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Effects of Scanning Interval
on Peak Load Measurements

By R. CONTE
(Manuscript received October 31, 1979)

During periods of peak traffic in a communication system, it is well
known that load measurements obtained by switch counts are biased
upwards as a result of both variation in the source load and of the
scanning process itself. This paper investigates the bias introduced
into the expected value of a peak load measurement as a result of the
scanning process. For small values of source load, we show that this
effect is most pronounced when the scanning interval greatly exceeds
the average holding time of the item being measured.

I. INTRODUCTION

The determination of the load carried by a group of circuits is of
prime importance in facilities engineering. The present technique for
acquiring data is the switch count method. Here the equipment is
scanned at fixed intervals, and the total number of busy circuits is
recorded. Dividing this total by the number of scans during the
observation interval yields an estimate of the carried load in erlangs.
Typically, a day may contain N such observation intervals. The daily
bouncing busy-hour measurement is obtained by retaining the largest
usage measurement of the N daily observation intervals. Averaging
this quantity over a number of days should give an indication of
average peak loads to be expected. Since there is some inherent error
between the carried load of an observation interval and that deter-
mined by the switch count method, it is important to know the effect
of this discrepancy on the expected bouncing busy-hour measurement.

Il. SCANNING ERRORS AND BOUNCING BUSY-HOUR MEASUREMENTS

To quantitatively study this phenomenon, the following model for
the process was chosen. Calls are assumed to arrive according to a
Poisson process, holding times are exponentially distributed, and the
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number of circuits is unlimited so that there is no blocking of incoming
calls. All hourly source loads are equal, and this load is denoted by A.
Each day is divided into N one-hour observation periods with the
measurements made during individual hours statistically independent.
(This is justified by the relatively short holding time compared to the
one-hour observation interval.) Letting A; denote the carried load of
the ith hour, M; the measured usage (obtained by scanning), and e; the
discrepancy between the carried and switch count usage for the ith
hour it is clear that

A=M+¢ i=12, ..+, N. (1)

Riordan' has shown that the load carried during any one observation
interval is a random variable and fluctuates about the value of the
source load. Letting E( ) denote expected value and o®( ) denote
variance he has shown that

E(A!)=A i=1)2:"'sN (2)
2A
o’(A) = 7 (y—1+e™), (3)

where
y = the ratio of the length of the observation interval
to the average holding time.

Hayward® has shown that the error introduced by the switch count
process is random with

E(e) =0 i=12..-,N (4)
-8
o*e) = (B L - 2)/(Aw, (5)

where
B = ratio of scanning interval to mean holding time.
v = ratio of the length of the observation interval
to the average holding time.

When making load measurements, one has to contend with both the
fluctuation of the carried load about the source load and the fluctuation
of the measured (switch count) load about the carried load. It should
be noted that Messerli® has shown that these two effects are uncorre-
lated, i.e.,

E(Alfl')=0 i=1s21"',N) (6)
which implies that
o?(M) = o¥(A) +o%(e) i=1,2, --- N. )]

When making peak measurements, the mean bouncing busy-hour load
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is given by

- max {A,}
E (BBH) Tre = E(i 1,2 ..., N)’ (8)
while the mean, measured, bouncing busy-hour load is
_ "~ max{M;}
E(BBH)Scanned = E(l = 1, 2, e, N)- (9)

It is the discrepancy between the quantities of (8) and (9) which this
paper investigates. From Hayward’s analysis, it is seen that the vari-
ance of the switch count error increases as the scanning interval
increases. This implies that the variance of the switch count measure-
ment also increases with increasing scanning interval. With more
fluctuation of the measurement about its average (source load), one
may expect a larger daily peak (from scanning) and, hence, an increase
in the mean bouncing busy-hour measured usage. For a constant
source load, it appears that the scanned bouncing busy-hour average
will increase as the time between successive scans increases.

An expression was developed and used to compute the expected
bouncing busy-hour measurement as a function of source load, mean
holding time, scanning interval, and the number of hours of measure-
ment per day. The probability generating function for the hourly
measurement is computed and used to obtain the probability distri-
bution for the measurement of one observation interval. With this, the
distribution for the peak measurement of several observation periods
is computed. The expected peak measurement is then easily calculated
(see appendix). Figure 1 shows the expected bouncing busy-hour
measurement as a function of the source load for a day with 8 hourly
measurements where the mean holding time is 10 seconds. Both the
100-s scan and 10-s scan results are displayed here. In those instances
where the source load is not constant during the entire day, the
number of hours which contribute to the bouncing busy-hour mea-
surement will be less than 8. Assuming that there are 2 hours in the
morning which significantly contribute to the morning peak and 2
hours in the afternoon which account for the afternoon peak, the
measurement is dependent only upon these 4 hours. Results for a 4-
hour day are also shown in Fig. 1. As anticipated, these measurements
are found to increase as the time between scans increases. The depen-
dence upon scanning interval is more clearly shown in Fig. 2 where the
source load is held constant and only the scanning interval is varied.
With the 4-hour day, it is seen that the daily bouncing busy-hour
measurement obtained by the 100-s scan is inflated 8.9 percent above
the 5-s scan measurement. This discrepancy increases to 12.1 percent
for an 8-hour day. A second point to be noted is that the measurement
does not converge to the average load of 1 erlang as the time between
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Fig. 1—Daily bouncing busy-hour measurements (mean holding time is 10 seconds).

scans approaches zero, but converges to E(BBH)r. [eq. (8)], which is
strictly larger than 1 erlang. Even with no scanning bias, the average
peak measurement (average peak carried load in the absence of scan-
ning error) will exceed the numerical value of the source load.* This is
an important difference between peak and average load measurements.

When the weekly peak hour of usage is retained and averaged, the
effects of scanning error are even more pronounced than with daily
measurements. Figure 2 also shows the dependence of the expected
weekly peak hour measurement upon the scanning interval for a 40-
hour week (5 days with 8 hours of measurement per day) and a 20-
hour week (5 days with 4 hours of measurement per day). With the 20-
hour week, the 100-s scan average is inflated 15.6 percent above the 5-
second average, and for the 40-hour week this inflation becomes 17.9
percent. Figure 3 shows the expected weekly peak hour measurement

* As previously noted in Ref. 1, the carried load experienced on an infinite trunk
group during one observation interval is a random variable whose mean equals the
source load. Therefore, the expected value of the largest of several such random variables
must exceed the expected value of any one hourly carried load, i.e., the source load.
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Fig. 2—Bouncing busy-hour measurements (10 seconds mean holding time, 1 erlang
of source load).

as a function of source load. Here the average holding time is taken to
be 10 seconds. Again it is observed that the expected peak measure-
ment increases with both the time between scans and the number of
observation intervals contributing to the peak.

Figure 4 shows the dependence of the daily bouncing busy-hour
measurement upon the average holding time. The load is fixed at 1
erlang, and results are plotted for a 4- and 8-hour day with both the
100- and 10-s scan. With holding times larger than 200 s, there is
excellent agreement between the 10-s and 100-s scan measurements.
At these holding times, there is very little error introduced as a result
of the scanning process, and consequently the 10-s and 100-s scan
results would be expected to agree. However, at smaller holding times,
the 100-s scan introduces a significant amount of error into the mea-
surement. At this point, the graphs for the 100-s scan and the 10-s
scan begin to diverge, and this discrepancy is seen to increase with
decreasing holding time. Similar results are shown in Fig. 5 for weekly
peak measurements.

The limiting value of these averages as the holding time approaches
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Fig. 3—Weekly peak hour measurements (mean holding time is 10 seconds).

zero (with a constant source load) is easily calculated. For short
duration calls with a large number of holding times between successive
scans, the measurements made at the scanning epochs are statistically
independent. The distribution of the measurement at any one scanning
epoch reduces to the state probabilities for the number of busy trunks
(the Poisson distribution for this analysis). The hourly measurement
(in switch counts) then becomes the sum of ¢ (number of scans per
hour) Poisson random variables, which is again Poisson. The distri-
bution for the peak measurement then becomes the distribution of the
maximum of several Poisson variables. Thus,

K i N
2 {1 - (E (ca) e°°) } (10)
™—0 C k=1 =0 J

lim E (BBH)scanned = — 3,

where
a = source of load
¢ = number of scans per hour

N = number of hours from which the peak is chosen.
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T = average holding time.

Ill. CONCLUSION

From the preceding analysis, it is clear that peak load measurements
may be artificially inflated as a result of the scanning process. This is
especially true in situations of small source loads when the average
holding time is much shorter than the scanning interval. When using
these load measurements with extreme-value engineering techniques,
care must be taken to avoid over-engineering facilities. Once an engi-
neering criterion is chosen, the results of this analysis may be used to
estimate the magnitude of any over-engineering.

Two factors primarily affect peak value averages, one the number of
hours contributing to the peak and the other the bias introduced by
the scanning process. The peak measurement will increase with the
number of observation intervals which contribute to the peak. In fact,
it can easily be shown that, for the model used in this analysis, the
expected peak measurement diverges as the number of observation
intervals increases. With respect to the scanning bias, when choosing

1.6
w
o 1.5
: /
- /[
& VY
z /”
= Vi
Eal
w
=
w
]
7] o
& 7y
= sy
Z1ak s
2 100 SEC. SCAN « _
2 NN
g \1_\_ _______
w
2 \
@ \
w12+
£ \
o
Z
2 P
2 — — — 8HOUR DAY
4
RA - 4 HOUR DAY
: | e

1.0 I l 1 ] |

1 5 10 20 50 100 300

MEAN HOLDING TIME IN SECONDS

Fig. 4—Daily bouncing busy-hour measurements (1 erlang of source load).
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Fig. 5—Weekly peak hour measurements (1 erlang of source load).

the largest hourly measurement one does not necessarily find the hour
of peak traffic, but one may find an hour when the scanning error is
unusually large. For the model used in this analysis, this upward bias
may be as much as 10 or 20 percent. It has also been shown that this
bias is only significant in situations where the holding time is much
shorter than the scanning interval. For those systems where the
holding time exceeds the scanning interval, the bias introduced by the
scanning process is negligible.
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APPENDIX
Derivation of Mean Bouncing Busy-Hour Measurements

The following calculations extend the work of W. S. Hayward, Jr.?
on the determination of switch count errors. Here, the offered traffic
is assumed to have the following characteristics:

(i) Calls originate according to a Poisson process.
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Fig. 6—Graphical interpretation of type I calls.

(i) Holding times are exponentially distributed.

(ii) Incoming calls are processed immediately upon arrival.

(iv) Usage measurements for adjacent observation intervals are
statistically independent.

Let ¢ = the time between successive scans
r = the mean holding time
a = the source load in erlangs
T = the length of the observation interval
B = i/7 = the number of holding times per scanning interval
C = T/i = number of scans per observation interval
N = the number of observation intervals per day.

The observation interval begins with the first scan and is assumed
to end i units after the last scan, and data are acquired by a sampling
scheme. The contribution to the total usage of an observation period
by one call is first determined and then modified to account for n calls
where n is random with a Poisson distribution. Once the distribution
of usage for one observation interval is known, the distribution for the
maximum of N such observation periods is computed. The mean of
this distribution yields the expected bouncing busy-hour measurement.
In this analysis, two types of calls must be considered, those originating
outside the observation interval, type I, and those originating within,
type II. These may be further subdivided into class a for those ending
within the observation period, and class b for those terminating outside
the interval (Figs. 6 and 7).

Since calls have exponentially distributed holding times, the proba-
bility density for the length of a call beyond ¢ = 0 is given by p(¢) =

L 1ib .

} 1 L
T T

T
t=0 t=i t=2i t=(C—-1)i t=T

Fig. 7—Graphical interpretation of type II calls.
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(1/7)e™". A contribution of K switch counts (0 < K < C) is made by
an arriving call if it terminates in the interval [ (K — 1), Ki), and the
contribution is C switch counts if the call exceeds (C — 1_)i time units
in length. The probability of measuring K switch counts, P(K), is given
by
P(K) = e 1N/ — =K K=1,2,...,C-1 (11)
13(0) = g L(C-Di/r] (12)

A type Ila call makes no contribution of usage if it arrives in an
interval [ni, (n + 1)i) n =0, 1, ---, C — 1 and terminates before the
end of the same interval. The probability of zero switch counts becomes

c—1 (n+1)i
d

PO =3 |  F—etmnm (13)

an:

Similarly, a contribution of K switch counts by a Ila call is made if
it originates in the interval (ni, (n + 1)i] and ends in the interval
[m+K),(n+ K+ 1)i)n=0,1, ---, C— K — 1. The probability of
this occurring is given by

K (n+1)i
P(K) _ Cé( 1 _d_x (e—[(n+K)i—x]/1' _ e—[{n+K+])i—I]/1')

n=0 . T
ni (14)

K=12...,C-1

With a type IIb call, K switch counts are measured when the call
originates in the interval ((C — K — 1), (C — K)i] and extends beyond
t = T. The probability of a ITb call contributing K switch counts is

(C-K)i dx
P(K) =f d e~ (i K=01-...,C—-1. (15)
(C—K-1)i
Simplifying, the above expressions become:
Type I calls:
PK)y=("-1e ™ K=1,2,...,C-1 (16)
P(C)=¢ ' 1E (17)
Type II calls:
C-1

= C-K B2 _ ,—B/2)2 1 — o -
P(K) {( B )(e e Pt + C_ﬁ (1—e#) te ™ (19)

K=12...,C—-1.
The number of type I calls seen in an observation interval is a
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random variable having a Poisson distribution with mean a, while the
number of type II calls is Poisson-distributed with mean aT'/r. Follow-
ing the laws governing the computation of probability generating
functions of random sums of random variables, the generating func-
tions for type I calls, ¢;(Z), and type II calls, ¢x1(Z), are:

C
o1(Z) = exp(a{( ¥ P(K)Z")—l}), (20)
K=1

c-1
on(Z) = exp(g{ (;{E P(K)ZK)—I}). (21)

The measurements resulting from the two different types of calls
are statistically independent. The generating function for the mea-
surement due to both types of calls is

& (Z) = ¢1(Z) - pu(Z) (22)
or
c
$(Z) = eXP( X qKZ"), (23)
K=0
where
go=-a{(C-1)(1—-e?)+1}, (24)
gx = af{e? — e + (C — K)(e"? — e 7%} e ¥, (25)
K=1,2 .--,C—1, (26)
—-(c—l)ﬂ'

geo = ae

To extract the probability distribution for the measured usage of
one observation period, ¢ (Z) must be expanded into a power series.
The coefficient of Z¥ then becomes the probability of measuring K
switch counts. Noticing that

C C
¢’ (Z) = ( D KQKZK-])EXP( ¥ QKZK), (27)
K=1

K=0

it is clear that ¢ (Z) solves the differential equation
c
¢ - ( ¥ quZ"—l)cia =0, $(0)=e (28)
K=1
Solving by infinite series techniques, a solution of the form Y- .Z"

is obtained with
by = e, (29)

1 n
— mOn—m n=C
n m2=1 ma

b, = - (30)
Y mGmbn-m n>C.
m=1

x| =
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Thus b, is the probability of measuring n switch counts in an interval
of length T with a source load of a erlangs. As each day consists of N
intervals, with the measurement from each having the distribution
{b.}, Pn, the probability of obtaining a daily maximum of n switch
counts becomes

P, = b, (31)
n N n—1 N
- (,2;0 b") - (,éo b") (32)
n=123 ---

(The maximum has a value of n if and only if all observations yield
measurements less than or equal to n, but it is not true that all yield
measurements less than or equal to n — 1.) Since there are T'. C switch
counts per erlang, the mean bouncing busy-hour measurement is
computed as

1 oo
E (BBH)Sampled = T_ E (33)
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