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This paper treats the problem of communicating a memoryless
unit-variance Gaussian source to three receivers. Two channels are
available, each with a separate receiver. A third receiver has the
outputs of both channels available. We obtain an expression for the
simultaneously achievable distortions (mean-squared error). This
problem applies to the following situation: Assume that high-quality
reproduction of a source is desired at a single receiver which is
connected to the source over a pair of links operating in parallel.
Further assume that the links are unreliable in that either may fail,
and that the source encoder is unaware of the failures. One can then
ask how “robust” a system designed for this situation can be. That is,
what are the limits on the fidelity achievable when both links are
functioning if graceful degradation is required during the failure of
either link? An inverse relation between performance in the two
modes is obtained in the sense that, as performance in the presence
of both links approaches its theoretical optimum, average distortion
during failures becomes large. Conversely, if near-ideal performance
during link failures is desired, then the distortion achieved when
both links operate is far from its optimum value.

. INTRODUCTION

Consider the following communication problem: An encoder is pre-
sented with a sequence of source letters {X,.} drawn from alphabet
Z. We assume the {X;) are independent and identically distributed
with probability mass function p(x) (or a probability density function
if 4 is continuous). For each block of N letters (N arbitrary), two
discrete encoder outputs fi(X) and f>(X) are produced (X is a vector of
N letters). The cardinalities of f; and f; are limited by

%Mg IAX) <R, i=12,
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where the base of the log is arbitrary, but taken to be e in the sequel.
Then R; is the maximum rate at which information can be conveyed
over the ith channel, in nats per source letter.

We assume the existence of three receivers which must estimate X
using f; alone, f; alone, and both f; and f;. The three estimates, denoted
by X1, X2, and X; are N vectors in some reproducing alphabets ( I,
45, &) which in general may not coincide with each other or with
. Distortions d,, d2, and d; are incurred at the respective receivers
according to

N
di= % 5 BB Xw)l =123,

where §;(-,-) is a nonnegative real-valued function defined on % and
&:. This configuration is summarized in Fig. 1.

The case of only one receiver is the classical rate-distortion problem.’
Corresponding to the source statistics and the distortion measure, the
rate-distortion function is defined by

R(d) = mfI(X X),

where Py = {p(£|x): E[8(X, X)] = d} and I(X; X) is the mutual
information between X and X. A forward coding theorem and its
converse exist to the effect that for any d (for which P, is nonempty)
and any € > 0 there is a block length N and a code with at most eV
words such that X (an estimate of X determined by the encoder
output) satisfies

1 N
Kﬂ? E[8(X:, X))l <d+e

Conversely, for any code with rate less than R(d), the distortion can
be no smaller than d. An alternate way of stating this last fact is that
if I(X; X ) = NR, then

1 N
N 2_: E[8(Xx, X¥)] = d*,

where R(d*) = R
A natural problem for the network of Fig. 1 is to characterize the set

DECODER 1

f11%)

X
A
DECODER 2 Xz

f5(X)
Fig. 1—The channel-splitting problem.

1910 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1980



of achievable quintuples (R1, R», d1, d2, ds). Although this problem is
as yet unsolved for arbitrary sources and distortion, we have obtained
the solution for one important special case—that of a Gaussian source
with squared error distortion. In this case, the source and reproduction
alphabets are the real line, and

Si(x, £) = (x — £)%, i=123.

The rate-distortion function for this source and distortion measure
is given by Ref. 1, Theorem 4.3.2:
2

R(d) = % log % nats/source letter, (1)

where o2 is the variance of X, here assumed to be 1.

As noted above, R(d) gives the minimum mutual information per
letter required to reproduce souce X with average distortion d. R(d)
may be inverted to yield the distortion-rate function [i.e., the solution
to R(d*) = R] given by

D(R) = e %%, (1a)

which, from the converse to the rate-distortion theorem stated above,
is the minimum average distortion achievable in representing N vector
X by X, when the average mutual information between vectors X and
X is less than or equal to NR.

To obtain one obvious outer bound to the set of simultaneously
achievable (R,, Rz, d., dz, d3), observe that estimate X is a function
of f:(X) for i = 1, 2, and that X ; is a function of ( fi(X), fz(X)). Using
the data-processing theorem,' we get

IX; X)) = IX; A(X))

= H(£i(X))
= NR1
Similarly,
IX; X,) =NR;
and

IX;X3) <N(R, + Ry.
Using (1a) then,
d; = D(R,) = exp(—2R)),
dy = exp(—2R,),
ds = exp[—2(R: + R»)]. (2)
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In a single-destination problem, the forward part of the rate-distor-
tion theorem implies that the distortion-rate function may be ap-
proached arbitrarily closely for sufficiently large block lengths. If the
same result applied here, then the inequalities in (2) could be replaced
by approximate equalities. In particular, d; = did; as d;, and d:
approach their appropriate lower limits. We will show that this per-
formance is not achievable. The actual set of achievable points is
characterized by the following:

Theorem 1: The achievable set of quintuples (R,, Rz, d\, dz, ds) for
Fig. 1 is given by the set of points satisfying

d) = exp(—2R,)

d: = exp(—2R:),
1

1— (VI - VA)?

where Il = (1 — d\)(1 — d) and A = did> — exp[— 2(R; + R2)].

Two simple examples will clarify the behavior of the region specified
in the theorem. In the first example, set R, = R, = R and assume that
d, = d; = d = e %, That is, the distortion obtained over each side
channel is essentially on the appropriate rate-distortion curve. In this
case, exp[—2(R, + R;)] = did: = d* A = 0 and the last inequality in
(3) becomes

(3

ds = exp[—2(R: + R2)]

1 _da  d
1-(1—-d)? 2d-d° 2-d’

so that the achievable distortion over the joint channel is no better
than half the distortion on the side channels. For any interesting (i.e.,
small) value of d, this is far worse than the value d; = d? obtained in
(1).

At the opposite extreme, assume that d; = exp[—2(R, + R2)]. That
is, the encoder is designed to provide as good a performance as possible
for the joint estimate. From the last inequality in (3), then

1— (VI - VA2 =1,

daZdz

which implies that
II=A,
(1 = di)(1 — ds) = didz — exp[—2(R, + R»)],
1—d —d; + didz = did; — exp[-2(R: + R3)].
Therefore,
di + d> =1+ exp[-2(R: + R:)].
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Note that the value d = 1 can be obtained with no information,
merely by always estimating X; by its mean. In this example, if either
d, or d; is small (not even necessarily near its rate-distortion bound),
then the other side-channel distortion must be near 1. In other words,
the latter estimate is virtually useless by itself.

To account for these properties intuitively, note that the encodings
which lead to £i(X) and f2(X) describe partitions of RY, which we
denote by {An) SV and {B,}n3"*, so that knowledge of fi or f;
specifies whether X falls in A, or B,, and knowledge of both f; and f»
specifies where X falls, in Cn = A N B,. The distortion achieved is
then the moment of inertia of the corresponding set around its centroid.

If d, and d; are both small, then, on the average, the {A.} and {B,}
are highly concentrated around their centroids. Therefore, each An
can intersect only a few B,, and the moment of inertia of the average
Cn can only be smaller than that of A, by a moderate fraction.
Conversely, if ds is close to exp[—2(R; + R3)], then the joint entropy
of fi and f> must be close to N(R, + R3), which is no smaller than the
sum of the individual entropies. Therefore, f; and f; must be nearly
independent. If this is true, then knowledge of A, must yield very little
information about which B, X is in. In other words, the average An
must intersect essentially all the B,. Therefore, if d; is small, implying
that the B, are concentrated, then since they must be distributed to
cover R", each A,, must have content throughout R”", and its moment
is large.

We now prove the theorem. In the proof that follows, we use the
converse to the source-coding theorem cited above, the notation A(Z)
to denote the differential entropy of a continuous random vector Z
(Ref. 1, p. 86), and the following two lemmas:

Lemma 1: If a continuous random vector Z with N components has
covariance matrix ®, then the differential entropy h(Z) satisfies

N
h(Z) = - log 2me| ®| YN & Ng(|®|"™), (4)

where | ® | is the determinant of ®. Furthermore, (4) is satisfied with
equality if Z is Gaussian. In particular, if N = 1, then

h(Z) = g(o2),

where o2 is the variance of Z. This lemma is proved in Ref. 1 (Theorem
4.5.1).

Lemma 2: Let W — X — Y be a Markov chain, where
Y.=X, + Z, k=1, N,
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and {Z,} are independent of W. Then
exp (% h(Y| W)) > exp(% h(X| W)) + exp(% h(Z)). (5)

In particular, if the {Z;} are independent and identically distributed
(11p) Gaussian with variance ¢°, then

exp (%h(YI W)) = exp((% h(X| W)) + 2meo’.

To prove Lemma 2, we note that the unconditional form is due to
Blachman.? Inequality (5) then holds pointwise on W. Taking logs,

2 2 2
ITfh(Yl W=w)= log[exp(ﬁ AX| W= w)) + exp(ﬁ h(Z))].

The function log(e* + k) is convex in x, so we can average both sides
over W and preserve the direction of the inequality using Jensen’s
inequality. Exponentiating yields Lemma 2.

ll. CONVERSE PART OF THEOREM 1

The mutual information between source block X and the joint-
channel estimate of X, denoted by XG, satisfies the following inequality:

I(X; X3) = I(X; A(X) /(X))

= H(£i(X), £(X))

= H(fi(X)) + H(£(X)) = I(i(X); (X))

2 IX; (X)) + I(X; (X)) — I(AX); £(X))

2 N, + R) — I(fi(X); £o(X))

2 NR: + Ro) — IR 1; X), (6)

where the steps labeled (a) follow from the data-processing theorem,
(b) from the fact that f; and f; are determined by X, and (c) from the
channel constraints.

By the converse to the source-coding theorem,

ds=D (% IX; Xa)).
Using eq. (1a) for D(R), we have
2
ds= exp(— N IX; Xa))
= exp[—2(R: + Rz)]exp(% IXy; Xz)), (7)
where the second inequality follows from (6).
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We need now to lower-bound the second exponent in (7). To do this,
we define an artificial random vector Y, formed by adding to X a zero-
mean Gaussian vector Z, whose components are independent and have
common variance e. Although Y is independent of X, and X, given X,
and plays no apparent intuitive role in the encoding/decoding process,
Y provides the crucial lower bound in the proof.

It is true that

IX; X0Y) =IX ;X |Y) + IX,; Y)
=IX,; X)) + I(X,; Y| X2).
Therefore,
IX; X)) =IX ;X |Y)+IX;Y) - IR ;Y |X))
=IX,;Y)-IX;Y|X,)
=IX;Y)+IX5Y) - IX X5 Y), (8)

where the inequality follows from the nonnegativity of mutual infor-
mation, and all other steps follow from the identity I(A; BC) = I(A4;
B) + I(A' C|B). Now fori =1, 2,

EY; E E[(Xlk - Yk)z] __ZE[(XM: _Xk +X]¢ - Yk)z]

k-l
- E ): [EQRu — X0)? + EXx — Y3)?]

=d; + €,

where the cross term vanishes since {Z,} are independent of all else.
Also Y is a Gaussian vector with independent components, each of
variance 1 + €. The rate-distortion function for Y is then given by (1):

R (d)——logl_;e
So by the converse to the source-coding theorem,
—;—fI(X.-;Y) —1 géi" i=1,2 ©)
As for the last term in (8),
IX X2 Y)=h(Y) - A(Y|X X2
= Ng(l +¢) — h(Y|X .X>) (Lemma 1)

=Ng(l+¢ — glog [exp(% h(X|X1X2)) + 2wee].
(Lemma 2)
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But
AX|X X, = A(X|X:X2) - AX) + A(X)

= -I(X; X.X2) + A(X)

=h(X) - HX.X,) + H(X1X2[X)

2 hX) - HRX,, )
= h(X) - HX)) - HX>) + IX1; X»)
= Ng(1) - HX)) — HX,) + I(X,; X2)

(Lemma 1)

= N(g(1) = R1 — R:) + I(X1; X3), (channel constraint)

where step (a) follows from the fact that X, and X, are determined by
X. Therefore,

IX X2 Y)=<Ng(l+e
- glog [exp[Z(g(l) - R, - Rz)]exp(% IX; Xg)) + 2a'ree].

Since e*¥" = 27e,
IX. X5 Y)<Ng(l+e

- Ng[exp[— 2(Ry + Rz)]EXp(—i; IXq; Xz)) + e]. (10)

Combining (8), (9), and (10), and defining ¢ & exp[21(X,; X2)/N], we
have
_ (1 + &{exp[—2(R1 + Ry)]t + €}

t (G + dl) (€ + dg)

Isolating ¢,
t{(e + di)(e + dy) — (1 + €)exp[—2(R1 + R2)]} = (1 + ¢
t(e* + e{dy + dz — exp[-2(R, + R2)]} + did:
— exp[—2(R: + R:)]) = (1 + €).

Since d; = exp(—2R;), the quadratic on the left-hand side is always
nonnegative (as long as € is). Define A and II as in the statement of
Theorem 1, so that

> (1 + €
Té+e(l1+A-I)+A°

This inequality holds for any € = 0. In particular, choose that €

(11)
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which maximizes the right-hand side. Taking derivatives and setting
to zero, it is readily shown that the maximizing ¢ is given by

VA
N

€=

The numerator of (11) is
VA (1+ VA )= VA
Vi1 - VA Ji-Vva) (ViI-+Aa)?
The denominator is
e€+e(l+A=-TI)+A
_ A N vA
(VII = V&) (VII - VA)
1
(VIT — VA)?
[A + VA(VII = VA)(1 + A — TI) + A (VTT — VA)?]
1
(VII - VA)?
[A + VTIA — A — VA(VIT — VA)(TI — A) + A (VTI = VA)?)
1
(VII - VA)?
[VIIA — VA(VIT — VA)X(VIT + VA) + A(VIT — VA)?]
-1 [VIA- JOAWI - VA
(VII — VA)?
_ JIIA
(VII - VA)?

Therefore, (11) becomes

e(l+¢€ =

1+A-1II)+A

[1 - (VIT — VvA)3).

= 1 .
1 - (VI — VA)?
Substituting into (7) yields the third inequality of Theorem 1. The first

two inequalities in Theorem 1 are, of course, trivial. Theorem 1
(converse) is proved.

t
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Il. FORWARD PART OF THEOREM 1

To prove the forward theorem we evaluate the following achievable
region for the general case of Fig. 1, found by El Gamal and Cover.?
Consider {X;} drawn 11D from alphabet % according to probability
assignment p(x). Let %1, &2, 45 be the appropriate reproducing
alphabets at the three receivers in Fig. 1, and let di(-,-), d(-,-),
ds(-,-), be the respective (single-letter) distortion measures. Consider
a test encoder of the form shown in Fig. 2. That is, let auxiliary random
variables UU € % and V € ¥ be arbitrarily jointly distributed, given X.
For any three decoding functions,

g U— &,
g2 V— 4,
8 UX V> X3,
average distortions
d, = E[di(X, g1(U))],
d; = E[di(X, g(V))],
ds = E[ds(X, gs(U, V)], (12)
are achievable if
R, = I(U; X),
R: = I(V; X),
Ri+R=IUV; X)+ I(U; V). (13)
Applying this result to our problem, let
U=X+ Ny,
V=X+ N,

where N; and N: are jointly zero-mean Gaussian with covariance
matrix

o,=[ o1 "“’2"].

2
1020 g2

X
ENCODER

Fig. 2—Test encoder for achievable regions.
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@, is also the covariance matrix of U and V given X. Without the
conditioning on X, U and V are jointly Gaussian with covariance
matrix

o, = 1+0} 1+ cioep
2 1+owep 1403 |
Lemma 1 allows us to evaluate the right-hand side of (13) as

I(U; X) = h(U) - R(U|X)

KUV, X))+ KU, V) = h(UV) — A(UV|X) + R(U) + (V) = R(UV)
(1+ o)1+ 0d)

olo3(1 — p°)
Clearly, the best g:(u), g2(v), and gs(u, v) are the minimum mean-

squared-error estimates of x, given the respective arguments. These
are given by

1
=§log

1

gl(u) =—_—U,
UZ
1

g2(v) =y
V2

and
Vi-UV Ut-UV
&a(u, v) = u+ v.

U2VE — (UV)? UV - (UV)?

Evaluating the various expressions and substituting into (12) yields

2

o1
d, = ,
! 1+ o?

2

02
dz_l-’ra%’

2 2 2
1-

ds oioi(l — p7) (14)

" o%0i(1 - p?) +oi + 0% — 26100p
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The constraints (13) become

—

Rlz-logdl,
1

[

1
Rza—logg,
2

= N

2 dle(l - p )
We can therefore choose p arbitrarily, so long as
didz(1 — p*) = exp[—2(R: + R2)],

, _ dids — exp[—2(R, + R;)]
p = .
did>

R, +R;=

Choose

_ \/dldz — exp[—2(R: + R,)]
vdid:

Substituting this value for p, and using the fact that o7 = d./(1 — d;)
for i = 1, 2 [obtained from the first two parts of (14)]; the last equation
in (14) can be written as

p=

_ exp[—2(R; + Ry)]
D ’

ds (15)
where

D = exp[—2(R, + R2)] + di(1 — d2) + d2(1 — d))

+ 2V1 — dy V1 — d; Vdid; — exp[-2(R: + R2)]

= exp[—2(R: + Ry)] — dide + d1 + d2 — did:

+2V1—di V1 = d; Vdid> —1 exp[—2(R: + R»)]
=—A-TI+1+2VIIA
=1- (VI - VA)},

where IT and A are as before. Equation (15) thus reduces to the last
part of eq. (3), and Theorem 1 is proved.

IV. CONCLUSIONS

We have obtained the solution to the channel-splitting problem
described in the introduction and depicted in Fig. 1, for the case where
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the input letters are 110 Gaussian and the distortion measure of interest
is the mean-squared error. So far, no complete solution is known for
any other source or distortion measure. Wolf et al. have obtained an
outer bound for the case of a binary symmetric source with Hamming
(i.e., probability of error) distortion and have compared it in one case
to the achievable region of Cover and El Gamal, but the bound exceeds
the achievable point. Also, Witsenhausen® has considered a version of
the binary problem and, in particular, has obtained, under slightly
different assumptions, a stronger outer bound at one extreme point.
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