i — 1 terms in these series must be
determined. These terms then allow eq. (96) to be used to determine

‘Pzi » \byi .

APPENDIX B

Let f, be one of the eigenfunctions satisfying the boundary condition
fi = 0 and the wave equation

fo| + H.T,fl =(),

and let u, be the lowest eigenvalue. This implies that if g(x, y) is an
arbitrary function with continuous derivatives, then

[ J gVig dxdy < u} JJ g* dxdy, (99)
S 8
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where the inequality sign applies to any g(x, y) that is not an eigen-
function corresponding to the eigenvalue u,.

Condition (99) is now used to show that f; cannot have nodal lines
inside S. In fact, suppose f1 has a nodal line inside S, and let

g=|hl.

Then, since V.g is discontinuous across the nodal line, g cannot be an
eigenfunction, and, therefore, condition (99) should give an inequality.
To evaluate the integral

I=ff gVig dxdy (100)

in the immediate vicinity of the nodal line, where Vg diverges because
of the discontinuity of V. g, write

gVig =V.[gV.gl - (V.g)*

and notice that

&v.g

is continuous because g = 0 on the nodal line. It follows that gVig
does not diverge on the nodal line, and, therefore, its integral over a
narrow strip containing the nodal line vanishes as the width of the
strip goes to zero. Thus,

I= jJ’ fiVifi dxdy = ul Jj f1 dxdy (101)
s s

and, therefore, condition (99) gives an equality, which implies f, cannot
have nodal lines inside S.

It is now shown that f; is the only eigenfunction corresponding to
u,. In fact, if £, is another eigenfunction corresponding to u;, then this
must be true also for

f=hH+afs

where a is an arbitrary constant. But this is not possible, since one can
always choose a causing f to have a nodal line inside S, and we have
already seen that this violates condition (99).

APPENDIX C

Consider the modes propagating between two parallel planes or-
thogonal to the x axis and let 2a be the spacing of the two planes.
Assume at the boundary one of the conditions of Fig. 2, and let the x
axis be oriented in the direction of propagation, so that there is no
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variation in the y direction. Then
¢ = Y(x)i, (102)

where i is a unit vector. For the TM-modes, i = i,, whereas for the TE-
modes i = i,. For the former case E, = H. = 0 and, therefore, ¢ is
independent of the transverse impedance Z,. In the latter case H, = E.
= 0 and ¢ is independent of Z.. In either case one finds**’ that the
surface impedances Z, and Z; in eq. (9) can be determined straightfor-
wardly. For two metal plates with dielectric coating of thickness d, for
instance, Z, and Z, are determined entirely by 8, d, and the refractive
index n of the dielectric,

k
X=?\/;Z_?tan (d vk2n2 - ,82) , (103)
n% —
and
n’k 1
Y=— , (104)

k*n? - §* tan (a’ vk*n® — Bz)

which for 8 — k give egs. (17) and (18). Analogous expressions are
obtained for the other boundaries in Fig. 2.
Consider the even modes with i = i,

Y = Yi, = cosoxi;, (105)

where from eq. (81) the wavenumber o must satisfy®'

Y 1

= 106
ka oatanca (106)

whose behavior for real values of oa is illustrated in Fig. 6a. If Y # oo,
then Y/ka vanishes for ka — » and, therefore, for most of the solutions
of eq. (106),

oa—»mﬂ'—g, m=12 ---, (107)
as ka — . In addition to these solutions, for Y < 0 one mode exists

for which oa is imaginary and®
k
oa—a-—j—a, as a— o, (108)

Y

Equation (107) implies that the boundary values of ¢ vanish for ka
— o, whereas eq. (108) implies that the mode is a surface wave whose
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Y/ka

Fig. 6—Relationship between oa and Y/ka for the TM-modes of a parallel plate
waveguide. Notice in the dielectric-lined waveguide the spacing 2a of the two plates
increases with z. As a consequence, the field amplitude ¢ at the boundary decreases
with a, for the mode with m = 1.

amplitude in the vicinity of the walls is given by

1 k k
¢=—exp(+-ga) exp(—— x—a ) (109)
2 P\ {y] vyl
Notice eq. (107) implies
B— k, (110)

as ka — oo, whereas for the surface wave

f 1
B—k 1+?#k. (111)

To understand the significance of these results, consider two metal
plates with dielectric coating as in Fig. 1a. Let the separation a of the
two plates be gradually increased in the direction of propagation, as
shown in Fig. 6, and let ¢ — o as z — . Let the dielectric thickness

114 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1981



d be so small that initially, for z =0,

Y"—m (112
ka ’ )

Then the modes for z = 0 are essentially those of an ordinary waveguide
without dielectric coating,

oa = mm (m=0,1,2,---). (113)

For z > 0, however, the magnitude of Y/ka decreases with z, and
Y/ka — 0 for z — o. This implies, for all the modes with m # 0,
conditions (107) and (110) and, therefore, the boundary values of v
vanish for z —» «. For m = 0, on the other hand, oa is imaginary and
initially oa = 0. This mode will degenerate for z — o« into a surface
wave with propagation constant determined by Y as shown by eq.
(111). This is the only mode for which the field does not become
infinitesimal at the walls for z — . For all the other modes the
boundary values of  for large ka are given by

oa

(=1n" Yka’

(114)

which vanishes for ka — o.

The above considerations apply also to the TE-modes. In fact, it can
be verified that if in eq. (2) E, is replaced with ZH, so that y represents
the transverse component of ZH,, then, for the even modes, y is still
given by egs. (105) and (106), provided Y is replaced with X. The
behavior of the odd modes is entirely analogous; simply replace
cos ox with sin ox in eq. (105), and tan with — cotan in eq. (106).
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