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Numerical Integration of
Stochastic Differential Equations

By E. HELFAND
(Manuscript received June 28, 1979)

A procedure for numerical integration of a stochastic differential
equation, by extension of the Runge-Kutta method, is presented. The
technique produces results which are statistically correct to a given
order in the time step. Second- and third-order approximations are
explicitly displayed.

I. INTRODUCTION

Systematic work on numerical solution of stochastic differential
equations (SDEs) seems not to have kept pace with the considerable
analytical developments. This parallels the lag which existed between
the analytical and numerical study of ordinary differential equations
near the turn of the century (which is perhaps understandable in view
of the difficulty of implementing even straightforward algorithms at
the time). In the last few years, there has been a burst of activity in
performing Brownian dynamics computer simulations' to gain insight
into motions in complex physical systems. Little attention seems to
have been paid, though, to the systematic development of the numer-
ical techniques in most of these works.

In the present paper, the Runge-Kutta (RK) approximation for
deterministic differential equations (DDEs) is extended to SDEs. Al-
though we have not as yet explicitly considered other popular numer-
ical schemes, we feel that the techniques utilized here should have
wider applicability. For the sake of simplicity, several further restric-
tions are placed on the discussions in this paper. These, we believe,
can ultimately be removed by fairly simple means.

(i) We shall work only with a single equation rather than a set of
n equations. It has been explicitly verified that the second-order
approximation carries over in a straightforward manner to sets (and in
our studies of polymers® we used it for 600 simultaneous equations).
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However, bear in mind Butcher’s demonstration® that extra conditions
arise with the RK method when one generalizes fifth-order (5¢) and
higher schemes from single equations to sets.

(i) We present explicit results only for low-order algorithms, sec-
ond (20) and third (3p) order, although the principles of higher order
extensions will be written down.

(itz) Finally, we restrict attention to a simple SDE, which is of the
general form occurring in Brownian motion theory. This is

dx/dt = f(x) + A(2), (1)

where the A (t) are Gaussianly distributed random variables with mean
zero and covariance

(A@R)A(L)) =E8(t - 1) (2)

(white noise). The extension to f(x,t) appears to involve little new, but
makes the presentation more cumbersome.

In Section II, we review the RK technique for DDEs. After defining
more clearly what is meant by numerical solution of an sDE in Sec-
tion III, we explicitly extend the 2o RK method to SDEs and outline the
generalization to any order. A 30 RK scheme is presented in the
appendix. Section IV is a brief discussion of the question of accuracy.
The concluding remarks indicate areas for future studies.

Abbreviations used throughout the paper are listed in Table I.

Il. SUMMARY OF THE RK APPROXIMATION FOR DDEs

To set the stage, it will be useful to review* briefly the application of
the RK technique to the DDE

dx/dt = f(x). (3)

Of course, this equation can be solved by quadrature, but not when x
and f are vectors, or when fis a function of x and ¢ (the RK procedure
for the latter case is presented in most standard texts' and does not
differ greatly from the case we are considering).

Begin by writing down the solution of eq. (3) as a series in the time
step s

x(s) = xo + sfy + B S*Lfd + (RS Lf2+ ) + o, (4)

Table I—Summary of abbreviations

SDE Stochastic differential equation

ppE  Deterministic differential equation

RK Runge-Kutta

ko kth order

I 1 stages

mg m Gaussian random variables per step
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where " denotes the nth derivative of f evaluated at x,. The aim of
many numerical procedures is to present an algorithm which, when
expanded in s, matches the series (4) to a given order, &, in s. Of course,
merely evaluating eq. (4) will do that, but a further aim is to avoid the
determination of derivatives of f. Thus, in the RK theory one goes from
an initial condition x, to x(s) in [ stages by the general procedure

gl = f(xo)!
&2 = f(x, + Basg),
&1 = f(x, + Bnisg + Basga),

8= f(xo + Busgr + « -+ + Bu-15g81-1), (5)
Xy =X, + s(A1g + Aaga + -+ + Aigi). (6)

The % (I + 1) parameters A, - - - , Ay, Bay, + -+ , Bii-1 are to be selected
so that an expansion of eq. (6) in powers of s matches Eq. (4) through
order k. Only for k < 4 can a kth order (ko) RK calculation be done in
k stages (ks). For k = 5, a larger number of stages than the order is
necessary to provide enough parameters to match the true series.

In the 2025 RK, the parameters must satisfy

A +A:=1, (7)

Asfn = . (8)

This illustrates the common occurrence of less equations than param-
eters. The user then has the freedom to select some parameters (one
in the present case) for convenience, or to achieve the smallest error
estimates.”

Il. GENERALIZATION OF RK METHOD TO SDEs

An SDE does not have a definite solution. When we say that we are
numerically integrating an SDE, we mean that we are generating a
statistically representative trajectory. Furthermore, as in numerical
integration of a DDE, we are not going to generate the full trajectory,
but only values of x at discrete times: x(0), x(s)), x(s) + 82), --- . Let
us be more specific. The stochastic process x (or set of processes)
specified by eq. (1) is Markovian. Thus, the process is completely
specified by the conditional probability density function p(x, s|x.),
which gives the probability density of observing x at time s, given the
value x, of the variable at time zero. What we seek is a method of
selecting a value x, with statistics correct to kth order in s. By this, we
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mean that the moments (x?) are all correctly given to O (s*); i.e., there
exists a sequence C, such that for sufficiently small s

[(xD)a — (x(s)9)e| = C,s", 9)

for all positive integers gq. The average ( ), is over the ensemble
generated by the approximate process, while ( ). is over the exact
process.

An approximation algorithm will involve generation of some random
numbers. Naturally, if p(x,s| x,) is known, all that need be done is to
generate a single uniformly distributed random number, u, for each
step and solve the equation p (x,s | x,) = u for x. We shall see that a 1o
approximation is equivalent to linearizing f (since f” does not enter
until O(s%). For a linear SDE, p(x,s|x,) is a well-known Gaussian.®
Use of this Gaussian as an approximate process has been suggested.™
This is practical for a single variable x, but for a large set, the amount
of matrix manipulation is overwhelming.

In the RK extension to be discussed, for each step of time s,
m independent Gaussianly distributed variables, Z;(or m sets, Z;), will
be needed. These have

-

(Z:) =0, (10)
(Z:Z)) = ;. (11)

An approximation which requires m Z’s will be said to be m-fold
Gaussian, abbreviated mg.

Now we shall present a parallel to the RK procedure for SDEs. Again
begin by developing a “power series” expansion for the solution of the
SDE (1):

dx/dt = f(x) + A(t). (1)

This may be done by iteration and Taylor series expansion:
x(s) =x, + j dslf{x., +f dsof[xo+ «+- ]+ w,,(sl)]
0 0
+ wo(s) (12)

1 1 y
=X, + sfo + = Sfof o + 5 SELE+2) + - + S, (13)
ra

S = {w.(s)} + {fwi(s)} + {% J’f ds;w?,(s])}

+ {fo’?wz(S) + fof'[swi(s) — wa(s)]
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1 .
+ = f J dslw;f(s;)}
6 (1]

+ {1 i f dsi(s — swils:) + = L j dsis1ui(s1)
2 0 2 0

1 . 8
+ ﬂﬂ(m J(, dslw?;(sl)} + e (14)
w,(s) = J ds\wn-1(s1), n=>0, (15)
0
= J ds.(—s—jrﬁslA(sl), n=0 (16)
. !

(w,(s) is the Wiener process). The term S is a stochastic process. Its
various parts, set off in braces, have orders in probability s'? s**, s°,
§% §* ... (N.B.: there is no s' term). A stochastic variable v will be
said to have an order s* in probability if

| (v7) | = K,s™, (17)

for all positive integers g, a set of constants K,, and sufficiently
small s. The w, are correlated Gaussian random variables with mean
zero and covariances

(W (S)Wm(8)) = & /nim!(n + m + 1), (18)
(o (s)w, (t)) = £ min(s, t).

Ly £t2 t<s,

Y gs(2 —s), t=s. (19)

(wo (s)un(t)) ={

The statistics of the stochastic part of the trajectory are embodied
in the moments of S which, from eqs. (18) to (20), are

(S) = Va s%f) + SEM2 fifi + Y% Lf + Y £ + o0, (20)
(S = st + s%fl + SSECAL + % + MEL") + -+, (21)
(S*) =T 8% + - -+ . (22)

For the expansion through O(s?), the terms of S nonlinear in the w's
do not contribute to the moments (S*) and higher. Thus, these
moments are related to the second moment by the usual Gaussian
formulas: {S*) = 3(S%), etc.; i.e., the cumulants vanish to O(s®). The
point is that, if (S®) is properly given, so will (S*), = 4, be. The aim
of a ko numerical scheme will be to match not only the nonstochastic
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terms of the series solution for x, eq. (13), but also to match all the
moments of the stochastic term.

We delay the presentation of the general extension of the Rk
approximation and first explicitly display a 2025l scheme. Consider
the algorithm:

& = flx, + s \iZ), (23)
& = f(xo + sBg + s'°£'/* \Z), (24)
x=1x,+ s(Aig + Azg) + s \Z. (25)

Z is a single Gaussian random variable with mean zero and variance
unity, generated for each time step s. Using these equations, x can be
developed in power of s'/? to O(s%):

X =%+ (A + Ad)sfo + AsBS*ff + «++ + 8§, (26)
S = A\ Zs'?£'72 + (A1A + Ah2) Zs* V%)
+ WA + AMN)Z°SEfS + -« . (27)
The moments of S through O(s? are
(S) = %(AN + ADDSES + - -+ (28)
(8?) = A2st + 2(A A + AN S Efo - - (29)

To O(s?), the moments (5*) and higher involve only the linear terms
of S, so they are Gaussianly related to (§*). Matching the deterministic
part of eq. (26) to (13), eq. (28) to (20), and eq. (29) to (21), we find as
equations for the parameters:

A +A=1, (30)

AsB =%, (31)

As=1, (32)

(Ah; + A2, = %, (33)
AN+ AN} = % (34)

The sign of A, is immaterial since it multiplies a symmetric random
variable. There are five equations and six parameters. A convenient
solution set is

A =A;=1%, (35)
B=1, (36)
Ao=1, (37)
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and either

(Al = 01 AZ = 1)) (38&)
or

A =1A=0). (38b)

With this as background, the general procedure for constructing a
kolsmg approximation should be clear. Consider the m Gaussian ran-
dom variables as a vector Z = (Z,, Zs, +++, Zn). Also define [ + 1
vectors of parameters, each of dimension m:

Ao =(A1,0,0, ---)
A= (A, Az, 0, -+ )

A=A, Ay oo+, Aim). (39)
The number of scalar A parameters is m(l — 2 m + %). The general-
ization of the RK algorithm is

gl = f(xu + SI/2£1/2 Al'z))
&> = [(xo + sB2g + s'7£% Xs-Z),

&= f(xo + sPugr + -+ + sPu—18-1 + s N Z), (40)
x=x+8(A g+ - + Agi) + 582N, L. (41)

The A’s and B's are subject to the usual RK equations since, for £ = 0,
the DDE is recovered. The equations for the A’s are obtained by
expanding eq. (41), in powers of s'/* to order s* and separating off a
stochastic term S. Each term of the moments of S has the form of a
product of a numerical coefficient, an integral power of s and of £, a
product of powers of f, and its derivatives, and a product of the A, 8
and A parameters (the A parameters enter only as dot products of the
A vectors). This term is equated to the term of the exact moments of
S with the same powers of s, £, f,, and derivatives of f, [see egs. (20) to
(22)]. The result is a set of equations for the A’s, and the number of
Gaussians must be chosen so that there are a sufficient number of
parameters to satisfy these equations. One Gaussian will do for 2025,
and two Gaussians for 303s (see the appendix).

IV. ACCURACY

The accuracy of a numerical scheme for integrating a DDE can be
judged on the basis of its ability to determine trajectories for analyti-
cally soluble equations. The schemes for SDEs can only be judged on
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a statistical basis. For example, the probability density, p (x, ¢), for the
random process x defined by eq. (1) satisfies the Fokker-Planck equa-

tion N
@__2° _l,d
il [f(x)p zédxp]- (42)
This has a stationary solution
Po(x) = N(§) exp [2F (x)/£], (43)
F(x) = f f(x')dx, (44)
1/N(§) = f exp [2F (x')/§]dx’ (45)

(assuming that the density is normalizable). For a stable approximation
scheme, the distribution of x will also approach a stationary probability
density. One could attempt to test the overall “goodness of fit” of the
observed to the theoretical density function.’ An easier procedure is to
assume that eq. (43) holds and to obtain an estimate of £, for instance
by maximum likelihood estimation.” The estimated £ is then compared
with the exact £ We have used this technique and have clearly
observed how the estimate improves with decreasing step size s.
However, no systematic studies have been carried out yet to determine
whether the error decreases as s**'.

In general, one is interested in the complete comparison of the
transition probability p (x, 5| x,) for the sDE and the numerical scheme.
This is embodied in the spectral resolution, for the exact process and
the approximation, of p(x,s|x,) regarded as an integral kernel. Here
studies performed on exactly soluble systems would be of value.

A question related to accuracy is: How long a trajectory need one
run to reduce statistical error in some property to acceptable levels?
The answer depends on the time, 7, for decay of correlation of that
property. New statistical information is only generated in a time of
O(7)."® Therefore, a simulation of total time ¢ will lead to a decrease of
error like (7/£)'2. Some systems cannot be described in such a clear-
cut fashion since they have a spectrum of relaxation times, some of
which may be very long. In such cases, there may be an advantage in
reinitializing the run to break correlations.

V. DIRECTIONS FOR FURTHER RESEARCH

The specific procedures displayed in this paper are illustrative of
the manner in which standard numerical techniques can be extended
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to stochastic differential equations. There are several general direc-
tions in which further research may be aimed.

5.1 More general SDEs

The numerical schemes should be directed toward more general
spEs. The extension to sets of equations has been mentioned. More
general forms of SDEs than eq. (1) are

dx = f(x,t)dt + o (x, t)dw, () (46)
or

dx

e flx, t, A(t)). (47)

Another generalization is that A may be other than Gaussianly dis-
tributed. Also, in the physical literature there is increased attention
being directed to stochastic integrodifferential equations, representing
processes with memory, such as'""?

t

% = f(x) + j dK(r)x(t — 1) + A(t), (48)

0
(A()A(t + 7)) o< K(7), (49)

or more generally,"
.

%ft. = f(x) + f drG[r, x(t —7)] + A, (50)

0

with A and G related by a generalized fluctuation-dissipation theorem.

5.2 Other numerical schemes

It would be interesting to develop stochastic versions of other
numerical schemes used for DDEs. One may raise the objection to any
multistep procedure that it does violence to the Markovian nature of
the process. One would have to reuse the random variables, Z;, for
several steps to eliminate the spurious memory to the desired order.

5.3 General principles

There are many matters, which are the standard fare of the deter-
ministic numerical analyst, that should be placed in a stochastic
context. The question of accuracy has been raised. Another is stability.
A third question is that of step-by-step error estimation. An interesting
problem arises in developing the analog of step-size adjustment and
the criteria for when it is necessary. Imagine that such criteria exist
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and a particularly large Z triggers the call for step-size adjustment.
The new Z’s that are generated should not be independent of the
old Z’s.

Finally, as a general problem, the matter of computational speed
should be considered. To gather statistical data, long trajectories must
be run, sometimes on systems of many degrees of freedom. It is urgent
that there be an analysis of various procedures with respect to their
relative speeds, for a given accuracy.

APPENDIX
30352z Procedure

To carry out a 3p procedure requires three stages and two Gaussian
random variables. The explicit algorithm is eqs. (40) and (41) with
[ = 3. The parameters must satisfy the equations

A+ As+ Ay =1, (51)
Ao + A3(Ba + Ba2) = %, (52)
Ao + As(Bon + B)? = %, (53)
Asfaafiar = Y, (54)
A =1, (55)
Al + Aohar + Ak = %, (56)
A A2+ Az | A2|® + As| |2 = Y, (57)
AN+ Aohs + AshD = %, (58)
Av[Ar|PAn + As|Ae|Aa + Aa| As|2Am = %, (59)
AoBadar + As(Bn + Ba)ha = % (60)
|AA: + Ashs + Ak |2 + 2(AsBaikn
+ AsBadn + AsBrda) = %. (61)

The first four equations are the usual ones for a 3o RK approximation.
They leave two degrees of freedom. A widely used solution is

A= %, Ay = %, Az = 4/9; (62)
Ba=% PBu=0 Bxn =%, (63)

With this set, the remaining seven equations can be solved for the
A parameters. The solution is
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Ar=1 Au=0 Aun="% An="% (64)

There are four solutions for the Ap, two of which are complex. The
real solutions are either

A1z = 0.245538,

Az = —0.023225,

As2 = 0.544169, (65)
or A2 = —1.34583,

A2z = 1.24987,

Asz = 0.385032. (66)

Solution (65) is probably superior because it uses less of the Z; process.
(A1l the A, and/or all the A may be reversed in sign as an acceptable
solution, as is evident since they multiply symmetrically distributed
random numbers.)
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