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Coefficient inaccuracy in transversal filters is known to degrade
the frequency response, particularly in stopband regions. The mag-
nitude of the stopband degradation increases with the number of
stages n, the length of the impulse response. A widely used for-
mula for the error in frequency response is proportional to Jn. By
extending recent results on random trigonometric polynomials, we
show that for random additive coefficient errors with variance o’, the
error AH(w) in frequency response for large n is such that

max|AH(w) |= ovnlogn

where log denotes the natural logarithm. This result leads to an
absolute bound on attainable stopband rejection for any band-select
transversal filter with given coefficient inaccuracy. In particular, the
result places a definite limitation on the quality of band-select filter-
ing that can be achieved using a ccD split-electrode filter. It also
implies bounds for the peak sidelobes of random radar arrays.

I. INTRODUCTION

In recent years, the transversal filter has emerged as an essential
signal-processing structure for a large variety of applications in com-
munication systems. A few of these applications are matched filtering
in radar or spread-spectrum systems, equalization in data receivers,
echo cancellation for satellite communications, and band-select digi-
tal filters. The term “transversal filter” originally referred to the
continuous-time tapped delay line structure where an output is formed
from a weighted sum of the tap voltages. The same basic function has
also been achieved using lumped networks to approximate the delay
sections. More recently, transversal filters have been realized with
digital circuitry using shift registers and digital multipliers, operating
on a sampled and quantized input signal. The most recent development
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is the emergence of two new technologies, charge-coupled devices
(ccps) and surface acoustic wave (sAw) devices which allow the
realization of discrete-time transversal filters without the need for
analog-to-digital conversion.

The new technological advances now offer the possibility of realizing
transversal filters with hundreds and perhaps even thousands of tap-
weight stages on a single integrated-circuit chip. These developments
suggest that extremely sophisticated signal-processing functions can
readily be obtained. Specifically, with a sufficient number of taps, a
transversal filter can be designed to approximate virtually any specified
frequency response as closely as desired. However, the inevitable
inaccuracies in implementing the desired weighting coefficients result
in a departure of the actual frequency response from the predesigned
frequency response which increases with the number of tap-weight
stages. In digital filtering, coefficient values can be made as accurate
as needed, but at the price of increasing hardware costs. With the ccp
or sAwW technologies, there are fundamental limits on attainable accu-
racy. Also, in adaptive filtering, the weight-adjustment algorithm
results in a steady-state coefficient inaccuracy. It is therefore necessary
to have a quantitative knowledge of the degradation in performance of
the transversal filter as a function of the coefficient inaccuracy and
the number of stages.

For most applications, the appropriate performance measure for the
realized transversal filter is the maximum deviation in frequency
response magnitude from the desired values over the particular fre-
quency band of interest. In this paper, we focus on this performance
measure by examining the error-frequency response due to coefficient
inaccuracy and show that under very general conditions the maximum
magnitude is given asymptotically by ovn log n, where n is the number
of stages, o is the rms coefficient inaccuracy, and log denotes the
natural logarithm. Several other closely related results and implica-
tions are also presented.

Since the attainable quality of a designed filter increases with n, the
number of stages, and for a given coefficient inaccuracy the degrada-
tion increases with n, the question arises: Is it possible to realize a
filter with arbitrarily high quality in spite of a given coefficient inac-
curacy if n is made sufficiently large? We make this question more
precise later and show that the answer is negative for low-pass filtering
with a transversal filter structure when “quality” is measured by the
amount of stopband rejection. In other words, a limit on filter accuracy
implies a limit on attainable filter quality regardless of the number of
stages used. The results of this paper provide a tool for determining
the ultimate limitation on transversal filter performance associated
with a particular technology or a particular adaptive algorithm for
weight adjustment.
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In ccp transversal filters, the split-electrode method requires that
the tap weights be scaled so that the maximum magnitude of the
coefficient values is unity. The pattern generator used in making the
photomasks for ccp fabrication introduces a quantization error whose
peak size is a fixed fraction of the maximum coefficient magnitude.
Now, for most applications, increasing the number of stages to be
realized corresponds to including additional coefficient values repre-
senting the tail of the desired impulse response. Consequently, increas-
ing n does not alter the scaling of the coefficient values for ccp
implementation. As a result, a coefficient error can indeed be modeled
as an additive random variable whose variance does not depend on the
desired coefficient value.

A problem that is very similar to that considered above occurs in
the theory of random arrays.' These are arrays consisting of fewer
elements than conventional phased arrays, with the locations of the
elements in the array picked randomly. Such arrays are less costly
than conventional phased arrays, but this advantage is gained at the
cost of increasing the peak sidelobes. Our main result shows how big
those sidelobes can be expected to become.

Il. PROBLEM FORMULATION

Regardless of the particular application, the transversal filter may
be described by its frequency response, H(w), which has the general
form

L—1

H(w) = Y awe’™, (1)
k=0
where w is the normalized frequency variable, L is the number of
stages, J = V=1, and the coefficients a; are real-valued numbers
specified by the designer. Since H(w) is periodic, only the frequency
interval 0 <= w < 27 need be considered.

We note, in passing, that (1) also describes the discrete Fourier
transform, so that the results of this paper are also applicable to
studying the effect of approximate representations of given data values
on the Fourier transform of the data.

A special case of transversal filters, of particular interest in band-
select filter design, arises when the coefficients are chosen to have the
symmetry property:

A = OL—k— for O<k=<(L-1). (2)

When L is odd, this condition results in a linear phase transfer function
having the form

H(w) = e™" ¥ by cos kw, (3)
#=0
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with n = (L — 1)/2, and
bk =2 Kn—k for k #* 0, bo = Qn.

Implementation of the coefficients a, for the general form (1) or b,
for the linear phase form (2) inevitably results in the introduction of
errors or inaccuracies. We denote the actual (inaccurate) value realized
as aj, or as b; for the linear phase case. Then the Ath coefficient error
is the difference €, = ai — ax, or ex = b}, — b in the linear phase case.
The realized transfer function then differs from the desired transfer
function by the error transfer function defined as

L-1

fulw) = ¥ exe™ (4)

k=0

in the general case or, in the linear phase case:

Zn(w) = e ¥ ¢ cos kw. (5)

k=0

Clearly, the error transfer function, if known, provides a full description
of the degradation in performance of the realized filter from the desired
performance in the absence of inaccuracies.

Since the errors, ¢, are generally not known prior to fabrication of
the filter, they are modeled most effectively as random variables whose
distribution depends on the particular mechanism involved in fabri-
cating the tap weights. In digital filtering, the errors are due to
coefficient quantization and are usually modeled as uniformly distrib-
uted random variables. The error terms for different coefficients, being
independently produced, can reasonably be assumed to be independent
random variables.

Additive error components were used by Knowles and Olcayto® for
modeling coefficient quantization in recursive filters. Chan and Rabi-
ner” applied this approach for transversal filters and evaluated the rms
values of fi(w) and g.(w) at a particular frequency. They assumed
mutually independent and uniformly distributed errors €, resulting in
rms values for the error transfer function proportional to \/I_,, or \/r‘i in
the linear phase case. By taking the maximum over all frequencies of
the rms deviation, a frequency-independent upper bound on the error
transfer function is obtained which is valid at any particular frequency
with high probability. ’

More recently, Heute*® noted that the bounds of Chan and Rabiner
underestimate the degradation due to the maximum of | g.(w) | over
the frequency band. It is this latter measure of degradation that is
meaningful in most applications. Chan and Rabiner’s bound is not a
high probability upper bound for the maximum ripple magnitude taken
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on by g.(w). Heute proposed a heuristic upper bound for the maximum
of | gx(w) | which has the form @[a + bn + (cn + d)'’*], where a, b, c,
and d are constants and @ is the peak amplitude of the uniformly
distributed error terms €. His bound gave an improved fit to simulated
data for values of n up to 128. We shall see later that Heute’s bound,
which for large n grows linearly with number of stages n, grossly
overestimates the degradation as n becomes much larger than 100.

Andrisano and Calandrino® assumed that the error transfer function
is a Gaussian process and found an (implicit) bound on stopband
rejection as the solution of a transcendental equation.

In this paper, we take as the measure of degradation due to coeffi-
cient inaccuracy,

D= m%xlfL(w)l (6)

for the general transversal filter and
M,= max |gn(w)] (7)

for the linear phase transversal filter, where { is a particular frequency
band of interest. We assume the errors ¢, are mutually independent
random variables with a common distribution satisfying certain regu-
larity conditions that include the uniform and normal distributions as
special cases.

We establish here for the first time that the maximum frequency
response errors D, and M, are asymptotically (for large n) given
by ovn log n where o is the rms coefficient error. Although the result
is asymptotic, Lawrence and Salazar’ found that it was moderately
accurate in one study of a low-pass filter with only 33 taps. Application
of the result to low-pass filter performance is examined briefly in this
paper and more extensively in Ref. 8 and 9. Until the report of our
result,® the correct behavior of the error frequency response magnitude
had apparently not been recognized in the digital filtering literature.

The existing mathematical results most closely related to our work
are due to Halasz'" who considered random trigonometric sums with
coefficients that take on the values +1 with equal probability. While
too restrictive to apply to transversal filters, his methodology was
useful in deriving our more general upper bound on the maximum
error frequency response.

Our main result is also applicable to the analysis of random arrays,
and in particular to that of statistical arrays.' These are arrays con-
sisting of % isotropic radiators placed among n positions (n > k) that
are spaced A\/2 apart (A = wavelength), with the % positions to be
occupied by the k& elements determined at random. The array factor of
such an array is defined as
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flu) =3 g-e"™, (8)
r=0

where g, = 1 if the rth position is occupied by a radiator, and g, =
otherwise. This can be rewritten as

n—1 n=1

k ) )
f( u) _ E enjru + E € eﬂ’}ﬂl, (9)
n —o r=0

where €, = 1 — k/n for the k values of r for which g, = 1, and ¢, =
— k/n otherwise. The first sum above represents (except for the 2/n
multiplier) the array factor of a conventional phased array. The
random choice of the positions for the radiators corresponds to letting
the ¢ be independent random variables, assuming the value 1 — k/n
with probability £/n, and the value — &2/n with probability 1 — k/n. If
we assume that £ ~ an as n — «, then our theorem shows that, with
the probability approaching 1 as n — o, the second sum in (9) will
never be significantly larger than v1—a vn log n and that, conversely,
it will get that large on any subinterval. This result, which had been
derived only heuristically before,' explains why random arrays are
usually not very satisfactory.

lil. STATEMENT OF MATHEMATICAL RESULTS

As we saw in Section II, the errors in the realized transfer functions
are given by Y520 € e, or Yi-o € cos kw, or Y- € sin kw. Hence the
distribution of the random variables €, will depend on the model for
the sources of inaccuracies. For digital implementation, the usual
model assumes e, to be independently distributed uniformly between
—A, +A, where A is the maximum error due to truncation of the
coefficients of the filter. In other situations, a Gaussian distribution
may be more appropriate. But, as we shall see, the asymptotic behavior
of the maximum magnitude of the error is not dependent on the exact
nature of the distribution. It depends only on a few functionals of the
distribution.

The results presented here rely on an important assumption about
the distribution of the ;. We assume throughout that the €. have
mean zero and finite sixth moment, so that the characteristic function
E(e’™*) of € is such that

E(e/™*) = exp [ -Yax'+0 (xe):l (10)

r=2
for x in some nontrivial interval [—d, d]. (Note that a; > 0 if the € are
not identically zero.) Condition (10) is satisfied for most probability

density functions of practical interest.
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Now we are ready to state the main result:

Theorem: Let i, k = 1,2, - - - be a sequence of independent identically
distributed random variables satisfying (10).

Then there exist constants C, and C., not depending on n, such that

< v2a: Vnlog n + Ciy/ e
log n

holds with probability = 1 — C. (log n)™*. Furthermore, if Q is any
subinterval of [0, 27] of length = (log n)™' and « is any real number,
then

max Re [ej" Z € e""-""} = V2a, vn logn - C 1 "
Vlog n

Hef2 k=1

n

il
E € e"’
k=1

max
0=f<27

log log n

log log n

holds with probability = 1 — C, (log n)™".
Thus, with high probability, max | f(#) | is about v2a» vn log n. The
proof is outlined in Section V.

Remark 1. By choosing « appropriately, we can conclude that each of
Y € cos (k8), ¥, € sin (k) becomes large on any long @ interval with
high probability.

Remark 2: The estimates presented here are not the best possible
ones. For example, the interval £ in the lower bound proof can be of
size n (log n)™ for any A > 0.

IV. APPLICATION TO LOW-PASS FILTERS

The usual specifications for FIR low-pass filters are shown in Fig. 1."
A design problem is to find the smallest n such that

n—1

Y ax cos ké

k=0

lies between 1 — §; and 1 + 8, in the passband, i.e., for 8 € [0, F,] and
between 0 and & in the stopband, i.e., for 8 € [F,, 7]. Estimates for n
given 8,, 8;, F,, F, are given in Ref. 12. However, the validity of the
estimates in Ref. 12 for regions of practical interest is not proven. An
empirical relationship is given in Ref. 11.

As n increases, smaller 8., 8§, and F, — F, are possible. Hence, a
question that is usually raised is: Given that the ax’s cannot be realized
exactly, what can be said about the minimum §. possible if the
distribution of €, the error in ay, is known. If a,’s could be realized
exactly, arbitrarily small values of 8. can be obtained by making n
large. However, €;’s introduce errors that grow with n as seen from the
theorem. So there is a trade-off between errors introduced by inaccur-
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acies in a;'s and the improvement in performance with increasing n.
For an example, we consider the stopband rejection, 20 log, 8, as a
figure of merit with given values of 8, and F,, F,. The empirical
formula gives the following relation for 7, the minimum » required to
achieve a stopband rejection of 20 log;o &-.

7 =c logé: + ¢, (11)

where ¢, and ¢; are constants depending on 8, and F, — F,."! For fixed
point digital implementations, if the coefficients of the filter, the a’s,
are truncated to d bits, then the “error” in a; is generally modeled as
a uniform random variable €, having values between —27¢ and
2~? = A. For this model, a; of the theorem is 1/6 A’. Hence, the
maximum error e, due to these inaccuracies,

n—1
€ = max | € COS kﬂ‘ , (12)
0=0<27 k=0
is such that
en /Az A
—— — \/2a2= —_—=— a5 n—> w (13)
vnlogn 3 V3

2308 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1979



and

A
en——+vnlogn

[ n
<
V3 ¢ log n
with probability = 1 — O((log n) ™).
Using the limit (13) to indicate expected deterioration in perform-
ance, we can arrive at a design rule. If coefficients are truncated to

d bits, then the minimum achievable §; before the random errors
become comparable to 6; itself is given by:

2*d
V3

Putting 8, = 27,

log log n (14)

V() log 8 + ¢2) log (c) log 82 + ¢2) = 8.. (15)

g__d = 2" (16)
V3 V(=cis + ¢2) log (—cis + cz)’

where ¢} = ¢, log 2.

From the above formula, we can estimate the required precision for
the coefficients for a given value of 8; = 27"

In design of ccp filters, a similar formula can be used. In situations
where the tap-weight errors can be modeled by a Gaussian random
variable with a standard deviation A, then a; for our theorem is A%/2.
The minimum achievable §; satisfies

&
\/(_c; log 8> + ¢2) log (c1 log 8 + ¢2) = KZ (17)

Solving for §,, we can estimate the optimum value of n.

As an illustration of the effect of coefficient inaccuracy on limiting
the stopband rejection of a low-pass filter, Fig. 2 shows how the best
achievable rejection depends on the number of stages, n, for various
values of the transition width AF = Fyg — Fp. These curves were
calculated by solving the empirical formula of Ref. 11 for §; and adding
to it the maximum error ovn log n. This gives an expression for the
best attainable stopband rejection in the presence of coefficient errors,
as a function of n, 8,, and AF. For additional curves obtained in this
way, see Ref. 8. Computation also shows that varying the allowed
passband ripple 8, has a negligible effect on the maximum attainable
stopband rejection. It is evident that coefficient inaccuracy places an
ultimate limitation on the attainable quality of a low-pass filter imple-
mented with the transversal structure.
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Fig. 2—Best obtainable stopband attenuation for a low-pass transversal filter in the
presence of coefficient inaccuracies. Root-mean-square coefficient error = 0.001,
passband ripple = 0.0122. Curves are shown for four values of the transition width. Note
that, for each curve, an optimum number of taps exist. Reducing the passband ripple
allowable has the effect of shifting these curves to the right while reducing the peak
value of each curve.
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APPENDIX

Here we outline the main steps in the proof, which follows that of
Halasz," in which he assumed € to be +1. (An earlier proof of a
slightly weaker result had been outlined by Whittle.”®) Results that
are incidental to the main line of reasoning are collected at the end of
this outline. Let

fla,0) = Y e cos (kf + a) = Re(e"'n ¥ eke’“).
k=1 k=1

(i) We construct a nonnegative function u(x) < 1 which can be
used to indicate in an approximate sense the set of values of x that
exceed given values. Let M), M2, D > 0 be given numbers. Then
u(x) is zero for -M> = x = M, and u(x) = 1 for x = M, + D or
x = —M; — D. In the interval [-M, —D, —M:] and [M,, M, + D],
u(x) is 40 times differentiable and u"(x) = O(D™) as D 1 », for 0 < r
= 40.
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For deriving the upper bound, we proceed as follows:
(ii) Put M, = M> = M = Y2a> vnlogn + gD log log n where
D = vn/log n and g = 20V a»/2.

(iii) Let vi(t) = 1/27 [« (1 — u(x))e™ dx. Then |vi(t) | = O(M)
and |t'v:(2) | = O(D™™Y), 1 = r < 40.

(iv) Let G = [i" da [§" df u(f(a, 8)) and v(t) = 8(¢) — vi(¢), where
§(t) is the Dirac delta function. Then

2o 2n o n
G= j da J df J’ exp [jt ¥ € cos (k6 + a):| v(t)dt.
0 0 —o ! '

Using the properties of v,, we can then show (for details, see the
section at the end of this proof) that

E(G)=0(n"(logn)™").
(v) Let T = max | f(a, 8) | . Then using the inequalities
a,f

(@ 0= Tn, |- fle O] <T

we can show that G < 1/(n log’n) = T < M + 2D for large enough n.
(vi) The result from step (iv) implies

1 1
Pr{G = n log* n} =0 ((log n)a)'

Hence, using step (v)

max | f(a, 8) | = v2a2 Vvnlogn + (g + 2}\/ lo’; - log log n
o

. . 1
with probability =1 O(W).

The derivation of the lower bound is more difficult, but similar. We
will only outline the proof. We examine the values of f(a, 6) at the
points 8, = 27-(2m — 1)/2n, forl=m=n.

(vii) Let M, = M = v2a, vn log n — gD log log n, and M, = 2M.
Let S be a subset of the integers from 1 to n with cardinality greater
than n(log n)™" and put F = Ynes u(fla, 0x)).

As in the derivation of the upper bound, we can find the asymptotic
behavior of the first two moments of F using the properties of wu.

(viii) We can show E(F) = c3 | S|n"'(log n)*"/* for some constant
¢s > 0, and E(F?) — EXF) = O(|S|n"'(log n)*/*) + O(|S|*n"*(log
n)’).

(ix) Now
Pr{max f(a, 6,,) = M or min f(a, 8,) = —2M} =1 — Pr{F =0}
meS meS

COEFFICIENT INACCURACY IN FILTERS 2311



by the definition of n. But Pr{min f(a, 6.) = —2M)} = O((log n)™®
from the upper bound, so that

Pr{ma;t fla, 6n) =M} =1— Pr(F =0) — O((log n)™®).
Further, Pr{F = 0} < Pr{(F — E(F))? = E*F)}, so by Chebyshev’s
inequality
E((F - E(F))%

E*(F) :

(x) Using the bounds from step (viii), Pr{F = 0} = O((log n)~*%).
Therefore, using the definition of M;, M,, and D, we have:

Pr{max fla, ) = V2a; Vn logn—g \[ " log log n}
meS log n

=1 — Pr{F = 0} — O((log n)™®
=1 — O((log n)~*?).

Pr{F=0} <

Details of Step (iv)
From the definition of v(¢) [see step (iv)], we can show that

j [t]"|v(t)|dt = O(D™) 1=r=<18 (18)
j [t]"|v(t) | dt = O(D™). (19)
111>d/2

Since the Fourier transform of ¢"v(¢) is j "u"(x),

- 1 - 2
"“"t’v(t)dt‘ = I Mx)e ™ /d
J:w e 2‘/‘”_3 . u e X
= o(ﬁ"”D—’ J e-*’“ﬂdx)
|x|=M
JE M?2/4
- L B
O(MD’ e ) (20)
uniformly in 8> 0,0 <r = 18.
Similarly, for 8 > 0
f_w exp(—ﬁt2 é] cos® (k9 + a)) tu(t)dt =0 (M—@ exp(—Mz/Q)),

(21)
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where

=48 i cos® (k0 + a).

k=1

Further,

E cos’ (k6 + a) ——+ 2 cos 2(kf + a)

k=1 k-l
and

i cos 2(k8 + a) <1 _
—_ ~|sin 8|’
So
n n Vo, a«a
cos® (RO + a) =
k)_:_‘.l n n for ﬂlogn<w|’
2logn
since
) n mlogn wlogn
fl= — f =|8 -— .
|sin 8] logn or 2 101= 2

Therefore

2 —-M?

J exp — df = O(e™"*"),
0 48 Y cos’ (kO + a)
k=1

whence

2m 2 ) n
J’ da J de J exp[-[i’t2 Y cos® (k0 + a)] t'v(t)dt
0 0 —m k=1

=0 == ‘/E_ —Mijz.ﬂn
MD"

(22)

) . (23)

Using (10) and (23) above, we can derive the result of step (iv) as

follows:
Since €, are independent,

E(exp [jt ¥ ekck]) = [| Ee’*“*

k=1 k=1

.—_exp[ zzza;t’ZC*+O(nt6)] for |t|=d
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from assumption (10), where ¢, denotes cos (k8 + a). Further,
E(exp [jt ¥ ekck]) - expl:—— at* ¥ ci]
k=1 k=1
+ Y at' ¥ ch exp[— ast® ¥ ci]
J=3 k=1 k=1
1 5 .n ) n
+ = {Z at’y .«3*},}2 exp[— ast® ¥ c'ﬁ:l
2 j=3 1 k=1
+ O(nt®) + O(n®|t|®) for |t|=d, (24)
since

e"=e’+(b-a)e"+%(b-a)e"+0(|b—al?

uniformly for b e #, b = 0, a € €, Re(a) = 0. Now we consider

E(f exp [jti Ekf_’k:’ v(t)dt) =J' E(exp {jti ekck])v(t)dc;
- 1 . 1

the expression on the right-hand side of (24) can be substituted for the
integrand in the interval | ¢| < d. Outside this interval, we can use the
simple bound | exp [jt 7 excx]| = 1, and arrive at:

o n d n
Ef exp ':jtz em} v(t)dt =J- E(exp [jt ¥ ekck])v(t)dt
e 1 —d 1
+ O(J |v(e) Idt)
lt|=d
=f E(exp [}t ‘HZ, Ekck])v(t)dt
+ o(f l0(0) |dt)
E
+ O(nf [¢]°|v(E) |dt)
|fj=d
+O(n2J’ t"’|u(t)|dt)
=d
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+ O(n r t"'lu(t)]dt)

+ O(n“J |t[9[v(t)|dt). (25)

From (18) and (19), we see that the right-hand side is

= j E(exp [ Jt z ekck])v(t)dt + O(nD™%) + O(n*D™") + o(n*D)
o 1

" n 9/2
= J E(exp []t ¥ eka:l)U(t)dt + O((—loi—s—?z)—) .
. 1

To find the asymptotic behavior of E (G), we use (21). After integrating
with respect to a,f, we have, for each of the terms in (24), with
expressions in square brackets corresponding to those in (24),

2 . . i o |
f da J’ df J exp[— ast® ¥ c?,] v(t)dt = O(Tf e‘sz'%-zn)

2 27 5 n . « . \/'—l ,
J da J do 'y a; ) ci J t’ exp[ Ju(t)dt = O(n——3 e ™M /2a-zﬂ)
0 0 =3 1 - MD

27 27 ®© 5 2
J’ daj dﬂj {E at’y ci} exp[ Jv(t)dt
0 ] e U3

= O(n2 % e‘m’z“*").

(26)

Therefore, collecting the previous results, we have

27 2 oo n
E(G) = J do J’ dé j E(exp [jt D em])v(t)dt
0 0 —m !

Jn . 1 9/2
= O(ﬂrp—1 e M*2an 4 (dogn)™ Oi;:g) ) = O(n '(log n)™").
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