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A common form of lightning-induced cable damage occurs when a
lightning surge travels down the shield of a cable, inducing large
voltages between the cable core and the shield and leading to possible
insulation breakdown and arcing. The magnitude of this core-shield
voltage is a function of how quickly the lightning current is shunted
to the surrounding sotl, either through a ground or by puncturing the
protective jacket of the cable. Core-shield voltages are calculated for
various combinations of cable length, cable diameter, soil conductiv-
ity, lightning pulse shape, and resistance of the cable jacket to
puncturing and compared with results obtained by assuming that the
cable jacket is punctured along its entire length. This latter assump-
tion, the “bare shield” model, has generally been used to predict core-
shield voltages. We have found that the “bare shield” model can lead
to a significant underestimation of the core-shield voltage, particu-
larly for small diameter cables with long distances between grounds
{on the order of 10 kilometers). We present curves that provide an
estimate of the peak core-shield voltage for a cable in which the
Jacket punctures for a portion of its length.

I. INTRODUCTION

A common form of lightning-induced cable damage occurs when a
lightning surge travels down the shield of a cable. Under certain
conditions, this lightning current may develop very large voltages
between the shield and the core conductors leading to possible insu-
lation breakdown and arcing. It is therefore of interest to determine
the range of core-shield voltages that can be expected for a cable
exposed to lightning under various circumstances. We confine our
discussion in this paper to buried cable.

A lightning surge “enters” a cable either directly by puncturing the
cable jacket, by sparking across a protective gap, or by induction. The
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lightning current then splits and travels along the shield in both the
positive and negative x directions (Fig. 1). These surges have a rise
time on the order of microseconds and considerably slower fall times
on the order of tens of microseconds. The peak value of the surge is on
the order of tens of kiloamperes. For the purpose of analysis, we
assume that the surge is a double exponential, and we characterize it
by giving its peak value, its rise time (in microseconds), and its fall
time (in microseconds). Thus, a typical pulse might be identified as a
10 kA, 7.5 X 65 surge, meaning a double-exponential pulse of peak
value 10 kA, with a 7.5-microsecond rise time and 65-microsecond time
to half value (see Fig. 2).

If the surge is large enough, as it travels along the cable shield it
punctures the jacketing insulation.! A large part of the lightning
current leaks off the shield through these punctures; in effect, the
cable shield is then in electrical contact with the ground. At some
point, so much current has leaked off that not enough is left to cause
puncturing; what remains then travels along the shield, confined by
the highly resistive polyethylene jacket.

The behavior of a lightning pulse on the shield of a buried cable can
be rigorously described by use of electromagnetic field equations. We
use a simpler model developed by Sunde® in which the current is
assumed to travel on a transmission line consisting of the cable shield
and the earth. If one can deduce the parameters of this transmission
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Fig. 1—Buried cable configuration.
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Fig. 2—Double exponential pulse.

line, the standard transmission line equations may be used to describe
the behavior of the current surge. The cable also has a core of insulated
wire pairs and these pairs, taken together as a “single” conductor along
with the shield, constitute another transmission line. This core-shield
transmission line is coupled to the shield-earth transmission line, the
coupling parameter being the transfer impedance of the shield. The
result of this coupling is that, as the current in the shield-earth
transmission line travels down the line, a voltage develops between
the core conductors and the shield. For a typical lightning surge, this
voltage may become quite large, on the order of 10 kV, which may be
enough to damage the insulation on the core conductors. The voltage
reaches its greatest value at the entry point of the lightning current,
and is a function of the shield transfer impedance, the lightning current
magnitude, and the distance along the cable that the current travels
before it is removed to earth.

It is this last factor that complicates the analysis, since the distance
the current travels on the cable shield is controlled to a great extent
by the ability of the current to puncture the jacket. In the region
where the current is large and punctures the jacket, the shield-earth
transmission line has characteristics typical of a “bare” cable ie., a
cable without an outer jacket; in the region in which the current has
become too weak to puncture the jacket, the shield-earth transmission
line has characteristics corresponding to an insulated cable.
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To simplify calculations, it has often been assumed that the lightning
pulse punctures the jacket for the entire length of the cable; this is a
good assumption if the discussion is confined to large pulses and short
cables. In this study, we have attempted to take into account the
nonlinear behavior of the cable jacket in computing the core-shield
voltage; we have found that including this behavior and assuming that
the jacket is not punctured for the entire length of the cable can lead
to a significant increase in the core-shield voltage, particularly for
cables with long distances between grounds (on the order of 10 kilo-
meters).

Il. THE SHIELD-EARTH TRANSMISSION LINE

We assume that a lightning surge introduced to the shield of a buried
cable behaves as if the cable shield and the earth constitute the two
conductors of a linear, homogenous transmission line. One can then
use standard transmission line equations to describe the behavior of
the pulse. If we characterize the pulse I(x, ¢) by its frequency spectrum
I(x, w), we may write

I(x, @) = I(0, w)e ™. (1)

In the above, ¢ is time, x is distance along the line, and w is frequency
in radians/second. The propagation constant of the line is I, and in
general it is a complex number whose real part « gives the attenuation/
length and whose complex part j gives the phase shift/length.

We assume that the line is terminated at x = 0 in an infinite
impedance, so that the line may be neglected for negative values of x
(this is equivalent to writing I(x, w) = I(—x, w) = Nightning/2). Further-
more, eq. (1) assumes that no reflections are on the line. For most
situations with which we will be concerned, this is a valid approxima-
tion: In the case of a cable punctured over its entire length, reflections
are unimportant because the attenuation is so great. In the instance
that the lightning current is so small that the cable insulation does not
puncture at all, reflections are important only if the cable is terminated
at its far end in an impedance very different from the characteristic
impedance of the shield-earth transmission line; we show in Section
VII that the effect of these reflections may be easily accounted for. If
the pulse is in the range in which the jacket punctures for part of the
length of the cable, reflections from the punctured-intact transition
may become a significant factor; this case is dealt with in detail in
Section III.

The propagation constant is related to the impedance/length Z(w)
and the admittance/length Y(w) by the expression

IM(w) = Z(w) Y(w). (2)
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For the shiel&-earth transmission line, we may write (Ref. 1 and Ref.
2, Ch. 5)*

I - 1 L12|-1
Y(w)-—[Y. +w((1/p)+jw€)ln I,a,] (3)
. jw_p 1.85
Z(w) = Z: + 2’” IDW (4)
d = va; + 4d* (5)
Y =J'wu(% +J'ws), (6)

where

w = frequency [radians/sec]
p = permeability of soil [henries/meter]
p = resistivity of soil [meter-ohms]
€ = permittivity of soil [farads/meter]
@ = effective radius of shield [meters]
@, = outer radius of shield [meters]
d = depth of cable [meters]
Z; = external impedance with external return of hollow cylinder
[ohms/meter]
Y: = admittance/length of cable jacket [mhos/meter].

An expression for Z; is given by Schelkunoff:"?

1
Zi=—" cothat,+—1— E+—— ’ (7)
27a, 8o\ai a,
where
== (8)
8s
0% = jwguls (9)
and

&s = conductivity of shield [mhos/meter]

s = permeability of shield [henries/meter]
t; = thickness of shield [meters]

@; = a, — t, = inner radius of shield [meters].

* In eqs. (3) and (4), the factors 1.12 and 1.85 result from the use of small-argument
approximations for Bessel functions.
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The admittance/length of the jacket, Y;, is easily derived:

2

Yi= ln(aco/ad)

(g(' +jwer)v (10)

where

a., = outer radius of jacket [meters]

a.; = inner radius of jacket [meters]

&. = conductivity of jacket [mhos/meter]
€. = permittivity of jacket [farads/meter].

These equations are valid from dc to about 107 Hertz, at which point
approximations to Bessel functions used to derive (3), (4), and (7)
break down."*

Putting (3) and (4) into (2), we obtain an equation for I'(w):

Zi + (jop/27)n(1.85/d(y* + T'*)'?)
Y:' + 7((1/p) + jwe)ln(1.12/T'd)

Solution of this nonlinear, complex, transcendental equation gives
I" as a function of frequency. Putting the solution for I' into egs. (3)
and (4) gives Y and Z. Thus the characteristics of the shield-earth
transmission line may be determined, and the behavior of the lightning
pulse obtained by solution of eq. (1).

M(w) = (11)

lll. THE CORE-SHIELD VOLTAGE
3.1 Development of V., equations
Sunde’s analytical development (Ref. 2, Chapter 9) shows that the

entry point voltage developed between the core conductors and the
shield when a pulse travels down the shield is given by

Ves(0, w) = J' 10, w)Zye "1 dx, (12)
1]

where

V., = core-shield voltage [volts]
I(0, w) = current at entry point, traveling in the positive x direction
(half the total lightning current) [amperes]
Z(w) = shield transfer impedance [ohms]
I'(w) = shield-earth propagation constant given by eq. (11) [me-
ters™']
T'o(w) = core-shield propagation constant [meters™'].

Here T’y may be written as
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o? 1/2
Po = [— F +ijoR0:| ’ (13)
0

where

vo = phase velocity of core-shield transmission line [meters/second]

Cy = capacitance/length of core-shield transmission line [farads/
meter]

R, = resistance/length of core-shield transmission line = R,, resist-
ance/length of shield [chms/meter].

The internal surface impedance with external return of a hollow
cylinder is Z, (also known as the transfer impedance), and is given by
Schelkunoff:®

Z, csch ot,, (14)

_ n
2w va;a,

where 7 and ¢ are given by (8) and (9), and the other symbols are as
defined above. At low frequencies, Z, is very nearly equal to R,, the dc
resistance of the shield.

Equation (12) applies to an infinitely long cable. If the cable termi-
nates at a distance x4, the limit on the integral changes and (12)
becomes

X4
Ves(0, w) = f I(0, w)Z.e ~(PiTel dx; (15)
0

where the effect of reflections at the termination have been neglected.

We are interested in evaluating (15) for various values of I".

If a lightning surge on a cable is greater than a minimum threshold
value I, it will cause the cable jacket to puncture. As mentioned
above, when the jacket punctures, the shield-earth transmission line
behaves as if the shield were in direct contact with the earth.! We
denote the propagation constant in this “bare” case I's. If the surge is
too small to puncture the jacket, i.e., I < I;, the cable behaves as if it
were well insulated (which it is). We then call the propagation constant
I';. Let us examine the possible behavior mechanisms of a lighting
pulse along a length x4 of polyethylene-insulated cable.

In the first instance, consider a pulse in which the current at x = 0
is less than the threshold current. In this case, the jacket will not
puncture and the lightning pulse travels along the shield in accordance
with eq. (1), with I' = T';. Setting I = I'; in (15) and integrating, we get

I0, w)Z,

Val0, @) = -
0

[1 — e—ll‘;+1‘n)xd]_ (16)
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Now consider a lightning pulse which is large enough to puncture
the jacket. The pulse will now propagate down the shield in accordance
with (1), with I" = I's. As the pulse travels, it gets smaller as current
leaks off into the earth, the attenuation rate being given by a, the real
part of I". At some distance from the entry point, the pulse will become
too weak to continue puncturing the jacket. From this point on, the
pulse propagates as if I' = I';, the insulated case.

We must now consider two possibilities: If the pulse is large it will
have to travel a long distance before it stops puncturing. Let us call
this distance xu. If x, is greater than x., the cable behaves as if it
were bare for its entire length. We may then set I' = I'p in (15), and
integrate:

10, w)Z,
I's+ I

The second possibility to consider is that the pulse stops puncturing
before it reaches the end of the cable, i.e., x,» < x4. The cable now
behaves differently over different portions of its length. From x = 0 to
x = xu, the lightning punctures the jacket and the cable behaves as if
it were bare, I' = I'g; from x = xu to x = x4 the pulse is too weak to
puncture the jacket, and the cable behaves as if it were insulated, T'
= T';. As the pulse travels along the cable, it first experiences a zone of
punctured jacket and then a zone of insulated jacket. If the transition
between these zones is assumed to be abrupt, part of the pulse will be
reflected back to the punctured section, and part will be transmitted
through the boundary to the insulated section. If we neglect multiple
reflections in the punctured zone and if we assume that the insulated
section is either very long or terminated in an impedance approxi-
mately equal to its characteristic impedance, eq. (15) may be written

Ve(0, w) = [1 — e~ Ta*Todz], (17)

Xth
V“.(O, LO) = ZS[J’ I(O, w)e—(f‘ﬁﬂ"n)x dx
0
Xth
+PiJ I(xn, w)e T+ dx
1]

Xd
+ (1 +px)j I(xm,w)e"r’*r"“”’"’dx:l, (18)
Xth

where p; is the reflection coefficient.

The first term represents the voltage due to the current pulse
propagating along the punctured section of cable, the second term is
a result of the current reflected from the boundary at x4, and the third
term is due to the current transmitted across the boundary that travels
along the insulated section. The reflection coefficient p; may be written
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o ZoH - Zu,
=z F z,’

]

(19)

where

Z,, = characteristic impedance of the insulated portion of the cable
Z,, = characteristic impedance of the punctured portion of the cable

_ [Z(w)
Z, = Yo

I(xm, w) = I(0, w)e 8%, (20)

and, in general,

From eq. (1),

Putting (20) into (18), integrating and collecting terms,

(1+ p,-e_[‘"x”‘)(l —_ e—ﬂ‘n+1"ul-"m)
T'e+ 1T,

Vcs(o, w) = I(O, w)Zs{

+ (1 + p:) T+,

The characteristic impedance of the punctured section is generally
very different from that of the insulated section, and the reflection
coefficient, especially for low frequencies, is very close to —1. Equation
(21) would seem to predict that the contribution to the core-shield
voltage from the insulated section of line should be very small because
of the factor (1 + p;). However, in developing eq. (21) we assumed that
the transition from punctured section to insulated section is abrupt.
Let us examine this assumption more closely.

—Tpxp —(Tp+To) (xg=xp)
e l—e th
[ ]} . (21)

3.2 The transition zone

The cable jacket punctures when and if the transverse voltage at
the interface of jacket and shield is higher than some threshold
breakdown value. From the definition of Y, the admittance/length of
a transmission line, we may write

1

V=—
Y

IS

‘ (22)

For the shield-earth transmission line, we may write [see eq. (3)]

1 1 1
+ - (23)
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where Y; is the admittance of the insulation and Y. is an admittance
term due to the earth and to the earth-cable interaction. The voltage
across the jacket may then be written

1 1)aI 1 aI

‘}::V—Ve=(?-—?; = —_—

ax Y ax’
From eq. (1),

Vi(x, w) = {—,— I(x, w). (24)

Let us assume that the lightning pulse has somehow managed to
penetrate the jacket and enter the shield of the cable, either by
induction or by sparking over a lightning protector at a termination,
or by actually puncturing the jacket. A short distance from the entry
point, the voltage developed across the jacket will be given by (24)
with T" = I';. The ratio of I'; to Y; for standard cable jacket is on the
order of 10° for low frequencies, so V; may become quite large. If the
current is high enough, V; will exceed the breakdown potential of the
jacket and an arc will develop. The resistance of the arc is low enough
that the current pulse behaves as if it were in direct contact with the
earth, that is, as if the cable were bare.

That portion of the current that passes beyond the puncture once
again encounters the intact jacket, but the voltage across the jacket
does not return abruptly to its breakdown value; if it did, the jacket
would be continuously pierced, rather than intermittently punctured.
Instead, the voltage builds to its threshold value over some finite
distance along the cable. The rate of change of voltage is given by
another defining equation of the transmission line

dv

i ZI (25)
where Z is the impedance/length of the line. For large values of I, dv/
dx will also be large and the voltage will build quickly to its breakdown
value, at which point the jacket again punctures and current is sud-
denly able to leak off. As the pulse progresses down the shield, the
current decreases, dV/dx also decreases, and the space between punc-
tures increases. Eventually, the current becomes so small that (24)
never reaches the threshold value for V; and the jacket remains intact
for the remaining length of cable. Douglass' has experimentally deter-
mined that the minimum value of peak current necessary to puncture
the jacket lies between 2000 and 6000 amperes, the latter value
pertaining to factory-fresh, carefully buried cable.

While the current is high enough to puncture the jacket, the shield-
earth transmission line behaves in the aggregate as if the shield were
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in continuous contact with the earth, even though it makes only
intermittent contact through tiny pinholes spaced meters apart. As the
puncture spacing increases, the behavior of the line approaches that of
an insulated cable; eventually I" assumes the value I';. From the above
discussion, it is clear that at no specific point on the cable does
behavior change from bare to insulated; indeed, if one were to examine
the “bare” cable in detail, it would not appear bare at all. Between the
punctures, it is as well insulated as if the punctures did not exist. Only
in a macroscopic sense, in which we consider a section of cable that is
long with respect to the distance between punctures, can we talk about
the cable behaving as if it were bare. As the distance between punctures
increases, the scale of this macroscopic dimension becomes larger,
until ultimately we talk of the cable being insulated.

The transition from I's to I'; is actually quite gradual. The transition
from Z,, to Z,, is also gradual, and the reflection coefficient will be
reduced by some factor depending on how gradual the transition is. As
a lower limit we might assume that the transition is so gradual that no
current at all is reflected, i.e., p; = 0. Equation (21) would then become

v I P 1 — e Uptlo)xm
0 = 0, I3
es( 1‘-") 0, w) [ Ts + To
1 —_ e—(l";+I‘D)(:d—x,,,]
+ e Tz
€ T; + Lo (26)

Since the attenuation constant for the insulated section of cable is
very small (very little current can leak through the intact insulation),
the core-shield voltage developed on the insulated portion can be
considerable. In fact, for a lightning pulse entering the cable with a
value not very much greater than the minimum value needed for
puncturing, the insulated portion will be much longer than the punc-
tured portion and the voltage developed will be due almost entirely to
the insulated portion. However, if the reflection coefficient is large [eq.
(21)], very little current enters the insulated portion and the total
voltage at x = 0 will be greatly reduced from the case of no reflection.
Hence, the value of the reflection coefficient is critical for estimating
the core-shield voltage of the cable; unfortunately, it is impossible to
get a good estimate of this value without doing extensive field studies.
Since the actual reflection coefficient is unknown, we use egs. (21) and
(26) to bracket the core-shield voltage, with eq. (21) giving the lower
limit and eq. (26) the upper limit. Note that in the case of eq. (21), we
cannot estimate the lower limits for currents close to the current
puncture threshold for, if the peak current is very close to the threshold
value, eq. (21) will not hold because the assumption of only a single
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reflection in the puncturing portion is not valid if that portion is very
short. If the punctured portion is short, the reflected current will not
have time to decay before it is again reflected, this time from the
assumed infinite impedance termination at x = 0. Equation (21) is
valid only if the puncture region is sufficiently long that only one
reflection need be considered.

We now have four expressions for core-shield voltage in standard
cable, corresponding to the following combinations of peak current
and cable length: eq. (16) for the case in which the current is less than
the minimum needed for puncturing, eq. (17) in which the peak current
is so great that the cable punctures for its entire length, eq. (21) for the
case in which the current is greater than the threshold value and
causes the cable to puncture for part of its length, with an assumed
sharp transition to the nonpuncturing portion, and eq. (26) for the
same combination of current peak value and cable length, but with an
assumed gradual transition. Equations (21) and (26) bracket the core-
shield voltage for the partial-puncture case. These expressions are
summarized in Table L

IV. PROCEDURE

The equations for V., developed in Section III require values of T',
the propagation constant for the shield-earth transmission line, and in
one case, p;, the reflection coefficient for the transition point on a

Table |—Equations used to generate values of core-shield voltage

Standard Cable
1. (0, #)peax < In, jacket does not puncture:

I(0, w)Z,
ri+TI

Vool 0, w) = [1 _ e—(rr.pr,.u,,]. (16)

2. I(0, t)pe.lk > I

A. xum > xa, jacket punctures entire length of cable:
I(0, w)Z, .

i 1 — e~ TatFuxi],
s+ T [1-e ]

B. xu < x4, jacket punctures part of cable:
i. Reflection at x:

Vaul0, w) = (17)

(1 + pie Twma)(1 — e~ ‘TurtTulu)

Vaul0, w) = I(0, m)Z,,{

Iy + o
e“l'yv"m[l — e'“';*rn“-‘.l"m‘]
+ (1 +pi )
(1+pi) T, + T } (21)
ii. No reflections at xx:
1 — e (FutTulxn . — e~ T rkxy)
Veil0, = I(0, w)Z, + e Vwru 6
(0, @) =10, ) [ [ PR T+ 1, ] (26
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partially punctured cable. These values are obtained by solving eq.
(11) for T', using this solution in eqs. (3) and (4) for Y and Z, and then
using those solutions in eq. (19) to get p;. The only difficulty lies in the
fact that eq. (11) is a nonlinear, complex transcendental equation
whose solution must be obtained numerically for the particular cable
and soil parameters of interest.

We have written a computer program that uses Newton’s method to
solve eq. (11), and with it egs. (3) and (4). The program has been used
to find T" as a function of frequency for cables of the dimensions and
characteristics given in Table II. The resistivity of the jacket was
varied while all other parameters of each cable were kept constant;
the jacket was assumed to have a resistivity of 10 meter-ohms,
corresponding to standard polyethylene,* or a resistivity of zero, cor-
responding to a “bare” cable. The cable parameters and assumed soil
parameters are shown in Table II; results for various soil conductivities
are shown in Figs. 3, 4, 5, and 6 for the small cable.

The equations for V., require several parameters in addition to "
and p;. Specifically, we need Iy, the propagation constant of the core-
shield transmission line; Z,, the transfer impedance of the shield; I(0,
w), the frequency spectrum of the lightning pulse where it enters the
cable and, in the case of cable which punctures over part of its length,
xm, the assumed point on the cable at which the peak current is
reduced to its minimum puncture value, I». I'o and Z, may be computed
directly from eqgs. (13) and (14); I(0, w) and x4 require the use of
Fourier transforms.

We used fast Fourier transform routines to determine I(0, w) from
the current pulse I(0, ¢). With current defined every 2.5 microseconds

Table ll—Parameters of cable and soil
Cable Parameters

Small Cable Large Cable
(25 Pair) (300 Pair)*
Outer Shield Radius, a, 6.6675 mm 31.0896 mm (mean)
Shield Thickness, ¢, 0.635 mm 0.356 mm
Shield Conductivity, g, 3.72 x 10" mho/meter 2.72 x 10" mho/metert
Jacket Outer Radius, a.., 7.9375 mm 32.893 mm

Jacket Conductivity, g.—10~"* mho/meter
Jacket Permittivity, e.—2.3¢, farad/meter
Cable Depth, d—1 meter

Soil Parameters

Soil Permittivity, e 10€ farad/metert
Soil Resistivity, p from 50 to 1000 m-Q

al‘ Sheath of large diameter cable is corrugated, so radius figures represent average
values.

T Mean value for steel and aluminum, plus 11 percent due to extra length introduced
by corrugation.

¥ €0 = permittivity of free space = 8.854 x 10™'2 farad/meter.
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Re (I') SOIL RESISTIVITY IN M—£ AS MARKED
BARE CABLE

Re (") IN NEPERS PER METER

1074 1 1 ]
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Fig. 3—Real part of I" for different values of soil resistivity p.
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Fig. 4—Imaginary part of I'.
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Re (T} SOIL RESISTIVITY IN M—£ AS MARKED
INSULATED CABLE
1074
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106 | 1 |
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Fig. 5—Real part of I for insulated cable.
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1Im (T) SOIL RESISTIVITY IN M— 2 AS MARKED
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Fig. 6—Imaginary part of I" for insulated cable.
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in the time domain and every 50 Hz in the frequency domain, 8000
points were needed. In one instance, we used a resolution of 10 Hz in
the frequency domain, requiring 40,000 points for the transform; the
results for the high resolution case differed from those of the low
resolution case by less than 3 percent, so we decided to use the 50-Hz
resolution for the bulk of the analysis. Thus, the results presented in
this paper used a 50-Hz frequency resolution. A typical lightning pulse
spectrum is shown in Fig. 7. Notice that the spectrum is rather flat
from low frequencies up to about 1000 Hz; it then falls off gradually,
eventually attaining a slope of 1/f” at high frequencies.

Fourier transforms must also be used to find x,: with I" set equal to
I', eq. (1) is inverted for different values of x until that value is found
for which the time-domain current pulse has a peak value of In. The
values of x used in (1) were determined in practice by a bisection
search which located x, to within 1 meter, requiring 11 inversion
operations.
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Fig. 7—Lightning spectrum for 10,000 ampere 7.5 X 65 ps pulse.
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V. RESULTS

The equations for V., were used to generate profiles of core-shield
voltage as a function of peak lightning current for a variety of cable,
soil, and pulse parameters. In each case, the cable was assumed to be
either uniformly bare or jacketed with standard polyethylene, and the
cable length either 100, 1000, or 10,000 meters. In the case of bare
cable, eq. (17) was used to generate the core-shield voltage; in the case
of the standard jacket, either eq. (16), (17), or (26) was used, depending
on the values of x4, x4, and I(0, t)pcar in accord with Douglass’
empirical results; values of I" correspond to soil conductivities of either
50 meter-ohms (highly conductive) or 1000 meter-ohms (highly re-
sistive); pulse shape was taken as either 5 X 40 (moderately fast) or 15
X 65 (moderately slow).*

The cable parameters used for most of the cases studied were those
of a Bell Laboratories experimental cable being used to measure
insulation characteristics. In addition, parameters for a large 300-pair
cable were used to investigate the effect of cable size on core-shield
voltage (the experimental cable is rather small).

As noted above, for the range of incident lightning currents in which
the cable punctures part of its length (x;, < x4), eq. (26) which assumed
no reflection at the boundary, was used instead of eq. (21), which
assumed an abrupt transition and a large reflection coefficient. The
reason for not using eq. (21) was simply that it gives essentially the
same results as eq. (17) (the “bare” cable core-shield voltage). As
described in Section III, in this range of currents we calculate the
upper and lower bounds of the core-shield voltages; eq. (26) for the
smooth-transition, nonreflecting case gives us the upper bound, and
eq. (21) for the abrupt-transition, reflecting case gives the lower bound.
However, the lower bound is essentially the bare cable value so, to
reduce computation costs, in most cases only the upper bound was
calculated separately.

The results we obtained are shown in Figs. 8 to 14, in which we plot
the peak value of V..(0, t). A careful examination of Fig. 8 will serve as
a guide for the others.

Figure 8 compares core-shield voltage for insulated cable and bare
cable for a 5 X 40 pulse, in 1000 meter-ohm soil, with a puncture
threshold of 2000 amperes. These parameters represent a fairly typical
pulse shape, with representative values for a cable in highly resistive
soil. The horizontal axis gives peak current at the point of entry, the
vertical axis core-shield voltage at the same point. The horizontal axis

* Although choices of pulse shape were dictated largely by constraints in using the
fast Fourier transforms, the waveforms are still good representations of actual lightning
currents.
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Fig. 8—Core-sheath voltage developed on insulated cable (dashed lines) and bare
cable (solid lines), for three different lengths between effectual grounds, Pulse shape 5
X 40 ps, soil resistivity 1000 m-ohms, puncture threshold 2000 amperes. Other parameters
are for the small cable (see Table II).

is also graduated in terms of percentile distribution of peak lightning
current to buried structure, as estimated by Sunde (Ref. 2, Fig. 9.2).
The solid lines give core-shield voltage for bare cable for three different
lengths; the dashed lines give voltages for insulated cable, also for the
same three lengths.

Let us look in detail at the bare cable values. Note that the results
for the three lengths are parallel straight lines. This is consistent with
eq. (17) which is linear in I(0) when x, is held fixed. The uneven
spacing between the lines illustrates the effect of bare cable’s high
attenuation constant: The pulse leaks off the shield so effectively that
most of it is gone by the time it has traveled 1000 meters, even in high
resistivity soil; a cable length of 10,000 meters produces just about the
same voltage as a cable 1000 meters long.

For values of peak current less than the threshold value of 2000
amperes, the shape of the curves for insulated cable are similar to
those for bare cable. Once again we get three parallel lines correspond-
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ing to the three cable lengths. The uneven spacing of the lines again
represents the diminishing effect of length as the pulse manages to
leak off the shield; the effect is not as pronounced for insulated cable
as for bare cable because we are dealing now with a cable with an
intact, highly resistive jacket, and almost all the leakage is in the form
of displacement current through the capacitor formed by the shield-
jacket-earth sandwich. This causes high frequency components of the
pulse to be preferentially lost, and the pulse becomes “smeared out”
as well as attenuated (see Appendix A).

For current values above the threshold, the results no longer are
parallel straight lines. This is the region in which the cable punctures
for part of its length and is intact for the remainder. Notice that in
each case the slope of the line changes more or less abruptly at the
threshold value, the change being less pronounced for the longer cable
lengths. Eventually the dashed line converges with the solid line
representing the bare cable voltage, since as the peak current increases
the cable punctures over a greater percentage of its length and the
“bare”. term in eq. (26) becomes dominant. The proportion of punc-
tured length to insulated length also explains the change of slope at
the threshold value. In all three cases, the cable will puncture for the
same length for a given peak current, but this will be a much more
significant fraction of the total length for a 100-meter cable than for
one 10,000 meters long. Hence, the long cable’s voltage changes less
abruptly than does the shorter cable’s.

From the threshold point at which the jacket begins to puncture to
the point at which the dashed line joins the bare cable line, the result
shown is the upper limit of the possible core-shield voltage; the lower
limit is very close to the solid bare cable line. The actual value of core-
shield voltage in this current range will be something between these
values, depending on the degree of smoothness of the transition
between the punctured and nonpunctured portions of the cable.

Figure 9 shows the results for the same cable and lightning param-
eters, but with low resistivity soil. The primary effect of lowering the
soil resistivity is to make it easier for the current to leak off the shield
for both bare cable and the punctured jacket. Since the current now
leaks off the punctured jacket more effectively, the polyethylene
doesn’t puncture as far, and the ratio of punctured to nonpunctured
lengths is smaller than for the high-resistivity soil, resulting in a
sharper discontinuity at the threshold current point of the graph. All
these effects are seen in Fig. 9. Note that the voltages developed by
bare cable are smaller than for the high soil resistivity case. The
spacing of lines is also much closer because of the diminishing value of
extra cable length when the pulse can so easily leave the shield. The
lower soil resistivity has a minimal effect over the nonpunctured
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Fig. 9—Same as Fig. 8 with soil resistivity 50 m-£2.

region, so those values are not greatly different from the high-resistiv-
ity-soil case. These results are for the upper bound of core-shield
voltage, and the lower bound will once again be essentially the value
for bare cable, so as the soil resistivity decreases the range of values
for core-shield voltage becomes greater.

Figures 10 and 11 show the effect of assuming a puncture threshold
of 6000 amperes, which is representative of a factory-fresh, carefully
buried cable. The straight, parallel-line portion of the standard cable
curve has been extended, causing the upper-limit value for the partial-
puncturing region to be higher than for the previous cases. The values
for the bare cable are, of course, not affected by the choice of puncture
threshold, so the lower limit values for the partial-puncturing region
remain the same as before. Thus, the range of values for partial
puncturing is widened as the puncture threshold increases.

Figure 12 shows the effect of changing pulse shape. In this case, the
parameters for the cable and soil are the same as for the case consid-
ered in Fig. 8, but now the lightning pulse is slower and wider, with a
15-us rise time and 65-ps time to half value. Comparing Figs. 12 and 8,
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Fig. 10—Same as Fig. 8 with puncture threshold 6000 amperes.

we see that the core-shield voltage is not very sensitive to pulse shape.
Sunde (Ref. 2, Chapter 9) contends that, for an infinite cable that
punctures its entire length, if both the rise and half times are multiplied
by a factor &, then the core-shield voltage will be increased by a factor
VE. In our case, the ratio of half-times is 65/40, or 1.625, the square
root of which is 1.275; the ratio of voltages in Figs. 12 and 8 for the
long bare cable is 1.263, which is consistent with Sunde’s result, and
also supports Sunde’s contention that the change of rise time (in our
case, a ratio of 3) is less important than the change in fall time.

The effect of cable diameter is seen in Figs. 13 and 14, in which the
parameters are the same as for Figs. 8 and 10, but values of T, Z,, and
p: were calculated for a large 300-pair cable.

Comparing Fig. 13 to Fig. 8 and Fig. 14 to Fig. 10, we see that the
effect of the larger cable is to move the entire set of curves down to
lower voltage values. This is due almost entirely to the lower values of
transfer impedance for the larger diameter cable, since Z, is a linear
multiplier for all expressions for V., and Z, decreases as the cable
shield diameter increases.
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VI. INTERPRETATION OF RESULTS

In Figs. 8 through 14, the difference in the core-shield voltage at the
stroke point for a given length of bare and insulated cable is the
difference between the dashed line and the solid line. Examining Fig.
8, we see that for this rather typical situation the difference is small
for all but the longer cable lengths with high peak currents. Using the
lower scale that shows probability of attaining a current greater than
the given value, we see that, for 50 percent of the expected peak
currents, the voltage developed on bare cable equals that developed
on insulated cable for lengths up to 1000 meters from the point of
entry. Since the cable is assumed to be symmetric about the entry
point, this can be interpreted as 2000 meters between effectual grounds
(an effectual ground is one that successfully removes most of the
current from the shield).

As an example of the use of these figures, let us assume that a core-
shield dielectric strength of 10 kV is specified for a telephone plant; for
the conditions of Fig. 8, about 25 percent of lightning strokes may
generate a peak core-shield voltage greater than 10 kV on insulated
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cable. Assuming a bare cable model reduces this to all but the largest
5 percent of lightning strokes. The values derived for insulated cable
are maximum values and assume no reflection at the interface between
punctured and nonpunctured regions of the cable. The values actually
developed on the insulated cable will probably be somewhat less than
that indicated in the figure, although from the argument of Section III
it would seem that the true values should be closer to the upper limit,
as indicated by the dashed line, than to the lower limit, which is
essentially the bare voltage.

Figure 9 shows that the difference in core-shield voltage is much
more dramatic for low resistivity soils, even for cables of shorter length.
In the case of a very long distance between effectual grounds, the bare
cable assumption produces a distinct underestimation. However, the
voltage developed in low resistivity soil, even on insulated cable, is
much lower than that developed in high resistivity soil (Fig. 8), so the
voltage difference, while considerable, may not be significant.

Figures 10 and 11 show that, for cable which requires 6000 amperes
to puncture the outer jacket, the bare cable assumption again provides
a substantial underestimation of voltage for the 10-km cable length.
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Fig. 12—Same as Fig. 8 with pulse shape 15 X 65 ps.
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Fig. 13—Same as Fig. 8 with parameters calculated for large cable (see Table II).

Using our 10-kV example, Fig. 10 shows that, in the case of high
resistivity soil, 68 percent of the lightning strokes will produce core-
shield voltages greater than 10 kV on insulated cable, as opposed to 5
percent of the strokes on bare cable; for low resistivity soil (Fig. 11),
the comparable figures are 68 percent for insulated cable and less than
0.1 percent for bare cable.

VIl. DISCUSSION

It would be helpful to examine some of the assumptions inherent in
the model that we have developed to interpret properly the results
presented in this paper. The theoretical basis for most of this work is
the transmission line model of Sunde.”? We have found it necessary to
make two major modifications of Sunde’s development: First, Sunde
assumed that the cable jacket would be uniform over the length of the
cable, while we have assumed that the jacket punctures over part of
its length. Second, Sunde assumed that his cable was infinitely long,
while we have postulated “effectual grounds” that serve to terminate
the cable at some finite length.
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We have presented a lengthy discussion in Part III on the implica-
tions of the jacket puncturing part of its length; a word should be said
about the assumption that the jacket punctures at all. It seems to have
been accepted wisdom as far back as 1945 that lightning on a cable
shield escapes by forming pinholes in the cable jacket;’ some authors
have reported seeing pinholes in lightning-damaged cables.®’ Douglass'
reported seeing pinholes in the insulation of a buried wire that had
been surged with artificial lightning. The insulation was a light gray,
and the pinholes had shown up as tiny black dots; however, Douglass
was unable to find any pinholes on the dark gray jacket of a buried
cable that had also been surged with artificial lightning.

If the reader chooses not to accept the pinholing mechanism, the
model we have developed is not greatly impaired, so long as he is
willing to accept Douglass’ observation that, whatever the mechanism,
a buried cable stressed with a current pulse whose peak value exceeds
some threshold permits the pulse to propagate approximately as if the
cable were bare rather than insulated. Accepting the pinholing mech-
anism does make it easier to postulate the characteristics of the cable
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Fig. 14—Same as Fig. 8 with parameters calculated for large cable and puncture
threshold 6000 amperes.
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in the vicinity of the “bare”-insulated transition zone. If the pinholing
hypothesis is rejected, some other mechanism would have to be
proposed to discuss the effect of a possible transition zone on pulse
propagation.

Our second assumption is that the cable we are considering is
terminated at some length in an “effectual ground,” which is a ground
that serves to remove most of the current from the shield. From
transmission line theory, such a ground has an impedance equal to the
characteristic impedance of the shield-earth transmission line, which
for a small diameter cable in 1000 meter-ohm soil is about 40 ohms
with an angle on the order of —7 degrees. A ground which differs from
this will remove only part of the current, the remaining current being
reflected back along the line as a positive current wave if the termi-
nation impedance is less than Z; and as a negative current wave if the
termination impedance is greater than Zo. These current waves will
produce core-shield voltages at x = 0 of the same sense as the wave
itself. Thus, a cable terminated in a reflection-producing ground will
produce a second voltage wave at the origin, which may be of the same
sense or a different sense from the original wave. The further the
termination is from the origin, the less likely it is that the second wave
(which is always smaller in magnitude than the primary wave because
of the attenuation of the line) will affect the peak value of V..

The above discussion assumes that the cable actually terminates in
a ground connection. A more likely configuration is that the cable is
grounded at several points along its length. In that case, the impedance
seen by the current as it approaches the ground connection is the
parallel combination of the ground impedance and the impedance of
the remaining length of cable. Depending on whether this combination
is greater than or less than the characteristic impedance of t