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This paper discusses an idealization of the situation in which it is
required to send information over two separate channels, as in a
packet communication network, and it is desired to recover as much
as possible of the original information should one of the channels
break down. Let {X,}i-1 be a sequence of independent copies of the
binary random variable X, where Pr{X = 0} = Pr{X = 1} = %.
Assume that this sequence appears at a rate of one symbol per second
as the output of a data source. An encoder observes this sequence
and emits two binary sequences at rates R,, R, = 1. These sequences
are such that, by observing either one, a decoder can recover a good
approximation to the source output and, by observing both sequences,
a decoder can obtain a better approximation to the source output.
Letting Dy, D», Dy be the error rates that result when the streams at
rate Ri, rate Rz, and both streams are used by a decoder, respectively,
our problem is to determine (in the usual Shannon sense) the set of
achievable quintuples (R,, R:, Dy, D1, D;). Our main result is a
“converse” theorem that gives a necessary condition on the achievable
quintuples.

. INTRODUCTION

Let {X:}%-1 be a sequence of independent copies of the binary
random variable X, where Pr{X = 0} = Pr{X = 1} = %. Assume that
this sequence appears at a rate of one symbol per second as the output
of the data source in Fig. 1. The encoder in the figure observes this
sequence and emits two binary sequences at rates R, R» = 1. These
sequences are such that, by observing either one, a decoder can recover
a good approximation to the source output, and by observing both
sequences a decoder can obtain a better approximation to the source
output. Letting D1, D2, Do be the error rates which result when the
streams at rate R, rate R., and both streams are used by a decoder,
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Fig. 1—Source encoder-decoder.

respectively, our problem is to determine (in the usual Shannon sense)
the set of achievable (R,, Rz, Dy, D1, D>).

To fix ideas, let us say that Ry = Rz = %, Dy = 0 and D, = D». Thus
the source sequence at rate 1 is to be encoded into two sequences of
rate % each, such that the original sequence can be recovered from
these two encoded sequences with approximately zero error rate (i.e.,
D, = 0). Our question then becomes: How well can we reconstruct the
source sequence from one of the encoded streams? (That is, what is D,
= D»?) A simple-minded approach would be to let the encoded streams
consist of alternate source symbols, which will allow Dy = 0. In this
case, D, = D, = Y%, since by observing every other source symbol a
decoder will make an error half the time on the missing symbol. Is it
possible to do better? El Gamal and Cover' have looked at this problem
and have a theorem that can be used to show that we can make D, =

= (\/5 — 1)/2 = 0.207. In the present paper, we prove a theorem
from which it follows that (with B, = Ry =%, Do =0), Dy = D; = ¥%. An
exact determination of the best D), = D, is at present an open problem.*

Let us remark that this problem can be generalized in an obvious
way to an arbitrary source {X;}, and arbitrary distortion measure. An
especially interesting case is where the {X;} are Gaussian and the
distortion is the squared-error criterion. For this case, L. H. Ozarow®
has obtained the complete solution.

Il. FORMAL STATEMENT OF PROBLEM AND RESULTS

Let # = {0, 1}, and let dx(x, y), X, y € ", be the Hamming distance
between the binary N-vectors X, y, i.e., du(X, ¥) is the number of
positions in which x and y do not agree. A code with parameters (N,
M., M,, Dy, D:, D,) is a quintuple of mappings ( f1, f2, £, £1, &2) where

*In Ref. 2, Witsenhausen proved a closely related result which encourages the
conjecture that D, = D, = 0.207 is in fact the best possible.
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fu: BY = (1, -+, M.}, a=1,2 (1a)
g (1,2, -, M) > B, a=12 (1b)
g:{1,2 .-, M} X {1,2, -+, M2} —» B". (1c)

The source output is a random vector X uniformly distributed on
#". Define

Xu =ga" fa(x)s o= 1s 2) (23)
and
Xo= gl A(X), (X)]. (2b)
Then the average error-rates are
D, = Edu(X,X), a=1,22 (3a)
D, = %, Edu(X, Xo). (3b)

We say that a quintuple (R, Rs, do, di, d:) is achievable, if, for
arbitrary € > 0, there exists, for N sufficiently large, a code with
parameters

(N, M[, M2, DO; Dlr DZ))

where M, < 2%®*N 4 =1, 2, and D, = d. + ¢ a = 0, 1, 2. The
relationship of this formalism to the system of Fig. 1 should be clear.
Our problem is the determination of the set of achievable quintuples,
and our main result is the following “converse” theorem.

Theorem: If (R\, R, do, d\, d2) is achievable, then

2 — h(do) — h(d: + 2d:)

By + By = {2 — h(do) — h(2d; + db), @

where

0, A=0,
h(?\)={—)\ loga A — (1 — A) logz (1 — M), 0<A=1,
1, A >,
All logarithms in this paper are taken to the base 2.
Discussion: When R, = R: = %, do = 0, and d, = d-, the rate-
distortion bound implies that 1 — A(d;) < R1 = %, or d; = 0.11. Our
result (4), however, yields 2(3d;) = 1, or d, = %.

lil. INFORMAL OUTLINE OF THE PROOF OF THE THEOREM

In this section, we give an informal “e-free” discussion which con-
tains the main ideas behind the proof of our theorem.
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Let (f1, f2, 80, £1, &2) be a code with parameters (N, My, M,, Do, D\,
Ds), where M, = 28N =1,2) and D, = d, (a = 0, 1, 2). Let

Ai=(xedB": fix)=1i}, 1=i=<M,, (5a)
Bi={xe®": fi(x)=j}, l1=j=M,, (5b)
C;i=A:NB,. (5c)
For this informal discussion, let us assume that for all x e &7,
do= 5 dulx, g o o), a=1,2 (6a)
1
do = N du(x, go( f1(x), £2(x))). (6b)

Also, since Y} A; = #", the average cardinality of the A, is 2"/M, =
2N0-R)_ For our informal discussion, we will assume that all the A;
have approximately equal cardinality, so that

|A;| =2VN-B) 0 1 =i M. (7)
where | A | denotes the cardinality of the set A.
Now for 1 < j = M,, define
Ki= Y A. (8)

ECy#¢

In other words, K; is the set of x € #”~ such that, for some x’ € 2", f(x)
= fi(x’) and fa(x’) = j. The proof proceeds by combining two bounds
on | K;|.

We begin by obtaining an upper bound on | K} |. Let

A;j= max du(x;, Xz)

x1,x26K;

be the diameter of K;. Now the subset of #" with diameter A with
largest cardinality is a sphere with radius A/2.
Thus

872 (7
|K_;| = Z < 2NhtAj/2N),
o \ &
or

1
~ 1081 Ki| = h(4,/2N). (9)

Next let x,, X, € K; achieve dy (%, X2) = A;. From the definition of K;
(8), a pair x1, x5 exists such that

filxy) = fi(x1),  filx2) = fi(x3) (10a)
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and

f(x1) = filxz) = . (10b)
Now (10a), and (6a) with a = 1, imply that
du(x,, X1) < 2d, N, du(Xa, X2) = 2di N, (11a)
and (10b) and (6a) with a = 2 imply that
du(x1, X2) < 2da2N. (11b)

The triangle inequality and inequalities (11) yield

A; = du(x, X2) < du(x1, X2) + du(x,, x1)
+ d};(Xg, X5) < 2d>N + 4d\N

or

A‘
ﬁs ds + 2d,;. (12)

Inequalities (12) and (9) yield, for 1 = j = M,,

1
108 | Kj| < h(d: + 2d),

and, averaging over j, we have

1
N Y Pr{f(X) =) log | K;| < h(d: + 2d,). (13)
j=1

This is the first of our bounds on | K} |.
We now obtain a lower bound on | K;|. For 1 < j < M,, let m; be the
number of i(1 < i = M,) such that C; # ¢. Then, using (7) and (8),

log | K;| = log m; + N(1 — R)). (14)

Further, from the rate-distortion bound (since X can be constructed
from fi(X) and f2(X) with an average distortion dy),

[1 = A(do)IN = I( fi(X), f2(X); X)
=H(fi, ) =H(f)+ H(A| )

M,
<log Mz + H(fi| ;) =log Mz + ¥, Pr{fo(X) = j}H(fi| fr =j). (1)
J=1

Now, given that f2(X) = j, fi1(X) takes values in a set of cardinality m;.
Thus, H(fi | f =) can be overbounded by log m;. Since M, ~2"", we
have, from (15),

M;
5 X Pr(fi=J) log my= [1 = h(do)] = Re
J=1
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and, from (14),
1 ¥ }
N 2 Pr{f. = j}og|K;| =2 — h(do) — R1 — R:. (16)
J=1

This is our second bound on | K;|. Combining (16) and (13), we obtain
h(dz + 2d,) = 2 — h(do) — R\ — R, (17)

which is the second part of the theorem, the remainder following on
interchanging the roles of f; and f..
In the next section, we put the epsilons into the above outline to

give a precise proof.

IV. PROOF OF THE THEOREM

~ In order to make the ideas in the previous section precise, we must

show that in some approximate sense equations (6) and (7) can be
assumed to hold. To do this, we begin as follows. As in Section III, let
(fi, fz, &, &, g2) be a code with parameters (N, M, Dy, Dy, D,), and
let A;, B;, C; be as defined in (5). Define the set S C #" as the set of
x such that

%d(x, &o© fu(X)) =D, + 6, a=1,2, (18a)

and

%loglAf.m |=1—R,—§, (18b)

where § > 0 is an arbitrary fixed parameter. Next, define the set I C
{1, ---, M} as the set of integers i such that

P(A; N 8S) > 86P(A)). (19)
Note that, if i € I, then A; N S # ¢. Let x € A; N S, where i € I. Then
1 1
~ 1081 4:N S| = 1og | Ay N S|
= ll S+ l1 |A
=+ log 8 + - log | Apa |
1
=—logd+ (1—R;,-9). (20)
N
Finally, paralleling (8), define
Kj= Y (ANnS), 1=j=M. (21)

iel:CjiNSwe

If we imagine for now that P(S) and Pr{ f1(X) € I} are close to 1,
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then K/ is an approximation of Kj. As in Section 111, the theorem is
proved by establishing two bounds on | K}|.

4.1 Upper bound on | K] |

As in Section III, for 1 < j = M, let Aj be the diameter of K;, so
that

1
~1og| Kj| = A(8;/2N). (22)
Also, let xi, X; € K} achieve du(x1, X2) =4j. Hence a pair X}, X5 exists
such that
fAix1) = fAilx1), A(x3) = fi(xz)

and
f(x1) = fa(x2) =J.
Also, X, X2, X}, X5 € S. Thus
du(x1, X}), du(x2, x2) < 2(D1 + 8)N
and
du(x}, x5) = 2(D> + 8)N,
so that the triangle inequality yields

A.’
ﬁ <= D, + 2D, + 35. (23)

Inequalities (22) and (23) yield, on averaging over j,

M,
% S Pr(fu(x) = j)log|K}| < h(Dz + 2D + 35), 24)
=1

which is our upper bound.

4.2 Lower bound on |K /|

Letje {1, -++, M.}, and let i be an integer in the summation set of
(21), i.e., i € I, C; NS # ¢. Thus (20) yields

1 1
Nlog|AjﬂS|=_>ﬁlog6+ (1—R;—9).
Using this fact, we have from (21), for 1 =j=<M,,
1 1 1
ﬁlog|Kj|zl—vlogm}+Nlog6+(l—Rl—S), (25)

where m/ & |{i € I:C; N S # ¢} | is the number of terms in the
summation of (21). We must now lower bound m;.
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Let y(x), x € #", be defined by

_J1, x€8, itx) el,
Y(x) = { otherwise. (26)

Then from the rate-distortion bound (as in (15)),
N1 — k(Do) = I( 1(X), f2(X); X) = H(f1, fo, ¥)
=HW) + H(f, |¥) + H(fi| f2, ¥)
= H(\b) + H(f2[¥)

+2Pr{f2 NPr{y=1|fo=j}H(fi|fo=)¥=1)

J=1

+ZPI{¢ 0}Pr{fa=j|ly=0H(fi|f2=Jj,¥=0).

J=1

Let # = Pr{y(x) = 0}. Then H(}) < h(w). Also H(fz|{) < log M; and
H(fi|f-=J, ¢ =0) <log M, thus,

N(1 — h(Dvo)) = h(7) + log Mz + 7 log M,
M,
+ El Pr{fe=7}Pr{y=1|fao=7}H(fi| =], ¢ =1).
=

Now suppose that x is such that fo(x) = j, Y(x) = 1. Let fi(x) = i.
From (26), i, € I, and from the definition (5c¢), Ci; # ¢. Thus i is one
of the m; terms in the summation (21) defining K;. We can therefore
overbound H(fi| f =Jj, ¢ = 1) by log m;, yielding

N1 — h(Do)) = h(m) + log Mz + 7 log M,
M,
+ Y Pr{fa=j}logmj. (27
J=1
Combining (27) with (25), we have

1 M ,

~ 2 Pr(fo=j)log|Kj| = 2 — k(Do) — B — 8
=1
! h(m)

——lOgMz—T—N

1
log My + N log 6, (28)
which is our lower bound.

4.3 Conclusion of the proof
Combining the bounds of (24) and (28), we have

h(D; + 2D, + 30) =2 — h(Dy) — R, — % log M-
h(m)

___A.r__a__long log 5. (29)

At the conclusion of this section, we prove the followmg lemma.
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Lemma: If (R,, R., do, d\, d2) is achievable, then for all 8, € > 0,
there exists, for N sufficiently large, a code with parameters (N, M,,
M, Dy, Dy, D), where M, <28+ (4 =1,2), D, <d, + e (=0, 1, 2),
and Pr{y(x) = 0} = 7 < § + . (Note that 7 depends on S and I, which
in turn depend on §.)

Now, suppose that (R,, R», do, di, d2) is achievable. Pick €, § > 0
and let N be large enough so that the code described in the lemma
exists. Applying (29) to this code, we have
h(d2+2d1+38+3€)22—h(d(]+€)—R1— (R2+€)

h(6 + ¢€) 1
6——IV— (6+e)(R2+e)+I—vlog8.

Letting N — o, and then §, e — 0, we have
h(ds + 2d,) =2 — hi(ds) — R, — R,

which is the theorem.

It remains to give a
Proof of the Lemma: Let (x, xz, --+) be an infinite binary sequence.
Define X = (X, *++ Xm), L =n < m < . Now let (fi, f2, &o, &1, 82) be
a code with parameters (N, My, M, Dy, Dy, D;). For K =1, 2, ...,
define a “super” code which operates on K successive blocks of (X,
X2, -++) in the obvious way. That is, letting q:1, g2 be one-to-one
mappings

q: {1! "':MI)K_) {Iv ..'IM{{}l
q2: {1, "'!M2}K_) {1, ---,M%‘},

then the super code (fi, f2, 8o, £, &) is the code with parameters
(KN, MY, M¥, Dy, D, D) defined by

AXEN) = g, [AXD), AXEL), -, A hx41)]
and

&) =[&G@), ---, &(ix)],

where (i, -+, ix) = g7 (i), 1 =i =< MY, etc.
By the law of large numbers, for a = 1, 2, as K — o (with N held
fixed),
1 : - .
—Kwd(X{(N’ gﬂ ° fu(x{(N)) il Dtn
and
1 - - -
770 A&7, &l Ai(XT), A(XT™)) — Do
Also, let H, = H(f,(XY)). For 8 > 0, define
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Iy = {ie{l, .,M{(}é‘v_logpr{ﬁ(xlxﬁ) =) 2_l?l +3}.

.1 H

By the AEP, as K —
Pr{fi(X}) e I} - 1.
Further, since H;/N < R,, we have, as K — oo,

Pr{—lﬁ log|Anxis|=1— R — 8} — 1.

We now take a look at the lemmaﬁ. Let(R:, R2, dov, di, d2) be
achievable. Let € > 0 be given, and let (fi, f2» 8o, &1, &2) be a code with
parameters (N, My, M>, Do, D, D:) such that M, =2"**9, D, < d,
+ ¢ a =0, 1, 2. Construct the code (fi, f2, 8o, &1, g2) with parameters
(N, My, M, Do, Dy, D:) where N = KN, M, =M¥X, a =1, 2, as above.
Let S C 2" be as defined by (18) with 8 > 0 specified. Then, for K
sufficiently large, we can make

P(S°) =¢€/2
Then, with ¢(-) defined by (24) and I by (19),
7=Pr{y(XY) =0} =Pr{AX) ¢I or X ¢S}

=Pr{fi(X) ¢ I} + Pr{X ¢S}
= ¥ P(A:) + P(8%)
ig I

=Y P(AiNS°) + ¥ P(A;NS°) + P(S°)
ig I igl

< ¥ 8P(A:) + ¥ P(AiN S°) + P(S°)
ig I w1

=86+ 2P(S) =€+,

which establishes the lemma.
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