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It is often desirable to measure the spectrum of the modulated
baseband pulse of a quadrature amplitude modulated data set. The
usual method, which is not very satisfactory, is to send a pseudo-
random data sequence into the data set and measure the transmitted
signal with a spectrum analyzer. Here we present a new technique,
based on the properties of so-called “perfect sequences,” which facil-
itates stable and accurate spectrum measurements.

I. INTRODUCTION

The modulated pulse spectrum (mps), defined below, of a data set’s
signal is a basic characteristic of the data set that is of interest, for
example, in determining how much bandwidth the signal requires. One
can usually calculate an mMPs, but it is often necessary to confirm the
calculation by experiment. The usual practice in such experiments is
to apply a binary pseudorandom sequence (also called maximum-
length sequence’) to the input of a data set and measure the resulting
output signal with a spectrum analyzer. This technique usually leads
to a picture that shows the MPs approximately, but not exactly and
not in a repeatable manner; the reasons are given in Section IL

The output of the spectrum analyzer is usually not constant at any
one frequency setting, and the relative level at each frequency is not
proportional to the MPs. An example is shown on Fig. 1.

If a data set modulator is a member of the quadrature amplitude
modulation (qaM) class, which includes the differential phase shift
keyed modulators, then there exist easily generated periodic constel-
lation point sequences whose resulting signals have line spectra with
amplitudes that are proportional to the modulator’s Mps, and thus
facilitate accurate experimental measurement of the Mps. The deriva-
tion and application of these sequences are the subject of this paper.

The next section establishes the properties required of the constel-
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Fig. 1—Measured spectrum of a data set using the usual pseudorandom data method.

lation point sequences. Section III shows how the desired sequences
can be derived from pseudorandom sequences and presents an example
with experimental verification. Section IV presents another example
and Section V contains the concluding remarks.

Il. DATA SET SIGNALS

A QAM data set generates a signal that is often written as the real
part of a complex signal, say z(¢), given by

z2(t) =Y C.y(t — nT)e™, (1)

where w. is the carrier frequency, T is the intersymbol time, and y(t)
is a complex pulse waveform.>? Each C,, is a complex constant selected
from a finite set of allowable values by an algorithm that operates on
the binary data to be transmitted (the input data stream). In general,
several consecutive input bits determine each C,. For example, the
allowable real and imaginary parts of C, may be £1 and +3, which
gives 16 possible values (constellation points).

The real part of z(#) is often passed through an analog filter, perhaps
an equalizer or a low-pass filter, before being sent to the channel.
Thus, if f(¢) is the impulse response of the filter, then the output signal
18

s(t) = Re{so(?)}, (2)
where

so(t) = 2(8)*f(2). (3)
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If the data set uses an analog modulator, then y(¢) is a real baseband
pulse.

If the modulator is one that generates a step approximation to the
corresponding continuous signal (digital implementation with D/A
converter), then

y(t) = e Y hpe”™p(t — kr), (4)
k

where the A, are samples of a corresponding real baseband pulse, 7 is
the step width, and
1|t <7/2
plt) =1 "%, |t|=1/2

0,]0] > /2. )

We assume T/7 is an integer.
The Fourier transform of so(£) is
So(w) = F(w) Y(w — we)Clw — wc), (6)

where F(w) and Y(w) are the Fourier transforms of f(f) and y(f) and

Clw) =Y Cre™™, 7
In the step approximation case,
Y(w — we) = P(w)H(w — w), (8)
where
T sin(eT/2)
P(DJ) = (—m'l'/z)_ (9)
and
H(w) =Y, hwe 7 ™, (10)
k

We define the modulated pulse spectrum (mps), for either case, to
be

B(w) = F(w)Y(w — wc). (11)

Then
So(w) = B(w)Clw — we). . (12)

The Fourier transform of sy(¢) is the product of two parts, the MPs
and a function of the transmitted constellation sequence. The MPs is
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closely related to the spectral density function of the signal, under
suitable assumptions about the statistics of random C,. For an example,
see Ref. 4. When characterizing a data set signal, it is important to
know the magnitude of the MPs and to be able to measure it.

If {C,} is a periodic sequence of period M, then C(w) becomes

Clw) = AW) 3 bl —muo) (13
where
wo = 2m/MT (14)
and
M-1 )
Aw) = Y Cre™ ™™, (15)
n=0

Thus s(t) consists of tones at frequencies w. + mwo and levels given by
(1/MT)| B(w: + mwo)A(mwo)|. Therefore, if points along | B(w) | are to
be generated, one needs to select {C.} so that | A(mwo)| is a constant
for all m. Notice that the periodic set of A, = A(mwo) is the discrete
Fourier transform (DFT) of {C,} 35"

If the input binary data sequence is periodic and the usual types of
scramblers and coders are used in the data set, then the resulting C,
sequence will be periodic. However, the corresponding A,, seldom have
equal magnitude. That is one reason a spectrum analyzer gives a
measurement of the sort shown in Fig. 1. The other reason is that the
period, M, is usually so large that several of the resulting tone frequen-
cies are in the narrow passband of the spectrum analyzer at the same
time. The envelope of such a signal is modulated, giving an unstable
spectrum analyzer output.

In the next section, we show how to overcome these problems.

lll. PERFECT SEQUENCES

The autocorrelation function of a periodic sequence {C,}, with
period M, is:

M-1

Rk) =Y CiraCy. (16)

n=0

a1, k=0 modulo M
R.(k) =

az, otherwise, (17)

where a; and a, are constants, then the sequence {C,} is called a
perfect sequence.’
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One can show that, if

M-1 )
Am = gﬂ Cne—JZﬂnme, (18)
then
M-1 )
|Am|?= Y Rc(n)e72mm/™ (19)

n=0

If {C,) is a perfect sequence, then
a, + (M — 1)az, m = 0 modulo M
| Am |2 =

a — az, m # 0 modulo M. (20)

Thus the desired property of equal magnitude A, can almost be
achieved if {C,} is a perfect sequence (the exception is Ag). We next
show how to construct perfect C, sequences.

There are many perfect binary sequences.’® Two are:

11011100010
1101000001000

One can also show that pseudorandom binary sequences are perfect
sequences. An example is the sequence generated by

X, =X 30 X5, (21)

where @ denotes modulo 2 addition. The period of this sequence is 31.
If X, is a pseudorandom sequence of period M, then its autocorre-
lation function has two values:

M; ! &= 0modulo M
R.(k) =
M : 1 otherwise. (22)

A perfect C, sequence could be generated by simply using C, = X,.
However, most @AM data sets do not include the value zero in their
constellation. Thus, it is necessary to apply a linear transformation to
a perfect binary sequence, {X,}, to obtain a perfect sequence {C,} of
allowable values.

Suppose a and 8 are two complex constants and C, = aX, + 8, then
the autocorrelation function of {C,} is

M-1
R.(k) = aa*R.(k) + (a*B + af*) ¥ X, + MBB*

n=0

M+ vppe. (23)

= aa*R.(k) + (a*B + of8*) 3
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If R.(k) has the two levels given by (22), then

aa* M; 1 + (a*B + af*) M+1

+ MBB*, k=0
R.(k) =

aa*

M: 1t (*B + aB¥) M; Lo Mpg*, k0. (24)

Suppose, for example, we want each C, to have one of two of the 16
possible values given in the 16-point constellation example above, say,
—3 — j3 and 3 + j3. Then we can choose a = 6 + j6 and 8 = —3 — j3.
The corresponding values of A, with M = 31, are

18, m=0
|4n =

576, m#0. (25)

Consider a data set with a carrier frequency of 1800 Hz and a symbol
rate of 2400 baud. If the C, sequence just described modulates the data
set, the output signal will consist of tones at frequencies of

2400

and the carrier level (corresponding to Ao) will be about 15 dB below
the level of its two neighboring tones.

This example has been simulated by V. B. Lawrence using an
experimental modem. The resulting measured spectrum is illustrated
in Fig. 2. This can be compared to the calculated mps for that data set,
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Fig. 2—Measured spectrum of a data set using the proposed method.
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shown on Fig. 3. Notice that the carrier level on Fig. 2 is about 15 dB
down from the level of its neighbors.

This technique can be applied to other types of QaAM data sets by
selecting binary sequences with desired periods and by choosing suit-
able values for the constants « and 8.

IV. ANOTHER EXAMPLE

With some types of QAM data sets, it is feasible to find an input data
sequence that will cause the data set to generate a perfect C, sequence.
An example is described below.

A differential pcM data set is on the market that uses unity-valued
C,. = ¢’ and encodes consecutive pairs of bits (dibits) according to
Table 1.

One can cause the data set to generate a perfect sequence of C, with
the values 1 and —1 by an appropriate dibit sequence. T'o use a simple
example, start with the 7-bit pseudorandom sequence 1110010. The
corresponding periodic C, sequence is:

1,1,1,-1,-1,1, 1.
The periodic sequence of phase shifts must be
m, 0,0, w0, m, 7.

From the table, the corresponding periodic input data sequence is
11 10 10 11 10 11 11.

|B{w) | IN DECIBELS

—B0 1 | 1 | 1 | 1
0 1 2 3 4

FREQUENCY IN KILOHERTZ

Fig. 3—Computed Mps of example data set.

Table |
Dibit 0, — 0,
10 0
01 /2
11 T
00 —m/2
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If this periodic sequence were the input to the data set, the bits
would be grouped by the data set into the desired dibit sequence or
the following sequence, depending upon initial conditions:

11 11 01 01 11 01 11.

This sequence will produce a C, sequence of period 28 that is not a
perfect sequence. The spectrum of the line signal would be easily
distinguished from the desired spectrum.

V. CONCLUSIONS

We have presented a simple method of generating a constellation
point sequence such that, when it is applied to a QaM data set, the
peaks (or envelope) of the resulting spectrum will be very nearly the
MPS. The procedure is twofold: (i) select a period, M, small enough
that the resulting tones can be separated by the spectrum analyzer
and (ii) force {C.} to be a perfect sequence. The advantage of the
method is that the spectrum can be accurately and repeatably mea-
sured with a spectrum analyzer. The accuracy is such that the observed
spectrum will represent the Mps to within a few tenths of a decibel if
the modulator is working properly. Modulator defects that would be
obscured by the usual MPs estimation method are clearly evident when
the proposed method is used.
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