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We present a channel model useful for analyzing the effects of
multipath fading in digital radio systems. The frequency response of
a fading channel is represented by the function Ay — wB;, + jwA,,
where w (=2af) is measured from the center of the channel, and Ao,
A1, and B, are variable coefficients that change slowly with time. The
model consists of this function, the joint probability density function
(pdf) for the three coefficients, and the average number of seconds
per heavy-fading month for which this response applies. The model
is derived from a large base of multipath fading data, obtained on a
26.4-mile path in Georgia in June 1977. It consists of nearly 25,000
recorded measurements of received power vs frequency in a 25.3-MHz
bandwidth at 6 GHz. In this paper, we present the methods of data
reduction and statistical analysis used to derive the model; describe
some assessments of its validity; and discuss its limitations, virtues
and possible uses. By all available measures, the model is highly
accurate. It suffers from a potentially important phase ambiguity that
can be resolved only via new, coherent measurements. The existing
model should prove very useful in the design and planning of such
measurements.

I. INTRODUCTION

Multipath fading in microwave digital radio systems can be a major
source of outage and, therefore, has been the subject of numerous
recent investigations.'™* One important objective of current activity is
to develop a statistical model of fading useful for estimating its effect
on specific systems and for indicating possible methods of correction.

Two multipath fading characterizations have been proposed recently
for terrestrial systems in the channelized common carrier bands. One
represents the multipath fading frequency response as that due to an
equivalent three-path medium.’ The result is a three-parameter, com-
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plex gain function, where the joint probability distribution for the
three parameters describes the fading statistically. The second char-
acterization, which is the subject of this paper, expresses the multipath
fading frequency response as a complex polynomial expanded about
the channel center frequency.® Specifically, if

complex channel gain at any time )

H(w) & complex channel gain during nonfading ’

where w(=27f) is measured from the center frequency, then the
polynomial representation is

N
H.(w) = Ao+ ¥ (An+jBa)(jw)", (2)
n=1
where the A- and B-coefficients vary slowly relative to the speeds of
typical digital radio systems.

Note that H.(0) is just Ao, a real number, i.e., we arbitrarily (and
with no loss in generality) specify the phase shift at the channel center
frequency to be zero.

The polynomial function of eq. (2) can fit frequency responses of
any shape with arbitrary accuracy merely by choosing N sufficiently
large. Moreover, the difficulty of fitting coherently measured responses
does not grow significantly with N since H.(«w) is linearly related to the
characterizing parameters (the A,’s and B,’s).

Several features make the polynomial representation attractive for
multipath modeling. One is that it leads to simple methods for analyz-
ing signal processing (note that (jw)" corresponds to the nth time
derivative). A second is that it suggests a promising idea for adaptive
equalization; specifically, the rational function 1/H.(w) may be easy to
realize adaptively when the complex zeros of Hc(w), (2), have negative
real parts. A third feature is parsimony, suggested by the conjecture®
that a first-order function (N = 1) may be sufficiently accurate for
terrestrial paths in the channelized bands below 15 GHz. In that case,
the channel response function could be characterized by three linear
coefficients (Ao, A1, and B;).

The work reported here has confirmed this conjecture for the data
base used by Rummler.’ The central activity has been to compute Ao,
A, and B, from the recorded measurements and to analyze their joint
statistics. The outcome is a model for the joint pdf, p(Ao, A,, B:), that
can be used to assess multipath effects in any digital radio system.

Section III presents a mathematical description of the new model.
Section II gives an overview of the data reductions and analyses
leading to this model, while Section IV gives an expanded discussion
for readers interested in more details.

Section V discusses the accuracy of the derived model and presents
supporting evidence for the steps taken to simplify it. Part of this
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evidence is obtained by calculating outage times for numerous system
approaches, using model versions of differing complexity. This exercise
not only validates the simplest version but illustrates its important
application to system studies. Section VI summarizes the uses and
limitations of the model and cites the need for further measurements
to reinforce and improve it.

Il. DATA REDUCTIONS
2.1 The data base

The multipath fading data base is a set of measurements made on
a 26.4-mile path in Palmetto, Georgia in June 1977.° During fading
events, received power was measured at each of 24 frequencies distrib-
uted about 6034.2 MHz and spaced by 1.1 MHz. The measuring filter
at each frequency had a 200-KHz bandwidth. The power samples were
normalized by the unfaded received power level (as estimated from
mid-day measurements), converted to decibels, quantized in 1-dB
steps, and recorded on magnetic tape. Because of an equipment failure,
data for the 19th frequency in the sequence (7.15 MHz above the
center of the channel) were not obtained.

Each tape record therefore consists of 23 power response values, in
quantized decibels, corresponding to a single measurement. No phase
response data were recorded, resulting in unresolvable ambiguities in
the reductions, as discussed later. Measurements were recorded at
rates of either five per second or one per two seconds, depending on
the speed of change in the fading response. The data base used here
consists of 24,920 records spanning, roughly, 8400 seconds of fading.

2.2 The polynomial coefficients

The main reductions consist of () determining the coefficients in
eq. (2) for each record in the data base and (it) finding a mathematical
description of the joint probability density function (pdf) of these
coefficients. In this subsection, we outline the strategy used for deter-
mining the coefficients.

Each data record consists of the quantized values of —10 logy | H. |2
at 23 frequencies, where H. is the complex channel gain.

We denote the recorded values by the set { P;}, where i is the
frequency index (i = 1, 24 excluding 19). The data reduction per record
begins by converting each decibel quantity P; into a power ratio
pi(=10""/1) and fitting the sequence of p; vs frequency with an Mth-
order polynomial,

q(w) = Do+ @Dy + -+ @Dy + -+ ™Dy 3)

In obtaining the coefficients (Dy, --- D), a form of least-squares
optimization has been used, and M-values of 0, 2, and 4 have been

POLYNOMIAL MODEL FOR MULTIPATH FADING 1199



tried. We have evaluated the errors between the p/’s and the fitting
function g(w) for each record and have studied the statistics of these
errors over the ensemble of records that comprise the data base. Our
finding is that, given the noise statistics and bandwidth of the mea-
surements, the most suitable polynomial order is M = 2. For, when M
= 0, the fitting function lacks the curvature needed to model the true
fading response, while, when M = 4, the third- and fourth-order
polynomial terms serve more to fit the measurement noise than to fit
the underlying response. The curvature provided by g(w) when M = 2
seems to be just right for the 25.3-MHz measurement bandwidth. For
that case, we estimate the rms fractional difference between q(w) and
the true power response to be 5 percent at all frequencies.

Given a value for M and a procedure for obtaining the D,.’s from the
data records, we must choose the order (N) of the polynomial in eq.
(2) and derive the A,’s and B,’s in that equation from the D,’s. Before
deciding on N, we note that a power-gain function can be obtained

from eq. (2) having the form
|Ho(w)|?= Do+ @D+ -+ ™D + -+ @™ Do (4)

where the D,,’s are simply related to the A,’s and B,’s. The objective
is to match this function to g(w) in eq. (3).

One possibility is to choose N = M/2 and to find the A,’s and B,’s
for which Dy = Dy, D; = Dy, etc. The problem is that, if Dy happens
to be negative, this important term cannot be matched using all real
A,’s and B.’s. The approach we have used instead is to specify N = M,
and to choose the (2N + 1) A,’s and B,’s so that
- {Dm; 0=m=N

Dn=1"0;. N<m=2N. (5)

This procedure, however, is limited in at least one and sometimes two
respects. The fundamental limitation concerns those A,’s and B,’s
contained within the imaginary part of H.(w), i.e., (41, A3 --+ Ba, By
...). Given a valid solution to eq. (5), reversing all these coefficients in
sign results in exactly the same function for | H.(w) |%. Thus, there are
two possible solutions, each of which is equally valid given the data.

The polarity ambiguity in the subset (A, As, --+ By, By «++) is
reflected as a polarity ambiguity in the phase response associated with
H.(w), an inevitable consequence of noncoherent measurements. Our
reduction approach is to assume equally likely polarities for any given
fade. In computing A,’s and B,’s for each record, we have randomly
selected the polarity in accordance with this assumption.

A second limitation on the application of eq. (5) arises when the
D..’s for n > N cannot all be forced to zero using real A,’s and B,’s. In
performing reductions for N = 2, for example, a solution with real A,’s
and B,’s is only possible when
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A= (Dy— Di/4Dg) = 0. (6)

We will limit all remaining discussions to the case N = M = 2.

The condition A = 0 corresponds roughly to g(w) being concave over
the measurement bandwidth. In such cases, A; = B = 0, and the
function for H.(w) reduces to a first-order polynomial. When A < 0
(g(w) more or less convex over the measurement bandwidth), no real
combination of A.’s and B,’s will satisfy all of eq. (5). This condition
is found to occur over 42 percent of the data base. Our strategy for
these cases is to choose (Ao, A1, Az, Bi, Bs) so that (Do, Di, D)
matches (Do, D1, Ds); Ds = 0; and Dy(= A3 + B3) has the smallest
magnitude possible for real A,’s and B,’s. The result is a fourth-order
component in | H.(w) |? namely, «'Ds, which we have found to be
relatively small (in a sense that we define later).

The above strategy leads to the following set of solutions:

Ao = \/30; (7a)
B, = —D./2A; (7b)
+VA;  A=0
A= 1
Liﬁ\/;? + B, VB} — 8A; A<O (7c)
0; A=0
Az =) 2 2
A1 Al
—1+=; 7
AD( B?), A<0 (7d)
and
B: = A:Bi/A,. (7e)

In computing these coefficients, the polarity of A, is chosen randomly
for each record.

The question arises of how the model should take account of the
two distinct conditions on A. One idea is to treat all computed com-
binations of (A, Ai, B:1) as part of a single statistical population,
without differentiating between the conditions A = 0 and A <0, and to
assume that A, = B> = 0 in all cases. The result would be a first-order
polynomial for H.(w) defined by a single joint pdf of Ao, A; and B;.
This approach has been adopted for reasons of modeling simplicity,
and is justified by data given in Section V.

2.3 The coefficient statistics

We begin the statistical modeling with the coefficient Ao, represent-
ing the complex channel gain at w = 0. The probability distribution of
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Ay is found to be approximately log-normal, i.e., if
ADB 4 20 logmAu, (8)

then the pdf of ADB is approximately Gaussian, with a mean (u) of
—21.39 dB and a standard deviation () of 6.562 dB. For convenience,
we shall deal with ADB in terms of the standardized variable

a, & (ADB — p)/Z. )

The precise pdf for a, used in the model is presented in Section III.

The joint probability law for Ao, A:, and B, can be represented by
the joint pdf of A; and B;, conditioned on a,, times the pdf of a,.
Furthermore, system study results (Section V) indicate that A, and
B,, for given a,, can be modeled as independent variables. Hence, we
write

P(Al, B, | a,) =p,a(A1 | ao)pB(Bl | as). (10)

To model pa(|) and pa(|), the entire population of data records was
divided into 11 subpopulations, each corresponding to a specific inter-
val of a,. For example, all records with a, between —2.25 and —1.75
constituted one such subpopulation, all those with a, between —1.75
and —1.25 constituted another, and so on. Within each subpopulation,
we computed the mean and standard deviation of A;, as well as its
probability distribution, and similarly for B,.*

Both A; and B, are found to be essentially Gaussian in every
subpopulation; in every case, moreover, each variable has a zero mean
and a standard deviation that varies with the mid-value of a,. Conse-
quently, the joint pdf of A, and B, conditioned on a,, reduces to a
product of two Gaussian pdf’s, each with a standard deviation that is
a function of a,. By finding suitable mathematical expressions for
these functions, the statistical modeling of A, 4, and B, is completed.

A final quantity to determine is the number of seconds, Tu, for
which the multipath fading response applies in a heavy-fading month.
The data base used here represents about 8400 seconds of fading
which, Lundgren and Rummler have estimated, corresponds to two-
thirds of a heavy-fading month for the measured path and frequency.*
In attempting to relate this finding to other paths and frequencies, we
have assumed that T is proportional to the multipath occurrence
factor developed by Barnett.” This assumption permits the general
expression for Ty given in the following section.

* The choice of 11 subpopulations and the particular a.-intervals used is somewhat
arbitrary. Our aim was to obtain both good resolution (narrow intervals of a,) and high
estimation accuracy (many samples per subpopulation).
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. THE MODEL

In this description, all numerical quantities in braces, { }, are data-
derived constants that may vary with path length, antennas, locale,
year, etc. It is hoped that the underlying model structure, consisting of
the form of the transfer function and the functions for the coefficient
pdf’s, is generally applicable and that the constants alone might be
subject to change. In any event, what follows is an estimated fading
model based on reductions of the given data.

(i) The complex transfer function of a channel, normalized by its
unfaded gain, is

1+ ;0 during non-fading periods;
H.w) = j{A¢— wB; + jwA, during T seconds per heavy-
fading month. (11)

(i1) By assuming T to be proportional to the multipath occurrence
factor,” we obtain

Ty = {0.11) cFd?, (12)

where c is the terrain factor, F is the system frequency in gigahertz,
and d is the path length in miles.

(iii) The joint pdf of Ao, A1, and B; (where A, is dimensionless and
A; and B, are in units of seconds) can be represented by

plas, Ay, Bi) = pa(Ai1| a.)ps(B1 | as)pa(a.), (13)

where
20 logioA, — {—21.39)
B {6.562}

(iv) The pdf of a, is the nearly Gaussian function

pu(au) =__l_exp|:_ ‘;‘[au + z(ao)]2:| . [1 + dZ(ao)], (15)

(14)

A,

No da,
where z(a,) is a small nonlinear term in a, given by
z(a,) = {0.0742}a2 + {0.0125}a3. (16)

If this component were zero, p.(a.) would be precisely Gaussian.
Figure 1a shows p.(a,) and compares it with the Gaussian pdf having
the same mean (0.0) and variance (1.0). The difference seems small
but has been found to be significant, as we will discuss in Section 5.2.
(v) The conditional pdf’s of A; and B, pa(A:|a,) and ps(B:|a.),
are both Gaussian with zero means and with standard deviations given

by
04 = Max{{0.14}, [{0.309} + {0.13}a,]} X 107°s (17)
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Fig. 1—Functions used in the multipath fading model: (a) the pdf of a,, compared
with a normal (Gaussian) pdf; and (b) the standard deviations of A, and B, conditioned
on @,.

and
op = Min{{0.24}, Max({0.12}, [{0.18} + {0.046}a,])} X 107*s.  (18)

These functions, which model the variations of 64 and o with a,, are
shown graphically in Fig. 1b. They are derived by estimating o4 and
op from finite numbers of records in nine a,-intervals of finite width.
The results are therefore quite approximate; our tests indicate, how-
ever, that they are not sensitive to the precise positions or widths of
the a,-intervals.

IV. DATA REDUCTIONS: EXPANDED DISCUSSION

This section presents mathematical, numerical, and graphical details
underlying the data reductions and the construction of the model. The
interested reader can thereby scrutinize the various stages of analysis
and reasoning that led to the results in Section III. The less interested
reader can, with no loss in continuity, proceed to Section V.
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4.1 Data organization and notation used

The data base consisted originally of 24,920 records of decibel power
gain vs frequency. An early decision was made to remove the first 100
records in the sequence, as they contained a number of normal (non-
fading) responses. The model is derived from the resulting set of 24,820
records.

The second decision made was to create four subsets of data records,
each containing about 2160 records distributed randomly over the
total set (24,820 records). The aim was to verify the statistical regular-
ity of the data base, ie., to establish that no handful of records
dominates the statistics and that individual subsets are representative
of the data base as a whole. Having verified this regularity (by
comparing results among the four subsets and between the four subsets
and the total set), we were able to perform certain costly reductions
using a relatively small set of records.

All computations in this study were performed using, as a data base,
either the four individual subsets, the four subsets merged together
(8640 records), or the total set of 24,820 records. In every case, we have
found it helpful to regard the prevailing data base as an ensemble of
records, each record being a sequence of 23 power gains. The notations,
symbols, and definitions used in all computations are summarized in
Table I, which should be consulted throughout subsequent discussions.

4.2 Deriving the polynomial coefficients

The process begins with 24,820 records of P; vs i and ends with a
population of coefficient sets, (Ao, A1, B1), whose reduction to a joint
probability law (Sections III and 4.3) defines the fading model. Three
stages of computation are involved here, namely, (i) adjusting the
recorded P/s to remove systematic calibration differences across the
23 measurement frequencies, (it) determining, from these adjusted
data, the optimal polynomial order and the resulting record-by-record
coefficients of the power gain function, eq. (3), and (iii) determining,
from these coefficients, the record-by-record coefficients of the com-
plex gain function, eq. (2). We now discuss these three stages in turn.

4.2.1 Data adjustments

From physical considerations, we would expect the ensemble prob-
ability law for P; to be the same for all i. Thus, the power gain at any
given frequency should exhibit the same statistical behavior as that at
any other frequency. This expectation is confirmed by the data, which
show that the probability law for P; is approximately Gaussian for all
i. At the same time, however, the data show small but discernible
variations of P; and o; with i.
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Table |—Symbols and Definitions

Symbol Definition
) Index of frequency (i = 1 for lowest frequency; i = 24 for highest fre-
quency).
X Average of x; over ensemble of records comprising data base (x; can be any
variable).
{xi) Average of x; over i for given record;
1 24
(xi) = 2 .§:| Xi.
=19
R; Actual channel power gain, in dB, at ith frequency.
P; Recorded channel power gain, in dB, at ith frequency.
pi Power gain ratio at ith frequency; p; =107/1%,
q(w) Polynomial fitted to sequence of pi's; g(w) = %0 Dpw™.
Qi Decibel value of g(w) at ith frequency (represents fitted approximation to
P;); Qi =10 log g(w;i) = 10 log g:.
a? Ensemble variance of P;; o? =P? — (P,)*.
e Measurement error, (P; — R,), at ith frequency; el = 02 eus, all i
E; Observed error, (P; — @), at ith frequency.
€ Modeling error, (§; — R)), at ith frequency.
E:. Mean-square observed error per record; E mms =( E7).

E2. Approximation to E i, (quadratic in ¢;);

N 10 Pi— qi
: 2
Eims <{ In10 p }> '

Eg Bias in observed errors per record; Eg = { E;)
E® kth root of kth central moment of E; over ensemble; E*' =4(E, — £;)".

These variations were computed for the total record set and for each
of the four record subsets. Results are given in Fig. 2, where the
vertical bars span values for the four subsets and the solid curves
connect the values for the total set. Also given are results for the
decibel value of p;. The variations for this quantity are virtually
parallel to those for P;, a consequence of the fact that the pdf of P; has
roughly the same shape and variance for every i.

For all three quantities (P;, o; and p;), the consistency of results is
evident among the four subsets and between those subsets and the
total set. For each quantity, moreover, the average variation with i is
more pronounced than the spread among the data subsets. These
findings make clear that the variations with i are not statistical but,
rather, the result of systematic calibration differences in the measure-
ments. The variations with i of P;, in particular, can be explained in
terms of such systematic differences. Comparable explanations for the
variations of o; are not as forthcoming. Nevertheless, a decision was
made to attribute the nonuniformities of both P; and o; to systematic

1206 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1980



"sjusunisnipe BIEp Jae pue aiojeq ‘Aousnbaxj jo suonouny se ‘sured semod papIodal ayy Jo sHUBWON—G “Si]

1'X3dNI AONINDIHA

ve € Tz 1z 0 8. £ 9l & ¥ g 2z LWL O 6 8 (£ 9 s v £ .z 1
I “,m i T T [ I T I [ T T I I I I I T T I I u_n
1 fllululunl.!H/ \
_ - a—x _ _
T VAIII Ty Tﬂm IIIIIIII M\\Ili
I I- T—T =
/H /H /H.lf-l :

—r——

d31sSNrav v.ivad — 135 1v.L0L 3HL HO04 S11NS3H SLOINNQD — ——
135 Tv101 3HL HOd SLTNS3H SLO3INNOD
S13S8NS VL1vAa EN04 3HL 804 SLINS3H SNVdIS I

v1iva Ol SLNIWLSnrav Ozkh

Oy N
I d ol o1 /H . .

Le—

oz—

6l—

8L—

L=

$738123d NI 371¥IS HIMOJ

1207

POLYNOMIAL MODEL FOR MULTIPATH FADING



effects, and to compensate for them using simple adjustments of all
the P/s in the data base. The adjustments are of the form

P;= a;P; + Bi;; eachi, (19)

where the variations of a; and B8; with [ are chosen to serve two
purposes. One is to render the ensemble means and variances of the
adjusted P;s uniform over i. The other is to conserve the “‘global”
mean and variance (P and ¢?) of P;, i.e., the mean and variance of the
P/’s taken over the entire data base (24,820 records X 23 samples/
record). It is easy to show that this is achieved by choosing a; and B;
as

a; =£, Bi=P- EPi; each i. (20)
o O;

The variations of P;, o;, and 10 log p; for the entire record set, when
the data are adjusted according to (19) and (20), are given in Fig. 2 by
the dashed curves. We see that, by making P; and o; uniform over i,
10 log p; has been made nearly uniform also, as we expect it to be from
physical considerations. The a’s and B/'s that produce these results
are close to 1.0 and 0.0 dB, respectively, for all i.*

Though minor, the data adjustments have measurably reduced the
curve-fitting errors associated with the next stage of reduction. This is
made evident later.

4.2.2 Coefficients of the power gain polynomial

4.2.2.1 Least Squares Method. We wish to compute, for given M,
those D,.’s in eq. (3) that yield the best approximation to the channel
power response in each record. Ideally, we would like to minimize
some measure of (; — R} (see Table I), such as its mean-square
average over i, (e). Since the values of R; are unknowable, the next
best thing is to minimize some measure of (P; — @), such as (E?) =
EZ%... However, the /s are logarithms of samples of g(w), and so a
precise least-squares minimization is not analytically tractable. For-
tunately, so long as | E;| < 1 dB for most i, E%@s can be accurately
approximated by K2, as given in Table I. This quantity lends itself to
least-squares minimization.

For a given M and a given record, the following approach is used to
find Do, --- Dar: (i) the 23 P/s are converted to power ratios, p; (ii)
the function £2, is expressed in terms of the D,.’s in eq. (3); (iii) the
M + 1 derivatives of EZ,. with respect to Dy, --- Dy are computed
and equated to zero; and (iv) the resulting M + 1 linear equations in
Dy, - - - Du are solved using matrix methods.

* The &'s range from 0.945 to 1.029, and the 8/s range from —0.99 dB to 1.25 dB.
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As a refinement to this procedure, we add one more step: The
derived D,.’s are multiplied by a common factor chosen to force the
bias error, (E;) = Ep, to zero.* Thus, for example, if the initial solution
for the D,.’s leads to a bias error Eg = X, then adjusting each D,, by a
multiplying factor 10"/’ will reduce Ej5 to zero. This step reduces Em,
and makes the @;'s unbiased estimators of the P/’s.

Figure 3 shows two sample records for P;, taken from the data base.
In each case, the function @(w) = 10 log g(w), as computed using the
above procedure, is plotted for M = 0, 2, and 4. Note that, for M = 0,
the fitting function lacks the curvature needed to accommodate typical
fading patterns. For M = 4, on the other hand, the fitting function
provides added curvature that may be artificial, i.e., it may serve to fit
the measurement noise more than the underlying response. We now
turn to a discussion of fitting errors and the most suitable choice for
M.

4.2.2.2 Random Error Model. To begin, assume that 23 noisy samples
of P; are to be fitted by @(w) = 10 log g(w). Assume, further, that the
sample errors e; = (P; — R,) are independent, zero-mean Gaussian
variables, each having an rms value o,eas- Since the R/’s are unknow-
able, the e/s cannot be observed directly; at best, their statistics can
be inferred from an analysis of the observed errors, E; = P; — Q..

Specifically, suppose that M is a sufficiently high polynomial order
that, in the absence of measurement noise, all significant variations of
P; with [ could be accommodated by the fitting function @(w). In that
case, all the E;s would be due solely to measurement errors, the e/’s.
To a first approximation, we could then say the following:® The E.'s
are zero-mean Gaussian variables, each having an ensemble mean-
square value

22-M .
= —— Oieas; eachi. (21)
23

In addition, E}.s is chi-square distributed, with 22 — M degrees of
freedom and a mean given by eq. (21), i.e., Exn. = E7. Finally, the
errors of major interest, ¢, = (§; — R,), are zero-mean Gaussian
variables, each having a mean square value

X

2|

2
€; g, =

_E
+1
23

The pertinence of this theory to our data reductions is as follows: If
the observed E/s are essentially zero-mean and Gauss-distributed

SRy

02eas; each i. (22)

* Remember that the least-squares method is applied to EZ.. rather than to the
quantity of interest, E3,. The possibility thus exists of a small bias error in the results,
which this step removes.
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Fig. 3—Two examples of data records and their representations by zeroth-, second-,
and fourth-order polynomials.

across the data ensemble, each with the same E7; and if E},. is chi-
square distributed with 22 — M degrees of freedom and a mean of E7,
then the random-error model, as described above, can be assumed to
apply. Accordingly, omess can then be estimated from measured error
statistics using eq. (21), and the mean-square error between the fitted
and true power gains can be estimated using eq. (22).

The reduced data show that, when M = 0, the populations of E7,
and the E/s do not have the properties of the random error model.
This is to be expected, since a zeroth-order polynomial (horizontal
line) cannot accommodate the true variations of faded power with
frequency; hence, the E/'s are caused mostly by the inadequacy of the
fitting function rather than by measurement noise.
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Fig. 5—Probability distributions for Eums, using zeroth-, second-, and fourth-order
polynomials, compared with chi-square distributions predicted by the random-error
model.

For M = 2 and M = 4, however, the populations of Efys and the E/’s
do exhibit the properties of the random error model. For example, Fig.
4 shows variations of E;, E{* and E!* with i for M = 2 (see Table I).
Each vertical bar spans the spread of values among the four data
subsets, while the dashed lines give the values predicted by the random
error model.

Figure 5 gives even stronger evidence for the random error model
when M = 2. The vertical axis represents Pr{E.,,s > abscissa}, the
vertical bars give the spread of this quantity among the four data
subsets, and the dashed curves give the variations predicted by the
random error model when oueas = 0.63 dB. For M = 0, the measured
results compare very poorly with the predictions, for the reasons noted
above, while for M = 2 and M = 4 they compare very well. Using eq.
(22), the errors between @; and R; are found to have the rms values
0. =023 dB for M = 2 and o. = 0.29 dB for M = 4.
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The rms modeling error, o, is smaller for M = 2 because only three
polynomial coefficients are derived from 23 recorded samples, leaving
20 degrees of freedom for averaging out measurement noise. For M =
4, five polynomial coefficients are derived, leaving 18 degrees of free-
dom for noise averaging. We conclude that, for modeling purposes, M
should be large enough to provide adequate curvature in g(w) (as
evidenced by E;- and Ej..-populations that fit the random error
model), but no larger (so as to minimize o,). In view of this criterion,
we have decided that M = 2 is the optimal polynomial order for the
present data base.

Table II gives computed ensemble averages for EZ,. (the statistic
minimized by least-squares methods) and E.,., for M = 0, 2, and 4. The
ensemble in this case was the four merged data subsets. The close
agreements between Ein. and Er,.. for both values of M justify the
approximation of EZ,, by E?n. in the least-squares derivation of the
D,’s.

The results in Table II also permit comparisons between the cases
where the recorded data are adjusted, as described in Section 4.2.1,
and not adjusted. The reduction in fitting error associated with these
adjustments is small but distinct, indicating that the inferred calibra-
tion differences are real.

4,2,2.3 Coefficient Distributions. We have determined (Do, I, I);) for
every record in the total set, using the least-squares fitting procedure
described above. This effort has led to the set of cumulative probability
distributions in Figs. 6, 7, and 8. In each case, the vertical bars span
the results for the four data subsets, while the solid curve gives the
result for the total set. In some cases, where the probability curve is
steep and the spreads are small, the vertical bars can barely be
distinguished. In all three figures, the results show good consistency
among the four subsets and the total set.

The distribution for Dy, Fig. 6, is worth special note. From eq. (3), it
is clear that D, can be interpreted as the power-gain ratio at the center
of the channel (w = 0). Accordingly, it must always be positive, whereas
D, and D: can have either polarity. Also, since the power-gain statistics
should be the same at each frequency, the decibel value of D, should
have the same distribution as do the P,’s. For that reason, the abscissa

Table Il—Error statistics for 8640 records

M=0 M=2 M=4
Measured
Error Data  No Adjust- Data  No Adjust- Data  No Adjust-
Statistice Adjusted ment Adjusted ment Adjusted ment
Em‘_i in dB? _ —_ 0.361 0.486 0.314 0.373
E%p. in dB? 1.698 1.880 0.351 0.473 0.311 0.368
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Fig. 6—Probability distributions for power-gain polynomial coefficient Dy and re-
corded, adjusted dB power-gain P;.

in Fig. 6 is scaled in units of 10 log Dy, and the distribution for all P/’s
in the data base (24,820 records X 23 samples/record) is given as well
(dashed curve). The agreement between the dashed and solid curves
is excellent, as we should expect.

It should also be noted that a straight line on the probability paper
used here would imply a Gaussian (or normal) probability law. Thus,
10 log D, is nearly normal, i.e., D is approximately log-normal. Since
Ao = VDo (eq. (7a)), this means that A, is also approximately log-
normal, as we have noted in Section III.

4.2.3 Coefficients of the complex gain polynomial

The method for computing the A,’s and B,’s from the D,,’s for M
= 2 was outlined in Section 2.2. The primary results are given by egs.
(6) and (7). The condition A = 0 occurs over 58 percent of the data
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records, in which cases | H.(w)|® can be matched to g(w) without
requiring a second-order coefficient (i.e., A2 = By = 0). Over the 42
percent of the records wherein A < 0, however, A, Bs # 0, and a small
but nonzero fourth-order term, (A3 + B3)w’, exists in | Ho(w)|% Al-
though the method of solution is designed to minimize this term, it is
necessary to evaluate its effect on the polynomial fitting.

We define the added distortion, 8, for a given record to be the rms
decibel difference between | H.(w) | * and g(w), where the rms averaging
is over i. Thus,

, 2 B 1) .
q(wi)

Clearly, § = 0 for records in which A = 0. We have computed a
cumulative distribution for nonzero 8 over 3600 records, specifically,

29.8
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Fig. 7—Probability distribution for power-gain polynomial coefficient D:.
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those records within the four merged subsets where A < 0. The result
(Fig. 9) is that, for 99.4 percent of these records, & is below 0.23 dB, i.e.,
smaller than the rms error due to noise. Over all records, moreover, &
is less than 0.52 dB.

Having established the accuracy of the procedure for computing the
A,’s and B,’s, we have elected to ignore those nonzero values of A;
and B; that arise in 42 percent of the records. This step permits a
simpler model, as noted previously, at some cost in accuracy. Justifi-
cation for it is given in Section V.

4.3 Deriving the coefficient statistics

Assume now that the set (4q, A1, B1) is derived, record by record, for
the total data base. Using this large population of coefficient sets, it
should be possible to obtain a mathematical description for the pdf
p(Ao, Ai, B)). The procedure used was outlined in Section 2.3, and the
result was presented in Section III. In the following discussion, we
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present the evidence for (i) the pdf of a, [egs. (14) to (16)]; (i7) the
pdf’s of A, and B, conditioned on a.,; (iii) the functional variations of
o4 and op with a, [egs. (17) and (18)]; and (iv) the statistical indepen-
dence of A, and B, for given a,.

4.3.1 PDF for a,

The quantity a, is a shifted, scaled version of 20 log A, which, from
eq. (7a), is identical to 10 log Dy. The empirical distribution for this
variate in Fig. 6 is represented in Fig. 10 by the circles. The dashed
curve in Fig. 10 is based upon the pdf for a, given by egs. (15) and (16).
We conclude, then, that our mathematical model for the distribution
of 20 log Ao is an accurate one.

4.3.2 Conditional PDF’s for A, and B,

To derive the pdf’s of A, and B,, conditioned on a., the 24,820 data
records were grouped into 11 subpopulations, each corresponding to a
particular range of a.. For each of the central nine subpopulations, the
a,-range has a width of one-half a standard deviation, thereby balanc-
ing the objectives of good resolution (narrow a,-range per subpopula-
tion) and sample size sufficiency (many records per subpopulation).

Within each subpopulation, we computed the mean, standard devia-
tion and cumulative distribution for A,, and similarly for B,. Since the

80

60 (DATA ENSEMBLE: 3600 RECORDS IN WHICH A< 0)

CUMULATIVE PROBABILITY IN PERCENT

0.1 ] | | | ]

0 0.05 0.10 0.15 0.20 0.25 0.30
DISTORTION, & IN DECIBELS

Fig. 9—Probability distribution for distortion term &, caused by nonzero fourth-order
coefficient in records for which A < 0.
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polarity of A, was chosen randomly in each data record (a reaction to
the absence of phase response data, as noted in Section 2.2), the mean
for A; was very close to zero in every subpopulation.

We also randomized the polarity of every reduced value of B, before
analyzing the B, statistics in each subpopulation. The motive for this
polarity randomization is that it simplifies the statistical modeling.
Before randomization, the conditional mean of B; was not close to zero
in every subpopulation, nor was its conditional distribution Gauss-like;
after randomization, B, became a zero-mean Gauss-like variable in
every subpopulation. Although this simplification entailed some doc-
toring of the derived By’s, it should be noted that the polarity of B, is
immaterial in any practical system context. For this quantity repre-
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sents the slope, at band center, of the real part of H.(w), and whether
the slope is upward to the right (B, negative) or upward to the left (B,
positive) has no effect on either detection behavior or the realizability
of equalizer circuits. The same cannot be said for the polarity of A,,
which can influence the stability of some equalizer designs.

Table III gives some pertinent data for the 11 subpopulations
analyzed. For each one, identified by a number and an a,-range, the
table gives the number of records contained therein and the standard
deviations for A; and B,;. Because of the polarity randomizations, the
means for A, and B, are essentially zero in every case.

Some distributions for A:/c4 and B,/op are indicated in Figs. 11 and
12, respectively. Data are given for only five of the subpopulations, but
all of the nine central subpopulations exhibit the Gauss-like distribu-
tions evident here. That is, A1/04 and B,/op act, in every case, like
zero-mean, unit-variance Gaussian variables. We can therefore invoke
the following models:

1 1 A}
Ala)=—— _———— 24
pa(Ai| as) szA(a,,)exP{ 20%(%)} (24)
and
1 1 B}
) =— S 25
N e"p{ 2o%<ao>} z0)

4.3.3 aafa,) and og(ay)

Let us associate each o4 in Table III with the midvalue of the a.-
range for which it is computed and do the same for each os. (This
procedure has no meaning, of course, for the semi-infinite ranges of
the first and last subpopulations.) The result is that the circles and
crosses in Fig. 13 can be regarded as samples of the functions c4(a.)
and og(a,), respectively. The solid curves provide accurate fits to these
data that are described mathematically by egs. (17) and (18).

Table |ll—Data for the 11 subpopulations

Subpop. Population 04 oB
Number a,-Interval Size (ns) (ns)
1 < —225 515 0.154 0.126
2 [—2.25, 1.75) 660 0.153 0.125
3 [—1.75, —1.25) 1423 0.141 0.121
4 [—1.25, —0.75) 2878 0.176 0.140
5 [-0.75, —0.25) 4147 0.240 0.186
6 [—0.25, 0.25] 4925 0.278 0.175
7 (0.25, 0.75] 4340 0.370 0.185
8 (0.75, 1.25] 3522 0.440 0.239
9 (1.25, 1.75] 1933 0.503 0.233
10 (1.75, 2.25] 371 0.576 0.218
11 >2.25 106 0.656 0.158

Total: 24,820
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Fig. 11—Probability distributions for Ai/e4, conditioned on a,, for five subpopula-
tions.

4.3.4 Statistical independence of A, and B,

Formal statistical testing has shown that A; and B; within each
subpopulation are not mutually independent. We have assumed such
independence anyway because of the resulting simplification of the
model. The validity of this approach rests upon how it influences the
outcome of system studies. The next section takes up this issue and
gives justification for treating A, and B,, conditioned as a,, as inde-
pendent variables.

V. ACCURACY OF THE MODEL

The multipath fading model presented here consists of (i) a poly-
nomial representation for H.(w); (if) a mathematical formula for the
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joint coefficient pdf; and (iif) a formula for T, the number of fading
seconds per heavy-fading month. We now discuss the accuracy of each
of these constituents.

5.1 The polynomial representation

The first step in using the polynomial representation consists of
fitting g(w), eq. (3), to the recorded power gain data. This was done,
with M = 2, for each of 24,820 records. The error measured in each
record is the rms decibel difference (F.ms) between the recorded and
fitted power gains. Although the error between g(w) and the true
underlying response cannot be estimated from isolated records, its
statistics can be inferred by analyzing the population of Em. over
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Fig. 12—Probability distributions for B,/og, conditioned on a,, for five subpopula-
tions.
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thousands of records. Such an analysis* had led to the following
conclusion: The decibel difference between the fitted and true power
gains is approximately Gauss-distributed at each frequency, is due
almost entirely to measurement noise (rather than inadequate curva-
ture in the form of g(w)}), and has an rms value of 0.23 dB. This
corresponds to an rms error of 2.7 percent in the gain magnitude, | H. |,
which is sufficiently low for purposes of modeling.

The next step in the polynomial representation is to derive the A-
and B-coefficients in eq. (2) from the D-coefficients in eq. (3). For 58
percent of the data records, coefficient sets (Ao, A,, B;) exist which
provide a perfect match between | H.(w) |? and g(w). The one flaw in
these cases is the unresolvable ambiguity (resulting from noncoherent
measurements) in the polarity of A;.

For the remaining 42 percent of the records, the method for choosing
A’s and B’s leads, in addition, to nonzero A, and B; and a resulting
fourth-order term in | He(w) |* not present in g(w). The differences
between | H.(w) | > and ¢(w) for these records were analyzed, and found
to be minor (see Section 4.2.3 for more details).

Finally, all nonzero values computed for 4A; and B: have been
discarded to simplify the model. T'o evaluate the validity of this step,
we performed an outage analysis for several different modulations,
specifically, 4-PSK, 8-PsK, 16-PsK and 16-QaM. For each modulation,
cosine rolloff spectral shaping was assumed, and the rolloff factor ()
and channel bandwidth (W) were treated as variables. In every case,

* It is noteworthy that the distribution for EZ,, derived here using a second-order
glw) is nearly identical to that obtained for the three-path model of Rummler (Ref. 5).
The slightly lower mean obtained here is due solely to the data adjustments described
in Section IV.
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we specified the symbol rate to be W/(1 + a), thereby matching the
truncation bandwidth of the modulation to the channel bandwidth.

The outage analysis performed for each modulation used W = 20,
30, and 40 MHz and a-values between 0.1 and 1.0. For each of the
resulting cases, the quantity “outage seconds/heavy-fading month”
was estimated using the following procedure: Regions of the coefficient
set (Aq, A1, B1, As, By) for which the detected data eye is closed were
derived analytically;* the number of data records for which (Ao, -+
B.) lies within these so-called outage regions was counted; and the
fraction of these records was multiplied by T in eq. (12). [We assumed
¢ = 1 (average terrain), F = 6 (GHz), and d = 26.4 (miles), resulting in
a value for T of 12,144 s].

This computation was done twice for each combination of modula-
tion, W and «. In one computation, nonzero values of A, and B were
acknowledged in comparing each (Ao, - - - B:) to the outage regions; in
the other, As; and B: in each record were taken to be zero.

The numerical results span a range from 5 to 8000 seconds of outage.
The results obtained by acknowledging nonzero (A., B;) pairs and the
results obtained by ignoring them differ by less than 10 percent for all
cases treated. The simplification of omitting As and B; from the model
is thus found to be acceptable for purposes of making outage predic-
tions.

5.2 The coefficient PDF

In deriving the mathematical result for p(a., A1, B1), Section III,
numerous approximations and assumptions were made, e.g., indepen-
dence between A; and B, for given a,; Gaussian conditional pdf’s for
A; and By; and the functions for pa(a.), 64(a,), and ag(a.). The ultimate
test of the result is whether it leads to the same performance predic-
tions as those based upon the actual population of coefficient sets.
Accordingly, outage seconds for the combinations of modulation, W,
and « cited above were obtained using a separate method of calcula-
tion: In addition to counting data records over the coefficient outage
regions, the model distribution p(a., A:, B:) was integrated over these
regions.

The main findings are as follows: When the outage calculated by
counting data records is greater than 70 seconds per heavy-fading
month, the outage calculated by integrating p(a., A1, B1) differs by 16
percent or less; for outages less than 70 seconds, the difference is 50
percent or less. This is an excellent level of agreement for practical

purposes.

* The closed-eye eriterion for “outage” leads to conservative performance measures
but has the virtue of not depending on system fade margin or specified bit error rate; it
also simplifies the outage analysis considerably.
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The above findings vindicate the modeling assumption that A, and
B, are independent for given a.. It also confirms the accuracy of the
functions used for p.(a.), ca(a,), and og(a,). It is noteworthy that,
when outage is calculated using a purely Gaussian function for p.(a,)
[i.e., z(a,) = 0in eq. (16)], the agreement with counted data records is
poor in several cases. In short, the refinement in p.(a,) used here is
important to the accurate use of the model in system outage predic-
tions.

5.3 Expression for Ty

The expression given for T in Section III assumes only that this
quantity is in a fixed proportion to the multipath occurrence factor of
Barnett.” By computing the fading time and occurrence factor for the
present data base, we have obtained the empirical results of eq. (12).
This result is unverified, although recent studies have indicated that
it is reliable to within a factor or two.?

There is further evidence supporting eq. (12) for T, as well as eq.
(1) for pa.(a.): Using these two formulas, plus (14) and (16), we can
show that deep fades observe the probability law

Pr{Ao < L} = 1.7 rL% (—10 log L* > 26 dB). (26)

This law applies to heavy-fading months, and r is the multipath
occurrence factor used to derive T. This result differs from that of
Barnett’ by the factor 1.7, which represents very good agreement.

VI. DISCUSSION AND CONCLUSION

We have presented a statistical model for describing the microwave
channel distortions classified as multipath fading. The model is defined
by the functions of eqs. (11) through (18) and by the 12 numerical
constants contained therein. We do not know whether the functional
structure is valid for other paths, microwave frequencies, seasons, etc.,
and, if it is, whether or how the numerical constants vary with these
conditions. The way to resolve these questions is through more mul-
tipath experiments.

A major virtue of the polynomial model suggested by eq. (2) is the
simplicity it affords in analyzing the response of a fading channel to
arbitrary modulations. This is largely because the required polynomial
order for H.(w) in channelized microwave systems is generally quite
low. Ample support for this conclusion is given by the data reductions
and system analysis results reported here.

Another useful feature of the polynomial model is that it suggests
the form of an adaptive equalizer response, i.e., 1/H.(w), which is
easy to realize when the complex zeros of H.(w) have negative real
parts. With this in mind, the polarity of A, becomes a very important
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issue. For when A, > 0, the realizable adaptive response [A, — wB; +
Jw|A:|]7" is highly effective against multipath fading."” When A, < 0,
however, such a response eliminates amplitude distortion at the cost
of increased delay distortion. In lieu of explicative data, the present
model assumes that A, < 0 precisely half the time. Whether this is
true or not has important bearing on the achievement of successful
equalizer approaches. Coherent multipath measurements would help
to resolve the existing polarity uncertainty in the model.

The new model provides a useful starting point for the design of
subsequent experiments. What it reveals about the depth, shape, and
statistics of multipath fading responses can facilitate design choices
for the channel probing signal, receiver processing, data acquisition
and reduction strategies, and other experiment features.
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